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Preface

Distance geometry (DG) is a distinct mathematical research area which includes
mathematics and computer science as fundamental components. The fundamental
problem of DG is to determine the spatial locations (coordinates) for a set of points,
in a given geometric space, using distances between some of them.

DG is considered to have originated in 1928, when Menger [62] characterized
several geometric concepts using the idea of distance [16]. However, only with the
results of Blumenthal [10], in 1953, did the topic become a new area of knowledge
known as DG.

The main challenge of DG at that time was to find necessary and sufficient
conditions in order to decide if a given matrix is a distance matrix D. That is,
decide whether or not a given matrix D is a symmetric matrix such that there is an
integer number K and a set of points in R

K , where the Euclidean distances between
these points are equal to the entries of the matrix D [51]. Note that, in this case, all
distances are considered known.

To the best of our knowledge, the first explicit mention of the fundamental
problem of DG delineated above, where not all distances are known, was given
by Yemini [81], in 1978. In this case, the problem may be harder.

Another important moment in the history of DG is related to its application to
the calculation of molecular structures, with the 1988 publication of Crippen and
Havel’s book [15], considered pioneers of DG in the analysis of protein structures.
More information on the DG history can be found in [52].

The first edited book fully dedicated to DG was published by Springer in 2013
[67]. The book brought together different applications and researchers in DG. In the
same year, in June 2013, the first international workshop dedicated to DG was held
with speakers from various international institutions (Princeton University, IBM TJ
Watson Research Center, University of Cambridge, École Polytechnique, Institut
Pasteur, École Normale Supérieure, SUTD-MIT International Design Center).
The event also had the support of several international scientific societies and
universities, indicating the importance of DG in many areas of knowledge (more
details at http://dga2013.icomp.ufam.edu.br/).

v
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vi Preface

The interest in DG as a topic of research arises from the wealth and diversity of
its applications, in addition to its mathematical depth and beauty. Recent surveys
on DG highlighting the theory and applications can be found in [9, 18, 57]. For
example, applications can be found in problems from astronomy, biochemistry,
statistics, nanotechnology, robotics, and telecommunications.

In astronomy, the problem is related to the determination of star positions using
information about the distances between some of them [60]. In biochemistry, the
problem appears in the determination of three-dimensional structures of protein
molecules using the information obtained from nuclear magnetic resonance (NMR)
experiments. In statistics, there are problems related to visualization of data [22]
and dimensionality reduction [50]. In these cases, points and distances are given
in a high dimensional space R

n and the problem is how represent them in a lower
dimension, say R

2 or R3, in order to have a visual idea of the data. This application is
also linked to a current topic of research called Big Data [2, 61]. In nanotechnology,
the problem is similar to the problem in biochemistry, but on a “nano” scale
[21, 39]. There is a direct relationship between the application to robotics and the
calculations related to molecular geometry [23, 70]. That is, given a set of robotic
arm lengths (distances), the problem is to find the locus of points that the robot
arm can reach [68]. In telecommunications, the problem is related to the positioning
of a wireless sensor network, where the distances can be estimated by the amount
of power necessary for performing peer-to-peer sensor communication. The further
the sensors, the more power is necessary. Since both sensors know how much power
they used, both sensors can compute their distance. An example of this is for router
positioning [24, 81].

The theoretical nature and the wide variety of applications have resulted in DG
becoming its own research area in applied mathematics, which includes fundamental
concepts from mathematics (measures, norms, geometry, optimization, combina-
torics, graph theory, symmetry, uncertainty) and computer science (algorithms,
solvability, complexity).
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Denver, CO, USA Tiago Mendonça da Costa
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Chapter 1
Introduction

This monograph introduces distance geometry, based on problems related to 3D
protein structure calculations using distance information provided by Nuclear
Magnetic Resonance (NMR) experiments. Our presentation is as short as possible,
with exercises to help the reader to better understand the contents.

The text is based on the combinatorial structure of distance geometry problems,
differently from the classical approach, which focuses on continuous methods. This
discrete approach is important for the understanding of the main concepts involved
and provides a new way to consider the problem. Curiously, this combinatorial view
arose in the quantum computing context, when Grover’s algorithm [3, 33, 42] was
proposed as a method to solve a distance geometry problem related to the calculation
of molecular structures [41].

1.1 Notation and Basic Concepts

It is assumed that an elementary knowledge of analytic geometry will be sufficient
to follow the text. Obviously, the reader will also need to have some familiarity with
the mathematical language involving basic concepts from logic, sets, and functions.
Next, we list the main concepts that will be used in this text with the associated
notation.

• Sets

– x 2 A means that x is an element of set A.
– A � B means that the set A is contained in B, that is, all elements in A are

elements of B.
– A \ B D fx : x 2 A and x 2 Bg is the set formed by the elements that are both

in A and B.

© The Author(s) 2017
C. Lavor et al., An Introduction to Distance Geometry applied to Molecular
Geometry, SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-57183-6_1
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2 1 Introduction

– A [ B D fx : x 2 A or x 2 Bg is the set formed by the elements that are in A or
B, including the elements which are in A \ B.

– A � B D fx : x 2 A and x 62 Bg is the set A, excluding the elements in B which
are in A.

– The set A is countably infinite if and only if there exists a bijection f : N !
A, that is, a one-to-one correspondence between the elements in A and the
positive integer numbers N D f1; 2; 3; : : :g.

– The set A is finite if and only if there exists a bijection f : f1; 2; : : : ; ng ! A,
where n 2 N. The cardinality of A, which is denoted by jAj, is the number of
elements in A.

– The set A is uncountable if it is infinite but it is not countably infinite.

• Vectors and Matrices

– A vector x 2 R
n will be denoted by a column matrix. For example, x 2 R

2

will be written as x D
�

x1

x2

�
; where x1; x2 2 R.

– R
m�n is the set of matrices with m lines and n columns whose entries are real

numbers.
– Given M 2 R

m�n, the transpose matrix MT 2 R
n�m is the real matrix obtained

from M by exchanging rows by columns.
– Given M 2 R

m�m, its inverse matrix, denoted by M�1 2 R
m�m, exists if and

only if MM�1 D M�1M D I, where I is the identity matrix. For example,

if I 2 R
2�2, then I D

�
1 0

0 1

�
: If M�1 exists, we say that M is invertible.

Recall that the product between matrices is not commutative, that is, there are
matrices A; B, such that AB ¤ BA.

– Given M 2 R
m�n, with m � n, we say that M has full rank if and only if there

exists a submatrix M0 2 R
m�m, where M0 is invertible.

– Given x; y 2 R
n, the inner product between x and y, denoted by x � y, is defined

by x � y D x1y1 C � � � C xnyn.
– Given x 2 R

n, the Euclidean norm of x, denoted by jjxjj, is defined by jjxjj Dp
x � x D

q
x2

1 C � � � C x2
n:

• Graphs

– Graph theory is a discipline which intersects mathematics and computer
science [34]. Here we present some basic definitions that we need for our
development.

– Given a finite set V and another set E, which is formed by unordered pairs of
elements in V , we have a graph G D .V; E/, where V is the set of vertices and
E is the set of edges. We can represent a graph in the plane R

2 using points as
the vertices and line segments (or arcs) as the edges, as illustrated below.

– A graph G D .V; E/ is simple if and only if it has no multiple edges or fa; bg 2
E ) a ¤ b (see Figs. 1.1 and 1.2).
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Fig. 1.1 Simple graph

Fig. 1.2 Non-simple graph

Fig. 1.3 Connected graph

Fig. 1.4 Disconnected graph

Fig. 1.5 Complete graph

Fig. 1.6 A graph that is not
complete

– A graph G D .V; E/ is connected if and only if it is not possible to separate
the set of vertices in two non-empty sets A and B; V D A [ B, such that there
is no edges fa; bg 2 E where a 2 A and b 2 B (see Figs. 1.3 and 1.4).

– A graph G D .V; E/ is complete if and only if the set E contains all possible
pairs, that is, for all a; b 2 V; a ¤ b ) fa; bg 2 E (see Figs. 1.5 and 1.6).

– A clique in a graph G D .V; E/ is another graph G0 D .V 0; E0/, where V 0 � V ,
E0 � E, and G0 D .V 0; E0/ is complete (see Figs. 1.7, 1.8, and 1.9).

– When we associate each edge of a graph with a real number, that is, a function
d W E ! R is given, we have a graph with weights on the edges (see Fig. 1.10).
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Fig. 1.7 Graph G

A B

D

C

Fig. 1.8 3-Clique in G

A

C

D

Fig. 1.9 2-Clique in G

A

C

Fig. 1.10 Edge-weighted
graph 2

2
1

2

1

3

1.2 Outline

The remainder of the book is the following. In Chap. 2, we define the basic problem
of Distance Geometry: the DGP (Distance Geometry Problem). In Chap. 3, we
present the continuous approach to the DGP and introduce some ideas related to
the combinatorial approach. Chapters 4 and 5 consider two discrete versions of the
DGP and Chap. 6 explains how Distance Geometry can be used to model problems
in Molecular Geometry associated to 3D protein structure calculations using NMR
data. Chapter 7 ends with some conclusions.



Chapter 2
The Distance Geometry Problem (DGP)

2.1 Definition of the DGP

The fundamental problem of DG, as we have previously stated, is to determine
all the coordinates of a set points, in a given geometric space, for which some of
the distances are known. Depending on the application, these points can represent
stars, reachable points for a robot arm, atoms, or people. Each one of these objects
can be represented by a vertex of a graph, and if the distance between them is
known, we have an edge connecting the correspondent vertices. Formally, we have
the following definition of the Distance Geometry Problem (DGP) [57].

