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Abstract. Apache Hadoop offers the possibility of coding full-fledged
distributed applications with very low programming efforts. However,
the resulting implementations may suffer from some performance bottle-
necks that nullify the potential of a distributed system. An engineering
methodology based on the implementation of smart optimizations driven
by a careful profiling activity may lead to a much better experimental
performance as shown in this paper.

In particular, we take as a case study the algorithm by Lukáš et al.
used to solve the Source Camera Identification problem (i.e., recognizing
the camera used for acquiring a given digital image). A first implementa-
tion has been obtained, with little effort, using the default facilities avail-
able with Hadoop. A deep profiling allowed us to pinpoint some serious
performance issues affecting the initial steps of the algorithm and related
to a bad usage of the cluster resources. Optimizations were then devel-
oped and their effects were measured by accurate experimentation. The
improved implementation is able to optimize the usage of the underlying
cluster resources as well as of the Hadoop framework, thus resulting in
a much better performance than the original naive implementation.

Keywords: Distributed computing · Hadoop · Source Camera
Identification

1 Introduction

Current technologies provide decision-makers with the ability to collect a huge
amount of data, i.e., Big Data, that requires the development of tools and
methodologies with a high scalability degree. Digital Image Forensics area is
one of the application fields where the problem of analyzing Big Data is arising
[4,6,13,16]. Efficient solutions are usually available in the scientific literature.
However, with the growth of digital photography, there is a need to assess how
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these solutions scale and/or how their performance can be optimized on distrib-
uted systems. Nowadays, paradigms and technologies, such as MapReduce [9] and
Apache Hadoop [20], allow us to develop in a relatively simple way and without
dealing with some of the most intricate aspects of distributed programming, such
as inter-process data communication.

In this paper, which is a prosecution of the work has been presented in [7], we
have engineered a Hadoop-based implementation of the Lukáš et al. algorithm
[16] to solve the problem of Source Camera Identification (SCI). This consists
in recognizing the camera used for acquiring a given digital image. The first
implementation has been developed in a straightforward way with the help of
the standard facilities available with Hadoop. The resulting distributed code
exhibited shorter execution times than the original one when executed on a
cluster of computers, although its performance was quite below expectations.
A closer investigation revealed the existence of several performance issues due
to the inability of this implementation to take full advantage of the underlying
cluster resources. Therefore, we developed an engineering methodology aiming at
pinpointing the causes behind the performance issues we observed and at solving
them through the introduction of some theoretical and practical optimizations.
The resulting implementations succeed in delivering a performance much better
than the original distributed implementation.

The rest of the paper is organized as follows. Section 2 describes the MapRe-
duce paradigm, with an emphasis on Apache Hadoop. Section 3 presents the case
study, that is, the algorithm by Lukáš et al.. Section 4 presents the first attempt
of porting the algorithm by Lukáš et al. on a Hadoop cluster and Sect. 5 shows
the preliminary experimental results. In Sect. 6 we focus on some serious perfor-
mance issues exhibited by our distributed implementation, and we propose and
analyze further optimizations. Finally, in Sect. 7 we draw some conclusions and
future directions of our work.

2 Apache Hadoop

In the recent years, several different architectural and technological solutions
have been proposed for processing big amounts of data. An increasingly popu-
lar computing paradigm is MapReduce [9]. Within this paradigm, the compu-
tation takes a set of input <key, value> pairs, and produces a set of output
<key, value> pairs. The user expresses the computation as two functions: map
and reduce. The map function takes an input pair and produces a set of inter-
mediate <key, value> pairs. The MapReduce framework groups together all the
intermediate values associated with a same intermediate key and passes them
to the reduce function. The reduce function accepts an intermediate key and
the set of values for that key. Then it merges together these values to form a
possibly smaller set of values. Typically zero or one output pair is produced
per reduce function. Map and reduce functions are executed, as tasks, on the
different computers of a distributed system.

