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Preface

Today’s world is social and complex in nature. Societies have evolved and many
problems faced by individuals can no longer be solved in solitude. We require coop-
eration with others to pursue our own goals, in many complex scenarios like politics
and businesses, as well as in our day-to-day life. As we all hold different goals and
interests, conflict emerges as a natural part of our lives. Successful cooperation requires
solving conflicts among interested parties. The importance of conflict resolution has
driven research in many fields like anthropology, psychology, mathematics, biology,
and recently, in artificial intelligence. Despite their diametrically different approaches,
the goal of these disciplines has always revolved around either solving conflict or
helping us to understand conflicts. This can be explained not only by our need to
cooperate, but also by the global importance of avoiding escalation and, therefore,
striving for a better world.

The Second International Workshop on Conflict Resolution in Decision Making
(COREDEMA 2016) focused on theoretical and practical computational approaches
for solving and understanding conflict resolution. These computational approaches may
be inspired by a wide variety of disciplines such as anthropology, psychology, econ-
omy, biology, mathematics, and computer science itself. Indeed, one of the goals of this
workshop is to allow researchers from different disciplines to discuss their perspectives
on conflict resolution.

This book gathers the proceedings of COREDEMA 2016, which was held in
conjunction with the 22nd European Conference on Artificial Intelligence (ECAI
2016), The Hague, The Netherlands, on August 29. A total of 13 submissions were sent
to the workshop, four of them being short papers from ECAI 2016 invited to submit a
full version to the workshop, and nine of them being direct submissions to the
workshop. All the invited contributions from ECAI 2016 were accepted as full papers,
while 55% of direct submissions were accepted as full papers. All of the contributions
were reviewed by at least three experts in the area.

We would like to thank all of the authors that contributed to the workshop, as well
as the fantastic Program Committee that helped to ensure and check the scientific
quality of the articles. Finally, we also want to thank the reader, and we hope that this
book helps you in advancing the current state of the art in computational approaches for
conflict resolution.

January 2017 Reyhan Aydoğan
Tim Baarslag

Enrico Gerding
Catholijn M. Jonker

Vicente Julian
Victor Sanchez-Anguix
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Boolean Negotiation Games

Nils Bulling and Koen V. Hindriks(B)

TU Delft, Delft, The Netherlands
{n.bulling,k.v.hindriks}@tudelft.nl

Abstract. We propose Boolean Negotiation Games, a computationally
grounded model to investigate strategic aspects of negotiations. Our
model is inspired by the popular Boolean Game framework and Rubin-
stein’s bargaining model of alternating offers. We analyse restrictions on
negotiation protocols and investigate properties of agreements. We pro-
pose and investigate protocols that do not allow repeating offers. In the
context of Boolean Games we then naturally obtain finite games, which
arise in many practical negotiation contexts. We show that Boolean nego-
tiation games (BNGs) can yield agreements which are more beneficial
than the stable solutions (i.e. Nash equilibria) of the underlying Boolean
game, and propose an algorithm to compute stable negotiation strategies.

1 Introduction

In [20, p. 2] automated negotiation is said to be “perhaps the most fundamental
and powerful mechanism for managing inter-agent dependencies at run-time”.
Given the need for collaborative and interoperable autonomous systems, auto-
mated negotiation has attracted a lot of attention in the multi-agent community
ever since, and in economics and game theory for even longer. There are at
least two prominent methodologies to analyse negotiation settings: off-line using
game theoretic techniques [4,20,24], and online using heuristic and evolution-
ary models [2,15]. In particular, in the game theoretic approach a lot of work
uses Rubinstein’s bargaining model of alternating offers [5,23], often making the
assumptions of perfect rationality and perfect information. We are interested
in studying partial knowledge. Although a lot of research has already looked
at negotiation under incomplete information [3,14] where the knowledge parties
have about the opposing party is incomplete, analysing this setting theoretically
has been a challenge. Boolean Games, moreover, allow us to study aspects of
control and power in a negotiation that can occur in multi-agent domains.

In this paper our focus is on providing a compact model that allows to inves-
tigate strategic aspects of protocols for negotiating. The model we propose is
inspired by Boolean games [8,19] (BG) which have become a popular model in
the multi-agent domain. The many variants and extensions of BGs related to
knowledge [1], cooperative teams [12], control and manipulation [13,17], secret
goals [10], iterated execution [18], dependencies [7], and pre-play negotiations
about payoffs [25] just to name a few, make them an ideal starting point for
our purposes. Our model can naturally be extended to incomplete information
settings in future work.
c© Springer International Publishing AG 2017
R. Aydoğan et al. (Eds.): COREDEMA 2016, LNAI 10238, pp. 1–18, 2017.
DOI: 10.1007/978-3-319-57285-7 1



2 N. Bulling and K.V. Hindriks

The main contributions of this paper are a model of negotiation called
Boolean Negotiation Games (BNG) and a formal analysis of this model in a set-
ting where offers cannot be repeated. In the context of BGs the non-repetition
of offers naturally yields finite games, which arise in many practical contexts.
We present an algorithm to compute stable strategies called negotiation equilib-
ria. We show that negotiation equilibria always exist and illustrate that BNGs
can yield agreements which are more beneficial than the Nash equilibria of the
underlying BG. In this context, the negotiation protocol plays a crucial role. A
negotiation protocol gives rise to a specific unfolding of a BG with similarities
to extensive games, but this unfolding is more general as it may not result in
a complete agreement on all outcomes resulting in a smaller BG being played
after the negotiation phase. As such, different properties of negotiation protocols
greatly affect the game being played.

Outline of the paper. In Sect. 2 we introduce preliminaries including the Boolean
game (BG) model. Then, in Sect. 3 we introduce our model called generalised
extensive BG that constitutes in combination with a negotiation protocol, a
Boolean negotiation game (BNG). Properties of BNGs are studied in Sect. 4,
where we also present an algorithm to compute negotiation equilibria. We show
that these equilibria always exist. Finally, we sketch related work and conclude.
Due to space limitation we omit proofs.

2 Preliminaries

Throughout the paper we assume a fixed set of agents, also referred to as players,
Agt = {1, . . . , k}. We use bold font to denote a vector x = (x1, . . . , xk) of length
k if not said otherwise; x i refers to element xi in x . We denote by x∪ the union⋃k

i=1{x i}. Note that we impose no restrictions on the type of the x i’s; it can be
a number, a set or a function.

Propositional Logic. For the remainder of this paper we also assume a finite
set of (propositional) variables Π. We use PL to refer to the set of propositional
formulae where propositional variables are drawn from Π. The formulae � and
⊥ denote truth and falsum, respectively. An X-valuation, where X ⊆ Π, is a
function ξ : X → {t, f} where {t, f} is the set of Boolean truth values. It defines
which variables from X are true and false, respectively. We often represent ξ by
the indexed set {x ∈ X | ξ(x) = t}X , explicitly specifying only the variables set
true. By slight abuse of notation we simply write ξX ⊆ X. ξ∅ denotes the special
valuation with the empty domain. The set of all X-valuations is ValX . We often
omit the index X in ξX and ValX whenever X = Π. An extension of ξY is any
valuation ξX with Y ⊆ X such that ξX ∩Y = ξY . We use Val⊆Y =

⋃
X⊆Y ValX to

denote the union of all X-valuations where X is a subset of Y ⊆ Π. Sometimes
it is more convenient to represent ξX , with X = {x1, . . . , xn}, as a sequence
of the form x1 . . . x̄i . . . xn where each xi ∈ ξX and x̄i �∈ ξX . For example, p̄qr̄
denotes the valuation {q}{p,q,r}. We assume that the reader is familiar with
standard propositional logic and write ξ |=PL ϕ to denote that Π-valuation ξ
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makes ϕ true. Finally, given a valuation ξX and a formula ϕ, we write ϕ[ξX ] for
the formula that equals ϕ but where each variable x ∈ X is replaced by � and
⊥ if x ∈ ξX and x �∈ ξX , respectively.

Boolean Games (BGs). We consider BGs without costs similar to [6] but
replace, for the ease of presentation, prioritized goal bases with simpler prefer-
ence lists. Preference lists are used by several authors to model agents’ prefer-
ences. A preference list Γi = (γi

1, . . . , γ
i
pi

) of player i, pi ∈ N, is a sequence of
formulae of PL where γi

1 is the tautology �. Formula γi
j represents the goal of

rank j. The agent prefers formulae to be true with a rank as high as possible.
We assume that each agent i has its own preference list Γi. A preference list
gives a natural way to define a payoff function μi : ValΠ → N0 for each agent:
μi(ξ) = max{j | ξ |= γi

j}. Often, it is convenient to use a preference relation 	i

where ξ 	i ξ′ iff μi(ξ) ≤ μi(ξ′). A Boolean game is a tuple B = (Agt,Π,Π ,Γ )
with Agt = {1, . . . , k} a non-empty set of agents, Π a finite, non-empty set of
variables, Πi ⊆ Π a set of variables controlled by i such that Π forms a parti-
tion of Π, and each Γ i is a preference list of formulae of PL. We require that Π
forms a partition because the control of variables should be exclusively assigned
to a single agent. Note that agents can usually not ensure the truth of their
goal formulae on their own, which is for examples the case for x ∧ y if x and y
are controlled by different agents. A strategy profile is a vector ξ consisting of
Πi-valuations ξi ∈ ValΠi

for i ∈ Agt. A strategy profile ξ can be naturally iden-
tified with the Π-valuation ξ∪. We shall lift the preference relation to Boolean
games and strategy profiles1: ξ �B

i ξ′ iff ξ∪ �B
i ξ′

∪. We write ξ =−i ξ′ whenever
ξj = ξ′

j for all players j ∈ Agt\{i}. A strategy profile ξ is a Nash equilibrium if
no agent can unilaterally deviate from ξ to improve its payoff, i.e. there is no ξ′

with ξ =−i ξ′ such that ξ′ i ξ. The set of all Nash equilibria in B is denoted
by NE(B). Finally, we define a modified version of a BG in which the truth val-
ues of some variables according to a valuation ξX ∈ ValX have been fixed. The
ξX -reduced BG of B is the BG B[ξX ] = (Agt,Π ′,Π ′,Γ ′) where Π ′ = Π\X,
Π ′

i = Πi\X and Γ ′
i = (γi

1[ξX ], . . . , γi
pi

[ξX ]); in words, all variables fixed by ξX

are removed from the game and in the goal formulae these variables are replaced
by ⊥ and � according to ξX .

Example 1 (Prisoners Dilemma). Let us consider the classical Prisoners
Dilemma normal form game [21]:

Prisoners Dilemma Pris. 2
don’t c. (¬c2) confess (c2)

Pris. 1
don’t c. (¬c1)

confess (c1)

(2,2)

(3,0)

(0,3)

(1,1)

The propositions ci play the role of actions: setting ci true means that Pris-
oner i confesses; otherwise, the prisoner defects/does not confess. Each full
valuation gives a payoff for both players, e.g. c1c̄2 gives Prisoner 1 a pay-
off of 3 and Prisoner 2 a payoff of 0. We can model the game as a BG2

1 We omit the superscript B whenever clear from context.
2 As Agt = {1, 2}, x refers to vectors of length 2.
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B = ({1, 2}, {c1, c2}, ({c1}, {c2}),Γ ) with Γ i = (�, ci ∧c−i,¬ci ∧¬c−i, ci ∧¬c−i)
for i ∈ {1, 2} and −i equals 3 − i. As in the normal form setting, the unique
Nash equilibrium is the strategy profile ξ with ξi = {ci} for i = 1, 2.

3 Negotiations in Boolean Games Settings

In this section we introduce Boolean negotiation games (BNGs) which allow
players to interact in BGs by exchanging proposals sequentially. Therefore, we
first define generalised extensive Boolean games (GBGs) which are then instan-
tiated with negotiation protocols. A negotiation protocol is imposed on a given
BG affecting the possible actions of agents. Such a protocol adds a new layer
of strategic interaction as not just the plain selection of a specific proposal is
important but also the timing is of crucial significance, for example in the setting
in which proposals cannot repeat.

3.1 Generalized Extensive Boolean Game

Like a BG, a generalized extensive Boolean game (GBG) consist of agents that
try to obtain an outcome which gives them maximal payoff. GBGs generalise
the standard game theoretical notion of an extensive (Boolean) game [21] as
well as that proposed in [19]: (i) agents’ actions are not limited to setting a sin-
gle variable at a time but may propose settings for multiple variables, in principle
including those which they do not control, (ii) at terminal histories, not all vari-
ables must be assigned a truth assignment. Throughout this paper we assume a
vector Act consisting of sets of actions. Agent i draws its actions from the set
Acti. Possible choices are, e.g., Acti = Val⊆Πi

and Acti = ValΠ , but it is impor-
tant to note that we do not restrict ourselves to these cases and allow actions
differently from variable valuations, as we shall discuss in the next section. We
denote actions by act and use the notation actX to indicate that the action cor-
responds to a valuation from ValX . We also denote by acti a variable ranging
over actions, in contrast to that note that actX is a specific action. An action
actX is said to conflict with action actY performed earlier during the game if
actX ∩ Y �= actY ∩ X; or in words, if there is an z ∈ X ∩ Y that is assigned
opposite truth values by actX and actY . As in extensive form games, a protocol
determines which agent’s turn it is as well as the enabled actions at the current
situation. A history is a possibly empty sequence h ∈ Act∗∪ of actions. ε is the
empty sequence. �(h) is the length of h with �(ε) = 0, and if �(h) = n, h·act is the
n+1-length history with the last action being act. The operator · represents the
concatenation of two sequences; h≤n denotes the subsequence of h that consists
of the first n actions of h, if �(h) ≥ n. Finally, we write act ∈ h to denote that
act is an element on h.

Definition 1 (Protocol, P -history, P -run). A protocol (over Act) is a (par-
tial) function P : Act∗∪ → Agt× 2Act∪ such that if P (h) = (i, V ) then V ⊆ Acti.
A history h = (act1, . . . , actn) is P -consistent, P -history for short, if for all m
with 0 ≤ m < �(h) we have actm+1 ∈ V with P (h≤m) = (i, V ), i ∈ Agt. A P -run
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is a finite or infinite sequence ρ ∈ Act∗∪ ∪ Actω∪, where Actω∪ denotes the set of
all infinite sequences over Act∪, such that each finite prefix of ρ is a P -history,
and if ρ is finite then it cannot be extended; we also say that it is terminal. We
use RP to refer to the set of all P -runs.

Whenever P (h) = (i, V ) we write P agt(h) to refer to agent i, and P act(h) to
refer to the set of actions V . We use the same notation introduced for histories
also for runs where �(ρ) = ∞ for an infinite run ρ. Given a protocol P , a P -
strategy for agent i for that game is a (partial) function πi : Act∗∪ → Acti the
domain of which consists of all non-terminal P -histories h with P agt(h) = i
such that πi(h) ∈ P act(h). A profile of P -strategies π yields a unique P -run
ρπ. Moreover, we denote by ρπ,h the P -run which results if π is followed from
P -history h on.

Example 2. Consider the Prisoners Dilemma from Example 1 and the protocol
P over Act = ({c1, c̄1}, {c2, c̄2}) with the set of runs being RP = {c̄1, c1c2, c1c̄2}
and P agt(ε) = 1 and P agt(c1) = 2. A P -strategy π1 of player 1 can e.g. assign
{c̄1} to ε, and π2 be defined arbitrarily, then ρπ = c̄1.

Definition 2 (Generalized Extensive BG). A generalised extensive Boolean
game (GBG) is a tuple G = (Agt,Π,Π ,Γ ,Act, P ) where BG(G) =
(Agt,Π,Π ,Γ ) is a BG and P a protocol over Act. We often write PG to refer
to P . The BG BG(G) is called the underlying BG of G.

Outcomes and Strategies. Let us now consider how players interact in a
GBG. First, we note that the unique P -run ρπ yielded by strategy profile π
may not set the truth of all variables as is the case in Example 2. In addition to
that, some of the performed actions might be conflicting, e.g. a player may set a
variable true and the same variable false later during the game. The general rule
used to determine the outcome is that any action that conflicts with an action
performed later during the game is reverted and ignored in the computation of
the outcome. We present a formal treatment in the context of BNGs in Sect. 3.2.
At this moment the intuition that the P -outcome of a P -strategy profile π at
P -history h, denoted by outP (π, h), is a (partial) valuation from Val⊆Π which
results if all players follow π from h on, is sufficient. If the P -outcome is not a
Π-valuation, then the agents need to settle on the remaining variables in some
way or another. For this purpose the agents interact in the outP (π, ε)-reduced
BG of BG(G), BG(G)[outP (π, ε)]. In that game agents have to select a strategy to
define a truth value for the variables which not yet have a truth value. Therefore,
a strategy profile of a GBG G, G-strategy profile for short, is a tuple σ = (π, s)
consisting of a PG-strategy profile π and functions si : Val⊆Π → Val⊆Πi

such
that si(ξX) ∈ ValΠi\X , defining actions in the possible ξX -reduced BG, for each
i ∈ Agt. This gives us a natural way to define the outcome of a GBG, combining
the valuation obtained from following the P -strategy and the outcome of the
reduced BG. The G-outcome of a G-strategy profile σ = (π, s) at PG-history h
is defined as outG(σ, h) = outPG (π, h) ∪ ⋃

i∈Agt si(outPG (π, h)). Note that the
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G-outcome is always a full Π-valuation. Next, we lift preference relations to G-
strategy profiles: σ 	G,h

i σ′ iff outG(σ, h) 	BG(G)
i outG(σ′, h); we write 	G

i for
	G,ε

i . As a solution concept, we introduce the concept of generalised equilibrium,
a combination of a Nash equilibrium and subgame perfect Nash equilibrium. A
G-strategy profile σ = (π, s) is a generalized equilibrium if for all PG-histories
h, all players i and all other G-strategy profiles σ′ = (π′, s’ ) with σ′−i = σ−i

we have that σ′ 	G,h
i σ. We observe that a generalised equilibrium does not

have to exist as some reduced BGs may not have a stable outcome. To see this,
consider the trivial case in which the GBG consists of a single root node after
which normal form games not having any Nash equilibria are played. In that
case there is no generalised equilibrium either.

Example 3. The unique generalised equilibrium in the GBG given by the Pris-
oners Dilemma BG from Example 1 and the protocol from Example 2 is the
strategy profile (π′, s’ ) with π′

1(ε) = c1, π′
2(c1) = c2, and s′

2(c̄1) = c2. In
particular, note that if Player 1 played c̄1 then Player 2 would ensure outcome
(0, 3) in the c̄1-reduced BG of BG(G).

3.2 Negotiation Protocols and Negotiation Game

It is well accepted that there are at least two minimal requirements most negoti-
ations should satisfy: (i) agents can make proposals and are able to respond
to them; (ii) agents need to approve a possible agreement before it is con-
cluded [20,22]. The latter point also implies that taking part in a negotiation
should be individually rational for each agent. Based on these two properties we
now introduce negotiation protocols and Boolean Negotiation games (BNGs).

Proposals, Accepting and Agreeing. In contrast to GBGs we give a slightly
different reading to actions from Act∪. In the negotiation setting, actions should
be thought of as proposals made to the other players. As a consequence, a pro-
posal conflicting with a proposal made earlier implicitly rejects the earlier pro-
posal and serves the purpose of a counter-proposal. To implement point (ii)
above, we identify a sub-class of protocols that requires all agents except for
the agent who made the last proposal to explicitly approve the agreement that
is on the table. Therefore, players which are happy with the current propos-
als can accept. Players have to be cautious, though, because if a proposal is
made all other players could accept it which concludes the negotiation. To this
end, we slightly modify the interpretation of the empty valuation act∅ which
now serves as an accept action and is identified with the special action accept.
In order to allow agents to accept, the protocol needs to support this. For-
mally, a protocol over Act supports agreeing iff accept ∈ Acti for all i ∈ Agt
and accept is enabled after each non-terminal history. We say that a P -history
(. . . , actn−k, actn−k+1, . . . , actn) is agreeing iff all but one agent accept the pro-
posal actn−k made by the remaining agent. Formally, we state this as:
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(i) the agents that performed the last |Agt| = k actions are all mutually dis-
joint, i.e. Agt = {P agt(. . . , actn−l) | l = 0, . . . , k − 1},

(ii) the (n − k + 1)th action was a proposal, i.e. actn−k+1 ∈ Val⊆Π , and
(iii) the last k − 1 actions were accepts, i.e. actn−l = accept for l = 0, . . . , k − 2.

Leaving the Negotiation: Quitting and Closed Runs. So far we have
discussed two types of actions for an agent: an agent can either make a
(counter-)proposal or accept the current proposals on the table. But agreeing
is only one side of the coin. In some negotiation settings, a proposal may be
unacceptable for a party and their may be no way an acceptable agreement
can be reached. Therefore, the protocol must provide a mechanism which allows
agents to leave a negotiation (i.e. a way to explicitly express that the agent does
not accept). To do so, agents execute the action quit which leads, in terms of [4],
to ‘no deal’. Once an agent quits, the negotiation terminates3. A protocol over
Act supports quitting iff quit ∈ Acti for all i ∈ Agt and quit is enabled after each
non-terminal history. Then, a run is closing iff its final action is quit and it does
not contain any further quit actions.

Negotiation Protocols. Exchanging proposals, accepting and quitting are the
essential ingredients of any negotiation; however, it is also important to organise
a negotiation. A sensible assumption we make is that the negotiation is run in
a turn-based way, as in Rubinstein’s alternating offers protocol [23]. A protocol

q

c2
c1

c̄1
c2

c̄2

c̄2

c1

c1 c2

ε

c̄1 c̄2

c̄1 c2

c̄2

(a)
a, (a, c̄1c̄2)

a, (a, c1c̄2)

a, (a, c1c2)

a, (a, c̄1c2)

a, (a, c̄1c̄2)

a, (a, c1c2)

a, (c2, c1c2)

a, (a, c1c2)

a, (a, c1c̄2)

a, (c1, c1c2)

a, (a, c̄1c̄2)

a, (c2, c1c2)

a, (a, c̄1)

Player 2 accepts as its reservation

value is 3 in the BNG N [c̄1]

a, (c1, c1c2)
c̄1c̄2

c̄1c2

c1c̄2

c1c2

c̄1c̄2

c̄1c2

c̄1c2

c1c̄2

c̄1c̄2

c1c̄2

c̄1c̄2

c̄1c2

c̄1c̄2

c1c̄2

c̄1c2

c1c̄2

ε

(b)

a, (c̄1c̄2, c̄1c̄2)

a, (a, c̄1c̄2)

a, (a, c̄1c̄2)

q

a, (a, c1c̄2)

a, (a, c1c̄2)

a, (a, c̄1c̄2)

q

a, (a, c̄1c2)

a, (a, c̄1c2)

q

a, (a, c̄1c̄2)

a, (c̄1c̄2, c̄1c̄2)

a, (c̄1c̄2, c̄1c̄2)

a, (c1c̄2, c̄1c̄2)

a, (a, c̄1c̄2)

a, (x, c̄1c̄2)

Fig. 1. Prisoner dilemma negotiation protocol. Open circles represent Player 1 actions
whereas closed ones represent Player 2 actions. The labels show the computation of
Algorithm 1, i.e. the labels are assigned to nodes. We simply write q for (q, {(quit, ∅)})
and x, (y, z) for (x, {(y, z)}). In Fig. (b), we have x ∈ {c̄1c̄2, c̄1c2, c1c̄2}. Moreover, we
use a when used as an action as shortcut for accept. We also omitted accept as well as
quit actions in the figure (due to the two player setting).

3 We note that quitting is treated in a very specific way: the whole negotiation ends.
Other alternatives include the setting where only the quitting agent leaves the nego-
tiation (as e.g. in [12]) and the other players go on negotiating, where proposals no
longer including any variable controlled by the players which quit.
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P over agents Agt = {1, . . . , k} is turn-taking if agent 1 is the first to act,
then player 2,. . . then k, then 1 again etc. until the negotiation ends. Formally
stated, P is turn-taking if for every P -history h with �(h) ≥ n ≥ 2 we have
that4 P agt(h≤n)− 1 ≡ P agt(h≤n−1)+1 mod k; moreover, we shall assume that
Player 1 always starts, P agt(ε) = 1. We are ready to give our formal definition
of a negotiation protocol.

Definition 3 (Negotiation protocol). A negotiation protocol (NP) is a pro-
tocol P which is turn-taking, supports agreeing as well as quitting and in which
each P -run ρ is either agreeing containing no quit action, or is closing.

The definition of NPs is very general. It often makes sense to put a restrictions
on the proposals that can be made. For example, it is usually not helpful to make
the same proposal again and again. If a proposal has not resulted in an agreement
it will, under reasonable assumptions, also not do so if it is made over again, only
if the proposer counts on wearing out his/her opposite. The assumption is also
reasonable in terms of real negotiations where it is often difficult to get back to a
previously rejected proposal [9]. Therefore, we focus on non-repeating protocols.
A negotiation protocol P is non-repeating if no proposal can be made twice with
the exception of ξ∅ playing the role of the accept action. Furthermore, in order to
investigate agents’ interactions we focus on two types of protocols: one in which
agents make proposals concerning their own variables only; and one where agents
propose full valuations only. A negotiation protocol P is called (single) individual
proposal if Acti =

⋃
p∈Πi

Val{p} ∪ {quit, accept}, and it is called full proposal if
Acti = ValΠ ∪ {quit, accept}. These assumptions can be seen as an abstraction
of many negotiation settings. Consider for example the marked of second-hand
items. Variables encode specific package deals (e.g. the red car with extra winter
tires). Moreover, in such negotiations it is also a reasonable assumption that
offers are not repeated. We leave other variants for future study.

Example 4. Figure 1(a) and (b) shows the individual proposal and full proposal
non-repeating NP corresponding to the Prisoners Dilemma BG of Example 2,
respectively. For now, the reader is advised to ignore the labels on the histories.

A key benefit of non-repeating protocols is that they are finite which allows
to solve them bottom-up.

Proposition 1. All runs in a non-repeating individual or full proposal NP are
finite.

Outcome and Strategies. We are ready to give the, previously postponed,
formal definition of the P -outcome of a negotiation protocol. For this purpose,
we first define an auxiliary function rh : Act∗∪ ∪ Actω∪ → Act∗∪ ∪ Actω∪ that
helps us to obtain a reduced history in which proposals that are rejected by later

4 We need the −1 on the left-hand-side of the equation to accommodate the fact the
agents are numbered starting from 1.
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proposals are removed from that history. Afterwards, the remaining proposals are
combined into a single valuation. The function rh is defined as follows: rh(h) = ε
if quit ∈ h; else rh(ε) = ε; and rh(actX · h) = actX · rh(h) if there is no actY ∈ h
such that actY conflicts with actX , and rh(actX · h) = rh(h) otherwise. Now,
given a non-conflicting history rh(h) we define val(rh(h)) as the X-valuation ξX

where ξX =
⋃{actY | actY ∈ rh(ρ)} with X =

⋃{Y | actY ∈ rh(ρ)}.

Definition 4 (Protocol outcome). The P -outcome of a P -strategy profile π
at P -history h, outP (π, h) is given by val(rh(ρπ,h)).

We are ready to define Boolean negotiation games (BNGs) which are GBGs
equipped with a negotiation protocol.

Definition 5 (Boolean negotiation game). A Boolean negotiation game
(BNG) is a GBG N = (Agt,Π,Π ,Γ ,Act, P ) where P is a negotiation protocol
over Act.

As for Boolean games we also use the notation N [ξX ] to refer to the BNG
in which some actions are removed and truth values of variables are fixed
(cf. Sect. 2) according to ξX . We also lift the properties of NPs (e.g. full proposal)
to BNGs.

3.3 Preferences and Reservation Values

In the following let N be a BNG. We are especially interested in the question
whether agents have an N -strategy profile σ which yields an agreement which
is acceptable for all agents, given the possible outcomes of the underlying BG
BG(N ). The strategic reasoning of agents is rather involved, especially if the
protocol is non-repeating, because by proposing some valuation it can never
be proposed again if rejected by a player. If a player quits the negotiation, we
assume that the outcome could be any Nash equilibrium in the underlying BG,
if one exists. Thus, the specific outcome can be uncertain. As usual in negotia-
tion settings agents have a reservation value [5] which corresponds to the payoff
below which a player would refuse any proposal. A rather strict notion of reser-
vation value would be a player’s maxmin-strategy defining an outcome which the
player can guarantee on its own. We call the corresponding reservation value the
maxmin N -reservation value. In the strategic setting we consider here, it makes
good sense to relate the reservation value to outcomes of Nash equilibria, as they
give a payoff at least as good as the maxmin reservation value. In general, there
can be more than one Nash equilibrium, therefore, we define a weak and a strong
notion. The greedy N -reservation value (resp. modest N -reservation value) is
the player’s maximal (resp. minimal) payoff received by any Nash equilibrium in
NE(BG(N )). If a game does not have any Nash equilibria both reservation val-
ues are defined as the player’s maxmin N -reservation value. We refer to greedy
(resp. modest) agents as such which use as baseline their greedy (resp. modest)
reservation values.
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Proposition 2. The greedy reservation value is at least as high as the modest
reservation value which is at least as high as the maxmin reservation value.

Payoff of Partial Valuations. Later in the paper, we need to be able to
compare partial valuations. Given a partial valuation ξX we define μN

i (ξX) as
i’s modest5 N [ξX ]-reservation value, i.e. μN

i (ξX) returns the reservation value
in the reduced BG obtained with respect to valuation ξX . Note that μN

i (∅) is i’s
N -reservation value. For two partial valuations ξX and ξY we write ξX 	N

i ξY

iff μN
i (ξX) ≤ μN

i (ξY ). Consequently, for two PN -strategy profiles π and π′ we
define π 	N ,h

i π′ iff outPN (π, h) 	N
i outPN (π′, h).

4 Analysis of Boolean Negotiation Games

In the following we analyses how rational agents in BNGs interact. We first
present an algorithm to compute strategies of negotiating agents. Then, we
investigate properties of the algorithm. Our analysis differs from a standard
game theoretical analysis (of BGs) in several ways. First, the negotiation set-
tings offers agents to quit a game which results in the play of BGs. As such our
models merge one-shot games with extensive form games. Second, all character-
istics of the game are clearly motivated from a negotiation point of view, which
makes it specific on one hand, but, on the other hand, gives a flexible framework
resulting in different unfolding of an input BG (one shot game) which allows
to compare the effects of various negotiation protocols. As such, our framework
allows to compare structural properties of games induced by different choices
made in the underlying negotiation protocol.

Table 1. Postulates about the negotiation behavior of a rational agent. The postulate
Social is needed to allow players to anticipate the result of their proposal; otherwise,
the outcome would be non-deterministic which would require a more technical and less
intuitive treatment. Also compare Footnote 6.

(Propose) A player chooses the best available proposal if it guarantees an outcome
at least as high as its reservation value

(Accept) A player i accepts after h iff μi(val(rh(h))) is better than the outcome
obtained by any other action if the negotiation was continued

(Quit) A player quits iff the continuation of the negotiation would yield an outcome
below its reservation value

(Social) If an agent is indifferent between a set of proposals it chooses one which is
most beneficial for its predecessors, where closest predecessors have higher priority
than ones farther away

5 Modest, because the agent cannot be sure that any better Nash equilibrium will be
realised.
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4.1 Computation of Strategies of Rational Agents

Before we can analyse BNGs we need to make weak assumptions about play-
ers’ behavior wrt. accepting proposals, making counter-proposals and quitting a
negotiation. We list four postulates in Table 1 and define a rational agent as one
which satisfies these postulates6.

Thanks to Proposition 1 we can use Algorithm 1 to solve a non-repeating
BNG by backward reasoning similar to the computation of subgame perfect
Nash equilibria [21]. We present the main idea of the algorithm below and give
a concrete illustration of how the algorithm is applied in Example 5. The input
is provided by a BNG N the negotiation protocol of which is denoted by P .
Each P -history h is labelled with Lab(h) ∈ {a, q} × 2Act∪×Val⊆Π \{∅}. A label
Lab(h) = (x, {(act1, ξ1), . . . , (acth, ξh)}), x ∈ {a, q} has the following meaning:

– if all agents act rationally then the negotiation continuing from h results in an
agreement if x = a and results in quitting the negotiation if x = q, respectively;
and

– the agent whose turn it is performs some (optimal) action acti, i ∈ {1, . . . , h}
which results in a (final) outcome from {ξk | (actk, ξk), actk = acti, k =
1, . . . , h}. All the outcomes in the set are equally good for the very agent.

The algorithm computes the labels starting from the terminal histories, fol-
lowing the three main steps:

1. The first case considers a terminal history h. That is, either all truth values
are settled after h or the BG N [val(rh(h))] is played. If the utility after h
for i is less than its reservation value the agent quits in which case h is
labelled (q, {(quit, ∅)}). The first q indicates that the whole negotiation is quit;
quit denotes the action of the very agent, and ∅ indicates that no (partial)
agreement is reached. Otherwise, the agent accepts and the outcome is defined
as the valuation induced by the reduced history of h. Consequently, h is
labelled (a, {(accept, val(rh(h))}). Note that h must be agreeing, for otherwise
the other agents could still perform an accept action themselves rendering h
not to be terminal.

2. The algorithm continues recursively. Therefore, we consider a history h all
successors of which have already been labelled. Case 2.1 describes the setting
in which the agent quits as all continuations would result in an outcome worse
than its reservation value. Case 2.2. computes an optimal action guaranteeing
the best possible outcome. Therefore, the possible outcomes of all successor
nodes, each labelled by λi = (a, Li), i = 1, . . . , l, are considered and h itself
is labelled by an action which maximises the outcome of the agent, i.e. leads
to the best outcome in

⋃l
r=1 Lr. However, there is one caveat: a label Lj at

history h′ = h ◦ act may contain two elements, say (act1, ξ1) and (act2, ξ2),

6 We include Social as the aim of negotiating parties is often not to demoralise others,
if the agent itself does not benefit from it. However, other postulates would also be
interesting to study in the future, e.g. envious agents.



12 N. Bulling and K.V. Hindriks

such that the agent whose turn it is (at h) is indifferent between ξ1 and ξ2. In
that case, we assume that the agent is social and chooses the alternative which
is more beneficial for the precedent agents according to postulate Social. For
this purpose the function social is applied to

⋃l
r=1 Lr before the optimal

action for the agent is computed.
3. If all histories are labelled an action is picked form each label resulting in

a P -strategy. If after each such P -strategy not all variables have a truth
assignment the remaining variables are fixed by picking a Nash equilibrium
strategy in the induced Boolean game. The combination of a P -strategy,
together with a selection of a Nash equilibrium in the induced BG results in
a N -strategy profile.

Some subtleties of the algorithm to ensure the properties of Table 1 have been
neglected in the informal description above and are captured in the following
proposition.

Proposition 3. Given a non-repeating, full or individual proposal BNG N ,
Algorithm1 computes a set of N -strategy profiles for rational agents, i.e. postu-
lates Propose, Accept, Quit and Social are obeyed.

4.2 Properties of the Algorithm

To better understand how the algorithm works, we consider two examples before
studying some properties more formally.

Example 5. (Prisoners Dilemma cont.). Let us first consider the individual pro-
posal non-repeating NP shown in Fig. 1(a). Histories are labelled according
to Algorithm 1. For example, the history h = c1c2c̄1c̄2. which is labelled by
(a, {(accept, c̄1c̄2)}). To induced valuation is ξ = val(rh(h)) = c̄1c̄2. This valua-
tion gives Player 1 a utility of μ1(ξ) = 2 which is at least as high as the agents
N -reservation value. Thus, by Case 1 the agents accepts, yielding the valuation
ξ which renders the whole history accepting (thus the label a).

For further illustration let us consider history h = c̄1. The two successor
histories c̄1c2 and c̄1c̄2 are labelled by (a, {(c1, c1c2)}) and (a, {(accept, c̄1c̄2)}),
respectively. The former indicates that if Player 2 proposes c2, then Player 1
would propose c1 which would result in an agreeing run yielding the valuation
c1c2. At h, Player 2 has to decide which of its four actions to take: quit, accept,
propose c2, or propose c̄2. The latter two actions would yield utility 1 (c1c2)
and 2 (c̄1c̄2), respectively. Quitting the negotiation would guarantee the player’s
N -reservation value. Accepting, however, would result in the BG N [c̄1] where
Player 2 has a reservation value of 3 as the unique Nash equilibrium in the BG
N [c̄1] is c2. Thus, being rational Player 2 would accept after h; therefore, the
history h is labelled (a, {(accept, c̄1)}) (Table 2).

Finally, we consider the initial history where Player 1 has to decide whether
to quit, to propose c1 or to propose c̄1. Quitting would result in the original
game being played. Playing c1 would result in the valuation c1c2 and thus in a
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Table 2. Variant of Backward Induction algorithm for BNGs for rational agents. His-
tories are labelled with tuples (x, L), having the following reading. The current history
leads to acceptance (resp. quit) if x = a (resp. x = q). An element (act, ξ) ∈ L means
that act is an optimal action at the current history yielding outcome ξ (or ξ′ if there
is some other (act, ξ′) ∈ L with the same action).

