
Chapter 5
The Discretizable Molecular Distance Geometry
Problem (DMDGP)

5.1 Definition of the DMDGP

We know that to ensure the finiteness of the solution set of the DGP, we can impose
an order on the vertices of the associated graph. If such an order exists, it is not hard
to find it in the DGP graph.

The DDGP3 assumes that, for all vi, i D 4; : : : ; n, there exist (at least) three
previous vertices ai; bi; ci with ffai; vig; fbi; vig; fci; vigg � E, such that

daibi C dbici > daici : (5.1)

Depending on the DDGP3 instance, some distances between the vertices ai; bi; ci

may be lacking, which may imply no solution in R
3 for the quadratic system

kxvi � xaik2 D d2
aivi

;

kxvi � xbik2 D d2
bivi

;

kxvi � xcik2 D d2
civi

:

A way to avoid this mishap is to require that, for all vi, i D 4; : : : ; n; the distances
between the vertices ai; bi; ci are known (note that this is not a requirement in the
Definition of the DDGP3). Additionally, we may require that the vertices ai; bi; ci

are the immediate predecessors to vi, which occurs in many applications [57].

Exercise 5.1 Geometrically, what does it mean for the quadratic system above to
have no solution?

Exercise 5.2 If the vertices ai; bi; ci compose a clique, can we ensure that the
related triangle inequality is strictly satisfied?
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32 5 The Discretizable Molecular Distance Geometry Problem (DMDGP)

We are now interested in finding a vertex order in which the vertices used in
the construction of each quadratic system compose a clique and are the immediate
predecessors to the vertex whose coordinates we wish to calculate. Considering the
same DGP instance as in Sect. 4.1, does there exist an order with these properties?
Let us study this question before proceeding.

Let us return to that problem: a DGP with K D 3, where the associated graph is
G D .V; E/, with vertices V D fp; q; r; s; t; u; vg and edges

E D ffp; qg; fp; rg; fp; sg; fp; ug; fp; vg;
fq; rg; fq; sg; fq; tg; fq; ug; fq; vg;
fr; sg; fr; tg; fr; vg;
fs; tg; fs; vg;
ft; ug; ft; vg;
fv; ugg:

Consider a new ordering given by

V D fp; u; v; q; t; r; sg:

We use the following notation in order to facilitate our analysis: p D u1, u D u2,
v D u3, q D u4, t D u5, r D u6, and s D u7 (ui is used instead of vi in order to
emphasize that we are using a different order from the previous one). We can verify
that this order has the desired properties, because in addition to the valid realization
for fu1; u2; u3g, we also have the following cliques:

fu1; u2; u3; u4g;
fu2; u3; u4; u5g;
fu3; u4; u5; u6g;
fu4; u5; u6; u7g:

To better follow the BP algorithm, we note that

ffu1; u4g; fu2; u4g; fu3; u4gg � E;

ffu2; u5g; fu3; u5g; fu4; u5gg � E;

ffu1; u6g; fu3; u6g; fu4; u6g; fu5; u6gg � E;

ffu1; u7g; fu3; u7g; fu4; u7g; fu5; u7g; fu6; u7gg � E:

To obtain the coordinates of u4, we consider the following quadratic system, with
xu4 2 R

3 as the only variable:
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kxu4 � xu1k2 D d2
u1u4

;

kxu4 � xu2k2 D d2
u2u4

;

kxu4 � xu3k2 D d2
u3u4

:

We choose one of the two possible values for the coordinates of u4, let us say x0
u4

,
and we obtain the following quadratic system in order to find the coordinates of u5,

kxu5 � xu2k2 D d2
u2u5

;

kxu5 � xu3k2 D d2
u3u5

;

kxu5 � x0
u4

k2 D d2
u4u5

:

Again, we choose one of the two possible values for the coordinates of u5, let us say
x0

u5
, and we obtain a new quadratic system,

kxu6 � xu3k2 D d2
u3u6

;

kxu6 � x0
u4

k2 D d2
u4u6

;

kxu6 � x0
u5

k2 D d2
u5u6

:

We also have fu1; u6g 2 E; that we can use to check which one of the possible
coordinates obtained for u6; x0

u6
and x1

u6
, is feasible:

kx0
u6

� xu1k D du1u6 or kx1
u6

� xu1k D du1u6‹

Maybe none of the equations is satisfied, implying that we made a wrong choice
for u5. Let us suppose that it is the case. We need to return and recompute the
coordinates using x1

u5
. The new quadratic system is

kxu6 � xu3k2 D d2
u3u6

;

kxu6 � x0
u4

k2 D d2
u4u6

;

kxu6 � x1
u5

k2 D d2
u5u6

:

Again, by using fu1; u6g 2 E, we check each of the new possible positions obtained
for u6 .y0

u6
and y1

u6
/:

ky0
u6

� xu1k D du1u6 or ky1
u6

� xu1k D du1u6‹

Supposing that the points fxu1 ; xu3 ; x0
u4

; x1
u5

g are not coplanar, only one of these
equations will be satisfied. Let us suppose that it is the first. Then, we discard
y1

u6
and we consider y0

u6
. The new quadratic system is
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kxu7 � x0
u4

k2 D d2
u4u7

;

kxu7 � x1
u5

k2 D d2
u5u7

;

kxu7 � y0
u6

k2 D d2
u6u7

:

By using fu1; u7g 2 E and fu3; u7g 2 E to check each of the new possible positions
obtained for u7 .x0

u7
and x1

u7
/, we have:

kx0
u7

� xu1k D du1u7 or kx1
u7

� xu1k D du1u7

and

kx0
u7

� xu3k D du3u7 or kx1
u7

� xu3k D du3u7 :

Supposing that x1
u7

is selected, we therefore obtain the solution to our problem as

xu1 ; xu2 ; xu3 ; x0
u4

; x1
u5

; y0
u6

; x1
u7

:

Until this moment, it was not possible to see any advantage in this new order, besides
the fact that it ensures that the quadratic systems have solutions. However, with the
cliques fvi�3; vi�2; vi�1; vig; for all i D 4; : : : ; n, we can replace the solution of
the quadratic systems by something numerically simpler and more stable. Before
proceeding with explaining how to do this, we will formalize the definition of the
new problem: the Discretizable Molecular Distance Geometry Problem (DMDGP).

Definition 5.1 (DMDGP) Given a graph G D .V; E; d/ of a DGP with K D 3 and
an order on the vertices V , denoted by v1; : : : ; vn, such that

• there is a valid realization for v1; v2; v3,
• for all vi, i D 4; : : : ; n, there are (at least) three immediately previous vertices

vi�3; vi�2; vi�1, where fvi�3; vi�2; vi�1; vig is a clique, and

dvi�3vi�2 C dvi�2vi�1 > dvi�3vi�1 ;

find a function x W V ! R
3 such that

8fvi; vjg 2 E; kxvi � xvjk D dvivj :

5.2 Complexity of the DMDGP

The existence of the cliques fvi�3; vi�2; vi�1; vig, for all i D 4; : : : ; n; provides us
more information about the vertex order of the associated DGP graph. By using
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the distance information of the cliques fvi�3; vi�2; vi�1; vig, we are able to obtain
“almost” all of the following values:

• d1;2; : : : ; dn�1;n: distances associated with the consecutive vertices,
• �1;3; : : : ; �n�2;n: planar angles associated with three consecutive vertices,
• !1;4; : : : ; !n�3;n: torsion angles associated with four consecutive vertices.

Exercise 5.3 What is the reason of the “almost” above?

Recall that the torsion angle !i�3;i is the angle between the normal vectors asso-
ciated with the planes determined by the vertices vi�3; vi�2; vi�1 and vi�2; vi�1; vi,
respectively. The values d1;2; : : : ; dn�1;n are, obviously, obtained from the definition
of the DMDGP, and the values �1;3; : : : ; �n�2;n are obtained by the law of cosines.
However, from the DMDGP hypothesis, we can obtain only the values of the cosines
of the torsion angles, given by .i D 4; : : : ; n/ [44, 49]:

cos .!i�3;i/ D 2d2
i�2;i�1.d2

i�3;i�2 C d2
i�2;i � d2

i�3;i/ � .di�3;i�2;i�1/.di�2;i�1;i/q
4d2

i�3;i�2d2
i�2;i�1 � .d2

i�3;i�2;i�1/
q

4d2
i�2;i�1d2

i�2;i � .d2
i�2;i�1;i/

;

where

di�3;i�2;i�1 D d2
i�3;i�2 C d2

i�2;i�1 � d2
i�3;i�1;

di�2;i�1;i D d2
i�2;i�1 C d2

i�2;i � d2
i�1;i:

Actually, with the ordering structure of the DMDGP, we can imagine that we have
molecular structures (Fig. 5.1), which explains the use of the extra term “molecular”
to describe this new class of problems.

Exercise 5.4 What is the distance that appears only one time in the formula above
for cos.!i�3;i/? Why is it “different” from the other distances?

Fig. 5.1 DMDGP instance as
a molecule
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Remember that to define a three dimensional structure of a molecule, we can
use the internal coordinates, given by the values d1;2; : : : ; dn�1;n, �1;3; : : : ; �n�2;n;

and !1;4; : : : ; !n�3;n. However, as we mentioned above, in the DMDGP, we just
have cos.!i�3;i/; i D 4; : : : ; n; which generates two possible values for each torsion
angle, since !i�3;i 2 Œ0; 2��. This implies that we do not need to solve anymore
quadratic systems! Moreover, the two possibilities for each torsion angle can be
found by using the distances related to the cliques fvi�3; vi�2; vi�1; vig. In order
to prune using the given extra distances, we use the matrices given in Sect. 2.4 to
obtain the Cartesian coordinates of the two possible solutions for each vertex vi;

where we have already obtained the coordinates of vi�3; vi�2; vi�1; and then we just
compare the distances we calculate with the given distances.

A question remains: “What is the computational cost in finding the DMDGP
order?” This is different than the polynomial cost of obtaining the DDGP3 order.
In fact, finding a DMDGP order may be difficult because it is an NP-hard problem
[12]. It is the cost we pay for the new information. We escaped solving quadratic
systems, but we exponentially increased the cost of finding a DGP order. However,
depending on the application, that order can be obtained using the characteristics of
the particular problem. It is what happens, for example, in problems related to 3D
protein structures [48] (see Chap. 6).

Exercise 5.5 Why is there a “change of signs” in the formulas di�3;i�2;i�1 D
d2

i�3;i�2 C d2
i�2;i�1 � d2

i�3;i�1 and di�2;i�1;i D d2
i�2;i�1 C d2

i�2;i � d2
i�1;i above?

Exercise 5.6 Derive the formula for cos.!i�3;i/.

5.3 DMDGP Symmetry

We saw that the DMDGP order allows us to view the problem as a molecule with a
finite possible configurations, and by using the internal coordinates and the distance
information of the cliques fvi�3; vi�2; vi�1; vig, i D 4; : : : ; n; we can also find the
two possible values for all torsion angles !i�3;i. There exists another interesting
property related to the symmetry of the DMDGP solutions.

In our example problem from Sect. 5.1, we realized that the two positions for
v4 .x0

v4
; x1

v4
/ can be considered since there are no extra edges which can invalidate

one of them. This implies that, for any solution found in the left subtree, having the
node x0

v4
as its root, there exists another one that is symmetric to the plane defined

by xv1 ; xv2 ; xv3 [47]. Note the relation that exists among the finiteness of the solution
set, the strict triangle inequality, and the symmetries.

An immediate consequence of this fact is that the solution set has an even number
of solutions. However, since the first computational results obtained for the DMDGP
[53], we empirically observed that the number of solutions was always a power of
two. Only recently, by using group theory, a mathematical proof of this fact was
presented [58].
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We illustrate the importance of this result by considering the following set, given
a DMDGP graph G D .V; E; d/ with the vertex order v1; : : : ; vn:

S D fv 2 V W Àfu; wg 2 E such that u C 3 < v � wg:

In order to simplify the notation, we denote by u C 3 the third vertex after u, and
by u � 3 the third vertex before u. Initially, let us try to identify the elements in
S. The first candidate is v4, which is in S if there is no edge fu; wg 2 E such that
u C 3 < v4 � w: If there is some u 2 V satisfying this property, we will have
u < v4 � 3: However, this is not possible because v4 � 3 D v1, which is the first
element of V . That is, v4 2 S for any DMDGP.

