
Chapter 6
Distance Geometry and Molecular Geometry

6.1 The DMDGP and 3D Protein Structures

Currently, the most prominent application of distance geometry is related to
molecular geometry. Specifically, the problem is the calculation of the 3D protein
structure using distance information obtained from Nuclear Magnetic Resonance
(NMR) experiments [79, 80]. It is worth mentioning that the 2002 Nobel Prize
in Chemistry was awarded to the chemist Kurt Wüthrich for the development of
the application of NMR to determine protein structures using distance information
related to atoms that are close enough to be detected by NMR experiments.

Why is it important to know the three dimensional structure of a protein
molecule? It is because the 3D structure of a molecule is strongly connected with
its physicochemical properties. A classical example that illustrates this fact is the
discovery of the three dimensional structure of DNA [78]. In 1953, the physicist
Maurice Wilkins and the chemist Rosalind Franklin used X-ray diffraction, another
technique to determine the structure of proteins [11], to “photograph” the DNA. The
problem was to formulate a three dimensional model of a DNA molecule which
matched the results of the X-ray diffraction and to explain some known chemical
properties. In the same year, the biochemist James Watson and the biophysicist
Francis Crick proposed a three dimensional model, the famous double helix, that
explained all the available data about the DNA molecule known at the time.
The model that arose suggested the mechanism by which transmission of the
genetic information was achieved. The essential characteristic of the model
is the complementarity of the two twisted strands of DNA. Watson and Crick
realized, before the existence of data that verified their model, that the proposed
structure could be reproduced by the separation of the two strands and by the
synthesis of a complementary strand for each one. In 1958, the molecular biologist
Matthew Meselson and the geneticist Franklin Stahl showed experimentally that
the Watson and Crick’s model of replication of DNA works. With the model and
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Fig. 6.1 DNA and protein

its experimental verification, a revolution in the understanding of the process of
heredity was started. Because of the discovery of the three dimensional structure
of the DNA molecule, James Watson shared the 1962 Nobel Prize in Medicine with
Francis Crick and Maurice Wilkins.

The genes of a living organism present in DNA are, indirectly, responsible for
the physical characteristics of the organism, but the corresponding proteins are, in
fact, what determine these characteristics. Inside of the cell, the DNA of a gene is
transcribed in the messenger RNA and this transcription is translated in order to
form the sequence of amino acids that gives arise to a protein molecule (Fig. 6.1).
This process of transcription and translation is well understood [73]. However, there
is still much to learn about the mechanism of the formation of the protein molecule
from the sequence of amino acids provided by the messenger RNA. This process
is called protein folding and the associated problem is known as the protein folding
problem [17].

We have already seen that the determination of the three dimensional structure of
a protein molecule is an important problem, but what is the relation to the DMDGP?
Havel and Wüthrich, in 1984 and 1985 [35, 36], wrote two articles showing how
Distance Geometry can be applied to the calculation of protein structure by using
NMR data. However, it was just in 1988 that the book “Distance Geometry and
Molecular Conformation” [15] was published. Crippen and Havel established the
fundamentals and connections between the two topics of research. Their proposed
algorithm, called EMBED, uses the methods of linear algebra and optimization to
solve the associated DGP.

Our proposal is to consider the problem as a DMDGP. For this, it is necessary
to define an order on the atoms of a protein molecule which induces a vertex
order on the corresponding DMDGP graph, given by v1; : : : ; vn. That is, we must



6.2 Ordering in Protein Molecules 43

have a valid realization for v1; v2; v3 and, for all vi, i D 4; : : : ; n; there must
exist three immediate previous vertices vi�3; vi�2; vi�1 such that the vertices
fvi�3; vi�2; vi�1; vig form a clique with

dvi�3;vi�2 C dvi�2;vi�1 > dvi�3;vi�1 :

This is the topic of the next section.