Differently from traditional paradigms, such as explicit parallel constructs
based on message-passing, the MapReduce allows for implicit parallelism.
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Namely, all the operations related to the exchange of data between the nodes
involved in a computation are modelled according to a file-based approach and
are transparently accomplished by the underlying middleware. Activities like
data distribution, data replication, synchronization, scheduling, fault tolerance,
redundant execution, data local computation, load balancing and efficient use
of the network and disks, are in charge of the MapReduce framework. In this
way, the programmer is focused only on defining the behavior of the map and
reduce functions, and on deciding how data will feed the corresponding map and
reduce steps. In general, no specific skills in parallel and distributed systems
are required. The MapReduce paradigm has been first successfully adopted by
Google for creating scalable, fault tolerance and massively-parallel programs that
process large amounts of data using large commodity clusters. However, MapRe-
duce has now gained a wider audience and it is used in several fields like satellite
data processing, bioinformatics and machine learning (see, e.g., [2,8,10,15,17]).

Apache Hadoop [20] is currently the most popular framework supporting the
MapReduce paradigm. It is a Java based open source grid computing environ-
ment useful for reliable, scalable and distributed computing. From an architec-
tural viewpoint, Hadoop is mainly composed of a data processing framework plus
the Hadoop Distributed File System (HDFS) [19]. The data processing framework
organizes a computation as a sequence of user-defined MapReduce operations on
datasets of <key, value> pairs. These operations are executed as tasks on the
nodes of a cluster. The HDFS is a distributed file system optimized to run on
commodity hardware and able to provide fault tolerance through replication of
data. Some Hadoop features used for source camera identification are available
in our previous contribution [7].

3 The Case Study: Lukáš et al. Algorithm

The Source Camera Identification (SCI) problem concerns the identification of
the digital camera used for capturing a given input digital image. A common
identification strategy consists in analyzing the noise in a digital image to find
clues about the digital sensor that originated it. Pixel Non-Uniformity noise
(PNU) is a deterministic noise resulting from the different sensitivity of the
pixel detectors to light. This difference is due to the inhomogeneity of the wafers
of silicon and the imperfections derived from the manufacturing process of the
sensor. Thanks to its deterministic and systematic nature, the PNU noise is
the ideal candidate for providing a sort of fingerprint of digital cameras. Lukáš
et al. in [16] were pioneers in demonstrating the feasibility of using the PNU
noise for solving the SCI problem. The authors observed that PNU was success-
ful in identifying the source camera used to take the considered picture, even
distinguishing between cameras of the same brand and model.

The problem of performing Source Camera Identification on large datasets
has not received much attention in the scientific literature. One of the few contri-
butions in this area is presented in [13]. Here the authors tested over one million
images spanning 6, 896 individual cameras covering 150 models. Another relevant
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contribution is presented in [14] where the authors describe a fast searching algo-
rithm based on the usage of a collection of fingerprint digests. They performed
their experimentation on a database of 2, 000 iPhones, proving the feasibility of
the approach proposed.

In our work we exploited the original version of the SCI algorithm by
Lukáš et al. [16] applied to color images in the RGB space. Let I be the RGB
image under scrutiny and CamSet = {C1, C2, . . . , Cn} the set of candidate origin
cameras for I. The algorithm operates in four steps:

– Step I: Calculating Reference Patterns. It computes the Reference Pat-
tern RPC , that is, the sensor fingerprint, for each camera C belonging to
CamSet. The approach proposed by Lukáš et al. consists in estimating RPC

by extracting the Residual Noises (RNs) from a set of pictures taken by using
C and, then, combining these noises together, as an approximation of the PNU
noise. The residual noise of an image I can be defined as RNI = I − F (I),
where F (I) is a filter function that returns the noise-free variant of I. The
operation described above is applied pixel-by-pixel (for each color channel)
and is iterated over a group of images with the same spatial resolution, here
named enrollment images, taken by using C. This returns a group of residual
noises, including both a random noise component and the PNU noise estima-
tion of C. The sum of the residual noises is then averaged to obtain a tight
approximation of the camera C fingerprint, i.e., RPC .

– Step II: Calculating Correlation Indices. A set of calibration and test-
ing images using each of the cameras belonging to CamSet is introduced. The
Pearson’s correlation between the fingerprint of each camera C and the resid-
ual noise of each image T taken from the calibration/testing set is computed
(the higher the values, the higher the probability that an image T has been
taken by using a camera C). Cropping or resizing operations are performed in
case the resolution of T does not match the resolution of the images used for
determining RPC .