Algorithm 1
Input: a non-repeating BNG N with negotiation protocol P = PN .
Output: set of N -strategy profiles for rational agents.

We recursively label each P -history h with a label Lab(h) ∈ {a, q}× 2Act∪×Val
⊆
Π \{∅}. Let h be

a P -history and P agt(h) = i.

1. If h ∈ RP : Lab(h) ← (q, {(quit, ∅)}) if μi(val(rh(h))) is worse than i’s reservation value;
and, Lab(h) ← (a, {(accept, val(rh(h)))}) otherwise.

2. If each h · actj with actj ∈ P (h) is labelled with λj = Lab(h · actj) and h is not yet
labelled:
2.1. If for all these labels λj = (q, Lj) then: Lab(h) ← (q, {(quit, ∅)}) if μi(val(rh(h)))

is worse than i’s N -reservation value; and, Lab ← (q, {(accept, ∅)}) otherwise.
2.2. Otherwise, suppose λ1, . . . , λl are all the labels with λj = (a, Lj) and Lj =

{(actj1, ξ
j
1), . . . , (act

j
hj

, ξj
hj

)}. Let L = social(i, l
r=1 Lr). Note that all these valu-

ations necessarily result in the same payoff p for i.
(i) If p is worse than i’s N -reservation value then Lab(h) ← (q, {(quit, ∅)});
(ii) else, Lab(h) ← (a, {(actj , ξ

j
s) | (actjs, ξ

j
s) ∈ L ∩ Lj , j = 1, . . . , l}).

3. If ε is labelled, then selecting an action from each label of each P -history gives rise to a P -
strategy profile, where accept is only chosen if no proposal is possible (to ensure Accept).
All possible combinations of these selections yield a set of P -strategy profiles {π1, . . . , πl}
(note that at each history there might be several “equally good” actions to follow). Now, let
s1, . . . , sh be a sequence of functions Val⊆Π → Val⊆Π such that for all n = 1, . . . , h and
all ξX ∈ Val⊆Π , (sn

1 (ξX), . . . , sn
k (ξX)) ∈ NE(BG(N )[ξX ] if NE(BG(N )[ξX ]) = ∅, and

sn
i (ξX) is i’s maxmin strategy in BG(N )[ξX ] otherwise. Finally, the algorithm returns the

set S = {(πr, si) | r = 1, . . . l and i = 1, . . . , n}.

function social(i, L)
Input: an agent i and a set L = {(act1, ξ1), . . . , (actj , ξj)}
Output: a subset of L
The function is defined by recursion. If i = 0 return L. Otherwise, remove from L all elements
(act, ξ) for which μi(ξ) is not the maximum in L. Return social(i − 1, L).

payoff of 1. The action c̄1 would result in the Boolean Game N [c̄1] being played
where Player 1 has a reservation value of 0. Thus, Player 1 would play action
c1, independent of whether it is greedy or modest.

The computed N -strategy profile yields the outcome (1, 1) for both greedy
and modest players. Thus, it coincides with the Nash equilibrium of the standard
Prisoners Dilemma BG. The full proposal variant is shown in Fig. 1(b). Here,
the computed N -strategy profile results in the (Pareto optimal7) outcome (2, 2).

7 A strategy profiles ξ is Pareto optimal if there is no other ξ′ such that ξ′ �i ξ for
all i ∈ Agt and ξ′ �i ξ for some i ∈ Agt.
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Note that an additional alternative c3 which is not part of any goal does not
affect the outcome. In particular, if Player 2 plays c3 after Player 1 played c1,
Player 1 accepts c1c3: the outcome of BG(N )[c1c3] is (1, 1) as well.

Example 6 (Bach and Stravinsky). We consider the classical Bach and Stravin-
sky normal form game represented as BG. The game has two Nash equilibria
(c1c̄2 and c̄1c2):

Bach and Stravinsky Player 2
Bach (¬c2) Stravinsky (c2)

Player 1
Bach (¬c1)

Stravinsky (c1)

(2,1)

(0,0)

(0,0)

(1,2)

We first analyse the game as a individual proposal, non-repeating BNG. The
outcome depends on whether the players are greedy or modest. In the former
case no agreement is reached and the BG version of Bach and Stravinsky is
played. If, however, the players are modest the players agree on the outcome
(1, 2). That is, Player 2 is better off. In contrast to the Prisoners Dilemma game,
adding additional choices makes a difference. If Player 1 is given an additional
action c3 the outcome is either ‘no agreement’ (in the greedy case) or (2, 1) (in
the modest case). The same pattern is true for the non-repeating, full proposal
BNG.

Example 6 shows that in contrast to the bargaining setting of [21], there is in
general no First Mover Advantage in BNGs; rather the contrary: it seems more
beneficial to react to proposals as late as possible. The example also suggests
that the number of choices is important. In general, agents with more options
seem to have more negotiation power. A formal study is out of the scope of this
paper and left for future research. Before we turn to the existence of specific
strategies we give the following result.

Proposition 4. Suppose π is a N -strategy profile of the non-repeating, full
choice or individual proposal BNG N computed by Algorithm 1.

1. If all players follow π and some player quits, then the players are greedy and
NE(BG(N )) �= ∅.

2. In the case of modest players, if a proposal ξ is accepted by all players then ξ
is a full Π-valuation.

3. In the case of greedy players, if a proposal ξ is accepted by all players, then
either ξ is a full Π-valuation or NE(BG(N )[ξ]) �= ∅.
Whereas the existence of a subgame perfect equilibrium in finite extensive

form games is guaranteed by Kuhn’s theorem (cf. [21]) this is not obvious in
our setting. Indeed, it does not hold for the notion of generalised equilibrium
put forward in the context of GBGs. The reason is that agents can quit the
negotiation which results in a Boolean game over the not yet fixed variables.
Thus, this Boolean game may not have any Nash equilibria which is the reason
that a generalised equilibrium may not exist. In general the solution concept of
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generalised equilibrium is too strong as players base their decision on reservation
values. Therefore, we define a weaker solution concept more appropriate for
BNGs.

Definition 6 (Negotiation equilibrium). An N -strategy profile σ = (π, s)
is a negotiation equilibrium if for all PN -histories h, all players i and all other
strategy profiles σ′ = (π′, s’) with π′−i = π−i we have that π′ 	G,h

i π.

That is, a N -strategy profile σ = (π, s) is a negotiation equilibrium if for all
other P -strategies π′ and from each history h the received payoff for each player
if π′ is followed is at most as high as the payoff received if π is followed from h
one, if the induced outcome is complete; or the modest reservation value in the
induced game after following π′ is at least as high as the modest reservation value
after following π. (The notation as been introduced at the end of Sect. 3.3.) Thus,
this solution concept makes no further assumption about the players’ behavior if
a (complete) agreement is not reached apart from assuming that each player can
be ensured to receive a payoff at least as good as its modest reservation value in
the resulting reduced BG.

Theorem 1. Algorithm 1 returns only negotiation equilibria. All computed
N -strategy profiles give each player a payoff which is at least as high as its
reservation value with the exception of greedy players if NE(BG(N )) �= ∅. More-
over, if for all PN -strategy profiles π we have that NE(BG(N )[outPN (π, ε)]) �= ∅
then all computed negotiation equilibria are generalised equilibria.

From this it follows that a BNG always has (at least) a negotiation
equilibrium.

Corollary 1. All non-repeating BNGs have a negotiation equilibrium (for greedy
as well as modest players).

A study of further properties of negotiation protocols is left for future
research. It would for instance be interesting when Pareto optimal outcomes
are guaranteed. Example 5 shows that this is dependent on the protocol used;
for example, the individual-proposal NP does not lead to a Pareto optimal out-
come, where the full-proposal variant does.

5 Related and Future Work

A great body of work has analysed negotiations using game theorical models and
in particular Rubinstein’s bargaining model, see [11,15,20,22] for an overview.
Much work in the game theoretic context deals with bilateral negotiations or
specific setting like one-to-many negotiations [5]; in contrast, we admit multiple
agents without further restrictions apart from turn taking. Also characteristic
to our setting is that the negotiation is not about objects per se, but about
actions and power. This is also a key difference to the BG model proposed
in [25] where players can transfer some of their payoff to other players in order
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to incentivize them to change their strategies in specific ways. In future work
it would be interesting to relate these approaches. We believe, however, that
there are key differences as the negotiation protocol in our setting can be used
to force players to accept specific outcomes which may not be achievable by
transferring parts of an agent’s payoff. A similar direction is followed in [16]
where players can transfer utility before a binary voting game is played. The work
presented in [12] is most closely related to our setting. The authors proposed
a negotiation protocol for cooperative Boolean games. Using our terms their
negotiation protocol is complete-offer and turn-based. Moreover, an agent the
offer of which is refused leave the negotiation. The remaining agents continue
the negotiation process. Another key difference is that agents cannot make any
of their available offers but have to ensure that agents who made previous offers
will not be worse off by the new offer. In this sense, the protocol is cooperative, in
contrast to our setting where agents are completely self-interested. This property
indicates another property of negotiation protocols which can be studied in our
framework. Also, the protocol of [12] leads to a Pareto optimal outcome; here,
it would be interesting to mirror the assumptions to our setting to obtain an
analogous result.

BNGs inherent attractive properties of Boolean games such as being com-
putationally grounded and we believe that BNGs have the potential to play a
role similar to that BGs play for the analysis of strategic interactions in multi-
agent systems. We are currently studying incomplete information extensions of
BNGs where agents not only negotiate about ‘control’ but can also underpin
their proposals with information and thus influence the behavior of others. We
are also interested in heuristic approaches; in general, BNGs offer many inter-
esting aspects which remain to be studied analytically as well as empirically,
e.g. in which settings an agreement reached in BNGs is strictly better than the
outcomes of the underlying BG. Related to our notion of reduced BG is also the
work presented in [26] which interprets the last step of a negotiation as a normal
form game, where mixed strategies are allowed. As they always guarantee a Nash
equilibrium, a generalization to mixed strategies would also ensure the existence
of a generalised equilibrium in BNGs according to Theorem 1. This provides
an interesting direction for future investigations. At the moment we do also not
consider explicit deadline of agents, only those imposed by the protocol. Individ-
ual agent deadline could be another aspect to include in the analysis of BNGs.
Those deadlines could also be used to ensure that the resulting negotiation will
always terminate.

6 Conclusions

In this paper we proposed Boolean negotiation games (BNGs) as compact and
computational models, based on Boolean games (BGs), for studying strategic
aspects in negotiations. We interpreted fundamental aspects of negotiations and
presented an algorithm to compute stable negotiation strategies. We showed
that such strategies always exist and that they give modest agents at least their
reservation value which is defined based on the concept of Nash equilibrium.
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The main contribution of this paper is the formal framework which allows to
study interesting aspects related to negotiation settings in which agents have
incomplete knowledge.
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1. Ågotnes, T., Harrenstein, P., Hoek, W., Wooldridge, M.: Boolean games with epis-
temic goals. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196,
pp. 1–14. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40948-6 1

2. Baarslag, T., Hendrikx, M.J., Hindriks, K.V., Jonker, C.M.: Learning about the
opponent in automated bilateral negotiation: a comprehensive survey of opponent
modeling techniques. Auton. Agents Multi-agent Syst. 1–50 (2015)

3. Baarslag, T., Hindriks, K.V.: Accepting optimally in automated negotiation
with incomplete information. In: Proceedings of the International Conference on
Autonomous Agents And Multi-agent Systems, pp. 715–722. International Foun-
dation for Autonomous Agents and Multiagent Systems (2013)

4. Beam, C., Segev, A.: Automated negotiations: a survey of the state of the art.
Wirtschaftsinformatik 39(3), 263–268 (1997)

5. Binmore, K., Vulkan, N.: Applying game theory to automated negotiation. Net-
nomics 1(1), 1–9 (1999)

6. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Compact preference representation
for boolean games. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol.
4099, pp. 41–50. Springer, Heidelberg (2006). doi:10.1007/978-3-540-36668-3 7

7. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Dependencies between players in
boolean games. Int. J. Approx. Reason. 50(6), 899–914 (2009)

8. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J., Zanuttini, B.: Boolean games revis-
ited. In: ECAI, pp. 265–269 (2006)

9. Broekens, J., Jonker, C.M., Meyer, J.-J.C.: Affective negotiation support systems.
J. Ambient Intell. Smart Environ. 2(2), 121–144 (2010)

10. Bulling, N., Ghosh, S., Verbrugge, R.: Reaching your goals without spilling the
beans: boolean secrecy games. In: Boella, G., Elkind, E., Savarimuthu, B.T.R.,
Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS (LNAI), vol. 8291, pp. 37–
53. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44927-7 4

11. Chatterjee, K.: Game theory and the practice of bargaining. In: Chatterjee, K.,
Samuelson, W. (eds.) Game Theory and Business Applications, vol. 194, pp. 189–
206. Springer, USA (2014)

12. Dunne, P.E., van der Hoek, W., Kraus, S., Wooldridge, M.: Cooperative boolean
games. In: AAMAS, vol. 2, pp. 1015–1022 (2008)

13. Endriss, U., Kraus, S., Lang, J., Wooldridge, M.: Designing incentives for boolean
games. In: AAMAS, pp. 79–86 (2011)

14. Fatima, S.S., Wooldridge, M., Jennings, N.R.: Optimal negotiation strategies for
agents with incomplete information. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL
2001. LNCS (LNAI), vol. 2333, pp. 377–392. Springer, Heidelberg (2002). doi:10.
1007/3-540-45448-9 28

15. Fatima, S.S., Wooldridge, M., Jennings, N.R.: A comparative study of game theo-
retic and evolutionary models of bargaining for software agents. Artif. Intell. Rev.
23(2), 187–205 (2005)

16. Grandi, U., Grossi, D., Turrini, P.: Equilibrium refinement through negotiation in
binary voting. In: Proceedings of the 24th International Conference on Artificial
Intelligence, pp. 540–546. AAAI Press (2015)

http://dx.doi.org/10.1007/978-3-642-40948-6_1
http://dx.doi.org/10.1007/978-3-540-36668-3_7
http://dx.doi.org/10.1007/978-3-642-44927-7_4
http://dx.doi.org/10.1007/3-540-45448-9_28
http://dx.doi.org/10.1007/3-540-45448-9_28


18 N. Bulling and K.V. Hindriks

17. Grant, J., Kraus, S., Wooldridge, M., Zuckerman, I.: Manipulating boolean games
through communication. In: IJCAI, pp. 210–215 (2011)

18. Gutierrez, J., Harrenstein, P., Wooldridge, M.: Iterated boolean games. Inf. Com-
put. 242, 53–79 (2015)

19. Harrenstein, P., van der Hoek, W., Meyer, J.-J., Witteveen, C.: Boolean games.
In: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 287–298. Morgan Kaufmann Publishers Inc. (2001)

20. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra,
C.: Automated negotiation: prospects, methods and challenges. Group Decis.
Negot. 10(2), 199–215 (2001)

21. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

22. Osborne, M.J., Rubinstein, A.: Bargaining and Markets. Academic Press Inc.,
New York (2005)

23. Rubinstein, A.: A bargaining model with incomplete information about time pref-
erences. Econometrica J. Econometric Soc. 53(5), 1151–1172 (1985)

24. Sarit, K.: Strategic negotiation in multiagent environments. In: Strategic Negotia-
tion in Multi-agent Environments (2001)

25. Turrini, P.: Endogenous boolean games. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, pp. 390–396. AAAI Press
(2013)

26. Zlotkin, G., Rosenschein, J.S.: Negotiation and task sharing among autonomous
agents in cooperative domains. In: IJCAI, vol. 11, pp. 912–917. Citeseer (1989)



Can We Reach Pareto Optimal Outcomes
Using Bottom-Up Approaches?

Victor Sanchez-Anguix1(B) , Reyhan Aydoğan2,4 , Tim Baarslag3 ,
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Abstract. Classically, disciplines like negotiation and decision making
have focused on reaching Pareto optimal solutions due to its stability
and efficiency properties. Despite the fact that many practical and theo-
retical algorithms have successfully attempted to provide Pareto optimal
solutions, they have focused on attempting to reach Pareto Optimality
using horizontal approaches, where optimality is calculated taking into
account every participant at the same time. Sometimes, this may prove to
be a difficult task (e.g., conflict, mistrust, no information sharing, etc.).
In this paper, we explore the possibility of achieving Pareto Optimal
outcomes in a group by using a bottom-up approach: discovering Pareto
optimal outcomes by interacting in subgroups. We analytically show that
the set of Pareto optimal outcomes in a group covers the Pareto optimal
outcomes within its subgroups. This theoretical finding can be applied
in a variety of scenarios such as negotiation teams, multi-party negoti-
ation, and team formation to social recommendation. Additionally, we
empirically test the validity and practicality of this proof in a variety
of decision making domains and analyze the usability of this proof in
practical situations.

Keywords: Pareto optimality · Agreement technologies · Group
decision making · Multi-agent systems · Artificial intelligence

1 Introduction

Group decision making, in which a group of agents with conflicting preferences
aim to reach mutually acceptable decisions, has been studied within different
disciplines. In social choice theory, voting methods have been applied to choose
the most desired alternatives, while negotiation mechanisms have been proposed
to find unanimous agreements in order to resolve the conflict of interests among
groups of agents. Multi-objective optimization methods, distributed or not, have
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also been developed to find optimal solutions for group decision making settings.
One of the desired properties of such a solution is Pareto optimality, proposed
by the Italian economist Vilfredo Pareto. Its desirability comes from the fact
that, concerning non-Pareto optimal solutions, at least one of the objectives can
be improved without worsening the performance of the rest of objectives. Hence,
rational decision makers should see no objection in moving from a non-Pareto
optimal solution to a Pareto optimal solution.

Reaching Pareto optimal agreements is not straightforward in practice. In
open and dynamic environments, decision makers may not know each other’s
preferences completely. In such cases, the participants may try to reach an
approximation of those solutions. Even it becomes more complicated to find
Pareto optimal solutions when the number of participants increases, as the num-
ber of interactions required to achieve an optimal deal for the group may increase
due to internal conflicts or lack of trust.

A number of works in the field focus on finding a global Pareto optimal
solution by involving all agents at the same time [13,14,20,37], which may lead
to complicated interactions and lengthy decision making processes. However, we
believe that, in many situations, agents can benefit from taking a bottom-up
approach: calculating Pareto optimal outcomes in subgroups. In other words,
we pursue the question of whether or not it is possible to estimate some Pareto
optimal outcomes without knowing or predicting the preferences of all agents. In
essence, solving the Pareto optimal set problem in a smaller group may be less
complicated than in larger groups (e.g., less privacy concerns, less interactions
needed, more willingness to cooperate, etc.) and it may provide a relatively
important ratio of the final Pareto Optimal outcomes. Such kind of property
can be used in some complex group decision making scenarios. Imagine that a
group of agents is negotiating in unison with an unknown opponent [29,31,33]. If
the agents can find the Pareto optimal outcomes within the team, they may use
these outcomes in their bidding strategy to reach a Pareto optimal agreement
with their opponent.

In this paper we explore bottom-up strategies. For that, first we prove that
any Pareto optimal outcome in a subgroup is also Pareto optimal in a larger
group that contains the subgroup, as long as agents’ preferences are strict linear
order. Second, we empirically simulate how bottom-up approaches may perform
in realistic scenarios. More specifically, we show that we can obtain a reasonable
ratio of the Pareto optimal outcomes within a group of agents by only finding
the Pareto optimal outcomes within the subgroup of these agents.

The remainder of this paper is organized as follows: first we present a proof
of how Pareto optimal solutions in subgroups are also Pareto optimal in larger
groups when agents have strict, transitive, and complete preferences. Section 3
discusses some of the implications of the proof, and how it can be applied to
solve a wide variety of problems in multi-agent systems. In Sect. 4, we empiri-
cally validate the theory in practice and analyze empirically compare the ratio
of Pareto optimal outcomes within subgroups to the Pareto optimal outcomes
within the entire group in a wide variety of real domains. After discussing the
related work, we finally conclude the paper with future lines of work.
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2 Pareto Optimality in Subgroups

In this section we prove that any Pareto optimal outcome in a subgroup of agents
is also Pareto optimal in any group of agents containing the subgroup. First, we
provide some of the necessary definitions and introduce some notation.

Let A = {a1, ..., an} be a set of agents where k is the index of agent ak and
A′ = {a1, ..., am} be a superset of A, A ⊂ A′ where m > n. O is the set of all
possible solutions in a given domain, and o ∈ O represents a possible solution
in the domain. We assume that �i represents agent’s ai preference relation over
outcomes in O. If o �i o

′ then agent ai likes o at least as well as o′, we write
o �i o

′ to denote a strict preference for o and o = o′ to denote indifference. We
assume that the agents’ preference relations are strict, transitive and complete.

An outcome o∗ is Pareto optimal with respect to A and O, denoted by
po(o∗,A,O) iff

�o ∈ O ∃j ≤ n

n∧

i=1

o �i o
∗ ∧ o �j o

∗.

We denote the set of all Pareto optimal outcomes over A by O∗
A = {o∗ ∈ O |

po(o∗,A,O)}.
Theorem 1. Given a set of outcomes O. For all two sets of agents A and A′,
if A ⊂ A′, then O∗

A ⊂ O∗
A′ .

Proof. Let us assume by reductio ad absurdum that A ⊂ A′, but O∗
A 	⊂ O∗

A′ .
This means there exists an o∗ ∈ O∗

A such that o∗ /∈ O∗
A′ . Expanding the definition

of Pareto optimal outcomes, we have

o∗ /∈ {o ∈ O | �o′ ∈ O ∃k ≤ m,

m∧

i=1

o′ �i o ∧ o′ �k o}.

This means there must exist an o ∈ O and a k ≤ m such that
m∧
i=1

o �i o
∗∧o �k o∗.

We consider two scenarios: either ak ∈ A or ak /∈ A.

– If ak ∈ A then o is an outcome that dominates o∗ over A, which is not possible
as o∗ is Pareto optimal over A.

– Otherwise, k > n, so we have
n∧

i=1

o �i o
∗. In that case, as o∗ is Pareto optimal

over A, the condition is only true if all of the agents in A are indifferent
between o and o∗. As preferences are strict, that cannot be true either.

Since both sides lead to a contradiction, we have proven the theorem.

At this point the reader may be wondering how the theorem above behaves
in a scenario where agents’ preferences are not strict. As we will discuss later,
the likeliness of such as scenario is small, but the conclusion of the theorem
above may in fact not hold in that case. Basically, an outcome that is Pareto
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optimal in a subgroup A may not be Pareto optimal in the group A′ when all
of the agents in A are indifferent between such outcome and another Pareto
optimal outcome. Then, one of the two outcomes may not be Pareto optimal
with A′ when one of the agents in the group is not indifferent between those
outcomes. Nevertheless, as we shall outline in Sect. 4.2, such situations are rare
in practice, as all of the agents need to be indifferent between outcomes. This
becomes increasingly unlikely as the group size grows and thus, for large enough
groups, we can consider that the theorem is true for practically any scenario.

There are several practical implications to the set/superset Pareto relation-
ship. The first one is that a negotiation team [31] can discover a prospective
set of Pareto optimal outcomes by just considering the preferences of the team.
With high probabilities, these deals will also be Pareto optimal when engaging
in a negotiation with and additional agent. However, the consequences of this
theorem can be also applied to other domains like multilateral negotiations or
group decision making. In the next section, we discuss some of the prospective
applications of this finding.

3 Prospective Applications

In Sect. 2 we have demonstrated that, the vast majority of the times, an outcome
that is Pareto optimal in a subgroup of agents will also remain Pareto optimal in
a larger group. However, the reader may still be wondering about the usability of
such proof in practice. In this section, we will discuss the usability of the proof
in a wide variety of practical domains. It should be highlighted that we are
not depicting achieving Pareto optimality as a simple task, not even calculating
a small portion of it. In fact, it is usually one of the most difficult goals for
optimization algorithms. However, there is value in computing Pareto optimality
in smaller/less complex problems as long as we are able to use those solutions in
a most difficult problem, which is exactly the situation that arises while making
practical use of our proof. Now, imagine the following situations:

– Negotiation teams: In this scenario, a group of individuals negotiate as a
party with opponent(s) to achieve a deal [28–31,33]. In that case, finding the
outcomes that are Pareto optimal within the team may play in favor of the
team as (i) if the team sticks to these outcomes while negotiating with oppo-
nents, it can ensure efficiency in the final outcome, (ii) the set of calculated
deals may be reused in multiple negotiations with different opponents as they
remain Pareto optimal, and (iii) finding Pareto optimal outcomes once may
reduce the time spent in negotiation threads as the team exactly knows which
outcomes are more beneficial for team members. On top of that, one can also
assume that team members may be more willing to share information with
teammates, which may make easier the search for Pareto optimal outcomes
inside the team.

– Multi-party negotiations: Some participants in a multi-party negotiation
[4,8,11,13,14,37] may decide to collude and bias the agreement with their
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preferences. For that, the subgroup of agents may calculate Pareto optimal
outcomes within the subgroup, and decide on the Pareto optimal outcomes
that they plan to use in the upcoming multi-party negotiation. This way, there
may be higher probabilities for the negotiation to finish with an outcome that
satisfies the subgroups’ interests and that is efficient. Another possible appli-
cation for this proof in multi-party settings is precisely the idea of looking for
Pareto optimal agreements within subgroups of agents. For instance, agents
with high degrees of trust may decide to share some information that facil-
itates the search of Pareto optimal outcomes within the subgroup. Then,
once outcomes are found in subgroups, these may be shared among all of the
agents, and the whole group may need to decide on the most appropriate
Pareto optimal outcome.

– Decision making in open environments: Open multi-agent systems [3,
15,32] have the particularity of being systems where agents enter and leave
the system dynamically. In such environments, decision making tasks may
suffer from the same characteristic and agents may enter and leave decision
making tasks as needed, resulting in a real time problem. For those situations,
agents in a decision making task may benefit from a continuous search for
Pareto optimal outcomes. As new agents join the task, those Pareto optimal
outcomes calculated should be kept as they will remain Pareto optimal in the
new group. When agents leave, remaining group members can get rid of some
outcomes that have become dominated in the new setting.

– Team/coalition formation: Teams of agents [2] can be iteratively built
considering the number of Pareto optimal outcomes within the current team
and the new Pareto optimal outcomes that may arise when adding a new
members. In general, when the agent added to the team is more dissimilar
to current team members, the more Pareto optimal outcomes will be added
when the agent joins the team. Hence, it can be used a measure of team
similarity/dissimilarity.

– Multi-objective optimization: A more general application for this proof
is multi-objective optimization [9]. Initially, an agent may need to optimize
a problem with n objective functions. If the agent computes a set of Pareto
optimal outcomes for such a problem, it can keep those outcomes for future
optimizations considering additional goals or objectives.

As the reader may have noticed, the range of applications where this app-
roach could be applied is varied. We are not claiming that those are the sole
applications for this approach, and there may be others in domains like social
choice [6], group recommendations [24], and so forth.

4 Experimental Study

Section 2 shows theoretically that Pareto optimal outcomes within a group of
agents having complete, transitive and strict preferences are still Pareto optimal
when the group size increases with incoming agents. Even when preferences are
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non strict, we expect for the theorem to hold in most of the cases. In this section,
we empirically analyze the prospective performance and applicability of bottom-
up approaches. For that purpose, we selected a variety of domains:

– Sushi domain: The sushi domain [18] is a widely used dataset in decision
making tasks. The dataset contains 5000 preference profiles over 10 types of
sushi. Each preference profile has strictly ranked all the types of sushi.

– AGH course selection: This dataset contains information about 153 stu-
dents that stated their preferences on 6 courses offered by AGU University of
Science and Technology in 2004 [36].

– Book crossing domain: This is a well-known dataset in recommender sys-
tems [38]. The original dataset contains information about 278,858 users that
have produced 1,149,780 ratings on 271,379 books. As we require preferences
to be complete on at least a subset of items, we kept 7 users that had rated 23
books in common. The users that we kept were calculated so that the number
of items rated in common was maximized.

– Movielens domain: This is a popular domain in recommender systems [25],
being one of the de facto benchmarks when testing recommender algorithms.
The original dataset contains 138,000 users that have emitted ratings on
27,000 movies. As we require preferences to be complete, for this study, we
picked the 10 users that had provided more recommendations in the dataset
and chose the movies that had been rated by all these 10 users. After reducing
the dataset, we obtained 10 preference profiles that had rated a total of 298
movies.

– Holiday domain: This is a multi-party negotiation domain available in
Genius [22]. In this scenario, decision makers need to decide on the details of a
holiday trip that they are going to take together. More specifically, the partic-
ipants can decide on their destination, the duration for the trip, the budget,
the activities to be done in the holiday, and the transportation method. In
total, 9 preference profiles over 1024 possible outcomes are available. These
preferences have been elicited from TU Delft computer science students, but
not with serious plans for a joint holiday in mind.

– Symposium domain: This is another multi-party negotiation domain that
is available in Genius [22]. The scenario is on the organization of conferences
where the decision makers need to decide on where a conference will be held
and schedules for the talks. There are 9 preference profiles over 2305 possi-
ble outcomes. These preferences have been elicited from faculty members in
computer science of TU Delft experienced in organizing conferences, but not
having a specific conference in mind.

– Party domain: This is a multi-party negotiation domain where agents decide
on the details of a party that they are going to host together [22]. Even though
the original domain does not provide real user preferences, we carried out an
experiment where we elicited preferences from students in a Master level AI
course. Students were asked to input their real preferences via Genius based on
their tastes for hosting parties. More specifically, the issues in the negotiation
scenario are the type of food, the type of drinks, the location for the party,
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the type of invitations to be sent, the type of music, and how to cleanup after
the party. In total, we elicited 24 real preference profiles over 3072 outcomes.

From a global perspective, the sushi, agh, and book domain are small attend-
ing to the number of outcomes. These domains correspond to decision making
domains where outcomes are non customizable objects (e.g., a movie, a book,
a course, etc.). The data in the Movielens domain is less sparse and we were
able to find 10 users that had rated 298 outcomes in common. This is again a
domain where outcomes are non customizable, but the size of the domain is one
order of magnitude larger than that of the small domains. The three remaining
multi-party negotiation domains (i.e., holiday, symposium, and party domain)
represent scenarios where the final outcome can be customized via the negotiable
issues. As a result, the number of possible outcomes is larger. We consider these
domains and the Movielens domain as the large domains in our study.

4.1 Validation and Performance Analysis

Our performance metric is the ratio of the Pareto optimal outcomes within a
subgroup with a size of {2, ..., n – 1} to the Pareto optimal outcomes within the
n-sized group. If the ratio remains low even for large subgroups, then this means
that the performance of our theoretical finding may be of little value in practice,
as only a small ratio of the final Pareto outcomes may be achievable. However,
if the ratio is large, then it may indicate that bottom-up approaches may be
valuable. Additionally, common sense indicates that, the larger the subgroup,
the higher the ratio of final Pareto optimal outcomes that may be obtained in
the subgroup. However, one question that arises is the actual speed by which
the ratio of final Pareto outcomes increases, and whether or not subgroups may
be able to calculate a respectable ratio of the final Pareto optimal outcomes.

For testing the practical performance of our bottom-up approaches, we ran-
domly generated groups of size n based on the preference profiles available for
each domain. For each randomly generated group, we built all possible sub-
groups with varying sizes {2, .., n − 1} and estimated the Pareto optimal set in
each (sub)group. More specifically, for each domain we tested a maximum of
1000 groups1 of size n = {5, 7, 9}2.

The results of this experiment can be observed in Fig. 1. As expected, the
results show that the larger the subgroup is, the larger the average ratio of the
final Pareto Optimal set that we get. The increase is clearly continuous for all
of the domains and group sizes. When we look at the results for groups of 7 and
9 members we observe a non-linear increase with the size of the subgroup. This
non-linear increase is not as evident in the case of 5 members’ groups, as in that
case we only have 3 data points3.

1 The total number is min(1000,
(
m
n

)
), where m is the total number of available pref-

erence profiles and n is the size of the group.
2 Except for the Book domain, where we only have 7 preference profiles.
3 Even non-linear functions may look like linear when the number of points is reduced.
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Fig. 1. Average ratio of the final Pareto optimal obtained in subgroups of different size

One should highlight that for n − 1 agents in the subgroup, n being the
total number of agents in the group, the average ratio of the Pareto optimal set
obtained in the subgroup is always over 50% of the final set, being close to 80% in
some cases (e.g., smaller domains, larger groups). This is a good result, especially
for negotiation team scenarios [29,31,33], where the team could calculate the
Pareto set inside the team and use those outcomes in the negotiation with an
opponent. This is a clear case where a subgroup of size n−1 can be formed (i.e.,
all of the team members) and, according to the experimental results, obtain
a notably high ratio of final Pareto optimal outcomes. Consequently, they can
propose Pareto optimal bids without knowing their opponent’s preferences.

The result is also notable for smaller subgroups. For instance, in groups of
size 5, we are able to obtain between an average of 68% of the final Pareto set
for small domains and 32% for the larger domains with just about half of the
group members (i.e., 3). In the case of groups of size 7, we get 68% of the final
Pareto set for small domains and 28% for larger domains with just about half of
the group members (i.e., 4). Similarly, for groups of size 9 we are able to obtain
an average of 76% of the final Pareto set in small domains, and 30% in large
domains with just about half of group members (i.e., 5).
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The trends in the graphics and the results mentioned above also may suggest
that larger domains may result in lower ratios of the final Pareto optimal frontier
achievable by subgroups. Nevertheless, the results can still be considered as
positive for the studied domain sizes as we have been able to observe above.
Despite the data trend, it is still premature to draw any conclusion as it would be
necessary to experiment with a wider range of domain sizes and more domains
from each size. Studying the changes in the behavior of the proof for larger
domains is part of our future work. However, it is not very feasible to elicit the
preferences of humans for very large domains (e.g., 10,000, 100,000, etc.)

4.2 Applicability Analysis

There are still other aspects that we need to analyze to determine the applicabil-
ity of bottom-up approaches in real situations. Even though considerable ratios
of the final Pareto optimal set are obtainable within subgroups, this may be use-
less in practice if the total number of Pareto optimal outcomes is very close to all
possible outcomes. In those cases, there would be no point in calculating Pareto
optimal outcomes in subgroups, as almost any outcome would be Pareto opti-
mal. Therefore, we are interested in checking that the set of final Pareto optimal
outcomes does not dramatically approach the total number of outcomes. In [26],
O’Neill studied how Pareto optimality was affected by the number of agents par-
ticipating in a decision making process. To put it simply, the author proved that
the number of Pareto optimal outcomes grows exponentially with the number
of agents, with the assumption that all preference profiles are equally probable.
Additionally, he proposed a formula to estimate the number of outcomes that
are expected to be Pareto optimal based on the size of the domain m, and the

number of agents in the group n: E(Km,n) = −
m∑
i=1

(−1)i
(
m
i

)
1

in−1 .

He also stated that the size of the domain had an effect on the number of
outcomes that were Pareto optimal: larger outcome spaces tend to slow down
the exponential growth of the Pareto optimal set, although the growth is still
exponential. Of course, for drawing such a conclusion, the author had to assume
that all preference profiles were equally probable. We argue that, in practice, all
preference profiles are not equally probable as in some domains not all of the
outcomes may be equally feasible (e.g., high prices in a team of buyers, popular
choices in movies, popular choices in travel destinations, etc.). Hence, we argue
that the exponential growth may not be as fast as in the theoretical case, and
bottom-up approaches may be applicable to more scenarios.

In order to examine this theoretical finding in practice, we calculated the
ratio of the Pareto optimal outcomes to the total number of outcomes for each
domain and group size. Figure 2 shows the average ratio of outcomes that are
Pareto optimal for different groups sizes and domains. In these graphs, blue
dots represent the average ratios calculated in real scenarios while green dots
denote the theoretical estimation provided by [26] for domains of the same size.
In addition to this, for each data point we provide the total number of cases4

4 Again, the total number is min(1000,
(
m
n

)
).
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Fig. 2. Average ratio of the final Pareto optimal set obtained with subgroups of differ-
ent size (Color figure online)

that were considered for calculating the average. Numbers in red represent less
than 30 samples and such averages should be ignored.

As it can be observed in Fig. 2, the growth in the number of outcomes that
are Pareto optimal is usually slower in real domains than in the theoretical esti-
mation. Being more specific, we observe that only the symposium domain shows
a similar behavior to that of the theoretical case. The rest of the domains deviate
from the theoretical behavior sooner or later, showing a slower saturation. We
can observe that this difference is specially acute in the Movielens, Book, Sushi,
and Agh domain, which are the ones whose preferences have been rigorously
elicited from real users (except for the party domain). This may reinforce our
initial intuition, that, in real domains, the exponential growth on the number
of Pareto optimal outcomes may not be as drastic as in the theoretical case. In
other domains like the party and the holiday domain, the difference is less acute
but still existent.

