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Jesús Angulo(B) and Santiago Velasco-Forero

CMM-Centre de Morphologie Mathématique, MINES ParisTech,
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Abstract. Ultrametric spaces are the natural mathematical structure
to deal with data embedded into a hierarchical representation. This kind
of representations is ubiquitous in morphological image processing, from
pyramids of nested partitions to more abstract dendrograms from min-
imum spanning trees. This paper is a formal study of morphological
operators for functions defined on ultrametric spaces. First, the notion
of ultrametric structuring function is introduced. Then, using as basic
ingredient the convolution in (max,min)-algebra, the multi-scale ultra-
metric dilation and erosion are defined and their semigroup properties
are stated. It is proved in particular that they are idempotent operators
and consequently they are algebraically ultrametric closing and open-
ing too. Some preliminary examples illustrate the behavior and practical
interest of ultrametric dilations/erosions.

Keywords: Ultrametric space · Ultrametric semigroup · Idempotent
operator · (max,min)-convolution

1 Introduction

Morphological operators are classically defined for real-valued functions sup-
ported on Euclidean or Riemannian spaces [1] and are used for nonlinear image
processing. More recently, morphological semigroups for functions on length
spaces have been studied [3], whose basic ingredients are the convolution in the
(max,+)-algebra (or supremal convolution), the metric distance and a convex
shape function. More precisely, given a length space (X, d), a bounded func-
tion f : X �→ R and an increasing convex one-dimensional (shape) function
L : R+ → R+ such that L(0) = 0, the multiscale dilation DL; tf and erosion
EL; tf operators of f on (X, d) according to L at scale t > 0 are defined as

DL; tf(x) = sup
y∈X

{
f(y) − tL

(
d(x, y)

t

)}
, ∀x ∈ X,

EL; tf(x) = inf
y∈X

{
f(y) + tL

(
d(x, y)

t

)}
, ∀x ∈ X.
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A typical example of a shape function is L(q) = qP /P , P > 1, such that
the canonical shape function corresponds to the case P = 2: L(d(x, y)/t) =
d(x, y)2/2t2. The corresponding semigroups are just: DL; tDL; sf = DL; t+sf and
EL; tEL; sf = EL; t+sf . These semigroups lead to powerful scale-space proper-
ties for multiscale filtering, regularization and feature extraction. The goal of
this paper is to consider a similar generalization of morphological semigroups to
the case of functions on ultrametric spaces.

An ultrametric space is a special kind of metric space in which the triangle
inequality is replaced with the stronger condition d(x, z) ≤ max {d(x, y), d(y, z)}.
Several typical properties on the corresponding ultrametric balls are directly
derived from this ultrametric triangle inequality, which lead to nested par-
titions of the space. Related to the latter property, every finite ultrametric
space is known to admit a natural hierarchical description called a dendogram,
also known as downward tree. Dendrograms represent a tree structure of the
data, where the data points are the leaves of the tree and the vertical axis
reveals the ordering of the objects into nested clusters of increasing ordering.
Datasets endowed with a hierarchical classification structure are nowadays used
in many challenging problems; like the case of very high dimensional spaces
where the data structure is generally given by cluster-like organization [12].
In the case of morphological image processing, hierarchical representations are
ubiquitous [6,10,15].

Processing a function whose domain is such hierarchical representation
requires the formulation of filters and operators on ultrametric spaces. The
counterpart of Heat kernel and Heat semigroups on ultrametric spaces has been
widely studied in recent work [4] (for discrete ultrametric spaces) and [5] (for
complete ultrametric spaces). Indeed using the theory of [4,5], diffusion-based
signal/image processing techniques can be applied to filter out functions on a
hierarchy. A similar counterpart of morphological signal/image processing for
such representations is developed in this paper.

Our starting point is the notion convolution of two functions in the
(max,min)-algebra. Using this operator, we have recently shown that morpho-
logical operators on Euclidean spaces are natural formulated in (max,min)-
algebra [2]. We introduce (max,min)-convolution based morphological operators
on ultrametric spaces, where the structuring functions are scaled versions of the
ultrametric distance (raised to a power p ≥ 1). We study the corresponding semi-
groups properties and illustrate their interest in filtering and feature extraction.