Definition 2.1 (DGP) Given a integer K > 0 and a simple connected graph G D
.V; E/ with weights on the edges given by d W E ! .0; 1/, find a function x W V !
R

K such that

8fu; vg 2 E; kx.u/ � x.v/k D d.u; v/: (2.1)

Remark 2.1 The norm of (2.1) is general and will depend on the application. This
monograph uses the Euclidean norm.

A solution to the DGP associates each vertex of G to a point in R
K satisfying

Eq. (2.1). That is, we wish to position the vertices u; v 2 V such that, for fu; vg 2 E,
we have situated them in R

K so that the calculated distance kx.u/�x.v/k is the given
value d.u; v/. The function x is called a realization of G. A realization of a graph is a
“representation” of its vertices in some Euclidean space RK : Note that the dimension
K and the graph G are inputs/data of the problem. Some DGP variants have the
dimension K as part of the problem [57]. This monograph, however, assumes that
the dimension K is given a priori.

A realization that satisfies all Eq. (2.1) is a valid realization. In order to simplify
the notation, we will use xu; xv instead of x.u/, x.v/, and duv instead of d.u; v/.

© The Author(s) 2017
C. Lavor et al., An Introduction to Distance Geometry applied to Molecular
Geometry, SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-57183-6_2
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6 2 The Distance Geometry Problem (DGP)

The focus here is on the cases K D 2 and K D 3. However, all results can be
extended to R

K [57].

Exercise 2.1 Can there exist more than one solution of a DGP? Can the solution
set be empty?

Exercise 2.2 When we “draw” a graph on paper, are we solving a DGP?

We obtain the following system of equations when we use the Euclidean norm in
the definition of the DGP with K D 2:

p
.xu1 � xv1/2 C .xu2 � xv2/2 D duv 8fu; vg 2 E; (2.2)

where xT
u D .xu1; xu2/ and xT

v D .xv1; xv2/. Thus, we have a system with 2jVj
variables and jEj equations. From (2.2), by squaring both sides, we immediately
derive:

.xu1 � xv1/2 C .xu2 � xv2/2 D d2
uv 8fu; vg 2 E: (2.3)

Trying to solve the system (2.1) or its associated quadratic system (2.3) as a
closed formula is, in general, impossible [7]. Solving the problem numerically also
presents difficulties [57].

Exercise 2.3 Consider a DGP with K D 2; V D fu; v; rg; E D ffu; vg; fv; rgg; and
duv D dvr D 1. Solve the problem graphically.

Exercise 2.4 Considering the previous exercise, what would be the solution if we
add fu; rg to E with dur D 1?

Before we consider solution methods to solve the DGP, we will discuss two
important aspects of the problem: (i) the cardinality of the solution set and (ii) the
complexity of the problem.

2.2 Number of Solutions of the DGP

What is the importance of knowing the number of solutions of a DGP? Is it possible
to have this information before we solve the problem? Besides its theoretical
importance, the cardinality of the DGP solution set may help us to solve the
problem, since we know how many solutions are being sought. These questions
will be discussed more fully in Chap. 5.

We saw from the first two exercises that the number of solutions of a DGP can
be infinite. However, does this always happen? We know that, given three points
xu; xv; xw in R

2, the triangle inequality

duw � duv C dvw
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must be satisfied, where duv; dvw; duw are the distances between the given points.
This means that if we add the edge fu; rg to E (in the last exercise), the problem
does not have a solution if the triangle inequality is not satisfied.

It is also clear that once we have a solution, there will be an unaccountably
infinite number of other solutions by simply rotating and/or translating the given
solution. However, excluding rotations, translations, and reflections, the exercises
suggest that the set of solutions of a DGP can be of three kinds:

• empty,
• finite,
• unaccountably infinite.

There is one more case to consider. Is it possible to have a DGP with a countably
infinite number of solutions? It turns out that this case is impossible, but the proof
is not simple enough to be presented here [8].

Exercise 2.5 Consider a DGP with K D 2; V D fu; v; r; sg; E D
ffu; vg; fu; rg; fv; rg; fv; sgg and duv D dur D dvr D dvs D 1. Excluding rotations,
translations, and reflections, how many solutions exist?

Exercise 2.6 Considering the previous exercise, how many solutions will exist if
we add fu; sg to E, with dus D p

2 ?

The two exercises above illustrate the fact that the addition of a single edge can
engender a change from “uncountably many” to “finitely many” solutions. This is an
evidence (not a proof) that the DGP cannot have countably infinitely many solutions.

2.3 Complexity of the DGP

The focus of this section is to give an intuition of the computational difficulty we
face when solving a DGP (formally, this is investigated in computational complexity
theory). Let us first consider the DGP whose associated graph is complete. To this
end, consider a DGP with K D 1, V D fu; v; rg, E D ffu; vg; fu; rg; fv; rgg, duv D
dvr D 1, and dur D 2. If we fix xu D 0 and xv D 1, we have

kxr � xuk D 2

kxr � xvk D 1:

Squaring both terms of equalities, we have

x2
r � 2xrxu C x2

u D 4

x2
r � 2xrxv C x2

v D 1:
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Subtracting one equation from the other, we obtain

�2xrxu C 2xrxv C x2
u � x2

v D 3 ) 2xr.xv � xu/ D x2
v � x2

u C 3:

Using the fixed values for xu and xv , we get

2xr D 4 ) xr D 2:

We could have solved this problem by simply drawing the graph. However, the
interesting part of this procedure is that it can be generalized for R

K . Let us see
what happens in R

2.
Consider a DGP with K D 2,

V D fu; v; r; sg and E D ffu; vg; fu; rg; fu; sg; fv; rg; fv; sg; fr; sgg:

Assume that u; v; r are fixed, that is, we can find xu; xv; xr 2 R
2 such that kxu�xvk D

duv , kxu � xrk D dur, kxv � xrk D dvr. Given these three points in R
2, we can

construct a quadratic system to obtain the coordinates of xs in the following way:

kxs � xuk D dus

kxs � xvk D dvs

kxs � xrk D drs:

Squaring both terms of equalities,

kxsk2 � 2xs � xu C kxuk2 D d2
us

kxsk2 � 2xs � xv C kxvk2 D d2
vs

kxsk2 � 2xs � xr C kxrk2 D d2
rs;

and subtracting the first equation from the other two, we obtain

2.xv � xu/ � xs D kxvk2 � kxuk2 C d2
us � d2

vs

2.xr � xu/ � xs D kxrk2 � kxuk2 C d2
us � d2

rs:

Thus, we have a linear system

Ax D b;

where

A D 2

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

�
;
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b D
� kxvk2 � kxuk2 C d2

us � d2
vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
;

and

x D
�

xs1

xs2

�
:

If the matrix A is invertible, then we have only one solution x� given by

x� D A�1b: (2.4)

Remark 2.2 Note that supposing that the matrix A is invertible, the solution x� is
obtained for any values of dus; dvs; drs. What is the connection of this fact with the
solution of the original quadratic system?

If A has no inverse, what do we do? We can, for example, fix three different
vertices of fu; v; r; sg in order to obtain an invertible matrix and hence the position
of the fourth vertex. Therefore, if the graph G of a DGP is complete and we assume
the existence of a solution, we can obtain a realization of G by solving a sequence
of linear systems, considering that all the associated matrices are invertible.

Exercise 2.7 In Exercise 2.5, suggest a method for fixing the positions of u; v; r.
Does it generalize to R

3?

Exercise 2.8 In Exercise 2.5, what conditions can we impose on xu; xv; xr to
guarantee that the associated linear system has a solution?

Exercise 2.9 In Exercise 2.5, if the associated linear system has a solution, can we
guarantee that we have a solution to the original quadratic system?

Exercise 2.10 Still considering Exercise 2.5, if none of possible choices for the
three first vertices produce an invertible matrix, does this mean that the DGP has no
solution?

If we require that all the matrices associated to a DGP with complete graph
possess inverses, the problem has a unique solution (modulo rotations, translations,
and reflections) that can be obtained at a computational cost proportional to jVj [20].
However, in the majority of applications, we do not have complete graphs. So, the
strategy discussed above may yield just a partial realization of the graph.

Before continuing our exploration of the DGP, we state a theoretical result
pertaining to the computational complexity of the DGP [72].

Theorem 2.1 The DGP is NP-Hard for all K 2 N, and in particular it is NP-
Complete for K D 1:

This means that any algorithm capable of solving the DGP is very likely to run (in
the worst case) in a number of steps which is exponential in the size of the memory
used to store the instance data, that is, G and d.
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Exercise 2.11 To solve an instance of the DGP in linear time, does the associated
graph necessarily need to be complete?

Exercise 2.12 Can we have just a unique solution (modulo rotations, translations
and reflections) to the DGP even though the graph is not complete?

2.4 DGP Instances

It is important to be able to generate instances/examples of DGPs in order to test
algorithms and to analyze the relationship between the graph of a DGP and its set
of solutions. This section presents a method for the reader to generate example
problems of a DGP for K D 3.

The procedure given here stems from the calculation of 3D molecular structures.
To simplify the process without making the generated instance easy to solve, we
consider a sequence of covalently connected atoms, denoted by 1; : : : ; n: That is,
each atom is connected to only two others, except the first and the last of the
sequence.

We will use a Cartesian coordinate system x1; : : : ; xn 2 R
3 to define a spatial

structure of our molecule in terms of an internal coordinate system [77], given by the
lengths of the covalent bonds d1;2; : : : ; dn�1;n, by the planar angles �1;3; : : : ; �n�2;n

(formed by three consecutive atoms), and by the torsion angles !1;4; : : : ; !n�3;n

(formed by four consecutive atoms). Each torsion angle !i�3;i is, in fact, the angle
between the normals of the planes defined by the atoms i � 3; i � 2; i � 1 and
i � 2; i � 1; i, respectively (see Fig. 2.1).