– Step III: Identification System Calibration. The identification is based
on the definition of a set of three acceptance thresholds (one for each color
channel) to be associated to each of the cameras under scrutiny. If the correla-
tion between the residual noise of I and the Reference Pattern of a camera C,
on each color channel, exceeds the corresponding acceptance threshold, then
C is assumed to be the camera that originated I. The thresholds are chosen
so to minimize the False Rejection Rate (FRR) for calibration images taken
by using C, given an upper bound on the False Acceptance Rate (FAR) for
calibration images taken by using a camera different than C (Neyman-Pearson
approach). The correlations of the testing images are then used to validate the
identification system by comparing them to the acceptance thresholds.

– Step IV: Performing Source Camera Identification. It concerns the
identification of the camera that captured I. Here the algorithm first extracts
the residual noise from I, RN I , then correlates it with the Reference Patterns
of all the input cameras using the system calibrated in the third step. If the
correlation exceeds the decision threshold of a certain camera, on each of the
color channels, a match is found.
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4 A Naive Implementation of the Lukáš et al. Algorithm
on Hadoop

We developed in Java a MapReduce based implementation of the Lukáš et al.
algorithm1. It was split in four different modules, each corresponding to the
four processing steps of the Lukáš et al. algorithm. A preliminary image loading
activity on the HDFS is also performed. This task was accomplished by copying
and keeping the images as separate files.

In the following, we describe in details these four modules.

Step I: Calculating Reference Patterns. The aim of this step is to calculate
the Reference Pattern of a camera C, by analyzing a set of enrollment images
with the same spatial resolution and taken by using C. In the map phase, each
processing node receives a set of images, extracts their corresponding residual
noises and outputs them. In the reduce phase, the processing function (one for
each camera C) uses the set of residual noises of C produced in the previous tasks
and combines them, thus generating the RPC . This operation is repeated for each
input camera. During this step, the input key is derived from the image meta-
data and value stores the URL of the image on HDFS. When a map function
is activated, it receives this record, loads the corresponding image in memory
from HDFS and, finally, extracts the RN from the image. As an output, this
function produces a new <key, value> pair, where key is the camera id and
value is the URL of RN directly saved on HDFS. During the reduce phase, a
function receives a tuple in the <key, values> format, where key is the identifier
of a camera, e.g., C, and values is a set of the URLs to RN s (saved on HDFS)
for that camera, as calculated during the map tasks. All the RN s of the same
camera are summed and then averaged to form the Reference Pattern for C. As
an output, the function generates a new <key, value> pair, where key is the
identifier of C, and value is RPC .

Step II: Calculating Correlation Indices. During this step, the algorithm extracts
the RN of each calibration/testing image and correlates it with the RPs of all
the input cameras. In the map phase, each processing node receives a list of input
images to be correlated as <key, value> records, where key is derived from the
image meta-data and value stores the image URL on HDFS. For each URL, the
corresponding image is (possibly) transferred to the slave node, and the RN is
extracted and correlated with the RPs of all the input cameras calculated in the
previous step. For each correlation, a map function generates a new pair, where
key is the string “Correlation” and value consists of: the image id, the camera
id used for shotting the image, the RP id, a value indicating the correlation
preprocessing type, plus the three correlation indices (one for each color channel).
Since each slave has to load the RP of all the input cameras, we used the Hadoop
DistributedCache mechanism to make each node transfer to its local file system
a copy of these files, before starting the Hadoop job. In this step, no reduce task
is required.
1 A copy of the source code of our implementation is available upon request.
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Step III: Identification System Calibration. In this step a set of three acceptance
thresholds (one for each color channel) is calculated for each of the input cam-
eras. The thresholds are determined using the Neyman-Pearson approach and
exploiting the correlation values of the calibration images computed in the pre-
vious step. The correlation values of a set of testing images, calculated during
Step II, are then used to validate the identification system by comparing them
to the aforementioned thresholds. Since this step is computationally cheap, it is
run directly on the master node, without using any form of parallelization.

