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Parameter Choices for
Fast Harmonic Spline Approximation

Martin Gutting

Abstract. The approximation by harmonic trial functions allows the construc-
tion of the solution of boundary value problems in geoscience where the bound-
ary is often the known surface of the Earth itself. Using harmonic splines such
a solution can be approximated from discrete data on the surface. Due to their
localizing properties regional modeling or the improvement of a global model
in a part of the Earth’s surface is possible with splines.

Fast multipole methods have been developed for some cases of the oc-
curring kernels to obtain a fast matrix-vector multiplication. The main idea
of the fast multipole algorithm consists of a hierarchical decomposition of the
computational domain into cubes and a kernel approximation for the more
distant points. This reduces the numerical effort of the matrix-vector mul-
tiplication from quadratic to linear in reference to the number of points for
a prescribed accuracy of the kernel approximation. In combination with an
iterative solver this provides a fast computation of the spline coefficients.

The application of the fast multipole method to spline approximation
which also allows the treatment of noisy data requires the choice of a smooth-
ing parameter. We summarize several methods to (ideally automatically)
choose this parameter with and without prior knowledge of the noise level.

Keywords. Spline approximation, fast multipole methods.

1. Introduction

Spherical splines have been developed by Freeden [38] and independently byWahba
[134] for interpolation and smoothing/approximation problems on the sphere and
have been generalized to harmonic splines by Freeden [37, 39, 40]. These harmonic
splines can be used for interpolation/approximation on regular surfaces, but in
particular for the solution of boundary value problems where the boundary is
a regular surface. Convergence theorems exist for both spherical splines and har-
monic splines (cf. [41, 42, 43, 44]), and the different types of spline spaces and their
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reproducing kernels have been investigated (cf. [49] and the references therein). In
geosciences they have found many applications (see, e.g., [45, 46, 48, 107] and the
references therein).

Splines lead to a system of linear equations which in case of harmonic splines
has to be densely populated. This makes the solution expensive in terms of the
numerical effort. Iterative solvers require fast summation methods corresponding
to the reproducing kernels of these splines to be truly efficient. On the sphere there
are several possible ways to achieve a fast summation (the problem that is con-
sidered determines which method should be preferred): spherical panel clustering
(cf. [45, 52] and the references therein), spherical FFT for gridded data points or
spherical NFFT for non-equispaced data (cf. [116, 82]).

[61, 62, 63, 124] have introduced the fast multipole method (FMM) in two
and three dimensions for fast evaluation of potentials corresponding to the Laplace
operator (generalizations to further operators have been introduced later). Since
such potentials are closely related to certain reproducing kernels of our splines,
the FMM allows fast summation of harmonic splines as well as spherical splines.
Such a combination is used in [57] to solve problems of satellite geodesy with
harmonic splines corresponding to the singularity kernel. We have extended this
to the Abel–Poisson kernel and use the accelerated version of the FMM that was
first introduced in [24, 64]. This approach has also been applied to the oblique
boundary value problem of potential theory in [67, 68].

We consider the following (generalized) interpolation problems:

Problem 1.1 (Interpolation on a regular surface). Let Σ be a C(0)-regular surface
(see Definition 2.1 below for details). Let a finite set of points {x1, . . . , xN} ⊂ Σ
on the surface and data Fi, i = 1, . . . , N corresponding to these points be given.
The aim is to find a function F in a function space of choice such that F (xi) = Fi,
i = 1, . . . , N .

If the data Fi are error-affected and strict interpolation is no longer desirable
and the interpolation conditions are reduced to F (xi) ≈ Fi, i = 1, . . . , N , and F
has to minimize a functional that balances closeness to the data and smoothness
of F , usually with one (or several) parameters.

Closely related to this interpolation/approximation problem is the discrete
version of the Dirichlet boundary value problem which requires only the values of
the boundary function in a finite set of points on the surface. This is also called a
generalized interpolation problem.

Problem 1.2. Let Σ be a C(k)-regular surface with k ≥ 2 (see again Definition
2.1 below for details). Let {x1, . . . , xN} ⊂ Σ be a discrete set of N points on the
surface. For each point xi let Fi = U(xi) be given, where i = 1, . . . , N .
The task is to determine the potential U ∈ C(0)

(
Σext

)
∩ C(2) (Σext) which is

harmonic in Σext, i.e., the exterior of the surface Σ, and regular at infinity, i.e., for
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|x| → ∞,

|U(x)| = O
(
|x|−1

)
, (1)

|∇U(x)| = O
(
|x|−2

)
, (2)

or an approximation UN to it which fits the data, i.e., for i = 1, . . . , N ,

UN (xi) = Fi = U(xi). (3)

As before the interpolation conditions (3) are relaxed in case of error-affected
data/measurements.

The outline of this paper is as follows: Section 2 summarizes the theory of
harmonic splines and spline approximation. In Section 3 we establish the connec-
tion between harmonic splines and the sums that can be computed by the fast
multipole method, we introduce the adaptive construction of the decomposition of
the computational domain and provide our version of the fast multipole algorithm
for harmonic splines. Section 4 gives an overview of suitable methods to choose the
smoothing parameter of the approximating splines if the data are afflicted with
(stochastic) noise.

2. Preliminaries

Spherical harmonics, which we denote by Yn,m (with degree n ∈ N0, order m =
−n, . . . , n), are known to form a complete orthonormal basis of the space L2(S2)
of square integrable functions on the unit sphere S2 (see, e.g., [30, 47, 130]).
The spherical harmonics {Yn,m}n∈N0,m=−n,...,n also form a closed system in C(S2)
and are closed and complete in L2(S2). This allows the representation of square-
integrable functions on any sphere S2R of radius R > 0 by their Fourier series,
where the Fourier coefficients of F ∈ L2(S2R) are denoted by

F∧(n,m) =

∫
S2R

F (x)
1

R
Yn,m

(
x
R

)
dSR (x) . (4)

2.1. Regular surfaces and Runge spheres

Due to the Runge–Walsh approximation theorem, we can use functions which
possess a larger domain of harmonicity to approximate the solution of a problem
which requires harmonicity only outside the Earth’s surface (see [45, 48] for an
extensive introduction of this technique). Harmonic splines as introduced in [37,
39, 40, 125] are constructed in such a way that they are subspaces of the space of
harmonic functions on a sphere situated inside the Earth, the so-called Runge (or
Krarup) sphere (see [109]).

The Earth’s surface is considered to be regular as by the following definition.

