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Abstract. The foolproof segmentation of 3D anatomical structures in
medical images is usually a challenging task, which makes automatic
results often far from desirable and interactive repairs necessary. In
the past, we introduced a first solution to resume segmentation from
third-party software into an initial optimum-path forest for interactive
correction by differential image foresting transforms (DIFTs). Here, we
present a new method that estimates the initial forest (input segmenta-
tion) rooted at more regularly separated seed voxels to facilitate inter-
active editing. The forest is a supervoxel segmentation from seeds that
result from a sequence of image foresting transforms to conform as much
as possible the supervoxel boundaries to the boundaries of the object
in the input segmentation. We demonstrate the advantages of the new
method over the previous one by using a robot user, as an impartial way
to correct brain segmentation in MR-T1 images.

Keywords: Interactive editing · Segmentation · Supervoxel · Image-
foresting transform

1 Introduction

The task of assigning a distinct label to object and background voxels in
3D medical images, named segmentation, is usually challenging due to poorly
defined object boundaries, non-standard intensity distribution, field inhomo-
geneity, noise, partial volume, and the interplay among these factors [19]. As
consequence, repairs of automatic segmentation from third-party software (e.g.,
FreeSurfer [4], SPM2 [8], CLASP1) are often necessary. Interactive segmentation
from scratch is certainly an undesirable alternative and manual corrections may
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be time-consuming, tedious, and subject to variations among distinct users. Ide-
ally, one should be able to fix segmentation interactively without destroying its
correct parts.

Fig. 1. (a) The given presegmentation. (b) Seed set computed by ISBI2011 [21] has
many non-uniformly distributed seeds, and (c) its attempt to fix the segmentation
by placing new background markers (red dots) fails. Proposed editing method: (d)
Supervoxels by IFT-SLIC to find the seed set. (e) Supervoxels better conforming to
the presegmentation are obtained by changing the cost function to f ′

D. (f) The union
of supervoxels from seeds contained in the presegmentation gives us a starting point
to perform corrections. (g) A corrected result is obtained by adding a new background
seed (red dot) and running DIFT. (Color figure online)
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In the past, we proposed a first solution to resume an input segmenta-
tion [21,22] for interactive correction by differential image foresting transforms
(DIFTs) [7]. The method interprets a 3D medical image as a graph, whose nodes
are the voxels and the arcs are defined by their 6-neighbors, and estimates a
minimum set of seed nodes such that the image foresting transform (IFT) algo-
rithm [5] can generate the exact representation of the input segmentation as an
optimum-path forest rooted at those seeds. In this forest, the object is defined
by the union of trees rooted at its internal seeds. The IFT algorithm executes in
time proportional to the nodes (i.e., linear time) and subsequently, the user may
add and/or remove seeds (their optimum-path trees) to correct segmentation in
sublinear time by using the DIFT algorithm [7]. A drawback is the possible high
number of seeds near the object boundaries, making difficult user interaction
(Figs. 1a–c).

In this work, we propose an approximate solution in which the seed set con-
sists of more regularly separated nodes, thereby facilitating the interactive cor-
rection (Figs. 1d–g). The method starts by estimating uniformly spaced seeds in a
region of interest around the input object mask and applies a sequence of DIFTs
followed by seed recomputation to conform the boundaries of the supervoxels
(i.e., the optimum-path trees) to the object’s boundaries, as much as possible.
Then, the user can add and/or remove seed nodes at each subsequent iteration
of the DIFT algorithm to fix segmentation.

The first step is automatic and it is based on a recent approach for supervoxel
segmentation, named IFT-SLIC [2], but using here a different choice of para-
meter (path-value function) in the DIFT algorithm to approximate the result
to the desired segmentation. IFT-SLIC was inspired in the Simple Linear Iter-
ative Clustering (SLIC) method, that defines supervoxels along a few iterations
of the k-means clustering algorithm. In IFT-SLIC, however, the supervoxels are
naturally obtained as single connected components and the object is defined
by connected paths from its internal seeds. This makes possible the interactive
editing of the segmentation.

In the following, we first describe related works on segmentation editing
and basic concepts. Then, we detail the proposed method and our experimental
results and conclusions.

