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Abstract. In graph-based methods, image segmentation can be seen as
a graph partition problem between sets of seed pixels. The core of a seed
is the region where it can be moved without altering its segmentation.
The larger the core, the greater the robustness of the method in relation
to its seed positioning. In this work, we present an algorithm to compute
the cores of Oriented Image Foresting Transform (OIFT), an extension
of Fuzzy Connectedness and Watersheds to directed weighted graphs,
and compare its performance to other methods according to a proposed
evaluation measure, the Robustness Coefficient. Our analysis indicates
that OIFT has a good balance between accuracy and robustness, being
able to overcome several methods in some datasets.

Keywords: Oriented Image Foresting Transform · Fuzzy Connected-
ness · Graph segmentation

1 Introduction

Image segmentation can be interpreted as a graph partition problem subject
to hard constraints, given by seed pixels selected in the image domain [2,4,10,
12,14]. A common framework, sometimes referred to as Generalized Graph Cut
(GGC) [6,9], can roughly describe, in a unified manner, several seed-based meth-
ods, including Random Walker (RW) [14], shortest path/geodesic [13], voronoi
diagram and Power Watershed (PW) [6]. In particular, the min-cut/max-flow
algorithm, also known simply as Graph Cut (GC) [4,5], and some methods by
the Image Foresting Transform (IFT) framework [13], such as Watersheds [12]
and Fuzzy Connectedness [10], correspond to the ε1- and ε∞-minimization prob-
lems, respectively, within this framework [9]. The ε∞-minimization methods
have linear-time implementations O(N) with respect to the image size N [8],
or O(N · logN) depending on the data structure of the priority queue, while the
run time for the ε1-minimization problem is O(N2.5) for sparse graphs [5].

Oriented Image Foresting Transform (OIFT) [17,24] and Oriented Rela-
tive Fuzzy Connectedness (ORFC) [3] extend the ε∞-minimization problem to
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directed weighted graphs. OIFT’s energy formulation on digraphs makes it a
very versatile method, supporting several high-level priors for object segmen-
tation, including global properties such as connectedness [16,19], shape con-
straints [18,25] and boundary polarity [17,24], which allow the customization of
the segmentation to a given target object [15]. While the introduction of combi-
natorial graphs with directed edges on other frameworks increases considerably
the complexity of the problem [27], OIFT and ORFC still run in linear time.

In this work, we present a formal definition and an algorithm to compute the
cores of OIFT seeds, adding another unique feature to this method, since for
most segmentation algorithms there are no known efficient ways for computing
their cores. The cores [1] are the regions where seeds can be moved without alter-
ing the segmentation. The cores have several practical applications. In medical
research, it is usually desirable to reduce inter- and intra-user variability in image
segmentation. In this sense, the cores provide an analytic solution to measure the
reproducibility of experiments. In this work, we propose the Robustness Coef-
ficient to measure the seed robustness of the methods, allowing a quantitative
analysis of this aspect.

The cores can also be used to solve an image segmentation inverse problem,
that is, for a given segmented object how to find a set with minimum number
of seeds that produces it [1]. This can be used to find a suitable set of seeds
that assembles a given automatic segmentation result, in order to allow further
changes in the seed set to repair the segmentation interactively [21,22].

The cores can also be employed to build powerful hybrid image segmenta-
tion approaches [3,11,28]. For instance, Tavares et al. [28] proposed a hybrid
method, denoted as ORFCCore + GC, which combines, the strengths of ORFC
cores (robustness to the seed choice and low false-positive rate) and Graph Cut
(smoother and more regular contours, thus, avoiding “leaking though poorly
defined boundary segments”).

For the sake of completeness in presentation, Sect. 2 includes an overview
of concepts on image graph and a revision of the methods ORFC and OIFT.
Section 3 shows the proposed algorithm to compute the cores of OIFT seeds,
In Sect. 4, we evaluate OIFT and other methods according to their Robustness
Coefficient and state our conclusions.

2 Background

A digital image is a mapping I : I → Z, assigning an intensity I(s) to a pixel s,
where I ⊂ Z

n is the image domain. An image can be interpreted as a weighted
digraph G = 〈V,E, ω〉, whose nodes V are the image pixels (V = I), the arcs
are the ordered pixel pairs 〈s, t〉 ∈ E, and ω : E → Z assigns a weight to each
arc. For example, one can take E to consist of all pairs of ordered pixels 〈s, t〉
in the Cartesian product I × I such that the Euclidean distance deuc(s, t) ≤ ρ
and s �= t, where ρ is a specified constant (e.g., 4-neighborhood, when ρ = 1,
and 8-neighborhood, when ρ =

√
2, in case of 2D images). The transpose GT =

〈V,ET , ωT 〉 of G is the unique digraph where ET = {〈t, s〉 : 〈s, t〉 ∈ E} and
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ωT (〈s, t〉) = ω(〈t, s〉). In this work, we consider G as a symmetric digraph,
where 〈s, t〉 ∈ E ⇒ 〈t, s〉 ∈ E.

