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Abstract. The paper describes an approach to adaptive feedback control of a
robot manipulator, based on partitioning of the joint space into segments. Within
each segment the robot is controlled as a decoupled linear system by means of
conventional PID controllers. To achieve continuity of control variables the
segments are represented as fuzzy sets. The controller settings are adapted by
online identification from past measurements of position and control signals.
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1 Introduction

Control of robot manipulators is difficult in general, because robot dynamics is usually
strongly non-linear. Although the influence of non-linear terms in the arm motion equa‐
tions can be suppressed by using high-ratio gears in the actuators, is such cases the
friction in the gears and bearings often degrades the actuator performance for high-
velocity motions. Especially in the case of light-weight, high-velocity robot arms for
pure manipulating purposes, the arm dynamics cannot be neglected to achieve optimal
performance.

In this paper the problem of tracking a trajectory, provided by the motion planning
layer of the robot control system, is discussed. It is assumed that the trajectory, defined
in the robot operational space, is transformed into the robot joint space by the algorithm
of inverse kinematics [1], before the motion task is performed. The motion control layer
then works with the information on the robot joint positions, i.e. the relative positions
of the robot links.

Multiple approaches to design of the feedback control system of robot manipulator
are described in literature [1, 2]. The simplest approach, suitable only for low-velocity
motions, works with the actuators as with velocity generators and the effects of the robot
dynamics are considered as unknown disturbances [2]. The feedback control can be then
based on PI or PID controllers. To enhance the performance, cascade configuration with
additional velocity or even acceleration feedback can be used. It is also possible to use
a partial feed-forward compensation of non-linearities, if a partial knowledge of the
robot mathematical model is available [1].
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More advanced robot control architectures use actuators as torque generators [1, 2].
This approach is utilized in centralized control systems, viewing the robot dynamics in
full complexity as a high-order, coupled and non-linear one. The centralized methods
utilize some special features of the robot dynamics. In particular, dynamic inversion
method transforms the controller design problem into a linear one by means of additional
interior loop. However, applicability of this approach depends on precision of the math‐
ematical model available, which often cannot be guaranteed due to unknown influences,
such as backslashes and flexibilities in the gears or saturations of the action forces.
Therefore, practical usability requires some extensions, guaranteeing at least closed-
loop asymptotical stability [1]. Among alternative approaches e.g. the non-linear PID
control based on Lyapunov stability theory or passive systems theory can be mentioned
[1, 2].

An advantage of the decentralized control approach is that for the controller tuning
only rough robot mathematical model is sufficient, describing approximate inertial effect
on individual axes and damping effects. If we assume that terms in the robot model
depend only on position, it is possible to improve the performance by dividing the joint
space into segments with constant controller settings. The controller parameters can be
changed during motion when the trajectory goes across the segment boundary. Within
each segment the robot then can be controlled as a decoupled linear system by means
of conventional PID controllers. It is possible to use initially the same settings in all the
segments and to adapt the controller parameters in each segment automatically by
processing past measurements of the kinematic and control variables. Such an algorithm
adapts the controller parameters also when the robot manipulated load changes.

In this paper an extension of the decentralized robot control approach is proposed,
based on the idea outlined above, including some additional enhancements. Practical
implementation is indeed more complex than in the case of conventional decentralized
control. Partitioning of the joint space into segments brings increased requirements on
the control system hardware, as regards both performance and memory capacity.
However, it reveals that these requirements can be fulfilled by using current 32-bit
microcontroller-based platforms.

2 The Robot Mathematical Model

The mathematical model of a robot arm consisting of n links in an open kinematic chain,
moving freely in the operation space, can be considered in the form

𝐁(𝐪)�̈� + 𝐂(𝐪, �̇�)�̇� + 𝐠(𝐪) = 𝐟 (1)

where 𝐪 is the vector of joint positions and 𝐟 the vector of total force effects of actuators.
If K and P denote the total kinetic and potential energy, 𝐁(𝐪) = 𝜕2K∕𝜕�̇�2 is a positive
definite position-dependent inertia matrix,

𝐂(𝐪, �̇�)�̇� =
𝜕2K

𝜕𝐪𝜕�̇�
�̇� −

𝜕K

𝜕𝐪
(2)
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is a non-linear function corresponding to the effects of centrifugal and Coriolis forces
and 𝐠(𝐪) = 𝜕P∕𝜕𝐪 is the vector function corresponding to the gravity-force effects [1].
If we assume only electrical DC actuators, by neglecting the winding inductance and
mechanical friction, we obtain