In fact, if one analyzes the proposed domains one by one, it is possible to
realize that there are general preferential trends. This is clear in domains like
Movielens or the Book domain, where we know that some movies and some books
tend to be more popular than others. For instance, The Shawshank Redemption
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is one of the most popular movies of all times, and it has been able to obtain
average ratings of 9.3 over 10 stars in sites like IMDB5, where it has been voted
by more than 1 million users. Similarly, we can find books like Harry Potter
and the Deathly Hallows that have received an average rating of 4.59 over 5
stars with more than 1 million ratings on sites like GoodReads6. Finding users
that did not like these items has low odds, and as a consequence we can state
that not all preference profiles are equally probable. Not only there are general
trends in users preferences, but many times we find that there are clusters of users
with similar preferences [35]. For instance, in the book domain, we can expect
that users that have liked The Lord of the Rings will also like other fantasy
themed books like Song of Ice and Fire. This is the type of patterns exploited
by recommender systems, and suggests that the number of likely preference
profiles is even smaller.

With respect to the other small domains (e.g., AGH, Sushi), we analyzed the
preferences of users. In fact, for analyzing the preferences of users on items we
performed a Borda count with all of the preference profiles. We could observe
that, in the Sushi domain, there are also some popular choices the toro (a total
score of 39445) and some choices that are usually the least liked by users like the
kappa-maki (a total score of 14928). In the case of the AGH domain, we could
also observe that one of the courses (e.g., course 3) was the most preferred one
with a score of 731, whereas the least preferred score had almost half the score.
This means that in these domains, preferences are not equally distributed and
one should not expect such an exponential growth as in the theoretical case.

With respect to negotiation domains, we elicited real preferences from the
Party domain, whereas we used the preference profiles provided by Genius in the
Holiday and Symposium domain. Interestingly, we could observe that real users
in the Party domain tend to consider the type of food, the type of drinks, and
the music as the most important attributes. Even in some specific attributes, we
could find that there were popular choices like for instance Beer only for drinks,
and Finger-food and Chips and Nuts for food choices. With respect to the rest of
negotiation domains, it has to be considered that they were not strictly and rigor-
ously elicited like in the case of the party domain. Users were not contextualized
in a specific scenario and their preferences were just elicited from their previous
experiences in similar scenarios. In the case of the Holiday domain, we were able
to observe some patterns like users considering the duration and the activities
as the most important attributes. The users usually preferred longer durations
to shorter durations, and we observed a slight positive inclination towards His-
torical Places and Restaurants. Even in the rest of less important attributes we
were able to find some patterns like the fact that most users preferred Miami and
Amsterdam as destinations. These patterns again show that not all preference
profiles are equally likely, and that is reflected in the fact that the experimental
growth depicted for Fig. 2 is slower than the theoretical growth. On the other
hand, the Symposium domain is closer to the theoretical expectation. This may

5 http://www.imdb.com. Visited on 16th November 2015.
6 http://www.goodreads.com/. Visited on 16th November 2015.

http://www.imdb.com
http://www.goodreads.com/
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Table 1. Average % of false positives calculated in a subgroup

Group size Subgroup size

2 3 4 5 6 7 8

5 7% 4% 1% – – – –

7 5% 2% 1% 0.7% 0.3% – –

9 4% 2% 1% 0.7% 0.4% 0.2% 0.07%

be explainable due to the fact that the Symposium domain preferences were not
elicited thinking on an specific symposium. In contrast to the Holiday domain,
which did not follow a rigorous preference elicitation process either, in the Sym-
posium domain it is harder to relate to the scenario, as it includes totally fictional
speakers (e.g. Mr. Talkolot), whereas in the holiday domain one always can think
about his/her own preferences on a trip. This may explain why the increase in
the ratio of Pareto optimal outcomes is similar to the theoretical case where
preference profiles are equally probable. It should be highlighted that in many
negotiation domains, preferences are made different to test the performance of
negotiation algorithms in conflicting scenarios.

The fact that, as we have shown, not all preference profiles are equally likely
makes bottom-up approaches more applicable to real life scenarios than the
results depicted in theory [26]. However, it should be noted that, even though
the growth is slower, the graphics still suggest an increase with the size of the
group and eventually the proof may not be applicable for domains involving a
large number of agents. These results raise an interesting trade-off that should
be analyzed in the future: the relation between the performance of bottom-up
approaches, which increases with the subgroup size, and its applicability, which
decreases with the group size, as nearly all outcomes may be Pareto optimal.

There is another additional issue to be studied concerning the applicability
of bottom-up approaches. As the reader may have guessed, the aforementioned
domains do not guarantee strict preferences. Therefore, some Pareto optimal out-
comes calculated in subgroups may not be Pareto optimal in the whole group
(we call these false positives). In order to study this, we measured the ratio of
false positives in the previous experimental setting. The results are summarized
in Table 1. As it can be observed, the percentage of false positives remains low
for every possible scenario, and it tends to decrease with the size of the sub-
group. This matches our initial intuition, and shows that the proof presented in
this paper practically holds in every situation. Hence, this result supports the
applicability of bottom-up approaches in practice.

5 Related Work

Since its introduction by the Italian mathematician Vilfred Pareto, Pareto opti-
mality has been an efficiency and stability concept that has had an impact
on many disciplines and areas of knowledge. Not only it has been studied in
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mathematics, but Pareto optimality has been considered a cornerstone in some
computer science areas like artificial intelligence, specially in those fields con-
cerned with making decisions by means of automated software (e.g., multi-agent
systems, multi-objective optimization, etc.).

Despite its increasing popularity in computer science areas, most of the
studies have dedicated their efforts on reaching Pareto optimal solutions. For
instance, many researchers in automated negotiation have successfully focused
on achieving Pareto or near Pareto optimal agreements. Fatima et al. studied
the case of two agents negotiating issues based on an endogenous agenda, and
analyzed conditions and strategies that led to Pareto optimal agreements. In
[20], the authors propose a general framework for bilateral negotiations where
agents are able to reach near Pareto optimal outcomes by decomposing the nego-
tiation process into iso-utility curves, from where outcomes are proposed based
on the similarity to the last offer proposed by the opponent. Later, authors in
[34] refine the models to make it capable of working with non-linear utility func-
tions and addressing the issue of devices with limited computational capabilities
by applying genetic algorithms. Ehtamo et al. [14] propose a centralized mecha-
nism for achieving Pareto optimal outcomes based on real valued linear additive
utility functions and information sharing. Recently, Hara et al. [13] proposed a
mediated mechanism based on genetic algorithms that is capable of achieving
near Pareto optimal outcomes for multi-party negotiations where agents prefer-
ences present non-linear relationships and change over time. In addition to using
Pareto optimality to measure the effectiveness of negotiation outcome, Marsa-
Maestre et al. use the structure of the Pareto Frointer to decide the degree of
competitiveness of a given negotiation scenario [23].

The concept of Pareto optimally is not only widely used in automated nego-
tiation but also used in other application areas in multiagent systems. For exam-
ple, Kash et al. study the problem of fair division of resources in scenarios where
agents enter and leave the system dynamically [19]. In this work, they define
the concept of dynamic Pareto optimality for such scenarios and under which
conditions and mechanisms the efficiency property can be accomplished. The
main difference with this work resides in the fact that our approach, although
it can be applied to dynamic environments, it focuses on scenarios where agents
have to decide on a non-divisible and discrete outcome space. Amador et al. [1]
propose a task allocation method for agents with temporal constraints that is
capable of providing envy free and Pareto optimal solutions under specific con-
ditions. Other works like [27] have extended the concept of Pareto optimality
to argumentation frameworks. The authors study different agent attitudes, how
they relate to the problem of efficiency in abstract argumentation dialogues,
and define several situations and scenarios that lead to Pareto optimal argu-
ments. They focus on characterizing Pareto optimal solutions in argumentation
dialogues while our proposal is much more general as it relates to one of the
underlying properties of theoretical Pareto optimality, which can be applicable
to a wide variety of domains.



32 V. Sanchez-Anguix et al.

Another field related to our study is that of multi-objective optimization.
Pareto optimality is a well-known efficiency measure in multi-objective opti-
mization [16,17,21]. Similarly to our multiagent decision setting, researchers in
centralized multi-objective optimization have noticed the exponential increase on
the number of Pareto optimal outcomes with the number of objective functions
[7,10]. Due to this unfortunate property of Pareto optimality, some researchers
have offered practical alternatives to the selection of Pareto optimal outcomes.
Di Pierro et al. define the concept of k optimality for deciding over Pareto opti-
mal outcomes. Basically, a non-dominated outcome is defined as k-optimal when
that outcome is non-dominated over every possible combination of k objectives.
Thus, it results in a stronger concept of optimality that may help to choose a
solution over a set of Pareto optimal outcomes. We want to highlight the practical
usability of k-optimality on future decision making mechanisms for agents and
how it complements our current findings. First, based on our proof, a subgroups
of agents may calculate Pareto optimal outcomes on subgroups and communi-
cate them to the rest of subgroups. Then, a mechanism may be devised to allow
agents to select a k-optimal outcome over calculated Pareto optimal outcomes.

Finally, economic and theoretical studies are also a source of related work.
As introduced in the text, [26] analyzed how the number of Pareto optimal
outcomes exponentially increases with the number of agents by assuming that
all preference profiles are equally probable. In our present study, we have, among
other contributions, shown how real domains in practice behave with regards to
Pareto optimality. More specifically, we have shown that, despite the increase in
the number of Pareto optimal outcomes with the number of agents, the growth
speed is not as quick as portrayed by [26]. This is, as far as we know, our
closest work in the study of the underlying properties of Pareto optimality. Of
course, there have been other successful studies on Pareto optimality for specific
domains and problems like characterizing fairness, or studying the relationship
between monotonic solutions and Pareto optimality [5,12], but their focus of
study has not been on the exploration of bottom-up approaches for reaching
Pareto optimality.

6 Conclusion

In this paper, we have explored the applicability and performance of bottom-up
approaches for reaching Pareto optimal outcomes in groups. Our analysis shows
that Pareto optimal outcomes in a group remain optimal when increasing the
number of agents in the group in many practical scenarios. This has implications
for bottom-up approaches, as Pareto optimal outcomes may be calculated in
subgroups first, and then be used in scenarios involving the whole group.

We performed experimental analysis on preferences elicited from users in
real-life scenarios and validated that this principle can be applied to a wide
range of domains. Our results on performance and applicability indicate that
we are able to calculate a significant ratio of the final Pareto optimal frontier
within subgroups. Conversely, we analyzed the applicability of our approach
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by considering how the ratio of Pareto outcomes increases with the size of the
group. Our findings highlight that this increase is not as abrupt as expected
in theoretical studies, as not all preference profiles are equally likely in many
real-life domains. Still, the increase of the ratio of final Pareto optimal outcomes
points to a necessary trade off in practice, which we plan to analyze in the future.

Another interesting aspect that requires more study is deciding on the right
Pareto optimal outcomes for the group. The concept of a Pareto optimal out-
come does not automatically ensure it is going to be acceptable for the group;
for instance, an outcome with the maximum utility for a group member and
the minimum utility for another group member may be Pareto optimal, but
should definitely not be deemed acceptable for the group. Therefore, a mech-
anism should be devised to ensure that either those Pareto optimal outcomes
calculated in subgroups are beneficial for the group, or a posterior negotiation
or social choice procedure should help group members to select the most appro-
priate outcome for the group afterwards.

Additionally, as a future work, we plan to design novel negotiation approaches
for intra-team negotiations that benefit from our findings. In particular, we plan
to design a negotiation strategy for negotiation teams, which first calculate the
Pareto optimal solutions within the team using our approach, and then target
that set of Pareto optimal proposals when negotiating with the opponent.
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Taguspark, Av. Prof. Cavaco Silva, 2780-990 Porto Salvo, Portugal

fernando.pedro@tecnico.ulisboa.pt
2 ATP-Group, 2780-990 Porto Salvo, Portugal
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Abstract. The design of artificial intelligent agents is frequently accom-
plished by equipping individuals with mechanisms to choose actions that
maximise a subjective utility function. This way, the implementation of
behavioural errors, that systematically prevent agents from using opti-
mal strategies, often seems baseless. In this paper, we employ an analyti-
cal framework to study a population of Proposers and Responders, with
conflicting interests, that co-evolve by playing the prototypical Ultima-
tum Game. This framework allows to consider an arbitrary discretisation
of the strategy space, and allows us to describe the dynamical impact of
individual mistakes by Responders, on the collective success of this pop-
ulation. Conveniently, this method can be used to analyse other continu-
ous strategy interactions. In the case of Ultimatum Game, we show ana-
lytically how seemingly disadvantageous errors empower Responders and
become the source of individual and collective long-term success, leading
to a fairer distribution of gains. This conclusion remains valid for a wide
range of selection pressures, population sizes and mutation rates.

1 Introduction

The attempt to model artificial intelligent agents, revealing human-like behav-
iour, is often implemented through utility-maximisation heuristics, as rational-
ity fits the role of stylised model of human behaviour. When empirical evidence
shows that humans systematically deviate from the rational model, explanations
suggest the lack of information or computational power. Consequently, the con-
cept of bounded rationality relaxes the strongest assumptions of the pure rational
model [15,27]. Either way, the existence of seemingly irrational decisions is often
disadvantageous, if one considers agents in isolation.

Agents are not only intended to act alone in environments, however. Often,
they interact in multiagent systems, whose decentralised nature of decision
making, huge number of opponents and evolving behaviour stems a complex
adaptive system [19]. When agents interact with a static environment, the pro-
vided reward functions are well-defined and the implementation of traditional
c© Springer International Publishing AG 2017
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learning algorithms turns to be feasible. Yet, in the context of the mentioned
large-scale multiagent systems, the success of agents strongly depends on the
actions employed by the opponents, very much in the same way as we observe
in the evolutionary dynamics of social and biological ecosystems [21,29]. The
adaptation of agents, and the learning procedures devised, face important chal-
lenges that must be considered [37]. Likewise, the strong considerations about
what means to be a rational agent in Artificial Intelligence should be relaxed, or
extended. This endeavour can be conveniently achieved through the employment
of new tools from, e.g., population dynamics [21] and complex systems research
[20], in order to grasp the effects of implementing agents whose strategies, even
rational in the context of static environments, may turn to be disadvantageous
when successively applied by members of a dynamic population.

In this paper, we present a paradigmatic scenario in which behavioural errors
are the source of long-term success. We assume that the goals and strategies of
agents are formalised through the famous Ultimatum Game (UG) [11], where the
conflicting interests of Proposers and Responders likely result in an unfair out-
come favouring the former individuals. Additionally, we simulate a finite popula-
tion of adaptive agents that co-evolve by imitating the best observed actions. We
focus on the changes regarding the frequency of agents adopting each strategy,
over time. This process of social learning, essentially analogous to the evolution
of animal traits in a population, enables us to use the tools of Evolutionary Game
Theory (EGT), originally applied in the context of theoretical biology [18]. We
start by describing analytically the behavioural outcome in a discretised strategy
space of the UG, and in the limit of rare mutations. Additionally, we test the
robustness of the results obtained, showing that this analytical approximation
remains valid for an arbitrary (i) strategy space, (ii) selection pressure and (iii)
mutation rates, via comparison with results from agent-based computer simula-
tions. We shall highlight that this framework, together with a small part of the
derived results, were briefly introduced in a short paper [35].

The structure of this paper will continue as follows: Sect. 2 presents the
related work in the scope of the game we experiment with, in the field of EGT
and, specifically, in its connections with multiagent learning (MAL). Section 3
will present the methods employed, namely, the analytical model that we employ
to study evolution as a stochastic process and the analogous agent-based Monte
Carlo simulations. In Sect. 4, we present the results derived from both methods.
Finally, Sect. 5 is used to provide concluding remarks about the role of execu-
tion errors, the nature of its long-term benefits and its relation with the own
irrational action.

2 Background

In the present work, we assume that the success of agents is directly derived
from the UG [11]. The rules of this game are simple: two players interact in
two distinct roles. One is called the Proposer and the other is denominated
Responder. The game is composed by two subgames, one played by each role.
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First, some amount of a given resource, e.g. money, is conditionally endowed to
the Proposer, and this agent must then suggest a division with the Responder.
Secondly, the Responder will accept or reject the offer. The agents divide the
money as it was proposed, if the Responder accepts. By rejecting, none of them
will get anything. The actions available to the Proposers compose a very large
set, constituted by any desired division of the resource. The strategies of the
Responders are typically acceptance or rejection, depending on the offer made.
We can transform this sequential game in a simultaneous one, if one notes that
the strategy of the Responders may be codified a priori in a minimum threshold
of acceptance [22,38]. This game condenses a myriad of situations in daily life
encounters and in economic interactions. Its use is threefold ideal for the situation
we want to analyse; for one way, it allows a simple and objective qualification of
utility, as we assume that the success of each agent is uniquely defined by the
payoffs earned in the context of this game; for other, this game metaphor is the
source of multiple studies that account for an irrational behaviour by human
beings [4,11], considerably hard to justify mathematically; lastly, by being the
last round of a bargaining process, the pertinence of this game and its predicted
outcome is specially important in artificial intelligence, namely in the design of
artificial bargaining agents [14,16,17].

The rational behaviour in UG can be defined using a game-theoretical equilib-
rium analysis, through a simple backward induction. Facing the decision of reject-
ing (earn 0) or accepting (earn some money), the responder would always prefer to
accept any arbitrarily small offer. Secure about this certain acceptance, the Pro-
poser will offer the minimum possible, maximising his own share. Denoting by p
the fraction of the resource offered by the Proposer, p ∈ [0, 1], and by q the accep-
tance threshold of the Responder, q ∈ [0, 1], acceptance will occur whenever p ≥ q
and the subgame perfect equilibrium [16] of this game is defined by values of p and q
slightly above 0.This outcome is said to be unfair, as it presents a profound inequal-
ity between the gains of Proposer and Responder. The strategies of agents that
value fairness are characterised by prescribing a more equalitarian outcome: a fair
Proposer suggests an offer close to 0.5 and a fair Responder rejects unfair offers,
much lower than 0.5 (i.e. p = 0.5 and q = 0.5).

The rational predictions regarding this game were repeatedly refuted by exper-
imental results. The methods employed to make sense of human decision making
and adopted behaviour in UG have, necessarily, to be extended beyond pure ratio-
nal choice models. The need to disuse optimal methods to model human behaviour,
and the relevance of including culturally dependent features, were pointed out in
previous works [1,27]. To overcome the limitation of an optimal rational model,
methods related with psychological features and machine learning techniques were
proposed [28]. We follow a different path, adopting methods from population ecol-
ogy, as EGT. EGT was, in the past, successfully used to predict how individual
choices may influence the collective dynamics of self-regarding agents, from cells
to climate negotiations — see, e.g., [21,29,33,38,45]. We employ the UG as a game
metaphor, without assuming individual or collective rationality. In a social con-
text, EGT describes individuals who revise their strategies through social learn-
ing, being influenced by the behaviours and achievements of others [12,25,38].
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These dynamics of peer-influence allows one to evaluate the extent of the errors
and the impact of the own irrational action.

One of the most traditional tools to describe the dynamics of an evolutionary
game model is the replicator equation [40]. This equation, justified in a context
of trait evolution in biology or cultural evolution across human societies, poses
that populations are infinite and evolution will proceed favouring strategies that
offer a fitness higher than the average fitness of the population. The fact that
replicator equation describes a process of social learning does not prevent it from
being convenient in understanding individual learning. A lot of effort has been
placed in bridging the gap between replicator dynamics and multiagent learning
[2]. Borgers and Sarin showed that there is indeed an equivalence between repli-
cator dynamics and a simple reinforcement learning model (Cross learning) [3].
Also, the relationship between Q-learning and replicator dynamics was positively
evidenced [43]. It is also important to highlight that EGT is not confined to infi-
nite populations as the replicator equation. The finite nature of real multiagent
systems poses the need to consider stochastic effects related with the probabilis-
tic sampling of peers to interact and imitate, a feature that may significantly
impact the resulting description of the evolutionary dynamics and the obtained
results [13,33]. This is particularly relevant within multiagent systems research.
Thus, in both analytical and numerical computations, we consider evolution as
a stochastic process occurring in finite populations [42].

The role of erroneous behaviour during UG encounters was modelled in the
past, however in different flavours. Rand et al. studied, both analytically and
resorting to experiments, the role of mistakes and stochastic noise in the imita-
tion process of strategies [26]. While that work focus on the role of mutations (or
exploration rate) and selection strength (see next section for more details), here
of focus on strategic noise, affecting directly the adopted strategies by agents and
not the own strategy update process. Notwithstanding, we verify the same gen-
eral principle: increasing stochasticity, either through high execution errors, low
selection strength or small population sizes, has a positive effect on Responders’
fitness and overall population fairness. Also in [10] the authors studied errors
in executing actions, considering a two-strategy version of UG (the so-called
Minigame). The role of errors (in the strategic update process, however) was
also studied in the context of multiplayer Ultimatum Games (MUG), both in
EGT models [34] and populations with reinforcement learning agents [31]. Next,
we present the steps to model the role of execution errors considering large pop-
ulations of agents, and an arbitrary strategy-space discretisation of UG.

3 Model and Methods

To study the impact of errors in the long-term fitness of agents, we employ two dis-
tinct methods. In the first, we describe the prevailing (emergent) behaviours ana-
lytically, while resorting to two approximations: we discretise the strategy space of
the Ultimatum Game and assume a small mutation (or exploration) probability.
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These simplifications allow a convenient analytical computation of the most pre-
vailing states, without the need of massive simulations. Notwithstanding, we com-
plement our study with a second method, achieved through simulations that con-
sider the full Ultimatum Game. The simulations are repeated for 100 times (runs)
and during 5000 generations. We conclude that the analytical framework proposed
provides equivalent results, and may constitute a convenient way of accessing the
role of errors in the natural selection of behaviours.

In both methods we consider the existence of two populations (Proposers
and Responders) each one composed by Z agents. The adoption of strategies will
evolve following an imitation process. The successful individuals will be imitated,
thereby, their strategies will prevail in the population. This process of imitation,
akin to social learning, fits well with studies that argue for the importance of
observing others in the acquisition of behavioural traits [12,25]. We assume that
at each step two agents are chosen, one that will imitate (agent A) and one whose
fitness and strategy will serve as model (agent B). The imitation probability will
be calculated using a function — (1+e−β(fB−fA))−1 — that grows monotonously
with the fitness difference fB − fA [42]. The variable β in the equation above is
well-suited to control the selection pressure, allowing to manipulate the extent
to which imitation depends on the fitness difference. Whenever β → 0, a regime
of random drift is attained, in which the imitation occurs irrespectively of the
game played, whereas for β → +∞ the imitation will occur deterministically, as
even an infinitesimal fitness difference will persuade the imitation of the fitter
individual. It is worth to note that, when deciding about imitation, an agent
will only observe the fitness of the other agent and the respective strategy; the
agents do not have full-information about all interactions of all agents, neither
observe the outcome of all individual interactions.

It is also worth to point out that our model copes with fitness, rather than
utility. A utility function could vary from agent to agent and could be defined,
for instance, to incorporate equality preferences [8], or even a risk-aversion com-
ponent in the Proposers decision making. Differently, here fitness is uniquely
defined by the payoffs of the game, and defines which strategies prevail. The
differences between coping with behavioural deviations from rationality through
the inclusion of parameters in the utility functions or the study of learning mod-
els, is well discussed in [6].

3.1 Analytical Framework

Let us assume that a Proposer and a Responder may choose one of S strategies,
corresponding to increasing divisions of 1. A Proposer choosing strategy m ∈
{1, 2, ..., S} will offer the corresponding to pm = 1

S m and a Responder choosing
strategy n ∈ {1, 2, ..., S} will accept any offer equal or above qn = 1

S n. The
two-person encounter between a Proposer and a Responder thus yield 1− pm to
the Proposers and pm to the Responder if the proposal is accepted (n : qn ≤ pm)
and 0 to both agents otherwise.

We are concerned with the role of systematic errors in the execution of the
desired strategy, namely, by the Responders. The class of these errors should
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not be mixed with errors implemented in learning procedures, which favour
exploration over exploitation, and may naturally provide advantages in deriving
optimal policies (as ε-greedy methods or softmax action selection [39]). Indeed,
the errors considered in this paper do not provide a direct feedback to their
practitioners and they do not interfere in the social learning procedure. We
assume that each Responder with strategy n (and threshold of acceptance qn)
will actually use a threshold of q′

n, calculated as q′
n = qn + U(−ε, ε), where

U(−ε, ε) corresponds to an error sampled from a uniform distribution between
−ε and ε. Thereby, a Responder (using strategy n) accepts an offer pm ∈ [qn −
ε, qn + ε] with a probability given by P (q′

n ≤ pm) = P (qn + U(−ε, ε) ≤ pm) =
P (U(−ε, ε) ≤ pm − qn) =

∫ pm−qn
−ε

1
2εd(pm − qn) = pm−qn+ε

2ε . The probability of
acceptance is 0 if pm < qn − ε and is 1 if pm ≥ qn + ε. The resulting payoff
of a pair (proposal, acceptance threshold) is, thereby, linearly weighted by the
probability of acceptance, considering the execution error (ε).

This allows us to compute the average payoffs of each strategy in each inter-
action, its average fitness and respective transition probabilities (see below). As
we assume a well-mixed population, the fitness is given by the average payoff
earned when playing with all the agents in the opposite population. Considering
the two populations (Proposers and Responders), we say that the population
of Proposers is opposite to the population of Responders, and vice-versa. Pay-
off will be defined by encounters between agents from opposite populations and
imitation will happen within a population. Thereby, considering the existence of
S different strategies in the opposite population of the one from which agent A
belongs; denoting ki as the number of agents using strategy i, in the opposite
population of A; and regarding Rj,i as the payoff (reward) earned by an agent A
using strategy j, against an agent with strategy i (calculated following the rules
of UG with execution errors as detailed above), the fitness of agent A is given by

fAj
=

S∑

i=1

ki

Z
Rj,i (1)

To model the dynamical behaviour of agents when two strategies are present
in the population, we adopt the pairwise comparison rule (see [42]), where the
imitation probability increases with the fitness difference (see above). Assuming
that two agents are randomly sampled from the population in which ki agents are
using strategy i (the remaining are using strategy j), the probability of having
±1 individual using strategy i is given by

T±(ki) =
Z − ki

Z

ki

Z − 1
(1 + e∓β(fi(ks)−fj(ks)))

−1
(2)

assuming that in the opposite population the number of agents using another
strategy s is ks and that the population size is Z. Note that Z−ki

Z (and ki

Z−1 )
represent the sampling probabilities of choosing one agent with strategy j(i) and

(1 + e∓β(fi(ks)−fj(ks)))
−1

translates the imitation probability.
Additionally, with probability μ, a mutation occurs and individuals change

their strategy to a random one, exploring a new behaviour regardless the
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observation of others. The imitation process described above will occur with
probability (1−μ). As said, if we assume that μ → 0 [5,9,30,33,44], we are able to
derive analytical conclusions through a simpler apparatus. This simplified limit
turns out to be valid over a much wider interval of mutation regimes [33,44].
Also, while this assumption reduces the random exploration of behaviours, it
does not prevent us from considering other stochastic effects, as ε, the execution
error of Responders. Under this regime in which mutations are extremely rare,
a mutant strategy will either fixate in the population or will completely vanish
[9]. The time between two mutation events is usually so large that the popula-
tion will always evolve to a monomorphic state (i.e., all agents using the same
strategy) before the next mutation occurs. Thus, the dynamics can be approx-
imated by means of a Markov chain whose states correspond to the different
monomorphic states of the populations. This fact allows us to conveniently use
Eq. (2) in the calculation of transition probabilities, as will be detailed below.
Moreover, the time that the populations spend in polymorphic populations is
merely transient, thereby disregarded [9,13].

The transitions between states are described through the fixation probability
of every single mutant of strategy i in every resident population of strategy j,
that translate how easy is for a strategy originated by a rare mutation, to fixate
in a population. A strategy i will fixate in a population composed by Z − 1
individuals using strategy j with a probability given by [23]

ρi→j
(ks) = (

Z−1∑

l=0

l∏

k=1

T−(ks)
T+(ks)

)

−1

(3)

where ks is the number of individuals using strategy s, in the opposite popula-
tion. Also, while we are calculating the fixation probability in a specific popu-
lation, the opposite one will remain in the same monomorphic state. This fact
allow us to even simplify the calculations [42]. Writing fi(ks)−fj(ks) as Δf(ks)
and noting that T−(ks)/T+(ks) = e−βΔf(ks), Eq. (3) reduces to,

ρ
i→j

(ks) =
1 − e−βΔf(ks)

1 − e−ZβΔf(ks)
(4)

These probabilities define an embedded Markov Chain, governed by the sto-
chastic matrix T , in which Ti,j = ρi→j defines the fixation probability of a
mutant with strategy i in a population with Z − 1 individuals using strategy j.
To calculate π, the stationary distribution of this Markov Process, we compute
the normalised eigenvector associated with the eigenvalue 1 of the transposed
of T . πa,b represents the fraction of time, on average, that is spent when the
population of Proposers is using strategy a and the population of Responders
is using strategy b. The number of possible states depends on the discretisation
chosen, regarding the strategy space considered in Ultimatum Game. If the Pro-
poser and Responder have, each, S available strategies, there are S2 different
monomorphic states. The resulting average fitness is provided by the average
fitness of a population in each monomorphic state, weighted by the time spent
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in that state. Thereby, the average fitness of the population of Proposers is given
by f =

∑S
a=1,b=1 πa,bRa,b and the average fitness of the population of Respon-

ders is given by f =
∑S

a=1,b=1 πa,bRb,a. Our results refer to S = 20. We tested
for S = 10, 20, 30, 40 and the conclusions remain the same.

3.2 Agent Based Simulations

The simplifications considered in the previous subsection enable the description
of the system as a convenient stochastic process, whose dynamics can be studied
without effort. Yet, to know whether the results achieved are sound, we proceeded
through agent based simulations, in which agents may choose a continuity of
strategies (i.e. S → ∞) and mutations are arbitrary.

We employ a general procedure to simulate evolving agents in the context of
EGT. At each time step, a population is picked with probability 0.5. From that
population, two agents are chosen (agent A and agent B). The fitness of each
agent is calculated by using their strategy against all agents from the opposite
population, each with their own strategy. Agent A will then imitate agent B
with a probability provided by the sigmoid function — (1 + e−β(fB−fA))−1 —
presented in the beginning of this section. With a small probability of μ, imita-
tion will not take place and agent A updates the own strategy to a randomly
picked one, between 0 and 1. In biology, this corresponds to a genetic mutation
while, in social learning and cultural evolution (and also in typical reinforcement
learning algorithms [39]), this mimics the random exploration of behaviours.

The same procedure takes place in the opposite population. When 2Z steps
of imitation occur, Z in each population, we say that one generation has elapsed.
We evolve our system for 5000 generations, and we save the average fitness and
average strategy used, for each population. In the beginning, agents start with
random strategies, sampled from a uniform distribution between 0 and 1. We
repeat the simulation for 50 times, each time starting with random conditions.
The results presented (average fitness and average strategy) correspond to a
time average over all generations and an ensemble average over all repetitions.
In all plays done by the Responders, a noise factor will be added to their base
strategy. Thus, the real strategy employed by Responders will correspond to q′,
their base strategy (q), plus U(−ε, ε), a random value between −ε and ε sampled
from a uniform distribution in each interaction. Additionally, we followed the
same procedure yet assuming a normal distribution with ε defining the variance
and q defining the mean of the distribution. The same conclusions were obtained,
however, the optimal value of ε that maximises the Responders’ fitness is lower
than the one observed with a uniform distribution (but still higher than 0).

4 Results

In this section we report the analytical and numerical results. Anticipating the
detailed presentation, we show that the fitness of the Responders will be max-
imised if they commit a significant execution error, sampled from an interval
close to [−0.3, 0.3]. Both methodologies are in consonance with this conclusion.
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Fig. 1. Analytical results, reporting the average fitness (f) of Proposers (empty circles),
average fitness of Responders (filled triangles) for different spans of error committed
by the Responders while choosing a strategy, ε. It is notorious that it is beneficial for
the Responder to behave erroneously, to some extent. If Responders reject irrationally
some proposals, the Proposers have to adapt and start to offer more, beneficing, in the
long run, the Responders; If Responders reject too much, they will harm themselves
and the population of Proposers, as they will waste too much proposals. Z = 100,
S = 20.

In Fig. 1 we show how the average fitness of Proposers and Responders
is affected by changing the range of possible execution errors (ε) committed
by Responders. For different β the conclusion remains equivalent: if the error
increases, Responders are endowed with increased fitness. The Proposers are
always harmed by the erroneous behaviour of Responders. The subgame perfect
equilibrium prediction poses that Proposers will earn all the pot, by offering
almost nothing to the Responder and assuming an unconditional acceptance by
this agent. Yet, if it is assumed that Responders will commit execution errors,
which, in the case of heighten the threshold of acceptance may be seen as an
irrational behaviour, the Proposers necessarily have to adapt to have their pro-
posals accepted and earn some payoff. This adaptation leads to increased offers
(see Fig. 3), favouring the average fitness of the Responders. Additionally, we
note that if the Responders error unreasonably, both Proposers and Responders
will be impaired.

One may argue that the results presented in Fig. 1 strongly depend on the
simplifying assumptions made: the discretisation of strategy space; the assump-
tion of having an equivalence between an average error committed by all agents
and the different errors committed individually, within a range; the assump-
tion that most of the time, populations are in a steady monomorphic state,
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Fig. 2. Results from agent-based computer simulations, reporting the average fitness
(f) of Proposers (empty circles), average fitness of Responders (filled triangles) for
different spans of error committed by the Responders while choosing a strategy. It is
notorious that it is beneficial for the Responder to behave erroneously, to some extent.
The results confirm that for a wide range of mutation values (μ), the conclusions
regarding the role of execution error (ε) in the emergence of fairness remain valid.
Z = 100, β = 10

only perturbed by rare mutations. Yet, Fig. 2 shows that our conclusions, and
the applicability of the analytical model, are more general than one may ini-
tially expect. Figure 2 reports the almost exact same results as Fig. 1 whereas
in this case, they refer to agent based simulations. In these simulations, the
assumptions made are disregarded: agents may use any strategy between 0 and
1, each Responder commits a different error within the same range, every time
an interaction occurs and no impositions are posed, regarding the time spent in
monomorphic states.

The results arguing for an optimal value of error that maximises the fitness
achieved by Responders, are also robust for different values of Z (population
size), μ (mutation rate) and β (selection pressure). We tested with μ ranging
from 0.001 to 0.1 (Fig. 2), and the conclusions remain valid. Further analytical
results regarding β and Z can be accessed in Figs. 4 and 5.

In Fig. 3 we present the emerging strategies of Proposers (p), regarding the
execution error by the Responders (ε). The fairer offers made by the Proposers
coincide with the highest fitness achieved by the Responders (when ε = 0.3).

