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Abstract. Computer networks have increasingly been the focus of cyber
attack, such as botnets, which have a variety of serious cybersecurity
implications. As a consequence, understanding their behaviour is an
important step towards the mitigation of such threat. In this paper, we
propose a novel method based on network topology to assess the spread-
ing and potential security impact of botnets. Our main motivation is to
provide a toolbox to classify and analyse the security threats posed by
botnets based on their dynamical and statistical behaviour. This would
potentially lead to a better understanding and prediction of cybersecu-
rity issues related to computer networks. Our initial validation shows the
potential of our method providing relevant and accurate results.
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1 Introduction

Security threats have been steadily increasing due to the emergence of new tech-
nology and methodologies, which has led to an expanding research effort to
detect and minimise such threats [1,2]. More specifically, botnets due to their
unique structure based on distributed communication command patterns across
networks, are widely regarded as a serious security issue. In fact, they can suc-
cessfully carry out surveillance attacks, perform DDoS extortion, general spam,
as well as phishing. Furthermore, some of them utilise structured overlay net-
works, whose lack of centralisation enhance the ability of a botnet to evade
detection whilst retaining a good level of robustness with respect to a churn
process, where single machines are frequently cleansed [6]. It is estimated that
their use has led to malicious activity resulting in a loss of millions of dollars per
year [5].

In this paper, we introduce a novel method to assess security threats, based
on the dynamical properties associated with networks generated by computer
communication. In fact, their topology can provide an insight into specific fea-
tures exhibited by botnets across computer networks. How connections change,
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Table 1. A selection of network connection flows

Time Source Destination Protocol Length

161.077519 PcsCompu b5:b7:19 Broadcast ARP 60

162.079007 PcsCompu b5:b7:19 Broadcast ARP 60

162.079013 PcsCompu b5:b7:19 Broadcast ARP 60

162.765245 147.32.84.165 147.32.84.255 NBNS 110

162.765253 147.32.84.165 147.32.84.255 NBNS 110

166.206344 147.32.80.9 147.32.84.165 DNS 503

166.207297 147.32.84.165 74.125.232.195 TCP 62

166.207308 147.32.84.165 74.125.232.195 TCP 62

166.215343 74.125.232.195 147.32.84.165 TCP 62

166.21559 147.32.84.165 74.125.232.195 TCP 60

their types and length of communication can provide a deeper and more efficient
approach to security threat detection and prediction.

To achieve this, we consider five main parameters: time, source, destination,
protocol, and length. Table 1 depicts a small example of these parameters of the
connection flows.

The main motivation is to provide a set of tools to assess the behaviour of
host-to-host communication to allow an agile, real-time assessment. In contrast
to the current state of the art approaches, which tend to focus on the different
parameters based on whether or not they are present in the collected data, we are
aiming to exploit the topology of the network and the probabilistic information
related to botnets behaviour. In fact, a dynamical investigation of such networks,
can lead to the assessment of the likelihood of the maliciousness of computer
communications.

The paper is structured as follows. In Sects. 2 and 3 we provide a description
of existing technology and theories, and in Sect. 4 we detail our approach. In
Sect. 5 we discuss the validation process and finally, Sect. 6 concludes our work
and prompts to future research directions.

2 Related Work

In [3], the authors propose a detection method for botnets from large datasets
of Netflow data, based on a variety of cloud computing paradigms especially
MapReduce for detecting densely interconnected hosts which are potential bot-
net members.

BotGrep [5] is a tool to identify peer-to-peer communication structures based
on the information about communicating pairs of nodes. This type of P2P detec-
tion is defined as a (communication) network, which exploits the spatial relation-
ships in communication traffic. Furthermore, the authors argue that subnetworks
with different topological patterns can be partitioned by using random walks,
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whilst comparing the relative mixing rates of the P2P subnetwork structure and
the rest of the communication network. However, such approach is computation-
ally expensive due to the typical size of such networks.

In [4], an approach based on a Markov chain model in introduced. In par-
ticular, botnet infection is modelled to identify behaviour that is likely to be
associated with attacks, with a prediction rate over 98%. Another example of
the utilisation of Markov chain for intrusion detection system is described in
[8], where it is trained on a sequence of audit events. However, these types of
approaches allow attack identification but they have limited intrusion prediction.
In [9], the authors assess the set of bot lifecycle stages using Markov chains to
identify the occurrence of infection. Similar to the previous approach, there is a
focus on the identification of infection rather than on any predictive capability.

3 Network Theory

Networks have been extensively used to successfully model many complex sys-
tems, and their applications span across a variety of multidisciplinary research
fields, ranging from mathematics and computer science, to biology, and the social
sciences [12,13].