In the state-of-the-art on mathematical morphology, there are several
research lines related to our work. On the one hand, the theory of adjunctions on
the lattice of dendrograms [8]. We remark that in our framework, the operators
will be defined on the lattice of functions on the ultrametric space and not in
the lattice of dendrograms itself. On the other hand, the various adjunctions
on edge or node weighted graphs and their interpretations in terms of flood-
ing [7,9,13] and their application to construct segmentation algorithms from
invariants of processed minimum spanning trees with associated morphological
operators [10,11].
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2 Ultrametric Spaces

Let (X, d) be a metric space. The metric d is called an ultrametric if it satis-
fies the ultrametric inequality, i.e., d(x, y) ≤ max{d(x, z), d(z, y)}, that is obvi-
ously stronger than the usual triangle inequality. In this case (X, d) is called an
ultrametric space. An ultrametric space (X, d) is called discrete if the set X is:
(i) countable, (ii) all balls Br(x) are finite, and (iii) the distance function d takes
only integer numbers.

Properties of Ultrametric Balls. Let us consider some well known properties
of ultrametric spaces that directly derive from the ultrametric triangle inequality,
proofs can be find in any basic reference on the field. The intuition behind such
seemingly strange effects is that, due to the strong triangle inequality, distances
in ultrametrics do not add up.

(1) The strict ball B<r(x) as well as the non-strict ball B≤r(x) are both open
as well as closed sets for the topology defined by the metric.

(2) Every point inside a ball is its center, i.e., if d(x, y) < r then Br(x) = Br(y).
(3) Given three points x, y, z ∈ X,

y, z ∈ Br(x) ⇒ d(y, z) < r,

y ∈ Br(x), z /∈ Br(x) ⇒ d(y, z) ≥ r.

(4) For two intersecting balls, one contains the other, i.e., if Br(x) ∩ Bs(y) 
= ∅
then either Br(x) ⊆ Bs(y) or Bs(y) ⊆ Br(x).

(5) Any two ultrametric balls of the same radius r are either disjoint or identical.
(6) The set of all open balls with radius r and center in a closed ball of radius

r > 0 forms a partition of the latter, and the mutual distance of two distinct
open balls is again equal to r.

Consequently, the collection of all distinct balls of the same radius r forms
a partition X; for increasing values of r, the balls are also increasing, hence we
obtain a family of nested partitions of X which forms a hierarchy.

Examples of Ultrametric Spaces. The p-adic numbers form a complete
ultrametric space. The Cantor set, which is a fractal model, is also an ultra-
metric space. Besides these examples, we are interested for our applications in
the duality between discrete ultrametric spaces and downward (or rooted) trees,
which are also known as dendrograms.

We can introduce formally a downward tree Γ as follows. Let Γ be a countable
connected graph, where the set of vertices of Γ consists of disjoint union of
subsets {Γk}∞

k=0 with the following properties: (i) from each vertex v ∈ Γk there
is exactly one edge to Γk+1; (ii) for each vertex v ∈ Γk the number of edges
connecting v to Γk−1 is finite and positive, provided k ≥ 1; (iii) if |k − l| 
= 1
then there is no edges between vertices of Γk and Γl. Let dΓ (v, w) denote the
graph distance between the vertices v and w of graph Γ , i.e., the smallest number
of edges in a path connecting the two vertices. For two vertices, x, y ∈ Γ0, their
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nearest common ascestor is the vertex a ∈ Γk. Note that a is connected to x and
y by downward paths of k edges. Then (Γ0, d) is a discrete ultrametric space.

Dually, any discrete ultrametric space (X, d) admits a representation as the
bottom (i.e., set of leaves) of a downward tree Γ . Define the vertices of Γ to
be all distinct balls {Bk(x)} where x ∈ X and k ∈ Z+. Two balls Bk(x) and
Bl(y) are connected by an edge in Γ if |k − l| 
= 1 and one of them is subset of
the other. That is Γ0 coincides with the set X, Γ1 consists of balls of radii 1,
etc. Clearly, edges exist only between the vertices of Γk and Γk+1. All balls of
a given radius k provide a partition of Γ0, so that Γk consists of the elements
of the partition. Each of the balls of radius k is partitioned into finitely many
smaller balls of radius k − 1 and is contained in exactly one ball of radius k + 1.
The ultrametric distance can be also defined as d(x, y) = min {k : y ∈ Bk(x)}.