6.2 Ordering in Protein Molecules

Along with the information about the protein geometry, the NMR data provide
distances between atoms as long as they are 5 angstroms . VA/ or less apart. The
problem becomes how to use this information to determine the coordinates of each
atom of the protein molecule. The information from protein geometry tells us that
the distances between atoms covalently bonded and the planar angles defined by
three bonded consecutive atoms are known a priori. Clearly, the protein molecule is
not a rigid structure, but these values can be considered fixed [27, 38].

This suggests a natural ordering on the atoms of the protein backbone, formed by
a sequence of three atoms: N;C;C (Fig. 6.2). The protein backbone is the skeleton
of the protein which already gives us a good idea of its 3D structure. For this
monograph, we restrict ourselves to the protein backbone. In [14, 71], we find
proposals for considering side chains (see Fig. 6.2) that distinguish between the
20 amino acids that form a protein molecule [19]. Since the distances between
atoms i and i C 3 in the protein backbone are smaller than 5 VA (in general), we
can suppose that they are detected by the NMR experiments and this will provide us
with the desired ordering. However, most of the NMR data are associated with pairs
of hydrogen atoms [79]. An option would be to define an ordering involving just
atoms of hydrogen, incorporating hydrogen atoms from the side chains, and also
allowing atom repetitions in the order (Fig. 6.3).

Chemically, it does not make sense to consider two atoms in the same position,
but we can do this in the ordering on the vertices of the associated graph (in fact,
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Fig. 6.3 Order on hydrogen atoms

Fig. 6.4 Determination of the protein backbone using the positions of the hydrogen atoms

graph representation of a molecule is an old idea [76]). The repetition ensures
that the distances di�3;i are known, which may be null in some cases. From a
computational viewpoint, this has an advantage because when we recalculate the
position of a given repeated atom, we can verify that the numerical errors are under
control [43].

Exercise 6.1 Verify in the Fig. 6.3 which pairs of atoms are repetitions.

Exercise 6.2 What happens when some of the distances, say di�1;i or di�2;i, are
null?

Suppose that, when we apply the BP algorithm, we find the positions of hydrogen
atoms bonded to the protein backbone. How do we determine the positions of atoms
in this chain that are of interest to us? We leave the answer to this question for the
next two exercises. Remember that in Chap. 4, we saw that the intersection of four
spheres, under some conditions, gives only one point.

Exercise 6.3 In the three situations depicted in Fig. 6.4, determine the quadratic
systems corresponding to the intersection of four spheres.

Exercise 6.4 Show that, for each system, there exists only one solution.
There are three important aspects about the problem that we are trying to solve:

1. Distances are known (from NMR) just between close atoms,
2. Distances are known (from NMR) just between hydrogen atoms,
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3. We need to solve two subproblems: (i) The calculation of the positions of the
hydrogen atoms and (ii) The calculation of the positions of the atoms in the
protein backbone.

Actually, there exists another more complicated problem:

• The distances from NMR data, between neighboring hydrogen atoms, are not
accurate values.

The analysis of the DMDGP considering uncertainties in the distances is a
difficult problem. Some preliminaries results can be found in [4, 13, 48, 63,
74, 75]. Recall that all results that we presented in this monograph are based
on the assumption that all distances are precise (real numbers), free from any
error/uncertainty. However, we know that any measurements, such as those related
to NMR experiments, have associated errors. In this case, we can consider that
the data provided by NMR are intervals of real numbers which contain the correct
distance. Even this hypothesis is an approximation of reality, since errors typically
are unevenly distributed in the interval. Thus the problem is not trivial.

The good news is that this new problem provides us with an idea of how to solve
Problem 3 above. We can create a new order with two main characteristics:

• We consider hydrogen atoms and protein backbone atoms at the same time,
• For the clique fvi�3; vi�2; vi�1; vig, associated to the DMDGP graph, for i D

4; : : : ; n; all the distances di�1;i and di�2;i can be considered as real numbers
(since they are related to bond lengths and bond angles) and just the distances
di�3;i are considered to have errors, modeled as intervals.

Exercise 6.5 Based on Fig. 6.5, verify that the distances di�1;i and di�2;i can be
considered as real numbers.

