
Comparing Border Strategies for Roaming
Particles on Single and Multi-swarm PSO

Tomas Kadavy(&), Michal Pluhacek, Adam Viktorin,
and Roman Senkerik

Faculty of Applied Informatics, Tomas Bata University in Zlin,
T.G. Masaryka 5555, 760 01 Zlin, Czech Republic

{kadavy,pluhacek,aviktorin,Senkerik}@fai.utb.cz

Abstract. In this paper, the methods for handling particles that violate available
search spaces are compared using a single and multi-swarm technique. The
methods are soft borders and hypersphere universe. The goal is to compare this
approaches and its combination. The comparisons are made on CEC’17
benchmark set functions. The experiments were carried out according to CEC
benchmark rules and statistically evaluated.

Keywords: Particle swarm optimization � PSO � Search space boundaries �
Multi-swarm � Roaming particles

1 Introduction

Despite the fact that Particle Swarm Optimization (PSO) was first proposed in 1995 [1],
its well-known weaknesses are still actual and many researches are working on
improving that. Classical PSO have numerous adjustment options. These can be:
learning factors, inertia weight, maximum velocity and others. In this paper, the
strategies for handling roaming particles are compared with their impact on solutions
quality. The boundaries of the search space are defined by particular optimization
problem and define the minimally acceptable and maximal acceptable value of the
solutions in dimensions. The compared strategies in this paper are: soft borders and
hypersphere universe. For the hyperspace method, the velocity formula can by changed
to match a unique characteristic of this method. This velocity update is categorized as a
different strategy among to hypersphere universe using only classical velocity formula.
The strategies in this paper are compared on CEC’17 benchmark set [2]. The strategies
are also combined together using multi-swarm technique [3].

The paper is structured as follows. The PSO and its multi-swarm modification are
described in Sect. 2. The methods for handling the roaming particles are described in
Sect. 3. The experiment setup is detailed in Sect. 4. Section 5 contains statistical
overviews of results and performance comparisons obtained during the evaluation on
benchmark set. Discussion and conclusion follow.

© Springer International Publishing AG 2017
R. Silhavy et al. (eds.), Artificial Intelligence Trends in Intelligent Systems,
Advances in Intelligent Systems and Computing 573, DOI 10.1007/978-3-319-57261-1_52

2 Particle Swarm Optimization

A typical representative of swarm intelligence algorithms is Particle Swarm Opti-
mization (PSO). This algorithm was published in 1995 by Ebenhart and Kennedy in
[1]. This algorithm mimics the social behavior and movement of swarm members.
Originally it was bird flocking and fish schooling. Because it is a quite long time from
his first appearance, the numerous versions appeared. These new versions mostly want
to improve the fact that PSO has well know weakness, the premature convergence to
local optima.

In this PSO algorithm, the individuals (also called particles) are moving in space of
possible solutions of the defined particular problem. This movement is determined by
two factors. One of them is the current position of a particle, labelled as x. The second
one is the velocity of a particle, labelled as v. Each particle also remembers his best
position (solution of the problem) obtained so far. This solution is tagged as the pBest,
personal best solution. Also, each particle has access to the global best solution, gBest,
which is selected from all pBests. These variables set the direction for every particle
and then even a new position in next iteration. PSO usually stops after a number of
iterations, or a number of FEs, fitness evaluations, defined by the user.

The particle position is represented as coordinates in n-dimensional space of
solutions. These coordinates are parameters of the optimized problem. In every step of
the algorithm, the new positions of particles are calculated based on previous positions
and velocities. The new position of a particle is checked if it still lies in space of
possible solutions. The function of the optimized problem is called Cost Function (CF).
The position of a particle is used as input parameters in CF. If the value of CF is better
than the value saved in pBest of a particle, then the particle saves this new position as
his new pBest. Also, if this pBest has better CF value than the previous gBest, then this
pBest is saved as new gBest.