2 Related Works

In spite of the vast literature on segmentation, only a few works have dealt with
the editing issue, usually considering qualitative and highly subjective empirical
evaluations [13].

Grady and Funka-Lea [10] apply Random Walk (RW) [9] to correct pre-
segmented images, optimized with downsampling, which loses important and
high frequency information, like small objects, negatively affecting the result.
Harrison et al. [12] join discriminative classification and energy minimization with
RW for contour-based correction, using GPU training. It inherits disadvantages
from contour-based segmentations, like sensitivity to seed placing, lack of texture
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and region information. It depends on the training set size to propagate the labels
to other slices, affecting its accuracy.

Jackowski et al. [14] approximate a digital volume representing the segmented
object by a Rational of Gaussians (RaG) parametric surface, allowing the user
to change the surface by its control points. Advantages are compression for fast
transmission, sub-voxel correction and inclusion of graphical effects without a
voxelized appearance. But editing non-compact objects by control points is not
trivial. Valenzuela et al. [29] use Bézier-based surfaces. The user can modify the
curve in one slice, and it propagates to the rest in 3D.

Yang and Choe [30] uses Graph Cut (GC) [3], with energy function composed
by presegmentation and new user inputs. It considers the presegmentation is
almost correct, restricting the user active field. It inherits GC disadvantages. The
graph weights are based on the euclidean distance, not effective for non-compact
objects, like veins and arteries. To remove parts of the presegmentation, the
user must always unnecessarily place background and foreground seeds. More-
over, its conducted evaluation did not include a user effort analysis. Karimov et
al. [16] develop a software that suggests correction candidates, based on extrac-
tion of region skeletons, which should be similar to ground truth, and histogram
similarity analysis. Complex images can affect the candidates number.

Li et al. [17] proposed a user interface to tackle the interactive segmentation
problem consisting of two steps. In the first step, the user selects seeds over
the foreground and the background for region-based segmentation using Graph
Cut on a superpixel-graph, derived from a watershed segmentation of the image.
Then, the resulting segmentation boundary is turned into a polygon that can be
interactively edited. Changes to the polygon structure serve as soft constraints
for local corrections using GC on a pixel-graph. This method was designed for
2D images and the extension to 3D is not straightforward.

Miranda et al. [21,22] proposed an editing solution based on the IFT with
experimental analysis in MR-T1 tridimensional images. Contrary to previous
methods, it can be applied to multidimensional images and to objects with arbi-
trary shapes, with low running time and without any special hardware sup-
port. It first solves the reverse segmentation problem, with strong theoretical
background, reducing the required number of seeds by employing a conservative
force [21]. The corrections can then be performed in sublinear time by differential
IFT (DIFT) [7]. It is restricted to the max-arc path-cost function over a gradient
image, which is usually not the best option to deal with blurred transitions.

Spina et al. [27] proposed a solution with robot users [11], which simulate
user interaction by placing brush strokes automatically to iteratively perform
the segmentation task resulting in the given presegmentation. It can correct
any existing delineation method result [27]. However, it considered a robot user
tailored to IFT-based segmentation, since the end goal was to learn the spatial
distribution of seeds added to reproduce ground truth training masks, in order
to output a statistical seed model of an object of interest to aid in its interactive
segmentation. Hence, they were more interested in consistent seed positioning
than high accuracy for editing.
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Our proposed method is also based on the IFT framework, but it was designed
to circumvent the main problems of [21], such as its high number of seeds and
non-uniform seed distribution, in order to give more freedom to the user to
perform corrections, and using a better path-cost function. The flexibility of
the path-cost function of the IFT-SLIC makes it a more general framework
than other similar methods that attempt to produce SLIC-like superpixels from
watershed segmentation [18,26].

Lastly, it is worth noting that using boundary-tracking methods in slice by
slice fashion to fix 3D segmentations, such as live wire [6], intelligent scissors [25],
Riverbed [23], and G-Wire [15], may demand considerable user interaction, pro-
portional to the number of slices with errors, which can be infeasible in many
cases. The Live Markers paradigm [28] might mitigate this problem, when cou-
pled with our proposed method, by allowing the propagation of those corrections
in 3D, given that the user-selected boundary segments are converted to seeds for
competition in a 3D graph.

