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Abstract. This article focuses on contemporary possibilities of forecasting of
convective storms which may cause flash floods. The first chapters are presented
predictive tools such as numerical weather prediction models (NWP models)
and the algorithm of convective storms prediction, which includes a storm
prediction based on the principles of mathematical statistics, probability theory
and artificial intelligence methods. Discussion section provides outputs from the
success rate of these forecasting tools on the historical weather situation for the
year 2016. The Algorithm’s output may be useful for early warning of popu-
lation and notification of crisis management authorities before a potential threat
of flash floods in the Zlin Region.
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1 Introduction

Incidence of storm situation that caused the flash floods, have been steadily increasing
every year. In the past, floods were induced by extensive and persistent rain, especially
in the years 1997, 2002 and 2006 [1]. Flash floods as a phenomenon of our time have
begun to regularly occur since 2007. Although this type of flood did not cause
excessive damage (in the order of several billion Czech crowns) as the first type of
flood (hundreds of billions of Czech crowns), just the high frequency of occurrence has
been the main impulse to the improvement of early warning of population and pre-
ventive measures against the flash floods [2].

Flash floods are caused by meteorological and hydrological factors, particularly
high intensity rainfall, slow and the stationary motion of precipitation and high soil
saturation [3, 4]. Meteorological factors are predicted by NWP models [5–7], now-
casting and expert meteorological systems [8–10]. Except these forecasting systems,
prediction of flash flood and heavy rainfall has been also investigated by methods of
artificial intelligence in the neural networks [11, 12], especially Backpropagation
algorithm [13]. Hydrological factor of soil saturation is published through a Flash
Flood Guidance from the Czech Hydrometeorological Institute [4]. Combination of
hydrometeorological factors was investigated and implemented by the Algorithms of
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storm prediction. This algorithm has been experimentally developed in the author’s
dissertation. The Algorithm storms prediction is a forecasting tool the occurrence of
convective precipitation and other dangerous accompanying phenomena (hail, strong
wind gusts and tornadoes) induced by convective storms including forecasts of the risk
of flash floods. The primary input data are data from NWP models provided in image
formats PNG and JPEG. These image formats are converted with the selected image
processing services to the coefficients of hydrometeorological factors specified under
the proposed classification of algorithm. Secondary input data is data from historical
weather situations. These data are classified by selected meteorological attributes such
as temperature, humidity and wind at different levels of the atmosphere. The forecast of
convective of precipitation is calculated by Backpropagation algorithm.

The main objective of this article is to compare the success rate of three methods of
forecast storms for the purpose of deployment of the most successful prediction tools in
experimental mode for a distribution forecast and warnings of crisis management of the
Zlin Region.

2 Forecasting of Convective Storms

At present, forecasting of convective storms and their impacts is very complicated. In
addition, current predictive possibilities are limited by the size of the predicted surface
area (only for the regions and districts). The forecast of convective storms is focused on
their symptoms, especially the interaction of significant hydrometeorological factors.
The major forecasting tools are:

1. NWP models.
2. Algorithm of convective storms.
3. Prediction based on mathematical statistics and artificial intelligence.

2.1 Numerical Weather Prediction Models

Numerical weather prediction model (NWP model) is a forecasting model designated to
weather forecasting. NWP models consist of a dynamic core, a set of parameterization,
a model of the earth’s surface and assimilated input data from ground-based meteo-
rological stations and radiosondes [14].

NWP models contain a large number of mathematical equations describing the
physical phenomena in the atmosphere. Typical ones are the equations of motion, heat
exchange, parameterizations for solar radiation, continuity equation, balance equation
of water vapour and the laws of energy conservation, etc. However, one of the main
equations is the tools of hydrostatic equilibrium, which expresses the dependence of air
pressure q of the vertical coordinate z:

@q
@z

¼ �gq; ð1Þ
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where g is the size of the gravity acceleration and q is the air density. The essence of this
equation is the premise of an existing of the balance between the vertical force com-
ponent of the pressure gradient and the force of gravity. All NWP models are based on
the principle of hydrostatic equilibrium. This assumption can be used for modelling of
persistent precipitation (rain, snow). Nevertheless, in reality the earth’s atmosphere is
compressible and hydrostatic balance can be disrupted by convection air updraft [15].

