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Abstract. In many domains of information processing, both vagueness,
or imprecision, and bipolarity, encompassing positive and negative parts
of information, are core features of the information to be modeled and
processed. This led to the development of the concept of bipolar fuzzy
sets, and of associated models and tools. Here we propose to extend
these tools by defining algebraic relations between bipolar fuzzy sets,
including intersection, inclusion, adjacency and RCC relations widely
used in mereotopology, based on bipolar connectives (in a logical sense)
and on mathematical morphology operators.
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1 Introduction

In many domains, such as knowledge representation, preference modeling, argu-
mentation, multi-criteria decision analysis, spatial reasoning, both vagueness or
imprecision and bipolarity, encompassing positive and negative parts of informa-
tion, are core features of the information to be modeled and processed. Bipolarity
corresponds to a recent trend in contemporary information processing, both from
a knowledge representation point of view, and from a processing and reasoning
one. It allows distinguishing between (i) positive information, which represents
what is guaranteed to be possible, for instance because it has already been
observed or experienced, and (ii) negative information, which represents what is
impossible or forbidden, or surely false [12]. This domain has recently motivated
work in several directions, for instance for applications in knowledge representa-
tion, preference modeling, argumentation, multi-criteria decision analysis, coop-
erative games, among others [12]. Three types of bipolarity are distinguished
in [14]: (i) symmetric univariate, where a unique totally ordered scale covers the
range from negative (not satisfactory) to positive (satisfactory) information (e.g.
modeled by probabilities); (ii) symmetric bivariate, where two separate scales are
linked together and concern related information (e.g. modeled by belief func-
tions); (iii) asymmetric or heterogeneous, where two types of information are
not necessarily linked together and may come from different sources. This last
type is particularly interesting in image interpretation and spatial reasoning.
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In order to include the precise nature of information, fuzzy and possibilistic for-
malisms for bipolar information have been proposed (see e.g. [14]). This led to
the development of the concept of bipolar fuzzy sets, and of associated models
and tools, such as fusion and aggregation, similarity and distances, mathematical
morphology, etc.

Here we propose to extend this set of tools by defining algebraic relations
between bipolar fuzzy sets, including intersection, inclusion, adjacency and rela-
tions of region connection calculus (RCC) widely used in mereotopology1. Formal
definitions are proposed, based on bipolar connectives and on mathematical mor-
phology operators (here we consider only the deterministic part of mathematical
morphology and use mostly erosions and dilations). They are shown to have the
desired properties and to be consistent with existing definitions on sets and fuzzy
sets, while providing an additional bipolar feature. The proposed relations can
be used for instance for preference modeling or spatial reasoning, accounting for
both bipolarity and imprecision. Any type of bipolar fuzzy set is considered,
and the proposed definitions are not restricted to objects with indeterminate or
broad boundaries as in the egg-yolk [10] or 9-intersection [9] models.

In Sect. 2, definitions of bipolar fuzzy sets and bipolar connectives are summa-
rized. Extensions of basic set theoretical relations to bipolar fuzzy sets are given
in Sect. 3. Mathematical morphology operators are recalled in Sect. 4. Adjacency
is addressed in Sect. 5, based on morphological dilation. Finally RCC relations
are extended to bipolar fuzzy sets in Sect. 6.2

2 Background on Bipolar Fuzzy Sets and Connectives

In this section, we recall some useful definitions on bipolar fuzzy sets and basic
connectives (negation, conjunction, disjunction, implication). As mentioned in
the introduction, bipolar information has two components, one related to posi-
tive information, and one related to negative information. These pieces of infor-
mation can take different forms, according to the application domain, such as
preferences and constraints, observations and rules, possible and forbidden places
for an object in space, etc. Let us assume that bipolar information is represented
by a pair (μ, ν), where μ represents the positive information and ν the negative
information, under a consistency constraint [14], which guarantees that the pos-
itive information is compatible with the constraints or rules expressed by the
negative information. From a formal point of view, bipolar information can be
represented in different settings. Here we consider the representation where μ and
ν are membership functions to fuzzy sets, defined over a space S (for instance the
spatial domain, a set of potential options in preference modeling...). As noticed
e.g. in [13] and the subsequent discussion, bipolar fuzzy sets are formally equiva-
lent (but with important differences in their semantics) to interval-valued fuzzy
1 Mereology is concerned with part-whole relations, while mereotopology adds topol-

ogy and studies topological relations where regions (not points) are the primitive
objects, useful for qualitative spatial reasoning, see e.g. [1] and the references therein.