The position of particle x is calculated according the formula (1)

xtþ 1
ij ¼ xtij þ vtþ 1

ij ð1Þ

where t + 1 is actual iteration, t is then previous iteration, xij is the position of a i-
particle in j-dimension, v is the velocity of a particle.

The velocity of a particle v is calculated according to (2).

vtþ 1
ij ¼ w � vtij þ c1 � r1 � pBestij � xtij

� �
þ c2 � r2 � gBestj � xtij

� �
ð2Þ

where w is inertia weight [4], c1 and c2 are learning factors and r1 and r2 are random
numbers of unimodal distribution in range <0,1>.

2.1 Multi-swarm

Due to premature convergence of classical PSO, some techniques were developed. One
of them is called multi-swarm [3]. The basic idea of this mechanism is splitting the

Comparing Border Strategies for Roaming Particles 529

swarm population into, typically two, subpopulations. Each group has own gBest.
These subgroups exchange their gBest (gBest of better fitness value is copied to others
subpopulations) every n-iterations, defined by the user. Each subpopulation can use
different behaviors.

3 Strategies

When the position of a particle is updated, the particle has to be checked if its new
position is in the appropriate boundaries (inside a space of possible solutions). If the
particle is not in the appropriate boundaries (roaming particle), some corrections have
to be made. There are several different strategies for this purpose. For this paper two of
them are selected: soft borders and hypersphere universe.

3.1 Soft Borders

The particle can travel outside of the search space, there is only one restriction applied
on that particle. His cost function is not calculated and therefore his pBest is
unchanged. If a certain condition is met [5], the particle will eventually return inside a
search space by itself.

3.2 Hypersphere Universe

This method simulates an endless spherical universe. For example, if a particle violates
upper boundary of the search space, the particle than appear in the search space from
lower boundary. The upper boundary is neighbouring the lower one of corresponding
dimension and vice versa. This approach is explained in Fig. 1.

Using this method, a typical way to compute velocity (2) of a particle becomes less
efficient, because a particle can choose a longer way (vector of particle position and his
pBest or gBest). The hypersphere universe offers the second option, a particle can travel
through a boundary and reach the final destination using shorter vector. In Fig. 2 the L1
is vector computed using the standard velocity update (2) and vector L2 is a new vector
that appears when the hyperspace method is used. The sum of these vectors is the range
of available search space.

Fig. 1. Explanation of hypersphere universe method. xi�1 is the particle position in last iteration,
xi is uncorrected position and xi is the final correct position.

530 T. Kadavy et al.

The new velocity formula for this method, which can choose the better (smaller)
vector, is defined as (3).

vtþ 1
ij ¼ w � vtij þ c1 � r1 � LtP;ij þ c2 � r2 � LtG;ij ð3Þ

where LtP;ij and LtG;ij are defined in formula (4).

LP;ij ¼

bLP;ij; if bLP;ij

��� ���� d

bLP;ij mod �dð Þ; if bLP;ij

��� ���[d ^ bLP;ij

��� ���[0
� �

bLP;ij mod þ dð Þ; if bLP;ij

��� ���[d ^ bLP;ij

��� ���� 0
� �

8>>>><
>>>>:

LG;ij ¼

bLG;ij; if bLG;ij

��� ���� d

bLG;ij mod �dð Þ; if bLG;ij

��� ���[d ^ bLG;ij

��� ���[0
� �

bLG;ij mod þ dð Þ; if bLG;ij

��� ���[d ^ bLG;ij

��� ���� 0
� �

8>>>><
>>>>:

ð4Þ

The d is computed by formula (5) where bu and bl stand for upper bound limit and
lower bound limit of the search space. The bLP;ij and bLG;ij are defined in (6).

d ¼ bu � bl
�� ��

2
ð5Þ

bLP;ij ¼ pBestij � xijbLG;ij ¼ gBestj � xij
ð6Þ

4 Experimental Setup

The experiments were performed for dimension dim = 10 on CEC’17 benchmark
functions set [2]. The maximal number of cost function evaluations is set to 10000 �
dim according to the definition for this benchmark set. The population size (NP) is set
to 40 for all dimensions. The inertia weight is set w = 0.729 and learning factors are

Fig. 2. Two possible velocity vectors in hypersphere universe.