Using both methods (analytical and simulations) it is also possible to assess
the impact of β (intensity of selection) and Z (population size) in the emerg-
ing average fitness (Figs. 4 and 5). Again, the analytical and numerical results
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Fig. 3. Prevailing behaviour of Proposers (p) for different execution errors (ε) and selec-
tion pressure (β), calculated using the proposed analytical framework. Circles coloured
using a grayscale represent the stationary distribution over possible base strategies,
calculated analytically. Darker colours mean that the system spends more time in the
corresponding state. It is possible to observe that the Proposers maximise their offers
(towards fairer proposals) when ε = 0.3. That increased offer coincides with the increase
in the average fitness earned by the Responders. Z = 100, S = 20

Fig. 4. Analytical results showing the role of selection pressure (β) in the overall fit-
ness (f) of Proposers (empty circles) and Responders (filled triangles), considering two
different execution errors by Responders ε = 0 and ε = 0.3. An increase in β under-
mines the fitness of Responders. For high intensities of selection, the advantages for
Responders of behaving erratically is evident. Z = 100, S = 20

coincide. Increasing β and Z promotes determinism in the imitation process (see
Sect. 3). Thereby, if the strategy update depends on the fitness difference between
agents and no execution errors are considered, the system evolves into a state
in which Proposers offer less and Responders accept everything. As an outcome,
Proposers keep almost all the payoffs. Even employing a different methodology,
these results (regarding the connection between stochasticity and fairness) are
in line with the discussion performed in [26,34].
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Fig. 5. Analytical results showing the role of different population sizes (Z) in the overall
fitness (f) of Proposers (empty circles) and Responders (filled triangles), considering
two different execution errors by Responders ε = 0 and ε = 0.3. An increase in Z
undermines the fitness of Responders, similarly to what happened with an increase in β.
In fact, high values of Z translate into a population more deterministic, as the fixation
of disadvantageous traits by stochastic perturbations turns to be harder. Again, for
high population sizes, it is clear the advantage for Responders of behaving erratically.
β = 10, S = 20

5 Discussion

In this paper, we apply a novel analytical framework to study UG in a finite
population, with an arbitrary state space discretisation. This framework enables
the evaluation of stochastic parameters (i.e. selection pressure and different pop-
ulation sizes) in the dynamics of strategy usage in UG. We are able to show,
both analytically and through agent-based simulations, how execution errors (ε)
may promote increased fitness and fairer offers in UG. If the Responders are
induced to commit execution errors (which should not be confused with a mixed
strategy, mutation or exploration rate), the seemingly disadvantageous nature of
errors turns to be, indeed, an illusion. As Responders error, the Proposers need
to adapt and necessarily have to propose generous offers to cover possible errors.
Yet, it is also important to understand the extent to which should Responders
error. Clearly, being overly erroneous is not beneficial. Other than avoiding the
proper adaptation of Responders through the adoption and use of strategies that
conduce to fair payoffs, an exaggeration in error span would waste too much pro-
posals, harming both Proposers and Responders. This said, we find an optimal
error value in the range [−0.3, 0.3] (i.e., ε = 0.3), meaning that, if Responders
evolve their base strategy to be close to 0, they would still reject low offers,
up to a 0.3 of the total amount help by the Proposer. Despite the plethora of
experimental studies in the context of UG, where humans are asked to play this
game, a common result is that proposals giving the responder shares below 0.25
are rejected with a very high probability [7], which is interestingly close to the
results we obtain.
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Finally, we shall highlight that the model we propose avoids the rationality
supposition of classical game theory, by assuming that strategies are adopted as
the outcome of an evolutionary process of social learning. The relation between
our conclusions and eventual results derived from an equilibrium analysis that
incorporates noise, as trembling hand perfect equilibrium or quantal response
equilibrium, are naturally interesting. However, by using those game theoretical
tools, one would ease the fact that games are often played by agents within adap-
tive populations, and overall, what seems rational as an individual behaviour may
not constitute a good option regarding the collective results [24,36]. Indeed, in
our model, we may identify actions that, even if not rational at an individual
scale, turn to be justifiable from an evolutionary point of view. Execution errors
may be seen as a pernicious individual feature that provides collective benefits.
Resorting to a multi-level selection mechanism [41], our results may indicate
how little pressure evolution may exert to diminish those errors, leading to a
plausible argumentation for the natural selection of “erroneous” behaviours, fos-
tered by psychological and emotional factors [4]. Moreover, the fixation of these
execution errors is the source of a fairer distribution of payoffs in the UG, as the
gains of Responders approximate the gains of the Proposers. As future work, we
intend to adapt the proposed framework to analyse the role of errors in group
decision making (specifically in multiplayer ultimatum games), where fairness
and conflicting interests are paramount [32,34].
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{ivan.marsa,enrique.delahoz,josem.gimenez}@uah.es
2 Department of Physics and Mathematics,

University of Alcala, Alcalá de Henares, Spain
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Abstract. In this paper, we study a problem family inspired by a
prominent network optimization problem (graph coloring), enriched and
extended towards a real-world application (Wi-Fi channel assignment).
We propose a utility model based on this scenario, and we generate an
extensive set of test cases, against which we run both a complete informa-
tion optimizer and two nonlinear negotiation approaches –a hill-climber
and an approach based on simulated annealing (SA). We show that,
for the larger-scale scenarios, the SA negotiation approach significantly
outperforms the optimizer while running in roughly one tenth of the
computation time. Also, we point out interesting patterns regarding the
relative performance of the two approaches depending on the properties
of the underlying graphs.

1 Introduction

In the last years, complex networks have attracted a lot of interest within the
AI community, both due to the inherent challenge of some network-structured
optimization problems (e.g. to be NP-hard) and due to the enormous potential
for real-world applications (many important real-world problems have network
structures). An important sub-class involves autonomous, self-interested entities
(e.g. drivers in a transportation network). The self-interested nature of these
entities cause the network to deviate from socially-optimal behaviour.

Taking this into account, it is not surprising that problems which combine a
networked structure and self-interested parties have been drawing attention from
the AI community. Different fields of research are working on the challenges these
problems raise, but, so far, with only mixed success. Optimization techniques
are especially suited to address large-scale systems with an underlying network
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structure, usually with a “divide and conquer” approach. However, their per-
formance severely decreases as the complexity of the system increases [30], and
with the presence of autonomous entities which deviate from the globally opti-
mal solution, thus harming the social goal. Automated negotiation has proven
to be valuable to support decision-making process in scenarios where it is nec-
essary to find an agreement quickly and with conflicting interests involved [31].
Potential applications of automated negotiation range from e-commerce [26] to
task distribution problem solving, resource sharing or cooperative design [34].
One of the most important advantages of automated negotiation is that it takes
into account the conflict of interests from the beginning. This enables finding
more stable solutions (agreements) which make participating agents less prone
to deviating from the socially optimal solution to favour their privately optimal
solution. Although there is significant work on game theory and bargaining in
complex networks, the nonlinear negotiation community has made only few, very
specific incursions in complex networked problems [6].

We want to explore the possibilities of using non-linear negotiation tech-
niques [22] to solve complex network problems involving self interested parties.
To this end, we are working on the problem of frequency assignment in Wi-Fi
infrastructure networks. In this problem, different Wi-Fi providers have to col-
lectively decide how to distribute the channels used by their APs in order to
minimize interference between nodes and thus maximize the utility (i.e. network
throughput) for their clients. This is a particularly interesting problem, since
it is strongly related to the Frequency Assignment Problem (which has been
extensively studied from the perspective of discrete optimization), to the promi-
nent mathematical graph coloring problem [35], and to distributed constraint
optimization models [13].

Graph coloring have attracted researchers due to its theoretical challenges
and real-world applications [21]. One of the most prominent problems of coloring
vertices of a graph is frequency assignment [2], with models ranging from the
most basic, forbidding monochromatic edges, to the most general, like includ-
ing interference restrictions and an objective function. Some works like [4,12,33]
consider graph coloring considering the distance between colors and vertices, i.e.,
with hard restrictions. On the other hand, in [2] we can find a survey of optimiza-
tion techniques for graph coloring considering soft restrictions. In our case, and
differently from the above-mentioned works, we focus in coloring the network
with a set of predefined spectrum of colors and with a matrix of interferences
between them, with the objective of minimizing some function that depends on
the resulting interferences.

In relation to previous works involving optimal frequency assignment in Wi-
Fi networks, it is important to note that there is an scarcity of works in this
topic, probably due to its high complexity, being NP-hard [5]. In fact, in [5] we
can find an overview frequency assignment techniques in Wi-Fi environments.
Probably, the most remarkable proposals are [24,25]. These works are specially
interesting to this work as they use graph coloring as their main tool. Other
works that also use graphs for frequency assignment are [23,27], although they
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do not consider Wi-Fi peculiarities. A proposal that coordinates Wi-Fi access
points to assign frequency channels without the use of graphs can be found in [3].

However, the focus of our work is different from all these works as we are
interested in demonstrating that nonlinear negotiation techniques are powerful
tools to solve the complex problem of frequency assignment in Wi-Fi networks.
More specifically, we want to test the hypotheses that our nonlinear negotia-
tion approaches can be used as an efficient alternative to centralized, generic
optimization tools, and that network properties have an impact on the relative
performance of the different techniques. This work contributes to achieve this
objective in the following ways:

– We model the problem of Wi-Fi channel assignment, using an abstract model
based on a multilayer graph and a nonlinear utility model (Sect. 2).

– We propose to solve this problem using nonlinear automated negotiation tech-
niques, and define the corresponding negotiation scenario (Sect. 3).

– We generate a large set of scenario instances for this problem, we select
a set of metrics based on graph theory to analyze them, and we perform
extensive experimentation on this set of instances, comparing our negotiation
approaches to two reference techniques: a random channel assignment and a
complete-information nonlinear optimizer based on particle swarms (Sect. 4).

The experimental results (Sect. 5) show that one of the benchmarked negoti-
ation approaches (single text mediation with simulated annealing) significantly
outperforms the optimizer for the larger-scale scenarios, both in computation
time and social welfare. Also, interesting patterns regarding the influence of net-
work properties on the relative performance of the approaches are identified.
The last section summarizes our contributions and sheds light on future lines of
research.

2 Problem Modelling

2.1 Wi-Fi Architecture

IEEE 802.11 technology, commercially known as Wi-Fi, is a very popular and
widespread technology, whose most used standard operates commonly in the
2.4 GHz frequency band. Due to the high number of Wi-Fi devices that coexist
in these frequencies, this band is usually congested, a situation often worsened
by other devices like Bluetooth, ZigBee, microwave ovens, baby monitors or
cordless phones. For those reasons, it is of paramount importance that Wi-Fi
devices smartly manage the use of the radio spectrum. The 2.4 GHz band is
divided into 11 partially overlapped channels [29], so it is important to choose
the most advantageous one to minimize interferences.

The most widely deployed Wi-Fi architecture is infrastructure mode, where
there are two types of devices in the network: access points (APs) and wireless
devices (WDs) such as laptops, smartphones... In infrastructure mode, wireless
devices are wirelessly connected to a single AP, which is generally a wireless
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Access Point Wireless device 

Fig. 1. Wi-Fi architecture.

router, and are able to communicate to other devices only through that AP. For
that reason, WDs are also called clients. In Fig. 1 we show a graphical represen-
tation of a scenario with 12 APs and 60 WDs.

2.2 Modelling Based on a Multilayer Graph

Graphs are one of the most commonly used tools for modelling the frequency
assignment problems, because of the relation of this problem to the graph color-
ing problem, which has been widely studied by the mathematical community [35].
In graph coloring, an abstract graph is considered, defined by a set of vertices
along with some edges connecting them, and the objective is to assign one color
to each vertex, in such a manner that the minimum possible number of col-
ors should be used, while avoiding monochromatic edges. In the commonly used
model, graph nodes represent elements that should be assigned a frequency while
edges represent element pairs that should not be assigned the same frequency.
This way, colors act as frequencies and hetero-chromatic edges guarantee ele-
ment pairs with different frequencies. Although widely used, Tragos et al. [7]
conclude that the model is not accurate enough, because it does not reflect all
the information. For instance, the authors suggest that the information regarding
adjacent channel interferences should be incorporated into the graph.

To model the Wi-Fi channel assignment problem we propose a multilayer net-
work graph [17], where each layer represents a different relationship between net-
work elements, as shown in Fig. 2. In this graph we can distinguish two types of
vertices: APs and WDs. Layer a captures the infrastructure links between Wi-Fi
APs and WDs, i.e. the links shown in Fig. 1. Note that every WD is associated to
its closest AP, and that, since APs are the ones who set the channel to be used by
their associated clients, all nodes connected in layer a will use the same channel
(color) to communicate. On the other hand, layer b captures the potential interfer-
ences between nearby vertices. To be more specific, layer b links node pairs where
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Fig. 2. Multilayer graph model.

the distance between them is below the corresponding interference radius R (that
depends on the sensitivity of the receiver): AP–AP pairs will be linked provided
that the distance condition is met, AP–WD pairs only when the device is not asso-
ciated to that AP, and WD–WD pairs only if both devices are associated to dif-
ferent APs, since the communications among the elements connected to the same
AP are coordinated and do not interfere. In Sect. 2.3 we describe the interference
model in more detail. Finally, layer c captures the idea that usually there is a
small number of communication providers to which the APs belongs to. This last
layer is the key to model the automated negotiation, since the fact that a provider
may choose to sacrifice the throughput of a given access point in favor of oth-
ers is what will enable the existence of utility trade-offs during negotiations. It is
important to note that this layers are not associated to communication infrastruc-
ture layers or in any way represent communication restrictions between APs. It is
usual to have APs connected to wired networks so that they can communicate with
each other.

2.3 Interferences and Utility of the Solutions

To model interference power between two elements, we weigh each edge of the
interference graph (layer b in the multilayer model) based on three factors:

1. We consider a weight for each color pair ij that we have called the co-channel
index, which can be understood as the interference between color i and color j.
It is worth noting that the usual coloring problem only takes into account
the particular case of interferences between vertices of the same color, while
our extension of the problem allows considering also interferences between
adjacent colors or colors in a certain distance range, to take into account
the partial overlapping between frequency channels in Wi-Fi. To model this
effect, we have used the values obtained for this index in [29], where authors
provide a matrix where each value (i, j) represents the interference, as seen
in channel i, motivated by a transmission on channel j.
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2. We consider the distance between edge endpoints. This way, the weight
assigned to a colored edge ij will be different depending on how far apart
its endpoints are, following the propagation model described in [11]. This
represents another extension to the usual coloring problem, because now ver-
tices have also certain positions and this means that our graph is no longer
abstract but geometrical.

3. We include the effect of the amount of data into the weights, including a factor
(called activity index) that accounts for the fact that a higher bandwidth
data flow will occupy the wireless channel a higher fraction of the time. In
other words, higher bandwidth flows will generate more harmful interference
signals, as they will occupy the spectrum for a higher ratio of time.

Once there is a model for interfering signals, the signal to noise ratio for
terminal i (SINRi) can be computed as the ratio between the received desired
signal and the sum of the received undesired interferences. Note that each AP
will have a SINR value for every terminal that is associated to it. In that case,
we will assume that its SINR will be the minimum of all of them, which is in
fact the worst case.

To quantify the goodness of the different network colorings, we have used
the concept of utility, which is closely related to the perceived throughput and
SINR. According to [1], in a wireless network the throughput equals a maximum
value when the SINR is over a certain value SINRmax and monotonically
decreases with the reduction of SINR until an insufficient value of SINR, called
SINRmin, is reached, when the throughput falls to zero. We can consider the
utility seen by node i (Ui) as a normalized throughput, so it can be defined
as a value ranging from 0 to 1, with 0 corresponding to the situations when
there is a very low-quality reception and the devices cannot keep connected
(throughput equals to zero), and 1 corresponding to the case when the signal
quality is excellent (throughput equals to its maximum value). Threshold values
for SINR have been defined from the values presented in [10]. Finally, the utility
value for a specific provider Pi (UPi

) is computed as the sum of the utility values
for all its APs and the clients associated to these APs.

3 Automated Negotiation Techniques for Channel
Selection

In this work, we propose to tackle the network-structured channel assignment
problem in Wi-Fi using automated negotiation techniques. Automated negotia-
tion is a quite wide field [9] but most authors agree that a negotiation problem
can be characterized by a negotiation domain (who negotiates and what to nego-
tiate about), an interaction protocol (which rules govern the negotiation process),
and a set of decision mechanisms or strategies that guide the negotiating agents
through every phase of the interaction protocol [8]. In the following we define
our particular negotiation problem along these three dimensions.
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3.1 Negotiation Domain

For the scope of this work, we assume a multiattribute negotiation domain, where
a deal or solution to the problem is defined as the set of attributes (issues),
and each one of them can be in a certain range. In our case, for a channel
assignment problem with nAP access points, a solution or deal S can be expressed
as S = {si|i ∈ 1, ..., nAP }, where si ∈ {1, . . . , 11} represents the assignation of a
Wi-Fi channel to the i-th access point.

In this work, we assume that there are two network providers (commonly
Internet Service Providers, ISPs), thus APs belong to one of the providers. Each
provider only has control over the channel assignment for its own access points.
According to this situation, P = {p1, p2} will be the set of agents that will
negotiate the channel assignment. We find adequate to focus in the two- provider
case because there are more works in complex bilateral negotiations than for the
multilateral case (three or more agents).

Finally, each one of these agents will compute its utility for a certain solution
according to the model described in the previous section. The problem settings
(high cardinality of the solution space and attribute interdependence) will make
the utility functions highly complex, with multiple local optima.

3.2 Interaction Protocol

There are many interaction protocols for negotiations, from the classical alter-
nating offers model [32] to auction-based protocols [14]. From the assumption
that the negotiation scenarios coming from Wi-Fi channel assignment will be
highly nonlinear, and according to the discussion in [22], we have chosen a sim-
ple text mediation protocol [18]. In its simplest version, the negotiation protocol
will be as follows:

1. It starts with a randomly-generated candidate contract (Sc
0). This means to

assign each AP a random channel.
2. In each iteration t, the mediator proposes a contract Sc

t to the rest of agents
(i.e. the providers).

3. Each agent either accepts or rejects the contract Sc
t .

4. The mediator generates a new contract Sc
t+1 from the previous contracts and

from the votes received from the agents and the process moves to step 2.

This process goes on until a maximum number of iterations is reached. The
protocol, as defined, is rather generic and must be completed with the definition
of the decision mechanism to be used by the negotiating agents and the mediator.

3.3 Decision Mechanisms

For the mediator, we have implemented a single-text mediation mechanism [18]
for the generation of new contracts, which works as follows:
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– If at time t all agents have accepted the presented contract Sc
t , this contract

will be used as the base contract Sb to generate the next contract Sc
t+1.

Otherwise, the last mutually accepted contract will be used.
– To generate the next candidate contract Sc

t+1, the mediator takes the base
contract Sb and mutates one of its issues randomly. In our case of study,
this would correspond to choosing a random access point and selecting a new
random channel for it.

– After a fixed number of iterations, the mediator advertises the last mutually
accepted contract as final.

For the agents, we have considered two different mechanisms to vote about
the candidate contracts Sc:

– Hill-climber (HC): In this case, the agent behaves as a greedy utility maxi-
mizer. The agent will only accept a contract when it has at least the same
utility for her than the previous mutually accepted contract.

– Annealer (SA): In this case, we use a widespread nonlinear optimization tech-
nique called simulated annealing [18]. When a contract yields a utility loss
against the previous mutually accepted contract, there will be a probability
for the agent to accept it nonetheless. This probability Pa depends on the util-
ity loss associated to the new contract Δu, and also depends on a parameter
known as annealing temperature τ , so that Pa = e

−Δu
τ . Annealing tempera-

ture begins at an initial value, and linearly decreases to zero throughout the
successive iterations of the protocol.

The choice of these two mechanisms is not arbitrary. Simulated annealing
techniques have yielded very satisfactory results in negotiation for nonlinear
utility spaces [20], and are the basis for several of other works [22]. Furthermore,
as discussed in [18], the comparison between hill-climbers and annealers allows
to assess whether the scenario under consideration is a highly complex one, since
in such scenarios greedy optimizers tend to get stuck in local optima, while the
simulated annealing optimizer tends to escape from them.

4 Scenarios, Benchmarks and Metrics

4.1 Considered Scenarios

In this paper, we make the common assumption that Wi-Fi nodes (APs and
clients) are static elements. As in our problem there is not any element that
evolves with time, we deal with the problem of evaluating the performance of a
particular channel assignment strategy by means of the computation described
in Sect. 2.

Moreover, the choice of the configuration parameters for the studied scenarios
has been driven by considering typical or reasonable power transmission and
sensitivity parameters from a realistic point of view [15]. We have also made
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the assumption that both APs and clients are randomly distributed throughout
the environment, and that clients associate to the AP which is closer to them.
With these assumptions, we have generated scenarios varying the number of APs
(15, 50 and 100) and the number of clients per AP (1 and 5). For each of these
combinations of parameters we generated 50 different graphs, for a total of 300
scenarios. This allowed us to have a wide range of problem sizes (from tens of
nodes to roughly one thousand nodes), and also a wide diversity (due to the
randomization of node placement). Keep in mind that there is more variability
on the number of APs and clients than the one suggested by the parameter set,
since we removed from the scenario any AP which had no nearby clients, and
vice versa. Finally, for each scenario, we randomly assigned half of the APs to
each provider.

4.2 Analysed Techniques

In addition to the negotiation techniques under study, presented in Sect. 3.3, we
have included a comparison with two reference techniques:

– Random Reference: as a first base line, in this technique each AP chooses a
channel randomly.

– Particle Swarm Optimization (ALPSO): additionally to our negotiators
based on simulated annealing, we wanted to have, as a reference, a nonlin-
ear optimizer using complete information. We have chosen a parallel aug-
mented Lagrange multiplier particle swarm optimizer, which solves nonlinear
non-smooth constrained problems using an augmented Lagrange multiplier
approach to handle constraints [16].

4.3 Graph Metrics for Performance Evaluation

One of the long-term purposes of our work is to study how the network structural
properties of a problem influence the performance of optimization and negoti-
ation approaches used to address it. To this end, we have selected a number
of graph metrics from the literature to analyze our experimental results. The
selected metrics are the following:

– Graph order: the number of nodes in the graph.
– Graph diameter: the longest distance between any pair of nodes in the

graph [28].
– Wiener index: gives a measure of graph complexity from the distances in the

graph. It is computed as W (G) = 1
2

∑|N |
i=0

∑|N |
j=0 d(ni, nj), where d(ni, nj) is

the shortest distance between nodes [36].
– Graph density: the ratio between the number of edges in the graph and the

maximum possible number of edges (that is, for a fully-connected graph).
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– Clustering coefficient: a measure of the degree to which nodes in a graph
tend to cluster together. The cluster coefficient of a graph is computed as
the average of the local clustering coefficient of its nodes, which is the ratio
between the number of links between a node’s neighbors and the maximum
possible number of links between them (that is, if they were fully connected).

– Average betweenness centrality. Centrality metrics measure the importance of
a node within a graph. In particular, betweenness centrality of a node is the
ratio of shortest paths in the graph which traverse the node [19].

One of our long-term hypothesis is that these metrics may be used as a basis
for mechanism selection in networked problems involving self-interested parties.
As a first step in this track, in this paper we have used these metrics to compare
the relative performance of the benchmarked approaches.

5 Experimental Results and Discussion

In this section, we describe and discuss the results of our experiments. For each
of the aforementioned 300 scenarios, we did 20 repetitions with each of the
benchmarked techniques, recording the achieved social welfare (sum of utilities
for both providers) and the computation time.

Firstly, we study the performance of the evaluated techniques in the different
scenario categories according to the scenario generation parameters (number of
APs and number of clients per AP). Table 1 shows the average utility obtained by
each approach for all the graphs in each category. We can see that, for the less
complex scenarios, all approaches but random perform reasonably well, with
a non-significant little advantage for the hill climber (HC ). As the scenarios
grow more complex, we can see the performance of the random approach turns
worse, which is reasonable since the size of the solution space becomes larger.
We can also note significant increasing distance between the performances of
the hill climber and the annealer (SA) negotiators. This confirms our hypothesis
that these scenarios are highly nonlinear [18]. We can also see that, for the

Table 1. Utility for different techniques.

(APs,WDs) Random HC SA ALPSO

avg std avg std avg std avg std

(15, 15) 12.45 1.90 15.88 0.02 15.86 0.04 15.86 0.03

(15, 75) 30.57 5.18 52.53 1.35 53.85 0.50 52.95 0.93

(50, 50) 29.17 4.15 50.40 0.89 51.08 0.52 50.06 0.98

(50, 250) 60.28 9.44 125.24 4.71 134.96 2.34 125.51 3.80

(100, 100) 45.37 5.48 84.90 2.39 88.33 1.52 83.53 2.25

(100, 500) 86.21 11.68 188.13 7.93 208.23 4.33 191.43 6.25
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Table 2. Run time (in seconds) for different techniques.

(APs,WDs) HC SA ALPSO

avg std avg std avg std

(15, 15) 0.53 0.21 0.64 0.22 0.25 0.19

(15, 75) 5.79 1.22 5.96 1.23 5.86 2.00

(50, 50) 5.22 1.16 5.40 1.17 11.91 5.02

(50, 250) 69.39 6.44 69.32 6.36 285.89 74.37

(100, 100) 22.01 2.96 22.15 2.99 108.14 31.39

(100, 500) 330.38 17.23 326.90 16.61 3225.63 817.93

more complex scenarios, the SA negotiator significantly outperforms the particle
swarm optimizer (ALPSO). This is a remarkable result, specially taking into
account that SA reaches the optimum faster than the ALPSO optimizer. Table 2
shows the average computation times for both approaches. We can see that, in
the largest scenarios, the SA negotiator is roughly 10 times faster than the
complete information optimizer.

To account for the diversity of scenarios within each category, we have ana-
lyzed the results of the best performing approach (SA) against the complete-
information reference (ALPSO) with respect to the different metrics discussed
in Sect. 4.3. Figure 3 shows, for each metric, the ratio between the average utility
achieved by SA in the 20 runs for a given graph, and the average utility obtained
by ALPSO for the same graph (hence the dashed line in the figures corresponds
to the ALPSO 1.0 baseline). We can see there is an approximately linear increas-
ing gain for SA with graph order, with ALPSO doing better for low-order graphs
and SA getting to gains up to 10% for the larger graphs (Fig. 3a). This is coher-
ent with the results in Table 1. We can see an inversely proportional trend with
the average betweenness centrality (Fig. 3b). The SA negotiator performs better
for low centrality values, which seems reasonable because in these graphs there
will be more peripheral nodes (i.e. with less interfering nodes) than central nodes
(i.e. with more interfering nodes), which should make negotiations easier. The
same reasoning explains the results with respect to density (Fig. 3c). The nego-
tiator fares better in the less dense graphs (i.e. where there are less interference
links).

There are other interesting patterns arising from the metrics analysis. For
instance, Figs. 3d and 3e suggest that there may be optimal values of graph
diameter and graph cluster coefficient, respectively, regarding the performance
of the SA negotiator. However, further analysis would be needed to rule out other
possible explanations. For instance, it is reasonable to expect very little room for
improvement of the negotiator in the extremely high clustering coefficient cases
(almost complete graph, all nodes interfere with each other).
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Fig. 3. Utility of SA relative to ALPSO for different graph metrics.

6 Conclusions and Future Work

This paper presents a problem inspired by an extension of the prominent graph
coloring problem, enriched towards a real application domain (Wi-Fi channel
assignment), which has been extensively studied from the discrete optimization
perspective, but has not received attention from the negotiation community. We
study a negotiated approach to address this problem, which is, to our knowl-
edge, the first attempt to apply nonlinear negotiation techniques to real complex
network scenarios. Experiments show that our approach based on simulated
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annealing significantly outperforms the optimizer used as a reference in both
social welfare and computation time. This is a relevant result, since scalability
is the main drawback to apply negotiation approaches to complex systems.

Although our experiments yield satisfactory results, there are still a variety
of avenues for further research. As discussed in the previous sections, a range of
bilateral and multilateral negotiation protocols and agent decision mechanisms
can be studied. A more in-depth metric analysis is needed, specially to determine
if the observed correlations among metrics are inherent or caused by a scenario
generation bias. Finally, we are interested in fully-distributed negotiations, where
the need for mediation can be substituted by a form of distributed social choice.
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Abstract. Abstract argumentation has emerged as a central field in
Artificial Intelligence. Although the underlying idea is very simple and
intuitive, most of the semantics proposed so far suffer from a high com-
putational complexity. For this reason, in recent years, an increasing
amount of work has been done to define efficient algorithms. However,
so far, the research has concentrated on the definition of algorithms for
static frameworks, whereas argumentation frameworks (AFs) are highly
dynamic in practice. Surprisingly, the definition of evaluation algorithms
taking into account such dynamic aspects has been mostly neglected. In
this paper, we address the problem of efficiently recomputing the exten-
sions of AFs which are updated by adding/deleting arguments or attacks.
In particular, after identifying some properties that hold for updates of
AFs under several well-known semantics, we focus on the most popular
unique-status semantics (namely, the grounded semantics) and present
an algorithm for its incremental computation, well-suited to dynamic
applications where updates to an initial AF are frequently performed to
take into account new available knowledge.

1 Introduction

Abstract argumentation has emerged as a central field in Artificial Intelli-
gence [3,10,26,42,44,45]. Although the underlying idea is very simple and intu-
itive, most of the semantics proposed so far suffer from a high computational
complexity [22–25,28–32]. Complexity bounds and evaluation algorithms for
argumentation frameworks (AFs) have been deeply studied in the literature,
but this research focused on ‘static’ frameworks, whereas, in practice, AFs are
not static systems [4,5,19,27,39]. Typically an AF represents a temporary sit-
uation as new arguments and attacks continuously can be added/removed to
take into account new available knowledge. This may change significantly the
conclusions that can be derived. For instance, when a new attack is added to an
AF, existing attacks may cease to apply and new attacks become applicable.

Surprisingly, the definition of evaluation algorithms and the analysis of the
computational complexity taking into account such dynamic aspects have been
mostly neglected, whereas in these situations incremental computation tech-
niques can greatly improve performance. Sometimes changes to the AF can
c© Springer International Publishing AG 2017
R. Aydoğan et al. (Eds.): COREDEMA 2016, LNAI 10238, pp. 66–81, 2017.
DOI: 10.1007/978-3-319-57285-7 5
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Fig. 1. AFs A0 and A = +(g, h)(A0)

make small changes to the set of conclusions, and recomputing the whole
semantics from scratch can be avoided. For instance, consider the situation
shown in Fig. 1: the initial AF A0, where h is not attacked by any other argu-
ment, is updated to AF A by adding attack (g, h). According to the most
popular argumentation semantics, i.e. grounded, complete, ideal, preferred, sta-
ble, and semi-stable [15,20,21], the initial AF A0 admits the extension E0 =
{a, h, g, e, l,m, o}, whereas the extension for the updated framework A becomes
E = {a, c, g, e, l,m, o}. As it will be shown later, for the grounded semantics
the extension E can be efficiently computed incrementally by looking only at a
small part of the AF, which is “influenced by” the update operation. This part
is just {h, c} in our example, and we will show that the membership of the other
arguments to E does not depend on the update operation, and thus we do not
need to compute them again after performing update +(g, h).

Contributions. The main contributions are as follows:

– We introduce the concept of influenced set consisting of the arguments whose
status could change after an update. The influenced set refines the previously
proposed set of affected arguments [4,39] and makes the computation more
efficient.

– We present an incremental algorithm for recomputing the grounded exten-
sion. It is very efficient as it (iteratively) computes the status of influenced
arguments only and when it finds that the status of arguments derived at
some step cannot be changed by subsequent steps then it stops.

– We present experimental results showing the effectiveness of our approach.

Plan of the paper. We start by discussing related works in Sect. 2, and reviewing
Dung’s abstract argumentation framework in Sect. 3, where updates are intro-
duced. Next, we identify some sufficient conditions on the updates that guar-
antee that the semantics of an AF does not change, and introduce the concept
of influenced set in Sect. 4. Then we provide our algorithm for incrementally
computing the grounded semantics in Sect. 5. In Sect. 6 we present experimental
results on two datasets showing that our incremental approach outperforms the
computation from scratch of the grounded semantics. Finally, we draw conclu-
sions and discuss future work in Sect. 7, where we also discuss how the results
presented in the paper carry over to the case of sets of updates to be performed
simultaneously.
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2 Related Work

There have been several efforts coping with dynamics aspects of abstract argu-
mentation. In [12,13] the principles according to which the extension does not
change when the set of arguments/attacks are changed have been studied. How-
ever, this work does not consider how the extensions of an AF evolve when new
arguments are added or some of the old ones are removed. [17,18] addressed
the problem of revising the set of extensions of an AF, and studied how the
extensions can evolve when a new argument is considered. However, they focus
on adding only one argument interacting with one initial argument (i.e. an argu-
ment which is not attacked by any other argument). The work in [17,18] has
been extended in [11], where the evolution of the set of extensions after perform-
ing a change operation (addition/removal of arguments/interaction) is studied.
Dynamic argumentation has been applied to decision-making of an autonomous
agent in [1], where it is studied how the acceptability of arguments evolves when
a new argument is added to the decision system. However, they do not compute
the whole extensions and also focused on the case where only one argument is
added to the system.

The division-based method, proposed in [39] and refined in [4], divides the
updated framework into two parts: affected and unaffected, where only the status
of affected arguments is recomputed after updates. However, the set of affected
arguments consists of those that are reachable from the updated arguments,
which is often larger than the set that actually needs to be considered when
recomputing the extension. For the AF of Fig. 1, all the arguments in the chains
originated by h turn out to be ‘affected’. But we only need to recompute the
status of h and c after the update. Recently, [48] introduced a matrix represen-
tation of AFs and proposed a matrix reduction that, when applied to dynamic
AFs, resembles the division-based method in [39]. In [5,9] an approach exploiting
the concept of splitting of logic programs [40] was adopted to deal with dynamic
argumentation. However, the technique considers weak expansions of the initial
AF, where added arguments never attack previous ones. Recently, [16] studied
the relationship between argumentation and logic programming [14,35,36].

[8] investigated whether and how it is possible to modify a given AF in
such a way that a desired set of arguments becomes an extension, whereas
[43] studied equivalence between two AFs when further information (another
AF) is added to both simultaneously. [6] focused on specific expansions where
new arguments and attacks may be added but the attacks among the old argu-
ments remain unchanged, while [7] characterized update and deletion equiva-
lence, where adding as well as deleting arguments and attacks is allowed (dele-
tions were not considered in [6,43]).

To the best of our knowledge, this is the first paper that exploits the ini-
tial extension E0 of an AF A0 not only for computing the set I(u,A0, E0) of
arguments influenced by an update u but also for recomputing the status of
the arguments in I(u,A0, E0) by applying early termination conditions. A short
version of this paper appeared in [37].
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3 Preliminaries

We assume the existence of a set Arg whose elements are called arguments. An
(abstract) argumentation framework [20] (AF ) is a pair 〈A,Σ〉, where A ⊆ Arg
is a finite set whose elements are referred to as arguments, and Σ ⊆ A × A is
a binary relation over A whose elements are referred to as attacks. Essentially,
an AF is a directed graph in which the arguments are represented by the nodes
and the attack relation is represented by the set of directed edges. An argument
is an abstract entity whose role is entirely determined by its relationships with
other arguments.

Given arguments a, b ∈ A, we say that a attacks b iff (a, b) ∈ Σ. An argument
a attacks a set S ⊆ A iff ∃ b ∈ S such that a attacks b.

We use S+ = {b | ∃a ∈ S : (a, b) ∈ Σ} and S− = {b | ∃a ∈ S : (b, a) ∈ Σ} to
denote the sets of all arguments that are attacked by S and attack S, respectively.

A set S ⊆ A defends a iff ∀b ∈ A such that b attacks a, there is c ∈ S such
that c attacks b.

A set S ⊆ A of arguments, is said to be

(i) conflict-free, if there are no a, b ∈ S such that a attacks b;
(ii) admissible, if it is conflict-free and it defends all its arguments.

An argumentation semantics specifies the criteria for identifying a set of
arguments considered to be “reasonable” together, called extension. A com-
plete extension (co) is an admissible set that contains all the arguments that it
defends. A complete extension S is said to be:

– preferred ( pr) iff it is maximal (w.r.t. ⊆);
– semi-stable ( ss) iff S ∪ S+ is maximal (w.r.t. ⊆);
– stable ( st) iff it attacks each argument in A \ S;
– grounded ( gr) iff it is minimal (w.r.t. ⊆);
– ideal ( id) iff it is contained in every preferred extension and it is maximal

(w.r.t. ⊆).

Given an AF A and a semantics S ∈{co, pr, ss, st, gr, id}, we use ES(A)
to denote the set of S-extensions of A.

All the above-mentioned semantics except the stable admit at least one
extension, and the grounded and ideal admit exactly one extension [15,20,21].
That is, for S ∈ {co, pr, ss, gr, id} it is the case that ES(A) 	= ∅, while
Est(A) may be empty. Semantics gr and id are called unique status semantics
as |Egr(A)| = |Eid(A)| = 1, whereas the others are called multiple status seman-
tics. It is well-known that, for any AF A, Egr(A) ⊆ Eco(A) and Eid(A) ⊆ Eco(A),
and Est(A) ⊆ Ess(A) ⊆ Epr(A) ⊆ Eco(A).

Example 1. Consider the AF A0 shown in Fig. 2. Then, the set of admissible
sets is { ∅, {a}, {d}, {a, d}, {b, d} }, and ES(A0) with S ∈{co, pr, ss, st, gr,
id} is as reported in the second column of Fig. 3. ��
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Fig. 2. AF A0

Example 1.
Fig. 3. Sets of extensions for the AF of Example 1, and changes
in the sets after performing updates +(b, d) and −(c, b).

The argumentation semantics can be also defined in terms of labelling. A
labelling for an AF A = 〈A,Σ〉 is a total function L : A → {in,out,un}
assigning to each argument a label. L(a) = in means that argument a is accepted,
L(a) = out means that a is rejected, while L(a) = un means that a is undecided.

Let in(L) = {a | a ∈ A ∧ L(a) = in}, out(L) = {a | a ∈ A ∧ L(a) = out},
and un(L) = {a | a ∈ A ∧ L(a) = un}. In the following, we also use the triple
〈in(L), out(L), un(L)〉 to represent L.

A labelling L is said to be admissible (or legal) if ∀a ∈ in(L) ∪ out(L) (i)
if L(a) = out then ∃ b ∈ A such that (b, a) ∈ Σ and L(b) = in; and (ii) if
L(a) = in then L(b) = out for all b ∈ A such that (b, a) ∈ Σ. L is a complete
labelling iff conditions (i) and (ii) hold for all a ∈ A.

Between complete extensions and complete labellings there is a bijective
mapping defined as follows: for each extension E there is a unique labelling
L = 〈E,E+, A \ (E ∪ E+)〉 and for each labelling L there is a unique extension
in(L). We say that L is the labelling corresponding to E.

In the following, we say that the status of an argument a w.r.t. a labelling L
(or its corresponding extension in(L)) is in (resp., out, un) iff L(a) = in (resp.,
L(a) = out, L(a) = un). We will avoid to mention explicitly the labelling (or
the extension) whenever it is understood.

Updates. An update u for an AF A0 consists in modifying A0 into an AF A by
adding or removing arguments or attacks.