𝐌 ≈ 𝐊u𝐮 −𝐊v𝛚 (3)

where 𝐌 is the vector of motor output torques, 𝐮 the input voltages, 𝛚 the vector of
motor angular velocities and 𝐊u > 0, 𝐊v > 0 constant diagonal matrices. In principle,
(3) allows using the motors as velocity generators, where the connected load is repre‐
sented as a disturbance. Alternatively, the motor can play the role of a torque generator,
where the term 𝐊v𝛚, corresponding to induced voltage in winding, is considered as
electromagnetic friction. In this case, the motor is usually equipped with inner current
feedback, which reduces the effect of 𝐊v𝛚 and protects from overload [1]. Although this
paper is based on the idea of decentralized control, the motors are considered as torque
generators, like at most centralized control methods. In this case

𝐟 = 𝐊r

(
𝐊u𝐮 −𝐊v𝛚

)
− 𝐅�̇� (4)

where 𝐊r > 0 and 𝐅 > 0 are diagonal matrices. The term 𝐅�̇� corresponds to viscous
friction in bearings and gears and 𝐊r is the mechanical gear ratio. Coulomb friction is
not considered. Since �̇� = 𝐊−1

r
𝛚,

𝐟 = 𝐊r𝐊u𝐮 − 𝐅r�̇�, 𝐅r = 𝐊r𝐊v𝐊r + 𝐅. (5)

The Eq. (1) then can be rewritten as

𝐁(𝐪)�̈� +
(
𝐂(𝐪, �̇�) + 𝐅r

)
�̇� + 𝐠(𝐪) = 𝐊𝐮 (6)

where 𝐊 = 𝐊r𝐊u. Since the dependence of 𝐅r on 𝐊r is quadratic, the term 𝐂(𝐪, �̇�) has
low influence in the case of higher mechanical gear ratios and the model depends
predominantly only on 𝐪.

3 The Decentralized Control with Partial Knowledge of 𝐁(𝐪)

One possible version of the decentralized robot control algorithm uses partial knowledge
of the inertia matrix 𝐁(𝐪), which is decomposed as

𝐁(𝐪) = �̄� + Δ𝐁(𝐪) (7)

where �̄� is a constant diagonal positive definite matrix, corresponding to approximate
average inertial effects on individual axes [1]. The robot model for the controller design
is in the form

�̄��̈� + 𝐅r�̇� = 𝐊𝐮 − 𝐝 (8)
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where

𝐝 = Δ𝐁(𝐪)�̈� + 𝐂(𝐪, �̇�)�̇� + 𝐠(𝐪) (9)

is disturbance. Since all matrices in (8) are diagonal, it is possible to write (8) as

biq̈i + friq̇ = kiui − di, i = 1, .., n (10)

where bi, fri and ki denote the diagonal terms of �̄�, 𝐅r and 𝐊, respectively. Equation (10)
can be rewritten as

Tiq̈i + q̇ = Kiui − 𝛿i (11)

where Ti = bi∕fri, Ki = ki∕fri and 𝛿i = di∕fri. The corresponding axis transfer function is
in the form

Fi(s) =
Ki

s
(
Tis + 1

) . (12)

To compensate the effect of persistent input-type disturbance di of the system (10) and
to achieve zero tracking error in the case of ramp reference trajectory, a controller with
additional zero pole is needed. If we use the PID controller with the transfer function in
Laplace transform

Ri(s) = ri

(
1 +

1
TIis

+ TDis

)
=

ri

TIis

(
TIiTDis

2 + TIis + 1
)

(13)

for generating the control signals ui(t), the characteristic polynomial of the i-th axis
is in the form

Qi(s) =
TIis

2
(
Tis + 1

)

riKi

+
(
TIiTDis

2 + TIis + 1
)
=

TIiTi

riKi

s3 +
TIi + riKiTDiTIi

riKi

s2 + TIis + 1. (14)

The PID controller parameters can be determined so that poles of Qi(s) are placed at
desired locations [6]. If we assume Qi(s) =

