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Abstract. Today parametric optimization problems are widely used in different
science and technology domains. These problems are weather forecasting, cal-
culation of electromotor parameters as well as VLSI design problems which
belong to NP-problems and do not have deterministic algorithms to solve it. So, it
is necessary to develop up-and-coming heuristic methods to obtain quazi-optimal
solutions during polynomial time. The paper deals with parametric optimization
of technical objects. From the mathematical point of view the parametric opti-
mization problem reduces to the global constrained continuous optimization. The
formulation of parametric optimization problem is made. To solve this problem it
is developed a stochastic algorithm based on foraging behavior of E.coli bacteria.
A bacterial colony is considered as multiagent system in which each agent
operates in autonomy according with quite elementary rules. Colony behavior is
based on self-organization to reach common goals by low-level interconnection.
The colony does not have centralized control. Conjunction of simple agents
creates a behavioral strategy without any global control. To analyze the devel-
oped algorithm there were carried out a set of experiments, which confirm the-
oretical estimations and calculate optimal values of algorithm parameters.
Experimental results show perspective of this approach.
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1 Introduction

Nowadays, in terms of parametric optimization problems probabilistic methods based
on simulation of creatures’ behavior in nature are most often used. An experience has
shown that multi-agent methods are efficient tool for optimization in various scientific
and technical fields. To design high-performed mechanisms for specific optimization
problems it is necessary to developed promising methods inspired by natural systems.
There are algorithms based on evolutionary computation, ants, bacterial and particle
swarm optimization methods [1–5].

In the paper authors suggest a probabilistic algorithm on the basis of multi-agent
intelligence conception that is simulation of E.coli bacteria movement. The key idea is
that during the movement in environment the bacterium strives towards nutritious areas
and avoids harmful ones. In semisolid useful environment bacteria can create stable

© Springer International Publishing AG 2017
R. Silhavy et al. (eds.), Artificial Intelligence Trends in Intelligent Systems,
Advances in Intelligent Systems and Computing 573, DOI 10.1007/978-3-319-57261-1_6



spatiotemporal structures. Under specific conditions E.coli can group and show intel-
ligence cooperative behavior.

To estimate the algorithm’s quality and compare obtained results with another
swarm intelligence algorithms there were conducted a computational experiment. On
the basis of these researches the authors can confirm that the time complexity of the
developed algorithm has polynomial complexity.

2 Formulation of Parametric Optimization Problem

During optimal design a mathematical model of technical object is formalized
description of quality criterion which execute function, requirements, etc. [6, 7].

The parametric optimization problem is solved by finding such input circuit
parameters that output parameters have specified characteristic but circuit elements and
way of its connection remain the same.

Let n are control parameters in the vector X = (x1, x2, …, xn). Let F(X) is an
objective function (OF), XO is its definition area. The vector X defines coordinates of
point within definition area XO. If elements in X have only discrete values, then XO is
a discrete set and the optimization problem belongs to discrete programming field.

The aim of parametric optimization algorithms is define such control parameter
vector that the specified objective function posses optimal value.

During the mathematical model development it is necessary to calculate object
parameters affecting on an optimal criterion. Then, there are defined parametric, dis-
crete and functional restrictions of the technical object [5, 6].
Parametric restrictions are represented as follows:

x0i � x00i ð1Þ

Where xi is i-th parameter of the object; x
0
i and x

0
i are minimum and maximum

values of the i-th parameter correspondingly.
Discrete restrictions are written as:

xj ¼ xj1; xj2; . . .; xjm
� � ð2Þ

Where xj is j-th parameter of the object; xjk is acceptable value of j-th parameter
(k = 1,2,…,m). Such restrictions are imposed on parameters value in connection with
its physical entity.
Functional restrictions are constraining conditions of its values and are represented as
follows:

gi xð Þ � 0; gj xð Þ ¼ 0; gk xð Þ\ 0: ð3Þ

Functional restrictions involve strength, rigidity and stability conditions which
provide desirable values of technical characteristics [7–10].