2 All proofs are quite straightforward, and omitted due to lack of space.
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sets and to intuitionistic fuzzy sets, and all these are also special cases of L-fuzzy
sets introduced in [16]. Despite these formal equivalences, since the semantics
are very different, we keep here the terminology of bipolarity.

Definition 1. A bipolar fuzzy set on S is defined by an ordered pair of func-
tions (μ, ν) from S into [0, 1] such that ∀x ∈ S, μ(x) + ν(x) ≤ 1 (consistency
constraint).

We consider here that μ and ν are really two different functions, which may
represent different types of information or may be issued from different sources
(third type bipolarity according to [14]). However, this may also include the
symmetric case, reducing the consistency constraint to a duality relation such as
ν = 1 − μ. For each point x, μ(x) defines the membership degree of x (positive
information) and ν(x) its non-membership degree (negative information). This
formalism allows representing both bipolarity and fuzziness. The set of bipolar
fuzzy sets defined on S is denoted by B.

Let us denote by L the set of ordered pairs of numbers (a, b) in [0, 1]3 such
that a + b ≤ 1 (hence (μ, ν) ∈ B ⇔ ∀x ∈ S, (μ(x), ν(x)) ∈ L). In all what
follows, for each (μ, ν) ∈ B, we will note (μ, ν)(x) = (μ(x), ν(x)) (∈ L), ∀x ∈ S.
Note that fuzzy sets can be considered as particular cases of bipolar fuzzy sets,
either when ∀x ∈ S, ν(x) = 1 − μ(x), or when only one information is available,
i.e. (μ(x), 0) or (0, 1 − μ(x)). Furthermore, if μ (and ν) only takes values 0 and
1, then bipolar fuzzy sets reduce to classical sets.

Let � be a partial ordering on L such that (L,�) is a complete lattice.
We denote by

∨
and

∧
the supremum and infimum, respectively. The smallest

element is denoted by 0L and the largest element by 1L. The partial ordering on
L induces a partial ordering on B, also denoted by � for the sake of simplicity:

(μ1, ν1) � (μ2, ν2) iff ∀x ∈ S, (μ1, ν1)(x) � (μ2, ν2)(x). (1)

Then (B,�) is a complete lattice, for which the supremum and infimum are also
denoted by

∨
and

∧
. The smallest element is the bipolar fuzzy set 0B = (μ0, ν0)

taking value 0L at each point, and the largest element is the bipolar fuzzy set
1B = (μI, νI) always equal to 1L.

Let us now recall definitions and properties of connectives, that will be useful
in the following and that extend to the bipolar case the connectives classically
used in fuzzy set theory. In all what follows, increasingness and decreasingness
are intended according to the partial ordering �. Similar definitions can also be
found e.g. in [11] in the case of interval-valued fuzzy sets of intuitionistic fuzzy
sets, for a specific partial ordering (Pareto ordering).

Definition 2. A negation, or complementation, on L is a decreasing oper-
ator N such that N(0L) = 1L and N(1L) = 0L. In this paper, we restrict
ourselves to involutive negations, such that ∀a ∈ L, N(N(a)) = a (these are the
most interesting ones for mathematical morphology).
3 Note that [0, 1] can be replaced by any poset or complete lattice, in the framework

of L-fuzzy sets, and the proposed approach applies in this more general case.
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A conjunction is an operator C from L × L into L such that C(0L, 0L) =
C(0L, 1L) = C(1L, 0L) = 0L, C(1L, 1L) = 1L, and that is increasing in both
arguments4. A t-norm is a commutative and associative bipolar conjunction
such that ∀a ∈ L, C(a, 1L) = C(1L,a) = a (i.e. the largest element of L is the
unit element of C). If only the property on the unit element holds, then C is
called a semi-norm.

