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Abstract. This research deals with the hybridization of two softcomputing
fields, which are the chaos theory and evolutionary algorithms. This paper
investigates the utilization of the two-dimensional discrete chaotic systems,
which are Burgers and Lozi maps, as the chaotic pseudo random number gen-
erators (CPRNGs) embedded into the selected heuristics, which is differential
evolution algorithm (DE). Through the utilization of either chaotic systems or
identical identified pseudo random number distribution, it is possible to fully
keep or remove the hidden complex chaotic dynamics from the generated
pseudo random data series. Experiments are focused on the extended investi-
gation, whether the different randomization types with different pseudo random
numbers distribution or hidden complex chaotic dynamics providing the unique
sequencing are more beneficial to the heuristic performance. This research uti-
lizes set of 4 selected benchmark functions, and totally four different random-
izations; further results are compared against canonical DE.
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1 Introduction

This research deals with the mutual intersection of the two softcomputing fields, which
are the complex dynamics given by the chaotic systems driving the selection of indices
in Differential Evolution (DE) algorithm and evolutionary computation techniques
(ECT’s). Currently the DE [1] is known as powerful heuristic for many difficult and
complex optimization problems.

A number of DE variants have been recently developed with the emphasis on
adaptivity/selfadaptivity [2], ensemble approach [3] or other modern approaches [4, 5].
The importance of randomization within heuristics as a compensation of limited
amount of search moves is stated in the survey paper [6]. This idea has been carried out
in subsequent studies describing different techniques to modify the randomization
process [7, 8] and especially in [9], where the sampling of the points is tested from
modified distribution. The importance and influence of randomization operations was
also deeply experimentally tested in simple control parameter adjustment jDE strategy
[10]. Together with this persistent development in such mainstream research topics, the
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basic concept of chaos driven DE have been introduced. Recent research in chaotic
approach for heuristics generally uses various chaotic maps in the place of pseudo
random number generators (PRNG). The focus of this research is the direct embedding
of chaotic dynamics in the form of chaos pseudo random number generator (CPRNG)
for heuristic. The initial concept of embedding chaotic dynamics into the
evolutionary/swarm algorithms is given in [11]. Later, the initial study [12] was
focused on the simple embedding of chaotic systems for DE and Self Organizing
Migration Algorithm (SOMA) [13]. Also the PSO (Particle Swarm Optimization)
algorithm with elements of chaos was introduced as CPSO [14] followed by the
introduction of chaos embedded PSO with inertia weigh strategy [15], further PSO
strategy driven alternately by two chaotic systems [16] and finally PSO with ensemble
of chaotic systems [17]. Recently the chaos driven heuristic concept has been utilized
in ABC algorithm [18] and applications with DE [19].

The organization of this paper is following: Firstly, the motivation and novality for
this research is proposed. The next sections are focused on the description of the
concept of chaos driven DE, identification of chaotic series distribution and the
experiment background. Results and conclusion follow afterwards.

2 Motivation

This research is an extension and continuation of the previous successful initial
experiment with the single/multi-chaos driven DE (ChaosDE), where the positive
influence of hidden complex dynamics for the heuristic performance has been exper-
imentally shown. This research is also a follow up to previous initial experiments with
time continuous chaotic systems and different sampling rates used [20].

Nevertheless, the questions remain, as to why it works, why it may be beneficial to
use the correlated chaotic time series for generating pseudo random numbers driving
the selection, mutation, crossover or other processes in particular heuristics.

The novality of the research is given by the experiment investigationg whether the
chaos embedded heuristics concept belongs to the group of either “utilization of dif-
ferent PRNG with different distribution” or the unique chaos dynamics providing
unique sequencing of pseudo random numbers is the key of performance improve-
ments. The last point was also inspired by recent advances in connection of complexity
and heuristic [21] together with the research focused on selection of indices in DE [22]
where the indices (solutions) for mutation process were not selected randomly, but
based on the complex behavior and neighborhood mechanisms.