Networks are defined by a node set V = {vi}n
i=1, and the edge set evi,vj

∈ E,
so that if va and vb ∈ V are connected, then eva,vj

∈ E [2]. Note that in this
paper, we do not allow self-loops, or in other words, evi,vi

�∈ E.
Scale-free networks, in particular, appear in a numerous contexts, such as the

World Wide Web links, biological and social networks [2]. The main property
of scale-free networks is based on their node degree distribution, which follows
a power law. More specifically, for large values of k, the fraction pk of nodes in
the network having degree k, is modelled as

pk ≈ k−γ (1)

where γ has been empirically shown to be typically in the range 2 < γ < 3 [2].
From Eq. 1, it follows that a relatively small number of hubs occur, which

define the topological properties of the corresponding networks, as well as the
way information spreads across them [15].

An important property of such networks is related to the creation of new
nodes over time, which are likely to be connected to existing nodes that are
already well connected. Since the connectivity of nodes follows a distribution
which is not purely random, the dynamical properties of such networks and
their general topological properties can lead to predictive capabilities [13].

4 Description of the Method

In this section we introduce the model whose objective is to understand, assess
and predict the type and severity of security threats. As discussed above, the
dynamical properties of networks can provide a useful insight into the system
they model. In this paper, we will focus on the following properties:
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– The topology of the network, or in other words, the level of connectedness
between nodes measured by joining paths, and

– Their dynamical properties.

Loosely speaking, we are interested in the properties exhibited by the single
threats and how they change over a specific amount of time.

As defined in Sect. 3, let G = G(V,E) be a directed network where V is the
node set and E is the arc set. The former contains the nodes, and the latter con-
tains the arcs, or directed edges corresponding to requests from the source node
to the target node. Let degt

in (vi) and degt
out (vi) be the in and out degrees of the

node vi at a given time t, that is the number of connection into and out of it,
respectively. We then define the maliciousness of a node vi at the time t, as

P t
M (vi)in =

|degM,t
in (vi)|

|degt
in (vi)|

(2)

or

P t
M (vi)out =

|degM,t
out (vi)|

|degt
in (vi)|

, (3)

where |degM,t
in (vi)| and |degM,t

out (vi)| are the number of malicious connections
into or out of vi, at a given time t.

For a time t and an arc evi,vj
∈ E, define its weight as

wt(vi, vj) = ft(r, p), (4)

where ft(r, p) is a function of the length of time of a request r and the number
of request protocols p from vi and vj . In this paper, we define

ft(r, p) =
1
2
(wt

r + wt
p), (5)

where wt
r and wt

p are the length of the time and the number of protocols of
different requests, respectively.

We then define the probability of a malicious request at the time t from vj

to vi as

P t
M (vi, vj) =

1
3
(P t

M (vi)in + P t
M (vj)out + wt(vi, vj)). (6)

In order to consider the dynamics of this model, we assume that new requests
arise according to time snapshots t = 1, . . . , T . Let

δT (vi, vj) = P t
M (vi, vj) − P t−1

M (vi, vj) (7)

and define

ΔT (vi, vj) =
1

T − 1

T∑

t=2

δT (vi, vj). (8)
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Finally, let the probability of maliciousness as

P̃T
M (vi, vj) = min {max {ΔT (vi, vj), 0}, 1}. (9)

Note the above equation can be extended to assess the (average) probability of
malicious attacks from a set of nodes Ṽ on a specific node as

P̃T
M (vi) =

1
|Ṽ |

∑

ṽ∈Ṽ

P̃M (vi, ṽ) (10)

for evi,ṽ ∈ E and ṽ is a node in Ṽ .
Algorithms 1 and 2 show the implementation of the above approach.

Algorithm 1. Evaluation of P̃T
M (vi, vj)

1: Let t = 0
2: Determine P t=0

M (vi, vj)
3: for t = 1, . . . T do
4: Find ΔT (vi, vj) and P̃T

M (vi, vj)
5: end for
6: return P̃T

M (vi, vj)

Algorithm 2. Evaluation of malicious attacks on node vi

1: Let t = 0
2: for ṽ ∈ V \ vi do
3: Determine P t=0

M (vi, ṽ)
4: for t = 1, . . . T do
5: Find Δt(vi, ṽ) and P̃T

M (vi, ṽ)
6: end for
7: end for
8: return P̃T

M (vi, ṽ)

As discussed in Sect. 3, if the network G follows a scale-free structure, new
arcs are likely to be added to highly connected nodes. As a consequence, Eqs. 2
and 3 can be modified to incorporate this property. Recall that the fraction of
nodes pk with degree k is

pk ≈ k−γ .

For a scale-free network G, we then assume that

P t
M (vi, vj) =

1
2
(deg (vi)

−γ + wt(vi, vj)). (11)

Note that in this case, we are considering the overall degree of the destination
node vi, rather than distinguishing between the in and out degree values of the
source and destination nodes. Although we are providing fewer parameters in
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the model above, compared to Eq. 6, the initial validation appears to support
the claim that (11) indeed provides good modelling capabilities.