In practice, we distinguish two types of models of hydrostatic equilibrium:

• Hydrostatical models.
• Nonhydrostatical models.

Hydrostatic models are models with hydrostatic approximations based on Eq. (1).
These models contain parameterization of convection eliminating a major shortcoming
in predicting of convective clouds (only intense showers and weaker storms that cannot
cause a flash flood are modelled). Evaluated NWP models are ALADIN model for the
Czech Republic and Slovakia, EURO4 and HIRLAM (Table 1).

Nonhydrostatical models are the most local with lower resolution and detailed
topography of relief. These models are specialized to forecast of convective precipi-
tation clouds. The main representatives are models GEM, WRF ARW and WRF NMM
(Table 2).

Table 1. Parameters of hydrostatical NWP models [16, 17].

Models ALADIN
CR

ALADIN
SR

EURO4 HIRLAM

Country of
origin

Czech
Republic

Slovakia
Republic

GB DE, EST, FIN, ICE, IR, HOL,
NOR, SP, SWE, LIT

Resolution
(km)

5 km 5 km 11 km 10 km

Area
prediction

Czech
Republic

Slovakia
Republic

Europe Europe

Time step 03, 06,
12, 24 h

03, 06, 12,
24 h

00, 05,
11, 17 h

00, 06, 12, 18 h

Time
advance

2,5 days 3 days 2 days 3 days

Table 2. Parameters of nonhydrostatical NWP models [16, 17].

Models GEM WRF ARW WRF NMM

Country of origin France, USA, Canada USA USA
Resolution (km) 11 km 4 km 3 km
Area prediction Europe Europe Europe
Time step 00, 12 h 00, 12 h 00, 12 h
Time advance 10 days 3 days 1 day
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2.2 Algorithm of Convective Storm Prediction

The goal of the Algorithm is to provide an advanced information and prediction of
heavy convective rainfall and dangerous phenomena, which may cause flash floods.

This algorithm is based on the analysis and evaluation of the prognostic meteo-
rological variables and parameters from numerical weather prediction models.

The main output will be a report containing an assessment of the future develop-
ment of convective precipitation systems in the 3 to 24 h in advance. Other prediction
outputs are:

• Place of occurrence of convective precipitation for 13 municipalities with extended
powers Zlin region and its 35 regions of municipalities with extended powers.

• Time of occurrence of convective precipitation with three-hour interval and
• The time predictions for 3–12 h, or 3–24 h in advance [17].

The probability and intensity of precipitation is calculated by the following
equation:

P ¼
X

n=
X

m� 3
� �

� 100 %ð Þ; ð2Þ

where n is the sum of the sectional predictions and m is the total number of predicted
parameters.

The Algorithm of convective storm predictions are composed of these steps
(Fig. 1):

The partial forecasting steps are:

1. General characteristic contains basic information about the predicted situation (date,
movement direction of precipitation, warning information and synoptic forecast).

2. NWP models - seven NWP model provides a forecast of precipitation for a given
time interval.

Fig. 1. The scheme of convective storm prediction
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3. GP (xx-xx) is a global forecast for the three-hour interval predicted based on the
second step. The data sources are ALADIN NWP models, GFS, WRF NMM and
WRF ARW. The global forecast provides information on:

– conditions of air mass above the condensation level and
– storm (rainfall) intensity.

4. LP (xx-xx) is local forecast which gives information about conditions (potential
triggers convection) of the earth’s surface as the ground temperature, humidity,
wind speed, cloud cover; pressure MSLP, orographic characteristics of relief). The
data sources are ALADIN meteograms.