Definition 2.1. A C(k)-regular surface Σ ⊂ R3 is a surface in R3 which has to fulfill
the following properties:

(i) Σ divides R3 into the interior Σint and the exterior Σext, where Σint is a
bounded region and Σext is an unbounded region.
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(ii) The origin is contained in Σint.
(iii) Σ is closed (and therefore compact) and free of double points.
(iv) Σ is a C(k)-surface, i.e., for each x ∈ Σ there exists a neighborhood U ⊂ R3

of x such that Σ ∩ U possesses a C(k)-parametrization.

We can also define C(k,λ)-regular surfaces Σ ⊂ R3 with λ ∈ (0, 1) as a C(k)-
regular surface where every point x ∈ Σ possesses a neighborhoodU such that Σ∩U
can locally be parameterized by a k-times λ-Hölder continuously differentiable
parametrization. Such surfaces are required for oblique derivative boundary value
problems as in [68], but not here. Note that any sphere S2R of radius R > 0 is

obviously a C(∞)-regular surface.
For regular surfaces Σ we can define Runge spheres (cf. [45, 46, 48], see also

[109] where it is called Krarup sphere).

Definition 2.2. The Runge sphereS2R is a sphere of radius R around the origin
such that the exterior of the Runge sphere, i.e., S2R,ext, contains the exterior of the

regular surface Σ, i.e., Σext ⊂ S2R,ext.

2.2. Sobolev spaces

Now we briefly introduce the Sobolev spaces of the form H = H
(
{An}; S2R,ext

)
using the Runge sphere S2R. For more details, the reader is referred to [45, 48, 107]
and the references in these books.

Definition 2.3. Let {An}n∈N0
⊂ R be a sequence which satisfies the summability

condition ∞∑
n=0

2n+ 1

4πA2
n

< ∞. (5)

The Sobolev space H = H
(
{An}; S2R,ext

)
is defined by

H = H
(
{An}; S2R,ext

)
= E

(
{An}; S2R,ext

)‖·‖H({An}; S2
R,ext) , (6)

where E
(
{An}; S2R,ext

)
⊂ C(∞)

(
S2R,ext

)
is the set of all functions that are har-

monic in S2R,ext, infinitely often differentiable on the Runge sphere S2R and regular

at infinity (i.e., (1) and (2) hold) and whose Fourier coefficients F∧(n,m) with
respect to L2(S2R) (as defined in (4)) fulfill

‖F‖H
(
{An}; S2R,ext

) =

∞∑
n=0

n∑
m=−n

A2
n (F

∧(n,m))
2
< ∞ . (7)

H is a Hilbert space with the inner product defined by

〈F,G〉H
(
{An}; S2R,ext

) =
∞∑

n=0

n∑
m=−n

A2
n F

∧(n,m)G∧(n,m) (8)

for F,G ∈ H
(
{An}; S2R,ext

)
.
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It is well known (cf. [45, 107] and the references therein) that such a space
possesses a so-called reproducing kernel (see [3] for an overview on reproducing
kernels in general).

Definition 2.4. Let U be a non-empty set and (X, 〈·, ·〉X) be a separable Hilbert
space of real-valued functions on U . Let {Bn}n∈N0

be a complete orthonormal

system in (X, 〈·, ·〉X). Any function K : U × U −→ R of the form

K (x, y) =
∞∑
n=0

K∧(n)Bn (x)Bn (y) (9)

with x, y ∈ U and K∧(n) ∈ R for n ∈ N0 is called an X-product kernel (briefly an
X-kernel).

An X-kernel K (·, ·) : U × U −→ R is called a reproducing kernel (or shortly
repro-kernel) for (X, 〈·, ·〉X) if:

(i) K (x, ·) ∈ X for all x ∈ U .
(ii) 〈K (x, ·) , F 〉X = F (x) for all x ∈ U and all F ∈ X .

If there exists such a repro-kernel in X , then X is called a reproducing
kernel Hilbert space and the repro-kernel is unique (cf. [3]). In the space H =

H
(
{An}; S2R,ext

)
with a summable sequence {An} the repro-kernel (9) can be

represented by its expansion in Legendre polynomials due to the well-known ad-
dition theorem for spherical harmonics:

KH(x, y) =

∞∑
n=0

2n+ 1

4πA2
n

1

|x||y|

(
R2

|x||y|

)n

Pn

(
x

|x| ·
y

|y|

)
. (10)

2.3. Harmonic splines

We use the reproducing kernels of Section 2.2 to define harmonic splines.

Definition 2.5. Let {L1, . . . ,LN} ⊂ H∗ be a set of N linearly independent bounded
linear functionals on the reproducing kernel Hilbert space H. Then any function
S of the form

S =

N∑
i=1

aiLiKH(·, ·) (11)

with a set of so-called spline coefficients {a1, . . . , aN} ⊂ R is called an H-spline rel-
ative to {L1, . . . ,LN}. The function space of all H-splines relative to {L1, . . . ,LN}
is denoted by SH (L1, . . . ,LN ).

By construction anyH-spline is a harmonic function. The interpolating spline
SF for the function F ∈ H has to fulfill the interpolation conditions

LiS
F = LiF for i = 1, . . . , N. (12)
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The interpolation conditions (12) can be rewritten as a system of linear equations
for the spline coefficients ai:

N∑
i=1

aiLiLjKH(·, ·) = LjF, j = 1, . . . , N, (13)

whose corresponding matrix possesses the entries LiLjKH(·, ·) and is symmetric
and positive definite (for linear functionals L1, . . . ,LN ∈ H∗ which are linearly
independent).

In this paper, we consider only evaluation functionals Lx, i.e., LxF = F (x)
where x ∈ Σext. Furthermore, L1, . . . ,LN are given by LiF = F (xi) where xi ∈ Σ.
For other types of functionals see [43, 44] or [67, 68] (for the case of oblique
derivatives). In the following theorem we summarize the properties of H-splines.

Theorem 2.6. Let F ∈ H and let {L1, . . . ,LN} ⊂ H∗. Then the H-spline interpo-
lation problem with the interpolation conditions (12) is uniquely solvable and its
solution SF ∈ SH (L1, . . . ,LN ) possesses the following properties:

(i) SF is the H-orthogonal projection of F onto SH (L1, . . . ,LN ).
(ii)

∥∥SF
∥∥
H ≤ ‖F‖H.

(iii) If G ∈ H also satisfies the interpolation conditions (12), then the first mini-
mum property holds:

‖G‖2H =
∥∥SF

∥∥2
H +

∥∥G− SF
∥∥2
H , (14)

i.e., SF is the interpolating function of F in H with minimal norm.
(iv) If S ∈ SH (L1, . . . ,LN ) and G ∈ H also satisfies the interpolation conditions

(12), then the second minimum property holds:

‖S −G‖2H =
∥∥SF −G

∥∥2

H +
∥∥S − SF

∥∥2
H . (15)

For the proof and for further details on splines, the reader is referred to
[37, 43, 45, 51, 107] and the references therein.