Parametric Optimization Based on Bacterial Foraging Optimization 55



3 Biological Foundations of Bacterial Colony Behavior

The E.coli bacterium (Fig. 1) is the most studied. It contains a cell plasma membrane, a
cell wall and a capsule with cytoplasm or nucleoid. Bacterium size is about 1 micron in
diameter and 2 microns in length, weight is about 1 pg. Under certain conditions the
E.coli is increased in size and divided into two descendant bacteria. Obtaining nec-
essary nutrition and maintaining appropriate temperature (about 37 °C), reproduction
takes about 20 min, hence, a bacteria population growths exponentially [7–9].

Locomotion is achieved via a set of relatively rigid flagella that enable it to “swim”
via each of them rotating in the same direction at about 100–200 revolutions per
second. Each flagellum is a left-handed helix configured so that as the base of the
flagellum (i.e., where it is connected to the cell) rotates counterclockwise, as viewed
from the free end of the flagellum looking towards the cell, it produces a force against
the bacterium so it pushes the cell. If a flagellum rotates clockwise, then it will pull at
the cell. From an engineering perspective, the rotating shaft at the base of the flagellum
is quite an interesting contraption that seems to use what biologists call a “universal
joint” (so the rigid flagellum can “point” in different directions, relative to the cell). In
addition, the mechanism that creates the rotational forces to spin the flagellum in either
direction is described by biologists as being a biological “motor” (a relatively rare
contraption in biology even though several types of bacteria use it). The motor is quite
efficient in that it rotates a complete revolution using only about 1000 protons and
thereby E.coli spends less than 1% of its energy budget for motility [10, 11].

An E.coli bacterium can move in two different ways: it can “run” (swim for a
period of time) or it can “tumble,” and it alternates between these two modes of
operation its entire lifetime (i.e., it is rare that the flagella will stop rotating).
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Fig. 1. The E.coli bacterium

56 D. Zaruba et al.



The motion patterns that the bacteria will generate in the presence of chemical
attractants and repellents are called “chemotaxis.” For E.coli, encounters with serine or
aspartate result in attractant responses, while repellent responses result from the metal
ions Ni and Co, changes in pH, amino acids like leucine, and organic acids like acetate.
What is the resulting emergent pattern of behavior for a whole group of E.coli bacteria?
Generally, as a group they will try to find food and avoid harmful phenomena, and
when viewed under a microscope, you will get a sense that a type of intelligent
behavior has emerged, since they will seem to intentionally move as a group.

4 Model of Bacterial Foraging Optimization Algorithm

In terms of search optimization problems a chemotaxis can be viewed as an heuristic
optimization mechanism using all resources to find new areas with a great number of
useful resources [12, 13].

A classical bacterial foraging optimization (BFO) algorithm is based on three
mechanisms: chemotaxis, reproduction and dispersal.

Let Xi;r;l � Xj j � lð Þ is a current position of a bacterium si 2 S at iteration t, step of

reproduction r, step of elimination l. There are i 2 1 : Sj j½ �; t 2 1 : t̂½ �; l 2 1 : btlh i
,

where Sj j is an even number of agents in colony S; t̂; btr ; btl , are total number of iteration
(steps of chemotaxis), steps of reproduction and elimination. Besides that, corre-
sponding value of objective function is denoted as ui;r;l.

Chemotaxis. In terms of bacterial foraging optimization algorithm a local optimization
is realized as chemotaxis procedure. The next position X

0
i;r;l of the bacterium si is

calculated as

X
0
i;r;l ¼ Xi;r;l þ ki

Vi

Vik kE
ð4Þ

Where Vi is a vector of chemotaxis step for the bacterium si; ki is a current value of
step. During the swimming vector Vi remains constant at the next iteration, i.e. V

0
i ¼ Vi.

When bacterium is tumble, vector V
0
i is a random vector in the interval [−1;1].