Fig. 2.1 Internal coordinates
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We now fix the lengths of the covalent bonds (for example, di�1;i D 1:526) and
the values of the planar angles (for example, �i�2;i D 1:91 radians). In this way,
except for rotations, translations, and reflections, a structure for our molecule will
be determined by the torsion angles !1;4; : : : ; !n�3;n, each of which can vary in the
interval Œ0; 2��.

A way to proceed is to choose randomly values for !i�3;i 2 Œ0; 2��, as well
as pairs of points i; j whose Euclidean distances dij are smaller than a given value.
To simulate DGP instances associated with the calculation of molecular structures
using distance information provided by NMR experiments, we can choose pairs of
points i; j for which dij � 5 [40] (see Chap. 6).

However, how do we determine the pairs of points i; j without knowing the
distances dij? For this, we need to obtain the Cartesian coordinates from the internal
coordinates, as follows:

2
664

xi1

xi2

xi3

1

3
775 D B1B2 � � � Bi

2
664

0

0

0

1

3
775 ; 8i D 1; : : : ; n;

where

B1 D

2
664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
775 ; B2 D

2
664

�1 0 0 �d1;2

0 1 0 0

0 0 �1 0

0 0 0 1

3
775 ;

B3 D

2
664

� cos �1;3 � sin �1;3 0 �d2;3 cos �1;3

sin �1;3 � cos �1;3 0 d2;3 sin �1;3

0 0 1 0

0 0 0 1

3
775 ;

and

Bi D

2
6664

� cos �i�2;i � sin �i�2;i 0 �di�1;i cos �i�2;i

sin �i�2;i cos !i�3;i � cos �i�2;i cos !i�3;i � sin !i�3;i di�1;i sin �i�2;i cos !i�3;i

sin �i�2;i sin !i�3;i � cos �i�2;i sin !i�3;i cos !i�3;i di�1;i sin �i�2;i sin !i�3;i

0 0 0 1

3
7775 ;

for i D 4; : : : ; n.
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Using above matrices and fixing the values d1;2; d2;3; �1;3, the coordinates of the
first three atoms are given by:

x1 D
2
4 0

0

0

3
5 ;

x2 D
2
4 �d1;2

0

0

3
5 ;

x3 D
2
4 �d1;2 C d2;3 cos �1;3

d2;3 sin �1;3

0

3
5 :

Note that we are using matrices in R
4�4 to generate points in R

3. These are
related to homogeneous coordinates, which are very useful in computer graph-
ics [29].

Exercise 2.13 Since 3D molecular structures can be described by Cartesian coor-
dinates or internal coordinates, what is the difference in using one or the other
coordinate system to generate a DGP instance?

Exercise 2.14 Is it possible to use the matrices above to generate DGP instances
for K D 2‹



Chapter 3
From Continuous to Discrete

3.1 Continuous Optimization and the DGP

One approach that has been used to solve the DGP is to represent it as a continuous
optimization problem [59]. To understand it, we consider a DGP with K D 2, V D
fu; v; sg, E D ffu; vg; fv; sgg, where the associated quadratic system is

.xu1 � xv1/2 C .xu2 � xv2/2 D d2
uv

.xv1 � xs1/2 C .xv2 � xs2/2 D d2
vs;

which can be rewritten as

.xu1 � xv1/2 C .xu2 � xv2/2 � d2
uv D 0

.xv1 � xs1/2 C .xv2 � xs2/2 � d2
vs D 0:

Consider the function f W R6 ! R, defined by

f .xu1; xu2; xv1; xv2; xs1; xs2/ D �
.xu1 � xv1/2 C .xu2 � xv2/2 � d2

uv

�2

C �
.xv1 � xs1/2 C .xv2 � xs2/2 � d2

vs

�2
:

It is not hard to realize that the solution x� 2 R
6 of the associated DGP can be found

by solving the following problem:

min
x2R6

f .x/: (3.1)

That is, we wish to find the point x� 2 R
6 which attains the smallest value of f .

© The Author(s) 2017
C. Lavor et al., An Introduction to Distance Geometry applied to Molecular
Geometry, SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-57183-6_3
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Exercise 3.1 In the problem (3.1), is it possible to say what is the smallest valued
of f ? Is this result valid for any DGP?

Exercise 3.2 Still considering the same problem above (3.1), what is the difference
between solving the quadratic system

.xu1 � xv1/2 C .xu2 � xv2/2 � d2
uv D 0

.xu1 � xs1/2 C .xv2 � xs2/2 � d2
vs D 0

and solving the equation

f .x/ D 0; x 2 R
6;

where f is given by

f .xu1; xu2; xv1; xv2; xs1; xs2/ D �
.xu1 � xv1/2 C .xu2 � xv2/2 � d2

uv

�2

C �
.xu1 � xs1/2 C .xv2 � xs2/2 � d2

vs

�2
‹

Thus, we can think of the DGP as a minimization problem. However, the
optimization approach for the DGP has a difficulty in that the function to be
minimized (3.1) has many local minima and we wish to find a global minimum
[26] (see Fig. 3.1).

In fact, the number of local minima may increase exponentially with the size of
the problem, which is determined by the number of vertices of the associated graph
[57], further complicating the minimization problem.

Exercise 3.3 Is it possible that there exists more than one global minimum for the
DGP optimization problem?

Fig. 3.1 Local and global
minima
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Exercise 3.4 If there is more than one global minimum, does the number of global
minima may increase exponentially with the size of the problem in the same way
that local minima do?

3.2 Finiteness of the DGP

Suppose that the solution set of a DGP is non-empty. We already know that the
number of solutions is either uncountable or finite (modulo rotations, translations,
and reflections). In the finite case, besides applying the classical optimization
methods, we can exploit the structure of the associated graph which defines the
problem and perhaps come up with a different approach [46, 54].

However, before studying special problem structures, how can we tell if the
solution set is either finite or uncountable? This section analyzes the conditions
that ensure the finiteness of the solutions for a DGP.

Let us consider the same problem of Sect. 2.3 with K D 2, but here we
change the dimension K to 3: So, we have a DGP with K D 3, V D fu; v; r; sg,
E D ffu; vg; fu; rg; fu; sg; fv; rg; fv; sg; fr; sgg. Fixing the coordinates of the first
three vertices u; v; r, which we can do by using the matrices of Sect. 2.4, we obtain
the same quadratic system:

kxs � xuk2 D d2
us;

kxs � xvk2 D d2
vs;

kxs � xrk2 D d2
rs:

Performing the calculations and subtracting the first equation from the others as
before, we obtain

2.xv � xu/ � xs D kxvk2 � kxuk2 C d2
us � d2

vs;

2.xr � xu/ � xs D kxrk2 � kxuk2 C d2
us � d2

rs:

So far, no difference can be noticed. However, if we obtain the explicit associated
linear system, we have:

�
xv1 � xu1 xv2 � xu2 xv3 � xu3

xr1 � xu1 xr2 � xu2 xr3 � xu3

� 2
4 xs1

xs2

xs3

3
5 D 1

2

� kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
:

We no longer have a 2 � 2 matrix, but a 2 � 3 matrix, since we have K D 3.
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The above system can be written as

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

� �
xs1

xs2

�
C

�
xv3 � xu3

xr3 � xu3

� �
xs3

�

D 1

2

� kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
:

If we suppose that the matrix

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

�
is invertible, we obtain that

�
xs1

xs2

�
D 1

2

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1 � kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�

�
�

xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1 �
xv3 � xu3

xr3 � xu3

� �
xs3

�
:

This implies that we no longer have only one solution for the linear system! That is,
for each value for xs3 2 R, we obtain values for xs1 and xs2. Thus, in order to obtain a
solution of our DGP, we must return to the associated quadratic system, choose one
of the equations (for example, kxs � xuk2 D d2

us), and solve it by using the solution
of the linear system above.

Geometrically, we have the intersection between a line, given by the parametric
equation in xs3,

�
xs1

xs2

�
D A � B

�
xs3

�
;

where

A D 1

2

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1 � kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
;

B D
�

xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1 �
xv3 � xu3

xr3 � xu3

�
;

and a sphere, given by

kxs � xuk2 D d2
us; (3.2)

resulting in three possibilities (Fig. 3.2):

• Empty set (the line does not intersect the sphere),
• Only one point (the line is tangent to sphere),
• Two points (the line is a secant of the sphere).
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Fig. 3.2 Intersection of a line and a sphere

Exercise 3.5 Show the equivalence between the original quadratic system,

kxs � xuk2 D d2
us;

kxs � xvk2 D d2
vs;

kxs � xrk2 D d2
rs;

and the new system, given by

����
xs1 xs2 xs3

�T � �
xu1 xu2 xu3

�T
���2 D d2

us;

�
xs1

xs2

�
D

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

��1

�
	

1

2

� kxvk2 � kxuk2 C d2
us � d2

vs

kxrk2 � kxuk2 C d2
us � d2

rs

�
�

�
xv3 � xu3

xr3 � xu3

� �
xs3

�

;

where the variables are xs1; xs2; xs3 2 R.

Exercise 3.6 If the matrix

�
xv1 � xu1 xv2 � xu2

xr1 � xu1 xr2 � xu2

�
is not invertible, or if we can not

select an invertible matrix 2 � 2 from the original matrix

�
xv1 � xu1 xv2 � xu2 xv3 � xu3

xr1 � xu1 xr2 � xu2 xr3 � xu3

�
;

does this mean that we can not ensure the finiteness of the solution set?
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The discussion above suggests that there are at least two important aspects to the
issue of finiteness of the DGP solution set:

a For each vertex s 2 V that we need to process, there must exist edges
fu; sg; fv; sg; fr; sg 2 E (where u; v; r 2 V are the vertices whose coordinates
have already been calculated), in order to generate a solvable quadratic system

kxs � xuk2 D d2
us;

kxs � xvk2 D d2
vs; (3.3)

kxs � xrk2 D d2
rs;

with xs 2 R
3 as the unknown.

b Clearly, in order to guarantee that the system (3.3) will have at most two solutions,
the matrix obtained by subtracting one equation from the other two must have full
rank.