A disjunction is an operator D from L × L into L such that D(1L, 1L) =
D(0L, 1L) = D(1L, 0L) = 1L, D(0L, 0L) = 0L, and that is increasing in both
arguments. A t-conorm is a commutative and associative bipolar disjunction
such that ∀a ∈ L,D(a, 0L) = D(0L,a) = a (i.e. the smallest element of L is the
unit element of D).

An implication is an operator I from L × L into L such that I(0L, 0L) =
I(0L, 1L) = I(1L, 1L) = 1L, I(1L, 0L) = 0L and that is decreasing in the first
argument and increasing in the second argument.

In the following, we will call these connectives bipolar to make their instantia-
tion on bipolar information explicit. Similarly, elements of L should be consid-
ered as pairs, quantifying the positive and negative parts of information. The
properties of these connectives are detailed for instance in [6,11], as well as the
links between them. Let us mention of few of them useful in the sequel: given a
t-norm C and a negation N , a t-conorm can be defined as D((a1, b1), (a2, b2)) =
N(C(N((a1, b1)), N((a2, b2)))); an implication I induces a negation N defined
as N((a, b)) = I((a, b), 0L); an implication can be derived from a negation
N and a disjunction D as IN ((a1, b1), (a2, b2)) = D(N((a1, b1)), (a2, b2)); an
implication can also be defined by residuation from a conjunction C such that
∀(a, b) ∈ L \ 0L, C(1L, (a, b)) �= 0L as: IR((a1, b1), (a2, b2)) =

∨{(a3, b3) ∈
L | C((a1, b1), (a3, b3)) � (a2, b2)} (and we have C((a1, b1), (a3, b3)) � (a2, b2) ⇔
(a3, b3) � I((a1, b1), (a2, b2)), expressing the adjunction property); if C is a con-
junction that admits 1L as unit element, then C((a, b), (a′, b′)) � (a, b) ∧ (a′, b′);
if I is an implication that admits 1L as unit element on the left, then (a′, b′) �
I((a, b), (a′, b′)); if I is an implication that admits 0L as unit element on the
right, then (a, b) � I((a, b), (a′, b′)); a residual implication I defined from a bipo-
lar t-norm satisfies I((a, b), (a′, b′)) = 1L ⇔ (a, b) � (a′, b′). In the following we
will mostly consider conjunctions which are bipolar t-norms, and the associated
residual implications.

The marginal partial ordering on L, or Pareto ordering (by reversing the
scale of negative information) is defined as:

(a1, b1) � (a2, b2) iff a1 ≤ a2 and b1 ≥ b2. (2)

This ordering, often used in economics and social choice, has also been used for
bipolar information [15], and intuitionistic fuzzy sets (or interval valued fuzzy
sets) e.g. in [11]. For this partial ordering, (L,�) is a complete lattice. The
greatest element is 1L = (1, 0) and the smallest element is 0L = (0, 1). The
supremum and infimum are respectively defined as:
4 i.e.: ∀(a1, a2, a

′
1, a

′
2) ∈ L4, a1 � a′

1 and a2 � a′
2 ⇒ C(a1, a2) � C(a′

1, a
′
2).
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∨
((a1, b1), (a2, b2)) = (max(a1, a2),min(b1, b2)), (3)

∧
((a1, b1), (a2, b2)) = (min(a1, a2),max(b1, b2)). (4)

In this paper, we restrict our developments to this partial ordering, as an exam-
ple. Other partial orderings are discussed in [6], where dilations and erosions
based on any ordering are proposed.

Let us now mention a few connectives. In Definition 2, the monotony prop-
erties have now to be intended according to the Pareto ordering.

An example of negation, which will be used in the following, is the standard
negation, defined by N((a, b)) = (b, a).

