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Abstract. Image segmentation is a classical problem in image process-
ing, which aims at defining an image partition where each identified
region corresponds to some object present in the scene. The watershed
algorithm is a powerful tool from mathematical morphology to perform
this specific task. When applied directly to the gradient of the image to
be segmented, it usually yields an over-segmented image. To address this
issue, one often uses markers that roughly correspond to the locations of
the objects to be segmented. The main challenge associated to marker-
controlled segmentation becomes thus the determination of the markers
locations. In this article, we present a novel method to select markers for
the watershed algorithm based upon multi-resolution approximations.
The main principle of the method is to rely on the discrete decimated
wavelet transform to obtain successive approximations of the image to be
segmented. The minima of the gradient image of each coarse approxima-
tion are then propagated back to the original image space and selected
as markers for the watershed transform, thus defining a hierarchical
structure for the detected contours. The performance of the proposed
approach is evaluated by comparing its results to manually segmented
images from the Berkeley segmentation database.
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1 Introduction

Image segmentation is a classical problem in image processing. Its aim is to pro-
vide an image partition where each identified region corresponds to an object
present in the image. The watershed transform [1–3] is a popular algorithm
based upon mathematical morphology which efficiently performs segmentation
tasks. It can easily be understood by making an analogy between an image and
a topography relief. In this analogy, the gray value at a given pixel is interpreted
as an elevation at some location. The topography relief is then flooded by water
coming from the minima of the relief. When water coming from different min-
ima meet at some location, the location is labelled as an edge of the image.
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The watershed algorithm is usually applied to the gradient of the image to be
segmented. Each minimum of the gradient therefore gives birth to one region in
the resulting segmentation. Due to several factors including noise, quantization
error or inherent textures present in the images, gradient operators usually yield
a large number of minima. A well-known issue of the watershed algorithm is thus
that it usually yields a severely over-segmented image as a result.

To overcome the issue of over-segmentation, a first approach is to apply the
gradient operator to images that have previously been filtered. Meyer designed
morphological filters, referred to as levelling filters, for this particular task [4,5].
Wavelet based filters have also been used to perform the filtering step. In 2005,
Jung and Scharcanski proposed to rely on a redundant wavelet transform to
perform image filtering before applying the watershed [6]. The advantage of
using the wavelet transform is that its application tends to enhance edges in
multiple resolutions, therefore yielding an enhanced version of the gradient. Jung
subsequently exploited the multi-scale aspects of the wavelet transform to guide
the watershed algorithm toward the detection of edges corresponding to objects
of specified sizes [7].

An alternative to overcome the over-segmentation issue is to rely on markers to
perform the watershed segmentation. This strategy builds upon the assumption
that it is possible to roughly determine the location of the objects of interest to
be segmented. The idea is then to perform the flooding from these markers rather
than from the minima of the gradient. Another approach that was considered is
to select the minima of the gradient according to their importance, by considering
for instance h-minima [8,9]. Other approaches including the stochastic watershed
rely on stochastic markers that are used to evaluate the frequency at which a con-
tour appear in the segmentation [10]. Finally, following a classical trend in image
segmentation [11,12], morphological algorithms have been proposed to perform a
bottom-up region merging according to some morphological criteria [13,14].

In this article, our aim is to present a novel method to select markers for
the watershed algorithm based upon multi-resolution approximations. The main
principle of the method is to rely on the orthogonal wavelet transform to obtain
successive approximations of the image to be segmented. The minima of the
gradient image of each coarse approximation are then propagated back to the
original image space and selected as markers for the watershed transform, thus
defining a hierarchical structure for the detected contours. The article is orga-
nized as follows. We describe the proposed algorithm and state the main prop-
erties of the obtained contours hierarchy in Sect. 2. In Sect. 3, we evaluate the
performances of the algorithm on the Berkeley segmentation database. Conclu-
sions are finally drawn in the last section.

2 Multiscale Watershed Segmentation

2.1 Multi-resolution Approximation

A function f from R
2 to R is said to be square-integrable if and only if the

integral
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∫
R2

|f(x1, x2)|2dx1dx2 (1)

is finite. We denote by L2(R2) the set of square-integrable functions. When
equipped with the scalar product

< f, g >=
∫
R2

f(x1, x2)g(x1, x2)dx1dx2, (2)

it is well-known that L2(R2) is an Hilbert space of infinite dimension.
Let us first introduce the mathematical notion of multi-resolution approxima-

tion [15] which plays a central role in the proposed approach. A multi-resolution
of L2(R) is a sequence {Vj}j∈Z of closed subspaces of L2(R) satisfying the fol-
lowing properties

1. ∀(j, k) ∈ Z
2, f(.) ∈ Vj ⇔ f(. − 2jk) ∈ Vj .