A path πs�t = 〈s = t1, t2, . . . , tn = t〉 is a sequence of adjacent and distinct
nodes, where s stands for the origin and t for the terminus. Πs�t is the set
of all paths in G from s to t, Πt =

⋃
s∈V Πs�t and Π =

⋃
t∈V Πt. We use

Π(G) to explicitly indicate all possible paths in a particular graph G. Let also
πS�t ∈ ΠS�t = {πs�t : s ∈ S}, for any S ⊂ V . A path is trivial when πt = 〈t〉.
A path πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc 〈s, t〉.
A predecessors map is a function P : V → V ∪ {nil} where ∀t ∈ V, P (t) = s
where 〈s, t〉 ∈ E or s = nil. A spanning forest is a predecessors map without
cycles. The roots of the forest are the nodes RP = {r ∈ V : P (r) = nil}.
Let πP

t be defined recursively as 〈t〉 if t ∈ RP , and πP
s · 〈s, t〉 if P (t) = s. Let

DCCG(s) = {t ∈ V : ∃πs�t ∈ Π(G)} be the Directed Connected Component
of basepoint s ∈ V , the set of all successors of s, and SCCG(s) = {t ∈ V :
∃{πs�t, πt�s} ⊆ Π(G)} the Strongly Connected Component of s, the set of nodes
containing s where any two are connected by paths. We can relate DCC and
SCC as: SCCG(s) = {t ∈ V : s ∈ DCCG(t) and t ∈ DCCG(s)}. A connectivity
function f : Π → Z assigns a value to any path π ∈ Π. A path πt is optimum if
f(πt) ≥ f(π′

t) for any other path π′
t ∈ Πt. We denote an optimum path for t as

π∗
t . This generates the connectivity map Copt : V → Z as Copt(t) = f(π∗

t ).
Let X = {O : O ⊆ V } be the space of all possible binary segmented objects

O. A seed-based segmentation uses seeds S = So ∪ Sb ⊆ V , where So and Sb

are object (So ⊆ O) and background (Sb ⊆ V \ O) seed sets, respectively. They
restrict X to X (So,Sb) = {O ∈ X : So ⊆ O ⊆ V \ Sb}. A cut is defined as
C(O) = {〈s, t〉 ∈ E : s ∈ O and t /∈ O}. We can associate an energy value
ε(O) to an object (and its cut), and restrict the set of solutions to those which
minimizes it. Let energy εq(O) = (

∑
〈s,t〉∈C(O) ω(〈s, t〉)q) 1

q . The original Graph
Cut algorithm minimizes ε1(O), while ORFC and OIFT minimize ε∞(O) =
max〈s,t〉∈C(O) ω(〈s, t〉) [9], as presented next.

2.1 Oriented Image Foresting Transform (OIFT)

The Image Foresting Transform (IFT) [13] is an algorithm which takes a graph
G, a connectivity function f and computes a connectivity map C : V → Z

defined by a spanning forest P , as C(t) = f(πP
t ), which converges to Copt(t) =

f(π∗
t ),∀t ∈ V , when f is a smooth connectivity function [13].
OIFT is a ε∞-minimization method [17,24] build upon the IFT framework.

It uses the connectivity function f♂ (Eq. 1) in a symmetric digraph.

f♂(〈t〉) =

{
∞ if t ∈ So ∪ Sb

−∞ otherwise

f♂(πr�s · 〈s, t〉) =

{
min{f♂(πr�s), ω(〈s, t〉) · 2} if r ∈ So

min{f♂(πr�s), ω(〈t, s〉) · 2 + 1} otherwise

(1)
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The segmented object AOIFT (So,Sb) by OIFT is defined from the forest P

computed by IFT with f♂, by taking as object all nodes conquered by paths
rooted in So, that is, AOIFT (So,Sb) = {t ∈ V : πP

t ∈ ΠSo�t}. The optimality
of AOIFT (So,Sb) is given by the ε∞-minimization problem. Although ORFC
(which is described in next section) and OIFT are methods from the same energy
class, their outputs are usually different with distinct characteristics (Fig. 1).