Step IV: Performing Source Camera Identification. The aim of this step is to
establish which camera has been used for capturing an image I. The input of
the Hadoop job is the directory where the RPs have been stored. The output is
the id of the camera recognized as the originating camera for the input image.
For each input RP, a new map function is invoked. This function uses a copy
of I for extracting its residual noise and for calculating its correlation with the
input RP. Then, the job returns a file containing the list of the correlation values
needed to perform the recognition phase using the thresholds computed in the
previous step. Finally, the predicted camera id is returned.

5 Experimental Analysis

In this section we discuss the results of a preliminary experimental analysis
we have conducted. We compared the performance of our Hadoop-based imple-
mentation of the Lukáš et al. algorithm with its non-distributed counterpart.
The discussion also includes a description of the experimental settings and the
datasets used in our analysis.

5.1 Experimental Settings

All the experiments were conducted on a homogeneous cluster of 33 PCs
equipped with 4 GB of RAM, an Intel Celeron G530 dual-core processor, Win-
dows 7 host operating system and a 100 Mbps Ethernet card. In this environ-
ment, we installed on each computer a virtual machine running the Ubuntu
12.10 64-bit guest operating system, and equipped with 3, 100 MB of RAM and
2 CPUs. Our cluster included 32 slave nodes and a master node, and the Hadoop
version was 1.0.4. On each slave node, at most one map or reduce task was run.
In addition, on each slave node, we set the properties that allow the framework
to wait the end of all map tasks, before starting the reduce tasks, due to memory
limits. According to our preliminary results, the HDFS replication factor was set
to 2 and the HDFS block size was set to 64 MB.

The dataset used in our experiments is the same presented in [7]. It consists
of 5160 JPEG images, shot using 20 different Nikon D90 digital cameras. This
model has a CMOS image sensor and maximum image size of 4288 × 2848 pixels.
258 JPEG images were taken for each camera at the maximum resolution and
with a very low JPEG compression. The images were organized in 130 enrollment
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images, 64 calibration images and 64 testing images for each camera. Enrollment
images were taken from a ISO Noise Chart 15739 [18], instead, calibration and
testing images portray different types of scenes. The overall dataset is about
20 GB large, and about 40% of that size is due to enrollment images.

5.2 Preliminary Experimental Results

We developed Hadoop-based variants of the original Lukáš et al. algorithm. The
first variant, here denoted HSCI, is the vanilla implementation of the algorithm
described in Sect. 4. We focus on Step I and Step II only, because they are,
by far, the most computationally expensive. In HSCI all the image files to be
processed are initially loaded on HDFS. The files containing the RN s and the
RPs obtained during the execution of the algorithm are also loaded on HDFS,
as soon as they become available. As a consequence, map and reduce tasks take
as an input (or provide as an output) a URL pointing at them.

We made a preliminary and coarse comparison between the performance of
HSCI and the implementation running as a stand-alone (non-parallel) applica-
tion, here named SCI, by measuring the overall execution time of the different
steps of the algorithm in both settings. The results, available in Table 1, show
that, when processing the second step of the algorithm, HSCI exhibits approxi-
mately a 16× speed up. On the contrary, the performance gain on the first step of
the algorithm is almost negligible. Such a result is due to the reduce phase of this
step. Each reduce task, in fact, has to collect from HDFS all the RN s generated
during the map phase (in our experiments, 130 RN s for each RP file to generate,
with the average size of a RN file of approximately 140 MB). This activity puts
a heavy burden on the running time of the first step, as implemented by HSCI.

Table 1. Execution times, in minutes, of different preliminary distributed variants of
the Lukáš et al. algorithm on a Hadoop cluster of 32 slave nodes, compared to the
sequential counterpart, i.e., SCI, run on a single node.

Variant Step I Step II

SCI 888 5,257

HSCI 750 334

HSCI Seq 290 304

In order to investigate the poor performance of HSCI during the first step
of the Lukáš et al. algorithm, we analyzed the CPU and the network usage of
slave nodes when running this step. The obtained results report that the CPU
is mostly unused. Conversely, the network activity dominates both the map and
reduce phases: the map phase, because of the time required to download from
HDFS the input images and to write on HDFS the resulting RN files; the reduce
phase, because of the time required to collect all the RN files produced in the
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map phase. A possible explanation for such long times is related to the problems
of managing a very large number of small files [21].