2. ∀j ∈ Z, Vj+1 ⊂ Vj ,
3. ∀j ∈ Z, f(.) ∈ Vj ⇔ f(./2) ∈ Vj+1,
4. limj→−∞ Vj = ∩j=+∞

j=−∞Vj = {∅},
5. limj→+∞ Vj = Closure(∪j=+∞

j=−∞Vj) = L2(R),

In addition, for a sequence {Vj}j∈Z to be a multi-resolution of L2(R), there must
exist a function θ in L2(R) such that the family {θ(t − n)}n∈Z is a basis of V0.

Multi-resolution approximations have been extensively used in computer
vision since their introduction in the article [16] of Burt and Adelson. From
this perspective, a signal of dyadic size 2J is the orthogonal projection of a func-
tion f in L2(R) on some space VJ ⊂ L2(R). The approximation of the signal at a
resolution 2−j , with j > J , is defined as its orthogonal projection on a subspace
Vj . In higher dimensions D, e.g. for images, multi-resolution approximations of
L2(RD) can be obtained by considering tensorial products between subspaces:
V D
j = Vj ⊗ Vj ⊗ . . . ⊗ Vj .

In our algorithm, we consider a multi-resolution approximation based upon a
discrete image wavelet decomposition. It is possible to define a scaling function
φ from the Riesz basis {θ(t − n)}n∈Z of V0. An approximation of the image at
scale j is computed by projecting the approximation image at scale j − 1 on the
family {φj(x − n)}n∈Z of scaling functions, where

φj(x) =
1√
2j

φ(
x

2j
). (3)

It can be shown that the projection can be computed by relying on iterative
convolutions with a low-pass filter, followed by a factor 2 sub-sampling. The dis-
crete decimated wavelet transform of the original image is obtained by iteratively
filtering the approximation image by tensorial products of a low-pass filter and
of a high-pass filter, yielding one approximation image and three details images
at each iteration [15].
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Fig. 1. Wavelet transform associated to Lena image for two decomposition levels.
The size of the image is 512 by 512 pixels. The decomposition was performed using
Daubechies wavelet with 12 vanishing moments. The approximation image corresponds
to the subimage on the top left quarter. The other three subimages correspond to the
projection of each approximation on a family of wavelets. We note that the main objects
are relatively well preserved by each approximation image.

2.2 Hierarchical Contour Detection

A multi-resolution approximation of an image is presented in Fig. 1, for two
levels of decomposition. The multi-resolution approximation is computed using
Daubechies wavelets with 12 vanishing moments. Interestingly, we can note that
the main objects and contours of the original image are relatively well preserved
in its approximations. However, these images contain considerably less details
than the original image, making them of potential interest for segmentation. Sev-
eral methods have been proposed to handle segmentation using multi-resolution
approaches. In 2000, Rezaee et al. [17] notably proposed an algorithm combin-
ing the pyramid transform and fuzzy clustering, obtaining good segmentation
results on magnetic resonance images. In 2003, Kim and Kim [18] proposed a
segmentation procedure relying on pyramidal representation and region merging.

It is straightforward to directly apply a watershed algorithm on the approx-
imation images. However, the resolution of these images is significantly lower
than the one of the original image. It is therefore difficult to establish a direct
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Fig. 2. Original image from the Berkeley segmentation database used to illustrate the
algorithm, along with an example of human segmentation.

Fig. 3. Contour images corresponding to four decomposition levels (levels 4, 3, 2, 1
respectively) of the image presented in Fig. 2. The markers at each scale are displayed
on the right images.
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Fig. 4. Original image from the Berkeley segmentation database used to illustrate the
algorithm, along with an example of human segmentation.

Fig. 5. Contour images corresponding to four decomposition levels (levels 4, 3, 2, 1
respectively) of the image presented in Fig. 4. The markers at each scale are displayed
on the right images.
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correspondence between the contours of the approximation image and the con-
tours of the original image [18]. In this study, we propose to tackle this issue in a
simple manner by defining multi-scale markers for performing the segmentation.

