
Chapter 2
The Distance Geometry Problem (DGP)

2.1 Definition of the DGP

The fundamental problem of DG, as we have previously stated, is to determine
all the coordinates of a set points, in a given geometric space, for which some of
the distances are known. Depending on the application, these points can represent
stars, reachable points for a robot arm, atoms, or people. Each one of these objects
can be represented by a vertex of a graph, and if the distance between them is
known, we have an edge connecting the correspondent vertices. Formally, we have
the following definition of the Distance Geometry Problem (DGP) [57].

Definition 2.1 (DGP) Given a integer K > 0 and a simple connected graph G D
.V; E/ with weights on the edges given by d W E ! .0; 1/, find a function x W V !
R

K such that

8fu; vg 2 E; kx.u/ � x.v/k D d.u; v/: (2.1)

Remark 2.1 The norm of (2.1) is general and will depend on the application. This
monograph uses the Euclidean norm.

A solution to the DGP associates each vertex of G to a point in R
K satisfying

Eq. (2.1). That is, we wish to position the vertices u; v 2 V such that, for fu; vg 2 E,
we have situated them in R

K so that the calculated distance kx.u/�x.v/k is the given
value d.u; v/. The function x is called a realization of G. A realization of a graph is a
“representation” of its vertices in some Euclidean space RK : Note that the dimension
K and the graph G are inputs/data of the problem. Some DGP variants have the
dimension K as part of the problem [57]. This monograph, however, assumes that
the dimension K is given a priori.

A realization that satisfies all Eq. (2.1) is a valid realization. In order to simplify
the notation, we will use xu; xv instead of x.u/, x.v/, and duv instead of d.u; v/.
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The focus here is on the cases K D 2 and K D 3. However, all results can be
extended to R

K [57].

Exercise 2.1 Can there exist more than one solution of a DGP? Can the solution
set be empty?

Exercise 2.2 When we “draw” a graph on paper, are we solving a DGP?

We obtain the following system of equations when we use the Euclidean norm in
the definition of the DGP with K D 2:

p
.xu1 � xv1/2 C .xu2 � xv2/2 D duv 8fu; vg 2 E; (2.2)

where xT
u D .xu1; xu2/ and xT

v D .xv1; xv2/. Thus, we have a system with 2jVj
variables and jEj equations. From (2.2), by squaring both sides, we immediately
derive:

.xu1 � xv1/2 C .xu2 � xv2/2 D d2
uv 8fu; vg 2 E: (2.3)

Trying to solve the system (2.1) or its associated quadratic system (2.3) as a
closed formula is, in general, impossible [7]. Solving the problem numerically also
presents difficulties [57].

Exercise 2.3 Consider a DGP with K D 2; V D fu; v; rg; E D ffu; vg; fv; rgg; and
duv D dvr D 1. Solve the problem graphically.

Exercise 2.4 Considering the previous exercise, what would be the solution if we
add fu; rg to E with dur D 1?

Before we consider solution methods to solve the DGP, we will discuss two
important aspects of the problem: (i) the cardinality of the solution set and (ii) the
complexity of the problem.

2.2 Number of Solutions of the DGP

What is the importance of knowing the number of solutions of a DGP? Is it possible
to have this information before we solve the problem? Besides its theoretical
importance, the cardinality of the DGP solution set may help us to solve the
problem, since we know how many solutions are being sought. These questions
will be discussed more fully in Chap. 5.

We saw from the first two exercises that the number of solutions of a DGP can
be infinite. However, does this always happen? We know that, given three points
xu; xv; xw in R

2, the triangle inequality

duw � duv C dvw
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must be satisfied, where duv; dvw; duw are the distances between the given points.
This means that if we add the edge fu; rg to E (in the last exercise), the problem
does not have a solution if the triangle inequality is not satisfied.

It is also clear that once we have a solution, there will be an unaccountably
infinite number of other solutions by simply rotating and/or translating the given
solution. However, excluding rotations, translations, and reflections, the exercises
suggest that the set of solutions of a DGP can be of three kinds:

• empty,
• finite,
• unaccountably infinite.

There is one more case to consider. Is it possible to have a DGP with a countably
infinite number of solutions? It turns out that this case is impossible, but the proof
is not simple enough to be presented here [8].

Exercise 2.5 Consider a DGP with K D 2; V D fu; v; r; sg; E D
ffu; vg; fu; rg; fv; rg; fv; sgg and duv D dur D dvr D dvs D 1. Excluding rotations,
translations, and reflections, how many solutions exist?