Exercise 3.7 What geometric interpretation can be given to the assertion that the
matrix

�
xv1 � xu1 xv2 � xu2 xv3 � xu3

xr1 � xu1 xr2 � xu2 xr3 � xu3

�

has full rank?

Exercise 3.8 In R
2, for the above exercise, how would the question be answered?

Exercise 3.9 Which is the most important condition in practice—that there exist
edges fu; sg; fv; sg; fr; sg 2 E or that the associate matrix has complete rank?

Exercise 3.10 If we have more than three edges in conditions (a) and (b) above for
Eq. (3.3), how can we choose among these edges?

3.3 Vertex Order for the DGP

Based on the previous discussions, we highlight two important points related to
vertices s 2 V whose coordinates still need to be positioned in R

3:

1. There are u; v; r 2 V such that fu; sg; fv; sg; fr; sg 2 E,
2. xu; xv; xr 2 R

3 are part of a valid realization.

The idea which is the link between these two points is related to the concept of
order on the vertices of the DGP graph. That is, if there exists an order relation in
V which satisfies the conditions 1 and 2 above, we can ensure (excluding rotations,
translations, and reflections and supposing that the points related to the vertices
u; v; r are not collinear) that the DGP solution set is finite.
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Recall that to solve a DGP, for K D 3, we must obtain a valid realization x W V !
R

3 of the related graph, which implies that we need to find the coordinates of the
points xs 2 R

3 for each s 2 V , satisfying all equations of the system

8fu; vg 2 E; kxu � xvk D duv:

A solution of the problem can then be represented as an element of R3jVj.

Exercise 3.11 If we have such an order on the vertices V , does the search space
change?

If three points are given (satisfying the DGP equations) as positions for the
first three vertices of the order we are looking for (which is easy to find for most
applications), we can say in polynomial time whether or not there is such an order
[28, 45].

Consider a DGP with V D fa; b; c; u; v; rg and

E D ffa; bg; fa; cg; fa; ug; fb; cg; fb; vg; fc; rg; fu; vg; fu; rg; fv; rgg:

For K D 2, we wish to find an order such that the two first vertices generate a
clique and, from the third on, there are two previous vertices coming before it. By
considering all possible initial cliques, let us see what happens:

• Starting with the clique fa; bg, we have the following possible vertices for the
third position: c; u; v; r. The next vertex would be c, because ffa; cg; fb; cgg � E.
However, after that, there would exist no other candidate vertices.

• Starting with the clique fa; cg, we have the following possible vertices for the
third position: b; u; v; r. The next vertex would be b, because ffa; bg; fc; bgg � E.
However, after that, there would exist no other candidate vertices.

• Starting with the clique fa; ug, there does not exist any candidate vertex to occupy
the third position.

• Starting with the clique fb; cg, we have the following possible vertices for the
third position: a; u; v; r. The next vertex would be a, because ffb; ag; fc; agg � E.
However, after that, there would exist no other candidate vertices.

• Starting with the clique fb; vg, there does not exist any candidate vertex to occupy
the third position.

• Starting with the clique fc; rg, there does not exist any candidate vertex to occupy
the third position.

• Starting with the clique fu; vg, we have the following possible vertices for the
third position: a; b; c; r. The next vertex would be r, because ffu; rg; fv; rgg � E.
However, after that, there would exist no other candidate vertices.

• Starting with the clique fu; rg, we have the following possible vertices for the
third position: a; b; c; v. The next vertex would be v, because ffu; vg; fr; vgg � E.
However, after that, there would exist no other candidate vertices.
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Fig. 3.3 DGP graph without
order satisfying condition 1,
for K D 2

• Starting with the clique fv; rg, we have the following possible vertices for the
third position: a; b; c; u. The next vertex would be u, because ffv; ug; fr; ugg � E.
However, after that, there would exist no other candidate vertices.

Therefore, no such order exists! However, the associated graph does not have an
uncountable number of realizations (modulo rotations, translations, and reflections)
[37] (see Fig. 3.3). That is, the existence of a vertex order mentioned before is just
a sufficient condition for the finiteness of the DGP solution set. This question is
related to another area of research called graph rigidity [32].



Chapter 4
The Discretizable Distance Geometry Problem
(DDGP3)

4.1 Definition of the DDGP3

We begin this chapter by describing an important class of the DGP in R
3 having

a vertex order as described in Sect. 3.3, called the Discretizable DGP3 (DDGP3).
Even though this definition can be extended to R

K [65], we will consider just the
case K D 3.

Definition 4.1 (DDGP3) Given a graph G D .V; E; d/ of a DGP with K D 3 and
an order on the vertices V , denoted by v1; : : : ; vn, such that:

• there is a valid realization for v1; v2; v3,
• for all vi, i D 4; : : : ; n; there are (at least) three previous vertices ai; bi; ci with

ffai; vig; fbi; vig; fci; vigg � E satisfying

daibi C dbici > daici ;

find a function x W V ! R
3 such that

8fvi; vjg 2 E; kxvi � xvjk D dvivj :

The DDGP3 is obviously a particular case of the DGP, where K D 3, with an
order structure given as part of the problem.

The order structure on the vertex set of the associated graph of a DDGP3 allows
us to attack the problem taking into account this information. Orders on the vertices
of a graph appear in many applications [12, 31]. Essentially, the idea is to proceed
vertex by vertex, following the given order.

Let us consider a DGP with K D 3, given by

V D fp; q; r; s; t; u; vg

© The Author(s) 2017
C. Lavor et al., An Introduction to Distance Geometry applied to Molecular
Geometry, SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-57183-6_4
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and

E D ffp; qg; fp; rg; fp; sg; fp; ug; fp; vg;
fq; rg; fq; sg; fq; tg; fq; ug; fq; vg;
fr; sg; fr; tg; fr; vg;
fs; tg; fs; vg;
ft; ug; ft; vg;
fu; vgg:

We can first order the vertices according to the process described in Sect. 3.3,
resulting in the following:

V D fr; q; t; s; v; u; pg:

Given this order, we have a DDGP3 (supposing that the related hypothesis are
satisfied) with

ffr; sg; fq; sg; ft; sgg � E;

ffr; vg; fq; vg; ft; vg; fs; vgg � E;

ffq; ug; ft; ug; fv; ugg � E;

ffr; pg; fq; pg; fs; pg; fv; pg; fu; pgg � E:

Rewriting the vertices in V as r D v1, q D v2, t D v3, s D v4, v D v5 u D v6, and
p D v7, the associated graph for our example is given by

V D fv1; v2; v3; v4; v5; v6; v7g

and

E D ffv1; v2g; fv1; v3g; fv1; v4g; fv1; v5g; fv1; v7g;
fv2; v3g; fv2; v4g; fv2; v5g; fv2; v6g; fv2; v7g;
fv3; v4g; fv3; v5g; fv3; v6g;
fv4; v5g; fv4; v7g;
fv5; v6g; fv5; v7g;
fv6; v7gg:

In order to facilitate the construction of the quadratic systems, let us consider the
edges related to v4; v5; v6; v7:
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ffv1; v4g; fv2; v4g; fv3; v4gg � E;

ffv1; v5g; fv2; v5g; fv3; v5g; fv4; v5gg � E;

ffv2; v6g; fv3; v6g; fv5; v6gg � E;

ffv1; v7g; fv2; v7g; fv4; v7g; fv5; v7g; fv6; v7gg � E:

From the hypothesis of the DDGP3, v1; v2; v3 are already fixed in R
3, that is, their

coordinates xv1 ; xv2 ; xv3 have already been computed: To obtain the coordinates of
v4, we can exploit ffv1; v4g; fv2; v4g; fv3; v4gg � E, which in turn generates a
system of quadratic equations with xv4 2 R

3 as the only unknown variable:

kxv4 � xv1k2 D d2
v1v4

;

kxv4 � xv2k2 D d2
v2v4

;

kxv4 � xv3k2 D d2
v3v4

:

Expanding the norms and subtracting, for example, the first equation from the other
two, we obtain a linear system

Axv4 D b;

where A 2 R
2�3 and b 2 R

2: Since A has full rank by the hypothesis of the DDGP3

(no collinearities), we obtain xv4 in terms of a parameter � 2 R which we denote
by xv4.�/. Replacing xv4.�/ in one of the equations of the quadratic system above,
for example, in the equations kxv4 � xv1k2 D d2

v1v4
, we obtain the following second-

degree equation in �:

kxv4.�/k2 � 2xv4.�/ � xv1 C kxv1k2 � d2
v1v4

D 0: (4.1)

With the values of �, we obtain the possible results for the coordinates of xv4.�/.

Exercise 4.1 When we obtain two equal roots as a solution to (4.1), what does this
means geometrically?

Exercise 4.2 Could we obtain complex roots to (4.1)?

For each solution for v4 (x0
v4

and x1
v4

), performing the same procedure described
above, we will have two solutions for v5. That is, in our example, considering a5 D
v2; b5 D v3; c5 D v4; and choosing x0

v4
, we have the following quadratic system:

kxv5 � xv2k2 D d2
v2v5

;

kxv5 � xv3k2 D d2
v3v5

;

kxv5 � x0
v4

k2 D d2
v4v5

:
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However, we also have fv1; v5g 2 E, which can be used to test each of the possible
positions obtained for v5 (x0

v5
and x1

v5
):

kx0
v5

� xv1k D dv1v5 or kx1
v5

� xv1k D dv1v5?