Let us see what happens with v5 (we are supposing that the DMDGP has a
solution):

• Supposing that there exists fu; v5g 2 E, such that u < v5 � 3, we have that
v5 62 S and fv1; v5g 2 E, which implies that only one of the possibilities for v5 is
feasible: either x0

v5
or x1

v5
.

• Supposing that there is no fu; v5g 2 E, for u < v5 � 3, we need to consider the
two following cases:

– If there is no fu; wg 2 E, such that u C 3 < v5 < w, then v5 2 S.
– If there exits fu; wg 2 E, such that u C 3 < v5 < w, then v5 62 S.

Since the procedure above can be applied to all elements of V , we can obtain the set
S by using just the DMDGP data, even before we apply BP to solve the problem.
But what is the importance of the set S?

The set S identifies other symmetric planes for the DMDGP, in addition
to the plane associated with the vertices fv1; v2; v3g, defined for all DMDGP
instances [58].

For example, if v5 2 S; this implies that the two positions for v5 are feasible,
x0

v5
and x1

v5
. At the same time, x0

v5
and x1

v5
are part of two different DMDGP

solutions [66].
Considering the example problem of Sect. 5.1 and using the notation vi; we have:

V D fv1; v2; v3; v4; v5; v6; v7g;
E D ffv1; v2g; fv1; v3g; fv1; v4g; fv1; v6g; fv1; v7g;

fv2; v3g; fv2; v4g; fv2; v5g;
fv3; v4g; fv3; v5g; fv3; v6g; fv3; v7g;
fv4; v5g; fv4; v6g; fv4; v7g;
fv5; v6g; fv5; v7g; fv6; v7gg:
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Fig. 5.2 Solution obtained
by BP algorithm

It is easy to see that S D fv4g; since fv1; v7g 2 E. That is, there exists only one
symmetric plane (defined by xv1 ; xv2 ; xv3 ), which implies that we have only two
solutions. As we have already obtained a solution, given by

xv1 ; xv2 ; xv3 ; x0
v4

; x1
v5

; y0
v6

; x1
v7

;

we have another one symmetric to the plane defined by fxv1 ; xv2 ; xv3g (see Fig. 5.2).
Suppose now that we have a little different DMDGP instance, given by

V D fv1; v2; v3; v4; v5; v6; v7g;
E D ffv1; v2g; fv1; v3g; fv1; v4g; fv1; v6g;

fv2; v3g; fv2; v4g; fv2; v5g;
fv3; v4g; fv3; v5g; fv3; v6g;
fv4; v5g; fv4; v6g; fv4; v7g;
fv5; v6g; fv5; v7g; fv6; v7gg:

Performing the calculations, we obtain

S D fv4; v7g;

implying that we have another symmetric plane defined by fv4; v5; v6g (see Fig. 5.3).
To simplify the notation, let us represent the first solution by a sequence of zeros

and ones and denote the first tree positions by 0; 0; 0:

s1 D .0; 0; 0; 0; 1; 0; 1/:

Since we know that we have a symmetry at vertex v7, another solution is given by

s2 D .0; 0; 0; 0; 1; 0; 0/:
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Fig. 5.3 Symmetric solutions

Now, by considering the symmetry at vertex v4, we obtain other two solutions
given by

s3 D .0; 0; 0; 1; 0; 1; 0/

and

s4 D .0; 0; 0; 1; 0; 1; 1/:

We have two important conclusions arising from these observations [1, 55, 66]:

• We know, a priori, using only the data given by any DMDGP, that the cardinality
of the solution set is 2jSj.

• In order to find all the solutions of a DMDGP, it is enough to apply the BP
algorithm to find only one solution, since all the others can be obtained using the
DMDGP symmetries.

Exercise 5.7 What is the computational importance of knowing a priori the number
of DMDGP solutions?

Exercise 5.8 Since the computational cost associated with the use of symmetries
to obtain other DMDGP solutions is polynomial, what is the implication for the
complexity of DMDGP?
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