Exercise 2.6 Considering the previous exercise, how many solutions will exist if
we add fu; sg to E, with dus D p

2 ?

The two exercises above illustrate the fact that the addition of a single edge can
engender a change from “uncountably many” to “finitely many” solutions. This is an
evidence (not a proof) that the DGP cannot have countably infinitely many solutions.

2.3 Complexity of the DGP

The focus of this section is to give an intuition of the computational difficulty we
face when solving a DGP (formally, this is investigated in computational complexity
theory). Let us first consider the DGP whose associated graph is complete. To this
end, consider a DGP with K D 1, V D fu; v; rg, E D ffu; vg; fu; rg; fv; rgg, duv D
dvr D 1, and dur D 2. If we fix xu D 0 and xv D 1, we have

kxr � xuk D 2

kxr � xvk D 1:

Squaring both terms of equalities, we have

x2
r � 2xrxu C x2

u D 4

x2
r � 2xrxv C x2

v D 1:



8 2 The Distance Geometry Problem (DGP)

Subtracting one equation from the other, we obtain

�2xrxu C 2xrxv C x2
u � x2

v D 3 ) 2xr.xv � xu/ D x2
v � x2

u C 3:

Using the fixed values for xu and xv , we get

2xr D 4 ) xr D 2:

We could have solved this problem by simply drawing the graph. However, the
interesting part of this procedure is that it can be generalized for R

K . Let us see
what happens in R

2.
Consider a DGP with K D 2,

V D fu; v; r; sg and E D ffu; vg; fu; rg; fu; sg; fv; rg; fv; sg; fr; sgg:

Assume that u; v; r are fixed, that is, we can find xu; xv; xr 2 R
2 such that kxu�xvk D

duv , kxu � xrk D dur, kxv � xrk D dvr. Given these three points in R
2, we can

construct a quadratic system to obtain the coordinates of xs in the following way:

kxs � xuk D dus

kxs � xvk D dvs

kxs � xrk D drs:

Squaring both terms of equalities,

kxsk2 � 2xs � xu C kxuk2 D d2
us

kxsk2 � 2xs � xv C kxvk2 D d2
vs

kxsk2 � 2xs � xr C kxrk2 D d2
rs;

and subtracting the first equation from the other two, we obtain

2.xv � xu/ � xs D kxvk2 � kxuk2 C d2
us � d2

vs

2.xr � xu/ � xs D kxrk2 � kxuk2 C d2
us � d2

rs:

Thus, we have a linear system

Ax D b;

where

A D 2

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

�
;
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b D
� kxvk2 � kxuk2 C d2

us � d2
vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
;

and

x D
�

xs1

xs2

�
:

If the matrix A is invertible, then we have only one solution x� given by

x� D A�1b: (2.4)

Remark 2.2 Note that supposing that the matrix A is invertible, the solution x� is
obtained for any values of dus; dvs; drs. What is the connection of this fact with the
solution of the original quadratic system?

If A has no inverse, what do we do? We can, for example, fix three different
vertices of fu; v; r; sg in order to obtain an invertible matrix and hence the position
of the fourth vertex. Therefore, if the graph G of a DGP is complete and we assume
the existence of a solution, we can obtain a realization of G by solving a sequence
of linear systems, considering that all the associated matrices are invertible.

Exercise 2.7 In Exercise 2.5, suggest a method for fixing the positions of u; v; r.
Does it generalize to R

3?

Exercise 2.8 In Exercise 2.5, what conditions can we impose on xu; xv; xr to
guarantee that the associated linear system has a solution?

Exercise 2.9 In Exercise 2.5, if the associated linear system has a solution, can we
guarantee that we have a solution to the original quadratic system?

Exercise 2.10 Still considering Exercise 2.5, if none of possible choices for the
three first vertices produce an invertible matrix, does this mean that the DGP has no
solution?

If we require that all the matrices associated to a DGP with complete graph
possess inverses, the problem has a unique solution (modulo rotations, translations,
and reflections) that can be obtained at a computational cost proportional to jVj [20].
However, in the majority of applications, we do not have complete graphs. So, the
strategy discussed above may yield just a partial realization of the graph.

Before continuing our exploration of the DGP, we state a theoretical result
pertaining to the computational complexity of the DGP [72].