Comparing Border Strategies for Roaming Particles 531

c1 ¼ c2 ¼ 1:49445 according to [5]. Every test function is repeated for 51 independent
runs and the results are statistically evaluated. The benchmark set includes 30 functions
separated into four categories: unimodal, multimodal, hybrid and composite. Each
function has search space defined in [−100,100]Dim and global minimum is 100 � fi,
where i is an order of test function f. In Table 1 is shown the summary of tested
functions.

The six variants were tested. Three of them are multi-swarms where each of them is
composed of two subpopulations of 20 particles and every 100 iterations the sub-
populations compare their gBest and both of them use the better one (gBest with

Table 1. Tested functions

Test function fi Category Global minimum

f1 Unimodal 100
f2 200
f3 300
f4 Multimodal 400
f5 500
f6 600
f7 700
f8 800
f9 900
f10 1000
f11 Hybrid 1100
f12 1200
f13 1300
f14 1400
f15 1500
f16 1600
f17 1700
f18 1800
f19 1900
f20 2000
f21 Composition 2100
f22 2200
f23 2300
f24 2400
f25 2500
f26 2600
f27 2700
f28 2800
f29 2900
f30 3000

532 T. Kadavy et al.

smaller fitness value). Each variant uses different border strategy for its subpopulations.
In Table 2 is the detailed list of this setting.

5 Results

The Friedman test [6] was used for statistical comparison of used variants. To compute
the statistics, the JAVA package from ‘http://sci2s.ugr.es/keel/multipleTest.zip’ was
used. The results of each test function from CEC benchmark set were averaged from
their 51 independent runs. These average results were used for the Friedman test.

The p-value computed by Friedman test is 4.13E−8, the critical value of the
Friedman statistic is at a = 0.05 [7] so the ranking of Friedman statistics is valid.

The non-parametric Friedman test ranking of the variants is in Table 3. The
adjusted Holm p-values among A6 variant and others are shown in Table 4.

Furthermore, selected examples of mean gBest value history are shown in Figs. 3,
4, 5 and 6.

Table 2. Variant description

Variant Type Border strategy

A1 Single-swarm Soft border
A2 Single-swarm Hypersphere
A3 Single-swarm Hypersphere with velocity formula (3)
A4 Multi-swarm Soft border Hypersphere
A5 Multi-swarm Soft border Hypersphere with velocity formula (3)
A6 Multi-swarm Hypersphere Hypersphere with velocity formula (3)

Table 3. Friedman ranking of variants

Variant Ranking

A6 2.28
A5 2.45
A1 3.48
A3 3.62
A4 4.43
A2 4.73

Table 4. Adjusted p-values of A6 variant and others variants

Variant p-value

A5 0.73E0
A1 0.03E0
A3 0.02E0
A4 3.42E−5
A2 1.97E−6

Comparing Border Strategies for Roaming Particles 533

http://sci2s.ugr.es/keel/multipleTest.zip

500 1000 1500 2000 2500
Iteration300

350

400

450

gBest Val.
test 3 dim 10

500 1000 1500 2000 2500
Iteration

722

724

726

728

730
gBest Val.

test 7 dim 10

A1

A2

A3

A4

A5

A6

Fig. 3. Comparisons of gBests mean history over 51 runs

500 1000 1500 2000 2500
Iteration

812

814

816

818

820
gBest Val.

test 8 dim 10

500 1000 1500 2000 2500
Iteration

1720

1730

1740

1750

1760

1770
gBest Val.

test 17 dim 10

A1

A2

A3

A4

A5

A6

Fig. 4. Comparisons of gBests mean history over 51 runs

500 1000 1500 2000 2500
Iteration

2250

2300

2350

2400

2450
gBest Val.