Two types of t-norms and t-conorms are considered in [11] (actually in
the intuitionistic case) and will be considered here as well in the bipolar
case. The first class consists of operators called t-representable bipolar t-
norms and t-conorms, which can be expressed using usual t-norms t and t-
conorms T as C((a1, b1), (a2, b2)) = (t(a1, a2), T (b1, b2)), and D((a1, b1), (a2, b2)) =

(T (a1, a2), t(b1, b2)). A typical example is obtained for t = min and T = max. In
the following we will use dual operators t and T . The second class includes bipo-
lar Lukasiewicz operators, which are not t-representable, and are not detailed
here.

3 Basic Set Theoretical Relations on Bipolar Fuzzy Sets

Inclusion and intersection can be simply defined as bipolar numbers (i.e. in L)
(see e.g. [6] and the references therein):

Definition 3. A bipolar degree of inclusion of (μ1, ν1) in (μ2, ν2) is defined from
a bipolar implication I as:

Inc((μ1, ν1), (μ2, ν2)) =
∧

x∈S
I((μ1, ν1)(x), (μ2, ν2)(x)).

Definition 4. A bipolar degree of intersection of (μ1, ν1) and (μ2, ν2) is defined
from a bipolar conjunction C as:

Int((μ1, ν1), (μ2, ν2)) =
∨

x∈S
C((μ1, ν1)(x), (μ2, ν2)(x)).

Proposition 1. The bipolar degrees of inclusion and intersection in Defini-
tions 3 and 4 are consistent with the corresponding definitions in the crisp and
fuzzy cases.

The bipolar degree of inclusion is an element of L and is decreasing in the
first argument and increasing in the second one.

The bipolar degree of intersection is an element of L and is increasing in both
arguments. It is symmetrical in particular if C is a bipolar t-norm.

If the conjunction is t-representable (i.e. C = (t, T ) with t a t-norm and
T the dual t-conorm), then we have: Int((μ1, ν1), (μ2, ν2)) = (μint(μ1, μ2), 1 −
μint(1 − ν1, 1 − ν2)) where μint is the degree of intersection between fuzzy sets,
defined as μint(μ, μ′) = supx∈S t(μ(x), μ′(x)).
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4 Mathematical Morphology on Bipolar Fuzzy Sets

Mathematical morphology on bipolar fuzzy sets was proposed for the first time
in [2], by considering the complete lattice defined from the Pareto ordering. Then
it was further developed, with additional properties, geometric aspects and appli-
cations to spatial reasoning, in [3,5]. In [6], any partial ordering was considered,
and derived operators were also proposed. Similar work has been developed inde-
pendently, in the setting of intuitionistic fuzzy sets and interval-valued fuzzy sets,
also based on Pareto ordering (e.g. [18]). This group proposed an extension to L-
fuzzy sets [24], besides its important contribution to connectives (e.g. [11]). Here,
while relying on the general algebraic framework of mathematical morphology
on the one hand, and on L-fuzzy sets [16] on the other hand, we restrict our-
selves to the special case of bipolar fuzzy sets, according to Definition 1, and use
the definitions proposed in [2,6], in their particular form involving structuring
elements. A structuring element is a binary bipolar relation between elements of
S and its value at “x − y” represents the bipolar degree to which this relation
is satisfied between x and y. If S is endowed with a translation (for instance
S is a subset of Rn or Z

n, representing a spatial domain), then the value of a
structuring element at x− y represents the value at point y of the translation of
the structuring element at point x.

Definition 5. Let (μB , νB) be a bipolar fuzzy structuring element (in B). The
erosion of any (μ, ν) in B by (μB , νB) is defined from a bipolar implication I as:

∀x ∈ S, ε(μB ,νB)((μ, ν))(x) =
∧

y∈S
I((μB , νB)(y − x), (μ, ν)(y)). (5)

Definition 6. Let (μB , νB) be a bipolar fuzzy structuring element (in B). The
dilation of any (μ, ν) in B by (μB , νB) is defined from a bipolar conjunction C
as:

∀x ∈ S, δ(μB ,νB)((μ, ν))(x) =
∨

y∈S
C((μB , νB)(x − y), (μ, ν)(y)). (6)

These definitions are proved to provide bipolar fuzzy sets, and express erosion
(respectively dilation), as a degree of inclusion (respectively intersection) of the
translation (if defined on S) of the structuring element and the bipolar fuzzy set
to be transformed, according to Definitions 3 and 4.