Reproduction. The main aim of the reproduction mechanism is increasing of con-
vergence rate of the algorithm by means of search space narrowing. Let hi is a “health”
of bacterium si. Then, for all trajectory points the total value of objective function is
calculated as

hi ¼
Xt

s¼1
ui;r;lðsÞ: ð5Þ

Further, it is denoted hi, i 2 1 : Sj j½ � and bacteria are sorted in the decreasing order
of its health. As a result we obtain a linear list.

Elimination. To find a global optimum of the objective function there are not enough
chemotaxis and reproduction mechanisms since they are not solve a preliminary
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convergence problem. To overcome the weakness of the method it is used an elimi-
nation procedure.

This procedure initializes after reproduction and consists in the following.
According with predetermined probability ne it is selected n bacteria si1 ; si2 ; . . .; sin in a
random way and delete it from population. Instead of these in random point of search
space there are generated new bacteria (agents) with the same number. Should be
noted, after elimination procedure a number of agents in the population remains
constant [14].

5 Description of the Algorithm

A block diagram of the developed algorithm for the parametric optimization problem is
shown on Fig. 2. To illustrate key features of the BFO algorithm let us consider it in the
context of a VLSI placement problem.

On the basis of the heuristic described above, the authors distinguish the following
steps: input of control parameters, initialization of initial population, chemotaxis,
reproduction, elimination.

The VLSI algorithm based on the BFO works with the following control param-
eters: a set of alternative solutions in the population NS, a number of generations
(iteration) T, initial value of “health” for each alternative solution H0, a number of
chemotaxis step Nx.

During initialization stage it is generated a set of alternative solutions for each of
which OF values are calculated. A set of solutions can be obtained in previous stages,

Begin

Input of control 
parameters

Ini aliza on of ini al 
popula on

Chemotaxis

Reproduc on

Elimina on

Is stop criterion 
reached?

End

Yes

No

Fig. 2. The block diagram of the BFO algorithm
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for example, as a result of a hierarchical algorithm or generates by the random way.
Also, at this stage for each alternative solution it is necessary to define an initial index
of gene (element of alternative solution) that began the agent’s movement. The authors
suggest to distinguish two direction: increasing and decreasing of the gene’s index. In
initialization stage an agent’s direction is random.

Also, the authors introduce the step of agent that means a number of genes the same
type between initial and finite indexes. In terms of the developed algorithm there are
used two types of genes: operands (encoded by positive integer) and operates (encoded
by negative integer). So, a gene, situated in gene-operand at initial step, can move only
in gene-operands, and a gene, situated in gene-operator at initial step, can move only in
gene-operators. When the first of the last gene is reached, the calculation of finite
gene’s index is conducted repeatedly. The example of agent movement with the initial
index 3 in gene-operators with step 4 is shown on Fig. 3.

Example of agent movement with the initial index 5 in gene-operands with step 6 is
shown on Fig. 4.

A result of agent movement is a pair permutation of genes with initial and finite
index. After that, an increment of the OF value before and after permutation are
calculated. The value of increment is summed with a current value of agent’s “health”.
Here, the “health” is total increment of the OF value during all steps of chemotaxis.
Obviously, that increment can be positive and negative. If after regular step of
chemotaxis the value of “health” is less or equal to 0, then movement is stopped for
current alternative solution. Note, an agent changes its direction at the next step if
increment will be negative.

When chemotaxis is stopped for each alternative solution, there is a reproduction is
initialized. Reproduction contains the following steps:

• All sets of alternative solutions (populations) are sorted in decreasing of OF values.
• The first half of solutions is doubled. Alternative solutions from the first half of the

sorted list are copied and migrate to the current population.

1 6 -1 3 9 -2 -1 8 -1 5 7 -2 -2 4 2 -1 -2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Value

Index

Fig. 3. Agent movement in gene-operators

1 6 -1 3 9 -2 -1 8 -1 5 7 -2 -2 4 2 -1 -2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Value

Index

Fig. 4. Agent movement in gene-operands
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• For copies the initial index of agent is changed by a random way and the “health”
value is equal to H0.