Supposing that the points fxv1 ; xv2 ; xv3 ; x0
v4

g are not coplanar, only one of these
equations must be satisfied. Suppose it is the first: x0

v5
.

Exercise 4.3 What is the difference if we had selected x1
v4

instead of x0
v4

?

Exercise 4.4 Why have we assumed the non-coplanarity of the points
fxv1 ; xv2 ; xv3 ; x0

v4
g?

Let us go to the next vertex: v6. Since we only have ffv2; v6g; fv3; v6g; fv5; v6gg �
E, we generate the associated quadratic system

kxv6 � xv2k2 D d2
v2v6

;

kxv6 � xv3k2 D d2
v3v6

;

kxv6 � x0
v5

k2 D d2
v5v6

;

obtaining the two possible solutions: x0
v6

and x1
v6

. At this point, nothing can be said
about the feasibility of these points because we do not have more vertices linked
to v6. In order to continue, we have to choose one of the two solutions that were
generated, for example, x0

v6
. At the same time, we must remember that there is the

second possibility: x1
v6

.
For the next vertex v7, considering

a7 D v4;

b7 D v5;

c7 D v6;

we have a new quadratic system,

kxv7 � x0
v4

k2 D d2
v4v7

;

kxv7 � x0
v5

k2 D d2
v5v7

;

kxv7 � x0
v6

k2 D d2
v6v7

;

obtaining two more possible solutions: x0
v7

and x1
v7

: In this case, there are two other
edges, ffv1; v7g; fv2; v7gg 2 E; that can be used to test each one of the possible
positions for v7:

kx0
v7

� xv1k D dv1v7 or kx1
v7

� xv1k D dv1v7
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and

kx0
v7

� xv2k D dv2v7 or kx1
v7

� xv2k D dv2v7 :

Now we have two possibilities:

• Neither of the possible solutions are feasible,
• Only one of the possible solutions is feasible.

The first case can occur if the selection that we made for v6 had been wrong. In
this case, we need to return, choose x1

v6
, and repeat the process. In case we have

“extra” edges, we must test them, one by one. Just one equation that is not satisfied
will cause the process to terminate and require a backtracking.

In the second case of one feasible solution, we have a situation like that for vertex
v5, but with two extra edges instead of only one: fv1; v7g 2 E and fv2; v7g 2 E.
Theoretically, we can use any of these edges for choosing between x0

v7
and x1

v7
:

Let us suppose that neither of the possible solutions are feasible. Then, we
“return” , choose x1

v6
, and solve a corresponding quadratic system, obtaining x0

v7

and x1
v7

: Since we have fv1; v7g 2 E (supposing that the points fxv1 ; xv2 ; x0
v4

; x1
v6

g are
not coplanar), only one of these positions is feasible. Suppose it is x1

v7
. Therefore,

we finally get a solution to the problem: fxv1 ; xv2 ; xv3 ; x0
v4

; x0
v5

; x1
v6

; x1
v7

g:
Exercise 4.5 When we have to choose between x0

v6
and x1

v6
, is it possible to

anticipate that x0
v6

will be infeasible?

Exercise 4.6 By using the procedure above, what ensures us that we will find a
solution?

Exercise 4.7 In practice, which criteria can be adopted in order to decide which
edge must be used if there are many extra edges and supposing that all of them are
theoretically “feasible” ?

4.2 Complexity of the DDGP3

The computational cost of the method described above may be exponential. How-
ever, is it possible to create an efficient algorithm for the DDGP3? In Sect. 2.3, we
mentioned that the DGP is an NP-hard problem. Since the DDGP3 is a subproblem
of the DGP, it is natural to ask if there is some change in the computational
complexity of the subproblem. However, the DDGP3 remains NP-hard [65].

Recall that in the order associated with the graph G D .V; E/ of the DDGP3, for
all vi 2 V; i D 4; : : : ; n; there exists at least three previous vertices ai; bi; ci with

ffai; vig; fbi; vig; fci; vigg � E:
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Remark 4.1 In the example above, if we have fv1; v6g 2 E or fv4; v6g 2 E, no
backtracking is necessary. If we generalize this fact, we can say that, if for all vi 2
V; i D 5; : : : ; n; there exists at least four previous vertices ai; bi; ci; di with

ffai; vig; fbi; vig; fci; vig; fdi; vigg � E;

(supposing that fai; bi; ci; dig are related to noncoplanar points), the DDGP3 can be
solved in linear time!

Exercise 4.8 If we have a DDGP3 whose solution set is not empty and for all vi 2
V; i D 5; : : : ; n; there exists (at least) four previous vertices ai; bi; ci; di with

ffai; vig; fbi; vig; fci; vig; fdi; vigg � E

and fai; bi; ci; dig are not coplanar, can we assert that there is only one solution?

4.3 The BP Algorithm for the DDGP3

The vertex order in the DDGP3 ensures the finiteness of the solution set (assuming
that the respective triangle inequalities are strictly satisfied) and allow us to
“organize” the search space appropriately. Although the search space remains
continuous (R3n, with n vertices), the vertex order indicates the way in which the
search space should be covered so that a solution of the problem can be found.
In fact, the vertex order induces a structure of a binary tree in the search space
(Fig. 4.1), where the root represents the coordinates of xv1 , and the next two vertices
represent the coordinates of xv2 and xv3 that have been fixed. From the fourth level
of the associated tree, we have the representations of all the possible positions for
the vertices vi; i D 4; : : : ; n: There are two possibilities for v4, 4 for v5, 8 for v6, 16
for v7, : : :, 2i�3 for vi, : : :, and 2n�3 for vn:

From what we have seen from the previous example, we decided to explore the
tree from the left to the right side. That is, when we do not have additional edges,

Fig. 4.1 Binary tree
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we opted by choosing solution x0
vi

of the associated quadratic system. Other options
can be defined [25, 69], but we need to take care in order to not get lost when we
have to backtrack the tree.

Based on the previous example, we can develop a procedure to solve the DDGP3

that consists of a sequence (induced by the order on the vertices) of quadratic
systems and feasibility tests (when additional edges exist). Thus, we can divide the
edges E of the graph of the DDGP3 in two disjoint sets:

E D Ed [ Ep;

where

Ed D ffa4; v4g; fb4; v4g; fc4; v4g; : : : ; fan; vng; fbn; vng; fcn; vngg

is the branching set and

Ep D E � Ed

is the pruning set.
The branching edges “model” the search space as a binary tree and the pruning

edges “indicate” the way that we should proceed, going down the tree. To find a
solution, we go down the tree from the root until we reach the last level, performing
all feasibility tests along the way. The solution is given by the path defined only by
the feasible nodes.

We saw that, in some cases, we have to backtrack the tree and restart the path.
These backtracks can exponentially increase the computational cost of the search.
We can traverse “down” the tree without backtracking in two special cases:

• Ep D ;,
• 8vi; i D 5; : : : ; n; there are (at least) four vertices which generate

(non-coplanar) previous points to vi; given by ai; bi; ci; di, such that
ffai; vig; fbi; vig; fci; vig; fdi; vigg � E.

In both cases, a solution can be quickly found with a computational cost proportional
to n.

For the first case, it is sufficient to choose any of the solutions of the quadratic
systems

kxvi � xaik2 D d2
aivi

;

kxvi � xbik2 D d2
bivi

;

kxvi � xcik2 D d2
civi

;

since there is no feasibility test to do.
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Fig. 4.2 Intersection of three
spheres

For the second case, it is sufficient to solve the quadratic systems

kxvi � xaik2 D d2
aivi

;

kxvi � xbik2 D d2
bivi

;

kxvi � xcik2 D d2
civi

;

kxvi � xdik2 D d2
divi

;

which provides a unique solution. There is also no feasibility tests, since we included
them in the quadratic systems.

The set Ed is essentially the “same” for any DDGP3; whereas the set Ep depends
on the particular problem. The branching edges define the quadratic systems and the
pruning edges define the feasibility tests.

Consider a generic quadratic system associated with vi; i D 4; : : : ; n:

kxvi � xaik2 D d2
aivi

;

kxvi � xbik2 D d2
bivi

;

kxvi � xcik2 D d2
civi

:

Geometrically, to solve this system means to obtain the intersection of three spheres
(Fig. 4.2), S.xai ; daivi/; S.xbi ; dbivi/; .Sci ; dcivi/; centered at xai ; xbi ; xci 2 R

3 with
radius daivi ; dbivi ; dcivi 2 .0; 1/, given by

D D S.xai ; daivi/ \ S.xbi ; dbivi/ \ .Sci ; dcivi/:

From the hypothesis of the strict triangle inequality of the DDGP3; the points
ai; bi; ci are not collinear and, therefore, we only have three possibilities:

• jDj D 0,
• jDj D 1,
• jDj D 2.
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Fig. 4.3 Intersection of four
spheres

When Ep ¤ ;; we have additional spheres (Fig. 4.3) that should be added to the
previous intersection. That is, we should have

P D D \
�
\ki

iD1S.xpi ; dpivi/
�

;

where ki is the number of additional edges to vi, pi < vi, fpi; vig 2 E, and S.xpi ; dpivi/

is the sphere with center at point xpi with radius dpivi . This new intersection,
\ki

iD1S.xpi ; dpivi/; is precisely the feasibility test. With additional spheres, we have
only two possibilities:

• jPj D 0;

• jPj D 1.

The first case corresponds to some infeasibility, and the second one corresponds
to the case where we have the point satisfying all the given distances to previous
points already positioned. This geometrical interpretation gives us other alternatives
to deal with the two fundamental subproblems that are involved in solution methods
for the DDGP3 (see [4–6, 49, 67]). The algorithm to find a solution for the DDGP3

is called Branch and Prune [44, 53], or just BP.

Exercise 4.9 Write down the main steps of the BP algorithm as a pseudo code.