(
T1is + 1

)(
T2

2i
s2 + 2𝜉iT2is + 1

)
, where T1i, T2i

are chosen closed-loop response time constants and 𝜉i is the relative damping ratio, by
comparison of the coefficients we obtain

ri =

(
T1i + 2𝜉iT2i

)
Ti

T1iT
2
2i

Ki

, TIi = T1i + 2𝜉iT2i, TDi =
2𝜉iT1iT2i + T2

2i

TIi

−
1

riKi

. (15)

If the disturbance di is partially known, its effect can be compensated in part by adding
K−1

i
𝛿i to the i-th axis controller output, where 𝛿i = di∕fri.
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4 The Extended Decentralized Robot Control Algorithm

Consider that the robot joint space S, i.e. the space of all possible joint positions
𝐪 =

[
q1,… , qn

]T, is partitioned into m segments Sk, k = 1, .., m, such that

m⋃

k=1

Sk = S,
m⋂

k=1

Sk =∅. (16)

Since the diagonal parts of 𝐁(𝐪) and 𝐠(𝐪) are position-dependent, it is possible to
approximate the robot dynamics in each segment by a different linear model. Then the
tracking performance can be enhanced if to each segment there correspond different
controller settings.

A basic approach is that the controller parameters are rewritten during motion when
the trajectory goes across the segment boundary. Within each segment the robot is
controlled as a decoupled linear system by means of conventional PID controllers. This
extension is rather straightforward and can be efficiently implemented, although a suffi‐
cient amount of memory in the control system hardware is needed. If a space of each
generalized coordinate is divided into d sub-intervals, the joint space will be divided
into m = dn segments. To each segment Sk there corresponds a matrix of the parameters
𝐏k =

[
𝐊k, 𝐓k, 𝛅k

]
 describing the plant dynamics as described in the previous section.

The columns in 𝐏k are vectors of n components, e.g. 𝐊k =
[
Kk1,… , Kkn

]T. The corre‐
sponding PID controlled settings can be obtained directly by substitution into (15).

However, this concept has an important drawback, consisting in discontinuity of the
action variables ui(t) caused by changes of the controller settings at the segments boun‐
daries. Such discontinuities are undesirable, since they can lead to oscillations of the
mechanical structure.

One possible solution is replacing the segments Sk by the fuzzy sets
S̃k =

{
Rn,𝜇k(𝐪)

}
, where the membership functions 𝜇k(𝐪) are chosen continuous and so

that 𝜇k(𝐪) ∈ [0, 1] and 𝜇k

(
𝐜k

)
= 1, where 𝐜k denotes the centre of the segment Sk. The

matrix of the plant parameters is then computed at each control step as

𝐏 =

m∑

k=1

𝜇k(𝐪)𝐏k∕

m∑

k=1

𝜇k(𝐪). (17)

The expression (17) is usually used as an inference rule in Takagi-Sugeno-type fuzzy
modeling [4]. However, the computation of (17) at each control step can be time-
consuming due to rather large number of segments m. It can be considered that the
segments are for given parameter h defined by means of their centers 𝐜k as

Sk =
{
𝐪 | ‖‖𝐪 − 𝐜k

‖‖∞ ≤ h
}

, (18)

where ‖𝐱‖∞ = max||xi
|| denotes the L∞-norm. Then it is possible to define
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𝜇k(𝐪) = 𝜇
(
𝐪 − 𝐜k

)
(19)

where 𝜇(𝐪) ∈ [0, 1] is a chosen continuous function, such that 𝜇(𝟎) = 1. Computation of
(17) can be made much more efficient if 𝜇(𝐪) is chosen as a function with compact
support, see e.g. [5]. A simple possibility is to choose

𝜇(𝐪) = max
{

1 − ‖𝐪‖∞∕((1 + 𝜆)h), 0
}

(20)

where 𝜆 > 0, typically 𝜆 ∈ [0.5, 2]. In this case the values of 𝜇k(𝐪) are zero, except for
the k-the segment, where 𝜇k(𝐪) has the largest value, and several neighboring segments.
This fact can be utilized for efficient implementation of the controller, although such a
realization is more complex. A disadvantage of the choice (20) is that this function is
not smooth, which will produce non-smooth histories of the control signals. Therefore,
it might be preferable to construct 𝜇(𝐪) as at least continuously differentiable. The
compact-support choice of 𝜇(𝐪) brings the risk of unbounded values in (17) for trajec‐
tories exceeding the boundaries of S, but this problem can be easily avoided, e.g. by
increasing 𝜆 in the cases when 

∑m

k=1 𝜇k(𝐪) = 0.