Next, there is elimination for saving constant quantity of alternative solutions in the
population NS. Elimination contains the following steps:

• Population is sorted in increment of the value of “health”.
• All alternative solutions with “health” less or equal to 0 are removed from the

population.
• If current size of population NS

cur < NS, then there are generated additional quantity
of solutions NS - NS

cur.
• If current size of population NS

cur > NS, then alternative solutions with the lowest
value of “health” are deleted until NS

cur will be equal to NS
cur.

The elimination stage is last step of iteration in terms of VLSI fragments placement
on the basis of BFO. After that optimization continues iteratively until a stop criterion
will be reached. Here, a stop criterion is a number of iteration in the algorithm.

6 Experiments

The authors developed software in the Borland C++ Builder™ 6.0. Testing of the
developed algorithm was carried out on AMD FX(tm)-8121 Eight-Core Processor
3.10 GHz, RAM 4,00 Gb.

To conduct computational experiments there was developed software for VLSI
fragments placement.

The obtained results allow to define a dependence of algorithm execution time on
input parameters (Fig. 5).

The algorithm time complexity is represented as O(n2), where n is a number of
input data.

0
500

1000
1500
2000
2500

A
lg

or
ith

m
 ru

nn
in

g 
tim

e,
 m

s

Number of VLSI fragments, pcs

Fig. 5. Dependence of algorithm execution time on input parameters
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Also, it was considered a dependence of algorithm execution time on a number of
iteration (Fig. 6).

The time complexity of this dependence is represented as O(n4), where n is a
number of iterations.

To estimate a quality of obtained solutions there were compared the BFO algorithm
with well known VLSI fragment placement algorithms such as ant colony optimization
and genetic algorithms (ACO and GA). The results of comparison are shown on
Table 1 and Fig. 7.
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Fig. 6. Dependence of algorithm execution time on a number of iteration

Table 1. The results of comparison

Sr.
No

A number of
elements

Ser.
size

ACO GA BFO
Average value
of OF, m

Average value
of OF, m

Average value
of OF, m

1 500 20 0,000125 0,000321 0,00013
2 1000 20 0,00412 0,005121 0,004112
3 2000 20 0,009124 0,014101 0,009141
4 3000 20 0,018121 0,021231 0,016121
5 5000 20 0,04101 0,051211 0,040012
6 8000 20 0,100231 0,105121 0,101643
7 10000 20 0,191231 0,2412 0,195512
8 15000 20 0,248 0,312 0,247
9 50000 20 1,36 1,98 1,34
10 100000 20 3,2 3,9 3,01
11 500000 20 18,6 19,6 18,33
12 750000 20 22,32 24,12 22,1
13 1000000 20 29,98 31,06 29,23
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7 Conclusion

In the paper the formulation of parametric optimization problem was made. To solve it
the authors suggested the optimization method which simulates a behavior of bacterial
colony. This algorithm allows to control a search process and eliminate the preliminary
convergence problem. Software was developed in C++. To estimate time complexity of
the developed algorithm there were carried out computational experiment. So, there
were obtain empirical decencies, range of variation of input parameters, as well as give
recommendations for its optimal choice. On the basis of obtain results the authors
conclude that algorithm time complexity do not exceed polynomial complexity.

Acknowledgements. This research is supported by the Council for Grants (under RF President),
the project #MК-92.2017.8.

References

1. Kureichik, V.V., Kureichik, V.M., Malioukov, S.P., Malioukov, A.S.: Algorithms for
Applied CAD Problems. Springer, Berlin (2009). 487 p.