Theorem 2.1 The DGP is NP-Hard for all K 2 N, and in particular it is NP-
Complete for K D 1:

This means that any algorithm capable of solving the DGP is very likely to run (in
the worst case) in a number of steps which is exponential in the size of the memory
used to store the instance data, that is, G and d.
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Exercise 2.11 To solve an instance of the DGP in linear time, does the associated
graph necessarily need to be complete?

Exercise 2.12 Can we have just a unique solution (modulo rotations, translations
and reflections) to the DGP even though the graph is not complete?

2.4 DGP Instances

It is important to be able to generate instances/examples of DGPs in order to test
algorithms and to analyze the relationship between the graph of a DGP and its set
of solutions. This section presents a method for the reader to generate example
problems of a DGP for K D 3.

The procedure given here stems from the calculation of 3D molecular structures.
To simplify the process without making the generated instance easy to solve, we
consider a sequence of covalently connected atoms, denoted by 1; : : : ; n: That is,
each atom is connected to only two others, except the first and the last of the
sequence.

We will use a Cartesian coordinate system x1; : : : ; xn 2 R
3 to define a spatial

structure of our molecule in terms of an internal coordinate system [77], given by the
lengths of the covalent bonds d1;2; : : : ; dn�1;n, by the planar angles �1;3; : : : ; �n�2;n

(formed by three consecutive atoms), and by the torsion angles !1;4; : : : ; !n�3;n

(formed by four consecutive atoms). Each torsion angle !i�3;i is, in fact, the angle
between the normals of the planes defined by the atoms i � 3; i � 2; i � 1 and
i � 2; i � 1; i, respectively (see Fig. 2.1).

Fig. 2.1 Internal coordinates
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We now fix the lengths of the covalent bonds (for example, di�1;i D 1:526) and
the values of the planar angles (for example, �i�2;i D 1:91 radians). In this way,
except for rotations, translations, and reflections, a structure for our molecule will
be determined by the torsion angles !1;4; : : : ; !n�3;n, each of which can vary in the
interval Œ0; 2��.

A way to proceed is to choose randomly values for !i�3;i 2 Œ0; 2��, as well
as pairs of points i; j whose Euclidean distances dij are smaller than a given value.
To simulate DGP instances associated with the calculation of molecular structures
using distance information provided by NMR experiments, we can choose pairs of
points i; j for which dij � 5 [40] (see Chap. 6).

However, how do we determine the pairs of points i; j without knowing the
distances dij? For this, we need to obtain the Cartesian coordinates from the internal
coordinates, as follows:

2

66
4

xi1

xi2

xi3

1

3

77
5 D B1B2 � � � Bi

2

66
4

0

0

0

1

3

77
5 ; 8i D 1; : : : ; n;

where

B1 D

2

66
4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

77
5 ; B2 D

2

66
4

�1 0 0 �d1;2

0 1 0 0

0 0 �1 0

0 0 0 1

3

77
5 ;

B3 D

2

66
4

� cos �1;3 � sin �1;3 0 �d2;3 cos �1;3

sin �1;3 � cos �1;3 0 d2;3 sin �1;3

0 0 1 0

0 0 0 1

3

77
5 ;

and

Bi D

2

66
6
4

� cos �i�2;i � sin �i�2;i 0 �di�1;i cos �i�2;i

sin �i�2;i cos !i�3;i � cos �i�2;i cos !i�3;i � sin !i�3;i di�1;i sin �i�2;i cos !i�3;i

sin �i�2;i sin !i�3;i � cos �i�2;i sin !i�3;i cos !i�3;i di�1;i sin �i�2;i sin !i�3;i

0 0 0 1

3

77
7
5

;

for i D 4; : : : ; n.
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Using above matrices and fixing the values d1;2; d2;3; �1;3, the coordinates of the
first three atoms are given by:

x1 D
2

4
0

0

0

3

5 ;

x2 D
2

4
�d1;2

0

0

3

5 ;

x3 D
2

4
�d1;2 C d2;3 cos �1;3

d2;3 sin �1;3

0

3

5 :

Note that we are using matrices in R
4�4 to generate points in R

3. These are
related to homogeneous coordinates, which are very useful in computer graph-
ics [29].

Exercise 2.13 Since 3D molecular structures can be described by Cartesian coor-
dinates or internal coordinates, what is the difference in using one or the other
coordinate system to generate a DGP instance?

Exercise 2.14 Is it possible to use the matrices above to generate DGP instances
for K D 2‹
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