5 Adaptation of the Controller Settings

Since the number of segments can be rather large, it is necessary that the controller
settings are computed automatically. Initially, the settings in all the segments are set to
the same values corresponding to the decentralized PID controller design described in
Sect. 3. During the robot operation the settings in the segments can be adapted by
processing the measured values of 𝐪

(
tk

)
 and 𝐮

(
tk

)
, at the instants tk = kΔ, where Δ is the

identification scan period. During motion in each segment it is needed to estimate the
parameters Ki, Ti and 𝛿i. The index of segment is omitted below for simplicity, i.e. e.g.
Ki should be written as Kki in the k-th segment to be precise.

The continuous transfer function (12) has the corresponding transfer function in Z-
transform

Fi(z) = 
{

KiTi

(
−1 + t∕Ti + e−t∕Ti

)
; t = kΔ

}

= KiTi

(
−1 +

Δ

Ti

1
z − 1

+
z − 1

z − e−Δ∕T

)
= Ki

(
Δ

z − 1
+ Ti

e−Δ∕Ti − 1
z − e−Δ∕Ti

)
.

(21)

If Δ∕Ti is sufficiently low, e−Δ∕Ti ≈ 1 − Δ∕Ti, so

Fi(z) ≈ KiΔ

(
1

z − 1
−

1
z − e−Δ∕Ti

)
= KiΔ

1 − 𝛼i

z2 −
(
1 + 𝛼i

)
z + 𝛼i

(22)

where 𝛼i = e−Δ∕Ti. Equation (22) corresponds to the data model

q
[k+2]
i

−
(
1 + 𝛼i

)
q
[k+1]
i

+ 𝛼iq
[k]

i
= KiΔ

(
1 − 𝛼i

)
u
[k]

i
+ 𝜀[k] (23)
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where q[k]

i
 denotes the value of qi at k-th instant and 𝜀[k] is the error process. After including

the disturbance 𝛿i, defined by (11), (23) can be rewritten as

Δ−1(q
[k]

i
− q

[k+1]
i

)
𝛼i − u

[k]

i
K̃i + 𝛿i = Δ−1(q

[k+1]
i

− q
[k+2]
i

)
+ 𝜀[k] (24)

where K̃i = Ki

(
1 − 𝛼i

)
 and 𝛿i = 𝛿i

(
1 − 𝛼i

)
. From (24) the value of 𝛉i =

[
𝛼i, K̃i, 𝛿i

]T can
be estimated by means of the least-squares method. Then, 𝛼i determines the value of
Ti. The parameters Ki and 𝛿i can be computed directly from 𝛉i.

Note that to each segment there corresponds one data model (24) and a corresponding
data structure have to exist in the control system for storing the measurements. It is
advantageous to use the recursive version of the LS estimator [3], which need not store
all the data, but only a 3 × 3 matrix and the vector 𝛉i in each segment and for each axis.
It is assumed that the settings are updated after a single task is performed, but the same
approach can be used when the controller is updated during motion. Let

𝐱
[k]

i
= wj

(
𝐪[k]

)[
Δ−1(q

[k]

i
− q

[k+1]
i

)
,−u

[k]

i
, 1
]T , y

[k]

i
= wj

(
𝐪[k]

)
Δ−1(q

[k+1]
i

− q
[k+2]
i

)
(25)

where wj(𝐪) is the weight of the measurement in the j-th segment, computed as

wj(𝐪) = 𝜇j(𝐪) ∕

m∑

l=1

𝜇l(𝐪). (26)

The (k + 1)-th estimate of 𝛉i for the j-th segment is obtained as follows:

𝛉
[k+1]
i

= 𝛉
[k]

i
+

𝐂
[k]

i
𝐱
[k]

i

𝛾 + 𝐱
[k]T

i
𝐂

[k]

i
𝐱
[k]

i

(
y
[k]

i
− 𝐱

[k]T

i
𝛉
[k]

i

)
(27)