3 Dilation and Erosion Semigroups on Ultrametric
Spaces

Functions on Ultrametric Spaces. Given a separable and complete ultramet-
ric space (X, d), let us consider the family of non-negative bounded functions f
on (X, d), f : X → [0,M ]. The complement (or negative) function of f , denoted
fc, is obtained by the involution fc(x) = M − f(x). The set of non-negative
bounded functions on ultrametric space is a lattice with respect to the pointwise
maximum ∨ and minimum ∧.

3.1 Ultrametric Structuring Functions

Definition 1. A parametric family {bt}t>0 of functions bt : X ×X → (−∞,M ]
is called by us an ultrametric structuring function in the ultrametric space (X, d)
if the following conditions are satisfied for all x, y ∈ X and for all t, s > 0:

(1) Total mass inequality: supy∈X bt(x, y) ≤ M
(2) Completeness (or conservative): bt(x, x) = M
(3) Symmetry: bt(x, y) = bt(y, x)
(4) A structuring function is monotonically decreasing in the ultrametric

distance.
(5) The complement of the structuring function, i.e., bc

t(x, y) = M − bt(x, y), is
an ultrametric distance in (X, bc

t)
(6) Maxmin semigroup property:

bmax(t,s)(x, y) = sup
z∈X

{bt(x, z) ∧ bs(z, y)} . (1)

Let us in particular introduce the so-called natural isotropic structuring func-
tion bP,t(x, y) = bP,t (d(x, y)), P > 0, in (X, d) as the following strictly monoton-
ically decreasing function whose “shape” depends on power P :

bP,t(x, y) = M −
(

d(x, y)
t

)P

. (2)

The case P = 1 is considered the canonical ultrametric structuring function.
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Proposition 1. For any P > 0, the isotropic P-power function bP,t(x, y) is an
ultrametric structuring function.

Proof. The properties 1 (total mass inequality), 2 (completeness) and 3 (sym-
metry) are obvious from the definition of ultrametric distance. For property 4,
the P-power function is also clearly monotonically increasing in the ultrametric
distance and vanishes at 0.

For property 5, we need to prove that if (X, d) is an ultrametric space, then
(X, bc

t) is an ultrametric space too, with bc
P,t(x, y) = t−P d(x, y)P , t > 0, P > 0.

Let x, y, z ∈ X be given, we have d(x, y) ≤ max{d(x, z), d(z, y)}. Clearly,

t−P d(x, y)P ≤ t−P max{d(x, z), d(z, y)}P = max{t−P d(x, z)P , t−P d(z, y)P }
Thus t−P d(x, y)P is an ultrametric on X.

For property 6 on max-semigroup in the (max,min)-convolution, we will use
well-known results from this convolution [2]. First, let write the function f by
its strict lower level sets:

f(x) = inf
{
λ : x ∈ Y −

λ (f)
}

,

where Y −
λ (f) = {x ∈ X : f(x) < λ}. In fact, given t, s > 0 we will prove the dual

semigroup property

bc
P,max(t,s)(x, y) = inf

z∈X

{
bc
P,t(x, z) ∨ bc

P,s(z, y)
}

.

which is just equivalent to the one we have since:

sup
z∈X

{bP,t(x, z) ∧ bP,s(z, y)} = M − inf
z∈X

{
t−P d(x, z)P ∨ s−P d(z, y)P

}
.

Without the loss of generality, we can fix P = 1. By using the classical result
from level set representations

Y −
λ (φ1 ∨ φ2) = {x ∈ X : φ1(x) < λ and φ2(x) < λ} = Y −

λ (φ1) ∩ Y −
λ (φ2) ,

the condition, ∀x, y ∈ X,

Y −
λ

(
t−1d(x, z) ∨ s−1d(z, y)

)
=

{∃z ∈ X :
[
t−1d(x, z) ∨ s−1d(z, y)

]
< λ

}
,

becomes
{
Y −

λ

(
t−1d(x, z)

) ∩ Y −
λ

(
s−1d(z, y)

) 
= ∅}
, or equivalently, ∀x, y ∈ X,

∃z ∈ X such that Bλt(z) ∩ Bλs(z) 
= ∅. In addition, Bλt(x) = Bλt(z),
Bλs(y) = Bλs(z). Using the properties of ultrametric balls, the intersection
of two balls centered at z means that there is ball which contains the other of
radius λ max(t, s) and that x and y belongs to this ball, i.e.,

{d(x, y) < λ max(t, s)} 
= ∅.