Example 2.7. The choice An = h−n
2 , h ∈ (0, 1), fulfills (5) and provides us with

the reproducing kernel called Abel–Poisson kernel which is given by

KH(x, y) =
1

4π

|x|2|y|2 − h2R4

(|x|2|y|2 + h2R4 − 2hR2x · y)
3
2

. (16)

Example 2.8. The sequence An = (n + 1
2 )

1
2h−n

2 , h ∈ (0, 1), also satisfies (5) and
leads to the singularity kernel given by

KH(x, y) =
1

2π

1

(|x|2|y|2 + h2R4 − 2hR2x · y)
1
2

. (17)

In [48] the existence of approximations fulfilling interpolation conditions is
shown by the Runge–Walsh approximation theorem and an extension of Helly’s
theorem (cf. [138]). Convergence results for harmonic splines (cf. [43, 44]) can be
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derived that show the convergence to the solution of the Dirichlet boundary value
problem for an increasing density of data points, i.e., if the largest data gap goes
to zero (cf. [43]).

We consider two specific types of splines (using Abel–Poisson and singularity
kernels) and propose the fast multipole method to quickly compute the sums∑

aiKH(xi, yj) for many points in Section 3. This can be used to solve the systems
of linear equations (13) that occur in the solution of the interpolation problems
using harmonic splines.

2.4. Spline approximation

For noisy data, i.e., Fi = U(xi) + δi, i = 1, . . . , N , where the noise δi is mod-
eled by some stochastic process, e.g., white noise (see Section 4.1 for details), in
Problem 1.2, it makes no sense to compute an interpolation problem. We look for
an approximation to U which can be interpreted as a smoothing of the data (see
[38, 51, 50, 135] for the spherical spline approximation, [37, 45] for the case of
harmonic spline approximation). Minimizing the following functional

μ(S) =
N∑
i=1

N∑
j=1

(LiS − Fi)Cij(LjS − Fj) + β ‖S‖H (18)

in the reproducing kernel Hilbert space H = H
(
{An}; S2R,ext

)
yields the desired

smoothed approximation of the data. C = (Cik) ∈ RN×N denotes a positive
definite matrix which allows us to include covariance information on the data if
available. β > 0 is a constant smoothing parameter which balances closeness to
the data and smoothing. The following theorem of [45, 107] (see also the references
therein) summarizes the existence and uniqueness of a spline approximation.

Theorem 2.9. Let Fi, i = 1, . . . , N , correspond to a set of linearly independent
bounded linear functionals L1, . . . ,LN ∈ H∗.
Then there exists a unique element S ∈ SH (L1, . . . ,LN ) such that

μ(S) ≤ μ(F ) for all F ∈ H (19)

and μ(S) = μ(F ) if and only if S = F . This element is called the smoothing
spline or approximating spline. Its spline coefficients ai, i = 1, . . . , N , are uniquely
determined by the system of linear equations

N∑
i=1

ai
(
LiLjKH(·, ·) + β(C−1)ij

)
= LjF, j = 1, . . . , N. (20)

The matrix in (20) corresponds to the sum of the matrix in (13) and βC−1. It
is still positive definite. If C is the identity matrix, there is only the one smoothing
parameter β. Using a diagonal matrix as C it is possible to introduce weights for
the data Fi and include additional information on the noise of the data. The choice
of the smoothing parameter(s) can be interpreted as the application of a parameter
choice method in the regularization theory of ill-posed problems (see Section 4).
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3. The fast multipole method for splines

The interpolation conditions (12) as well as the minimization of the smoothing
functional (18) lead to a system of linear equations (13), or (20) respectively, with
a dense matrix whose size is the number of data points. This matrix can be large
and the solution of the corresponding system of linear equations becomes difficult.

Reproducing kernels of a reproducing kernel Hilbert space H defined by the
summable sequence {An} can be expanded in terms of Legendre polynomials as
in (10). The singularity kernel (17) and the Abel–Poisson kernel (16) possess a
representation as an elementary function and both kernels are closely related to the
single pole 1

|x−y| by the Kelvin transform. Therefore, we can use the fast multipole

method (FMM), which has been introduced by Greengard [61], Greengard and
Rokhlin [62, 63], and Rokhlin [124], for the fast summation of harmonic splines,
i.e., of the sum

∑
aiKH(xi, ·). This corresponds to the matrix-vector products

occurring in an iterative solver for (13) or (20).
The FMM creates a hierarchical subdivision of the computational domain

into nested cubes that are organized in an octtree data structure. Instead of single
point interaction the cubes summarize the part of the kernel sum corresponding
to the points they contain and interact with other cubes via the coefficients of
truncated inner/outer harmonics expansions. This kernel approximation is applied
as often as possible and on the coarsest possible level of the tree data structure.
Direct evaluation is used only for the closest cubes where the approximation is
not accurate enough. The algorithm has been improved several times to increase
its efficiency (cf., e.g., [24, 64, 137]). We summarize our implementation and show
the application of the FMM to harmonic splines (see [67, 69] for a more detailed
analysis).

3.1. Kelvin transform of reproducing kernels

The Kelvin transform yields the connection between the kernels (17) and (16)
and the fundamental solution of the Laplace equation, i.e., the single pole. The
transform can be seen as a reflection on a sphere around the origin and we choose
the Runge sphere S2R of Definition 2.2 for this (see also text books on potential
theory, e.g., [46, 83]).

Definition 3.1. Let Γ ⊆ R3 be a domain, W : Γ −→ R a function. Let the reflection
of Γ on the sphere S2R be given by

ΓKT =

{
xKT ∈ R3 :

R2

|xKT|2x
KT = x ∈ Γ

}
. (21)

The function

WKT : ΓKT −→ R,

xKT �→ WKT(xKT) =
R

|xKT|W
(

R2

|xKT|2x
KT

)
=

R

|xKT|W (x), (22)

is called the Kelvin transform of W with respect to the sphere of radius R.
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The Kelvin transform is applied to the reproducing kernels with respect to
one argument (the other is kept fixed). The Kelvin transform KKT

H (x, yKT) of the
singularity kernel (17) can be computed, e.g., by its expansion

KH(x, y) =

∞∑
n=0

hn

n+ 1
2

2n+ 1

4π|x||y|

(
R2

|x||y|

)n

Pn

(
x

|x| ·
y

|y|

)

=
1

2π|y|

∞∑
n=0

(h|yKT|)n
|x|n+1

Pn

(
x

|x| ·
yKT

|yKT|

)
=

1

2π|y|
1

|x− hyKT| =
|yKT|
R

KKT
H (x, yKT), (23)

where yKT = R2

|y|2 y and

KKT
H (x, yKT) =

1

2πR

1

|x− hyKT| . (24)