A more efficient solution would be to fully exploit data local computation by
further reducing the number of files to be processed and by placing the data on
the slave nodes running the tasks in charge to process them. The solution we
found consists in maintaining only two very large files containing all the image
files. They have been coded as Hadoop SequenceFile objects and are: EnrSeq,
used for storing a set of enrollment images, and TTSeq, used for storing a set of
calibration and testing images. In both files, the images are ordered according
to their originating camera id. Then, we used the input split capability available
with sequence files for partitioning these two files among the different computing
nodes, with the aim of promoting data local execution. Notice that the residual
noises calculated during the first step of the algorithm are still written as separate
files on HDFS as they become available, while the images are no longer directly
downloaded from HDFS as individual files. In this case, in the sequence file
input, the key of each pair is the meta-data of an image, while the value of that
pair stores a binary copy of that image. The experimental performance of this
implementation, labeled as HSCI Seq, when running the first step of the Lukáš
et al. algorithm, is much better than HSCI variant, with an execution time that
is approximately 2.6× faster than HSCI. Also the second step of the algorithm
seems to take advantage of this solution, as it is slightly faster than the HSCI
solution.

6 Advanced Experimental Analysis

As already discussed in Sect. 5, a preliminary round of experimentations led us to
develop a Hadoop-based variant of the Lukáš et al. algorithm, named HSCI Seq,
whose performance met enough our expectations. The same experiments revealed
that the performance of this algorithm in a distributed setting is strongly influ-
enced by the network activity required to load and/or to save files (RN s) on the
underlying distributed file system.

In this section, we further analyze these phenomena. The results of a thorough
profiling activity aimed at charactering the behavior of the HSCI Seq implemen-
tation will be presented, in order to improve our understanding about the way
an algorithm, such as the one by Lukáš et al., performs when adapted to run
on the Hadoop framework. We also assess the possibility of achieving further
performance improvements.

6.1 Profiling HSCI Seq Implementation

We recall from the previous section that the input dataset for our tests con-
tains two sequence files: EnrSeq and TTSeq. During Step I, the processing of the
EnrSeq file requires the creation of 130 map tasks, i.e., one for each HDFS block
of input file, where the size of EnrSeq is about 8 GB and the HDFS block size is
set to 64 MB. The average amount of data exchanged between map and reduce
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tasks is approximately 355 GB (without considering tasks and data replicas). In
our experimental analysis of HSCI Seq, the framework ran, in the average, 141
map tasks: 130 completed successfully and the remaining 11 killed by the frame-
work. The existence of these additional tasks is due to the Hadoop speculative
execution. In the reduce phase, we set the number of reduce tasks to 20, that
is the number of RPs to be calculated. In our profiling experiment, 29 reduce
tasks were launched by the Hadoop framework, with only 20 completing their
execution and the other ones being killed by the framework. Our result shows
that about 75% of the running time of HSCI Seq during Step I is spent in the
reduce phase. On one side, we suppose that this overhead is due to the time
consumed by each reduce function to retrieve the corresponding RN files to sum
from the HDFS, i.e., 130 RN s for each RP to be calculated. On the other side,
we expect that this second phase would have lasted lesser as it performed simple
computational operations such as multiple sums of matrices.

In order to clarify this behavior, we traced the start and the end execution
time of each task, both map and reduce phase, in our experiment. In Fig. 1, we
show an overview of the map and reduce tasks used by Hadoop when running
the Step I of the HSCI Seq algorithm. In some cases, the Hadoop framework may
decide to issue a same task a second time (e.g., for recovering a task that has
been assigned to a free slave node, without being completed). These cases are
highlighted in the figure by coloring black the tasks that are killed when their
twin tasks complete their executions. As it can be seen in the figure, the overall
time spent by each slave node for processing map tasks is almost the same. In
the reduce phase, we observe that some reduce tasks end as soon as they start or
are killed immediately. That can be explained by the fact that these tasks have
not been assigned a RP to be calculated. In fact, the overall number of slave
nodes completing a reduce task and computing at least one RP is 12 against
a total number of 20 RPs. This unbalanced assignment is due to the standard
hash function used by the Hadoop partitioner service for the distribution of the
keys (in our case, the id of the cameras) to be processed in the reduce tasks.