To confirm or disprove the aforementioned hypothesis, a simple experiment was
performed and presented here. Through the utilization of either chaotic systems or
identical identified pseudo random number distribution, it is possible to fully keep or
remove the hidden complex chaotic dynamics from the generated pseudo random data
series for obtaining the pseudo random numbers for indices selection inside DE.
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3 Differential Evolution

DE is a population-based optimization method that works on real-number-coded
individuals [1]. DE is quite robust, fast, and effective, with global optimization ability.
It does not require the objective function to be differentiable, and it works well even
with noisy and time-dependent objective functions. There are essentially five inputs to
the heuristic. Dim is the size of the problem, Gmax is the maximum number of gen-
erations, NP is the total number of solutions, F is the scaling factor of the solution and
CR is the factor for crossover. F and CR together make the internal tuning parameters
for the heuristic. Due to a limited space and the aims of this paper, the detailed
description of well known canonical strategy of differential evolution algorithm basic
principles is insignificant and hence omitted. Please refer to [1, 23] for the detailed
description of the used DE/Rand/1/Bin strategy (both for ChaosDE and Canonical DE)
as well as for the complete description of all other strategies.

4 Chaotic Systems and Identification of CPRNGs
Distributions

Following two well known and frequently utilized discrete dissipative chaotic maps
were used as the CPRNGS for DE: Burgers (1), and Lozi map (2).

The Burgers mapping is a discretization of a pair of coupled differential equations
to illustrate the relevance of the concept of bifurcation to the study of hydrodynamics
flows. The Lozi map is a simple discrete two-dimensional chaotic map. With the typical
settings as in Table 1, systems exhibits typical chaotic behavior [24].

For the comparisons of DE performance with indices selection driven either by
CPRNG or identical PRNG distribution without chaotic dynamics, it was necessary to
perform the CPRNGs distributions identification with 10000 samples and statistical
distribution fit tests. Statistica and Wolfram Mathematica software were used for this
task with following results (See also Figs. 1 and 2):

• Burgers map based CPRNG was identified as Beta distribution (a, b) with a = 0.63
and b = 3.54.

• Lozi map based CPRNG was identified as Beta distribution (a, b) with a = 1.05 and
b = 1.57.

Table 1. Definition of chaotic systems used as CPRNGs

Chaotic maps equations Parameter settings

Xnþ 1 ¼ aXn � Y2
n

Ynþ 1 ¼ bYn þXnYn
(1)

a = 0.75 and b = 1.75

Xnþ 1 ¼ 1� a Xnj j þ bYn
Ynþ 1 ¼ Xn

(2)
a = 1.7 and b = 0.5
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5 The Concept of ChaosDE with Discrete Chaotic System
as Driving CPRNG

The general idea of CPRNG is to replace the default PRNG with the chaotic system. As
the chaotic system is a set of equations with a static start position, we created a random
start position of the system, in order to have different start position for different exper-
iments. Thus we are utilizing the typical feature of chaotic systems, which is extreme
sensitivity to the initial conditions, popularly known as “butterfly effect”. This random
position is initialized with the default PRNG, as a one-off randomizer. Once the start
position of the chaotic system has been obtained, the system generates the next sequence
using its current position. Used approach is based on the following definition (3):

rndreal ¼ mod abs rndChaosð Þ; 1:0ð Þ ð3Þ

Fig. 1. Identification (blue line) of Burgers map based CPRNG (green line – smooth histogram)

Fig. 2. Identification (blue line) of Lozi map based CPRNG (green line – smooth histogram)
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6 Experiment Design

For the purpose of ChaosDE performance comparison within this research, the Sch-
wefel’s test function (4), shifted Grienwang function (5), and shifted Ackley’s original
function in the form (6) and shifted Rastrigin’s function (7) were selected.

f ðxÞ ¼
Xdim

i¼1

�xi sin
ffiffiffiffiffiffi
xij j

p� �
ð4Þ

Function minimum:
Position for En : x1; x2. . .xnð Þ ¼ 420:969; 420:969; . . .; 420:969ð Þ
Value for En : y ¼ �418:983 � dim; Function interval: \� 500; 500[ .

f ðxÞ ¼
Xdim

i¼1

ðxi � siÞ2
4000

�
Ydim

i¼1

cosðxi � siffiffi
i

p Þþ 1 ð5Þ

Function minimum: Position for En : x1; x2. . .xnð Þ ¼ s; Value for En : y ¼ 0
Function interval: \� 50; 50[ .

f ðxÞ ¼ �20 exp �0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

Xdim

i¼1

xi � sið Þ2
vuut

0

@

1

A� exp
1
D

Xdim

i¼1

cos 2p xi � sið Þ
 !