3 Background

A multidimensional and multispectral digital image is a mapping I : I → Zm,
where I ⊂ Zn is the image domain and Zm is a space of m bands (e.g., color
channels). An adjacency relation A is a binary relation on I. We use t ∈ A(s) and
(s, t) ∈ A to indicate that t is adjacent to s. By setting an adjacency relation, I
can be represented as a weighted digraph G = (V,E,w), where V = I represents
the set of nodes, E = A is the set of arcs and w : E → R assigns a weight to
each arc. In this work, we are interested in the 6-neighborhood relation A for
3D images.

A path πs�t is a sequence of distinct nodes 〈v1 = s, v2, . . . , vn = t〉, with
origin s and terminus t, where (vi, vi+1) ∈ A for i = 1, 2, . . . , n−1. πt represents
a path with terminus t from any origin. We use πt = πs · 〈s, t〉 to denote the
concatenation of a path πs by an arc (s, t). πt = 〈t〉 is a trivial path. Πt(G) is the
set of all distinct paths with terminus t, Πs�t(G) limits Πt(G) for paths with
origin s, and Π(G) is the set of all distinct paths: Πs�t(G) ⊆ Πt(G) ⊆ Π(G).
A connectivity function f : Π(G) → R assigns a scalar value to any path π in
the graph G. A path π∗

t is optimum if f(π∗
t ) ≤ f(πt),∀πt ∈ Πt(G).

A predecessors map is a function Pr : V → V ∪ {nil} where for Pr(t) = s
we have t ∈ A(s) or s = nil. For any pixel t ∈ V , a predecessors map Pr with
no cycles defines a path πPr

t recursively as 〈t〉 if Pr(t) = nil, and πPr
s · 〈s, t〉 if

Pr(t) = s �= nil. Hence, a predecessors map with no cycles defines a spanning
forest, where all nodes are connected to a set of root nodes R(Pr) = {v ∈ V :
Pr(v) = nil}.

3.1 Image Foresting Transform (IFT)

An Optimal-Path Spanning Forest Problem (OPSFP) consists on finding a span-
ning forest Pr, such that πPr

t are optimal paths, for all t ∈ V , according to
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a connectivity function f . The IFT is an OPSFP solver by extending Dijkstra
shortest path algorithm with multiple sources and different connectivity func-
tions [5]. It uses a dynamic approach by storing the best connectivity values
found so far in a map C : V → R, which converges to C(s) = minπs∈Πs(G) f(πs)
in the case of smooth connectivity functions [5].

In the context of binary interactive segmentation, we usually restrict the
optimal paths to paths starting in a set of seed pixels S = S0 ∪S1, where S0 and
S1 denote the sets of background and object seeds, respectively. The segmented
object is defined by the union of all pixels t that are reached by optimal paths
πPr

t rooted at S1. Seeds can be added and/or removed to perform corrections
to intermediate results by re-executing the algorithm. Falcão et al. [7] proposes
Differential IFT (DIFT) to compute sequences of IFTs in a differential way,
which takes sublinear time complexity for subsequent IFT executions on the
same session.

4 IFT-SLIC for Segmentation Editing

A label map L : V → {1, . . . , c} defines a partition set PL = {P1, P2, . . . , Pc},
where

⋃c
i=1 Pi = V . A set of supervoxels is a partition set composed by regions

which share common structural information, like intensity, proximity and tex-
ture, and that have uniform size and shape.

The IFT-SLIC [2] combines the benefits of IFT and SLIC [1] to provide a
more regular and powerful supervoxel generation. It uses a non-smooth con-
nectivity function fD (Eq. 1), which is based on the path-cost function f∑ |�I|
from [20]. fD uses the sum of the color distances relative to its root node and the
sum of Euclidean distances for encoding the boundary adherence and proximity
(compactness), respectively, with a parameter α controlling their trade-off.