Fig. 1. (a) Input image graph with So = {s} and Sb = {t}. (b) ORFC result. (c) A
candidate solution. (d) OIFT result. Note that all the three solutions have the same
energy ε∞(O) = 4.

In order to explore the boundary orientation/polarity to resolve between
very similar nearby boundary segments with opposite transitions (dark to
bright/bright to dark), the weight ω(〈s, t〉) can be defined as:

ω(〈s, t〉) =

⎧
⎨

⎩

δ(s, t) × (1 − α) if I(s) > I(t)
δ(s, t) × (1 + α) if I(s) < I(t)
δ(s, t) otherwise

(2)

where α ∈ [−1, 1] is an orientation factor and δ(s, t) = δ(t, s) is an undirected
similarity measure (e.g., δ(s, t) = K − |I(s) − I(t)|, where K is a maximum
intensity variation) [7,23]. Note that we usually have ω(〈s, t〉) �= ω(〈t, s〉) when
α �= 0. For α > 0, the segmentation by OIFT favors transitions from bright to
dark pixels, and α < 0 favors the opposite orientation.

2.2 Oriented Relative Fuzzy Connectedness (ORFC)

ORFC [3] is also a ε∞-minimizer, for arcs from object to background nodes.
Let ε↓

∞(So,Sb) = minO∈X (So,Sb){ε∞(O)} and X ↓
∞(So,Sb) = {O ∈ X (So,Sb) :

ε∞(O) = ε↓
∞(So,Sb)}. For the seeds So and Sb, AORFC is defined as follows:

AORFC(So, Sb) =

⎡
⎣ ⋃

si∈So

AORFC({si}, Sb)

⎤
⎦ , AORFC({si}, Sb) = arg min

O∈X↓∞({si},Sb)

|O|

(3)

AORFC uses a connectivity function f←−
min (Eq. 4), a smooth function which

processes reversal (antiparallel) arcs. RFC is a particular case of ORFC when
α = 0. Algorithm 1 computes the ORFC segmentation in a symmetric digraph,
where Copt(si) = ε↓

∞({si},Sb) (see Lemma 1 from Bejar and Miranda [3]).
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f←−
min (〈t〉) =

{
∞ if t ∈ Sb

−∞ otherwise
f←−
min (πr�s · 〈s, t〉) = min{f←−

min (πr�s), ω(〈t, s〉)}

(4)

Algorithm 1. Computing AORFC({si},Sb)
1 Get connectivity map Copt with f←−

min by IFT;
2 Create G> = (V, E′, ω) from G = (V, E, ω) where

E′ = {〈s, t〉 ∈ E : ω(〈s, t〉) > Copt(si)};
3 Return DCCG>(si);

3 Seed Robustness Analysis of OIFT

Without loss of generality, we will constrain the analysis of robustness only to
internal seeds, being the external seeds a completely symmetric problem. In order
to define the concept of core, we must introduce the notion of seed equivalence.

Definition 1 (Equivalent seeds). Two internal seeds s1 and s2 are said equiv-
alent if they separately produce the same result. That is, for the given external
seed set Sb, we have that A({s1},Sb) = A({s2},Sb).

The notion of equivalent seeds introduced by Definition 1 is a binary relation
≡ on the set of object nodes A(So,Sb), i.e., s1 ≡ s2 if and only if s1 and s2
are equivalent. This relation is reflexive, symmetric and transitive, hence, it is
indeed an equivalence relation as defined in mathematics. Therefore, the core of
a seed s1 is in fact the equivalence class of s1 under ≡, denoted [s1], which is
defined as [s1] = {t ∈ A({s1},Sb) : s1 ≡ t}. We use the notation N ({s1},Sb) =
[s1] to indicate the core of s1 by algorithm A, and we consider N (So,Sb) =⋃

si∈So
N ({si},Sb).

Algorithm 2 computes the cores NORFC(So,Sb) of ORFC in linear time, as
proposed by Tavares et al. [28], by applying the Tarjan’s algorithm in a proper
subgraph derived from G, where each core NORFC({si},Sb), si ∈ So, corresponds
to a SCC.
Algorithm 2. Computing NORFC(So,Sb)

1 Get connectivity map Copt with f←−
min by IFT;

2 Create G> = 〈V,E′, ω〉 from G = 〈V,E, ω〉 where
E′ = {〈s, t〉 ∈ E : ω(〈s, t〉) > Copt(s) ∧ Copt(s) = Copt(t)};

3 Apply Tarjan’s algorithm in G>;
4 Return only SCCs which contains internal seeds;

From the theoretical relations presented in [28], we know that, for any si ∈ So,
NORFC({si},Sb) ⊆ NOIFT ({si},Sb). If a pixel s1 is equivalent to a pixel s2 for
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the OIFT algorithm (i.e., s1
oift≡ s2), and they belong to different ORFC cores

(i.e., NORFC({s1},Sb) �= NORFC({s2},Sb)), then by transitivity we have that

c
oift≡ d for any c ∈ NORFC({s1},Sb) and d ∈ NORFC({s2},Sb). This observation

allows us to drastically reduce the complexity of the OIFT core computation,
allowing us to work in a Region Adjacency Graph (RAG), composed by the
ORFC cores that can be fast computed, rather than working at the pixel level.