þ 20þ exp 1ð Þ
ð6Þ

Function minimum: Position for En : x1; x2. . .xnð Þ ¼ s; Value for En : y ¼ 0
Function interval: \� 30; 30[ .

f ðxÞ ¼ 10 dim
Xdim

i¼1

ðxi � siÞ2 � 10 cosð2pxi � siÞ ð7Þ

Function minimum: Position for En : x1; x2. . .xnð Þ ¼ s, Value for
En : y ¼ �90000 dim 30ð Þ

Function interval: \� 5:12; 5:12[ .
Where si is a random number from the 90% range of function interval; s vector is

randomly generated before each run of the optimization process.
The parameter settings for both canonical DE and ChaosDE were obtained based

on numerous experiments and simulations (see Table 2). It was experimentally
determined, that ChaosDE requires lower values of Cr parameter [25] for any type of
used CPRNG. Canonical DE is using the recommended settings [1]. The maximum
number of generations was fixed at 1500 generations. This allowed the possibility to
analyze the progress of DE within a limited number of generations and cost function
evaluations. Experiments were performed in the environment of Wolfram Mathemat-
ica; canonical DE therefore has used the built-in Wolfram Mathematica pseudo random
number generator Wolfram Cellular Automata representing traditional pseudorandom
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number generator in comparisons. All experiments used different initialization, i.e.
different initial population was generated within the each run of Canonical or
ChaosDE.

7 Results

Statistical results for the Cost Function (CF) values are shown in comprehensive
Tables 3–6 for all 50 repeated runs of DE/ChaosDE, four different benchmark func-
tions and five randomization schemes.

The bold values within the all Tables 3–6 depict the best obtained results, italic
values are considered to be similar. Statistical comparisons are based on the Wilcoxon
signed-rank test with significance level 0.05; and performed for the pairs of ChaosDE
with CPRNG and identified similar PRNG distribution. The graphical comparisons of
the time evolution of average CF values for all 50 runs of five versions of DE/ChaosDE
with different randomizations and two selected benchmark functions are depicted in
Figs. 3 and 4. The notation in Tables and Figures is following: Burgers/Lozi Map
represents the chaotic based CPRNG, whereas Burgers/Lozi Dist represents identified
distribution PRNG.

Table 2. Parameter set up for ChaosDE and Canonical DE

DE parameter Value

Popsize 75
F (for ChaosDE) 0.4
CR (for ChaosDE) 0.4
F (for Canonical DE) 0.5
CR (for Canonical DE) 0.9
Dim 30
Max. Generations 1500

Table 3. Simple results statistics for the Canonical DE and ChaosDE; Schwefel’s function

DE version Avg CF Median CF Max CF Min CF StdDev p-value

Canonical DE −5493.26 −5339.34 −4944.96 −6628.4 440.8144 –

Burgers dist −10375.9 −10360 −9245.86 −11722.9 518.8032 0.010864
Burgers map −10793.5 −11413.9 −6787.51 −12328.1 1387.362
Lozi dist −8709.74 −8530.74 −7814.36 −11042.5 661.7437 0.000112
Lozi map −9932.46 −9922.25 −8200.06 −12530.9 1043.777
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Fig. 3. Comparison of the time evolution of avg. CF values for the all 50 runs of Canonical DE,
and four versions of ChaosDE with different randomization. Schwefel’s function.

Fig. 4. Comparison of the time evolution of avg. CF values for the all 50 runs of Canonical DE,
and four versions of ChaosDE with different randomizations. Shifted Rastrigin’s function.
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8 Conclusions

The primary aim of this work is to experimentally investigate the utilization of the
various discrete chaotic systems, as the chaotic pseudo random number generator
embedded into DE. Experiments are focused on the extended investigation, whether the
different randomization and pseudo random numbers distribution given by particular
PRNG or hidden complex chaotic dynamics providing the unique sequencing are more
beneficial to the heuristic performance. The findings can be summarized as:

• Obtained graphical comparisons and data in Tables 3–6 and Figs. 3 and 4 support
the claim that chaos driven heuristic is more sensitive to the hidden chaotic
dynamics driving the selection, mutation, crossover or other processes through
CPRNG. The influence of different PRNG randomization (distribution) type is
strengthened by the presence of chaotic dynamics and sequencing in the pseudo
random series given by the dynamics of discretized chaotic attractor/flow.