We further analyzed the behavior of tasks of Step I by profiling the CPU usage
and the network activity. In Fig. 2 we report, for example, the CPU activity of
slave1. During the first 60 min, spent on processing map tasks, a single core of
the node was used almost at its maximum. Notice that, in our case, it is not
possible to run two distinct map tasks on the same node because the amount of
memory in it would not be enough. Instead, the second significant activity, i.e.,
that related to the execution of a reduce task covering about 65 min, featured a
10% average CPU usage. This seems to confirm that, during the reduce phase,
the CPU of the involved slave nodes is nearly unused, as this phase is dominated
by the network activity related to the retrieval from HDFS of the RN files to
sum. This observation is also supported by the analysis of the incoming network
throughput for slave1 node during Step I, as illustrated in Fig. 3. The figure
shows that there is an intense network activity for slave1 along all the map
phase and the reduce phase.
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Fig. 1. HSCI Seq implementation - An overview of map and reduce tasks launched
during Step I. Reduce tasks start only after the termination of all map tasks.
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Fig. 2. CPU usage of slave1, in percentage, when running Step I of HSCI Seq.

During Step II, at least 194 map tasks are created using the testing and
calibration images available in the TTSeq file. In this experiment, the framework
ran 210 map tasks: 194 completed successfully and the remaining 16 killed by
the framework. Of all these tasks, 187 were data local map tasks. We recall that
the Step II of the HSCI Seq does not make use of the reduce phase, thus its
execution time is approximately equal to the execution time of the map phase.
An in-depth analysis of the map tasks revealed that they are characterized by an
intense I/O activity, needed to load the Reference Patterns. However, these tasks
also feature a very intense CPU activity, due to the work required to perform the
correlations on big input files, as shown in Fig. 4 (the average CPU usage stays
around 40%). That indicates, on one hand, that the CPU does not suffer much
from delays due to I/O activity, and, on the other hand, that there is a margin
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Fig. 3. Incoming network throughput of slave1, in MB/s, when running Step I of
HSCI Seq.
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Fig. 4. CPU usage of slave1, in percentage, when running Step II of HSCI Seq.

for optimization by taking advantage of the second core of the CPU, actually
unused. As already stated above, in fact, the available memory in each node is
likely to be insufficient to run two tasks at the same time. In addition, Fig. 4
shows that the CPU of slave1 remains unused while waiting for the framework
to copy the RPs from HDFS to the local file system.

6.2 Further Optimizations and Results

Following the profiling activity we pinpointed two issues affecting the perfor-
mance of HSCI Seq and we developed some practical optimizations to solve them.

Excessive network traffic. The excessive network traffic arising in Step I
is mostly due to the transfer of a large number of RN s from map tasks to
reduce tasks. Consequently, we required each map task to aggregate all the
RN s generated for a same camera into one RN file, before sending it to the
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corresponding reduce task. The aggregation is done by summing all the RN files
produced by a same node for a same camera during a map task. To facilitate this
operation, the enrollment images are ordered by the camera id and the partial
sum of the RN files is kept in memory by the node, without involving any I/O
operation. Instead of using the standard Hadoop Combiner, we implemented an
ad-hoc solution that does not require to store all the RN files in memory, but
just their sum (this solution is denoted in-map aggregation). In addition, we
used Hadoop implicit mechanism for directly passing this sum as value to the
pair output by the node, rather than saving it on HDFS. We named HSCI Sum
the variant of HSCI Seq featuring this optimization.