In the following, we focus on updates consisting of adding/deleting one attack
between arguments belonging to A0. As we discuss in Sect. 7, focusing on single
attack updates is not a limitation as multiple (attack) updates to be performed
simultaneously can be simulated by means of a single attack update.

Concerning the addition (resp. deletion) of a set of isolated arguments, it is
easy to see that if A is obtained from A0 through the addition (resp. deletion)
of a set S of isolated arguments, then, let E0 be an extension for A0, E =
E0 ∪ S (resp. E = E0 \ S) is an extension for A that can be trivially computed.
Of course, if arguments in S are not isolated, we can first delete all attacks
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involving arguments in S; adding an attack between an argument in A0 and a
new argument can be simulated as well.

We use +(a, b) (resp. −(a, b)) to denote the addition (resp. deletion) of an
attack (a, b), and u(A0) to denote the application of update u = ±(a, b) to A0.

Updating an AF implies that its semantics (sets of extensions or labellings)
changes, as shown in the following example.

Example 2. Consider the AF A0 of Example 1. For each semantics S, the set
ES(A1) of extensions for A1 = +(b, d)(A0) is reported in the third column of
Fig. 3. If update −(c, b) is performed on A1, then ES(A2) with A2 = −(c, b)(A1)
is as shown on the last column of Fig. 3. ��

4 Influenced Arguments

In this section, we first identify conditions ensuring that a given S-extension
continues to be an S-extension after an update, and then introduce the influenced
set that will be used to limit the set of arguments that needs to be recomputed
after an update. In addition, arguments not in the influenced set can be used to
derive extensions for the updated AF.

The following two propositions introduce sufficient conditions guaranteeing
that a given S-extension is still an S-extension after performing an update.

Proposition 1. Let A0 be an AF, u = +(a, b) an update, S a semantics, E0 ∈
ES(A0) an extension of A0 under semantics S, and L0 the labelling corresponding
to E0. Then E0 ∈ ES(u(A0)) if

– S ∈{co, st, gr} and one of the following conditions holds:
• L0(a) 	= in and L0(b) 	= in,
• L0(a) = in and L0(b) = out;

– S ∈{ pr, ss, id} and L0(b) = out.

Proposition 2. Let A0 be an AF, u = −(a, b), S ∈ {co, pr, ss, st, gr}, and
E0 ∈ ES(A0) an extension of A0 under S. Then E0 ∈ ES(u(A0)) if one of the
following conditions holds:

(1) L0(a)=out;
(2) L0(a)=un and L0(b)=out.

Example 3. Consider the AFs A1=+(b, d)(A0) and A2=−(c, b)(A1), where A0

is the AF of Example 2. For S ∈ {co, pr, ss, st}, extension {a, d} of A1 is still
an extension of A2 as L0(c)=out (see Fig. 3). The grounded extension ∅ of A1

is still a grounded extension of A2, whereas the ideal extension {a, d} of A1 is
not the ideal extension of A2. ��

Given an AF A = 〈A,Σ〉 and an argument b ∈ A, we denote as ReachA(b)
the set of arguments that are reachable from b in A. We now introduce the
influenced set.
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Definition 1 (Influenced set). Let A = 〈A,Σ〉 be an AF, u = ±(a, b) an
update, E an extension of A under a given semantics S, and let
–

I0(u, A, E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if E ∈ ES(u(A)) [i.e., the conditions of Prop. 1/2 hold] or

∃(z, b) ∈ Σ s.t. z ∈ E ∧ z �∈ ReachA(b);

{b} otherwise;

– Ii+1(u,A, E) = Ii(u,A, E) ∪ {y | ∃(x, y) ∈ Σ s.t. x ∈ Ii(u,A, E) ∧ 	 ∃(z, y) ∈
Σ s.t. z ∈ E ∧ z 	∈ ReachA(b)}.

The influenced set of update u w.r.t. AF A and the extension E is I(u,A, E) =
In(u,A, E) such that In(u,A, E) = In+1(u,A, E). ��

Thus, the set of arguments that are influenced by an update of the status of
b are those that can be reached from b without using any intermediate argument
y whose status is known to be out because it is determined by an argument
z ∈ E which is not reachable from (and thus not influenced by) b.

Example 4. For the AF A0 = 〈A0, Σ0〉 of Fig. 1, whose grounded extension is
E0 = {a, h, g, e, l,m, o}, we have that ReachA0(h)=A0 \{a, b}, and the influenced
set of u = +(g, h) is I(u,A0, E0) = {h, c}. Note that d 	∈ I(u,A0, E0) since it
is attacked by a ∈ E0. Thus the arguments that can be reached only using d
cannot belong to I(u,A0, E0) either.

For A = u(A0), whose the grounded extension is E = {a, c, g, e, l,m, o}, we
have that S = I(u,A, E) is still {h, c}. Therefore, only the status of arguments
in S could change and their status can be determined by considering a restricted
AF containing only arguments in S ∪ S−. ��
Proposition 3. Given an AF A = 〈A,Σ〉, an update u = ±(a, b), and an
extension E, the complexity of computing the influenced set of u w.r.t. A and E
is O(|Σ|).

All the arguments not belonging to the influenced set of an update will still
belong to an extension of the updated AF.

Theorem 1. Let A0 be an AF, and A = u(A0) be the AF resulting from per-
forming update u = ±(a, b) on A0. Let E0 ∈ ES(A0) be an extension for A0

under any semantics S ∈{co, pr, ss, st, gr, id}. Let I = Arg \ I(u,A0, E0) be
the set of the arguments that are not influenced by u in A0 w.r.t. E0. Then, either
ES(A) = ∅ or there is an extension E ∈ ES(A) for A such that (E∩I) = (E0∩I).

Observe that the set of extensions may be empty only for the stable semantics.
For all of the other semantics, the theorem suggests the following strategy for
computing an extension of the updated AF: derive it by first projecting out the
set of arguments not influenced by the update and then extend the so-obtained
set by using the information provided by it.

We conclude this section by introducing a refinement of Proposition 1 that
makes use of the influenced set. This result will be used in the next section to
restrict the input AF.
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Proposition 4. Let A0 be an AF, u = +(a, b), S ∈ {co, pr, ss, st, gr}, and
E0 ∈ ES(A0) an extension of A0 under S. Then E0 ∈ ES(u(A0)) if

– one of the conditions of Proposition 1 holds or
– the next three conditions hold:

(1) L0(a) = out,
(2) L0(b) = in, and
(3) either (i) S ∈ {co, st, ss, pr} or (ii) a 	∈ I(u,A0, E0) and S = gr.

Example 5. Consider AFs A0 and A1 = +(b, d)(A0) of Examples 1 and 3. For
S ∈ {co, pr, ss, st}, extension E0 = {a, d} for A0 is still an extension of the
AF A1 as L0(b) = out and L0(d) = in (see Fig. 3). However, the grounded
extension E′

0 = {d} for A0 is not guarantee to be a grounded extension for A1

as neither Proposition 1 nor conditions 1) and 3.ii) of Proposition 4 hold (b is
un and b ∈ I(+(b, d),A0, E

′
0)). ��

5 Recomputing the Grounded Semantics

Given an AF A0, the grounded extension E0 for A0, an update u for A0 yield-
ing A = u(A0), we address the problem of efficiently computing the grounded
extension E of the updated AF A starting from E0.

For any AF A = 〈A,Σ〉 and set S ⊆ A of arguments, we denote with
Π(S,A) = 〈S,Σ ∩ S × S〉 the subgraph of A induced by the nodes in S.
Moreover, given two AFs A1 = 〈A1, Σ1〉 and A2 = 〈A2, Σ2〉, we denote as
A1 � A2 = 〈A1 ∪ A1, Σ1 ∪ Σ2〉 the union of the two AFs.

Our algorithm first identifies the restricted subgraph of the given AF con-
taining the arguments influenced by the update.

Definition 2. (Restricted AF for grounded semantics). Given an AF A =
〈A,Σ〉, a grounded extension E for A, and an update u = ±(a, b), the restricted
AF of A w.r.t. E and u (denoted as Rgr(u,A, E)) is as follows.

– Rgr(u,A, E) is empty if I(u,A, E) is empty or one of the conditions of Propo-
sition 4 holds.

– Rgr(u,A, E) = Π(I(u,A, E), u(A)) � T1 � T2 where:
• T1 is the union of the AFs 〈{a, b}, {(a, b)}〉 s.t. (a, b) is an attack of u(A)

and a 	∈ I(u,A, E), a ∈ E, and b ∈ I(u,A, E);
• T2 = 〈{c |Check(c)}, {(c, c) |Check(c)}〉, where Check(c) is true if

∃(e, c) ∈ Σ such that c ∈ I(u,A, E) and e 	∈ I(u,A, E) and e 	∈ E∪E+. ��
Hence, AF Rgr(u,A, E) contains, in addition to the subgraph of u(A) induced

by I(u,A, E), additional nodes and edges containing needed information on the
“external context”, i.e. information about the status of arguments which are
attacking some argument in I(u,A, E). Specifically, if there is in u(A) an edge
from node a 	∈ I(u,A, E) whose status is in to node b ∈ I(u,A, E), then we add
the edge (a, b) so that, as a does not have incoming edges in Rgr(u,A, E), its
status is confirmed to be in. Moreover, if there is in u(A) an edge from a node
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e 	∈ I(u,A, E) to a node c ∈ I(u,A, E) such that e is un, we add edge (c, c) to
Rgr(u,A, E) so that the status of c cannot be in. Using fake arguments/attacks
to represent external contexts has been exploited in a similar way in [2], where
decomposability properties of argumentation semantics are studied.

Example 6. Continuing Example 4, Rgr(+(g, h),A0, E0) consists of the subgraph
induced by I(u,A0, E0) = {h, c} as well as the edge (g, h) which is an attack
towards argument h ∈ I(u,A0, E0) coming from argument g outside I(u,A0, E0)
labelled as in. Hence, Rgr(+(g, h),A0, E0) = 〈Ad, Σd〉 with Ad = {g, h, c} and
Σd = {(g, h), (h, c)}. ��
Example 7. Consider the AF A0 = 〈{a, b, c, d, e, f, g},
{(a, b), (b, a), (c, d), (d, c), (a, c), (b, c), (f, c), (g, f)}〉 and the update u = +(e, d).
We have that

(i) the grounded extension of A0 is E0 = {g, e} (i.e. arguments a, b, c, d are
all labeled as un);
(ii) the influenced set is I(u,A0, E0) = {c, d}; and
(iii) the restricted AF is Rgr(u,A0, E0) = 〈{c, d}, {(c, d), (d, c)}〉 � T1 � T2

where T1 = 〈{e, d}, {(e, d)}〉 and T2 = 〈{c}, {(c, c)}〉.
That is, Rgr(u,A0, E0)=〈{c, d, e}, {(c, d), (d, c), (e, d), (c, c)}〉. ��

Algorithm 1 first checks if the restricted AF (computed w.r.t. update u =
±(a, b)) is empty (Line 3). If this is the case, then E = E0. Otherwise, the status
of arguments in S = I(u,A0, E0) needs to be recomputed and the extension E of
u(A0) is constructed at Line 6 by combining the arguments in E0 not belonging
to the influenced part and the arguments returned by Function IFP (incremental
fixpoint), which is invoked with AF Ad = 〈Ad, Σd〉 (the restricted graph of A)
and starting extension E0 ∩ Ad (the restriction of E0 to Ad).

Function IFP first computes the set of nodes which are labelled in and an
initial set of nodes which are labelled out. If no argument can be labelled in,
it returns the empty set. Otherwise, it iteratively applies function G that takes
as input the set of arguments Sout which have been labeled out so far and
the subset Δout ⊆ Sout of arguments which have been labelled out in the last
step, and returns the arguments b ∈ Δ+

out such that for every attack (a, b) ∈

Algorithm 1. Incr-Grounded-Sem(A0, u, E0)
Input: AF A0 = 〈A0, Σ0〉, u = ±(a, b), grounded extension E0;
Output: Revised grounded extension E
1: Let S = I(u, A0, E0);
2: Let Ad = 〈Ad, Σd〉 = Rgr(u, A0, E0);
3: if (Ad = ∅) then
4: E = E0;
5: else
6: E = (E0 \ S) ∪ IFP(Ad, E0 ∩ Ad);
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Function 1. IFP(A, E0)
Input: AF A = 〈A, Σ〉, Extension E0;
Output: Extension E
1: Sin = Δin = { a | � ∃(c, a) ∈ Σ };
2: if (Sin = ∅) then
3: return Sin

4: Sout = Δout = Δ+
in;

5: repeat
6: Δin = G(Sout, Δout) \ Sin;
7: Δout = Δ+

in \ Sout;
8: Sin = Sin ∪ Δin;
9: Sout = Sout ∪ Δout;

10: until Δin ⊆ E0

11: if (Δin = ∅) then
12: return Sin;
13: else
14: return Sin ∪ (E0 \ (Sin ∪ Sout));

Σ, argument a ∈ Sout (i.e. a is labelled out).1 Function G returns the set
Δin of arguments which are labeled in at Line 6. Arguments labeled out are
immediately derived by taking Δ+

in, that is the arguments which are attacked by
some argument which has been labelled as in (Line 7). Function G is iteratively
applied until, in the last step of the repeat loop, all arguments derived are
confirmed to be in the extension E0 of the AF A0 being updated (i.e., Δin ⊆ E0).
Finally, if Δin is empty, then it just returns the set of arguments labeled as in
(in this case, the status of all the arguments in the restricted AF has been
recomputed by function G), otherwise it returns Sin union the arguments in E0

whose status has not been recomputed by function G.

Example 8. Consider the AF A0 of Fig. 1 where E0 = {a, h, g, e, l,m, o} and
I(u,A0, E0) = {h, c}. Algorithm 1 computes the grounded extension E of the AF
A = +(g, h)(A0) as follows. The restricted AF Ad = 〈Ad, Σd〉 = Rgr(u,A0, E0)
is computed (at Line 2) obtaining Ad = {g, h, c} and Σd = {(g, h), (h, c)}. As
Ad is not empty, Function IFP with actual parameters Ad and E0 ∩ Ad =
{g, h} is called at Line 6. Function IFP first computes Sin = Δin = {g} and
Sout = Δout = {h}. Next, at the first iteration of the repeat loop, it is computed
Δin = G({h}, {h}) = {c} (Line 6) and Δout = ∅ (Line 7) as there is no argument
attacked by c in Ad. Then the function terminates returning the set {g, c} and
E turns out to be the set {a, g, e, l,m, o} ∪ {g, c}. ��
Theorem 2. For any AF A = 〈A,Σ〉, the complexity of computing IFP(A, E0),
with E0 ⊂ A, is O(|A| × d̄ 2), where d̄ is the maximum input degree of a node
(i.e., the maximum number of attacks towards an argument in A).
1 Similarly to the characteristic function F of an AF [20], function G infers new argu-

ments that can be labelled in. But it is more efficient as it only uses arguments
labelled in the last step.
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Theorem 3. For any AF A0 = 〈A0, Σ0〉 with grounded extension E0, and u =
±(a, b), the complexity of Algorithm Incr-Grounded-Sem(A0, u, E0) is O(|Σ0| +
|I(u,A0, E0)| × d̄ 2), where d̄ is the maximum input degree of a node.

Theorem 4. Given an AF A0, an update u=±(a, b) for A0 yielding A = u(A0),
and the grounded extension E0 of A0, Algorithm 1 computes the grounded exten-
sion E of A.

6 Experimental Results

We implemented a prototype for incremental computation of argumentation
semantics using the Java argumentation libraries provided by the Tweety
project [47].

Datasets. We used two datasets taken from the International Competition on
Computational Models of Argumentation (ICCMA)2:

(i) REAL consists of 19 AFs 〈A0, Σ0〉 with |A0| ∈ [5K, 100K] and |Σ0| ∈
[7K, 143K];

(ii) SYN consists of 24 AFs 〈A0, Σ0〉 with |A0| ∈ [1K, 4K] and |Σ0| ∈
[14K, 172K].

The AFs in the two datasets have a different structure: on average,
|ReachA0(a)| is around 2200 for arguments a in SYN, while it is about 10 for
REAL; moreover, the average number of attacks per argument for REAL is 1.5
while it is 26 for SYN.

Algorithms. For each AF A0 = 〈A0, Σ0〉 in each dataset, we first computed the
grounded extension E0. Then, we randomly selected an update u of the form
+(a, b) (with a, b ∈ A0 and (a, b) 	∈ Σ0) or −(a, b) (with (a, b) ∈ Σ0). Next, we
executed the following algorithms:

(i) BaseG which computes the grounded semantics E of the updated AF u(A0)
from scratch. It finds the fixpoint of the characteristic function of an AF as
implemented in the libraries of Tweety [47]. This algorithm was also used to
compute the initial extension E0 which is taken as input by the incremental
algorithms;

(ii) Incr-Grounded-Sem (IncrG for short) which incrementally computes the
grounded extension E by implementing Algorithm 1 (note that it also
includes the computation of the influenced set and the restricted AF).

All experiments have been carried out on an Intel Core i7-4790 CPU 3.60 GHz
with 16 GB RAM running Ubuntu 14.04 64bit. All data points reported on the
figures are averages over 20 trials (except those for BaseG which are averages of
5 trials, as it can take hours in some cases due to the huge size of the datasets
considered).
2 http://argumentationcompetition.org.

http://argumentationcompetition.org
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Fig. 4. Run times (ms) of BaseG and IncrG over REAL.

Fig. 5. Run times (ms) of BaseG and IncrG over SYN.

Results. Figures 4 and 5 report the run times (log scale) of BaseG and IncrG for
computing the grounded extensions of the updated AFs versus the number of
arguments over REAL and SYN, respectively.3 The experiments also showed that,
on average, the size of the influenced set w.r.t. that of the input AF for REAL
(resp. SYN) is about 0.01% (resp. 1%).

3 Data points with the same x-axis value are due to AFs in the datasets having the
same number of arguments.
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From these results, we can draw the following conclusions:

– The overall time needed by our algorithm for incrementally computing the
grounded extension is orders of magnitude better than the time needed to
recompute the whole extension from scratch.

– The definition of influenced set substantially restricts the portion of the AF
to be analysed for recomputing the semantics of an AF after performing
an update. It is worth noting that this means that even using any non-
incremental algorithm taking as input the restricted AF would result in a
performance improvement, since the size of the input data to be processed
would be significantly smaller.

7 Conclutions and Future Work

We presented an incremental approach for computing the grounded extension
of updated AFs. Our algorithm exploits the initial extension of an AF for com-
puting the set of arguments influenced by an update, and for detecting early
termination conditions during the recomputation of the status of the arguments.
The experiments showed that the incremental computation outperforms the base
(non-incremental) computation. In fact, the time needed by our algorithm for
incrementally computing the grounded extension is orders of magnitude better
than the time needed to recompute the whole extension from scratch.

Although in this paper we focused on updates consisting of adding/removing
only one attack, our technique can be extended to deal with the case of multiple
updates. Indeed, in [38] a construction is provided for reducing the application
of a set of updates {+(a1, b1), . . . ,+(an, bn), −(a′

1, b
′
1), . . . ,−(a′

m, b′
m)} on AF

A0 to the application of a single attack update +(v, w) on an AF obtained from
A0 by adding some new arguments/attacks and replacing some existing ones.
Thus, this construction can be used to simulate the simultaneous application of
a set of updates by a single attack update of the type considered in this paper.

Moreover, our approach can be extended to work in the case of the incre-
mental computation of the ideal extension of an AF. In fact, the definition of
influenced set can be used as it is to compute the part of the AF consisting
of the arguments whose status can change after performing an update, and an
appropriate definition of restricted AF Rid(u,A, E) for the ideal semantics can
be provided [38]. Once the restricted AF is identified, even a non-incremental
algorithm taking as input the restricted AF could be used to recompute the
status of influenced arguments.

We plan to continue our work along two directions. First, we will investigate
the application of the techniques developed in this paper to other (multiple sta-
tus) semantics. Indeed, the influenced set is defined already for non-deterministic
semantics, and the identification of restricted AFs for these semantics would
enable the use of existing (non-incremental) algorithms taking as input a smaller
AF for computing extensions. We envisage the definition of incremental algo-
rithms that make use of initial extensions for computing extensions after updates
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for multiple status semantics where we need to deal with the additional issue
that extensions can be split/merged after an update.

Our second direction of research for future work is related to the recent
investigations of the integration of argumentation and database repairing tech-
niques [46]. In fact, database reparation is often modelled as interactive reason-
ing process [41], and the user can profitably exploit argumentation techniques to
identify and resolve the conflicts between tuples, possibly specifying preferences
among repairs suggested by the system [33,34]. Given the interactive nature of
this process, we believe it would benefit from the use of incremental algorithms
for the computation of the arguments justifying repairs, and thus plan to explore
this issue in the future.
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Abstract. This paper studies the application of argumentation theory
and methods from Artificial Intelligence to the problem of conflict reso-
lution. It shows how the decision theories of each of the parties involved
in a conflict can be captured and formalized within a framework of
preference-based argumentation. In particular, it studies how the SoDA
methodology and its support tool, Gorgias-B for developing argumenta-
tion software, facilitate the elucidation of each party’s preferences over
their available options for addressing the conflict, and, through this, the
construction of appropriate argumentation theories corresponding to the
decision theories of the parties involved. These argumentation theories
are generated automatically and can be executed directly to find out the
position of each party at any particular stage of the negotiation process.
This connection between argumentation and conflict resolution is illus-
trated through a real-life example of conflict resolution between the US
and China after a plane collision.

Keywords: Argumentation · Conflict resolution · Decision making ·
Software methodology · Software tool

1 Introduction

Argumentation is an important area of AI, with a wealth of theoretical work over
the last twenty years (see e.g. [2,14]), addressing a variety of problems in AI and
multi-agent systems. Several practical works exist, showing that argumentation is
well suited for dealing with different kind of real life applications, such as finding
interesting products in e-commerce [9], negotiating supply strategies [20], making
credit assignments [13], managing waste-water discharges [1], deciding about an
automatic freight process [4], improving the performance of transport systems in
rural areas [19], emergency rescue [21], aggregating clinical evidence [10], smarter
electricity [12], delivering clinical decision support services [6], evaluating debates
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on the social networks [18]. An interesting general study on the use of argumen-
tation techniques for multi-agent systems can be found in [3].

Recently, we proposed the SoDA methodology, along with an argumentation
tool called Gorgias-B [17], for modeling and developing application software,
whose outputted source code is an argumentation theory for the problem at hand.
SoDA helps developers structure their application knowledge at several levels. The
first level serves for enumerating the different possible actions or decisions that can
be considered under some satisfied conditions, while each higher level serves for
resolving conflicts at the previous level, taking into account default and contex-
tual knowledge. Conflict resolution at the higher levels is based on the definition
of dynamic priority relations among conflicting decision policies of the previous
level. The aim is to provide argumentation-based software solutions that are flex-
ible to partial and conflicting information and that can be modularly developed.

In this paper, our aim is to show how SoDA and Gorgias-B can be used for
dealing with conflict resolution problems. According to [8], a conflict has two or
more decision makers, each of them having his/her own objectives. A possible
resolution of a conflict depends on the strategic interactions of the decision mak-
ers during the evolution of the dispute. To apply conflict analysis to a particular
problem we need the following information for developing a conflict model: (a)
the decision makers who are participating in the conflict, (b) the options cor-
responding to the course of action available to each decision maker, and, (c)
the preferences expressing the relative importance of options as viewed by each
decision maker. SoDA and Gorgias-B allow to take into consideration all the
above requirements.

In the following we will briefly present SoDA and then we will use a real world
use case, namely the United States-China plane collision negotiation scenario
as it is presented in [16], to show SoDA’s applicability for conflict resolution
and analysis problems. We will present how the modeled theories based on the
assumptions made in [16] of both USA and China have been implemented with
Gorgias-B in order to generate the solution that had been mutually accepted.

2 Basics of Argumentation

In this section we review the basic theory of argumentation which we will use to
model conflict resolution problems. The theory will be presented from a general
point of view of applying argumentation to real-life (decision) problems.

In [11] a preference-based argumentation framework was proposed for repre-
senting multi-agent application problems via argumentation theories composed
of different levels. Object level arguments represent the possible decisions or
actions in a specific application domain and first-level priority arguments
express preferences on the object level arguments in order to resolve possible
conflicts. Then higher-order priority arguments are also used to resolve
potential conflicts between priority arguments of the previous level.

Formally, an argumentation theory is a pair (T ,P) whose sentences are
formulae in the background monotonic logic, (L,�), of the form L ← L1, . . . , Ln,
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where L,L1, . . . , Ln are positive or negative ground literals. The derivability rela-
tion, �, is given simply by the inference rule of modus ponens. The head literal L
can also be empty. Rules in T represent the object level arguments, or denials
when the head is empty. Rules in P represent priority arguments where the
head L of these rules has the general form, L = h p(rule1, rule2), where rule1
and rule2 are atoms naming two rules and h p refers to an (irreflexive) higher
priority relation amongst the rules of the theory.

The semantics of an argumentation theory are defined via the abstract argu-
mentation framework < Args,Att > associated to any given theory (T ,P). The
arguments in Args are given by the composite subsets, (T, P ), of the given
theory, where T ⊆ T and P ⊆ P. An argument (T, P ) supports its conclusions,
of either a literal, L, or a priority (ground) atom, h p(r, r′), where r and r′ are
the names of two rules in the theory, when T � L or T ∪ P � h p(r, r′).

The attack relation, Att, allows an argument, (T, P ), to attack another
argument, (T ′, P ′), when (i) these arguments derive contrary conclusions (i.e.
derive L and ¬L, or h p(r, r′) and h p(r′, r)) and (ii) (T, P ) makes the rules of
its counter proof at least “as strong” as the rules of the proof of the argument
(T ′, P ′) that is attacked. The detailed formal definition of the attacking relation
can be found in [11]. The admissibility of (sets of) arguments, Δ, is defined in
the usual way [5], i.e. that Δ does not attack itself and that it attacks back any
argument that attacks it.

It is important to note that typically for an argument (T, P ) to be admissible
its object level part, T , has to have along with it priority arguments, P (from P),
in order to make itself at least “as strong” as its opposing counter-arguments.
This need for priority rules can repeat itself when the initially chosen ones can
themselves be attacked by opposing priority rules. In that case the priority rules
have to be made themselves at least “as strong” as their opposing priority ones.

2.1 An Argumentation Framework for Conflict Resolution
Problems

We will now further specialize this general argumentation framework to facilitate
its use for conflict resolution problems. Following [8], a conflict has two or more
decision makers, each of whom has his/her own objectives. A possible resolution
of a conflict depends on the strategic interactions of the decision makers during
the evolution of the dispute. As mentioned in the introduction, to apply conflict
analysis to a particular problem we need the following information for developing
a conflict model: (a) decision makers who are participating in the conflict, (b)
options corresponding to the course of action available to each decision maker
and (c) preferences expressing the relative importance of options as viewed by
each decision maker.

For modeling such problems with argumentation, we separate the language
L of the theory into two ontological categories: Options and Beliefs, where the
first refers to the properties that we are primarily interested, i.e. the solutions
of the application problem, and the second refers to properties of the applica-
tion problem environment. Beliefs can be decomposed, although not necessary,
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into Defeasible and Non-Defeasible beliefs and some of the defeasible beliefs can
be designated as abducible beliefs, so that they can be hypothesized when
needed. Furthermore, apart from the incompatibility relation that we have
through negation, we can also have a complementary or conflict relation
between the different options of the application.

In an argumentation theory representing an application problem, we can
separate the object level statements, T , into two parts, T = T O ∪ B, where
T O is the subset of rules that provide arguments for the various options, i.e.
rules whose head refers to an option predicate, and B, called the background
theory, is the subset of rules whose heads are belief predicates.

Definition 1. An application (argumentation) theory, T , is an argumen-
tation theory (T ,P) where its object level rules are separated into rules for
options and rules for beliefs and its priority rules part is partitioned into a finite
set of levels, T = (T O ∪ B,P1 . . . Pn), such that all the rules in P1 are priority
rules with head h p(r1, r2) with r1, r2 ∈ T O and, for any 1 < k ≤ n, all rules in
Pk are priority rules with head h p(q1, q2) s.t. q1, q2 ∈ Pk−1.

In general, the different levels in the priority rules relate to the granularity
or specificity of the context in which we want to consider our application
problem. Belief predicates are used to describe the various external problem
environments, called application scenarios, under which we want to solve our
problem. For simplicity, we are assuming that belief predicates are non-defeasible
and hence their rules in the background theory are not prioritized.

When we are solving an application problem, we consider specific cases of
application scenarios. Solutions to problems are then given through the admissi-
ble arguments of the given application argumentation theory extended with the
application scenario of interest.

Definition 2. Let T be an application argumentation theory and S an applica-
tion scenario. Then a ground literal, L, is credulously supported by T under
S iff there exists an admissible argument in T ′, obtained from T by extending its
background theory by S, that derives L. We say that L is sceptically supported
by T under S iff it is credulously supported by T under S and all complements
of L are not credulously supported by T under S. When the literal L refers to
an option predicate then we will also say that L is a credulous solution or
sceptical solution under S.

Given the above theoretical notions of argumentation the link with conflict reso-
lution problems rests on being able to capture the decision making process of the
decision makers in the conflict in terms of argumentation theories expressing the
options and, importantly, the preferences of the decision maker according to the
high-level values that each decision maker has at the time of the conflict. These
values may change as the resolution process unfolds. The main challenge in this,
is, indeed, to be able to capture the high-level preferences of the decision mak-
ers, expressed in a natural manner by the decision makers (who are generally
non-computing experts), in an executable argumentation theory. This theory
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should automate the preference-based decision making of the parties through
the argumentative reasoning in them. Hence, the challenge is to cognitively and
transparently extract the various options and preferences of the decision makers
into rules and priorities, of the form given above, in an argumentation theory
that automates the decision making.

3 The SoDA methodology

We will now present SoDA, a general software methodology for developing appli-
cation software whose outputted source code is an argumentation theory for the
problem at hand. This methodology defines a high level process requiring from
the developer to consider questions about the requirements of the problem at
various scenarios without the need to consider the underlying software code that
will be generated. Software is thus developed in a principled way with high-level
declarative executable code.

Software development processes can be defined in a standard way by using
the SPEM (Software Process Engineering Metamodel) 2.0 language1. A Software
Process can be defined as a series of tasks (or activities) that produce Work
Products (WPs). Work products can be textual models, which can be completely
free (free text) or follow some specifications or grammar (a structured work
product).

When drawing software processes in SPEM, each process contains yellow
coloured tasks (or activities) connected with arrows showing flow of control. A
black dot shows where the process starts and a black dot in a circle where it
ends. A small black orthogonal can be used to fork control to more than one
paths (that can be followed in parallel) or merge previously forked control. An
activity has input and output work products. An arrow from an activity to a
work product means that the product is created (or updated) by the activity.
An arrow from a work product to an activity means that the product is an input
to the activity.

Figure 1 presents the SoDA process. Let us explain the different tasks (T)
and their input and output work products (WP):

T1: This task defines the different options of the application problem, given in
predicate format with all the relevant parameters. The conflict relation
between options is also defined here. For example, the option to deny access
or to give partial access to a file is conflicting with the option to give full
access. All this information is written in work product one (WP1).

T2: The second task is a knowledge engineering task required to identify the
knowledge needed in order to describe the different application environ-
ments which can arise in the application problem domain. This knowledge
is written in WP2 in the form of various belief predicates. WP2 also con-
tains predicates that are used to type all object parameters of the problem

1 SPEM is a standard for defining software processes, http://www.omg.org/spec/
SPEM/2.0/.

http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/SPEM/2.0/
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Fig. 1. The SoDA process

that appear in the option and belief predicates. Moreover, we define any
background interrelationships that might exist amongst the belief predi-
cates generating the background theory2, which are also inserted into
WP2.

T3: This task aims to separate the information in WP2 into two types: informa-
tion that always exists for all instances of the problem and information that
is circumstantial, which may be present in all instances of the problem.
Circumstantial predicates are removed from WP2 and inserted in WP3. The
next two tasks can be executed in parallel (T4 and T5).

T4: This task aims to sort the circumstantial information (predicates or groups
of predicates) from the more general to the more specific application con-
texts in levels, starting from level one (more general contexts). Independent
contexts (i.e. when the one is not a refinement of the other) can appear at
the same level.

T5: The four previous tasks were preparatory. This task begins the process of
capturing the application requirements. It aims to define for each option, Oi,
the different problem environments, i.e. the sets of preconditions, Ci, in
terms of non-circumstantial predicates appearing in WP2, where the option
is possible. Its output, WP4, contains all such sets of preconditions. Care
must be taken to ensure that the parameters of the options are typed in the
preconditions. It is possible for options, to be always possible, in which case
they have the (only) precondition, {true}.

T6: This final task iteratively defines sequences of increasingly more specific
partial models or scenarios of the world (stored in WP5) and considers
how options might win over others. This starts with information from WP4

2 For simplicity we will assume that the background theory is monotonic, i.e. contains
strict information that is not defeasible. Otherwise, the same process needs to be
followed for the defeasible belief predicates in analogy with the process for the option
predicates that we are describing here.
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to precondition the world and iterates getting each time contextual infor-
mation from the next level in WP3. At each level of iteration it defines
which option is stronger over another under the more specific contextual
information. In the final iteration, the winning options (if they exist) for
each partial model are defined without extra information.

4 Applying SoDA for the USA-CHINA Plane Collision
Negotiation

In this section we consider an example of conflict resolution, presented in [16],
concerning the United States-China plane collision negotiation, in order to illus-
trate the suitability of our argumentation based approach for conflict analysis
and resolution problems.

This conflict problem is described in [16] as follows, quoting directly from
this paper:

On April 1, 2000 an American surveillance plane and a Chinese fighter
plane collided about 70 miles off the coast of China. China considers its
airspace to extend 200 miles off its coast; international agreements specify
12 miles. The Chinese pilot parachuted out of his aircraft but was presumed
dead; his body was not found. The U.S. plane made as emergency landing
at a Chinese military airfield on the island of Hainan without receiving
China’s permission. China thus had possession of the U.S. plane and crew.
China said that the U.S. was responsible for the crash and should “apol-
ogize” and call off future surveillance flights. The U.S. expressed “regret”
mentioning specifically regret that the Chinese pilot had died, but declared
it had no apology to give as the fault lay with the Chinese pilot. After a
while, the U.S. used the words “sorry” and then “very sorry” that can
convey more emotion in referring to the loss of the Chinese pilot and the
landing at the Chinese airfield without permission, but China still insisted
on an apology.

So USA and China disagreed on the control action that should express the
reconciliation statement. For satisfying the common goal “saving face”, the pair
“apology/dao qian” that was asked by China was rejected by USA while the pair
“regret/yihan” that could be accepted by USA was rejected by China. Then, to
these two alternatives the author in [16] added two other alternatives namely
“regret/bao qian” and “apology/bao qian”. He supported these two options by
explaining that:

A situation merits that a party A apologize to a party B for specific actions
would appear to involve: (1) standards or norms and (2) departures from
standards caused by actions of party A resulting in negative effects to
party B. Because of disagreement about standards, departures, actions,
causes and negative effects, any USA reconciliation statement, as expressed
in both English and Chinese, had to be flexible enough for each side to
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interpret the statement as acceptable, i.e. for China the statement serving
as a U.S. apology and for the USA as not constituting apology, a vacuous
apology from the U.S.

The author explained in [16] how his suggestions reached the U.S. authori-
ties. Subsequently, on April 11, an agreement between the U.S. and China was
announced (for more details the reader can refer to [16]). In the agreement, the
English version of the U.S. statement used the word “regret” (China droped its
demand for apology), while the Chinese version of the U.S. statement used the
word “bao qian” (expressing apology).

We will now use SoDA to model this conflict reconciliation problem by repre-
senting the possible decision policies of both USA and China as argumentation
theories. In the following, we will use the above explanation of the author in
order to model the USA and China argumentation theories that should capture
this conflicting situation and its resolution. For this reason, we will first use the
predicate goal(saving face) for representing the common goal “saving face” of
two parties. Then, we will use the predicate violation of norms for represent-
ing the presumed by China violation of its airspace by the USA pilot, as China
considers that its airspace is extended to 200 miles off its coast. Finally, we will
use the predicate disagreement on violation for representing the disagreement
between USA and China on this Chinese consideration as international agree-
ments specify 12 miles as the official airspace off a country’s coast. We consider
that these predicates represent the shared knowledge by both parties.