Exercise 4.10 Explain that, when the points xai ; xbi ; xci ; xvi are coplanar, we have
the case jDj D 1.

Exercise 4.11 When Ep D ;, is it possible to know how many solutions the
problem has?

Exercise 4.12 Does the BP find all solutions of a DDGP3?



Chapter 5
The Discretizable Molecular Distance Geometry
Problem (DMDGP)

5.1 Definition of the DMDGP

We know that to ensure the finiteness of the solution set of the DGP, we can impose
an order on the vertices of the associated graph. If such an order exists, it is not hard
to find it in the DGP graph.

The DDGP3 assumes that, for all vi, i D 4; : : : ; n, there exist (at least) three
previous vertices ai; bi; ci with ffai; vig; fbi; vig; fci; vigg � E, such that

daibi C dbici > daici : (5.1)

Depending on the DDGP3 instance, some distances between the vertices ai; bi; ci

may be lacking, which may imply no solution in R
3 for the quadratic system

kxvi � xaik2 D d2
aivi

;

kxvi � xbik2 D d2
bivi

;

kxvi � xcik2 D d2
civi

:

A way to avoid this mishap is to require that, for all vi, i D 4; : : : ; n; the distances
between the vertices ai; bi; ci are known (note that this is not a requirement in the
Definition of the DDGP3). Additionally, we may require that the vertices ai; bi; ci

are the immediate predecessors to vi, which occurs in many applications [57].

Exercise 5.1 Geometrically, what does it mean for the quadratic system above to
have no solution?

Exercise 5.2 If the vertices ai; bi; ci compose a clique, can we ensure that the
related triangle inequality is strictly satisfied?

© The Author(s) 2017
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We are now interested in finding a vertex order in which the vertices used in
the construction of each quadratic system compose a clique and are the immediate
predecessors to the vertex whose coordinates we wish to calculate. Considering the
same DGP instance as in Sect. 4.1, does there exist an order with these properties?
Let us study this question before proceeding.

Let us return to that problem: a DGP with K D 3, where the associated graph is
G D .V; E/, with vertices V D fp; q; r; s; t; u; vg and edges

E D ffp; qg; fp; rg; fp; sg; fp; ug; fp; vg;
fq; rg; fq; sg; fq; tg; fq; ug; fq; vg;
fr; sg; fr; tg; fr; vg;
fs; tg; fs; vg;
ft; ug; ft; vg;
fv; ugg:

Consider a new ordering given by

V D fp; u; v; q; t; r; sg:

We use the following notation in order to facilitate our analysis: p D u1, u D u2,
v D u3, q D u4, t D u5, r D u6, and s D u7 (ui is used instead of vi in order to
emphasize that we are using a different order from the previous one). We can verify
that this order has the desired properties, because in addition to the valid realization
for fu1; u2; u3g, we also have the following cliques:

fu1; u2; u3; u4g;
fu2; u3; u4; u5g;
fu3; u4; u5; u6g;
fu4; u5; u6; u7g:

To better follow the BP algorithm, we note that

ffu1; u4g; fu2; u4g; fu3; u4gg � E;

ffu2; u5g; fu3; u5g; fu4; u5gg � E;

ffu1; u6g; fu3; u6g; fu4; u6g; fu5; u6gg � E;

ffu1; u7g; fu3; u7g; fu4; u7g; fu5; u7g; fu6; u7gg � E:

To obtain the coordinates of u4, we consider the following quadratic system, with
xu4 2 R

3 as the only variable:
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kxu4 � xu1k2 D d2
u1u4

;

kxu4 � xu2k2 D d2
u2u4

;

kxu4 � xu3k2 D d2
u3u4

:

We choose one of the two possible values for the coordinates of u4, let us say x0
u4

,
and we obtain the following quadratic system in order to find the coordinates of u5,

kxu5 � xu2k2 D d2
u2u5

;

kxu5 � xu3k2 D d2
u3u5

;

kxu5 � x0
u4

k2 D d2
u4u5

:

Again, we choose one of the two possible values for the coordinates of u5, let us say
x0

u5
, and we obtain a new quadratic system,

kxu6 � xu3k2 D d2
u3u6

;

kxu6 � x0
u4

k2 D d2
u4u6

;

kxu6 � x0
u5

k2 D d2
u5u6

:

We also have fu1; u6g 2 E; that we can use to check which one of the possible
coordinates obtained for u6; x0

u6
and x1

u6
, is feasible:

kx0
u6

� xu1k D du1u6 or kx1
u6

� xu1k D du1u6‹

Maybe none of the equations is satisfied, implying that we made a wrong choice
for u5. Let us suppose that it is the case. We need to return and recompute the
coordinates using x1

u5
. The new quadratic system is

kxu6 � xu3k2 D d2
u3u6

;

kxu6 � x0
u4

k2 D d2
u4u6

;

kxu6 � x1
u5

k2 D d2
u5u6

:

Again, by using fu1; u6g 2 E, we check each of the new possible positions obtained
for u6 .y0

u6
and y1

u6
/:

ky0
u6

� xu1k D du1u6 or ky1
u6

� xu1k D du1u6‹

Supposing that the points fxu1 ; xu3 ; x0
u4

; x1
u5

g are not coplanar, only one of these
equations will be satisfied. Let us suppose that it is the first. Then, we discard
y1

u6
and we consider y0

u6
. The new quadratic system is
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kxu7 � x0
u4

k2 D d2
u4u7

;

kxu7 � x1
u5

k2 D d2
u5u7

;

kxu7 � y0
u6

k2 D d2
u6u7

:

By using fu1; u7g 2 E and fu3; u7g 2 E to check each of the new possible positions
obtained for u7 .x0

u7
and x1

u7
/, we have:

kx0
u7

� xu1k D du1u7 or kx1
u7

� xu1k D du1u7

and

kx0
u7

� xu3k D du3u7 or kx1
u7

� xu3k D du3u7 :

Supposing that x1
u7

is selected, we therefore obtain the solution to our problem as

xu1 ; xu2 ; xu3 ; x0
u4

; x1
u5

; y0
u6

; x1
u7

:

Until this moment, it was not possible to see any advantage in this new order, besides
the fact that it ensures that the quadratic systems have solutions. However, with the
cliques fvi�3; vi�2; vi�1; vig; for all i D 4; : : : ; n, we can replace the solution of
the quadratic systems by something numerically simpler and more stable. Before
proceeding with explaining how to do this, we will formalize the definition of the
new problem: the Discretizable Molecular Distance Geometry Problem (DMDGP).

Definition 5.1 (DMDGP) Given a graph G D .V; E; d/ of a DGP with K D 3 and
an order on the vertices V , denoted by v1; : : : ; vn, such that

• there is a valid realization for v1; v2; v3,
• for all vi, i D 4; : : : ; n, there are (at least) three immediately previous vertices

vi�3; vi�2; vi�1, where fvi�3; vi�2; vi�1; vig is a clique, and

dvi�3vi�2 C dvi�2vi�1 > dvi�3vi�1 ;

find a function x W V ! R
3 such that

8fvi; vjg 2 E; kxvi � xvjk D dvivj :

5.2 Complexity of the DMDGP

The existence of the cliques fvi�3; vi�2; vi�1; vig, for all i D 4; : : : ; n; provides us
more information about the vertex order of the associated DGP graph. By using
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the distance information of the cliques fvi�3; vi�2; vi�1; vig, we are able to obtain
“almost” all of the following values:

• d1;2; : : : ; dn�1;n: distances associated with the consecutive vertices,
• �1;3; : : : ; �n�2;n: planar angles associated with three consecutive vertices,
• !1;4; : : : ; !n�3;n: torsion angles associated with four consecutive vertices.

Exercise 5.3 What is the reason of the “almost” above?

Recall that the torsion angle !i�3;i is the angle between the normal vectors asso-
ciated with the planes determined by the vertices vi�3; vi�2; vi�1 and vi�2; vi�1; vi,
respectively. The values d1;2; : : : ; dn�1;n are, obviously, obtained from the definition
of the DMDGP, and the values �1;3; : : : ; �n�2;n are obtained by the law of cosines.
However, from the DMDGP hypothesis, we can obtain only the values of the cosines
of the torsion angles, given by .i D 4; : : : ; n/ [44, 49]:

cos .!i�3;i/ D 2d2
i�2;i�1.d2

i�3;i�2 C d2
i�2;i � d2

i�3;i/ � .di�3;i�2;i�1/.di�2;i�1;i/q
4d2

i�3;i�2d2
i�2;i�1 � .d2

i�3;i�2;i�1/
q

4d2
i�2;i�1d2

i�2;i � .d2
i�2;i�1;i/

;

where

di�3;i�2;i�1 D d2
i�3;i�2 C d2

i�2;i�1 � d2
i�3;i�1;

di�2;i�1;i D d2
i�2;i�1 C d2

i�2;i � d2
i�1;i:

Actually, with the ordering structure of the DMDGP, we can imagine that we have
molecular structures (Fig. 5.1), which explains the use of the extra term “molecular”
to describe this new class of problems.

Exercise 5.4 What is the distance that appears only one time in the formula above
for cos.!i�3;i/? Why is it “different” from the other distances?

Fig. 5.1 DMDGP instance as
a molecule
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Remember that to define a three dimensional structure of a molecule, we can
use the internal coordinates, given by the values d1;2; : : : ; dn�1;n, �1;3; : : : ; �n�2;n;

and !1;4; : : : ; !n�3;n. However, as we mentioned above, in the DMDGP, we just
have cos.!i�3;i/; i D 4; : : : ; n; which generates two possible values for each torsion
angle, since !i�3;i 2 Œ0; 2��. This implies that we do not need to solve anymore
quadratic systems! Moreover, the two possibilities for each torsion angle can be
found by using the distances related to the cliques fvi�3; vi�2; vi�1; vig. In order
to prune using the given extra distances, we use the matrices given in Sect. 2.4 to
obtain the Cartesian coordinates of the two possible solutions for each vertex vi;

where we have already obtained the coordinates of vi�3; vi�2; vi�1; and then we just
compare the distances we calculate with the given distances.