Firstly, k equidistant seeds are sampled following a regular grid. Then, two
iterative steps are applied: assignment, where the nodes are labeled to the clos-
est cluster, according to fD by computing the IFT using 6-neighborhood, and
update, where the seed positions and their attribute vectors are moved to their
mean values within their respective labeled regions. The assignment and update
steps are repeated for a total of 10 iterations. The method outputs a spanning
forest in a predecessors map Pr, where each tree defines a supervoxel and its
cluster center corresponds to its root r.

fD(πt = 〈t〉) =

{
0, if t ∈ S
+∞, otherwise

fD(πr�s · 〈s, t〉) = fD(πr�s)

+ (‖I(t) − Ir‖ · α)β

︸ ︷︷ ︸
Boundary Adherence

+ deuc(s, t)
︸ ︷︷ ︸

Compactness

(1)

where Ir is the mean attribute vector associated to the seed r, and we use in this
work α = 0.04 and β = 12, which are values within the range of recommended
values in [2].
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In order to resume a previous given presegmentation by IFT, we need to
devise a seed set that assembles it for the given image. In our proposed method,
a first idea is to consider the seeds (cluster centers) obtained by IFT-SLIC for
the given image, to obtain a more efficient solution. IFT-SLIC results in a seed
set S = {s1, s2, . . . , sk}, where k is the number of supervoxels. If the preseg-
mentation object is small relative to the whole graph, we can use its bounding
box (with a proper extension margin) and compute the seeds by IFT-SLIC only
inside it, in order to reduce the running time. The number of seeds should be
proportional to the bounding box size, to keep the seed density constant for
different object sizes.

The seeds by IFT-SLIC are then divided in two subsets S0 and S1, according
to their values in the binary mask B of the presegmentation (si ∈ S0 if B(si) = 0,
and si ∈ S1 otherwise). The union of all supervoxels from seeds in S1, gives us an
initial approximation of the presegmentation, denoted as the initial supervoxel
segmentation, which does not perfectly resemble the presegmentation (Fig. 1d).
To further boost the results, we improve the final supervoxel segmentation by
changing the connectivity function to f ′

D (Fig. 1e) as follows:

f ′
D(πt = 〈t〉) = fD(πt = 〈t〉)

f ′
D(πr�s · 〈s, t〉) = f ′

D(πr�s) + deuc(s, t)
︸ ︷︷ ︸

Compactness

+ (‖I(t) − Ir‖ · α · γB(r,t) + γ · B(r, t))β

︸ ︷︷ ︸
Boundary Adherence

(2)

where B(r, t) = |B(r) − B(t)|, that is, B(r, t) captures the transitions in the
binary mask B of the presegmentation, and γ plays the same role as the liberal
and conservative forces used in [21]. For higher values of γ, the final supervoxel
segmentation better resembles the presegmentation, conserving its fine details.
Thus, higher values of γ allow us to reduce the number of supervoxels k, giving
more freedom to the user to perform corrections. So we used k = vol/(200 · γ),
where vol is the number of object voxels in the presegmentation.

The final supervoxel segmentation can then be used as a starting point,
so that the user can insert and/or remove seeds from S0 and S1 in order to
correct the segmentation in a differential way, by using DIFT [7] with function
f ′

D (Figs. 1f–g). Therefore, the corrections take sublinear time.

5 Experimental Results

In this section, we conducted experiments to measure the user involvement in
the editing process of the wrong parts of the presegmentation in real 3 T MRI-
T1 images of the brain of size 240 × 240 × 180 voxels with severe inhomogeneity
problems. We also quantified the number of estimated seeds, where lower values
indicate more flexibility for posterior user corrections. We compared our pro-
posed method with the best solution so far by IFT, denoted as ISBI2011 [21]. In
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all cases, the corrective actions were conducted by a robot user [11], in order to
get impartial results, with a spherical brush size of 5 voxels, using an Intel core
i3 laptop with 4 GB memory.