Exercise 6.6 Based on Fig. 6.5, verify that some of the distances di�3;i may be
considered as degenerate intervals, that is, di�3;i D 0.

Fig. 6.5 Order with hydrogen and protein backbone atoms
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Exercise 6.7 What would a BP search tree look like if we consider that the
distances di�3;i are intervals?

Exercise 6.8 What are the modifications necessary in the BP algorithm to incorpo-
rate interval distances?

6.3 The Polynomial Performance of the BP Algorithm

We already know that, if a given instance of the DMDGP, for all i D 5; : : : ; n; has
an extra edge fvj; vig 2 E, with j < i � 3, such that the vertices fvj; vi�3; vi�2; vi�1g
generate a set of noncoplanar points, there will exist only one valid realization
of the associated graph which can be computed in linear time. In general, this
situation does not occur in problems related to 3D protein structures. However, we
proved that under certain assumptions verified in many proteins the BP is Fixed-
Parameter Tractable, which means that its exponential behavior only depend on
single parameter rather than the whole size of the instance. We also verified that
for several protein instances this parameter could be fixed at a constant, which
suggests that the DMDGP might be a tractable problem on protein instances with
exact data [56]. In part this can be explained by the fact that the protein backbone
of many proteins is “tightly packed” (Fig. 6.1). The more “stretched out” the protein
molecule is, the lower will be the cardinality of the pruning set Ep, causing more
branches in the BP search tree.

We need to think of the BP tree as a whole and not as it is partially constructed at
each step of BP, in order to have an idea of the “global behavior” of the algorithm.
When the set of the pruning edges is empty, Ep D ;, the BP tree is full, representing
the entire search space. There is no difficulty in finding one solution in linear time,
because it is sufficient go down the tree, by choosing any one of the two possibilities
at each step of the algorithm. Since Ep D ;, there is no possibility of errors at
time of making a choice. Clearly, it is unthinkable to find all the solutions for very
large n, because the solution set has cardinality 2n�3 (Fig. 6.6). On the other hand,
suppose we have a situation described in the first paragraph of this section: for all
i D 5; : : : ; n; there exists an extra edge fvj; vig 2 Ep with j < i � 3: In this case,
we have “only one” solution which can be found in linear time (the other one is
symmetric to the plane defined by v1; v2; v3), since we know what is the correct
decision to be made at each step of BP (Fig. 6.7).

Increases in the computational cost of the BP algorithm are due to the required
return back up the tree, when none of the calculated positions for a given vertex v is
compatible with the edges fu; vg 2 Ep, for u < v � 3 (at some previous level of the
tree, a wrong decision was made). The reason that the BP algorithm is required to
backtrack the tree, preventing it from an “unhindered descend” is the following:
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Fig. 6.6 BP tree with EP D ;

Fig. 6.7 Unique solution found in linear time

• There exists at least one vertex vj in the DMDGP order, v1; : : : ; vj; : : : ; vn, whose
only previous vertices u, fu; vjg 2 E, are those used in the construction of the tree:
vj�3; vj�2; vj�1.

This means that whenever this happens, there is a duplication of the number of
nodes at level j of the tree, compared to the previous level. The problem is further
aggravated when there exists a set of consecutive vertices vj; : : : ; vjCk, for which
the situation mentioned above holds, expanding the search space quickly. Suppose,
for example, that at level j D 50 of the tree there exists 220 D 1; 048; 576 positions
that satisfy our given data. With k D 5, the number of possible solutions becomes
225 D 33; 554; 432!

Before we make concluding remarks of this monograph, we mention that the
computational cost of the BP algorithm can be reduced in at least two ways:

1. By parallelizing the algorithm [30, 64],
2. By using the concept of multiple trees [25, 69].


	6 Distance Geometry and Molecular Geometry
	6.1 The DMDGP and 3D Protein Structures
	6.2 Ordering in Protein Molecules
	6.3 The Polynomial Performance of the BP Algorithm