The Kelvin transform KKT
H (x, yKT) of the Abel–Poisson kernel (16) is given by

KH(x, y) =
1

4π

|x|2|y|2 − h2R4

(|x|2|y|2 + h2R4 − 2hR2x · y)
3
2

=
|yKT|
R

1

4πR

|x|2 − h2|yKT|2
|x− hyKT|3 =

|yKT|
R

KKT
H (x, yKT), (25)

which is related to (24) by

KKT
H (x, yKT) =

1

2πR

(
−x · ∇x − 1

2 Id
) 1

|x− hyKT| . (26)

We summarize both (24) and (26) by use of the operator Dx such that

KKT
H (x, yKT) =

1

2πR
Dx

1

|x− hyKT| , (27)

where Dx = Id (singularity kernel) or Dx = −x · ∇x − 1
2 Id (Abel–Poisson kernel).

3.2. Adaptive decomposition of the domain

Now we consider the evaluation of the sum
N∑
i=1

aiKH(xi, y) =

N∑
i=1

ai
|yKT|
R

KKT
H (xi, y

KT)

=
|yKT|
R

N∑
i=1

ai
2πR

Dx
1

|x− hyKT|

∣∣∣∣
x=xi

(28)

at the points yj , j = 1, . . . ,M = O(N), which can be the points xi as in the
systems of linear equations (13) or (20). To better distinguish the points xi and

yj we call the Kelvin transformed points hyKT
j = h R2

|yj|2 yj which are used in (28)

targets.
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In the beginning, a bounding cube is determined which is large enough such
that it contains all points and all targets. This single cube forms level 0 of the
octtree structure and is subdivided into eight equally sized cubes of half its edge
length which then form level 1. Each cube is adaptively divided into nested cubes
where a cube of level l has half the edge length of a cube of level l−1 as proposed,
e.g., by Cheng et al. [24]. Points and targets are sorted into the currently available
cubes. If a cube contains more than the prescribed maximal number of points or
targetsm, it is split into eight smaller cubes of the next level. All its points/targets
are redistributed into these eight cubes. We summarize the necessary vocabulary
in some definitions (see also [24, 64]).

Definition 3.2.

(a) A cube C is called child of the cube B if C results from a single subdivision
of B which in return is named the parent of C.

(b) A cube that is not further subdivided is called childless or a leaf.
(c) Cubes are said to be neighbors if they are of the same size (same level) and

share at least one boundary point. Each cube is a neighbor of itself.
(d) If two cubes are at the same level, but are no neighbors, they are called

well-separated, i.e., between these cubes exists at least one cube of their size.

Each cube carries the relevant information about other cubes, in particular
its neighbors, in four lists as suggested by Cheng et al. [24]. Figures 1 and 2 give
a two-dimensional illustration.

Figure 1. Two-dimensional illustration of an adaptive decomposition
for levels 2 (left) and 3 (right). If the marked square is a leaf, the white
cubes form its list 1 and the blue cubes correspond to list 3. If the
marked square is not a leaf, all white and all blue cubes are treated at
the next level. List 2 cubes are red and list 4 cubes are yellow. Cubes
in green have been handled at coarser levels.
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Figure 2. Two-dimensional illustration of an adaptive decomposition
for level 4. If the marked square is a leaf, the white cubes form its list
1 and the blue cubes correspond to list 3. If the marked square is not
a leaf, all white and all blue cubes are treated at the next level. List
2 cubes are red and list 4 cubes are yellow. Cubes in green have been
handled at coarser levels.

Definition 3.3.

(a) In list 1 of the childless cube X are all childless cubes directly adjacent to X .
List 1 only contains any cubes if X is a leaf. In this case it always contains
at least X itself.

(b) List 2 of a cube X consists of all children of neighbors of the parent cube of X
which are well separated from X . The cube X does not need to be childless.

(c) Children of neighbors of the leaf X (or smaller cubes descending from neigh-
bors of X) which do not have any point in common with X form list 3. Their
parents have to be adjacent to X . If X is not childless, then list 3 is empty.

(d) List 4 consists of childless cubes which are neighbors of the parent cube of
X , but these childless cubes are not adjacent to X .

Notice the following observations:

(i) List 1 is the list of all neighbors.
(ii) All cubes in list 2 of a cube X are of the same size as X and well separated

from X .
(iii) The elements of list 3 are all smaller than X and the distance between them

and X is at least their side length and at most the side length of X .
(iv) List 4 of a cube X only contains cubes that are larger than X . They are

separated from X by a distance that is at least the side length of X and at
most their own edge length.

(v) A cube X is in list 3 of a cube Y if and only if Y is in list 4 of X .
(vi) All members of list 1 and list 4 are leaves and list 1 as well as list 3 of a cube

X remain empty if X is not childless.
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After finishing the adaptive construction of the octtree and sorting all points and
targets into cubes, the algorithm removes childless cubes that contain neither
points nor targets and are no longer required.

3.3. Single pole expansion

In addition to the decomposition of the domain, the other part of the FMM is
the kernel approximation of the single pole by a truncated expansion and the use
of translation theorems to shift the expansion center and to change the type of
expansion. Similar to (23) we use the generating function of the Legendre polyno-
mials Pn and the addition theorem of spherical harmonics (see, e.g., [1, 47, 102])
to expand the single pole.

1

|x− y| =
1

|y − x0 − (x− x0)|

=

∞∑
n=0

|x− x0|n
|y − x0|n+1

Pn

(
y − x0

|y − x0|
· x− x0

|x− x0|

)

=
∞∑
n=0

n∑
m=−n

I∗n,m(x− x0)On,m(y − x0), (29)

where |y − x0| > |x − x0| for the expansion center x0 ∈ R3. The upper star ∗ in
(29) denotes the complex conjugate. Thereby, we use the (complex-valued) outer
and inner harmonics for n ∈ N0, m = −n, . . . , n:

On,m(x) =

√
4π

2n+ 1

√
(n+m)!(n−m)!

|x|n+1
Yn,m

(
x
|x|

)
, (30)

In,m(x) =

√
4π

2n+ 1

|x|n√
(n+m)!(n−m)!

Yn,m

(
x
|x|

)
, (31)

where ϑ ∈ [0, π], ϕ ∈ [0, 2π) are the usual spherical coordinates of x
|x| and Yn,m :

S2 → C with

Yn,m(ξ) = (−1)m

√
2n+ 1

4π

(n−m)!