The properties of these definitions are detailed in [6]. In particular, we will
exploit in the following the fact that dilation commutes with the supremum
of the lattice, and is increasing. It is extensive if and only if the origin of S
completely belongs to the structuring element (i.e. with bipolar degree (1, 0)).
We will restrict ourselves to extensive dilations in the following, i.e. such that
(μ, ν) � δ(μ, ν). The two operations ε and δ form an adjunction if and only if
I is the residuated implication of C (i.e. I and C are adjoint). Finally, these
definitions are equivalent to the fuzzy definitions if no bipolarity is taken into
account (the dilation of a fuzzy set μ by a structuring element μB is defined
as δμB

(μ)(x) = supy∈S t(μB(x − y), μ(y)) where t is a t-norm [4], and a similar
expression for erosion).
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5 Adjacency Between Bipolar Fuzzy Sets Based on
Mathematical Morphology

In this section, we extend our previous work on adjacency between fuzzy sets [8]
to the case of bipolar fuzzy sets. The underlying idea is similar, and relies on the
fact that two entities (e.g. objects in space) are adjacent if they do not intersect,
but as soon as one of them is dilated, they intersect.

Definition 7. Let δ be a bipolar fuzzy dilation, C a bipolar conjunction, N a
bipolar negation, and Int a bipolar degree of intersection (Definition 4). The
adjacency between two bipolar fuzzy sets (μ1, ν1) and (μ2, ν2) is defined as a
bipolar number in L as:

Adj((μ1, ν1), (μ2, ν2)) = C(N(Int((μ1, ν1), (μ2, ν2))), Int((μ1, ν1), δ(μ2, ν2))).

This definition formalizes the conjunction (C(.)) between the non intersection of
the two entities (N(Int(.))) and the intersection of one entities and the dilation
of the other one.

The dilation can be defined according to the application. For instance for
applications in the spatial domain, we may define a structuring element repre-
senting the smallest discernable spatial unit, or the imprecision related to objects
or points positions. The dilation is then computed using this structuring element.
The simplest one in a discrete domain would be composed of one central point
and its neighbors according to a pre-defined discrete connectivity. It would then
be a classical set.

Let us detail the case where C is a t-representable conjunction [11], i.e.
C((a1, b1), (a2, b2)) = (t(a1, a2), T (b1, b2)) where t is a t-norm and T is a t-
conorm. We consider here the Pareto ordering and N(a, b) = (b, a), and we
denote by δ+ and δ− the positive and negative parts of the dilation. For instance
for the dilation of a bipolar fuzzy set (μ2, ν2) by a structuring element (μB , νB)
we have:

δ+(x) = sup
y∈S

t(μB(x − y), μ2(y)) = δμB
(μ2)(x),

δ−(x) = inf
y∈S

T (νB(x − y), ν2(y)) = ε1−νB
(ν2).

These equations show that the positive part of the dilation is the fuzzy dilation of
μ (positive part of the bipolar fuzzy set) by μB (positive part of the structuring
element), and its negative part is the fuzzy erosion of ν (negative part of the
bipolar fuzzy set) by 1 − νB (negation of the negative part of the structuring
element).

Proposition 2. For a t-representable conjunction defined from a t-norm t and
its dual t-conorm T , we have (μint being the classical degree of intersection of
fuzzy sets):

Adj((μ1, ν1), (μ2, ν2)) =

(t(1 − μint(1 − ν1, 1 − ν2), μint(μ1, δ
+)), T (μint(μ1, μ2), 1 − μint(1−ν1, 1−δ−))).
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This result has an interpretation that corresponds to the intuition: (i) the
positive part evaluates to which extent 1 − ν1 and 1 − ν2 do not intersect, and
μ1 and δ+ intersect; (ii) the negative part evaluates to which extent μ1 and μ2

intersect, or 1 − ν1 and 1 − δ− do not intersect.
The non representable case, for instance for Lukasiewicz bipolar conjunction,

can be developed in a similar way. The interpretation is slightly more complicated
and may be less directly intuitive.