The dynamics described by Eq. 9 can be used to provide some level of pre-
diction of the number of malicious attacks. In this paper, we assume that
the trend of P̃T

M (vi, vj) can give an insight into a “near future” behaviour
of the communications from vj to vi. In particular, we shall assume that
P̃T

M (vi, vj) ≈ P̃T+1
M (vi, vj), or in other words, they exhibit a similar trend. We

acknowledge this is a simplistic approach as it does not consider potential vari-
ations that could occur. However, our initial validation seems again to support
the above. In future research, we are aiming to fully investigate and extend the
predictive properties of our approach by fully analysing the topology of a large
set of communication networks.

5 Results

In this section, we will discuss the validation process, which was based on the
publicly available datasets offered by the Malware Capture Facility Project
[11]. More specifically, we used the CTU-MALWARE-CAPTURE-BOTNET-42
dataset, which contains relevant data generated by a Neris botnet. It used an
HTTP based C&C channel, and all the actions performed by the botnet were
communicated via C&C channels containing specific “click-fraud” spam based
on advertisement services.
This was subsequently preprocessed via WireShark [10] to capture all the para-
meters relevant to our approach.

A directed network G = G(V,E) was defined, where the node-set V contains
the source and destination IPs mutually linked by a request. I particular, we had

– Number of nodes: 4247
– Number of arcs: 6588
– Average in and out degree: 1.5512

Fig. 1. The degree distribution of the network G.
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Fig. 2. The log node degree distribution of the network G depicted in Fig. 1, which
is compared with a (theoretical) scale-free network with γ = 1.9. As it can be clearly
seen, this is a good approximation of the node degree distribution of G.

Figures 1 and 2 show the degree distribution of the network G, which indi-
cates the existence of few highly connected hubs. Note that this behaviour is
similar to scale-free networks, as described by Eq. 1. In [14], a method to topo-
logically reduce complex networks is discussed. When such method is applied to
the network G, a value of γ = 1.9 is determined. As discussed in Sect. 3, for many
complex systems γ is usually within the range 2 < γ < 3, suggesting that the
dataset used for the validation exhibits properties similar to many other systems
from across various contexts. As discussed above, we are aiming to widen our
investigation to a large set of malware botnet datasets to fully assess whether
such behaviour can be indeed generalised.

In order to evaluate our approach, we trained the parameters of Eq. 5 on
approximately 2000 malicious requests. First of all, we noticed that over 95%
of the malicious requests had a TCP protocol, and among them we detected
two main clusters for time length values in the interval [0, 70] and [950, 1400], as
depicted in Fig. 3.

Fig. 3. The distribution of the time length requests.
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Fig. 4. A sub-network generated by the dataset described in Sect. 5.

Fig. 5. A selection of the sub-networks generated by some time iterations on the dataset
described in Sect. 5.
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Therefore, we assumed that for malicious requests, wt = wp = 0.6 if the time
length is within those intervals and the protocol is TCP, and wt = wp = 0.2
otherwise.

We subsequently considered the dynamics of the system, by analysing batches
of approximately 300 requests per time iterations, and we assumed that a mali-
cious request from vj to vi is associated with P̃T

M (vi, vj) > 0.7. The analysis of
the data produced that 71% of the malicious requests had indeed a P̃M (vi) > 0.7.
Figures 4, 5 and 6 depict a small proportion of the network created in the first
three iterations on the process. Furthermore, Fig. 6 also shows the malicious
requests, which are depicted in red.

Fig. 6. The sub-networks generated by the fourth iteration, where the second figure
highlights the malicious connections (Color figure online).

We subsequently evaluated the model defined by Eq. 11. In this case,
P̃M (vi, vj) > 0.7 for approximately 61% of the malicious requests. This decrease
in accuracy was indeed expected due to the more general scope of the model, as
discussed above.

Finally, we evaluated the level of prediction associated with our model, and
we considered approximately 200 pairs of nodes exchanging request. Approxi-
mately 59% of the malicious requests exhibited the same trend P̃T

M (vi, vj) ≈
P̃T+1

M (vi, vj), and we noted this was particularly the case for larger values of T ,
as expected.
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6 Conclusion

In this paper, we have discussed a method to assess and predict the malicious
connection requests in terms of bonets. As indicated by the validation shows, this
approach shows potential in providing a robust method to detect and predict
malicious request activity. However, this is still at its infancy and in future
research we are aiming to extend our investigation to consider more parameters
and create a more comprehensive model. In particular, a full investigation of
networks generated by such requests will require a deeper understanding of the
topological properties of such networks to ensure a more comprehensive and
accurate analysis, which will provide a robust, accurate and computationally
effective approach.
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