Let us consider an image I of dyadic size 2J by 2J pixels. We denote by
L the number of decomposition levels. For l between 0 and L, we denote I(l)

the approximation of I after l decomposition steps. The size of the image I(l) is
therefore 2J−l by 2J−l pixels. By convention, I(0) is the original image I. I(l+1)

is obtained by successively applying the low-pass filter associated to the wavelet
transform to the rows and the columns of I(l) and down-sampling the result by
a factor 2.

To initialize the contour detection algorithm, we first extract the min-
ima of the gradient of the approximation image I(L). We obtain a sequence
{m

(L)
1 , ...,m

(L)
KL

} of KL markers. The locations of these markers are specified on
an image M (L) of size 2J−L by 2J−L. To propagate the markers back to the orig-
inal image I, we oversample the image M (L) by replacing each pixel M (L)(p, q)
by an array of pixels of size 2L by 2L whose value is set equal to M (L)(p, q).
Then, we apply the watershed algorithm on the image I from the image markers
M (L), therefore obtaining a contour image C(L) associated to the approxima-
tion image I(L). We then repeat these operations at decomposition level L−1 to
obtain a contour image E(L−1). We consider then the supremum image S(L−1)

defined by

S(L−1) = sup(C(L), E(L−1)), (4)

where the supremum is defined as follows for each pixel S(L−1)[p, q]:

S(L−1)[p, q] = max(C(L)[p, q], E(L−1)[p, q]). (5)

Finally, we apply a watershed transform to the supremum image S(L−1) to obtain
the contour image C(L−1) corresponding to decomposition level L − 1. This last
step is necessary to remove the thick contours that can potentially be created by
the supremum between images C(L) and E(L−1). We obtain a multi-scale contour
by iteratively applying the procedure described previously for all decomposition
levels.

To illustrate the algorithm, the segmentation algorithm is applied to the
images displayed in Figs. 2 and 4. The results are displayed in Figs. 3 and 5. We
used Daubechies wavelets with 12 vanishing moments to calculate the succes-
sive multi-resolution approximations. By construction, the algorithm returns a
nested sequence of contours, in the sense that if a pixel of the contour image C(l)

is labelled as a contour, then the same pixel in the contour image C(l−1) is also
labelled as a contour. The proposed approach therefore results in a hierarchical
segmentation. We can see that as expected, the contours of the largest objects
tend to be extracted for the approximations with the lowest resolution. By con-
trast, all contours corresponding to the details of the image to be segmented
appear for the approximation images of higher resolution.
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3 Experimental Results and Discussion

In Sect. 2, we introduced a hierarchical contour detection algorithm based upon
successive multi-resolution approximations of the image to be segmented. It is
of interest to assess the validity of the approach by comparing the results of
the algorithm to human segmentations. To that end, we rely on the Berkeley
Segmentation Database (BSD) [19]. The BSD is a large dataset of natural images
that have been manually segmented. At each scale of the contours hierarchy, we
compare the results of the detection algorithm to the human annotations.

In our comparison, we consider two criteria. We first estimate the proportion
of contours detected by the algorithm and that have also been annotated (pre-
cision). To that end, we apply a dilation of size two to the contour image corre-
sponding to the human segmentation, and we consider the intersection between
the dilated image and the contour image returned by the algorithm at each
decomposition level. The dilation is applied to account for potential inaccuracy
of the human contour detection. The number of pixels belonging to the intersec-
tion normalized by the number of pixels corresponding to the detected contours
provides us with an estimate of the proportion of detected contours that have also
been manually segmented. The second criteria that we consider is the propor-
tion of contours that have been detected by humans and that are also detected
by the algorithm (recall). At each decomposition level, we apply a dilation of
size two to the contour image returned by the algorithm and we consider the
intersection between the dilated image and the contour image corresponding to
the human segmentation. By counting the number of pixels of the intersection
normalized by the number of pixels belonging to the human detected contours,
we can determine the proportion of actual contours that are returned by the
detection algorithm at each scale.