• It is clear that (selection of) the best CPRNGs are problem-dependent. By keeping
the information about the chaotic dynamics driving the selection/mutation processes

Table 4. Simple results statistics for the Canonical DE and ChaosDE; shifted Rastrigin’s func.

DE version Avg CF Median CF Max CF Min CF StdDev p-value

Canonical DE −40188.49 −39264.95 −33629.64 −49994.34 3983.79 –

Burgers dist −81465.42 −82256.88 −74959.67 −85542.21 2521.65 0.02812
Burgers map −82339.03 −83552.39 −63945.49 −87977.11 5262.81
Lozi dist −52641.81 −52722.69 −49731.38 −57271.93 1851.70 8.0695.10−6

Lozi map −57054.66 −56667.65 −52235.56 −62969.12 2927.69

Table 5. Simple results statistics for the Canonical DE and ChaosDE; shifted Ackley’s func.

DE version Avg CF Median CF Max CF Min CF StdDev p-value

Canonical DE 3.38E-09 2.68E-09 7.55E-09 9.48E-10 1.74E-09 –

Burgers dist 4.333288 4.554203 7.464985 2.013873 1.328967 1.8253.10−6

Burgers map 1.43E-06 1.25E-12 1.775137 1.47E-14 0.391209
Lozi dist 1.64E-14 1.47E-14 3.6E-14 7.55E-15 5.26E-15 0.5231
Lozi map 1.54E-14 1.47E-14 2.89E-14 7.55E-15 4.11E-15

Table 6. Simple results statistics for the Canonical DE and ChaosDE; shifted Grienwang func.

DE version Avg CF Median CF Max CF Min CF StdDev p-value

Canonical DE 0 0 0 0 0 –

Burgers dist 0.525982 0.514041 0.998373 0.098319 0.26012 1.8626.10−6

Burgers map 6.89E-07 1.47E-09 0.15187 0 0.00323
Lozi dist 0 0 0 0 0 1
Lozi map 0 0 0 0 0
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inside heuristic, its performance is significantly different: either better or worse
against other compared versions.

• In the first two cases (Schwefel and shifted Rastrigin function – Tables 3 and 4), the
performance of ChaosDE was significantly better in comparison with canonical DE.
Furthermore the effect of different PRNG distribution became even stronger with
the chaotic dynamics kept inside CPRNG sequences. Lozi map based CPRNG has
given stable better performance than similar identified PRNG. Both Lozi map based
PRNG/CPRNG have been outperformed by the utilization of Burgers map based
PRNG/CPRNG. An interesting phenomenon has been revealed. The Burgers map
based not-chaotic PRNG drives DE to the strong and fast progress towards function
extreme (local) followed by premature population stagnation phase. Whereas
Burgers map CPRNG with chaotic dynamics secured the continuous development
of population towards global best solution without stagnation.

• The third and the fourth case study (Tables 5 and 6) have given absolutely reversed
character of results. Performance of Lozi based CPRNG/PRNG is comparable even
with canonical DE (slightly better results for Lozi map CPRNG and Ackley
function), whereas the Burgers map based randomization has given worse results.
As aforementioned in the previous point, the premature stagnation for PRNG has
occurred also here (more considerable), whereas the Burgers map based CPRNG
with chaotic dynamics has driven the DE more or less towards the function extreme.

• Since the aim was to investigate the randomization/sequencing of indices selection
inside DE, only the simplest canonical DE/Rand/1/Bin strategy has been utilized in
this research. The parameter adjustment/strategy adaptation or ensembles tech-
niques in jDE, EPSDE, SHADE may significantly interact with the dynamics of
sequencing (selection) of indices driven by particular not-uniform PRNG/CPRNG.

• Sequencing of pseudo random numbers and chaotic dynamics hidden inside pseudo
random series can be significantly changed by the selection of chaotic systems, thus
to avoid the CF landscape dependency. The simplest way for changing the influence
to the heuristic during the run is to swap currently used chaotic system for different
one, or to change the internal parameters of chaotic systems (Table 1).

• Furthermore many previous implementations of chaotic dynamics into the
evolutionary/swarm based algorithms (not-adaptive/adaptive/ensemble based)
showed that it is advantageous, since it can be easily implemented into any existing
algorithm as a plug-in module.
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