During the first task, T1, we identify the different options available in WP1.
For the USA decision theory we have the three options:

propose(regret yihan)
propose(regret bao qian)
propose(apology bao qian)

In task T2, we identify scenario information which is needed for the options to
be enabled for possible consideration, and, during T3, we identify relevant cir-
cumstantial information and sort it in levels (from general to specific). In our
example, WP2 can be considered empty, i.e. all three options are enabled from
the start and constitute possible options, while WP3 would contain:

Level 1 : goal(saving face), violation of norms
Level 2 : disagreement on violation (or violation in special circumstances)

Note that these contexts are ranked from the more general to the most spe-
cific. For a more specific context to be valid, the previous level context must
also be valid. Otherwise, they are independent contexts appearing at the same
level. For example, if there is a violation of norms (level 1 context), there may
be a disagreement on violation (level 2, more specific, context). The goal (sav-
ing face) and violation of norms are independent contexts (thus are ranked at
the same level).
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In the next task, T5, we define, based on WP2, the different object level
arguments that support each option by specifying the (eventual) preconditions
from WP2 that must be satisfied for the option to be possible for consideration.
Thus, in the case of the USA theory, as WP2 is empty, we have the following
object level arguments for the three options:

Option1: propose(regret yihan) : true
Option2: propose(regret bao qian) : true
Option3: propose(apology bao qian) : true

Then, in WP5 we consider partial models as possible world models showing
the various possibilities for the options as the model/world is extended with
new (contextual) information according to the refinement levels in WP3. In
these models we specify which of the (enabled) options can be possible, i.e. are
(possibly) preferred over the other options. Note that these models are non-
monotonic in the sense that as we refine the scenario conditions options may be
dropped, i.e. options lose their preference over others.

In our example, following the analysis of [16], we have:

M1: {goal(saving face)} : propose(regret yihan); propose(regret bao qian)
M2: {violation of norms} : propose(apology bao qian)
M3: {goal(saving face), violation of norms, disagreement on violation} : pro-

pose(regret bao qian)

These express the following preferences on the options, from the USA point of
view:

M1: Generally, prefer options that would serve the goal of “saving face”.
M2: If we (USA) violate some norms then we would prefer options that are not

“face saving”, i.e. of apologizing as we (USA) have violated international
standards.

M3: If we (USA) consider that there is no departure from the international
standards, then we would prefer options that serve the goal of “saving face”.

We will now consider how we can capture, through the SoDA methodology, the
decision theory for China, following again the analysis of [16]. China has three
possible options corresponding to possibly accepting the three proposals of USA.
These are:

accept(regret yihan)
accept(regret bao qian)
accept(apology bao qian)

As with the case of USA, we can consider that all these options are enabled,
i.e. WP2 is empty, meaning that the object-level arguments for each of these
options do not need any preconditions.

Hence for China the different options are the following:
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Option1: accept(regret yihan) : true
Option2: accept(regret bao qian) : true
Option3: accept(apology bao qian) : true

Then, considering the application scenarios we identify in WP3 relevant circum-
stantial information and sort it in levels (from general to specific). Based on this
we identify partial models that express the preferred options as the scenarios are
made more specific. Following the analysis in [16] we may assume that China
has the following preferences:

M1: Generally, prefer options that would serve the goal of “saving face” for
China.

M2: If the other party (USA) violates some norms then we (China) would prefer
options that are “face saving” in China i.e. the other party (USA) apolo-
gizing in China and in USA.

M3: If there is a disagreement on the violation of norms, we (China) can also
accept the weaker option of USA expressing regret in USA but apologizing
in China.

Then based on this the partial models generated in WP5 for the China theory
are as follows:

M1: {goal(saving face)} : accept(apology bao qian); accept(regret bao qian)
M2: {violation of norms} : accept(apology bao qian)
M3: {goal(saving face), violation of norms, disagreement on violation} : accept

(regret bao qian); accept(apology bao qian)

Note here that the condition goal(saving face) is different from the analogous
condition in the USA theory, referring now to China saving face. The other two
conditions can be taken as being common to both theories.

4.1 Argumentation Theories for USA and China

The specification for our real world case scenario modeled with the SoDA
methodology, as analyzed above, is automatically translated into the follow-
ing argumentation theories. Note that we restrict the attention here to the two
options that according to [16] have been mainly considered for the final decision,
namely propose(regret bao qian) and propose(apology bao qian).

For USA we have the argumentation theory:

r1 1 : propose(regret baoqian) ← true
r2 1 : propose(apology baoqian) ← true
pr112 1 : h p(r1 1, r2 1) ← goal(saving face)
pr121 1 : h p(r2 1, r1 1) ← violation of norms
pr212 1 : h p(pr112 1, pr121 1) ← disagreement on violation
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and for China we have the argumentation theory3:

r1 1 : accept(regret baoqian)) ← true
r2 1 : accept(apology baoqian) ← true
pr121 1 : h p(r2 1, r1 1) ← violation of norms
pr112 1 : h p(r1 1, r2 1) ← violation of norms, disagreement on violation

Then, under these two argumentation theories, as decision theories for
the respective parties of USA and China in the final (negotiation) sce-
nario where all conditions of, {goalUSA(saving face), goalChina(saving face),
violation of norms, disagreement on violation}, hold, we get that the option
propose(regret baoqian) is sceptically entailed by the USA theory and
accept(regret baoqian) is credulously entailed by the China theory. Therefore,
a resolution of the conflict can be reached with the action regret baoqian.

4.2 Conflict Resolution in Argumentation

We will now discuss how the treatment of the above case study example points
towards a general way to capture conflict resolution problems within the pref-
erence based argumentation framework on which the SoDA argumentation soft-
ware methodology is based. This is a preliminary investigation which merits
further study, as we will discuss in the concluding section.

We will be concerned mainly with the conceptualization of the high-level
general structure of the problem as followed by most approaches to conflict
resolution (see e.g. [7,15]). In the standard conceptualization of the problem we
have a situation in which each one of two parties has a set of options or actions
that it can carry out and wants to decide which option to adopt. The problem
of conflict resolution, as a decision problem for the two parties involved, can be
abstracted to have the following general form.

Definition 3 (Conflict Resolution Problem). A conflict resolution problem
consists of two parties, each of which has a decision theory D1 and D2 for select-
ing options from the set of (contradictory) problem options, {p1, p2,m1, ...,mk},
in any given state of the environment in which the problem is situated. Initially,
option p1 is the preferred option under D1 for the first party and option p2 is
the preferred option under D2 for the second (other) party. None of the other
options, mi is preferred by either party in the initial state of the problem envi-
ronment. The task is to find an option m amongst all possible options such that
this is preferred under both D1 and D2 in possibly a new state of the problem
environment.

3 Note that the condition goal(saving face) does not appear in this fragment of the
China theory as this condition only plays a role in the default preference of the all
the options over the first option of accept(regret yihan) which we are not considered
in this fragment.
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For simplicity of presentation, we will assume that there is only one middle
position “m”. In practice, there will be several middle options coming about as
the process of resolution unfolds.

We see that the important ontological aspect of this definition is to capture
the notion of preferred option under the decision theory of a party. This notion
needs to be sensitive to the changing information in the problem environment as
the negotiation process unfolds. We will now examine how argumentation can
provide this kind of preference notion in a natural way.

In our example above p1 = regret yihan is the preferred option for USA,
p2 = apology baoqian is the preferred option for China, and m = regret baoqian
is a possible middle position, on which they eventually resolve the conflict.

There are three central aspects of the general structure of problem of con-
flict resolution that we need to consider in a formalization of the problem in
argumentation. These are:

– Capture the preferences that each party has for the various options based on
the goals and/or desired values that each option (currently) serves for each
party.

– Capture the special circumstances, normally arising through a negotiation
process, that can affect or even overturn the general value-based preferences
of a party.

– Formalize the notion of a solution to a conflict resolution problem in terms
of the semantic notions of argumentation.

Let us consider these in turn. For the first aspect we note that we can associate
to each option a value under some valuation function for each party. The val-
uation function could be based on a dominant value that the party is interested
in, as in the case above, where for both the USA and China there is a dominant
value of “saving face”. As analyzed in [16], USA and China assign value 1 or 0
to the various options of the problem according to the degree that the option
“saves face” for their country. Hence, the option p1 = regret yihan has value 1
for USA but value 0 for China, whereas the option p2 = apology baoqian has
value 0 for USA and 1 for China.

The default preferences are then easily captured by preferring options whose
valuation is higher over others whoe valuation is lower. This will provide to the
argumentation theory first-level priority rules of the schematic form:

pr1ij 1 : h p(ri 1, rj 1) ← value(Oi, Vi), value(Oj , Vj), Vi � Vj

where the valuation function, value(Option, V alue), and the order relation, �,
on the possible values, are defined (non-defeasibly) in the associated background
theory of each party. Note that values do not need to be arithmetic and the order
relation could in general be a partial multi-criteria one.

In the USA-China case example described above, we can see these default
priority rules in a compiled form where, for example in the USA theory, the
priority rule:
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pr112 1 : h p(r1 1, r2 1) ← goal(saving face)

is a compiled case of the general schema above as the condition
goal(saving face) captures the higher value, 1, given to the preferred option
of regret baoqian.

The second aspect of formalizing conflict resolution through argumentation
concerns the ability of the argumentation theory to capture exceptional circum-
stances of the problem environment, i.e. exceptional states, where the default
value-based preferences are changed, possibly overturned. The argumentation
framework adopted in this paper is well suited for such exceptions to default
preferences (see [11]) by having its priority rules being conditional and by allow-
ing higher-order priority rules, i.e. priorities over priorities, amounting to allow-
ing statements that make the preferences vary as the information that we have
about the problem case at hand changes.

We can see a case of this in the USA argumentation theory above with the
following two priority rules in its theory:

pr121 1 : h p(r2 1, r1 1) ← violation of norms
pr212 1 : h p(pr112 1, pr121 1) ← disagreement on violation

where the first of these says that under its condition the option p2 of apol-
ogizing is (possibly) preferred over the regret option, p1, thus mitigating the
default valued based preference which is in the opposite way (note that this
alone does not overturn completely the default preference the other way but
simply that it allows the apologizing option to be acceptable by the party).
Then the second of these rules, which is a higher-order priority rule, has the
effect of overturning this possibility and preferring the saving face option p1,
when disagreement on violation also holds in the problem’s environment.

The third aspect of formally capturing what is meant by a resolution or a
solution to a conflict resolution problem in the argumentation formulation of the
problem is given by the following definition.

Definition 4 (Conflict Resolution Solution(S)). Let a conflict resolution
problem between two parties D1 and D2 be given with options {p1, p2,m}. Then
a satisfactory resolution of the problem, is reached in a state S of the problem
environment when both argumentation theories, D1∪S and D2∪S, corresponding
to the two parties, credulously support the same option from the given set. We
say that an ideal resolution is reached when D1 ∪ S and D2 ∪ S, sceptically
support the same option.

In the example above, the resolution reached via the m = regret baoqian middle
option is a satisfactory resolution, but not an ideal one, as this option is only
credulously supported by the China theory.

Note that the above definition allows for the solution of the conflict to be
reached via any of the three options. In practice, it will be the middle option
that would be reached as the common option decided by both parties. But, it is
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possible that in some cases the reconciliation can come from an original position
of one of the parties, i.e. when one party eventually manages to convince the
other party of its position.

5 Solving the USA-China Conflict with Gorgias-B

Herein we demonstrate the usage of the Gorgias-B tool4 for developing the USA-
China plane collision conflict decision policy for the USA. Gorgias-B supports
the SoDA methodology and automatically generates the source code in the form
of an application argumentation theory in the Gorgias framework.

When the user starts a new project in the Gorgias-B tool, a dialog prompts
the user to enter the application options (see the Options View in Fig. 2). The
user inserts the option predicates and their conflicts (corresponding to WP1
of the SoDA methodology). The user can also insert background knowledge in
similar views (WP2 and WP3). From the Options View, with the “Add argu-
ments for options” button the user can edit preconditions (WP4) for options in
the Argument View (Fig. 2). This is how the user is building the (object-level)
arguments for the various options.

The Argue View appears as soon as the user clicks the “Resolve conflicts”
button. Here the user selects among scenarios with conflicting options more
specialized cases (if they exist) where an option is preferred over another. When
such specialized cases exist for both conflicting options, they are combined to a

Fig. 2. A Gorgias-B screenshot showing the options view on top of the arguments view

4 Gorgias-B is a Java application with a Graphical User Interface (GUI) that is freely
downloadable from its web-site and can execute in a computer with the minimum
requirements of a Windows OS, SWI-Prolog version 7.0 or later, and Java version
1.7 or later. Download it from http://gorgiasb.tuc.gr.

http://gorgiasb.tuc.gr
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new more specific scenario and the user can then repeat the same process in the
next level, which is always visible at the top of the dialog window.

In Fig. 3 we show the argue view at the second level, where we define
two models, one that prefers propose(regret baoqian) when goal(saving face)
and one that prefers propose(apology baoqian) when violation of norms. Figure 4
shows the third level of arguing. Here, the scenario is the combination of
goal(saving face) and violation of norms. In this scenario we add the preference
for propose(regret baoqian) provided that disagreement on violation.

Finally, the decision maker can test the scenarios in the “Execute” View.
He/she can instantiate as many facts as needed and then either search for spe-
cific options, or select the “Explore all options” button to see which of the options
can be valid. In the case shown in Fig. 5 we see that when goal(saving face), vio-
lation of norms and disagreement on violation, the only possible option (sup-
ported by Argument #1 ), a skeptical result, is propose(regret baoqian).

Fig. 3. An instance of the Argue view: Second level

Fig. 4. Another instance of the Argue view: Third level
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Fig. 5. The execution of a scenario for USA

6 Conclusions

We have presented an application of argumentation theory and methods from
Artificial Intelligence to the problem of conflict resolution. We showed that the
SoDA methodology, which we have briefly presented herein, helps to build in a
natural way argumentation theories that can represent the decision policies of
the parties involved in a conflict. We have also shown that its associated tool,
namely Gorgias-B, allows the implementation of these theories in a transparent
way, thus automating and simulating the decisions that the involved parties
could/should made during the conflict resolution process.

In our future work, we aim to use techniques from the Natural Language
Processing area to remove the requirement that users must be familiar with
first-order logic in order to formulate their decision theories. A more natural
way that allows the users to express their preferences in some structured form of
natural language or graphical form will be examined. Visualizing the scenarios,
contexts and options available will help us develop cognitive systems based on
user decision policies. This, in turn, will help us study multi-party negotiations
and how our systems can support the process of negotiation and the development
of the conditions that would lead to the resolution of a given conflict.
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Abstract. Argumentative debates are a powerful tool for resolving con-
flicts and reaching agreements in open environments such as on-line com-
munities. Here we introduce an argumentation framework to structure
argumentative debates. Our framework represents the arguments issued
by the participants involved in a debate, the (attack and defence) rela-
tionships between them, as well as participants’ opinions on them. Fur-
thermore, we tackle the problem of computing a collective decision from
participants’ opinions. With this aim, we design an aggregation function
that satisfies valuable social-choice properties.

1 Introduction

As argued in [10,12], argumentative debates are a powerful tool for reaching
agreements in open environments such as on-line communities. Nowadays, this
is particularly true in our society due to the increasing interest and deployment of
e-participation and e-governance ICT-systems that involve citizens in governance
[16]. Not surprisingly some European cities are opening their policy making to
citizens (e.g. Reykjav́ık [2], Barcelona [1]). Moreover, the need for argumentative
debates has also been deemed as necessary for open innovation systems [13].
On-line debates are usually organised as threads of arguments and counter-
arguments that users issue to convince others so that debates eventually converge
to agreements. Users are allowed to express their opinions on arguments by rating
them (e.g. [12]). There are two main issues in the management of large-scale on-
line debates. First, as highlighted by [10,12], there is simply too much noise
when many individuals participate in a discussion, and hence there is the need
for structuring it to keep the focus. Second, the opinions on arguments issued by
users must be aggregated to achieve a collective decision about the topic under
discussion [4]. In this paper we try to make headway on these two issues.

Recently, argumentation has become one of the key approaches to ratio-
nal interaction in artificial intelligence [5,15]. Here, we propose to follow an
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argumentation-based approach that allows agents to issue arguments in favour
or against a topic under discussion as well as about other agents’ arguments. Fur-
thermore, we will consider that agents express their opinions about each other’s
arguments and the topic itself.

Within our multi-agent framework, we face the following collective decision
problem: given a set of agents, each with an individual opinion about a given set
of arguments related to a topic, how can agents reach a collective decision on
the topic under discussion? To solve this problem, we propose a social choice
function that aggregates agents’ opinions to infer the overall opinion about the
topic under discussion. Our aggregation function is based on combining opin-
ions and exploiting dependencies between arguments to produce an aggregated
opinion. Moreover, and most importantly, our aggregation function guarantees
the resulting aggregated opinion to be coherent, i.e., it is free of contradictions.
In more detail, here we make the following contributions:

– A novel multi-agent argumenation framework, the so-called target-oriented
discussion framework, to support discussions about the acceptance of a tar-
get proposal. Besides the usual attack relationship between arguments, our
framework allows agents to express explicit defence relationships between
arguments. Furthermore, it introduces a mechanism for assessing whether
individual opinions about the arguments are reasonable (coherent) or not.
Formally, this is captured through the notion of coherent labelling, which can
be regarded as a relaxed version of the notion of complete labelling in [4] to
provide further flexibility to express opinions.

– A novel aggregation function that combines agents’ opinions in our multi-
agent argumentation framework to assess the collective decision reached by
the agents about the topic under discussion. Interestingly, our aggregation
function guarantees the coherent collective rationality of the outcome. Besides
collective rationality, we show that our aggregation function satisfies further
valuable social-choice theoretic properties for the argumentation domain.

Organisation. Sections 2 and 3 characterise and formalise our multi-agent argu-
mentation framework; Sect. 4 details both our decision problem and the desired
properties of an aggregation function; Sect. 5 introduces our aggregation func-
tion and studies its social-choice properties; and Sect. 6 draws conclusions and
plans future research.

2 Characterising a Target-Oriented Discussion
Framework

From a general perspective, we envision a setting where some individuals discuss
collectively about a given issue or topic (the so-called target) with the aim of
reaching a consensus on it. Discussion is articulated by means of arguments in
favour or against this topic. Thus, we consider an argumentation scenario where
participants issue their opinions by labelling such arguments. For explanatory
purposes, below we consider that this topic under discussion may well correspond
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to a norm. Henceforth, we will refer to this setting as a target-oriented argumen-
tation framework (see Sect. 3 for a formal definition). Within this target-oriented
argumentation framework, two argument relationships (attack and defence) can
be established so that arguments are defined as being in favour of (or against)
other arguments. Both relationships are binary, directed and mutually exclusive,
and the target is an argument that deserves special attention since it is the only
one not defending nor attacking any other argument. Additionally, participants
can show that they like or dislike some (not necessarily all) existing arguments.
In order to do so, participants assign labels to each argument indicating whether
they accept it; reject it; or they abstain from deciding whether to accept or reject
it. Thus, participants can also explicitly indicate that they are uncertain about
whether they like or dislike an argument. Moreover, we consider that this uncer-
tainty may also capture the fact that a participant may skip providing an opinion
(i.e., label) on an argument, which seems to be a suitable feature when dealing
with human agents.

Overall, the problem we tackle is that of aggregating all the legitimate and
subjective participant’s opinions (i.e., labellings) into a single collective one.
That will allow us to asses whether the group of participants: accepts the topic
under discussion; rejects it; or there is not enough support in favour or against
the given target.

However, considering human participants prevents us from requiring rational-
ity, since contradictions or inconsistencies may occur when expressing opinions.
In fact, we aim at designing an aggregation function that guarantees some desir-
able properties so that the outcome does represent the consensus on the topic
under discussion. From these properties we highlight that of coherent labelling,
which intuitively characterises whether an individual exhibits non-contradictory
opinions (i.e., labelling). The next section introduces this concept formally and
subsequent sections study how our aggregation function results in a single aggre-
gated coherent labelling which also satisfies further desirable properties. Next, we
introduce a simple example that will allow us to illustrate some of the presented
concepts along the paper.

Example 1 (Flatmates’ discussion). Consider three flatmates (Alan, Bart,
and Cathy) discussing about norm (N): “Flatmates take fixed turns for dish-
washing at 10 p.m.” and issuing the following arguments: a1 = “10 p.m. is too
late and cannot be changed”; a2 = “Schedule is too rigid”; and a3 = “Fair dis-
tribution”. Notice that: arguments a1 and a2 attack N whereas a3 defends it;
and a1 is in favour of a2. Once all arguments and their relations are clear, flat-
mates express their opinions by accepting, rejecting (or not opining about) each
argument: (1) Alan (Ag1) gets up early 4 days per week, and so (as first row in
Table 1 shows) he rejects norm N and accepts arguments a1 and a2. Neverthe-
less, he acknowledges and acccepts argument a3. (2) Bart (Ag2) has spare time
at night and is clearly pro norm N . Second row in Table 1 shows he accepts N
and a3, and rejects a1 and a2. Finally, (3) Cathy (Ag3) is keen on routines so
she rejects a2 and accepts N , a1, and a3 (see third row in Table 1).
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Therefore, the question that arises is how to aggregate all these opinions so
that a consensus is reached over the acceptance (or not) of this dish-washing
norm.

3 The Target-Oriented Discussion Framework

The flatmates’ discussion illustrates the main elements of our argumentation
framework. Within such framework, the norm constitutes the target of a multi-
agent argumentation scenario where: (i) a number of arguments are issued; and
(ii) participating agents express their opinions about those arguments as well as
about the norm under discussion. Additionally, we characterise coherent opinions
as those not incurring in contradictions. The purpose of this section is to formally
capture all these core elements of our argumentation framework. Thus, Sect. 3.1
introduces the target-oriented discussion framework, Sect. 3.2 characterises the
formal structure of an agent’s opinion, and Sect. 3.3 characterises our notion of
coherent opinion.

Table 1. Flatmates’ opinions in the discussion on the dish-washing norm.

Agents

Ag 1

Ag 2

Ag 3

N a1 a2 a3

Arguments

3.1 Formalising Our Argumentation Framework

Our purpose is to provide an argumentation framework that allows one to cap-
ture both attack and defence relationships between arguments, as done in bipo-
lar argumentation frameworks [3,8].1 The motivation for including defence rela-
tionships is based on recent studies in large-scale argumentation frameworks
involving humans (e.g. [12,13]). There, humans naturally handle both attack
and defence relationships between arguments. Our notion of discussion frame-
work aims at offering such expressiveness.

1 Nevertheless, there are notable differences with bipolar argumentation frameworks.
First, bipolar argumentation does not consider labellings (different opinions on argu-
ments), nor their aggregation. Second, bipolar argumentation focuses on studying
the structure between arguments and groups of arguments, whereas we focus on
computing a collective decision from differing opinions about arguments. Third,
arguments in bipolar argumentation can be regarded as objective facts, while in
our case, arguments can be subjective facts on which individuals can differ. Thus,
our argumentation framework is less restrictive to include humans in the loop.
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Definition 1. A discussion framework is a triple DF = 〈A, �→,�〉, where A
is a finite set of arguments, and �→⊆ A × A and �⊆ A × A stand for attack
and defence relationships that are disjoint, namely �→ ∩ �= ∅. We say that an
argument b ∈ A attacks another argument a ∈ A iff b �→ a, and that b defends a
iff b � a.

A discussion framework can be depicted as a graph whose nodes stand for
arguments and whose edges represent either attack or defence relationships
between arguments. Figure 1 shows our graphical representation of attack and
defence relationships.

ab cd

Fig. 1. Representation of an attack relationship b �→ a and a defence relationship d � c.

Each argument in a discussion framework can be indirectly related to other
arguments through a chain of attack and defence relationships. Given an argu-
ment, we capture its indirect relationships with other arguments through the
notion of descendant.

Definition 2. Let DF = 〈A, �→,�〉 be a discussion framework and a ∈ A one
of its arguments. We say that an argument b ∈ A is a descendant of a if there
is a finite subset of arguments {c1, · · · , cr} ⊆ A such that b = c1, c1R1c2,
· · · , cr−1Rr−1cr, cr = a and Ri ∈ {�→,�} for all 1 ≤ i < r.

Now we are ready to define our argumentation framework, the so-called
target-oriented discussion framework, which considers that there is a target argu-
ment (e.g. a norm or a proposal) under discussion.

Definition 3. A target-oriented discussion framework TODF = 〈A, �→,�, τ〉 is
a discussion framework satisfying the following properties: (i) for every argument
a ∈ A, a is not a descendant of itself; and (ii) there is an argument τ ∈ A, called
the target, such that for all a ∈ A \ {τ}, a is a descendant of τ .

Observation 1. From the previous definitions we infer some properties that
help us further characterise a target-oriented discussion framework:

1. No reflexivity. No argument can either attack or defend itself. Formally, ∀a ∈
A, a ��→ a and a �� a.

2. No reciprocity. If an argument a attacks another argument b, then a cannot
be attacked nor defended back by b, namely ∀a, b ∈ A, if a �→ b then b ��→ a and
b �� a. Analogously, if an argument a defends another argument b, a cannot
be defended nor attacked by b, namely ∀a, b ∈ A, if a � b then b �� a and
b ��→ a.
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3. No target contribution. The target neither attacks nor defends any other argu-
ment, namely for all a ∈ A \ {τ}, τ ��→ a and τ �� a. This distinguishes the
special role of the target as the center of discussion to which attacks and
supports are directly or indirectly pointed.

The next result follows from Definition 2 and the Observation 1.

Proposition 4. Let TODF = 〈A, �→,�, τ〉 be a target-oriented discussion
framework and E =�→ ∪ �. The graph associated to a TODF, G = 〈A, E〉, is a
directed acyclic graph, where A is the set of nodes and E the edge relationship.

Proof. Straightforward from Definition 2 and Observation 1.

Fig. 2. Flatmates example: (a) associated graph to TODF ; (b) TODF together with
labellings.

Example 2 (Flatmates’ example formalization). Figure 2(a) depicts the
flatmates’ target-oriented discussion framework. The nodes in the graph repre-
sent the set of arguments A = {N, a1, a2, a3} in the example of Sect. 2, where N
is the dish-washing norm, and a1, a2, a3 are the rest of arguments. Thus, N , the
norm under discussion, is taken to be τ in our TODF . As to edges, they repre-
sent both the attack and defence relationships: a1 �→ N , a2 �→ N and a1 � a2,
a3 � N respectively.

3.2 Argument Labellings

Given a target-oriented argumentation framework shared by agents, now we
focus on how these encode their opinions (argument evaluations). Here we con-
sider that each agent’s opinion over our argumentation framework corresponds
to a labelling [6,7]. Furtheremore, we adhere to the labelling-based semantics
proposed by Caminada in [6,7], which gives a labelling per argument. By means
of argument labellings, each agent can support an argument (by labelling it as
in), reject it (by labelling it as out), or abstain from deciding whether to accept
it or reject it (by labelling it as undec). Besides expressing uncertainty regading
the assessment of an argument, the undec label stands for the absence of an
opinion. This is important in large-scale argumentation frameworks involving
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humans. As observed in [12], we cannot expect that humans express their opin-
ions about all the arguments involved in a discussion, since they tend to focus
on the arguments of their interest. Formally:

Definition 5 (Argument labelling). Let TODF = 〈A, �→,�, τ〉 be a target-
oriented discussion framework. An argument labelling for TODF is a function
L : A −→ {in, out, undec} that maps each argument of A to one out of the
following labels: in (accepted), out (rejected), or undec (undecidable).

We note as Ag = {ag1, . . . , agn} the set of agents taking part in a TODF , and
as Li the labelling encoding the opinion of agent agi ∈ Ag. We will put together
the opinions of all the agents participating in an argumentation as follows.

Definition 6 (Labelling profile). Let L1, . . . , Ln be argument labellings of the
agents in Ag, where Li is the argument labelling of agent agi. A labelling profile
is a tuple L = (L1, . . . , Ln).

Example 3 (Flatmates’ opinions). Figure 2(b) graphically depicts Alan’s,
Barbara’s, and Charles’ labellings (noted as L1, L2, L3 respectively), each one
appearing next to the corresponding arguments in the TODF ’s graphical repre-
sentation in Fig. 2(a).

3.3 Coherent Argument Labellings

As noted in [4], there are multiple reasonable ways in which an agent may eval-
uate an argument structure through a labelling. There, authors introduce the
notion of complete labelling2. Here we argue that the conditions required by a
complete labelling are very restrictive. Instead, we will consider alternative, more
relaxed conditions for an argument labelling (an opinion) to be reasonable. With
this aim, for each argument a we will compare the labelling over the argument,
what we consider to be its direct opinion, with the aggregated labellings over its
children or immediate descendants, namely, its indirect opinion.

Considering the example in Fig. 2(b), if we take any argument, such as for
instance N , we consider its associated labels as the direct opinion, whereas we
think of the labels associated to its immediate descendants a1, a2, and a3 as its
indirect opinion. Analogously, the direct opinion on argument a2 corresponds to
its associated labels, whereas the labels associated to a1, its single immediate
descendant, constitute its indirect opinion.

Thus, informally, we will say that the labelling of an argument is coherent if
its direct opinion is in line with its indirect opinion. This will occur when the
majority of arguments in the indirect opinion of an argument agree with the
labelling of the argument. In what follows, we formalise our notion of coherent
labelling.

2 A complete labelling requires that: an argument is labelled in iff all its defeaters
are labelled out ; and an argument is labelled out iff at least one of its defeaters is
accepted.
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First, given an argument a we will define its set of attacking arguments
A(a) = {b ∈ A|b �→ a}; and its set of defending arguments D(a) = {c ∈ A|c � a}.
Thus, the labelling of the arguments in A(a)∪D(a) compose the indirect opinion
on a.

Given an argument labelling L and a set of arguments S ⊆ A, we can quan-
tify the number of accepted arguments in S as inL(S) = |{b ∈ S |L(b) = in}|.
Analogously, we can also quantify the number of rejected arguments in S
as outL(S) = |{b ∈ S |L(b) = out}|. Thus, given an argument a, we can
readily quantify its accepted and rejected defending arguments as inL(D(a))
and outL(D(a)) respectively. Moreover, we can also quantify its accepted and
rejected attacking arguments as inL(A(a)) and outL(A(a)) respectively. Now we
are ready to measure the positive and negative support contained in the indirect
opinion of a given argument as follows.

Definition 7 (Positive support). Let a ∈ A be an argument and L a labelling
on A. We define the positive (pro) support of a as: ProL(a) = inL(D(a)) +
outL(A(a)). If ProL(a) = |A(a) ∪ D(a)| we say that a receives full positive
support from L.

Definition 8 (Negative support). Let a ∈ A be an argument and L a
labelling on A. We define the negative (con) support of a as: ConL(a) =
inL(A(a)) + outL(D(a)). If ConL(a) = |A(a) ∪ D(a)| we say that a receives
full negative support from L.

Notice that the positive support of an argument combines the strength of
its accepted defending arguments with the weakness of its rejected attacking
arguments in the argument’s indirect opinion. As a dual concept, the nega-
tive support combines accepted attacking arguments with rejected defending
arguments.

We now introduce our notion of coherence by combining the positive and
negative support of an argument. We say that a labelling is coherent if the fol-
lowing conditions hold for each argument: (1) if an argument is labelled accepted
(in) then it cannot have more negative than positive support (the majority of
its indirect opinion supports the argument); and (2) if an argument is labelled
rejected (out) then it cannot have more positive than negative support (the
majority of its indirect opinion rejects the argument).

Definition 9 (Coherence). Given a TODF = 〈A, �→,�, τ〉, a coherent
labelling is a total function L : A → {in, out, undec} such that for all a ∈ A
with A(a) ∪ D(a) �= ∅: (1) if L(a) = in then ProL(a) ≥ ConL(a); and (2) if
L(a) = out then ProL(a) ≤ ConL(a).

Finally, we offer a more refined version of coherence based on the difference
between positive and negative supports.

Definition 10 (c-Coherence). Let TODF = 〈A, �→,�, τ〉 be a target-oriented
discussion framework. A c-coherent labelling for some c ∈ N is a total function L :
A → {in, out, undec} such that for all a ∈ AwithA(a)∪D(a) �= ∅: (i) ifL(a) = in
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then ProL(a) > ConL(a)+c; (ii) if L(a) = out then ProL(a)+c < ConL(a);
and (iii) if L(a) = undec then |ProL(a) − ConL(a)| ≤ c.

Let TODF be a target oriented discussion framework. We will note the class
of all the argument labellings of TODF as L(TODF ), the subclass of coherent
argument labellings as Coh(TODF ), and the subclass of c-coherent argument
labellings as Cohc(TODF ) for some c ∈ N.

Example 4. Again, considering our example, and its labellings from Fig. 2(b)
(L1, L2, L3 in L(TODF )), we note that just L1, L2 belong to the subclass of its
coherent argument labellings Coh(TODF ). Moreover, L1 and L2 are 0-coherent.

4 The Aggregation Problem

Recall that our aim is to have multiple agents jointly decide whether to accept
a target (e.g. a norm) or not. In Sect. 4.1 we pose such problem as a judgement
aggregation [14] problem in the context of argumentation: a set of agents collec-
tively decide how to label a target-oriented argumentation framework, and such
collective labelling provides a label for the target. Since there are many ways of
aggregating labellings, following [4], Sect. 4.2 states that such aggregation must
guarantee that the outcome is fair.

4.1 Collective Labelling

First, a discussion problem will encompass a target-oriented discussion frame-
work together with a set of agents’ individual labellings.

Definition 11 (Labelling discussion problem). Let Ag = {ag1, · · · , agn}
be a finite non-empty set of agents, and TODF = 〈A, �→,�, τ〉 be a target-
oriented discussion framework. A labelling discussion problem is a pair LDP =
〈Ag, TODF 〉.

Given an LDP, our aim is to find how to aggregate the individuals’ labellings
into a single labelling that captures the opinion of the collective.

Definition 12 (Aggregation function). An aggregation function for a
labelling discussion problem LDP = 〈Ag, TODF 〉 is a function F : L(TODF )n

−→ L(TODF ).

Plainly, an aggregation function F takes a labelling profile representing all
agents’ opinions and yields a single labelling computed from the individual
labellings. Such aggregation function is key to assessing the collective decision
over the target.

Definition 13 (Decision over a target). Let LDP = 〈Ag, TODF 〉 be a
labelling discussion problem, L a labelling profile, and F an aggregation function
for the LDP. The decision over the target of the TODF is the label F (L)(τ).
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4.2 Desirable Properties of an Aggregation Function

The literature on Social Choice theory has already identified fair ways of aggre-
gating votes. These can be translated into formal properties that an aggregation
function is required to satisfy [9]. Based on [4], here we formally state the desir-
able properties for an aggregation function that allows to assess the decision
over the target of a target-oriented discussion framework. First, notice that an
aggregation function may not compute over every labelling profile, so we start
by referring the domain properties of an aggregate function.

Exhaustive Domain (ED). F can take as input all labelling profiles, i.e., all
L ∈ L(TODF )n.

Coherent Domain (CD). F can take as input all the coherent labelling pro-
files, L ∈ Coh(TODF )n.

Furthermore, it is natural to require that aggregation outcomes are also
coherent, namely, that the aggregation results in collective coherence.

Collective coherence (CC). F (L) ∈ Coh(TODF ) for all L ∈ L(TODF )n.
Collective coherence is our most desired property. Notice that if an aggre-

gation function does not produce a coherent labelling, there is at least some
argument whose collective label (direct opinion) is in contradiction with its indi-
rect opinion. Thus, the resulting aggregation would not be reliable.

Notice also that the agents involved in a discussion expect that their opinions
are as important as others’. This idea is captured by the anonymity property,
where all opinions are equally significant.

Anonymity (A). If L = (L1, · · · , Ln) is a labelling profile and σ is a permuta-
tion over Ag then: if L′ = (Lσ(1), · · · , Lσ(n)) then F (L) = F (L′).

A weaker version of anonymity, non-dictatorship, states that no agent can
decide over the others, like a dictator. Notice that, this directly follows from
anonymity.

Non-Dictatorship (ND). There is no agent agi ∈ Ag such that, for every
labelling profile L we have F (L) = Li.

Regarding unanimity, we shall consider two main notions of unanimity: direct
and endorsed. On the one hand, we formulate the direct unanimity property to
capture the following requirement: if all the agents agree (share the opinion) on
one argument, then the aggregate opinion must reflect such agreement.

Direct Unanimity (DU). Let l ∈ {in, undec, out}. For each a ∈ A such that
Li(a) = l for all agi ∈ Ag, then F (L)(a) = l.

Endorsed unanimity is a variant of direct unanimity: for each argument, if
all the agents agree on the indirect opinion of an argument (be it to give it full
positive support or full negative support), this cannot contradict the aggregated
opinion on the argument.
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Endorsed Unanimity (EU). Let L be a labelling profile. For each a ∈ A: (i)
if a receives full positive support for all Li ∈ L then F (L)(a) = in; and (ii) if a
receives full negative support for all Li ∈ L then F (L)(a) = out.

As an additional variant of unanimity, we consider supportiveness: the aggre-
gated opinion on an argument cannot be set to a label l ∈ {in, out, undec} unless
at least one agent labels the argument with l.

Supportiveness (S). Let L be a labelling profile. For all a ∈ A, there exists
some agent agi ∈ Ag such that F (L)(a) = Li(a).

Finally, we state a novel notion of monotonicity, the so-called familiar
monotonicity, which considers the opinions of an argument’s descendants. Intu-
itively, our notion of familiar monotonicity captures the following principle: if the
support for an argument increases, the collective labeling of the argument should
remain the same, but provided that the opinions on the argument’s descendants
do not change. The latter condition is necessary because changes in the opinions
about the descendants of the argument may affect the support on the argument.
In other words, our notion of monotonicity, unlike the notion of monotonicity
presented in [4], is aware of the dependencies between arguments.