In conclusion,

Y −
λ

(
t−1d(x, z) ∨ s−1d(z, y)

)
= Y −

λ

(
max (t, s)−1

d(x, y)
)

,

and therefore: infz∈X {bc
t(x, z) ∨ bc

s(z, y)} = bc
max(t,s)(x, z).
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3.2 Ultrametric Dilation and Erosion Multiscale Operators

Definition 2. Given an ultrametric structuring function {bt}t>0 in (X, d), for
any non-negative bounded function f the ultrametric dilation Dtf and the ultra-
metric erosion Etf of f on (X, d) according to bt are defined as

Dtf(x) = sup
y∈X

{f(y) ∧ bt(x, y)} , ∀x ∈ X, (3)

Etf(x) = inf
y∈X

{f(y) ∨ bc
t(x, y)} , ∀x ∈ X. (4)

We can easily identify that the ultrametric dilation is a kind of convolution
in (max,min)-algebra of function f by bt.

Proposition 2. Ultrametric dilation Dtf and erosion Etf have the following
properties.

(1) Commutation with supremum and infimum. Given a set of functions
{fi}, i ∈ I and ∀x ∈ X, ∀t > 0, we have

Dt

(∨
i∈I

fi(x)

)
=

∨
i∈I

Dtfi(x); Et

(∧
i∈I

fi(x)

)
=

∧
i∈I

Etfi(x).

(2) Increasingness. If f(x) ≤ g(x), ∀x ∈ X, then

Dtf(x) ≤ Dtg(x); and Etf(x) ≤ Etg(x), ∀x ∈ X, ∀t > 0.

(3) Extensivity and anti-extensivity

Dtf(x) ≥ f(x); and Etf(x) ≤ f(x), ∀x ∈ X, ∀t > 0.

(4) Duality by involution. For any function f and ∀x ∈ X, one has

Dtf(x) = [Etf
c(x)]c ; and Etf(x) = [Dtf

c(x)]c , ∀t > 0.

(5) Ordering property. If 0 < s < t then ∀x ∈ X

inf
X

f ≤ Etf(x) ≤ Esf(x) ≤ f(x) ≤ Dsf(x) ≤ Dtf(x) ≤ sup
X

f.

(6) Semigroup. For any function f and ∀x ∈ X, and for all pair of scales
s, t > 0,

DtDsf = Dmax(t,s)f ;
EtEsf = Emax(t,s)f.

Proof. For property 1, on the distributivity of the operators, we have for all
x ∈ X and for t:

Dt

(∨
i∈I

fi(x)

)
= sup

y∈X

{
sup
i∈I

fi(y) ∧ bt(x, y)
}

= sup
i∈I

sup
y∈X

{fi(y) ∧ bt(x, y)} =
∨
i∈I

Dtfi(x).

and similarly for the ultrametric erosion.
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The properties 2 and 3 of increasingness and extensivity/anti-extensivity are
obvious from the properties of supremum/infimum and the property bt(x, y) ≤
M , with bt(x, x) = M .

For property 4, on duality by involution, let us prove the first relationship
since the other one is obtained by a similar procedure. For all x ∈ X and for t:

[Etf
c(x)]c = M − inf

y∈X
{(M − f(y)) ∨ bc

t(x, y)}
= M − inf

y∈X
{(M − f(y)) ∨ (M − bt(x, y))}

= − inf
y∈X

{−f(y) ∨ −bt(x, y)} = sup
y∈X

{f(y) ∧ bt(x, y)} = Dtf(x).

In order to prove the semigroup property 6, let us focus on the ultrametric
dilation Dt. For any x ∈ X and any pair t, s > 0, one has:

DtDsf(x) = sup
y∈X

[Dsf(y) ∧ bt(x, y)]

= sup
y∈X

[
sup
z∈X

{f(z) ∧ bs(y, z)} ∧ bt(x, y)
]

= sup
z∈X

[
f(z) ∧ sup

y∈X
{bs(y, z) ∧ bt(x, y)}

]
.