5. Statistics of historic storm situation includes a database of 100–200 weather situ-
ations. The resulting prediction is an intersection of Algorithm and selected statistic
[18].

The main outputs of Algorithms of convective storm prediction:

• The probability (low/medium/high/very high) occurrence of convective precipita-
tion computed from global and local predictions.

• The probability of occurrence of convective precipitation statistics of historical
situations.

• Rainfall intensity (forecast of strong thunderstorms that may cause flash floods).
• The risk of flash floods determined by intersection of global, local predictions and

soil saturation.
• The probability of occurrence of dangerous phenomena (heavy rainfall, hail, strong

gusts and tornadoes).
• Type of convective storms of Global Forecasts (frontal/orographic/MCS/supercell

convective storms).
• The probability of time and place the occurrence of precipitation by NWP models

[18].

The probability of place of occurrence of precipitation, the risk of flash floods and
more predictive outputs are classified on the calculated coefficients of convective
precipitation forecast. Classification intensity of storms corresponds to the classification
of dangerous phenomenon “Storm” by System of Integrated Warning Services of the
Czech Hydrometeorological Institute.

2.3 Storms Prediction with the Use of Historical Data
of Weather Situations

Storm prediction based on historical data meteorological situations is realized on the
principle of estimation future state based on the previous state with the use a database
of historical meteorological situations [19, 20].

Firstly, storm prediction is calculated from input data of NWP models. Subse-
quently, results are realized by artificial intelligence methods. The process of forecast
creation is specified according to the below shown steps:
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1. Data collection.
2. Data processing and cultivation.
3. Data analysis.
4. Learning from data.
5. Development and testing of predictive models [19].

Data collection is performed from internal sources (data of 100–200 historical
situations stored in MS Excel) and external sources (predictive data from NWP models)
to a database of historical situations.

The specific service image of processing is the main tool for processing and cul-
tivation data. The principle of this service is the conversion of image format into a set
of parameters describing the meteorological or hydrological factors. The colour
expression of the physical quantity of the factor is the converted parameter according to
the scale factors (Table 3) [19].

Data analysis is addressed through statistical methods (Pearson correlation coeffi-
cient for comparison and finding dependencies between forecasted and historical
weather elements and convection indices:

qX;Y ¼ E XYð Þ � E Xð ÞEðYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E X2ð Þ � E2ðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E Y2ð Þ � E2ðYÞp ð3Þ

where stochastic quantities are X ¼ E X2
� �

and Y ¼ E Y2
� �

. The correlation coefficient
takes values in the range –1 to 1, where values approaching –1 are the least dependent
and values approaching 1 increase addiction. Interval from 0.5 to 1 was experimentally
chosen for the purpose of comparison [24].

Learning from data is a step where the used method of machine learning of neural
networks. Used algorithm is the Backpropagation algorithm.

Input data are:

1. Meteorological elements specified conditions of air mass:

– Temperature at altitude levels 1000, 925, 850, 700 a 500 hPa.
– Relative humidity at altitude levels 1000, 925, 850, 700, 500 a 300 hPa.

Table 3. Coefficients of rainfall intensity and probability occurrence of thunderstorms [17].

Coefficients 0 1 2 3

Intensity level Weak
thunderstorms

Strong
thunderstorms

Very strong
thunderstorms

Extremely strong
thunderstorms

Rainfall
intensity
(mm/hours)

0–29 30–49 50–89 above 90

Probability of
occurence (%)

0–24 25–49 50–74 75–100

Risk of flash
flood

Low Medium High Extremely high
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– Wind direction at altitude levels 1000, 925, 850, 700, 500 a 300 hPa.
– Wind speed at altitude levels 1000, 925, 850, 700, 500 a 300 hPa.

2. Convection indeces (MLCAPE, MUCAPE, Lifted index, Showalter index,
K-Index) (Fig. 2).

The resulting input value is determined by calculating the weighted average of
these parameters. The transfer function is the logistic sigmoid. The outputs of predicted
values are converted into coefficients according to Table 3.