(n+m)!
Pn,m(cos(ϑ))eimϕ, ξ ∈ S2, (32)

are complex-valued fully normalized spherical harmonics of degree n and order m.
Pn,m : [−1, 1] → R are the associated Legendre functions with

Pn,m(t) =
1

2nn!
(1− t2)

m
2
dn+m

dtn+m

(
(t2 − 1)n

)
, m = 0, . . . , n. (33)

The symmetry relation Pn,−m(t) = (−1)m (n−m)!
(n+m)!Pn,m(t) extends them for negative

orders (cf., e.g., [16, 30]).

Well-known translation theorems for these outer and inner harmonics allow
to shift the expansion center (see, e.g., [34] for a detailed derivation).
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Theorem 3.4 (Translation Theorem for Outer Harmonics). Let x, y ∈ R3 such
that |x| > |y|. Then the outer harmonic of degree n ∈ N0 and order m ∈ Z,
−n ≤ m ≤ n, at x− y can be expanded in terms of inner and outer harmonics as
follows

On,m(x − y) =

∞∑
n′=0

n′∑
m′=−n′

I∗n′,m′(y)On+n′,m+m′(x) (34)

=

∞∑
n′=n

n′∑
m′=−n′

I∗n′−n,m′−m(y)On′,m′(x). (35)

Note that in (35) we make use of the convention that In,m = 0 if |m| > n.
Obviously, this infinite series as well as the infinite sum in (29) have to be truncated
for the algorithm which are sources of (truncation) errors. Error estimates for the
truncation errors can be found in [61, 63, 64] and the references therein. Another
approach which investigates the combined error of both truncations in (29) and
(35) is considered in [67].

Theorem 3.5 (Translation Theorem for Inner Harmonics). Let x, y ∈ R3. Then
the inner harmonic of degree n ∈ N0 and order m ∈ Z, −n ≤ m ≤ n, at x− y can
be expanded in a finite sum of inner harmonics

In,m(x− y) =

n∑
n′=0

n′∑
m′=−n′

(−1)n
′
In′,m′(y)In−n′,m−m′(x). (36)

For orders with |m| > n we have again by convention In,m = 0. Note that
no truncation is necessary for this translation theorem, i.e., no truncation errors
occur.

By applying (35) of Theorem 3.4 we can translate an outer harmonics expan-
sion with expansion center x0 such as

F (x) =

∞∑
n=0

n∑
m=−n

F∧,O
x0

(n,m)On,m(x− x0) (37)

which converges uniformly for x ∈ S2r0,ext(x0) with some r0 > 0. S2r0,ext(x0) denotes
the exterior of the sphere of radius r0 around x0. The outer harmonics series
resulting from the translation possesses the expansion center x1 and the coefficients

F∧,O
x1

(n′,m′) =
n′∑

n=0

n∑
m=−n

F∧,O
x0

(n,m)I∗n′−n,m′−m(x0 − x1). (38)

This expansion converges uniformly for x ∈ S2r1,ext(x1) where

S2r1,ext(x1) ⊂ S2r0,ext(x0).

This translation of coefficients is called multipole to multipole translation (M2M).
Note that one can show that no further errors arise if the series in (37) has already
been truncated before the translation.
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By using formulation (34) of Theorem 3.4 we also find that the outer har-
monics expansion with expansion center x1 can be translated into an inner har-
monics series centered around x2 which converges uniformly for x ∈ S2r2,int(x2) if

the new ball of convergence is situated completely in S2r1,ext(x1), i.e., S2r1,int(x1) ∩
S2r2,int(x2) = ∅. The resulting coefficients of the inner harmonic expansion are

F∧,I
x2

(n′,m′) =
∞∑
n=0

n∑
m=−n

F∧,O
x1

(n,m)(−1)n
′+mO∗

n+n′,m′−m(x2 − x1) (39)

and this translation is named multipole to local translation (M2L).

Finally, Theorem 3.5 lets us shift the expansion center of such inner harmonics
expansions to the new center x3 which possesses the coefficients

F∧,I
x3

(n′,m′) =
∞∑

n=n′

n∑
m=−n

F∧,I
x2

(n,m)In−n′,m−m′(x3 − x2). (40)

and converges uniformly for x ∈ S2r3,int(x3) ⊂ S2r2,int(x2). This translation step is

called local to local translation (L2L). For further details we refer to [67] and the
references therein, in particular [34].

3.4. The fast multipole algorithm

To start the algorithm a first set of multipole expansion coefficients for each cube
containing any points has to be computed. We consider only the part of the spline
related to a single cube X , i.e., the kernel functions KH(xi, ·), where xi ∈ X and
y ∈ Σext:

F (y) =

N∑
i=1

xi∈X

aiKH(xi, y) =

N∑
i=1

xi∈X

ai

(
|yKT|
R

1

2πR
Dx

1

|x− hyKT|

) ∣∣∣∣∣
x=xi

. (41)

We find the following expansion for |hyKT−x0| > |xi−x0|, xi ∈ X , i.e., if x0 is the
center of the cube X , the targets hyKT and the cube X need to fulfill a distance
requirement, i.e., targets must be contained in a well-separated cube.

F (y) =
|yKT|
R

N∑
i=1

xi∈X

ai
2πR

(
Dx

∞∑
n=0

n∑
m=−n

I∗n,m(x− x0)On,m(hyKT − x0)

) ∣∣∣∣∣
x=xi

=
|yKT|
R

∞∑
n=0

n∑
m=−n

F∧,O
x0

(n,m)On,m(hyKT − x0) (42)

where the multipole coefficients F∧,O
x0

(n,m) of the cube X are given by

F∧,O
x0

(n,m) =

N∑
i=1

xi∈X

ai
2πR

(
DxI

∗
n,m(x− x0)

) ∣∣∣∣∣
x=xi

. (43)
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This first step is called point to multipole (P2M) step where the infinite sum in (42)
has to be truncated at degree p. The degree p essentially determines the accuracy
of the algorithm. The coefficients F∧,O

x0
(n,m) can be translated to other cubes via

relations (38), (39) as well as (40) as long as the distance requirements are fulfilled
by the construction of the decomposition of the domain into nested cubes.

At the end of the fast multipole cycle, i.e., after several M2M-, M2L-, L2L-
translations, each cube Y possesses an inner harmonics expansion centered around
the center of the cube. This expansion has to be evaluated at the targets contained
by Y . This evaluation is called the local to targets (L2T) step:

LjF = F (yj) =

(
|yKT|
R

p∑
n=0

n∑
m=−n

F∧,I
x0

(n,m)In,m(hyKT − x0)

) ∣∣∣∣∣
y=yj

, (44)

where the variable y is hidden by yKT = R2

|y|2 y.
Now we briefly summarize the fast multipole algorithm (see, e.g., [20, 24] or

[67, 69] for our specific implementation).