𝐂
[k+1]
i

=
1
𝛾

(

𝐈 −
𝐂

[k]

i
𝐱
[k]

i
𝐱
[k]T

i

𝛾 + 𝐱
[k]T

i
𝐂

[k]

i
𝐱
[k]

i

)

𝐂
[k]

i (28)

where 𝛾 is the forgetting coefficient, equal or very close to 1. In the considered case it
seems to be necessary to require that Ti > Timin > 0 and Ki > Kimin > 0, where the
constants Timin, Kimin are suitably chosen. The recursive form of the estimator (27) enables
to keep the values of the components of 𝛉i in the corresponding range by updating only
with feasible values. The matrix 𝐂[0]

i
 is set as 𝐂[0]

i
= diag

(
𝜎1, 𝜎2, 𝜎3

)
, where 𝜎k > 0 are

chosen. Total memory requirements can be estimated as 12 m n real numbers, which can
occupy from tens to hundreds of kbytes of the control system memory.

6 Simulated Results

Consider the 3-DOF   anthropomorphic robot arm    approximate    model in Fig. 1,    where
m1 = m2 = 1 kg, l1 = l2 = 0.5 m   and h = 1 m.    The terms     of   the         diagonal       matrices
𝐊u, 𝐊v, 𝐊r and   𝐅   were   chosen   as         kui = 1, kvi = 0, kri = 10       and       fi = 3, i = 1, .., 3.
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The mathematical model for simulation, which is strongly non-linear, was obtained by
expressing the terms 𝐁(𝐪), 𝐂(𝐪, �̇�)�̇� and 𝐠(𝐪) in (1), where 𝐪 = [𝜑, 𝜓 , 𝜗]T, from the
expressions for kinetic and potential energy. Since the mathematical model is rather
complex, the details had to be omitted due to paper length limitations.

Fig. 1. The robot arm approximate model

First, the fixed axes PID controllers (13) were used. The diagonal matrix �̄� for setting-
up the PID controllers, with the meaning of rough estimate of the inertia matrix, was
chosen as

�̄� = diag

(
m1l2

1 + m2
(
l1 + l2

)2

2
,
(
m1 + m2

)
l2
1, m2l2

2

)

. (29)

The reference trajectory was chosen as the step function, which can be viewed as
the worst-case situation, since the robot will usually track a continuous trajectory. The
controller parameters were computed so that T1i = T2i = 0.075 s and 𝜉i = 0.8 in (15). The
joint initial and target positions are considered as

𝐪0 = [−1.5, 2, 3],𝐪f = [1.5, −2, −1]. (30)

Figure 2 shows the corresponding histories of the robot joint positions.
Further, the proposed adaptive controller has been used. The joint space has been

divided into m = 83 segments, 𝜆 = 1 has been chosen in (20). The controller has been
initialized to the same settings as in the previous case and executed 20 times the same
trajectory with the scan period Δ = 0.002 s to adapt. The desired closed-loop settings
T1i = T2i = 0.075 s and 𝜉i = 0.8 were preserved. The matrices 𝐂

i
 have been initialized

as 𝐂[0]
i

= 0.01 × diag(1, 0.3, 1) and 𝛾 = 0.9Δ, Timin = 0.03 and Kimin = 0.05 has been
chosen. Figure 3 shows the final simulated histories. It can be seen that significant
enhancement has been achieved. Similar results were obtained also for lower values of
m. In these cases the convergence was faster, but it seems that it is necessary to use
higher values of Timin and Kimin and the responses are a little slower.
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Fig. 3. The joint step responses - adaptive control system, m = 83

7 Conclusions

The proposed adaptive control system is based on the principles of the PID controller-based decen‐
tralized control, where the joint space is divided into segments with different controller settings. To
ensure continuity of the control signal at the segment boundaries, the segments are represented as
fuzzy sets with a special choice of the membership function. Simulated results show that the
approach can be used in the cases when the conventional decentralized control fails to produce good
responses, although such situations seem to occur mainly in the cases of long-range and high-
velocity movements. The control system memory requirements are large in comparison with
conventional control algorithms, but can be fulfilled by using current 32-bit microcontrollers. Thus
the worst problem from practical point of view seems to be proper initial settings of 𝐂

i
, Timin, Kimin

and other parameters that influence convergence of the sequence of estimates (27).
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Fig. 2. The joint step responses - fixed axes PID controllers
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