Since NOIFT (So,Sb) ⊆ AOIFT (So,Sb), we first compute AOIFT (So,Sb), then
we compute all the ORFC cores inside the OIFT segmentation AOIFT (So,Sb).
Figure 2 illustrates one example, showing all the ORFC cores inside the object
for a given image graph (Fig. 2i). Figure 3a shows the resulting RAG, with a
node for each ORFC core and one external node x for the background. The arc
weights of the RAG are selected as the highest arc values interconnecting their
regions.

Fig. 2. (a–d) Results of ORFC, where ω(〈s, t〉) = 10 for non-contour edges, with a
fixed external seed • and an internal seed × in different places, (e–h) OIFT results for
different internal seeds, (i) ORFC cores and (j) OIFT cores. (Color figure online)
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The proposed algorithm to compute the OIFT cores uses a disjoint-set data
structure. Initially, each RAG node is its own representative. For each pair 〈c, d〉,
c �= x and d �= x, of neighboring nodes in the RAG an equivalence test is
performed and if the test is satisfied they are joined (union operation). The
value Cc(d) = f(π∗

d) of an optimum path π∗
d by the connectivity function f←−

min

(Eq. 4) is computed in the induced subgraph G[V \ {c}] from x to d (Fig. 3b).
Similarly we also compute Cd(c) = f(π∗

c ) as the value of an optimum path
π∗
c for f = f←−

min in the induced subgraph G[V \ {d}] from x to c (Fig. 3c). If

ω(〈c, d〉) > Cc(d) and ω(〈d, c〉) > Cd(c) we can conclude that c
oift≡ d and we

perform their union operation (Fig. 3d).
In order to understand the equivalence test performed in RAG, we need to

know the following property that distinguishes OIFT from ORFC. From Fig. 1,
we can note that in the case of multiple solutions with the same energy, the
OIFT result gives preference to boundary pieces with lower energy values. For
example, between the border segments with outgoing arcs with values 3 and 2,
from Fig. 1c and d, OIFT selects the one with the lowest value in Fig. 1d. This
result can be verified theoretically by a proof similar to Theorem 2 (Piecewise
optimum property) in [20]. In the equivalence test, ω(〈c, d〉) and Cc(d) essentially
represent the energies of two boundary pieces. Since OIFT gives preference to
lower energy values, ω(〈c, d〉) > Cc(d) implies that a OIFT segmentation from a
seed in c would conquer d, and ω(〈d, c〉) > Cd(c) implies that d would conquer
c leading to equivalent seeds. Figure 2j shows the resulting OIFT cores at the
pixel level derived from the RAG in Fig. 3d.

Since we have to evaluate the equivalence test, and consequently Cc(d), for all
arcs 〈c, d〉 in the RAG, the final complexity of the algorithm becomes O(|V |2 +
|E| · |V |), where |V | and |E| are the number of nodes and arcs in the RAG. Note
that to compute the maps Cc for all c ∈ V requires |V | IFT’s executions and
each IFT takes O(|V |+ |E|). In practice, the algorithm is fast, because the RAG
has a small number of nodes compared to the image graph.

Fig. 3. (a) Region Adjacency Graph (RAG), composed by the ORFC cores from
Fig. 2(b and c). The equivalence test: (b) ω(〈c, d〉) = 7 > Cc(d) = 6, where the values
inside the nodes indicate the Cc values, and (c) ω(〈d, c〉) = 6 > Cd(c) = 1, where the
values inside the nodes indicate Cd values. (d) The union operation.
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4 Experimental Results and Conclusions

Figures 4, 5, 6, 7 and 8 show examples of the incremental computation of the
cores by OIFT, from the ORFC cores, for a variety of real images. Next we
define a measure to evaluate the robustness of the methods in relation to the
seed positioning.

Fig. 4. A brain image from the BrainWeb - simulated brain database. (a) ORFC seg-
mentation with RC = 99.95%. (b) OIFT segmentation with RC = 96.23%. (c) ORFC
cores inside OIFT mask. (d) OIFT cores.

