
Chapter 3
From Continuous to Discrete

3.1 Continuous Optimization and the DGP

One approach that has been used to solve the DGP is to represent it as a continuous
optimization problem [59]. To understand it, we consider a DGP with K D 2, V D
fu; v; sg, E D ffu; vg; fv; sgg, where the associated quadratic system is

.xu1 � xv1/
2 C .xu2 � xv2/

2 D d2
uv

.xv1 � xs1/
2 C .xv2 � xs2/

2 D d2
vs;

which can be rewritten as

.xu1 � xv1/
2 C .xu2 � xv2/

2 � d2
uv D 0

.xv1 � xs1/
2 C .xv2 � xs2/

2 � d2
vs D 0:

Consider the function f W R6 ! R, defined by

f .xu1; xu2; xv1; xv2; xs1; xs2/ D �
.xu1 � xv1/

2 C .xu2 � xv2/
2 � d2

uv

�2

C �
.xv1 � xs1/

2 C .xv2 � xs2/
2 � d2

vs

�2
:

It is not hard to realize that the solution x� 2 R
6 of the associated DGP can be found

by solving the following problem:

min
x2R6

f .x/: (3.1)

That is, we wish to find the point x� 2 R
6 which attains the smallest value of f .
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14 3 From Continuous to Discrete

Exercise 3.1 In the problem (3.1), is it possible to say what is the smallest valued
of f ? Is this result valid for any DGP?

Exercise 3.2 Still considering the same problem above (3.1), what is the difference
between solving the quadratic system

.xu1 � xv1/
2 C .xu2 � xv2/

2 � d2
uv D 0

.xu1 � xs1/
2 C .xv2 � xs2/

2 � d2
vs D 0

and solving the equation

f .x/ D 0; x 2 R
6;

where f is given by

f .xu1; xu2; xv1; xv2; xs1; xs2/ D �
.xu1 � xv1/

2 C .xu2 � xv2/
2 � d2

uv

�2

C �
.xu1 � xs1/

2 C .xv2 � xs2/
2 � d2

vs

�2
‹

Thus, we can think of the DGP as a minimization problem. However, the
optimization approach for the DGP has a difficulty in that the function to be
minimized (3.1) has many local minima and we wish to find a global minimum
[26] (see Fig. 3.1).

In fact, the number of local minima may increase exponentially with the size of
the problem, which is determined by the number of vertices of the associated graph
[57], further complicating the minimization problem.

Exercise 3.3 Is it possible that there exists more than one global minimum for the
DGP optimization problem?

Fig. 3.1 Local and global
minima
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Exercise 3.4 If there is more than one global minimum, does the number of global
minima may increase exponentially with the size of the problem in the same way
that local minima do?

3.2 Finiteness of the DGP

Suppose that the solution set of a DGP is non-empty. We already know that the
number of solutions is either uncountable or finite (modulo rotations, translations,
and reflections). In the finite case, besides applying the classical optimization
methods, we can exploit the structure of the associated graph which defines the
problem and perhaps come up with a different approach [46, 54].

However, before studying special problem structures, how can we tell if the
solution set is either finite or uncountable? This section analyzes the conditions
that ensure the finiteness of the solutions for a DGP.

Let us consider the same problem of Sect. 2.3 with K D 2, but here we
change the dimension K to 3: So, we have a DGP with K D 3, V D fu; v; r; sg,
E D ffu; vg; fu; rg; fu; sg; fv; rg; fv; sg; fr; sgg. Fixing the coordinates of the first
three vertices u; v; r, which we can do by using the matrices of Sect. 2.4, we obtain
the same quadratic system:

kxs � xuk2 D d2
us;

kxs � xvk2 D d2
vs;

kxs � xrk2 D d2
rs:

Performing the calculations and subtracting the first equation from the others as
before, we obtain

2.xv � xu/ � xs D kxvk2 � kxuk2 C d2
us � d2

vs;

2.xr � xu/ � xs D kxrk2 � kxuk2 C d2
us � d2

rs:

So far, no difference can be noticed. However, if we obtain the explicit associated
linear system, we have:

�
xv1 � xu1 xv2 � xu2 xv3 � xu3

xr1 � xu1 xr2 � xu2 xr3 � xu3

�
2

4
xs1

xs2

xs3

3

5 D 1

2

� kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
:

We no longer have a 2 � 2 matrix, but a 2 � 3 matrix, since we have K D 3.
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The above system can be written as

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

� �
xs1

xs2

�
C

�
xv3 � xu3

xr3 � xu3

� �
xs3

�

D 1

2

� kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
:

If we suppose that the matrix

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

�
is invertible, we obtain that

�
xs1

xs2

�
D 1

2

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1 � kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�

�
�

xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1 �
xv3 � xu3

xr3 � xu3

� �
xs3

�
:

This implies that we no longer have only one solution for the linear system! That is,
for each value for xs3 2 R, we obtain values for xs1 and xs2. Thus, in order to obtain a
solution of our DGP, we must return to the associated quadratic system, choose one
of the equations (for example, kxs � xuk2 D d2

us), and solve it by using the solution
of the linear system above.

Geometrically, we have the intersection between a line, given by the parametric
equation in xs3,

�
xs1

xs2

�
D A � B

�
xs3

�
;

where

A D 1

2

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1 � kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
;

B D
�

xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1 �
xv3 � xu3

xr3 � xu3

�
;

and a sphere, given by

kxs � xuk2 D d2
us; (3.2)

resulting in three possibilities (Fig. 3.2):

• Empty set (the line does not intersect the sphere),
• Only one point (the line is tangent to sphere),
• Two points (the line is a secant of the sphere).
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Fig. 3.2 Intersection of a line and a sphere

Exercise 3.5 Show the equivalence between the original quadratic system,

kxs � xuk2 D d2
us;

kxs � xvk2 D d2
vs;

kxs � xrk2 D d2
rs;

and the new system, given by

��
�
�

xs1 xs2 xs3

�T � �
xu1 xu2 xu3

�T
��
�
2 D d2

us;

�
xs1

xs2

�
D

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1

�
	
1

2

� kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
�

�
xv3 � xu3

xr3 � xu3

� �
xs3

�

;

where the variables are xs1; xs2; xs3 2 R.