Table 1 shows the results of the first experiment (data set D1, composed of
ten MRI volumes) to correct the wrong parts of automatic segmentation of the
cerebral hemispheres, where the errors are related mainly to the bad positioning
of the fuzzy model [24] during the automatic segmentation (Figs. 2a–b). The
mean execution time to obtain the initial seeds by the proposed method was
24.0 s and 13.5 s for ISBI2011 [21]. The mean Dice value for the initial supervoxel
segmentation using the seeds by IFT-SLIC increased from 89.75% to 99.96%
when changing the path cost-function to f ′

D for γ = 3, and from 88.64% to
99.98% for γ = 4. We noted that lower values of γ (γ < 3) can lead to a loss of
presegmentation details. The proposed method reduced the number of markers
required for corrective actions in 68.2% and reduced the total number of initial
seeds in 4.3% for γ = 3. For γ = 4, we had a reduction of 60.8% for corrective
actions and 29.2% for the number of initial seeds.

Table 1. Data set D1: number of markers (nm) required for corrective actions and
number of computed initial seeds (ns) per voxels in parts per thousand.

image# Proposed (γ = 3) Proposed (γ = 4) ISBI2011

nm, ns (�), nm, ns (�), nm, ns (�),

01 5, 0.0729 7, 0.0463 46, 0.0657

02 10, 0.0608 13, 0.0463 35, 0.0766

03 12, 0.0729 12, 0.0502 42, 0.0811

04 15, 0.0602 18, 0.0463 33, 0.0949

05 8, 0.0781 11, 0.0648 23, 0.0443

06 6, 0.0677 10, 0.0463 15, 0.0683

07 8, 0.0677 10, 0.0463 26, 0.0750

08 15, 0.0729 16, 0.0501 20, 0.0470

09 6, 0.0501 8, 0.0463 20, 0.0672

10 9, 0.0502 11, 0.0405 36, 0.0631

Mean 9.4, 0.0653 11.6, 0.0483 29.6, 0.0683

On the second experiment (data set D2, composed of ten MRI volumes, in
Table 2), we considered a more challenging scenario. We conducted experiments
to fix the segmentation of the cortical surface of the brain, where several pro-
nounced errors were intentionally introduced by manual editing along the 3D
surface (Figs. 2c-d). The mean Dice value for the initial supervoxel segmentation
using the seeds by IFT-SLIC increased from 93.08% to 99.95% when changing
the path cost-function to f ′

D for γ = 3, and from 92.48% to 99.95% for γ = 4.
The proposed method reduced the number of markers required for corrective
actions in 45% (39.9%) and reduced the total number of initial seeds in 79.4%
(84%) for γ = 3 (γ = 4).
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Table 2. Data set D2: number of markers (nm) required for corrective actions and
number of computed initial seeds (ns) per voxels in parts per thousand.

image# Proposed (γ = 3) Proposed (γ = 4) ISBI2011

nm, ns (�), nm, ns (�), nm, ns (�),

01 20, 0.1633 26, 0.1252 33, 0.8230

02 20, 0.1633 22, 0.1379 28, 1.2129

03 23, 0.1516 21, 0.1253 32, 0.9770

04 19, 0.1908 18, 0.1484 37, 0.6807

05 23, 0.1909 22, 0.1485 67, 1.6071

06 19, 0.1379 18, 0.1253 34, 1.0022

07 17, 0.1516 19, 0.1273 31, 0.3774

08 17, 0.1633 23, 0.1253 24, 0.4172

09 21, 0.1633 21, 0.1157 42, 0.4365

10 18, 0.1633 25, 0.0936 30, 0.4303

Mean 19.7, 0.1639 21.5, 0.1272 35.8, 0.7965

Fig. 2. 3D renditions of presegmentations with errors (first column) and respective
ground truths (second column), with their main differences highlighted in another
color. A sample image from each data set composed of ten 3D volumes: (a–b) Data set
D1. (c–d) Data set D2 with severe errors. (Color figure online)
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6 Conclusions

From the experiments we can conclude that the proposed method can substan-
tially reduce the number of markers required for corrective actions in both sce-
narios and with a strong reduction of initial seeds in the second case. Our method
has better seed distribution over the image than ISBI2011, due to the regular
sized supervoxels, avoiding the negative effect of seed concentrations in specific
regions, which makes the corrections in these areas to behave like manual seg-
mentation. Moreover, it can be easily extended to multi-class. DIFT runs only
within modified trees, thus in sublinear time. As future work, we will investigate
other path-cost functions and the applications in other image modalities.
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