We estimated both criteria on 200 images from the BSD. The results are pre-
sented in Table 1. We can note that on average, the precision increases with the
decomposition level in the contours hierarchy. This tends to assess the validity of
the proposed multi-scale approach, in the sense that the contours detected with
markers obtained after several decomposition levels have a significantly higher
probability to correspond to human detected contours than contours directly
obtained with the watershed transform. We also note that the recall of the algo-
rithm decreases monotonously on average. This trend was to be expected, since
the multi-scale approach inherently removes the contours of the smallest pat-
terns. However, up to three decomposition levels, the recall remains higher than
0.5.

It is finally of interest to compare the results of the wavelet based markers selec-
tion to other commonly encountered methods, namely markers selection through
h-minima of the image gradient and contour detection after filtering by alternate
sequential filters. The difficulty here is to obtain a comparable number of segments
between the distinct approaches. To that end, for each image, we select the value
of h-minima and the size of structuring element for the alternate sequential fil-
ter, respectively, that yield the number of markers the closest from the one used
in the wavelet based segmentation. We repeat the process for each decomposition
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scale. Next, we rely on the aforementioned procedure to estimate the precision and
the recall of these methods. The results are summarized in Table 1. We note that,
on average, the segmentation based upon the discrete wavelet transform performs
significantly better in terms of both precision and recall than the segmentation fol-
lowing an alternate sequential filtering. Our interpretation of this result is that the
wavelet transform better preserves the contours of the original image at the high-
est scales of the transform. By contrast, for structuring elements of large size yield-
ing a number of markers similar to the one obtained with the wavelet decompo-
sition, alternate sequential filters significantly degrade the contours of the image,
which explains the poor results that are registered in terms of precision and recall.
Marker selection through h-minima values is shown to yield a higher precision than
the wavelet based algorithm. However, in terms of recall, the wavelet based algo-
rithm performs significantly better on average. Both approaches remain however
significantly distinct and are difficult to compare, since a segmentation based upon
markers selection by h-minima is highly sensitive to the local minima of the image
gradient.

Table 1. Results of the wavelet based algorithm on the BSD for each decomposition
level. Precision corresponds to the average proportion of contours detected by the algo-
rithm that have also been annotated, along with the corresponding standard deviation.
Recall corresponds to the average proportion of contours that have been detected by
humans and that are also detected by the algorithm, along with the corresponding stan-
dard deviation. The proportions are obtained on a database of 200 images. The results
of h-minima based segmentation and alternate sequential filtering based segmentation
are also presented.

Wavelet filtering h-minima Alternate sequ. filters

Dec. level Precision Recall Precision Recall Precision Recall

0 0.10 ± 0.05 0.94 ± 0.03 0.12 ± 0.06 0.85 ± 0.16 0.10 ± 0.04 0.91 ± 0.06

1 0.13 ± 0.07 0.82 ± 0.07 0.17 ± 0.08 0.71 ± 0.18 0.12 ± 0.05 0.69 ± 0.09

2 0.17 ± 0.09 0.69 ± 0.11 0.24 ± 0.13 0.51 ± 0.14 0.12 ± 0.05 0.46 ± 0.08

3 0.22 ± 0.12 0.53 ± 0.14 0.30 ± 0.20 0.21 ± 0.08 0.12 ± 0.05 0.22 ± 0.07

4 Conclusion and Perspectives

In this article, we presented a new method to select markers for the watershed
algorithm based upon multi-resolution approximations. By relying on the dis-
crete decimated wavelet transform to obtain successive approximations of the
image to be segmented, we were able to define a hierarchical structure for the
detected contours. We evaluated the performance of the proposed approach by
comparing its results to manually segmented images from the Berkeley segmenta-
tion database. The comparison provided an empirical evidence that the contours
detected for the approximation of lowest resolutions have a higher probability to
correspond to human detected contours than contours detected by the classical
watershed transform.
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An interesting perspective of this study is to use the proposed algorithm in
a bottom-up aggregation procedure to obtain a dissimilarity measure between
adjacent regions, corresponding to the decomposition scale at which the contour
appears in the hierarchical segmentation. The empirical results obtained on the
Berkeley Segmentation Database indicate indeed that regions separated by con-
tours appearing early in the hierarchical segmentation procedure are less likely
to be merged. We also noted on the comparison performed with the BSD that at
the lowest resolutions, the recall of the detection method is around 0.5. A natural
extension of this work is therefore to rely on additional statistical features that
can eliminate wrong contours while keeping the actual contours in a bottom-up
aggregation procedure.
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