3 Verification of Storms Prediction

Plenty of verification methods of weather forecasting are available. In practice, is often
used the Skill Scores method based on the evaluation of the criteria in the pivot table.
This method provides information on the number and frequency of cases where the
phenomenon was or was not predicted and occurred or did not occur in all possible
combinations [23]. The pivot table is adapted for calculating the percentages of success
of convective precipitation forecasts:

Fig. 2. Backpropagation algorithm [22].
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Table 4 shows that the initial criteria represent a positive evaluation of predictions
(coefficient 1, when the phenomenon occurred and was predicted). On the contrary, the
last two criteria indicate bad prediction of the predicted or actual occurrence of the
phenomenon (coefficient of 0, the phenomenon did not occur and was not predicted)
[23]. Subsequently, the resulting percentage of the success rate of convective precip-
itation predictions is calculated according to the formula:

�X ¼ 1
n

Xn

i¼1
xi ð4Þ

where
P

xi is the sum of the coefficients (0 or 1) of criteria for evaluating the success
rate of convective precipitation forecasts, expressed as a percentage.

4 Discussion of Results

Percentage values of success rate of predictions were calculated for the determination
of the probability of occurrence of convective precipitation:

• Algorithm of storm prediction.
• Algorithm Backpropagation.
• NWP models.

4.1 Evaluating of the Success Rate of Convective Precipitation
Predictions for 13 Municipalities with Extended Powers Zlin Region

Firstly, the evaluation of the success rate of convective precipitation predictions was
performed for the territory of 13 municipalities with extended powers in the Zlin
Region. Success rates have been determined for the Algorithm of storms predictions,
Backpropagation algorithm and NWP models. Assessed situations are historical situ-
ations in which the intensity of convective precipitation exceeded 20 mm/hr. with the
probable occurrence of flash floods. The last two situations of 31.7 and 5.8 of the floods
have caused considerable material damage in southwestern and southeastern part of
Zlín Region.

As can be seen in Fig. 3 the lowest values predictions success rate was achieved in
the first storm situation where both algorithms were deployed and tested for the first
time. The success rate of forecast had a progressively upward trend where the maxi-
mum possible successful predictions has been reached in the past recent two flood

Table 4. Contingency table for determination percentage values of success rate of forecast.

Criterion Forecast Reality Result

HIT 1 1 1
MISS 0 0 1
FALSE ALARM 1 0 0
CORRECT REJECTION 0 1 0
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situation (such a high success rate was determined by the appearance of convective
precipitation in the whole the Zlín Region). In contrast to both algorithms, which
reached 80% of success rate, NWP models do not exceed the limit of 50% success rate
predictions.

4.2 Evaluating of the Success Rate of Convective Precipitation
Predictions for 35 Regions of Municipalities with Extended Powers
Zlin Region

This evaluation includes the percentages success rate for only the Algorithm of storm
prediction and Backpropagation algorithm. Prediction was experimentally chosen to
MEP of 35 regions, wherein each MEP was divided into three regions. NWP models
were not evaluated for the advanced prediction.

Figure 4 shows that the percentage of both prediction tools had an upward trend as
in the first case. The success rate of forecasts reached an average from 60 to 70%,
which is a relatively high value of success rate for a regionalized prediction.

Fig. 3. Success rate of forecasting of convective precipitation for municipality with extended
powers (MEP) in the Zlin region.
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5 Conclusion

The aim of the article was to evaluate the success forecasts storms through the NWP
models, the Algorithm for the prediction of storms and the Backpropagation algorithm
using an artificial intelligence. The success rate of forecasts was calculated for 35
regions including 13 municipalities with extended powers. The average success of both
algorithms was around 60%, but NWP models amounted to only 47%. Consequently,
the NWP models do not exceed the limit of 50%, so these predictive tools cannot be
used for a qualified estimate of the probability of convective precipitation and flash
floods. The algorithm storms prediction reached an average success rate of 75%,
Backpropagation algorithm of 73%. Since the Backpropagation algorithm is part of the
penultimate step of the prediction Algorithm so both algorithms can be used to pre-
diction convective precipitation and the risk of flash floods.