2. Alpert, C.J., Dinesh, P.M., Sachin, S.S.: Handbook of Algorithms for Physical design
Automation. Auerbach Publications Taylor & Francis Group, Boca Raton (2009)

3. Zaruba, D., Zaporozhets, D., Kureichik, V.: Artificial bee colony algorithm—a novel tool for
VLSI placement. In: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings
of the First International Scientific Conference Intelligent Information Technologies for
Industry (IITI 2016). AISC, vol. 450, pp. 433–442. Springer, Cham (2016). doi:10.1007/
978-3-319-33609-1_39

4. Zaruba, D., Zaporozhets, D., Kureichik, V.: VLSI placement problem based on ant colony
optimization algorithm. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova,
Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 127–
133. Springer, Cham (2016). doi:10.1007/978-3-319-33625-1_12

0
5

10
15
20
25
30
35

1 2 3 4 5 6 7 8 9 10 11 12 13

Av
er

ag
e 

va
lu

e 
of

 O
F,

 m
.

Sr.No

Fig. 7. Comparison of experimental results

62 D. Zaruba et al.

http://dx.doi.org/10.1007/978-3-319-33609-1_39
http://dx.doi.org/10.1007/978-3-319-33609-1_39
http://dx.doi.org/10.1007/978-3-319-33625-1_12


5. Kureichik, V., Kureichik, V., Zaruba, D.: Hybrid bioinspired search for schematic design. In:
Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings of the First
International Scientific Conference Intelligent Information Technologies for Industry (IITI
2016). AISC, vol. 451, pp. 249–255. Springer, Cham (2016)

6. Kureichik, V., Kureichik, V., Bova, V.: Placement of VLSI fragments based on a
multilayered approach. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova,
Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 181–
190. Springer, Cham (2016). doi:10.1007/978-3-319-33625-1_17

7. Kureichik, V.V., Kravchenko, Y.A.: Bioinspired algorithm applied to solve the travelling
salesman problem. World Appl. Sci. J. 22(12), 1789–1797 (2013)

8. Kar, A.K.: Bio inspired computing - a review of algorithms and scope of applications. Expert
Syst. Appl. 59, 20–32 (2016)

9. Lim, S.K.: Practical Problems in VLSI Physical Design Automation. Springer Science
+Business Media B.V, Heidelberg (2008)

10. Yang, C., Ji, J., Liu, J., Yin, B.: Bacterial foraging optimization using novel chemotaxis and
conjugation strategies. Inf. Sci. 363, 72–95 (2016)

11. Zhao, W., Wang, L.: An effective bacterial foraging optimizer for global optimization. Inf.
Sci. 329, 719–735 (2016)

12. Kureichik, V.V., Zaruba, D.V.: The bioinspired algorithm of electronic computing
equipment schemes elements placement. In: Silhavy, R., Senkerik, R., Oplatkova, Z.,
Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems.
AISC, vol. 347, pp. 51–58. Springer, Cham (2015). doi:10.1007/978-3-319-18476-0_6

13. Zaporozhets, D., Zaruba, D.V., Kureichik, V.V.: Hierarchical approach for VLSI compo-
nents placement. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z.
(eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 347, pp. 79–87.
Springer, Cham (2015). doi:10.1007/978-3-319-18476-0_9

14. Hernández-Ocaña, B., Mezura-Montes, E., Pozos-Parra, Ma.D.P. Evolutionary bacterial
foraging algorithm to solve constraint numerical optimization problems. In: CEUR
Workshop Proceedings, vol. 1659, pp. 58–65 (2016)

Parametric Optimization Based on Bacterial Foraging Optimization 63

http://dx.doi.org/10.1007/978-3-319-33625-1_17
http://dx.doi.org/10.1007/978-3-319-18476-0_6
http://dx.doi.org/10.1007/978-3-319-18476-0_9

	Parametric Optimization Based on Bacterial Foraging Optimization
	Abstract
	1 Introduction
	2 Formulation of Parametric Optimization Problem
	3 Biological Foundations of Bacterial Colony Behavior
	4 Model of Bacterial Foraging Optimization Algorithm
	5 Description of the Algorithm
	6 Experiments
	7 Conclusion
	Acknowledgements
	References