Exercise 3.6 If the matrix

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

�
is not invertible, or if we can not

select an invertible matrix 2 � 2 from the original matrix

�
xv1 � xu1 xv2 � xu2 xv3 � xu3

xr1 � xu1 xr2 � xu2 xr3 � xu3

�
;

does this mean that we can not ensure the finiteness of the solution set?
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The discussion above suggests that there are at least two important aspects to the
issue of finiteness of the DGP solution set:

a For each vertex s 2 V that we need to process, there must exist edges
fu; sg; fv; sg; fr; sg 2 E (where u; v; r 2 V are the vertices whose coordinates
have already been calculated), in order to generate a solvable quadratic system

kxs � xuk2 D d2
us;

kxs � xvk2 D d2
vs; (3.3)

kxs � xrk2 D d2
rs;

with xs 2 R
3 as the unknown.

b Clearly, in order to guarantee that the system (3.3) will have at most two solutions,
the matrix obtained by subtracting one equation from the other two must have full
rank.

Exercise 3.7 What geometric interpretation can be given to the assertion that the
matrix

�
xv1 � xu1 xv2 � xu2 xv3 � xu3

xr1 � xu1 xr2 � xu2 xr3 � xu3

�

has full rank?

Exercise 3.8 In R
2, for the above exercise, how would the question be answered?

Exercise 3.9 Which is the most important condition in practice—that there exist
edges fu; sg; fv; sg; fr; sg 2 E or that the associate matrix has complete rank?

Exercise 3.10 If we have more than three edges in conditions (a) and (b) above for
Eq. (3.3), how can we choose among these edges?

3.3 Vertex Order for the DGP

Based on the previous discussions, we highlight two important points related to
vertices s 2 V whose coordinates still need to be positioned in R

3:

1. There are u; v; r 2 V such that fu; sg; fv; sg; fr; sg 2 E,
2. xu; xv; xr 2 R

3 are part of a valid realization.

The idea which is the link between these two points is related to the concept of
order on the vertices of the DGP graph. That is, if there exists an order relation in
V which satisfies the conditions 1 and 2 above, we can ensure (excluding rotations,
translations, and reflections and supposing that the points related to the vertices
u; v; r are not collinear) that the DGP solution set is finite.
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Recall that to solve a DGP, for K D 3, we must obtain a valid realization x W V !
R

3 of the related graph, which implies that we need to find the coordinates of the
points xs 2 R

3 for each s 2 V , satisfying all equations of the system

8fu; vg 2 E; kxu � xvk D duv:

A solution of the problem can then be represented as an element of R3jVj.

Exercise 3.11 If we have such an order on the vertices V , does the search space
change?

If three points are given (satisfying the DGP equations) as positions for the
first three vertices of the order we are looking for (which is easy to find for most
applications), we can say in polynomial time whether or not there is such an order
[28, 45].

Consider a DGP with V D fa; b; c; u; v; rg and

E D ffa; bg; fa; cg; fa; ug; fb; cg; fb; vg; fc; rg; fu; vg; fu; rg; fv; rgg:

For K D 2, we wish to find an order such that the two first vertices generate a
clique and, from the third on, there are two previous vertices coming before it. By
considering all possible initial cliques, let us see what happens:

• Starting with the clique fa; bg, we have the following possible vertices for the
third position: c; u; v; r. The next vertex would be c, because ffa; cg; fb; cgg � E.
However, after that, there would exist no other candidate vertices.

• Starting with the clique fa; cg, we have the following possible vertices for the
third position: b; u; v; r. The next vertex would be b, because ffa; bg; fc; bgg � E.
However, after that, there would exist no other candidate vertices.

• Starting with the clique fa; ug, there does not exist any candidate vertex to occupy
the third position.

• Starting with the clique fb; cg, we have the following possible vertices for the
third position: a; u; v; r. The next vertex would be a, because ffb; ag; fc; agg � E.
However, after that, there would exist no other candidate vertices.

• Starting with the clique fb; vg, there does not exist any candidate vertex to occupy
the third position.

• Starting with the clique fc; rg, there does not exist any candidate vertex to occupy
the third position.

• Starting with the clique fu; vg, we have the following possible vertices for the
third position: a; b; c; r. The next vertex would be r, because ffu; rg; fv; rgg � E.
However, after that, there would exist no other candidate vertices.

• Starting with the clique fu; rg, we have the following possible vertices for the
third position: a; b; c; v. The next vertex would be v, because ffu; vg; fr; vgg � E.
However, after that, there would exist no other candidate vertices.
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Fig. 3.3 DGP graph without
order satisfying condition 1,
for K D 2

• Starting with the clique fv; rg, we have the following possible vertices for the
third position: a; b; c; u. The next vertex would be u, because ffv; ug; fr; ugg � E.
However, after that, there would exist no other candidate vertices.

Therefore, no such order exists! However, the associated graph does not have an
uncountable number of realizations (modulo rotations, translations, and reflections)
[37] (see Fig. 3.3). That is, the existence of a vertex order mentioned before is just
a sufficient condition for the finiteness of the DGP solution set. This question is
related to another area of research called graph rigidity [32].
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