Future research will focus on revising and optimizing forecasting parameters and
their weights, including testing other algorithms of neural networks in order to achieve
maximum success rate predictions about around 80% (the higher figure will not
probably be achieved in terms of the quality of available data and shortcomings of
NWP models). The main intention is to offer the Algorithm storms prediction at the
Czech Hydrometeorological Institute for the inclusion and expansion of forecasting
warnings on dangerous phenomenon “Storm” in the context of the Information Ser-
vices of Warning System.

Fig. 4. Success rate of forecasting of convective precipitation for 35 regions of municipality
with extended powers (MEP) in the Zlin Region.

134 D. Šaur



Acknowledgments. This work was supported by the Internal Grant Agency of Tomas Bata
University under the project No. IGA/FAI/2017/019 “Information Support of Crisis Management
at the Regional Level”.

References

1. Březková, L., Šálek, M., Novák, P., Kyznarová, H., Jonov, M.: New methods of flash flood
forecasting in the Czech Republic. In: IFIP Advances in Information and Communication
Technology, AICT, vol. 359, pp. 550–557 (2011). doi:10.1007/978-3-642-22285-6_59

2. Zdenek, S., Dusan, V., Jan, S., Ivan, M., Miroslav, M.: Protection from flash floods. In:
Proceedings of the 26th International Business Information Management Association
Conference - Innovation Management and Sustainable Economic Competitive Advantage:
From Regional Development to Global Growth, IBIMA 2015, pp. 1359–1363 (2015).
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976391745&partnerID=40&md5=
923aa2f309578593d8b5e2cc503d02de

3. Hardy, J., Gourley, J.J., Kirstetter, P.-E., Hong, Y., Kong, F., Flamig, Z.L.: A method for
probabilistic flash flood forecasting. J. Hydrol. 541, 480–494 (2016). doi:10.1016/j.jhydrol.
2016.04.007

4. Šaur D.: The Methodology Uses of Meteorological Radar of the Zlin Region for Crisis
Management. Zlin, Czech Republic (2016)

5. Ravazzani, G., Amengual, A., Ceppi, A., Homar, V., Romero, R., Lombardi, G., Mancini,
M.: Potentialities of ensemble strategies for flood forecasting over the Milano Urban Area.
J. Hydrol. 539, 237–253 (2016). doi:10.1016/j.jhydrol.2016.05.023

6. Jolivet, S., Chane-Ming, F.: WRF modelling of turbulence triggering convective thunder-
storms over Singapore. In: Deville, M., Estivalezes, J.L., Gleize, V., Lê, T.H., Terracol, M.,
Vincent, S. (eds.) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and
Multidisciplinary Design, vol. 125, pp. 115–122. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43489-5_14

7. Novák, P.: The Czech Hydrometeorological Institute’s Severe Storm Nowcasting System.
doi:10.1016/j.atmosres.2005.09.014

8. Liechti, K., Panziera, L., Germann, U., Zappa, M.: The potential of radar-based ensemble
forecasts for flash flood early warning in the Southern Swiss Alps. Hydrol. Earth Syst. Sci.
17(10), 3853–3869 (2013). doi:10.5194/hess-17-3853-2013

9. Lakshmanan, V., Crockett, J., Sperow, K., Ba, M., Xin, L.: Tuning AutoNowcaster
automatically. Weather and Forecast. 27(6), 1568–1579 (2012). doi:10.1175/WAF-D-11-
00141.1

10. Haiden, T., Steinheimer, M.: Improved Nowcasting of precipitation based on convective
analysis fields. In: Precipitation: Advances in Measurement, Estimation and Prediction,
pp. 389–417 (2008). doi:10.1007/978-3-540-77655-0_15