We also formulate a weaker version of familiar monotonicity that only applies
to in and out.

Familiar Monotonicity (FM). Leta ∈ Abe anargument and two labellingpro-
files L = (L1, · · · , Li, · · · , Li+k, · · · , Ln), L′ = (L1, · · · , L′

i, · · · , L′
i+k, · · · , Ln)

such that F (L)(a) = l ∈ {in, out, undec}, agents agi, . . . , agi+k only differing
on their labellings of a (namely, for all b descendant of a, Lj(b) = L′

j(b) for every
j ∈ {i, · · · , i + k}) and L(a)j �= L′(a)j = l for j ∈ {i, · · · , i + k}, if F (L)(a) = l
then F (L′)(a) = l.

The next property establishes the same idea considering only the cases where
the previous aggregate opinion is either in or out, not undec.

in/out-Familiar Monotonicity (i/o-FM). Let a ∈ A be an argument and
two labelling profiles L and L′ satisfying the previous hypothesis of the familiar
monotonicity property adding that F (L)(a) = l �= undec. Then, if F (L)(a) = l
then F (L′)(a) = l.

Some other properties that are desirable in other multi-agent argumentation
contexts (e.g. [4]) are not desirable here. In particular, systematicity and inde-
pendence are not desirable because we want to exploit dependence relationships
between arguments.

5 The Coherent Aggregation Function

Next we define an aggregation function to compute the collective labelling, and
hence the decision over a target, for a labelling discussion problem. Section 5.1
introduces our function, while Sect. 5.2 analyses the satisfaction of the properties
in Sect. 4.2.
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5.1 Defining the Coherent Aggregation Function

First, we introduce notation to quantify the direct positive and negative support
of an argument. Let L = (L1, · · · , Ln) be a labelling profile and a an argument.
We note the direct positive support of a as inL(a) = |{agi ∈ Ag |Li(a) = in}|;
and its direct negative support as outL(a) = |{agi ∈ Ag |Li(a) = out}|. Next, we
define our chosen aggregation function: the coherent aggregation function. The
main purpose of this function is to compute a coherent aggregated labelling,
and hence fulfil the collective coherence property. Notice that we consider that
the most important desirable property for an aggregation function is to yield a
rational outcome that is free of contradiction.

Definition 14 (Coherent aggregation function). Let L be a labelling pro-
file. For each argument a the coherent function over L is defined as:

CF(L)(a) =

⎧
⎨

⎩

in, IO(L)(a) + DO(L)(a) > 0
out, IO(L)(a) + DO(L)(a) < 0
undec, IO(L)(a) + DO(L)(a) = 0

where the functions IO (indirect opinion) and DO (direct opinion) are defined
as:

IO(L)(a) =

⎧
⎨

⎩

1, P roCF(L)(a) > ConCF(L)(a)
0, P roCF(L)(a) = ConCF(L)(a)
−1, P roCF(L)(a) < ConCF(L)(a)

DO(L)(a) =

⎧
⎨

⎩

1, inL(a) > outL(a)
0, inL(a) = outL(a)
−1, inL(a) < outL(a)

Example 5 (Flatmates’ discussion). Back to our example involving a flat-
mates’ discussion, we use the coherent aggregation function to obtain the aggre-
gated opinion of the provided labellings (see Fig. 2(b)). Figure 3 shows the results
of the aggregation and the decision over the target as produced by CF. We observe
that the flatmates collectively accept arguments a1 and a3, whereas argument a2

becomes undecidable. Finally, the decision over the norm is to accept it.

Fig. 3. Flatmates example: aggregated labellings (and decision over target N) com-
puted by CF.
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5.2 Analysing the Coherent Aggregation Function

Below we analyse the desired properties from Sect. 4.2 that our aggregation
function CF fulfils.

The first two results about domain properties follow from CF’s definition.

Proposition 15. CF satisfies the exhaustive domain property.

Corollary 16. CF satisfies the coherent domain property.

Proof. It is clear that CF is defined for all labelling profiles, and hence it is also
defined for every coherent labelling L ∈ Coh(TODF )n.

Notice that, since CF is defined for all labelling profiles, it is also defined for
labelling profiles in Cohc(TODF )n, namely for labelling profiles whose argument
labellings are c-coherent. Now recall that we designed our CF function to satisfy
the collective coherence property. Thus, the following property naturally follows.

Proposition 17. CF satisfies the collective coherence property.

Proof. Let a be an argument such that CF(L)(a) = in. From Definition 14 we
know that IO(L)(a) + DO(L)(a) > 0. Thus, there are three possibilities: (i)
DO(L)(a) = 1 and IO(L)(a) = 1; (ii) DO(L)(a) = 1 and IO(L)(a) = 0; or
(iii) IO(L)(a) = 0 and DO(L)(a) = 1. Since IO(L)(a) ≥ 0 in all cases, this
implies that ProCF(L)(a) ≥ ConCF(L)(a), and hence CF satisfies the coherence
property. The proof goes analogously for the case CF(L)(a) = out.

Now we turn our attention into the anonymity property and its weaker ver-
sion: the non-dictatorship property.

Proposition 18. CF satisfies the anonymity property.

Proof. Let L = (L1, · · · , Ln) be a labelling profile and σ a permutation over Ag
such that L′ = (Lσ(1), · · · , Lσ(n)). Since CF only uses the number of elements,
there is no dependency on the identities of the agents’ labellings. We only have to
check that DO(L) = DO(L′) because functions IO, Pro, and Con only depend
on CF(L), and hence in turn they will not depend either on the identities of the
agents’ labellings. This amounts to checking whether inL(a) = inσ(L)(a) and
outL(a) = outσ(L)(a) hold. Indeed, on the one handinL(a) = |{agi ∈ Ag |Li(a) =
in}| = |{σ(agi) ∈ Ag |Lσ(i)(a) = in}| = inσ(L)(a). Moreover, outL(a) = |{agi ∈
Ag |Li(a) = out}| = |{σ(agi) ∈ Ag |Lσ(i)(a) = out}| = outσ(L)(a).

Since CF satisfies anonymity, the identity of which agent submits which
labelling is irrelevant. Furthermore, recall from Sect. 4.2 that non-dictatorship
follows.

Corollary 19. CF satisfies the non-dictatorship property.

Next, we focus on unanimity properties. First, we will show that CF fulfils
the endorsed unanimity property. With this aim, we will introduce an additional
hypothesis based on the following lemma.
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Lemma 1. Let TODF be a target-oriented discussion framework, L a
0-coherent labelling profile (L ∈ Coh0(TODF )n), a an argument in A, and m the
number of immediate descendants of a (m = |A(a)∪D(a)|). If ProLi

(a) = m for
all i ∈ {1, · · · , n} then inL(a) = n; and if ConLi

(a) = m for all i ∈ {1, · · · , n}
then outL(a) = n.

Proof. We next prove that if ProLi
(a) = m then Li(a) = in, for all i ∈

{1, · · · , n}. Thus, all the agents label argument a as in, i.e., inL(a) = n. Since
we assume that each Li is 0-coherent, a’s label can be neither out, because
ProLi

(a) � ConLi
(a), nor undec, because ProLi

(a) �= ConLi
(a). Thus, the only

option is that a is labelled as in. The proof runs analogously when considering
the case ConLi

(a) = m.

Plainly, the lemma says that, when assuming 0-coherence, if the indirect
opinion on an argument is unanimous, the direct opinion on the argument will
also be unanimous. Using this lemma we can prove the following result.

Proposition 20. Let L = (L1, · · · , Ln) be a labelling profile. If every Li, i ∈
{1, · · · , n}, satisfies the 0-coherence property, then CF satisfies the endorsed
unanimity property.

Proof. We focus on the case for which if each argument a receives full positive
support for all Li ∈ L, namely ProLi

(a) = m for every i, then CF(L)(a) = in.
First of all, we will analyse the aggregated indirect opinion on a given argument a.
Let b be a defending argument of a, namely b ∈ D(a). Since ProLi

(a) = m for all
i, Li(b) = in. Since we do not know the labellings of the immediate descendants
of b, we can assume that DO(L)(b) = 1, and therefore either CF(L)(b) = undec
or CF(L)(b) = in. Following a similar reasoning, we observe that if b ∈ A(a),
then either CF(L)(b) = undec or CF(L)(b) = out. Therefore, we have that
IO(L)(a) ≥ 0. Because ProLi

(a) = m and Li is 0-coherent for every agent agi,
we have that n = inL(a) > outL(a) = 0 by Lemma 1, and hence DO(L)(a) = 1.
Since IO(L)(a) ≥ 0, we finally have that CF(L)(a) = in. Analogously, we can
also prove that CF(L)(a) = out if ConLi

(a) = m for every agi ∈ Ag.

Notice however that CF does not satisfy the other two unanimity properties
presented in Sect. 4.2, namely direct unanimity and supportiveness.

Proposition 21. Neither direct unanimity nor supportiveness are satisfied by
CF.

Proof. Figure 4(a) graphically represents a TODF that will serve to illustrate
our proposition. Our TODF contains a target argument τ = a, which is defended
by five other arguments {a1, a2, a3, a4, a5}. The TODF involves the argument
labellings of three agents, noted as L1, L2, and L3: (1) agent 1 accepts (labels
with in) arguments a, a1, a2, and a3, and refuses (labels with out) arguments a4

and a5; (2) Agent 2 accepts arguments a, a1, a2, and a4, and rejects arguments a3,
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and a5; and agent 3 accepts arguments a, a1, a2, and a5, and rejects arguments
a3, and a4.

Notice that the three agents agree on accepting the target (L1(a) =
in, L2(a) = in, and L3(a) = in), and hence there is unanimous opinion on a.

Figure 4(b) depicts the resulting labelling when computing the CF func-
tion for this TODF over the labelling profile L = (L1, L2, L3). Since argu-
ments a1 and a2 are collectively accepted (CF(L)(a1) = in,CF(L)(a2) = in)
and arguments a3, a4, and a5 are rejected (CF(L)(a3) = out,CF(L)(a4) =
out,CF(L)(a5) = out), the target is neither accepted nor rejected (CF(L)(a) =
undec). Thus, although the three agents agree on accepting a, the collective deci-
sion obtained by CF is undec. Therefore, CF does not satisfy direct unanimity.

As to supportiveness, it does not hold either. Observe that although the
aggregate label of a is undec, no agent has labelled argument a as undec.

Fig. 4. Counterexamples to illustrate lack of: (a) direct unanimity and supportiveness
(argument labellings); (b) direct unanimity and supportiveness (result of the coherent
aggregation function).

Finally, we study CF’s monotonicity. Although familiar monotonicity does
not hold for CF, its weaker version, in/out-familiar, does hold.

Proposition 22. CF does not satisfy the familiar monotonicity property.

Proof. Our proof only requires a simple TODF with a target argument a and
two labelling profiles with two argument labellings. Let L = (L1, L2) and L′ =
(L1, L

′
2) where L1(a) = in, L2(a) = out and L′

2(a) = undec. These two labelling
profiles satisfy the hypothesis required by the familiar monotonicity property.
Nonetheless, notice now that the aggregate labellings on the target obtained for
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each labelling are: CFL(a) = undec and CFL′(a) = in. Since CFL(a) �= CFL′(a),
familiar monotonicity does not hold.

Proposition 23. CF satisfies the in/out-familiar monotonicity property.

Proof. Let L,L′ be two labelling profiles satisfying the hypothesis required
by the in/out-familiar monotonicity property on the argument a, and whose
collective label on a for L is CF(L)(a) = l = in. Since Lj(b) = L′

j(b) for
all b descendant of a, we know that IO(L)(a) = IO(L′)(a) because IO only
depends on the descendants. Since CF(L)(a) = in, we have that DO(L)(a) ≥ 0.
Now, because inL(a) ≤ inL′(a) and outL(a) ≥ outL′(a), we know that
DO(L′)(a) ≥ DO(L)(a) ≥ 0. From this follows that DO(L′)(a) + IO(L)(a) ≥
DO(L′)(a) + IO(L)(a) = 1, and hence CF(L′)(a) = in. We can analogously
check the case CF(L)(a) = out.

Analysis. First, notice that CF satisfies a significant number of the desirable
properties identified in Sect. 4.2 for any sort of labelling profiles. This means that
CF does not constrain at all an agent’s labelling, and hence even can cope with
the inconsistencies of agents’ opinions. This is not the case though for endorsed
unanimty. This property is constrained to labellings that are 0-coherent. Second,
properties such as direct unanimity and supportiveness, which are not satisfied
by CF, assume that aggregation is computed independently for each argument.
In other words, they serve to analyse the behaviour of an aggregation function in
a single argument. Since in this paper we pursue to exploit dependencies between
arguments within a discussion, such properties prevent us from making a more
informed decision about the discussion target.

5.3 Computing the Decision over a Target

Given a target-oriented discussion framework TODF = 〈A, �→,�, τ〉 shared by
the agents in Ag, a labelling profile L, and our coherent aggregation function
CF, we now consider how to compute the collective label assigned to the target
τ , namely CF(L)(τ). Such computation is based on the following observation:

Since the graph associated to a target-oriented discussion framework TODF
is a directed acyclic graph (DAG), we can embed the computation of the collec-
tive label of each argument in A within its the traversal. of its associated graph.
Such a graph traversal could be performed by its topological sorting [11]. There-
fore, the running time required to compute CF(L)(τ) is linear in the number of
arguments plus the number of edges, asymptotically, namely O(|A|+ |�→|+ |�|).
Algorithm 1 shows the pseudo-code of function computeTargetDecision,
which returns the collective label of target τ for an input graph GTODF and
a labelling profile L.
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Algorithm 1. Algorithm to compute the collective label of a target
1: function computeTargetDecision(GTODF , L, τ)
2: ToV isit ← {a ∈ A|A(a) ∪ D(a) = ∅} � Arguments with neither attacks nor

defences (no descendants)
3: while ToV isit �= ∅ do
4: remove an argument b from ToV isit
5: compute CF(L)(b)
6: for each node c with an edge (b, c) ∈ GTODF do
7: remove edge (b, c) from graph GTODF

8: if c has no other incoming edges then
9: insert c into ToV isit

10: return CF(L)(τ) � Return collective label for target τ

6 Conclusions and Future Work

Along this paper we have formalised the problem of taking a collective decision
over a target. We claim this problem can be tackled within a target oriented
decision framework, and we have tailored it for humans, due to the increasing
interest on e-participation, e-governance and open innovation systems. Within
this framework, we have also proposed a coherent aggregation function that
combines participants’ opinions and has proven to satisfy valuable social choice
properties without any additional assumption (with the exception of endorsed
unanimity, which just requires the labelling profile to be 0-coherent). When
considering humans, we hypothesise that the larger the number of people, the
less the number of undecidable labels will result from combining their opinions,
and thus, the less unlikely will be the occurrence of an undecidable outcome (i.e.,
a target collective decision).

Finally, notice that although our argumentation framework shares the use
of attack and defense relations with bipolar argumentation frameworks [3,8],
there are notable differences. First, bipolar argumentation does not consider
labellings (different opinions on arguments), neither their aggregation. Second,
bipolar argumentation focuses on studying the structure between arguments and
groups of arguments, whereas we focus on computing a collective decision from
differing opinions about arguments. Third, arguments in bipolar argumentation
can be regarded as objective facts, while in our case, arguments can be subjec-
tive facts on which individuals can differ. Thus, our argumentation framework
pursues to be less restrictive to include humans in the loop.

As to future work, we plan to consider alternative semantics for arguments’
pros and cons that diminish the relevance associated to the rejection of argu-
ments. Furthermore, we plan to extend our TODF to allow loops, and hence
ease rebuttal, a common feature of argumentation systems. Finally, we plan to
provide more fine-grained means of computing argument support.
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Abstract. People’s cultural background has been shown to affect the
way they reach agreements in negotiation and how they fulfill these agree-
ments. This paper presents a novel methodology that can be used as
a good infrastructure to design a computer-agent for negotiating with
people from different cultures. Our setting involved data from different
agents and human versus human data that were based on an alternating-
offer protocol that allowed parties to choose the extent to which they kept
each of their agreements during the negotiation. A challenge to develop
this methodology for such setting is to create cross culture models auto-
matically that will predict how people reciprocate their actions over time,
despite the scarcity of prior data on different cultures. Our methodol-
ogy addresses this challenge by using a Leave-One-Out algorithm named
CCMA, which is described in Sect. 5, with classical machine learning
algorithms to predict the extent to which people fulfill agreements. Our
methodology based its strategy on a data from different agents that
used the same negotiation scenario in different cultures. This method-
ology used data in three countries: Lebanon, the U.S.A and Israel, in
which people are known to vary widely in their negotiation behaviour.
Our methodology was able to find the accurate models that should be
used when designing a computer-agent in the negotiation scenario.

1 Introduction

Negotiation is a tool widely used by humans to resolve disputes in settings as
diverse as business transactions, diplomacy and personal relationships. Many
tasks in day-to-day life require negotiation. Negotiation can be as simple and
ordinary as haggling over a price in the market, through deciding what show to
watch on TV, booking a trip [21], bargaining over certain issues [1,5,6,15], in
e-commerce [17,19] and it can also involve tasks in which millions of lives are at
stake, such as resource allocation [4], countries’ disputes [13] and dismantling of
nuclear weapons.

Building an automated computer negotiation agent that can perform as one
of the parties in the negotiation, or even both, by making rational choices and
decisions is an important task. Computer agents can negotiate on behalf of
individual people or organizations(e.g., bidders in on-line auctions [2,14]); they
can act as training tools for people to practice and evaluate different negoti-
ation strategies in a lab setting prior to embarking on negotiation in the real
c© Springer International Publishing AG 2017
R. Aydoğan et al. (Eds.): COREDEMA 2016, LNAI 10238, pp. 118–133, 2017.
DOI: 10.1007/978-3-319-57285-7 8
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world (e.g., agents for negotiating in a simulated diplomatic crisis [16]), or work
autonomously to reach agreements for which they are responsible (e.g., computer
games, systems for natural disaster relief [18,22]). Using such an agent may help
reach agreements that are the best for all sides involved, and which might not
have been accepted without the existence of the agent.

Culture is a key determinant of the way people interact and reach agree-
ments in different social settings. It is thus important to understand the decision-
making strategies that people of different cultures deploy when computer systems
are among the members of the groups in which they work and to determine their
response to different kinds of decision-making behavior of others [7].

There is a body of work in the psychological and social sciences that investi-
gate cross cultural behavior among human negotiators [9,10]. However, there is
scant computational models of human negotiation behavior that reason about
cultural differences. In this paper, we investigate, the hypothesis that explicitly
representing behavioral traits which vary across cross cultures will improve the
ability of computer agents to predict human negotiation behaviour, and in turn,
improve the performance of computer agents when negotiating with people. To
evaluate this hypothesis, Haim et al. [12] collected data on human negotiation
behavior from three different countries, including Israel, Lebanon and the U.S.A.
This data was collected from different computer-agents that used an identical
negotiation scenario in each country that required that people complete a task
by engaging in bilateral negotiation rounds. The negotiation protocol included
alternating take-it-or-leave-it offers for the exchange of resources. Participants
were free to choose the extent to which they fulfilled their commitments. Such
settings characterize the real-world applications discussed above, where partic-
ipants make commitments to purchase items or carry out tasks, and they can
choose whether and how to fulfill such commitments. These decisions affect their
future interactions with the other participants. For example, a seller who is late
in delivering an item or does not deliver it at all, may be negatively reciprocated
by the buyer in a future transaction.

Haim et al. [12] developed a specific model for each country and for each
game configuration for all the prediction models that were used in their agent.
For example, when their agent played with an Israeli human player, it used
specific models that were trained on the data that was collected from human
versus human and human versus another agent from Israel. Similarly, when their
agent played with a human player from U.S.A, it used models from U.S.A and
so on.

The challenge of this paper is to improve the models that were used in the
previous agents. In order to address this challenge we will examine the notion of
using data from various cultures to train a future agent. The process of choosing
the best model is determined upon the data set and machine learning algorithm
that the model will be based upon. In this paper, we present a methodology that
finds the best prediction model for a given culture automatically. The results
from using that methodology will later contribute to the construction of an
agent which addresses various cultures.
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2 The Colored Trails Negotiation Scenario

In this section we present the Colored Trails negotiation scenario that was used
in all the given data. The used CT configuration consisted of a game played on
a 7× 5 board of colored squares with a set of chips. One square on the board
was designated as the goal square. Each player’s icon was initially located in one
of the non-goal positions, eight steps away from the goal square. To move to an
adjacent square a player needed to surrender a chip in the color of that square.
Each player was issued 24 colored chips at the onset of the game.

At the onset of the game, one of the players was given the role of proposer,
while the other was given the role of the responder. The interaction proceeded in
a recurring sequence of phases. In the communication the proposer could make an
offer to the responder, who could accept or reject the offer. In the transfer phase,
both players could choose chips to transfer to each other. The transfer action was
done simultaneously, such that neither player could see what the other player
transferred until the end of the phase. In particular, players were not required to
fulfill their commitments to an agreement reached in the communication phase.
A player could choose to transfer more chips than it agreed to, or any subset of
the chips it agreed to, including transferring no chips at all. In the movement
phase, players could manually move their icons on the board across one square
by surrendering a chip in the color of that square. At the end of the movement
phase, a new communication phase began. The players alternated their roles,
such that the previous proposer was designated as a responder, and vice verse.
These phases repeated until the game ended. Note that players had full view of
the board and each others chips, and thus they had complete knowledge of the
game situation at all times during the negotiation process.



Human-Computer Agent Negotiation Using Cross Culture Reliability Models 121

2.1 Game Termination and Scoring

The game ends when one of the following conditions holds: (1) at least one of
the participants reached the goal square; or (2) at least one of the participants
remained dormant and did not move for three movement phases. When the game
ends, both participants are automatically moved as close as possible to the goal
square, and their score is computed as follows:

– 100 bonus points are awarded for reaching the goal square,
– 5 bonus points for any chip left in a player’s possession,
– a 10 point penalty is imposed for each square left in the path from a player’s

final position to the goal square.

These parameters were chosen so that reaching the goal would be considered
by far the most important component, but if a player could not reach the goal,
it was preferable to get as close to the goal as possible. Note that the score in
CT depends not only on whether a player can reach the goal square, but also on
the number of chips the player has in its possession at the end of the game.

3 The Cultural Sensitive Data

In this paper, we used four sources of data to train and test our methodology.
These sources were taken from the collected data within the paper of Haim
et al. [12]. The four sources of data are described as follows:

3.1 The Human Versus Human Data

In the U.S.A and in Israel, we used the 112 collected data of game instances of
people playing other people in the identical CT negotiation scenario.

3.2 The Purb Agent

Purb is the Personality Utility and Rule Based agent developed by Gal et al. [11],
that modelled other participants in terms of two behavioural traits: helpfulness,
and reliability. The helpfulness measure of a participant represented the extent
to which the participant shared resources with its negotiation partner through
initiating and agreeing to proposals. The reliability of a participant is the degree
to which the participant kept commitments to its negotiation partner. Purb’s
decision-making paradigm was a set of rules that narrowed the search space of
possible actions to be considered by the agent’s utility function. These rules
depended on aspects relating to the state of the game (e.g., the number of chips
each agent had, whether a participant can independently reach the goal). At
each step of the game, the agent used its social utility function to choose the
best action from the set of possible actions that were constrained by the rules.
The rules were designed such that the Purb agent begins by acting reliably, and
adapts over time to the individual measure of cooperativeness that is exhibited
by its negotiation partner. The collected data from Purb includes 222 game
instances consisting of people playing the Purb agent.
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3.3 The Nasty Agent

In Lebanon, Haim et al. [12] built a model of a human based on data collected,
and found that the probability of the human to fulfill the agreement is very high
regardless of the agents’ behavior. Therefore, in order to enrich the model with
another behavior, in Lebanon, Haim et al. [12] collected 64 additional games in
which people played against a NASTY agent, which was a variant of the PURB
agent used by Haim et al. [11], but programmed to be significantly less reliable
when fulfilling its agreement. Consequently, Haim et al. were able to collect data
on peoples reactions to more diverse negotiation behavior in the game. It was
not necessary to run the Nasty agent in Israel or in the USA, since we already
had a diversity of data in these countries.

3.4 The PAL Agent

PAL is the Personality Adaptive Learning agent developed by Haim et al. [12].
It used machine learning strategy to take his decision actions in the negotiation
game. The PAL agent was based on learning and adaptation. This agent used
predictive models of human negotiation behaviour, to predict the extent to which
a person was reliable in the negotiation (also named as Transfer model), i.e.,
whether the person fulfill the agreement within the negotiation or not.

PAL used a specific model for each country and for each game configuration
for all the prediction models. For example, when PAL played a co-dependent
board configuration with an Israeli human player, it used the models that were
trained on the data of the co-dependent board configuration that were collected
from human versus human and human versus the Purb agent from Israel.

To evaluate PAL they recruited 157 subjects from the three countries. These
subjects played identical CT negotiation scenario of human negotiation behav-
iour under laboratory conditions in different countries.

4 Cross Cultures Features Set

In this paper, we reconsidered the prediction-model question and investigate the
possibility of using all the data available hitherto with additional feature sets, to
determine automatically the type of data that is useful when building prediction
models of people from different cultures in the CT game.

Haim et al. [12] used some features in order to build a specific model for a
specific CT configuration a specific country. These features do not reflect the
behavior of a human in previous rounds of the game. Therefore, we combine
new features set with the old ones, that will include the behavior of a human in
previous rounds. The features that Haim et al. [12] used in their paper are the
baseline for our feature set.
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4.1 The Baseline Features

– The current round n.
– The current score for a player round n.
– The resulting score of a player given proposal at round n.
– The score-base-reliability of a player at round n.
– The weighted score-base-reliability of a player.
– The generosity of a player at round n.
– The dependency role of a player at round n, task independent or task depen-

dent. Task dependent means one player needs the chips of the other player
in order to reach the goal. Task independent means one player can reach the
goal without any help of the other player.

– Missing chips: this feature includes the total number of chips a player needs
to reach its goal given its position on the board at round n.

4.2 The New Cross Cultures Feature Set

The new features that we used in our paper in addition to the baseline features
are as follows:

– Country : this parameter indicates what is the source of the data: ISRAEL,
LEBANON or U.S.A.

– data type: this parameter indicates what is the type of the data. The options
are:

• HvsH: relates to games in which both players are human. HvsH games
were played only in Israel and the U.S.A.

• HvsPurb: relates to games that were played with the Purb agent.
• HvsNasty: relates to games that were played with the Nasty agent.

HvsNasty games were played only in Lebanon in order to see the way
people in Lebanon play with an agent that is not always reliable. This
was done in order to increase the data in Lebanon and to see different
behavior of the Lebanese people. This agent was not running in Israel
neither in the U.S.A since this kind of data and human behavior were
already given in the HvsH games.

• HvsPAL: relates to those games that were played with the PAL agent.
– board type: this parameter indicates the board type data. The options are:

• BOTH-DD: refers to games in which an agent played with a human in a
co-dependent board, i.e., both players depends on each other in reaching
the goal.

• GUI-TI: refers to games in which an agent played with a human in a
dependent board, but the human player was the task-independent, i.e.,
the human had all the chips needed to reach the goal while the agent did
not have the chips to reach the goal.

• AGENT-TI: refers to games in which an agent played with a human in
a dependent board, but the agent player was the task-independent, i.e.,
the agent had all the chips needed to reach the goal while the human did
not have the chips to reach the goal.



124 G. Haim et al.

• TI-TD: refers to human versus human games in which one side was task-
independent and the other human player was task-dependent.

– dormant : for each player in the game, this parameter indicates the number
of consecutive rounds the player did not move.

– isFirstProposal : indicates whether the proposal is the first proposal in the
game.

– firstAcceptedProposal : indicates whether the proposal is the first proposal in
the game that was accepted.

– originalDependency : indicates the task dependency of each player at the
beginning of the game, which was one of the options: task-dependent or task-
independent.

– resultingDependency : indicates the task dependency of each player at round
n+1 assuming the offer is fulfilled. The options are: task-dependent or task-
independent.

– prevFullTransfer : for each player, this parameter indicates whether the pre-
vious proposal in round n−1 the player fulfilled the agreement or not.

– prevPartialTransfer : for each player, this parameter indicates whether the
previous proposal in round n−1 the player at least partially fulfilled the agree-
ment or not.

– sentOnceFullTransfer : for each player, this parameter indicates whether at
least one of the previous proposals within the game, the player fulfilled the
agreement.

– sentOncePartialTransfer : for each player, this parameter indicates whether
at least in one of the previous proposals within the game, the player partially
fulfilled the agreement or not.

5 The CCMA

The purpose of our research is to create a novel methodology that will automate
the process of building a learning model from available data using machine learn-
ing algorithms. The machine learning algorithms will be chosen automatically,
out of four potential algorithms, by comparing the performance on the available
data. In this section we present the CCMA, i.e., Cross Culture Methodology
Algorithm. The CCMA evaluates and compares learning algorithms using the
Leave-One-Out strategy. The reason for using the Leave-One-Out technique is
to examine a model’s prediction accuracy based on a single game instance. The
more game instances a model is tested upon, the more reliable a model’s pred-
ication accuracy is. The Leave-One-Out strategy first partitions the data into
k instances. Subsequently k iterations of training and validation are performed
such that nearly all the data except for a single instance is used for training and
the model is tested on that single instance. According to the paper by Efron [3]
the accuracy that is obtained from using this strategy is known to be almost
unbiased. In the CCMA we have selected four algorithms to use in order to
determine models for predication: J48, RepTree, Naive Bayes and Multilayer
Perceptron (Sigmoid). The reason for using only four algorithms is due to the
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fact that there are many machine learning algorithms, and the process of running
the CCMA has its overhead, and thus only four common algorithms were cho-
sen. Moreover, the reason for not choosing a single algorithm is due the fact that
each algorithm builds a different model. Thus in some situations one algorithm is
preferable than the other based on the prediction accuracy. These algorithms are
known as machine learning algorithms that can give a probability of predication
[8,20,24]. The J48 algorithm is used to generate a decision tree. The decision
tree can be used for classification, and for this reason, J48 is often referred to as a
statistical classifier. According to “Top 10 algorithms in data mining” paper [23]
The J48 algorithm was ranked the first. The RepTree algorithm is a fast decision
tree learner. It builds a decision/regression tree using information gain/variance
and prunes it using reduced-error pruning (with back-fitting). The Naive Bayes
is an algorithm from a family of simple probabilistic classifiers based on applying
Bayes’ theorem with strong (naive) independence assumptions between the fea-
tures. The Sigmoid algorithm is a feed-forward artificial neural network model
that maps sets of input data into a set of appropriate outputs. In order to build
the aforementioned learning models we used the Weka framework, which is a
toolkit containing machine learning algorithms for data mining tasks.1

5.1 Implementation

As opposed to manually determine learning models for prediction, based on
trial and error, the CCMA automates the process of building a learning model
from available data using a machine learning algorithm that will yield the best
predication. Before describing the CCMA methodology, we make the following
definitions. The Source set, denoted S, composed of game instances, as described
in Sect. 3, will be used to test a given model. Let Si denote the current game
instance used for testing. The Integrated set, denoted T , composed of game
instances, as described in Sect. 3, will be used to build the learning model. The
local set for game instance i, denoted Li, is a data set composed from the Source
set, excluding Si, as defined below.

Li = (S\{Si}) (1)

The local model for game instance i, denoted Lmod
i , is a model based on the local

set for game instance i, Li, with a given algorithm.
The cross culture set for game instance i, denoted Ci, is a data set composed

from the local set, Li and the Integrated set, as defined below.

Ci = Li ∪ T (2)

The cross culture model for game instance i, denoted Cmod
i , is a model based

upon the cross culture set for game instance i, Ci, with a given algorithm.
The cross culture algorithm, denoted Calg, is the algorithm that will yield

the best prediction when based upon the cross culture model.
1 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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The local algorithm, denoted Lalg, is the algorithm that will yield the best
prediction when based upon the local model.

The local average, denoted Lavg[alg], is the averaged prediction for the local
model based upon the alg algorithm.

The cross culture average, denoted Cavg[alg], is the averaged prediction for
the cross culture model based upon the alg algorithm.

CCMA(S, T )

1. for each alg do
(a) for Si in S

i. Li = S\{Si}
ii. Ci = Li ∪ T
iii. Lmod

i = buildModel(alg, Li)
iv. Cmod

i = buildModel(alg, Ci)
v. Lavg[alg] += checkPrediction(alg, Lmod

i , Si)
vi. Cavg[alg] += checkPrediction(alg, Cmod

i , Si)
2. Lalg = maxalg{Lavg[alg]}
3. Calg = maxalg{Cavg[alg]}
4. return Lalg, Calg

Following is a detailed explanation to the CCMA:

1. The algorithm is executing a Leave-One-Out strategy on the Source set. In
the process, the algorithm will isolate a single instance of a game Si from the
Source set that will be defined as the test instance(CCMA: (a)).

2. The algorithm creates the local set for the current game instance by removing
the Si instance from the Source set(CCMA: i.).

3. The algorithm creates the cross culture set for the current game instance by
combining the local set with the Integrated set(CCMA: ii.).

4. The CCMA will create the local model using the Weka framework based on
the local set and the current algorithm alg(CCMA: iii.).

5. The CCMA will create the cross culturemodel using the Weka framework based
on the cross culture data set and the current algorithm alg(CCMA: iv.).

6. Using The Weka framework, we will predict the test set, si with the local
model and add the predication to the local average (CCMA: v.).

7. Using The Weka framework, we will predict the test set, si with the cross culture
model and add the predication to the cross culture average (CCMA: vi.).

8. The local algorithm is set to be the algorithm with the highest prediction
average in the local average (CCMA: 2.).

9. The cross culture algorithm is set to be the algorithm with the highest pre-
diction average in the cross culture average (CCMA: 3.).
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5.2 CCMA Results

The CCMA examines two sets of data: Source set and Integrated set. In order to
automate the process upon various data sets, we have defined 122 combinations
upon which to execute the CCMA. Before examining the results, we will present
the following definitions. Each data set is associated with the country from which
the game instances were created. As described in Sect. 3, we have focused on three
countries:

– Israel will be referred in the data sets as IL
– Lebanon will be referred in the data sets as LEB
– United States will be referred in the data sets as USA

The data sets from each country is divided as well into various board configura-
tions:

– Human versus Human will be referred in the data sets as HvH
– Human versus Purb will be referred in the data sets as Purb
– Human versus Pal will be referred in the data sets as Pal
– Human versus Nasty will be referred in the data sets as Nst

It is important to note that when different board configurations are combined
into a data set within the same country, a ‘+’ sign will be used. In addition to
the data sets from the three countries we have created combined data sets which
are composed from various countries:

– AllHAllPr All the Human vs. Human games in both Israel and the U.S.A
together with all the Human vs. Purb games in all culture.

– AllPr All the Human vs. Purb games from all the culture.
– Purb USA IL All the Human vs. Purb games in both Israel and the U.S.A

together
– AllPl+Nst All the Human vs. Pal games from all the culture together with

the Human vs. Nasty games.
– AllPr+Nst All the Human vs. Purb games from all the culture together

with the Human vs. Nasty games.

For example the data set of Human versus Purb in Israel is defined as IL Purb,
and all the Human versus Pal games instances in addition to the Human versus
Nasty played in Lebanon is defined as AllPl+Nst Table 1 shows the results which
had better prediction when considering the Integrated set as part of the learning
model using the CCMA.

6 Cross Culture Analysis

We have executed the CCMA upon data sets regarding the transfer model, as
described in Sect. 3.4. The Transfer model predicts the extent to which a person
was reliable in the negotiation. Each row contains the following columns:
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– Source the Source data set.
– Results a brief description of results using the local model as learning model
(as described in Sect. 5). Contains the following info:

• Algorithm the selected algorithm for the local model, as described in
Sect. 5.

• Accuracy the accuracy (Accuracy) of the transfer model based on the
local model.

• Frequency the frequency selection of the chosen algorithm.
– Integrated the Integrated data set.
– Algorithm the selected algorithm for the cross culture model, as described

in Sect. 5.
– Accuracy the accuracy (Accuracy) of the transfer model based on the cross

culture model.
– Frequency the frequency selection of the chosen algorithm.

Table 1 reports performance for each of the Source data set and for each
Integrated data set. To fully understand the reports, we will examine line 22.
In line 22 the Source data set is LEB Pal, i.e. all the Human vs. Pal games
played in Lebanon. In the Results info we can see that the Sigmoid had the
best predication in 28 instances out of 47 when using the local model, with an
average accuracy of 82.02. In addition, we can see that the Integrated set was
Purb USA IL, i.e. all the Human vs. Purb games in both Israel and the U.S.A
together. In the Algorithm column, we can see that the Sigmoid had the best
predication in 23 instances out of 47 when using the cross culture model, with
an average accuracy of 90.58. In order to find a common learning model for
various culture, we will examine each data type (such as HvH, Pal, Purb) and
it is recommended learning model.