Poor CPU usage. The map phase during Step II is characterized by an intense
CPU activity, but it is not able to take advantage of the availability of an addi-
tional CPU core. The standard behavior of the map task during Step II requires
the loading from the local file system of a camera RP, followed by the calcula-
tion of its correlation with an input RN. While carrying out the first activity,
the CPU is almost unused, as it is essentially an I/O-intensive operation. The
second activity, instead, is CPU-intensive and makes no use of the file system.
A possible intra-parallelization of this task, allowing for the usage of a second
CPU core, consists in modelling the loading and the correlation activities on
the producer-consumer paradigm, then to be implemented as a multi-threaded
application. A first thread would be in charge of loading RP files from the local
file system and adding them to an in-memory shared queue. In the meanwhile,
the second thread would load RP files from the shared queue and would use
them to calculate the correlation with an input RN. Notice that it is not pos-
sible to maintain in memory the RP of all the cameras because of their large
size. The implementation of this strategy, here denoted HSCI PC, also includes
the optimizations introduced by HSCI Sum.

Table 2. Execution times, in minutes, of the different steps of the variants of the Lukáš
et al. algorithm on a Hadoop cluster of 32 slave nodes. For a comparison, see Table 1.

Variant Step I Step II

HSCI Seq 290 304

HSCI Sum 49 276

HSCI PC 50 236

After developing the optimizations presented above, we performed another
round of experiments in order to compare the optimized implementations to
HSCI. The results, available in Table 2, report a significant performance improve-
ment on HSCI Seq. The first optimized code we consider is HSCI Sum. This algo-
rithm differs from HSCI Seq in the way RN s are transmitted from map tasks
to reduce tasks. Namely, it implements an aggregation strategy that drasti-
cally reduces the amounts of data exchanged between map and reduce tasks.
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Fig. 5. CPU usage of slave1, in percentage, when running Step II of HSCI PC.

For instance, in our experiments, the amount of data exchanged during Step I
by HSCI Sum is about 6% of that exchanged by HSCI Seq in the same phase.
This led to a consistent performance improvement in our experiments, since the
Step I of HSCI Sum required 49 min, in the average, to be accomplished against
the 290 min required for the same step by HSCI Seq. It is interesting to note that
smaller amounts of data to exchange not only imply faster communications but
could also result in a much smaller number of tasks being replicated and re-run
by the Hadoop framework, thanks to shorter network congestions. In addition,
the reduce phase takes just a few minutes.

HSCI PC implementation uses the producer-consumer paradigm to evaluate
correlations during the map phase of Step II, by means of a multi-threaded
architecture. This approach brought a consistent performance gain compared to
HSCI Seq and HSCI Sum, as the overall execution time of Step II dropped from 304
(HSCI Seq) and 276 (HSCI Sum) to 236 min (HSCI PC). The result also includes a
consistent increasing in the CPU usage, exhibited by HSCI PCwhen processing the
map phase of Step II and shown in Fig. 5 (for a comparison see Fig. 4).

7 Conclusion

In this paper, we discussed the engineering of an efficient Hadoop-based imple-
mentation of the Lukáš et al. algorithm, in order to solving the Source Camera
Identification problem. We were able to quickly obtain a running distributed
implementation for this algorithm, by leveraging the standard facilities avail-
able with the Hadoop framework. The vanilla distributed implementation exhib-
ited a very poor performance. This motivated us to perform a thorough profil-
ing activity which led, first, to pinpoint several performance issues and, then,
to develop several both theoretical and practical optimizations, thus achiev-
ing a much better performance than the vanilla distributed implementation.
In addition, other optimizations should be considered, for example, developing
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a custom partitioner in Step I to obtain a good balancing of the workload in
reduce phase.

Software frameworks like Hadoop are attractive because they offer the possi-
bility of coding full-fledged distributed applications with very low efforts. How-
ever, such an easiness of use implies a cost, as the resulting implementations may
not be able to fully exploit the potential of a distributed system. In these cases,
an engineering methodology based on the implementation of smart optimizations
driven by a careful profiling activity may lead to a much better experimental
performance, as demonstrated in this paper. To this end, we notice that the
application pattern we considered in our paper, characterized by the interleav-
ing of I/O-intensive and CPU-intensive tasks, is not only required by the Lukáš
et al. algorithm but is an instance of a more general problem that is often found
also in other application fields. As a consequence of this, the optimizations we
developed in our case study are likely to improve in a systematic way the per-
formance of Hadoop-based implementation of other algorithms as well. Along
this line, an interesting future direction for our work would be the formalization
of this methodology and its experimentation with other case studies, such as
[1,3,5,11,12].
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