11. Beheshti, Z., Firouzi, M., Shamsuddin, S.M., Zibarzani, M., Yusop, Z.: A new rainfall
forecasting model using the CAPSO algorithm and an artificial neural network. Neural
Comput. Appl. 27(8), 2551–2565 (2016). doi:10.1007/s00521-015-2024-7

12. Young, C.-C., Liu, W.-C., Chung, C.-E.: Genetic algorithm and fuzzy neural networks
combined with the hydrological modeling system for forecasting watershed runoff discharge.
Neural Comput. Appl. 26(7), 1631–1643 (2015). doi:10.1007/s00521-015-1832-0

13. Chai, S.S., Wong, W.K., Goh, K.L.: Backpropagation vs. radial basis function neural model:
rainfall intensity classification for flood prediction using meteorology data. J. Comput. Sci.
12(4), 191–200 (2016). doi:10.3844/jcssp.2016.191.200

Forecasting of Convective Precipitation Through NWP Models 135

http://dx.doi.org/10.1007/978-3-642-22285-6_59
https://www.scopus.com/inward/record.uri%3feid%3d2-s2.0-84976391745%26partnerID%3d40%26md5%3d923aa2f309578593d8b5e2cc503d02de
https://www.scopus.com/inward/record.uri%3feid%3d2-s2.0-84976391745%26partnerID%3d40%26md5%3d923aa2f309578593d8b5e2cc503d02de
http://dx.doi.org/10.1016/j.jhydrol.2016.04.007
http://dx.doi.org/10.1016/j.jhydrol.2016.04.007
http://dx.doi.org/10.1016/j.jhydrol.2016.05.023
http://dx.doi.org/10.1007/978-3-662-43489-5_14
http://dx.doi.org/10.1007/978-3-662-43489-5_14
http://dx.doi.org/10.1016/j.atmosres.2005.09.014
http://dx.doi.org/10.5194/hess-17-3853-2013
http://dx.doi.org/10.1175/WAF-D-11-00141.1
http://dx.doi.org/10.1175/WAF-D-11-00141.1
http://dx.doi.org/10.1007/978-3-540-77655-0_15
http://dx.doi.org/10.1007/s00521-015-2024-7
http://dx.doi.org/10.1007/s00521-015-1832-0
http://dx.doi.org/10.3844/jcssp.2016.191.200


14. Meteorological Explanatory and Terminology Dictionary (EMS). Czech Meteorological
Society (CMES), Prague. http://slovnik.cmes.cz

15. Batka, M.: Projections for the Development Atmosphere by Objective Methods. Prague,
Czech Republic. http://kfa.mff.cuni.cz/wp-content/uploads/2015/03/kniha.pdf

16. WeatherOnline. http://www.weatheronline.cz/cgi-bin/expertcharts?LANG=cz&CONT=czcz
&MODELL=gfs&VAR=prec

17. Šaur, D.: Comparison of success rate of numerical weather prediction models with
forecasting system of convective precipitation. In: Silhavy, R., Senkerik, R., Oplatkova, Z.
K., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent
Systems. AISC, vol. 464, pp. 307–319. Springer, Cham (2016). doi:10.1007/978-3-319-
33625-1_28

18. Šaur, D., Ďuricová, L.: Comprehensive system of intense convective precipitation forecasts
for regional crisis management. In: The Tenth International Conference on Emerging
Security Information, System and Technologies, SECURWARE 2016, IARIA, 24–28 July
2016, pp. 111-116 (2016). ISBN 978-1-64208-493-0

19. Predictive Analysis. https://www.gaussalgo.cz/prediktivni-analytika
20. Biological Algorithms (5) – Neural Networks: Learning – Backpropagation. https://www.