A question remains: “What is the computational cost in finding the DMDGP
order?” This is different than the polynomial cost of obtaining the DDGP3 order.
In fact, finding a DMDGP order may be difficult because it is an NP-hard problem
[12]. It is the cost we pay for the new information. We escaped solving quadratic
systems, but we exponentially increased the cost of finding a DGP order. However,
depending on the application, that order can be obtained using the characteristics of
the particular problem. It is what happens, for example, in problems related to 3D
protein structures [48] (see Chap. 6).

Exercise 5.5 Why is there a “change of signs” in the formulas di�3;i�2;i�1 D
d2

i�3;i�2 C d2
i�2;i�1 � d2

i�3;i�1 and di�2;i�1;i D d2
i�2;i�1 C d2

i�2;i � d2
i�1;i above?

Exercise 5.6 Derive the formula for cos.!i�3;i/.

5.3 DMDGP Symmetry

We saw that the DMDGP order allows us to view the problem as a molecule with a
finite possible configurations, and by using the internal coordinates and the distance
information of the cliques fvi�3; vi�2; vi�1; vig, i D 4; : : : ; n; we can also find the
two possible values for all torsion angles !i�3;i. There exists another interesting
property related to the symmetry of the DMDGP solutions.

In our example problem from Sect. 5.1, we realized that the two positions for
v4 .x0

v4
; x1

v4
/ can be considered since there are no extra edges which can invalidate

one of them. This implies that, for any solution found in the left subtree, having the
node x0

v4
as its root, there exists another one that is symmetric to the plane defined

by xv1 ; xv2 ; xv3 [47]. Note the relation that exists among the finiteness of the solution
set, the strict triangle inequality, and the symmetries.

An immediate consequence of this fact is that the solution set has an even number
of solutions. However, since the first computational results obtained for the DMDGP
[53], we empirically observed that the number of solutions was always a power of
two. Only recently, by using group theory, a mathematical proof of this fact was
presented [58].
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We illustrate the importance of this result by considering the following set, given
a DMDGP graph G D .V; E; d/ with the vertex order v1; : : : ; vn:

S D fv 2 V W Àfu; wg 2 E such that u C 3 < v � wg:

In order to simplify the notation, we denote by u C 3 the third vertex after u, and
by u � 3 the third vertex before u. Initially, let us try to identify the elements in
S. The first candidate is v4, which is in S if there is no edge fu; wg 2 E such that
u C 3 < v4 � w: If there is some u 2 V satisfying this property, we will have
u < v4 � 3: However, this is not possible because v4 � 3 D v1, which is the first
element of V . That is, v4 2 S for any DMDGP.

Let us see what happens with v5 (we are supposing that the DMDGP has a
solution):

• Supposing that there exists fu; v5g 2 E, such that u < v5 � 3, we have that
v5 62 S and fv1; v5g 2 E, which implies that only one of the possibilities for v5 is
feasible: either x0

v5
or x1

v5
.

• Supposing that there is no fu; v5g 2 E, for u < v5 � 3, we need to consider the
two following cases:

– If there is no fu; wg 2 E, such that u C 3 < v5 < w, then v5 2 S.
– If there exits fu; wg 2 E, such that u C 3 < v5 < w, then v5 62 S.

Since the procedure above can be applied to all elements of V , we can obtain the set
S by using just the DMDGP data, even before we apply BP to solve the problem.
But what is the importance of the set S?

The set S identifies other symmetric planes for the DMDGP, in addition
to the plane associated with the vertices fv1; v2; v3g, defined for all DMDGP
instances [58].

For example, if v5 2 S; this implies that the two positions for v5 are feasible,
x0

v5
and x1

v5
. At the same time, x0

v5
and x1

v5
are part of two different DMDGP

solutions [66].
Considering the example problem of Sect. 5.1 and using the notation vi; we have:

V D fv1; v2; v3; v4; v5; v6; v7g;
E D ffv1; v2g; fv1; v3g; fv1; v4g; fv1; v6g; fv1; v7g;

fv2; v3g; fv2; v4g; fv2; v5g;
fv3; v4g; fv3; v5g; fv3; v6g; fv3; v7g;
fv4; v5g; fv4; v6g; fv4; v7g;
fv5; v6g; fv5; v7g; fv6; v7gg:
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Fig. 5.2 Solution obtained
by BP algorithm

It is easy to see that S D fv4g; since fv1; v7g 2 E. That is, there exists only one
symmetric plane (defined by xv1 ; xv2 ; xv3 ), which implies that we have only two
solutions. As we have already obtained a solution, given by

xv1 ; xv2 ; xv3 ; x0
v4

; x1
v5

; y0
v6

; x1
v7

;

we have another one symmetric to the plane defined by fxv1 ; xv2 ; xv3g (see Fig. 5.2).
Suppose now that we have a little different DMDGP instance, given by

V D fv1; v2; v3; v4; v5; v6; v7g;
E D ffv1; v2g; fv1; v3g; fv1; v4g; fv1; v6g;

fv2; v3g; fv2; v4g; fv2; v5g;
fv3; v4g; fv3; v5g; fv3; v6g;
fv4; v5g; fv4; v6g; fv4; v7g;
fv5; v6g; fv5; v7g; fv6; v7gg:

Performing the calculations, we obtain

S D fv4; v7g;

implying that we have another symmetric plane defined by fv4; v5; v6g (see Fig. 5.3).
To simplify the notation, let us represent the first solution by a sequence of zeros

and ones and denote the first tree positions by 0; 0; 0:

s1 D .0; 0; 0; 0; 1; 0; 1/:

Since we know that we have a symmetry at vertex v7, another solution is given by

s2 D .0; 0; 0; 0; 1; 0; 0/:
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Fig. 5.3 Symmetric solutions

Now, by considering the symmetry at vertex v4, we obtain other two solutions
given by

s3 D .0; 0; 0; 1; 0; 1; 0/

and

s4 D .0; 0; 0; 1; 0; 1; 1/:

We have two important conclusions arising from these observations [1, 55, 66]:

• We know, a priori, using only the data given by any DMDGP, that the cardinality
of the solution set is 2jSj.

• In order to find all the solutions of a DMDGP, it is enough to apply the BP
algorithm to find only one solution, since all the others can be obtained using the
DMDGP symmetries.

Exercise 5.7 What is the computational importance of knowing a priori the number
of DMDGP solutions?

Exercise 5.8 Since the computational cost associated with the use of symmetries
to obtain other DMDGP solutions is polynomial, what is the implication for the
complexity of DMDGP?



Chapter 6
Distance Geometry and Molecular Geometry

6.1 The DMDGP and 3D Protein Structures

Currently, the most prominent application of distance geometry is related to
molecular geometry. Specifically, the problem is the calculation of the 3D protein
structure using distance information obtained from Nuclear Magnetic Resonance
(NMR) experiments [79, 80]. It is worth mentioning that the 2002 Nobel Prize
in Chemistry was awarded to the chemist Kurt Wüthrich for the development of
the application of NMR to determine protein structures using distance information
related to atoms that are close enough to be detected by NMR experiments.

Why is it important to know the three dimensional structure of a protein
molecule? It is because the 3D structure of a molecule is strongly connected with
its physicochemical properties. A classical example that illustrates this fact is the
discovery of the three dimensional structure of DNA [78]. In 1953, the physicist
Maurice Wilkins and the chemist Rosalind Franklin used X-ray diffraction, another
technique to determine the structure of proteins [11], to “photograph” the DNA. The
problem was to formulate a three dimensional model of a DNA molecule which
matched the results of the X-ray diffraction and to explain some known chemical
properties. In the same year, the biochemist James Watson and the biophysicist
Francis Crick proposed a three dimensional model, the famous double helix, that
explained all the available data about the DNA molecule known at the time.
The model that arose suggested the mechanism by which transmission of the
genetic information was achieved. The essential characteristic of the model
is the complementarity of the two twisted strands of DNA. Watson and Crick
realized, before the existence of data that verified their model, that the proposed
structure could be reproduced by the separation of the two strands and by the
synthesis of a complementary strand for each one. In 1958, the molecular biologist
Matthew Meselson and the geneticist Franklin Stahl showed experimentally that
the Watson and Crick’s model of replication of DNA works. With the model and

© The Author(s) 2017
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Fig. 6.1 DNA and protein

its experimental verification, a revolution in the understanding of the process of
heredity was started. Because of the discovery of the three dimensional structure
of the DNA molecule, James Watson shared the 1962 Nobel Prize in Medicine with
Francis Crick and Maurice Wilkins.

The genes of a living organism present in DNA are, indirectly, responsible for
the physical characteristics of the organism, but the corresponding proteins are, in
fact, what determine these characteristics. Inside of the cell, the DNA of a gene is
transcribed in the messenger RNA and this transcription is translated in order to
form the sequence of amino acids that gives arise to a protein molecule (Fig. 6.1).
This process of transcription and translation is well understood [73]. However, there
is still much to learn about the mechanism of the formation of the protein molecule
from the sequence of amino acids provided by the messenger RNA. This process
is called protein folding and the associated problem is known as the protein folding
problem [17].

We have already seen that the determination of the three dimensional structure of
a protein molecule is an important problem, but what is the relation to the DMDGP?
Havel and Wüthrich, in 1984 and 1985 [35, 36], wrote two articles showing how
Distance Geometry can be applied to the calculation of protein structure by using
NMR data. However, it was just in 1988 that the book “Distance Geometry and
Molecular Conformation” [15] was published. Crippen and Havel established the
fundamentals and connections between the two topics of research. Their proposed
algorithm, called EMBED, uses the methods of linear algebra and optimization to
solve the associated DGP.