Then using the property (6) of semigroup for ultrametric structuring functions,
it is obtained that

DtDsf(x) = sup
z∈X

{
f(z) ∧ bmax(t,s)(x, z)

}
= Dmax(t,s)f(x).

The result for the ultrametric erosion is just obtained by duality.
The proof of ordering property 5 for the case Dt(f)(x) ≥ Ds(f)(x), ∀x ∈ X

is based on the fact for t > s > 0, by the semigroup property on the structuring
functions, one has

bt(x, y) = sup
z∈X

{bt(x, z) ∧ bs(z, y)} ⇒ bt(x, y) ≥ bs(x, y),

and therefore

Dtf(x) = sup
y∈X

{f(y) ∧ bt(x, y)} ≥ sup
y∈X

{f(y) ∧ bs(x, y)} = Dsf(x).

Considering the classical algebraic definitions of morphological operators [16]
for the case of ultrametric semigroups {Dt}t≥0, resp. {Et}t≥0, they have the
properties of increasingness and commutation with supremum, resp. infimum,
which involves that

Dt is a dilation and Et is an erosion.

In addition, they are extensive, resp. anti-extensive, operators and, by the supre-
mal semigroups, both are idempotent operators, i.e., DtDt = Dt and EtEt = Et,
which implies that

Dt is a closing and Et is an opening.
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Finally, their semigroups are just the so-called granulometric semigroup [16] and
therefore

{Dt}t≥0 is an anti-granulometry and {Et}t≥0 is a granulometry,

which involve interesting scale-space properties useful for filtering and
decomposition.

At first sight, one can be perplexed by this property: ultrametric dilation
(resp. ultrametric erosion) is also a closing (resp. opening), since ultrametric
dilation commutes with the supremum and the class of invariants of a closing is
stable by infimum. However, as these suprema are taken on ultrametric balls of
the various partitions, their class is also stable by infimum. The same result was
already obtained by Meyer [8] for set operators on partitions.

Note that we do not use the duality by adjunction to link this pair of dila-
tion/erosion since they are already idempotent operators and do not need to com-
pose them to achieve such goal. Reader interested on adjunction in (max,min)-
algebra is referred to [2].

3.3 Discrete Ultrametric Dilation and Erosion Semigroups

Let (X, d) be a discrete ultrametric space. Choose a sequence {ck}∞
k=0 of positive

reals such that c0 = 0 and ck+1 > ck ≥ 0, k = 0, 1, · · · . Then, given t > 0, ones
defines the sequence {bk,t}∞

k=0, such that

bk,t = M − t−1ck. (5)

Let us define ∀k, ∀x ∈ X, the ultrametric dilation and erosion of radius k on the
associated partition as

Q∨
k f(x) = sup

y∈Bk(x)

f(y), (6)

Q∧
k f(x) = inf

y∈Bk(x)
f(y). (7)

Using now (6) and (7), it is straightforward to see that the ultrametric dilation
and ultrametric erosion of f by bk,t can be written as

Dtf(x) = sup
0≤k≤∞

{Q∨
k f(x) ∧ bk,t} , (8)

Etf(x) = inf
0≤k≤∞

{Q∧
k f(x) ∨ (M − bk,t)} . (9)

It is obvious using this formulation that do not need to compute explicitly
the ultrametric distance between all-pairs of points x and y and that Dtf(x)
and Etf(x) are obtained by working on the supremum and infimum mosaics
Q∨

k f(x) and Q∧
k f(x) from the set of partitions, which is usually finite, i.e., k =

0, 1, · · · ,K.
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3.4 Ultrametric ∞-mean and ∞-Laplacian

Ultrametric ∞-mean. Given a set of N points xi ∈ X ⊂ R
n, the L∞-

barycenter, known as 1-center (minimax center), corresponds to the minimizer
of max-of-distances function. From a geometric viewpoint, it corresponds to the
center of the minimum enclosing ball of the points xi. In the case of R, which
can be called the ∞-mean, the minimax center equals m∞ = 1

2 (max1≤i≤N xi +
min1≤i≤N xi). In our framework, the ultrametric dilation and erosion can be
used to introduce the notion of ultrametric ∞-mean at scale t just as

Mtf(x) =
1
2

(Dtf(x) + Etf(x)) (10)

This operator is related to the solution of the Tug-of-War stochastic game [14].