Fig. 5. Image of a license plate. (a) ORFC segmentation with RC = 97.89%. (b) OIFT
segmentation with RC = 89.06%. (c) ORFC cores inside OIFT mask. (d) OIFT cores.

Fig. 6. MR image of a talus bone with good boundary contrast. (a) ORFC segmenta-
tion with RC = 98.60%. (b) OIFT segmentation with RC = 96.01%. (c) ORFC cores
inside OIFT mask. (d) OIFT cores.



Seed Robustness of Oriented Image Foresting Transform 127

Fig. 7. MR image of a talus bone with poor boundary contrast. (a) ORFC
segmentation with RC = 58.87%. (b) Effect of placing the seed outside its core.
(c) OIFT segmentation with RC = 52.04%. (d) Effect of placing the seed outside
its core. (e) ORFC cores inside the OIFT mask. (f) OIFT cores.

Fig. 8. An MR image of a wrist with two seed pixels selected inside the bone.
(a) ORFC segmentation with RC = 99.17%. (b) OIFT segmentation with RC = 95.40%.
(c) ORFC cores inside the OIFT mask. (d) OIFT cores.

For a given segmentation algorithm A(So,Sb) with cores given by N (So,Sb),
the Robustness Coefficient (RC) is defined as:

RC =
|N (So,Sb)|
|A(So,Sb)| (5)

RC provides an analytic solution to measure the reproducibility of experi-
ments. The higher the RC value, the lower is the sensitivity of the method in
relation to inter- and intra-user variability in image segmentation. Note that a
high RC value does not imply that the method has a high accuracy, the RC mea-
sure only evaluates how easy it is to reproduce the same segmentation, regardless
of its accuracy. In this sense, it is a complementary measure to traditional accu-
racy measures.

In the experiments, we used 40 slice images from real MR images of the foot,
to perform the segmentation of the bones talus and calcaneus, and 40 slice images
from CT cervical spine studies of 10 subjects to segment the spinal-vertebra.
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We used different seed sets automatically obtained by eroding and dilating the
ground truth at different radius values. By varying the radius value, we can com-
pute a segmentation for different seed sets and trace accuracy curves, using the
Dice coefficient of similarity, and curves of the robustness coefficient. However,
in order to generate a more challenging situation, we considered a larger radius
of dilation for the external seeds (twice the value of the inner radius), resulting
in an asymmetrical arrangement of seeds.

In order to show the robustness coefficient, we considered in the evalua-
tion only methods with known procedure to compute their cores: IRFC [10],
RFC [26], OIFT [17], ORFC [3], or at least with a good lower bound estimation
of their cores: RFC +GC [11], ORFC +GC [3], and ORFCCore +GC [28]. For
RFC + GC we considered RC = |NRFC(So,Sb)|

|ARFC+GC(So,Sb)| , RC = |NORFC(So,Sb)|
|AORFC+GC(So,Sb)| for

ORFC + GC, and RC = |NORFC(So,Sb)|
|AORFCCore+GC(So,Sb)| for ORFCCore + GC.

In the quantitative experiments, we adopted the weight assignment δ(a, b) =
K − |G(a) + G(b)|, where G(a) denotes the gradient magnitude of the Sobel
operator. For approaches based on directed graphs, we used α = −0.5, for the
foot bones (transitions from dark to bright pixels) and α = 0.5 for the spinal-
vertebra; and α = 0.0 in the case of undirected approaches.
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Fig. 9. The mean robustness coefficient curves and the mean accuracy curves (Dice
coefficient), using non-equally eroded-dilated seeds, for segmenting: (a–b) talus, (c–d)
calcaneus, and (e–f) spinal-vertebra.

Figure 9 shows the experimental results. Note that the robustness coefficient
of RFC is always 100%, since NRFC(So,Sb) = ARFC(So,Sb) [26]. For the bones
datasets, with respect to the Dice measure, OIFT is among the first three meth-
ods, losing only to the hybrid methods ORFC + GC and ORFCCore + GC.
However, with respect to the robustness coefficient, OIFT usually gives better
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results than ORFC+GC and ORFCCore+GC, losing only to RFC and ORFC.
For the spinal-vertebra, the Dice values of all methods decrease rapidly because
the object has thin parts and the erosion process rapidly eliminates seeds in
several important regions of the object. OIFT has the best Dice values for the
spinal-vertebra, and the third best robustness coefficient. So we can conclude
that OIFT has a good balance between accuracy and robustness.

As future works, we intend to explore the cores of OIFT to solve the inverse
problem of image segmentation, in order to allow the user to interactively per-
form corrections on any segmentation mask.
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