6.1 HvsH Data-Type Analysis

Regarding the HvsH data-type, i.e., IL HvH and USA HvH (Lebanon is not
included since no human versus human games were played), we can see that
when each one of them is used as Source set, the recommended Integrated set is
either USA Purb or IL Pal. When observing lines 10–12 in Table 1, using only the
IL HvH as the Source set for the learning model, we have a prediction accuracy
of 70.64 with the J48 algorithm that was chosen with a frequency of 48/57.
However, using USA Purb as the Integrated set (line 11), we have a prediction
accuracy of 71.17 with the Naive algorithm that was chosen with a frequency of
56/57. When using IL Pal as the Integrated set (line 12), we have a prediction
accuracy of 70.78 with the Naive algorithm that was chosen with a frequency
of 44/57. When observing lines 24–29, using only the USA HvH as the Source
set for the learning model, we have a prediction accuracy of 60.10 with the J48
algorithm that was chosen with a frequency of 44/57. However, using USA Purb
as the Integrated set (line 24), we have a prediction accuracy of 68.14 with the
J48 algorithm that was chosen with a frequency of 30/57. When using IL Pal
as the Integrated set (line 27), we have a prediction accuracy of 61.46 with the
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Table 1. Performance comparison for each Source data set and Integrated data set

Source Results Integrated Algorithm Accuracy Frequency Line

AllPl+Nst Algorithm: J48

Accuracy: 70.80

Frequency: 130/195

IL HvH J48 75.26 96/195 1

AllPr RepTree 73.05 167/195 2

USA Purb J48 72.76 189/195 3

USA HvH RepTree 72.69 152/195 4

AllHAllPr J48 71.77 154/195 5

LEB Purb RepTree 71.28 166/195 6

AllPr Algorithm: J48

Accuracy: 85.71

Frequency: 172/173

LEB Pal RepTree 87.27 73/173 7

AllPr+Nst Algorithm: RepTree

Accuracy: 79.19

Frequency: 176/227

LEB Pal RepTree 83.27 127/227 8

Purb USA IL Algorithm: J48

Accuracy: 72.07

Frequency: 66/94

USA HvH J48 73.75 44/94 9

IL HvH Algorithm: J48

Accuracy: 70.64

Frequency: 48/57

LEB PAL+Purb Naive 74.07 17/57 10

USA Purb Naive 71.17 56/57 11

IL Pal Naive 70.78 44/57 12

IL Purb Algorithm: Sigmoid

Accuracy: 76.61

Frequency: 31/40

LEB Nst+Purb J48 76.89 32/40 13

LEB Purb J48 76.86 39/40 14

LEB Nst+Pal Algorithm: RepTree

Accuracy: 77.52

Frequency: 76/101

IL HvH J48 77.96 98/101 15

LEB Nst+Purb Algorithm: J48

Accuracy: 82.78

Frequency: 106/133

IL HvH J48 88.56 55/133 16

LEB Pal J48 85.08 100/133 17

USA HvH RepTree 84.49 108/133 18

IL Pal Sigmoid 84.36 65/133 19

IL Purb RepTree 83.76 127/133 20

USA Purb J48 83.48 110/133 21

LEB Pal Algorithm: Sigmoid

Accuracy: 82.02

Frequency: 28/47

Purb USA IL Sigmoid 90.58 23/47 22

USA HvH J48 86.09 32/47 23

USA HvH Algorithm: J48

Accuracy: 60.10

Frequency: 44/57

USA Purb J48 68.14 30/57 24

Purb USA IL J48 64.93 42/57 25

AllPl+Nst Navie 63.19 39/57 26

IL Pal Sigmoid 61.46 48/57 27

USA Pal Sigmoid 60.97 23/57 28

IL HvH Sigmoid 60.75 45/57 29

USA Pal Algorithm: Sigmoid

Accuracy: 68.96

Frequency: 18/42

AllPr Sigmoid 70.51 18/42 30

USA Purb Algorithm: J48

Accuracy: 74.12

Frequency: 38/54

LEB Nst+Purb J48 75.63 52/54 31

LEB Pal RepTree 75.27 23/54 32
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Sigmoid algorithm that was chosen with a frequency of 48/57. Although we have
found a common Integrated data set for the HvsH data-types, we see that the
algorithms composing the models are different. As a result, a specific model will
be defined for each HvsH data-type per country.

6.2 Purb Data-Type Analysis

Regarding the Purb data-type, when the LEB Purb is set as the Source set,
we can see that there is not any Integrated data set that can contribute to the
model’s prediction accuracy (since there is not a line regarding the LEB Purb
as Source set). However, when the IL Purb or the USA Purb are defined as the
Source data set, the recommended Integrated set is LEB Nst+Purb. Observing
lines 13–14, when using only the IL Purb as the Source set for the learning
model, we have a prediction accuracy of 76.61 with the Sigmoid algorithm that
was chosen with a frequency of 31/40. However, using LEB Nst+Purb as the
Integrated set (line 13), we have a prediction accuracy of 76.89 with the J48
algorithm that was chosen with a frequency of 32/40. Observing lines 31–32,
when using only the USA Purb as the Source set for the learning model, we
have a prediction accuracy of 74.12 with the J48 algorithm that was chosen
with a frequency of 38/54. However, using LEB Nst+Purb as the Integrated set
(line 31), we have a prediction accuracy of 75.63 with the J48 algorithm, that
was chosen with a frequency of 52/54. In conclusion, we have found a common
Integrated data set for the Purb data type and using only the J48 algorithm for
the learning model, we can conclude that the LEB Nst+Purb data is a common
model for Israel and U.S.A Purb games.

When the LEB Nst+Purb is set as Source set the recommended Integrated
set is LEB Purb. Observing lines 16–21, when using only the LEB Nst+Purb
as the Source set for the learning model, we have a prediction accuracy of 82.78
with the J48 algorithm that was chosen with a frequency of 106/133. However,
using IL HvH as the Integrated set (line 16), we have a prediction accuracy of
88.56 with the J48 algorithm that was chosen with a frequency of 55/133. In
conclusion, we have found that using a different culture data set can improve
another’s learning model and result a better prediction accuracy.

6.3 Pal Data-Type Analysis

Regarding the Pal data-type, when the IL Pal is set as the Source set, there is
not any Integrated data set that can contribute to the model’s prediction accu-
racy (since there is not a line regarding the IL Pal as Source set). However, when
considering LEB Pal and the USA Pal as Source sets, the Purb USA IL and the
AllPr respectively as Integrated data set are recommended. Observing lines 22–23,
when using only the LEB Pal as the Source set for the learning model, we have a
prediction accuracy of 82.02 with the Sigmoid algorithm that was chosen with a
frequency of 28/47. However, using Purb USA IL as the Integrated set (line 22),
we have a prediction accuracy of 90.58 with the Sigmoid algorithm that was cho-
sen with a frequency of 23/47. Observing line 30, when using only the USA Pal
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as the Source set for the learning model, we have a prediction accuracy of 68.96
with the Sigmoid algorithm that was chosen with a frequency of 18/42. However,
using AllPr as the Integrated set, we have a prediction accuracy of 70.51 with the
Sigmoid algorithm that was chosen with a frequency of 18/42. In conclusion, we
have found that using a different culture data set and a different data types can
improve another’s learning model and result a better prediction accuracy.

6.4 Combined Data-Type Analysis

Regarding the data sets that were combined of multiple data sets from different
culture, we can see that when the AllPr or the AllPr+Nst are used as Source
set the recommended Integrated set is LEB Pal. I.e. the Nasty (Human versus
Nasty agent) games did not affect the selection of LEB Pal as the recommended
Integrated set. Observing line 7, when using only the AllPr as the Source set
for the learning model, we have a prediction accuracy of 85.71 with the J48
algorithm that was chosen with a frequency of 172/173. However, using LEB Pal
as the Integrated set, we have a prediction accuracy of 87.27 with the RepTree
algorithm that was chosen with a frequency of 73/173. Observing line 8, when
using only the AllPr+Nst as the Source set for the learning model, we have a
prediction accuracy of 79.19 with the RepTree algorithm that was chosen with a
frequency of 176/227. However, using LEB Pal as the Integrated set, we have a
prediction accuracy of 83.27 with the RepTree algorithm that was chosen with
a frequency of 127/227. In conclusion, we can see that the LEB Pal can be used
as the Integrated set, based on the RepTree algorithm, regardless of whether the
Nasty games are included in the Source set.

In addition, we can see that when the ALLPl+Nst is used as Source set the
recommended Integrated set is IL HvH. Observing lines 1–6, when using only
the ALLPl+Nst as the Source set for the learning model, we have a prediction
accuracy of 70.80 with the J48 algorithm that was chosen with a frequency of
130/195. However, using IL HvH as the Integrated set, we have a prediction
accuracy of 75.26 with the J48 algorithm that was chosen with a frequency of
96/195. In conclusion, we have found that using a different culture data set can
improve another’s learning model and result a better prediction accuracy.

7 Conclusions and Future Work

In this section, we present guidelines for the type of data, from different cultures,
that is useful in building prediction models. We were looking for a generic rule
that would be beneficial for all the countries. After using the CCMA to automate
the process of selecting the data set to use for the learning model, and the
machine learning algorithm to use, the conclusions are that for the transfer
model, when the test set is composed of HvH (Human versus Human) games,
the recommended data set to integrate for the learning model is the USA Purb.
However, each culture will have a specific model based on the recommended
algorithm mentioned in Sect. 6.1.
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When the test set is composed of Purb (Human versus Purb) games, the
games played in Israel and U.S.A will be tested on a common model created
from the LEB Nst+Purb data set and the J48 algorithm. Whereas the games
played in Lebanon will be tested on a different model created from the IL HvH
data set and the J48, proving that a different culture data set can improve
another’s learning model and result a better prediction accuracy.

When the test set is composed of Pal (Human versus Pal) games, we can see
that when IL Pal is tested, there is no Integrated set that can improve the model’s
prediction. However, when considering LEB Pal and USA Pal as Source sets,
the Purb USA IL with the Sigmoid algorithm and the AllPr with the Sigmoid
algorithm respectively are the recommended models to use.

And lastly, when all the Purb games are played, the Nasty (Human versus
Nasty agent) games have no effect on the prediction accuracy of the learning
model that is based on LEB Pal as the Integrated set with the RepTree algo-
rithm, that is recommended for the AllPr games. And when testing all the games
of Human vs. Pal, a learning model that is based on IL HvH and the J48 algo-
rithm has the best prediction accuracy.

Our future work will focus on building a new cultural sensitive agent which
will first examine the models and algorithms which had the best accuracy pre-
diction per culture. Upon the results we will determine which test set was the
closest to simulating the human behaviour.
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Abstract. With the pervasive use of social networks supporting digi-
tal communities, the problem of finding a solution to a given problem
shared by a group of users that meets the requirements/preferences of
its members is gaining great interest in several research domains. Soft-
ware systems supporting the decision-making process taking place when
building “group solution” would greatly enhance the potentiality of these
digital communities. In the present work, a Group Decision Support Sys-
tem is proposed to help a group of users to find a set of tourist attrac-
tions, selected among a huge set of possible alternatives, that meets the
preferences of each individual. The proposed system relies on an auto-
matic negotiation mechanism to incrementally build a single recommen-
dation for the whole group, according to the individual lists of preferred
attractions of each member. Negotiation occurs among software agents
that simulate different conflict resolution styles of the real users they
respectively represent. Experimental results show the effectiveness of the
system also when dealing with real end users preferences.

Keywords: Automated negotiation · Group decision support systems ·
Thomas Kilmann Conflict resolution styles

1 Introduction

With the wide diffusion of social networks and online social group systems, the
problem of providing automatic support to come to shared decisions is getting
more and more attention [16]. Usually, the process to reach a decision shared
among members of a group is very complex, and it includes several stages such as
to generate and organize different ideas, to set priorities and to resolve possible
conflicts. The variety of stages and the necessity to iterate them several times
to reach a consensus makes the process very time-consuming requiring several
meetings among the group members.
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Decision Support Systems (DSS) are information systems that interact with
individuals to support them in their decision-making activities by computing a set
of recommendations among which users may select the one they consider more
appropriate [9]. A subcategory of DSS is the Group Decision Support Systems
(GDSS), used when decisions involve not a single user, but a group of people [12].
A crucial aspect in GDDS is how to reach a consensus in a group and how to mea-
sure individual satisfaction of its members once a decision is suggested [8].

The problem addressed in this work is to find a set of tourist attractions,
referred to as Points of Interest (POI), for a group of users, according to the
preferences of each member of the group, taking into account that the individual
preferences can be inconsistent with the others, or even conflicting [17]. Of course,
according to the number of members in the group and the number of preferences
specified by them, the solution space may grow exponentially, so preventing the
possibility to produce all possible solutions in a polynomial time. In addition,
to come to a shared solution as close as possible to the user’ preferences, users
should interactively take part in each step of the process to build the solution.

In the present work, a GDSS designed to recommend a set of POI to a group
of users is proposed. Each member of the group is represented by a software
agent and the process of coming to a shared decision is modeled as an iterative
automated negotiation among agents [4]. If negotiation is successful, it leads
to an agreement representing the shared solution. Individual preferences are
explicitly specified by end users, and they are used by the corresponding agents
in the negotiation phase. During negotiation, agents have different behaviors to
respond to conflicting situations modeled according to the widely used Thomas-
Kilmann Conflict Mode [11]. In order to limit the solution search space during
the negotiation process, two heuristic procedures are proposed. The proposed
system has been evaluated through experimental tests in order to assess the
impact of both the different conflict resolution styles of negotiating agents and
the proposed heuristics on the process of finding a recommendation for the group.
In addition, the system has been used by real users that provided, through
online questionnaires, a measure of their level of satisfaction regarding the system
usability and the quality of the received recommendations in relations with their
preferences.

2 Related Works

The problem of defining the proper decision strategy is crucial in GDSS. In
Choicla [18], for example, a decision support system is proposed that provides
users with the possibility to choose among different decision strategies for inde-
pendent decision tasks, so allowing to personalize the application to the user’s
preferences by providing different heuristic functions and trustworthiness levels
to the group members. Another example is represented by the Social Dining
system [7], that is an application helping users to find an agreed solution regard-
ing the choice of a restaurant, with the peculiarity that recommendations are
generated by collecting real data from social networks. The solution is obtained
by aggregating the collected data using different strategies.
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A different approach is proposed in [1], where negotiation among software
agents, each one representing a group member, is used to merge the individ-
ual recommendations. However, differently from our case, they adopt different
negotiation protocols according to the number of group members. In [6], a nego-
tiation framework is proposed where agents are characterized by two profiles: a
preference profile used to generate the individual recommendations, and a nego-
tiation profile determining the agent behavior during the negotiation process,
that can be self-interested, collaborative, and highly collaborative. This pro-
posal was extended in [5], where different agents model different users, and a
mediator agent manages the negotiation process. The approach is similar to the
one presented in this work, but in our case agent profiles are based on real user
profiles, as they result from questionnaires filled by the real users. In addition,
in our approach the mediator agent is responsible for building the group recom-
mendation according to the individual proposals of agents during negotiation,
while in [5] the recommendation is jointly computed by the agents during negoti-
ation relying on a more complex negotiation protocol. Also in [19] a negotiation
approach is proposed, but differently from our work, there is not a mediator
agent. Each agent uses a monotonic unilateral concession strategy, and it sends
its proposal directly to the other agents, so one recommendation at a time is
circulated during negotiation. An agent evaluates and accepts the proposal in
case its utility value is the same as the agent’s current proposal utility value. On
the contrary, the proposal is rejected and a new proposal generated by an agent
available to concede is selected for the next negotiation round so iterating the
negotiation.

3 Conflict Management Style

The Conflict Management Style describes the human beings’ strategies to resolve
conflicts arising during negotiation. In literature, several models of conflict man-
agement have been proposed. In 1974, Kilmann and Thomas [11] identified five
different categories of interpersonal conflict management styles. Such styles are
identified with respect to two fundamental dimensions: cooperation, i.e., the
extent to which the individual attempts to satisfy the other person’s interests,
and assertiveness, i.e., the extent to which the individual attempts to satisfy
his/her own interests. These two dimensions are used to define five styles of
dealing with conflicts, as follows:

– Accommodating : with this style a person prioritizes cooperation at the
expense of assertiveness, putting aside her/his own goals and allowing the
others to achieve their own;

– Competitive: this style relies on assertiveness, so a person tries to pursue its
own interests;

– Compromise: this style models people that aim to build a solution meeting
all parties preferences;

– Collaborating : this style models a collaborative approach that aims to resolve
conflicts by making the involved parties working all together;
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– Avoiding : with this style a person avoids conflicts by searching for a solution
in a diplomatic way, i.e. going forward in the decision process until a solution
is found, but withdrawing or postponing any threatening issue.

Here, the Thomas-Kilmann Conflict Mode Instrument (TKI), based on inter-
views consisting of questionnaires, is used to assess the conflict management style
of real users. For each conflict management style a specific negotiation behavior
is associated to the corresponding agent.

4 The Proposed Approach

The proposed Group Decision Support System relies on the design of a multi-
agent system to help end-users to find, in a short time, a shared solution con-
sisting in a set of a given number of tourist attractions, named Points of Interest
(POI), to visit. The multi-agent system is composed of a set of agents, called
user agents, each one acting on behalf of a group member, and of a special
agent, called mediator agent, acting as a mediator that interacts with the others
to build a recommendation for the group trying to minimize the users’ interven-
tion. At the end of the process, the end users would be requested to approve or
not the recommendation proposed by the system.

A crucial step in the implementation of a GDSS is the definition of the
decision-making strategy to use. For example, a voting mechanism could be
deployed that provides an optimal solution in terms of decision speed allowing
to avoid deadlocks problems. However, mathematical economist Kenneth Arrow
proved in 1952 that there is no consistent method of making a fair choice among
three or more choices with preferential voting [10], and one-shot mechanisms may
not allow for the complete exploration of the solution space, whereas outcomes
that satisfy also the minority of the users may exist. A second possibility is to
design a consensus strategy, where group members try to reach an agreement
on an outcome. This criterion usually requires a higher involvement of each
group member in the decision-making process and longer computational times,
but it ensures a good solution quality because a decision is based on the whole
community consensus.

Here, we propose a consensus approach based on a negotiation mechanism
where user agents try to reach an agreement on behalf of the corresponding
group member users in an automatic way. Users are involved only in providing
their preferences on items (to obtain reliable data), and in the final decision
approval. Agents represent users with different behaviors in conflict resolution.
It is assumed that there is a group U of n users, a set I of t POI, and a set
R of evaluations (also called ratings), given by the individual users to some
POI in the system. A user u ∈ U assigns a rank ru,i to an item i ∈ I with
ru,i ∈ {1, 2, 3, 4, 5}, so Ui is the set of users who evaluated the item i, and Iu
is the set of items evaluated by the user u. A recommendation, i.e. a solution
computed by the system, is a subset of the set I with dimension m ≤ t, that
represents a compromise among the individual users’ preferences, i.e. a solution
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that maximizes the group satisfaction also guaranteeing a minimum utility value
for each member of the group.

4.1 Group’s Preferences

A key factor to implement an effective GDSS is to rely on reliable data [12]. In our
domain, data are the lists of preferences/ratings on POI for each user (Iu). In this
direction, we decided not to rely on any recommendation algorithm to estimate
ratings, but to have the users explicitly expressing them. Whenever a user accesses
the system, he/she is able to rate as many POI as he/she wants. This allows to
guarantee the quality, attainability, and accuracy of the system data.

We define the POI list PG for a specific group G as follows:

PG =
⋃

u∈G

Iu

that represents the set of POI obtained from the aggregation of the individual
preference lists of the different group members. The mediator agent is in charge
of collecting and aggregating the users’ preferences. The PG set represents the
initial solution space for the mediator agent. This space could change (e.g.,
increase) during the decision-making process.

In principle, in order for the mediator to search for a solution, each group
member should evaluate all the POI that have been evaluated by the other mem-
bers, but not by him/herself (PG\Iu). This configuration (complete knowledge)
allows to find optimal solutions.

However, each user should potentially be involved in a long process to provide
all the needed information, so an upper bound to the number of POI to be rated
could be set (partial knowledge). Typically, a reasonable upper bound is set to
20. In this case, in order to create the PG set taking into account the users’
preferences (i.e., the items they evaluated with the higher rates), the k-best
rated POI for each user are selected from the corresponding Iu. Hence, the k
value depends on the number of users in a group (k = 20/n). Subsequently,
whenever the mediator requires additional information to proceed, additional
ratings could be requested to the users. Of course, in the partial knowledge case,
it is not guaranteed that an optimal solution is found.

4.2 Interaction Protocol

The proposed decision-making process is based on an alternation of a Merging
Ranks step, performed by the mediator agent to aggregate preferences and com-
pute a subset of POI to propose to the group, and a Negotiation step, where
each user agent may accept the received proposal or reject it, and reply with
an alternative proposal. In detail, such alternating protocol is composed of the
following steps:



A Multi-agent System for Group Decision Support 139

1. the mediator generates a suggested solution for the group according to the
individual preference lists of each group member;

2. each user agent can accept/reject the received proposal;
2.1 if the proposal is rejected, the user agent generates a counteroffer;

3. if the proposed solution is accepted by all user agents, it is proposed to the
end users as a system recommendation;
3.1 otherwise the mediator aggregates the received counteroffers generating

a new solution for the group, and it starts a new negotiation round.

The negotiation process may be iterated for a number of rounds set by the
mediator at the beginning of the negotiation. If all the allowed negotiation rounds
take place without reaching an agreement, the process ends by proposing a solu-
tion to the end users composed of the best m POI in the mediator current POI
domain.

4.3 The Mediator Agent Strategy

The mediator agent is responsible for building and sending proposals to the
group members. Each proposal is a set of POI P = {p1, ..., pm}, that, if accepted
by all members, becomes the group solution. In order to build a proposal, the
mediator refers to the set of POI it is aware of, i.e. the set PG that have been
rated by all the users, known as the Mediator Domain. In order to build the first
proposal, the mediator calculates a group rate rG,j for each POI j, as follows:

rG,j =
∑

u∈U

ru,j · pj
n

that represents a weighted mean of the individual ratings where the weight
pj ∈ [0, 1] is a measure of the popularity of j, with pj = 1 if all the user in the
group spontaneously assigned a rating to j (where spontaneously means that the
rating is assigned without being explicitly required). In group recommendation
literature different approaches to aggregate individual preferences are proposed
and evaluated [15]; here, a simple weighted average is used, that is one of the
most widely adopted approaches.

The first proposal is composed by selecting the m POI with the highest group
rank. Once the first proposal is computed, the mediator sends it to all user agents
that privately evaluate it according to their own utility functions.

In case the proposal is rejected, the mediator receives a number of counterof-
fers, each one composed of a possible new set of m POI (Oi = {pi1 , ..., pim})
from each user agent i that rejected the proposal. If a counteroffer contains POI
that are not in the mediator domain PG, the mediator asks the user agents to
rate them (interacting with the real users). Then, the mediator generates a new
proposal on the new domain PG, by applying the same strategy used to build the
first proposal. If the new proposal is different from the previous one, it is sent
to the user agents; otherwise the mediator modifies it, according to the received
counteroffers, by replacing the POI that in its previous solution was discharged
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by the highest number of user-agents (when the counteroffers were generated)
with the one that had the highest number of new occurrences in the generated
counteroffers.

4.4 The User Agent Strategy

Each user agent evaluates the proposal sent by the mediator according to its
behavior in conflict resolution, assigned to the agent once the corresponding
user filled the TKI questionnaire.

For each user agent, an individual optimal value (i.e., the value corresponding
to the solution with the highest utility) and a reservation value are set. Given
Iu the set of POI evaluated by the user u, and Iu(m) the set of m POI with the
highest rank for the user u, the optimal value, at time 0, is given by:

OPTu(0) =
∑

i∈Iu(m)

r̃u,i
m

where r̃u,i is the rating the user u assigned to the POI i normalized in [0, 1].
The reservation value is set to the half of OPTu(0) for all user agents, and it
represents the minimum utility value up to which the user agent is willing to
concede during the negotiation.

When a user agent receives an offer P t from the mediator at negotiation
round t, it evaluates the utility of the received offer as follows: Uu(P t) =∑

i∈P t
r̃u,i

m . This value is compared with the agent utility value of the previ-
ous negotiation round OPTu(t − 1). The decision strategy is implemented as
follows:

1. if Uu(P t) ≥ OPTu(t−1), then the agent accepts the offer and sets OPTu(t) =
Uu(P t);

2. if Uu(P t) ≥ OPTu(t−1)−Δu(t), then the agent accepts the offer by conceding
in its utility of a value smaller or equal of Δu(t), and it sets OPTu(t) =
Uu(P t);

3. in all the other cases, the agent rejects the offer, and it makes a counteroffer
either by randomly conceding in utility (OPTu(t) = OPTu(t− 1)−Δu(t)) or
without conceding (OPTu(t) = OPTu(t − 1)).

The utility concession value Δu(t), at time t, depends on the user conflict
resolution style. In [14] the authors associated with each conflict resolution style
of the TKI model different concession strategies depending on the negotiation
round. Inspired by this work, we defined the agent concession strategies as
follows:

– Accommodating, it concedes a constant utility value during all negotiation
rounds, so being the most collaborative profile;

– Competing, it concedes low utility values at the beginning of the negotiation,
while increasing the concession value at the end of negotiation to try to reach
an agreement before a negotiation failure occurs;
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– Compromising, it concedes high utility values at the beginning and at the end
of the negotiation, while concedes a constant utility value in the intermediate
rounds;

– Collaborative, it concedes a constant value throughout negotiation, but lower
than the Accommodating one, since this behavioral style does not impact the
negotiation [14];

– Avoiding, it is a passive style of conflict resolution, meaning that the agent
would not negotiate in the first place, so, here a very low constant concession
value is adopted.

The concession values for the different profiles were empirically derived from
a set of experiments carried out adopting different conflict resolution styles and
they are reported in Table 1, where the negotiation rounds are split in three
negotiation steps, initial, intermediate and final, as proposed in [14].

Table 1. Concession strategies and Δ values.

Initial rounds Intermediate rounds Final rounds

Accommodating 0.08 0.08 0.08

Competing 0.01 0.025 0.05

Compromising 0.06 0.025 0.06

Collaborative 0.07 0.07 0.07

Avoiding 0.01 0.01 0.01

The User Agent Counteroffer Generation. In case a user agent rejects
a proposal, it has to generate a counteroffer whose utility value is calculated
taking into account whether a concession takes place or not. Since there could
be potentially many different POI combinations with the same utility value,
the search space when computing a counteroffer can be too large. Hence, in
order to compute a counteroffer, two different heuristic strategies to reduce the
search space are defined, Search in Domain and Reference Point. Moreover,
the mediator agent may communicate to the user agents which strategy to use
according to the negotiation state, i.e., the number of rounds, or the number of
agents that rejected its offer. The two heuristic strategies are illustrated in the
next sections.

Search in Domain. With this heuristic, the user agent orders the items of
the proposal P t received by the mediator according to its own ranking, and
it generates a counteroffer by modifying the proposal to obtain an admissible
proposal (i.e., a proposal with the required utility) by making the less possible
number of POI substitutions searching in its private domain.
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Reference Point. In this strategy, the mediator sends a different proposal to
each agent u that represents a reference point for the agent to build a counteroffer
[3]. This means that the proposal is evaluated by considering the ratings of all
the other agents except than u. Experimentally (see Sect. 5.1) it was evaluated
that this strategy has a positive impact on the negotiation when there is only one
agent conflicting with a given proposal that is admissible for the other members
of the group. So, the conflicting agent is required to adapt its objectives to the
reference point as much as possible, since it satisfies the majority of the group.

5 Experimental Results

In order to evaluate the proposed system performances in terms of the accepted
recommendations generated, a first preliminary analysis was carried out on sim-
ulated data, i.e., by assigning random rating values to the POI extracted from
the social network Foursquare. Two types of simulations were carried out in the
cases of mediator complete and partial knowledge of POI ratings. Successively,
the same experiments were executed in a pilot study, where a group of real end
users were asked to use the system, so providing real data. After using the system,
they filled a questionnaire concerning both the goodness of the recommendations
provided by the system, and its usability.

5.1 Complete Knowledge

First, the performances of the heuristics for the generation of counteroffers, the
Search in Domain and the Reference Point, were evaluated together with the
negotiation success rate when the mediator has a complete knowledge, i.e. in
the case it knows all the ratings for all the POI in the dataset. The generated
recommendations were evaluated in different experimental setting by varying the
number t of POI, from 20 to 1000, the group size n from 3 to 5 members, and
the number m of POI in the solution from 1 to 5. The size of a group is kept
within the chosen range because the focus of the present work is to test decision-
making mechanisms for small groups that rely on mechanisms (e.g., interpersonal
relationships and mutual influences) that are different with respect to the ones
adopted for larger groups [13]. The group size determines the significant number
of POI in the solution in the case of simulated experiments. In fact, from a
preliminary experimental analysis, we derived that for cases with m > n a
solution is always found, so we set m ≤ n.

Each algorithm was executed 100 times for each possible configuration, and
for each execution, the users’ behaviors, i.e. their conflict resolution styles, were
randomly generated. The maximum number of allowed negotiation rounds was
empirically set to 30.

The success rate for the first heuristic is 99%, against 77% of the second one.
In Fig. 1(a), the average number of rounds to reach an agreement is plotted,
varying the number of available POI, and discharging the cases of negotiation
failures. As shown in Fig. 1(a), the Reference Point heuristic requires a greater
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(a) Average number of rounds to reach an
agreement.

(b) Average execution time to reach an
agreement.

Fig. 1. Results in case of complete knowledge.

number of rounds to reach an agreement with respect to the Search in Domain
case, reaching similar performances when the number of POI is greater than
1000. Therefore, the Reference Point does not represent a feasible solution for
sets of POI that vary from 20 to 1000, by making more complicated for user
agents to build counteroffers, so leading to failures in the negotiation process.

Moreover, by increasing the number of POI up to 500, the number of rounds
necessary to reach an agreement increases, as expected, because of the increased
dimension of the solution search space. On the contrary, by further increasing the
number of POI, the number of rounds to reach an agreement decreases because
the chances to generate acceptable counteroffers increase, so potentially reducing
the number of conflicts.

The execution time of the Reference Point algorithm is slightly greater than
the Search in Domain one, as reported in Fig. 1(b). Moreover, the trend of execu-
tion time differs from the one of negotiation rounds. In fact, while for a number
of POI greater than 500, the number of rounds to reach an agreement starts to
decrease, the average execution time increases. In this case, in fact, it is the time
required to compute a counteroffer that impacts more on the execution time.

We also evaluated the performances of the two heuristics by varying the size
of the group from 3 to 5 members. The success rate is very high, ranging from the
100%, for groups of 3, to 98% for groups of 5, in the case of complete knowledge
for the mediator. As we expected, when the number of agents increases, the num-
ber of negotiation rounds necessary to reach a shared solution increases, reaching
the value 7 when the number of POI varies from 250 to 500 (see Fig. 2(a)). Again,
when the number of POI is more than 500, fewer negotiation rounds are neces-
sary to find a solution (3 rounds). As shown in Fig. 2(b), when the number of
POI and the number of agents increase, the execution time of both algorithms
also increases, even though the execution time is more dependent on the number
of POI than on the number of agents.
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(a) Average number of rounds to reach an
agreement.

(b) Average execution time to reach an
agreement.

Fig. 2. Results in case of complete knowledge w.r.t. the number of users.

5.2 Partial Knowledge

In the second set of experiments the performance of the whole system using both
heuristics, the Search in Domain one in the first rounds, and the Reference Point
one in case of few conflicts, is analyzed with datasets varying from 20 to 1000
POI, the number of group’s members varying from 3 to 5, and solutions with a
number of POI varying from 1 to 4. The algorithm is executed 10 times for each
setting, with a maximum number of 30 negotiation rounds. Also in this case,
for each execution, the users’ behaviors are randomly generated. The Partial
Knowledge consists in setting the initial domain of the mediator with only the
top-k POI (randomly generated), while the user agents have their own ratings
on the complete dataset.

The success rate of the heuristics decreases by increasing the number of agents
(98% with 3 agents, 92% with 4 agents, and 85% with 5 agents). The success
rate in the case of partial knowledge is lower than the one obtained in the case of
complete knowledge (from 99% to 91%), and the highest number of negotiation
failures occurs in the case of a solution with 1 POI. As shown in Fig. 3(a), the
average number of rounds necessary to find an agreement increases by increasing
the number of agents (12.9 rounds with 3 agents and 13.5 rounds with 4 agents).
Instead, for negotiations with 5 agents, the average number of rounds decreases
(13.2 rounds) due to the highest number of negotiation failures. Accordingly, the
negotiations among 4 agents require more rounds to find a solution, while the
negotiations with 5 agents fail (when the algorithm fails, the number of rounds
employed is not included in the computation of the average number of rounds).

The execution time of the negotiation algorithm, showed in Fig. 3(b), is lower
than in the previous case since the combined use of the Reference Point and the
Search in Domain heuristics improve the system performances when the number
of POI is greater than 500.
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(a) Average number of rounds to reach an
agreement.

(b) Average execution time to reach an
agreement.

Fig. 3. Results in case of partial knowledge.

5.3 Pilot Study

In the last experiment, the system is evaluated in a realistic case study, with
a group of users having to choose a set of restaurants with respect to the pref-
erences of each group’s member. The realized system is composed of a Web
Application, showed in Fig. 4, and of an Automatic Negotiation Module, that
represents the core of the system. The Web Application allows the users to inter-
act with the system filling the TKI questionnaire, with providing the ratings for
the POI, and indicating the group’s composition. The Automatic Negotiation
Module is developed using the Jade framework [2].

Fig. 4. The web application user interface.
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We conducted the study on 10 groups, composed of 2 or 3 users. For each
group, the required solution is composed of a number of restaurants varying
from 1 and 3. The maximum number of rounds for each negotiation is set to
30. The used dataset contains 521 POI of the city of Naples, obtained using the
Foursquare API. After using the system, we propose to each user a questionnaire
containing 9 questions which aims to obtain an evaluation of the goodness of
the recommendation and of the usability of the system. The questionnaire is
composed of two sets of statements that the users are asked to rate with a score
ranging from 1 to 5 (respectively, strongly disagree, disagree, neutral, agree,
strongly agree). The first set concerns the evaluation of the user interaction with
the system, while the second one concerns the evaluation of the quality of the
proposed recommendations.

– System-User Interaction:
Q1 The system is easy to use;
Q2 Specific expertise is not required to use the system;
Q3 The system does not require several user interaction steps;
Q4 The number of required ratings is fair;

– Recommendations evaluation:
Q5 The system produced a recommendation;
Q6 The system produced a satisfying recommendation;
Q7 The system allowed discovering new POI.

Table 2. Percentage of answers for each question.

Strongly disagree Disagree Neutral Agree Strongly agree

Q1 0% 13% 0% 56% 31%

Q2 0% 0% 0% 69% 31%

Q3 0% 6% 6% 75% 13%

Q4 6% 19% 44% 31% 0%

Q5 0% 0% 0% 100% 0%

Q6 0% 0% 0% 31% 69%

Q7 0% 19% 25% 50% 6%

The users’ answers percentages reported in Table 2 show that the system
is considered user-friendly, rapid, easy to use and effortless. Different opinions
concerning the number of ratings required by the system to end users were
collected (Q4 in Table 2).

It should be noted that agents always find an agreement on the first solution
proposed by the system. The evaluations assigned by the users to the provided
recommendations show a great satisfaction, with the 70% of the users strongly
satisfied, and the remainder 30% simply satisfied. In addition, the users positively
replied to the question regarding if the system helped them in discovering new
POI.
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6 Conclusion

In this work, we propose a Group Decision Support System that uses an auto-
matic negotiation mechanism among software agents representing members of a
group of users, to provide the final decision for the group, i.e. a decision that
meets the requirements/preferences of the members. There is an agent for each
group’s member that acts on his/her behalf during the negotiation, modelling
his/her behavior in a conflict situation. The user’s conflict resolution styles are
obtained through the well-known Thomas Kilmann Instrument, a questionnaire
filled by each user after the registration in the system. The negotiation is man-
aged by a mediator agent that generates proposals of solutions, and it evaluates
the counteroffers received by the other agents. It decides also the heuristics the
user agents use in the generation of the new proposals.

We analyze the system by conducing two experiments with simulated data,
and one real pilot study. The results show that the system provides high success
rate in finding a solution with a number of negotiation rounds lower than 30,
both in the case of complete knowledge and of partial knowledge. The pilot
study reported satisfying results in terms of the negotiation success rate, and of
the quality of the recommendations provided. These results are promising and
suggest some possible way to extend the work. Firstly, it would be useful to try
to automatize the steps where an interaction with the user is required, so users
can avoid to fill the TKI questionnaires, and to provide lists of preferences. A
way to automatically derive user profiling is to analyze the behavior of users on
social networks. Another possibility is to avoid the interaction when the system
requires explicit ratings for the POI during the negotiation, estimating these
ratings with an individual recommendation system.
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