Ultrametric ∞-Laplacian. The infinity Laplace (or L∞-Laplace) operator is
a 2nd-order partial differential operator. Viscosity solutions to the equation
Δ∞u = 0 are known as infinity harmonic functions. More recently, viscosity
solutions to the infinity Laplace equation have been identified with the payoff
functions from randomized tug-of-war games [14]. In the case of a length spaces,
there exists a counterpart, i.e.,

L∞u(x) = max
y∈Ω,y 	=x

(
u(y) − u(x)

d(x, y)

)
+ min

y∈Ω,y 	=x

(
u(y) − u(x)

d(x, y)

)

In the case of ultrametric spaces, we introduce the multi-scale ultrametric ∞-
Laplacian, which mimics the idea of the second-order differential operator, as
follows:

L∞
t f(x) = (Dtf(x) − f(x)) − (f(x) − Etf(x))

= Dtf(x) + Etf(x) − 2f(x). (11)

As for the standard laplacian, this operator can be used for enhancement of
“edges” of function f : f �→ f̃t(x) = f(x) − L∞

t f(x).

4 Applications to Image and Data Processing

For the examples that we consider here the ultrametric space (X, d) is built from
a minimum spanning tree (MST). First, let G be an edge-weighted undirected
neighbor graph with points x ∈ X as vertices and all edge weights as nonnegative
values. An MST of G is a spanning tree that connects all the vertices together
with the minimal total weighting for its edges, and let d(x, y) be the largest edge
weight in the path of the MST between x and y. Then the vertices of the graph
G, with distance measured by d form an ultrametric space. By thresholding the
corresponding MST at k, 0 ≤ k ≤ K, a set of partitions is obtained which
produces all balls Bk(x).

For the case of the discrete images or signals used in the examples, G is 4-
connected pixel neighbor graph and the edge weights are the grey-level difference.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 1. Ultrametric scale-spaces: (a) original image f(x), (b) and (c) ultrametric dila-
tion Dtf(x) with t = 0.01 and t = 0.1, (d) and (e) ultrametric erosion Etf(x) with
t = 0.01 and t = 0.1, (f) ∞-mean with t = 0.01, (g) image enhancement by ∞-Laplacian
f(x) − L∞

t f(x) with t = 0.01.

f(x)

d(x, y)

Etf(x) f(x) − Etf(x)

L∞
t f(x) f(x) − L∞

t f(x)

Fig. 2. Ultrametric morphological processing of bimodal image from quantitative phase
microscopy: the intensity image in (a) is processed using the ultrametric space derived
from the phase image in (b), with scale parameter t = 0.005.

In addition, a discrete ultrametric structuring function is always considered, i.e.,
bk,t = M − t−1ck, with ck = k.

The first example in Fig. 1 illustrates scale-space of ultrametric dilation Dtf
and Etf , for two values of scale t. For t = 0.01, the associated ultrametric ∞-
mean and enhancement by ∞-Laplacian are also given. One can observe that
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Fig. 3. Ultrametric dilation Dtf(x) (in red), erosion Etf(x) (in blue) and ∞-mean
Mtf(x) (in green) of 1D signal f(x). (Color figure online)

the operators acting on the ultrametric balls naturally preserve the significant
edges. Figure 2 provides a case of a bimodal image from cell microscopy, where
the quantitative phase image (b) is used to built the ultrametric space, and
then, the intensity image (a) is ultrametrically processed using such space. A 1D
signal, intrinsically organized into clusters, captured by the ultrametric point
space, is used in Fig. 3. The regularization obtained by these operators can be
useful in many applications of data processing.

5 Conclusion and Perspectives

The theory introduced in this paper provides the framework to process images
or signals defined on a hierarchical representation associated to an ultrametric
distance space. The effect of the operators depends on both the scale parameter
and the underlying ultrametric distance. These operators have the fundamental
property of acting on the function according to the pyramid of partitions asso-
ciated to its ultrametric domain and therefore the notion of pixel is replaced by
that of class of the partition at a given value of the hierarchy.

Ongoing work will study, on the one hand, the properties of other ultrametric
structuring functions inspired from ultrametric heat kernel functions [4,5] and on
the other hand, the existence of a Hamilton–Jacobi PDE on ultrametric spaces
using pseudo-differential operators.
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