test 21 dim 10

A1

A2

A3

A4

A5

A6

Fig. 5. Comparisons of gBests mean history over 51 runs

500 1000 1500 2000 2500
Iteration

2600

2700

2800

2900

3000

gBest Val.
test 24 dim 10

500 1000 1500 2000 2500
Iteration

500000
1.0 106

1.5 106

2.0 106

2.5 106

3.0 106

3.5 106

gBest Val.
test 30 dim 10

A1

A2

A3

A4

A5

A6

Fig. 6. Comparisons of gBests mean history over 51 runs

534 T. Kadavy et al.

6 Results Discussion

The results in Table 3 are sorted in ascending order and the first variant is, therefore,
the best performing one. According to Table 4, if the adjusted p-value is smaller than
value 0.1 for Holm test, the compared version is significantly better in performance.
With this values, the variants A1, A2, A3 and A4 are significantly different from the
best performing variant A6. Between variants A6 and A5 there is no significant dif-
ference. With this knowledge, the best performing variants are A6 and A5 on tested
benchmark functions.

This trend can be seen also in Figs. 4 and 5. In few cases, the gBest mean history
show the opposite trend, but the difference with others variants are small. In the figures
(Figs. 4 and 6), the variants A6 and A5 are close to each other on most test functions.

In Fig. 3, for test function 3 (unimodal), the convergence speed seems to be the
slowest for the A2 and A4 variants, this trend can be caused due to the high velocity of
particles.

7 Conclusion

In this paper, the results of six possible variants of handling particles position in
n-dimensional solution space were presented. Three methods (soft borders, hyper-
sphere and hypersphere with new velocity formula) were tested on the single swarm
and their combination on multi-swarm techniques. The methods were tested on clas-
sical PSO algorithm. For comparison, the benchmark set CEC’17 was used. The results
were presented and tested for statistical significance using Friedman test. Based on this
results, some conclusions can be made.

The best performing variants were A6 and A5. Both variants are multi-swarm
which have one common border strategy, the hypersphere universe with updated
velocity equation.

The goal of this study was to show and compare differences in performance of the
selected methods with their combinations using the multi-swarm technique. The results
of this study will be further used in future studies to suggest possible improvements for
controlling the position of particles that violates search space boundaries.

Acknowledgements. This work was supported by Grant Agency of the Czech Republic –

GACR P103/15/06700S, further by the Ministry of Education, Youth and Sports of the Czech
Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014.
Also by the European Regional Development Fund under the Project CEBIA-Tech no.
CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the
Projects no. IGA/CebiaTech/2017/004.

Comparing Border Strategies for Roaming Particles 535

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE
International Conference on Neural Networks 1995, pp. 1942–1948 (1995)

2. Awad, N.H. et al.: Problem definitions and evaluation criteria for CEC 2017 special session
and competition on single-objective real-parameter numerical optimization (2016)

3. Pluhacek, M., Senkerik, R., Viktorin, A., Zelinka, I.: Single swarm and simple multi-swarm
PSO comparison. In: 2016 9th EUROSIM Congress on Modelling and Simulation, Oulu,
pp. 498–502 (2016)

4. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE
International Conference on Evolutionary Computation, pp. 303–308 (1997)

5. Eberhart, R.C., Shi, A.Y.: Comparing inertia weights and constriction factors in particle
swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation,
CEC 2000, pp. 84–88. IEEE (2000)

6. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)

7. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.
7, 1–30 (2006)

536 T. Kadavy et al.

	Comparing Border Strategies for Roaming Particles on Single and Multi-swarm PSO
	Abstract
	1 Introduction
	2 Particle Swarm Optimization
	2.1 Multi-swarm

	3 Strategies
	3.1 Soft Borders
	3.2 Hypersphere Universe

	4 Experimental Setup
	5 Results
	6 Results Discussion
	7 Conclusion
	Acknowledgements
	References