Other properties are expressed in the following proposition.

Proposition 3. The adjacency defined in Definition 7 has the following proper-
ties: (i) it is symmetrical if C is left continuous (according to a metric on L, e.g.
Euclidean distance), (ii) it is invariant under geometric transformations such as
translation and rotation (if S is a spatial domain, e.g. a subset of Rn or Z

n),
(iii) it is consistent with the definitions in the binary case and in the fuzzy case.

Note that this relation is not considered in other works such as [9,10,17,20].
Due to the indetermination in the objects and in the relations, in some cases
the adjacency relation may be close to relations such as “nearly overlap” in [9].
However, as mentioned in the introduction, the proposed model is more general
since it is not restricted to objects with imprecise or broad boundaries (which
are the ones considered in these other works).

A few typical adjacency situations are illustrated in Fig. 1. For the sake of
simplicity, degrees in the positive and negative parts are not represented. In case
(a) in this figure, the two positive parts are adjacent, and the indeterminate
parts are overlapping, thus resulting in a strong indeterminacy in the spatial
relation. The proposed definition provides a bipolar number where both positive
and negative parts are less than 1. In case (b), the positive part is equal to 0,

)c()b()a(

(d) (e)

Fig. 1. A few typical situations illustrating the adjacency between bipolar fuzzy sets
in the spatial domain. The positive part (μ) is inside the plain lines, and the negative
part (ν) is outside the dashed lines. For the sake of simplicity, membership degrees
are not represented. The blue lines correspond to (μ1, ν1) and the red ones to (μ2, ν2).
(Color figure online)
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showing that the relation is less satisfied than in case (a), as expected. The
relation is best satisfied in case (c), with no ambiguity, which is reflected by the
(1, 0) = 1L bipolar value provided by the proposed definition. In case (d), the
two negative parts of the sets are the same. This is an illustration where the
bipolarity does not correspond to broad boundaries. Here the resulting bipolar
adjacency value is (0, 1) = 0L, which corresponds to the fact that the possible
region for the two objects is very large (the left half-plane), with potentially no
adjacency between them because of overlapping. Finally, in case (d), the negative
parts are different half-planes, and this situation is close to the perfect adjacency
case. The largest value (1, 0) would be obtained if the two positive regions were
strictly adjacent. As a concrete example, the spatial entities in the two last
situations may correspond to brain structures situated in the same hemisphere
(then ν is the contra-lateral hemisphere), or in different hemispheres.

6 RCC Relations Extended to Bipolar Fuzzy Sets

In this section, we propose extensions of the now classical RCC relations [19]
to bipolar fuzzy sets. The connection predicate, a reflexive and symmetrical
relation5, is denoted by C, so we will denote conjunctions and bipolar t-norms
by Conj in all this section.

Using Connectives. A first approach consists of a direct formal extension of
the equations on classical sets, similar to the extension proposed in [22] for the
fuzzy case. The proposed extension relies on the connectives and bipolar degrees
of intersection and inclusion (see Sects. 2 and 3). Thus we start with a bipolar
connection predicate C, which is reflexive and symmetrical. Bipolar fuzzy sets
are denoted by capital letters (A,B... ∈ B).

Definition 8. Let I be a bipolar implication, Conj a bipolar t-norm and N a
bipolar negation. The RCC relations on bipolar fuzzy sets are defined as bipolar
degrees of satisfaction as follows:

– Part: P (A,B) =
∧

Z∈B I(C(A,Z), C(B,Z));
– Overlaps: O(A,B) =

∨
Z∈B Conj(P (Z,A), P (Z,B));

– Non tangential part: NTP (A,B) =
∧

Z∈B I(C(Z,A), O(Z,B));
– Disconnected: DC(A,B) = N(C(A,B));
– Proper part: PP (A,B) =

∧
(P (A,B), N(P (B,A))) (or any bipolar conjunc-

tion Conj instead of
∧

in this definition and the next ones);
– Equals: EQ(A,B) =

∧
(P (A,B), P (B,A));