Our proposal is to consider the problem as a DMDGP. For this, it is necessary
to define an order on the atoms of a protein molecule which induces a vertex
order on the corresponding DMDGP graph, given by v1; : : : ; vn. That is, we must
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have a valid realization for v1; v2; v3 and, for all vi, i D 4; : : : ; n; there must
exist three immediate previous vertices vi�3; vi�2; vi�1 such that the vertices
fvi�3; vi�2; vi�1; vig form a clique with

dvi�3;vi�2 C dvi�2;vi�1 > dvi�3;vi�1 :

This is the topic of the next section.

6.2 Ordering in Protein Molecules

Along with the information about the protein geometry, the NMR data provide
distances between atoms as long as they are 5 angstroms . VA/ or less apart. The
problem becomes how to use this information to determine the coordinates of each
atom of the protein molecule. The information from protein geometry tells us that
the distances between atoms covalently bonded and the planar angles defined by
three bonded consecutive atoms are known a priori. Clearly, the protein molecule is
not a rigid structure, but these values can be considered fixed [27, 38].

This suggests a natural ordering on the atoms of the protein backbone, formed by
a sequence of three atoms: N; C; C (Fig. 6.2). The protein backbone is the skeleton
of the protein which already gives us a good idea of its 3D structure. For this
monograph, we restrict ourselves to the protein backbone. In [14, 71], we find
proposals for considering side chains (see Fig. 6.2) that distinguish between the
20 amino acids that form a protein molecule [19]. Since the distances between
atoms i and i C 3 in the protein backbone are smaller than 5 VA (in general), we
can suppose that they are detected by the NMR experiments and this will provide us
with the desired ordering. However, most of the NMR data are associated with pairs
of hydrogen atoms [79]. An option would be to define an ordering involving just
atoms of hydrogen, incorporating hydrogen atoms from the side chains, and also
allowing atom repetitions in the order (Fig. 6.3).

Chemically, it does not make sense to consider two atoms in the same position,
but we can do this in the ordering on the vertices of the associated graph (in fact,

Fig. 6.2 Backbone protein
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Fig. 6.3 Order on hydrogen atoms

Fig. 6.4 Determination of the protein backbone using the positions of the hydrogen atoms

graph representation of a molecule is an old idea [76]). The repetition ensures
that the distances di�3;i are known, which may be null in some cases. From a
computational viewpoint, this has an advantage because when we recalculate the
position of a given repeated atom, we can verify that the numerical errors are under
control [43].

Exercise 6.1 Verify in the Fig. 6.3 which pairs of atoms are repetitions.

Exercise 6.2 What happens when some of the distances, say di�1;i or di�2;i, are
null?

Suppose that, when we apply the BP algorithm, we find the positions of hydrogen
atoms bonded to the protein backbone. How do we determine the positions of atoms
in this chain that are of interest to us? We leave the answer to this question for the
next two exercises. Remember that in Chap. 4, we saw that the intersection of four
spheres, under some conditions, gives only one point.

Exercise 6.3 In the three situations depicted in Fig. 6.4, determine the quadratic
systems corresponding to the intersection of four spheres.

Exercise 6.4 Show that, for each system, there exists only one solution.
There are three important aspects about the problem that we are trying to solve:

1. Distances are known (from NMR) just between close atoms,
2. Distances are known (from NMR) just between hydrogen atoms,
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3. We need to solve two subproblems: (i) The calculation of the positions of the
hydrogen atoms and (ii) The calculation of the positions of the atoms in the
protein backbone.

Actually, there exists another more complicated problem:

• The distances from NMR data, between neighboring hydrogen atoms, are not
accurate values.

The analysis of the DMDGP considering uncertainties in the distances is a
difficult problem. Some preliminaries results can be found in [4, 13, 48, 63,
74, 75]. Recall that all results that we presented in this monograph are based
on the assumption that all distances are precise (real numbers), free from any
error/uncertainty. However, we know that any measurements, such as those related
to NMR experiments, have associated errors. In this case, we can consider that
the data provided by NMR are intervals of real numbers which contain the correct
distance. Even this hypothesis is an approximation of reality, since errors typically
are unevenly distributed in the interval. Thus the problem is not trivial.

The good news is that this new problem provides us with an idea of how to solve
Problem 3 above. We can create a new order with two main characteristics:

• We consider hydrogen atoms and protein backbone atoms at the same time,
• For the clique fvi�3; vi�2; vi�1; vig, associated to the DMDGP graph, for i D

4; : : : ; n; all the distances di�1;i and di�2;i can be considered as real numbers
(since they are related to bond lengths and bond angles) and just the distances
di�3;i are considered to have errors, modeled as intervals.

Exercise 6.5 Based on Fig. 6.5, verify that the distances di�1;i and di�2;i can be
considered as real numbers.

Exercise 6.6 Based on Fig. 6.5, verify that some of the distances di�3;i may be
considered as degenerate intervals, that is, di�3;i D 0.

Fig. 6.5 Order with hydrogen and protein backbone atoms
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Exercise 6.7 What would a BP search tree look like if we consider that the
distances di�3;i are intervals?

Exercise 6.8 What are the modifications necessary in the BP algorithm to incorpo-
rate interval distances?

6.3 The Polynomial Performance of the BP Algorithm

We already know that, if a given instance of the DMDGP, for all i D 5; : : : ; n; has
an extra edge fvj; vig 2 E, with j < i � 3, such that the vertices fvj; vi�3; vi�2; vi�1g
generate a set of noncoplanar points, there will exist only one valid realization
of the associated graph which can be computed in linear time. In general, this
situation does not occur in problems related to 3D protein structures. However, we
proved that under certain assumptions verified in many proteins the BP is Fixed-
Parameter Tractable, which means that its exponential behavior only depend on
single parameter rather than the whole size of the instance. We also verified that
for several protein instances this parameter could be fixed at a constant, which
suggests that the DMDGP might be a tractable problem on protein instances with
exact data [56]. In part this can be explained by the fact that the protein backbone
of many proteins is “tightly packed” (Fig. 6.1). The more “stretched out” the protein
molecule is, the lower will be the cardinality of the pruning set Ep, causing more
branches in the BP search tree.

We need to think of the BP tree as a whole and not as it is partially constructed at
each step of BP, in order to have an idea of the “global behavior” of the algorithm.
When the set of the pruning edges is empty, Ep D ;, the BP tree is full, representing
the entire search space. There is no difficulty in finding one solution in linear time,
because it is sufficient go down the tree, by choosing any one of the two possibilities
at each step of the algorithm. Since Ep D ;, there is no possibility of errors at
time of making a choice. Clearly, it is unthinkable to find all the solutions for very
large n, because the solution set has cardinality 2n�3 (Fig. 6.6). On the other hand,
suppose we have a situation described in the first paragraph of this section: for all
i D 5; : : : ; n; there exists an extra edge fvj; vig 2 Ep with j < i � 3: In this case,
we have “only one” solution which can be found in linear time (the other one is
symmetric to the plane defined by v1; v2; v3), since we know what is the correct
decision to be made at each step of BP (Fig. 6.7).

Increases in the computational cost of the BP algorithm are due to the required
return back up the tree, when none of the calculated positions for a given vertex v is
compatible with the edges fu; vg 2 Ep, for u < v � 3 (at some previous level of the
tree, a wrong decision was made). The reason that the BP algorithm is required to
backtrack the tree, preventing it from an “unhindered descend” is the following:
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Fig. 6.6 BP tree with EP D ;

Fig. 6.7 Unique solution found in linear time

• There exists at least one vertex vj in the DMDGP order, v1; : : : ; vj; : : : ; vn, whose
only previous vertices u, fu; vjg 2 E, are those used in the construction of the tree:
vj�3; vj�2; vj�1.

This means that whenever this happens, there is a duplication of the number of
nodes at level j of the tree, compared to the previous level. The problem is further
aggravated when there exists a set of consecutive vertices vj; : : : ; vjCk, for which
the situation mentioned above holds, expanding the search space quickly. Suppose,
for example, that at level j D 50 of the tree there exists 220 D 1; 048; 576 positions
that satisfy our given data. With k D 5, the number of possible solutions becomes
225 D 33; 554; 432!

Before we make concluding remarks of this monograph, we mention that the
computational cost of the BP algorithm can be reduced in at least two ways:

1. By parallelizing the algorithm [30, 64],
2. By using the concept of multiple trees [25, 69].



Chapter 7
Conclusion

We hope that this monograph inspires the reader to enter into a deeper study of
Distance Geometry. Our aim was to present it as an introduction to research and
teaching of the subject, where our main idea was to show that the mathematical
world becomes captivating when we integrate several concepts motivated by a
real and challenging problem. In exploring the area of Distance Geometry, we
touched upon several different mathematical and computational fields: graph theory,
geometry, algebra, combinatorics, data structures, and complexity of algorithms.
We also touched upon ideas such as dimension, metric, symmetry, numerical
approximation, solvability of problems and computational cost.

A fundamental topic, mainly in the applications, that was lightly considered in
Chap. 6 is related to uncertainty. Chapter 6 was a different chapter from the others,
because it was focused to molecular geometry which is an important field of study
within Distance Geometry. We employed, implicitly and explicitly, the concepts and
results from the previous chapters and also challenged the reader to solve complex
problems perhaps requiring an understanding of the “subtleties” of the existent
relations between mathematics and its applications.

The reader undoubtedly realizes that Distance Geometry is very rich and involves
theoretical and computational challenges, as the application we selected illustrates.

© The Author(s) 2017
C. Lavor et al., An Introduction to Distance Geometry applied to Molecular
Geometry, SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-57183-6_7
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