Algorithm 3.6 (Fast Multipole Algorithm).
Input:

• A set of points xi ∈ Σext (often xi ∈ Σ), i = 1, . . . , N ,
• a set of coefficients ai, i = 1, . . . , N ,
• the choice of the type of the reproducing kernel KH (singularity or Abel–
Poisson with the parameter h and the radius of the Runge sphere R),

• a set of evaluation points yj ∈ Σext, j = 1, . . . ,M , where M = O(N),
• the degree of the multipole expansion p,
• the maximal number of points per cube m.

Aim: compute the sum

F (yj) =
N∑
i=1

aiKH(xi, yj) for each j = 1, . . . ,M. (45)

Initialization:

• Compute the targets hyKT
j = h R2

|yj |2 yj , j = 1, . . . ,M .

• Create a bounding box that contains all points and all targets, build the
adaptive octtree and sort in all points and targets. Set L as the maximum
level, eliminate all empty cubes.

• Determine list 1 to list 4 of Definition 3.2. Create a list of all cubes of level l
for each level l = 0, . . . , L. Collect all leaves in a list.

• Allocate memory for the different expansion coefficients of each cube X :
multipole expansion (coefficient vector MX), local expansion (coefficient vec-
tor LX).

Fast multipole cycle:

1. Generation of the multipole coefficients:
For all leavesX : P2M, i.e., compute the multipole coefficients MX of the multipole
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expansion up to degree p around the center of X from the points in X as in (43).
For level l = L − 1, . . . , 2: M2M, i.e., translate the multipole coefficients of the
children of X to X itself for all cubes X of level l via (38).

2. Interaction phase for list 4:
For level l = 2, . . . , L: for all cubes X of level l: compute the expansion coefficients
of an inner harmonics expansion around the center of X from the points in Y for
all cubes Y of list 4 of X and add them to LX – or use direct evaluation of the
kernel sum corresponding to the points in Y to obtain the result at the targets in
X if the number of targets in X ≤ p2 and X is a leaf.

3. Multipole to local translation:
For level l = 2, . . . , L: for all cubes X of level l: use (39) to translate MX to LY

for all cubes Y in list 2 of X .

4. Translation of the inner harmonics expansions:
For level l = 2, . . . , L − 1: L2L, i.e., translate the local coefficients LX to the
children of X (if there are any) via (40) and add the resulting coefficients to LZ

where Z denotes the corresponding child of X for all cubes X of level l.

5. Evaluation of the expansions and direct interaction:
For all leaves X : L2T, i.e., evaluate the inner harmonics expansion of X at all
targets in X as in (44). Store the result in F .
For all cubes Y in list 1 of X : P2T, i.e., add the direct evaluation of the kernel
sum corresponding to the points in Y at the targets in X to F .
For all cubes Y in list 3 of X : evaluate the multipole expansion around the center
of Y (coefficients MY ) at the targets in X and add the results to F – or use direct
evaluation of the kernel sum corresponding to the points in Y to add the result at
the targets in X to F if the number of points in Y ≤ p2 and Y is a leaf.

6. Reverse the effects of the Kelvin transformation:

F̃j =
|yKT

j |
R Fj for j = 1, . . . ,M .

Return the result F̃ .

For the computation of the spline coefficients of the spline approximation of
Section 2.4 we consider the system of linear equations (20) instead of (13). This

means that we have to add β
N∑
i=1

ai(C
−1)ij to the matrix-vector product that is

computed by the FMM. In order to keep a fast algorithm the matrix C−1 has to
allow a fast summation method or C has to be a sparse matrix. The trivial cases
where C is a diagonal matrix can also be included in the direct evaluation step of
the fast multipole algorithm.

3.5. Acceleration of the translations

Newer iterations of the FMM include several ideas to reduce the numerical effort
of the translations from the original O(p4) to O(p3) or even O(p2) per translation
operation. This includes the ideas of [137] (see also [24, 64]) for the multipole
to multipole (M2M) and the local to local (L2L) steps using Wigner rotation
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matrices (cf., e.g., [16, 25, 30, 130]). The main point is to rotate the coordinate
system such that the shift direction becomes the ε3-axis, shift there and rotate
back. This reduces the numerical costs from O(p4) in the M2M- and L2L-steps to
O(p3), since each rotation as well as the shift along the ε3-axis requires an effort of
O(p3). For a detailed description we refer to [137] or [67] with all technical details
of our implementation.

For the M2L translation, [64, 24] have replaced this step with exponential
translations which are based on the numerical integration of the integral represen-
tation

1

|x− y| =
1

2π

∫ ∞

0

e−λ(x3−y3)

∫ 2π

0

eiλ((x1−y1) cosα)+(x2−y2) sinα) dα dλ

=

s(ε)∑
k=1

wk

Mk

Mk∑
j=1

e−λk(x3−y3)eiλk((x1−y1) cosαj,k)+(x2−y2) sinαj,k) +O(ε) (46)

for points x, y whose Cartesian coordinates satisfy 1 ≤ x3 − y3 ≤ 4 as well as
0 ≤

√
(x1 − y1)2 + (x2 − y2)2 ≤ 4

√
2. Details as well as integration points λk,

weights wk and numbers of points Mk for the trapezoidal rule applied to the inner
integral can be found in [24, 64, 139]. The accuracy ε of the numerical integration
is determined by the discretization parameter s(ε) = O(p) of the outer integral
in (46). The total number of numerical integration points, i.e., the number of
exponential functions and coefficients, is supposed to be O(p2).

By Hobson’s formula (cf. [76]) a multipole expansion of F is transformed by
(46) into a series of exponentials (multipole to exponential step, briefly M2X),
these exponentials can be translated efficiently by the exponential to exponential
shift (X2X). Afterwards the local coefficients are computed from the exponential
coefficients (X2L). The restrictions on the positions of x and y mean that the
exponential translations are applicable for cubes in list 2 (see Definition 3.3) that
are situated above the current cube with another cube in between.

However, by combining rotations of the multipole expansion using again the
Wigner rotation matrices, the exponential translation can substitute the M2L
translation for all cubes in list 2. Therefore, the list of all well-separated cubes
(list 2) is split into 6 directional lists (up, down, North, South, East and West)
and instead of M2L the following sequence of transformations is used: (rotation),
M2X, X2X, X2L, (inverse rotation).