– Distinct regions: DR(A,B) = N(O(A,B));
– Partially overlaps: PO(A,B) =

∧
(O(A,B), N(P (B,A)), N(P (A,B)));

– Externally connected: EC(A,B) =
∧

(C(A,B), N(O(A,B)));
– Tangential proper part: TPP (A,B) =

∧
(PP (A,B), N(NTP (A,B)));

– Non tangential proper part: NTPP (A,B) =
∧

(PP (A,B), NTP (A,B)).
5 As detailed in [1], approaches for mereotopology differ depending on the interpreta-

tion of the connection and the properties of the considered regions (closed, open...).
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Using Mathematical Morphology. Another approach relies on the parthood pred-
icate P as starting point. Then we can directly derive the five relations O, PP ,
EQ, DR, PO as above, thus leading to RCC-5. To get more relations, as in
RCC-8 (where the eight relations are DC, EC, TPP , TPP−1, PO, EQ, NTPP ,
NTPP−1, where −1 denotes the inverse relation), in Definition 8 the predicate
C is involved. Here we propose another set of definitions, based on an extensive
dilation δ (defined abstractly here, without referring to points of the underlying
space). These links between RCC relations and mathematical morphology have
been suggested in [7] in the crisp case (on classical sets).

Definition 9. Given a parthood predicate P (supposed to be reflexive) and an
extensive dilation δ, the relations O,PP,EQ,DR,PO are defined as in Defini-
tion 8 and the other ones as follows:

– DC(A,B) =
∧

(DR(A,B),DR(A, δ(B))) =
∧

(DR(A,B),DR(δ(A), B));
– EC(A,B) =

∧
(DR(A,B), O(A, δ(B))) =

∧
(DR(A,B), O(δ(A), B));

– TPP (A,B) =
∧

(PP (A,B), O(δ(A), N(B)));
– NTPP (A,B) =

∧
(P (A,B), P (δ(A), B)) = P (δ(A), B).

These definitions are simple to implement and provide very concise
expressions.

Properties. For crisp and fuzzy sets, the proposed definitions reduce to the exist-
ing ones [19,22], which is a desired consistency. Moreover, the following proper-
ties hold.

Proposition 4. The relations in Definitions 8 and 9 have the following
properties:

– The relations O,DC,EQ,DR,PO,EC are symmetrical;
– P (in Definition 8), O,EQ are reflexive;
– TPP � PP , NTPP � PP , PP � P , EQ � P , PO � O, P � O, EC � DR,

DC � DR, and for Definition 8 O � C and EC � C;
– DW (DC,C) = DW (DR,C) = 1L (for Definition 8), and DW (DR,O);
– if C is increasing in both arguments, then P is decreasing in the first argument

and increasing in the second one (for Definition 8), and if it is supposed to
have these monotony properties in Definition 9, then O is increasing, DC and
DR are decreasing, NTPP and PP are decreasing in the first argument and
increasing in the second one.

Interpretations in Concrete Domains. In Definitions 8 and 9, the relations are
abstract and do not make any reference to elements of S (points). Reasoning
can then be performed on any bipolar (spatial) entities. Now, if we move to the
concrete domain S, which is often necessary for practical applications, then, we
can assign to each abstract bipolar fuzzy set an interpretation in S. Interpre-
tations of the RCC relations then require concrete definitions of C, or P and
δ. This can be achieved in different ways: (i) C can be defined as a degree of
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intersection (Definition 4) and then O = C; (ii) can be defined as a closeness
relations (as in [21] for the fuzzy case), for instance from a dilation and a degree
of intersection; (iii) P can be defined as an inclusion relation (Definition 3) and δ
as a dilation with a given structuring element (Definition 6). Note that the mor-
phological definition of EC is then exactly the proposed definition for adjacency
in Sect. 5.