root.cz/clanky/biologicke-algoritmy-5-neuronove-site/
21. Predictive Analysis. https://www.gaussalgo.cz/prediktivni-analytika
22. An Introducton to Neural Networks: Back-propagation. https://www.ibm.com/developer

works/library/l-neural/
23. Zacharov P.: Diagnostic and Prognostic Precursors of Convection. Faculty of Mathematics

and Physics UK, KMOP, p. 61, Prague (2004). https://is.cuni.cz/webapps/zzp/detail/44489/
24. Calculation of the Pearson Correlation Coefficient. http://portal.matematickabiologie.cz/

index.php?pg=aplikovana-analyza-klinickych-a-biologickych-dat–biostatistika-pro-
matematickou-biologii–zaklady-korelacni-analyzy–pearsonuv-korelacni-koeficient–vypocet-
pearsonova-korelacniho-koeficientu

136 D. Šaur

http://slovnik.cmes.cz
http://kfa.mff.cuni.cz/wp-content/uploads/2015/03/kniha.pdf
http://www.weatheronline.cz/cgi-bin/expertcharts%3fLANG%3dcz%26CONT%3dczcz%26MODELL%3dgfs%26VAR%3dprec
http://www.weatheronline.cz/cgi-bin/expertcharts%3fLANG%3dcz%26CONT%3dczcz%26MODELL%3dgfs%26VAR%3dprec
http://dx.doi.org/10.1007/978-3-319-33625-1_28
http://dx.doi.org/10.1007/978-3-319-33625-1_28
https://www.gaussalgo.cz/prediktivni-analytika
https://www.root.cz/clanky/biologicke-algoritmy-5-neuronove-site/
https://www.root.cz/clanky/biologicke-algoritmy-5-neuronove-site/
https://www.gaussalgo.cz/prediktivni-analytika
https://www.ibm.com/developerworks/library/l-neural/
https://www.ibm.com/developerworks/library/l-neural/
https://is.cuni.cz/webapps/zzp/detail/44489/
http://portal.matematickabiologie.cz/index.php%3fpg%3daplikovana-analyza-klinickych-a-biologickych-dat%e2%80%93biostatistika-pro-matematickou-biologii%e2%80%93zaklady-korelacni-analyzy%e2%80%93pearsonuv-korelacni-koeficient%e2%80%93vypocet-pearsonova-korelacniho-koeficientu
http://portal.matematickabiologie.cz/index.php%3fpg%3daplikovana-analyza-klinickych-a-biologickych-dat%e2%80%93biostatistika-pro-matematickou-biologii%e2%80%93zaklady-korelacni-analyzy%e2%80%93pearsonuv-korelacni-koeficient%e2%80%93vypocet-pearsonova-korelacniho-koeficientu
http://portal.matematickabiologie.cz/index.php%3fpg%3daplikovana-analyza-klinickych-a-biologickych-dat%e2%80%93biostatistika-pro-matematickou-biologii%e2%80%93zaklady-korelacni-analyzy%e2%80%93pearsonuv-korelacni-koeficient%e2%80%93vypocet-pearsonova-korelacniho-koeficientu
http://portal.matematickabiologie.cz/index.php%3fpg%3daplikovana-analyza-klinickych-a-biologickych-dat%e2%80%93biostatistika-pro-matematickou-biologii%e2%80%93zaklady-korelacni-analyzy%e2%80%93pearsonuv-korelacni-koeficient%e2%80%93vypocet-pearsonova-korelacniho-koeficientu

	Forecasting of Convective Precipitation Through NWP Models and Algorithm of Storms Prediction
	Abstract
	1 Introduction
	2 Forecasting of Convective Storms
	2.1 Numerical Weather Prediction Models
	2.2 Algorithm of Convective Storm Prediction
	2.3 Storms Prediction with the Use of Historical Data 	of Weather Situations

	3 Verification of Storms Prediction
	4 Discussion of Results
	4.1 Evaluating of the Success Rate of Convective Precipitation Predictions for 13 Municipalities with Extended Powers Zlin Region
	4.2 Evaluating of the Success Rate of Convective Precipitation Predictions for 35 Regions of Municipalities with Extended Powers Zlin Region

	5 Conclusion
	Acknowledgments
	References