Each exponential shift requires numerical costs of O(p2) and the rotations
can be applied using O(p3) operations (as do the M2X and X2L steps). Thus, this
improves the performance compared to the M2L step’s O(p4) effort. Moreover,
we can save translations by recombination (see [24, 64, 67, 69] for more on the
technical details). It should also be noted that there are several symmetries in the
coefficients of the exponential expansion since we are dealing with a real-valued
function F . These symmetries can be used to further reduce the constant of the
numerical costs (cf. [24, 64]).
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3.6. Parameters and results of our FMM implementation

Here we present just a few of the parameters that we use in our implementation
of the FMM with exponential translations. For more detailed investigations of our
version (in particular of the recombination of exponential translations mentioned
at the end of Section 3.5) we refer to [67, 68, 69].

The truncation degree p is investigated for different accuracies of the expo-
nential translation s(ε). We increase p while s(ε) is kept fixed and determine when
the integration error of the numerical integration in the exponential translation
(46) dominates the truncation error. This leads to the choices of p for different
levels of s(ε) given by Table 1. Note that the kernels of Abel–Poisson type require
a slightly higher degree and therefore a bit more numerical effort.

s(ε) Singularity kernel Abel–Poisson kernel

8 4 5
17 12 13
26 23 25

Table 1. Resulting truncation degrees p for different s(ε) for the two
types of kernels.

The maximal number of points or targets per cube m has a strong influence
on the adaptive octtree construction and the performance of the FMM. If m is too
small, there are many cubes each containing only very few points. Thus, the kernel
expansion coefficients no longer combine the information of enough points to be
efficient. If m is too large, there are only few cubes each with a large number of
points. This means that far too often instead of kernel expansion direct interaction
is used. Therefore, m can be used to balance the effort of the direct interaction
and the kernel approximation. It has been suggested to choose m = O(p3/2) (cf.
[24, 64]) which may serve as a guideline. Many empirical tests (cf. [67]) led us to
the conclusion that the choices for m given by Table 2 provide a good performance

s(ε) Singularity kernel Abel–Poisson kernel

8 85 75
17 130 140
26 380 240

Table 2. Chosen maximal numbers of points m per cube for the sin-
gularity kernel and the Abel–Poisson kernel and the different error lev-
els.
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Figure 3. Break-even points by comparison of computation times for
direct (solid line) and FMM accelerated (dashed line) computation (top:
Singularity kernel, bottom: Abel–Poisson kernel), the number of points
forms the abscissae.

in our implementation. Note again that there are remarkable differences between
the two different types of kernels under investigation. Using these optimizations of
the parameters of the FMM we compare its performance with direct computation
and find the break-even points of our implementation, i.e., the minimal number
of points that is necessary for our algorithm to be faster than the direct approach
(see Table 3).

s(ε) Singularity kernel Abel–Poisson kernel

8 530 360
17 1,160 960
26 2,670 2,250

Table 3. Break-even points for the singularity kernel and the Abel–
Poisson kernel.
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Note that such results are always very dependent on the implementation. Our
implementation turns out to be efficient even for rather small problem sizes. In
general, the Abel–Poisson kernel requires some more computational time since it
leads to a more difficult P2M-step. Finally, we show the linear asymptotic behavior
which we expect from the FMM in Figure 3 compared to the quadratic behavior
of the direct approach.

4. Parameter choice methods for spline approximation

In this section we summarize several parameter choice methods for the determina-
tion of the smoothing parameter in (18) and (20) that are known from the theory
of regularization of inverse problems. For this context the reader is referred to
[9, 14] where also many numerical tests for a wide range of inverse problems are
presented.

We consider the problem of solving Ax = y where A : X → Y is a linear
operator. In our case X = Y = RN and A is the matrix of the linear system (13)
(in [9, 14] this is called case C2). This is in fact not an ill-posed problem, but can be
severely ill-conditioned (depending on the distribution of the data points) and as
seen in Section 2.4 noisy data lead to the use of a form of Tikhonov regularization,
i.e., the linear system (20) with the smoothing parameter β > 0. It should be
noted that we want to use the FMM for a fast matrix-vector-multiplication, i.e.,
A is never given as an actual matrix. This excludes some of the parameter choice
methods in order to keep reasonably low computational costs. Moreover, it should
be pointed out that the use of an iterative solver (e.g., cg-method or GMRES)
requires a stopping criterion and the number of iterations can be seen as another
regularization parameter which needs to be chosen in some way.

The smoothing parameter β > 0 is discretized exponentially, i.e., βn = β0q
n
β

with qβ ∈ (0, 1) and n ∈ N (actually only n = 1, . . . , nmax). The use of a discrete
set of regularization parameters with a fine enough resolution does not alter the
behavior of most parameter choice methods. For the efficient implementation of
these methods, it is useful to have a bound on the value of the optimal parameter
(i.e., a maximal regularization parameter), especially if the method minimizes some
function (see also [9, 14] and Section 4.3). We denote the vector of noisy data by
yδ (see Section 4.1) and xδ

n ∈ X is the vector of spline coefficients resulting from
the minimization of the smoothing functional (18) using βn and yδ, i.e., xδ

n solves
the system of linear equations (20):

xδ
n = (A+ βnI)

−1yδ = A−1
n yδ, (47)

where An = A+ βnI. Furthermore, x0
n = A−1

n y with noise-free data y ∈ Y.

4.1. Noise models

We investigate additive noise models, i.e., yδ = y + δξ, where ξ is a normalized
noise element and δ > 0 is the noise level. The most common noise model in the
classical inverse problems literature is deterministic noise (cf. [33]), where ξ ∈ Y



Parameter Choices for Fast Harmonic Spline Approximation 625

with ‖ξ‖ ≤ 1, so ‖yδ − y‖ ≤ δ. This models discretization errors, but only poorly
represents random measurement errors arising in practice.

A stochastic noise model for a discrete data vector yδ ∈ RN (see [135])
uses ξ, where the components ξi are i.i.d. random variables with mean Eξi = 0
and variance Eξ2i = 1. δ is the standard deviation of each error component δξi
and E‖yδ − y‖2 = δ2E‖ξ‖2 = Nδ2. Note that for the number of data N → ∞
this is unbounded. For correlated errors, δξi possesses the covariance matrix C. If
known, this matrix can be used in (20). We restrict ourselves to diagonal C here.
If yδ = y + δξ with ξ ∼ N(0, I), the noise model corresponds to Gaussian white
noise. For colored noise, if the entries Ckk are increasing, it is called blue noise,
and, if they are decreasing, it is called red noise (see [9] and the references therein
for more details).

4.2. Parameter choice methods

A parameter choice method is a rule that assigns a value for the regulariza-
tion/smoothing parameter. In case of a discrete set of parameters, the method
selects a value for the index, which will be denoted by n∗. Parameter choice meth-
ods can be classified as three basic types by their input (see, e.g., [8, 33]):

• a priori method, i.e., n∗ is a function of δ and information about x which is
not known in practice. Thus, we do not discuss such methods here.