7 Conclusion

In this paper, we proposed original definitions of algebraic relations (intersection,
inclusion, adjacency and RCC relations) between bipolar fuzzy sets, using math-
ematical morphology operators, in particular dilation. This problem had never
been addressed before, and could be useful in spatial reasoning, but also in other
domains, such as preference modeling, where preferences can be considered as
bipolar fuzzy sets. Future work aims at exploring such applications, with concrete
examples. Other aspects will be investigated as well, such as links with existing
works on objects with imprecise, indeterminate or broad boundaries [9,10,17,20]
(although our approach is not restricted to such objects). Another interesting
direction concerns composition tables and reasoning, extending the work in the
crisp and fuzzy cases [19,23]. Finally, other types of spatial relations can be
addressed, such as directional relations.
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8. Bloch, I., Mâıtre, H., Anvari, M.: Fuzzy adjacency between image objects. Int. J.
Uncertain. Fuzziness Knowl. Based Syst. 5(6), 615–653 (1997)

9. Clementini, E., Felice, O.D.: Approximate topological relations. Int. J. Approx.
Reason. 16, 173–204 (1997)

10. Cohn, A.G., Gotts, N.M.: The egg-yolk representation of regions with indetermi-
nate boundaries. Geogr. Objects Indeterm. Bound. 2, 171–187 (1996)

11. Deschrijver, G., Cornelis, C., Kerre, E.: On the representation of intuitionistic fuzzy
t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)

12. Dubois, D., Prade, H.: Special issue on bipolar representations of information and
preference. Int. J. Intell. Syst. 23(8–10), 999–1152 (2008)

13. Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminology diffi-
culties in fuzzy set theory - the case of “intuitionistic fuzzy sets”. Fuzzy Sets Syst.
156, 485–491 (2005)

14. Dubois, D., Prade, H.: An overview of the asymmetric bipolar representation of
positive and negative information in possibility theory. Fuzzy Sets Syst. 160, 1355–
1366 (2009)

15. Fargier, H., Wilson, N.: Algebraic structures for bipolar constraint-based reasoning.
In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 623–634.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-75256-1 55

16. Goguen, J.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)
17. Hazarika, S., Cohn, A.: A taxonomy for spatial vagueness: an alternative egg-yolk

interpretation. In: Spatial Vagueness, Uncertainty and Granularity Symposium,
Ogunquit, Maine, USA (2001)

18. Mélange, T., Nachtegael, M., Sussner, P., Kerre, E.: Basic properties of the interval-
valued fuzzy morphological operators. In: IEEE World Congress on Computational
Intelligence, WCCI 2010, Barcelona, Spain, pp. 822–829 (2010)

19. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection.
In: Principles of Knowledge Representation and Reasoning, KR 1992, Kaufmann,
San Mateo, CA, pp. 165–176 (1992)

20. Roy, A.J., Stell, J.G.: Spatial relations between indeterminate regions. Int. J.
Approx. Reason. 27(3), 205–234 (2001)

21. Schockaert, S., De Cock, M., Cornelis, C., Kerre, E.E.: Fuzzy region connection
calculus: an interpretation based on closeness. Int. J. Approx. Reason. 48(1), 332–
347 (2008)

22. Schockaert, S., De Cock, M., Cornelis, C., Kerre, E.E.: Fuzzy region connection
calculus: representing vague topological information. Int. J. Approx. Reason. 48(1),
314–331 (2008)

23. Schockaert, S., De Cock, M., Kerre, E.E.: Spatial reasoning in a fuzzy region con-
nection calculus. Artif. Intell. 173(2), 258–298 (2009)

24. Sussner, P., Nachtegael, M., Mélange, T., Deschrijver, G., Esmi, E., Kerre, E.:
Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases
of L-fuzzy mathematical morphology. J. Math. Imaging Vis. 43(1), 50–71 (2012)

http://dx.doi.org/10.1007/978-3-540-75256-1_55

	Topological Relations Between Bipolar Fuzzy Sets Based on Mathematical Morphology
	1 Introduction
	2 Background on Bipolar Fuzzy Sets and Connectives
	3 Basic Set Theoretical Relations on Bipolar Fuzzy Sets
	4 Mathematical Morphology on Bipolar Fuzzy Sets
	5 Adjacency Between Bipolar Fuzzy Sets Based on Mathematical Morphology
	6 RCC Relations Extended to Bipolar Fuzzy Sets
	7 Conclusion
	References