• a posteriori method, i.e., n∗ = n∗(δ, yδ) requiring the noise level δ. If δ is not
known, an estimate is used.

• data-driven method, i.e., n∗ = n∗(yδ) requiring only the data yδ as input
(sometimes called “heuristic method”).

If yδ contains stochastic noise, then n∗ is a random variable. n∗ is defined as
either the point at which a function F (n) falls below a threshold (Type 1) or the
minimizer of F (Type 2). Some methods need (sensitive) tuning parameters (in
particular methods of type 1).

It should be pointed out that [4] states that, for an ill-posed problem, a
parameter choice rule that does not explicitly use the noise level (e.g., data-driven
methods) cannot yield a regularization method such that the worst case error
converges to 0 as δ → 0. This Bakushinskii veto is important for deterministic
noise, but it is not really appropriate for stochastic noise (cf. [8, 15]). There are
data-driven rules yielding regularization methods that converge and perform very
well in practice (see also [9]).

Since x = A−1y is unknown (noise-free data y is not available), a practical pa-
rameter choice method must use some other known or easily computed/estimated
quantities such as, e.g., the norm of the residual defined as ‖yδ−Axδ

n‖. In our case
this is a Euclidean norm which is easily computed. Splitting the error ‖x − xδ

n‖
such that

‖x− xδ
n‖ ≤ ‖x− x0

n‖+ ‖x0
n − xδ

n‖, (48)
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the first term (regularization error) is usually bounded by a decreasing function
ϕ(n) reflecting smoothness properties and the so-called qualification of the regu-
larization method (see [9, 33] and the references therein). The second term (prop-
agated noise error) on the right-hand side of (48) can often be bounded for regu-
larization methods as

‖x0
n − xδ

n‖ ≤ δ�(n), (49)

where � is a known increasing function of n, indicating that, with less smoothing,
there is more influence of the data noise (cf. [33]).

In the case of stochastic noise, the risk, i.e., the expected squared error E‖x−
xδ
n‖2, is considered. For noise with zero mean, instead of (48), the risk can be

decomposed exactly into a sum of squared bias ‖x − x0
n‖2 and variance terms

E‖x0
n − xδ

n‖2, i.e.
E‖x− xδ

n‖2 = ‖x− x0
n‖2 + E‖x0

n − xδ
n‖2. (50)

The squared bias can be bounded as before and, under suitable assumptions, the
variance can be expressed as δ2�2(n) for some increasing function �(n). For white
noise, our Tikhonov regularized solution (47) has variance

δ2�2(n) = δ2E‖A−1
n ξ‖2 = δ2

∑
k

1

(σk + βn)2
, (51)

where σk are the singular values of A (in our case they are eigenvalues of A).
A much more detailed discussion of the above errors (including, e.g., minimax
results) in various situations can be found in [5, 9, 23, 26, 33, 78, 95, 103, 105].
For some methods, there are stronger results involving oracle inequalities (see
[12, 19, 21, 22]), which provide, for any noise level, a bound on the risk E‖x−xδ

n‖2
relative to the smallest possible value of the risk, and allow the classification of
methods as asymptotically optimal.

4.3. Maximal regularization parameter

Some parameter choice methods, e.g., the balancing principle (Section 4.4.2), re-
quire a maximal index nmax as essential input in the algorithm itself. [9] suggest
to define the maximal index as

nmax = max{n|�(n) < 0.5�(∞)}, (52)

where E‖x0
n − xδ

n‖2 = δ2�2(n) and δ2�2(∞) is the supremum of the variance. This
allows us to expect that the optimal parameter index is smaller than nmax. Also
note that nmax should not be too large for an efficient computation.

We obtain nmax either by an analytic expression for δ2�2(n), as in (51) for
white noise, or by a good estimate of it. If there are several independent data sets
available, then a good estimate (for any noise color) is

δ2�2(n) ≈ 2−1mean{‖xδ
n,i − xδ

n,j‖2, i �= j}. (53)

Often two sets of data are sufficient (see [5] for further details). If only a single
data set is available, then it may not be possible to estimate δ2�2(n) if the noise is
correlated with unknown covariance. Then one can define a maximal index ñmax by
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βñmax ≈ σñmax for our Tikhonov regularization if there are at least good estimates
of the eigenvalues σk of A available. However, methods that perform much worse
without the use of the maximal index nmax, may yield different results for ñmax

instead of nmax (see [9, 14]).

4.4. Description and evaluation of methods

In this section, we describe the origin and idea of the method, list the input
of the method and the algorithm that we use. We also give a brief discussion
of known theoretical and practical issues about the method, including the most
relevant references. Several of the methods use a tuning parameter or some other
parameter that must be chosen (see [9, 14] and the references therein for further
details).

4.4.1. Discrepancy principle. The discrepancy principle of [115, 110, 111] is one
of the oldest and most widely used parameter choice procedures (cf. [33] and
references therein). Its idea is that for a good regularized solution, the norm of
the residual should match the noise level δ of the data. The method needs the
following input:

• Norms of residuals {Axδ
n − yδ}n≤nmax until a certain bound is satisfied.

• Noise level δ.
• Tuning parameter τ ≥ 1.

In a deterministic setting with ‖yδ − y‖ ≤ δ, the parameter choice n∗ is the first n
such that ‖Axδ

n − yδ‖ ≤ τδ. In a stochastic setting, with the error in each element
of yδ ∈ RN having standard deviation δ, the choice n∗ is the first n such that

‖Axδ
n − yδ‖ ≤ τδ

√
N. (54)

Originating from a deterministic setting, the discrepancy principle has also been
studied in stochastic settings (see, e.g., [17, 29, 97, 132]) and for many regulariza-
tion methods and many inverse problems. There are many results on convergence
properties of this method for both settings (see, e.g., [33, 65, 79, 104, 111, 112, 114]
for the deterministic case and [29, 97, 98, 132] for the stochastic case).

The discrepancy principle is one of the fastest methods available, since one
only needs to compute the residuals until the bound (54) is satisfied which allows
the use of the FMM of Section 3. However, its drawback is the requirement of an
accurate estimate of the noise level. Estimations that are just slightly off can lead
to very poor solutions (see [73, Chap. 7]).

There are also many variants of the method such as the transformed discrep-
ancy principle (cf. [119, 120, 71]), the modified discrepancy principle (MD rule)
(cf. [32, 53, 117, 118]), or the varying discrepancy principle (cf. [17, 94]). Their
main drawback is that they are no longer easily compatible with the FMM. For
comparative studies in the context of inverse problems with stochastic noise we
refer, e.g., to [9, 14].
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4.4.2. Balancing principle. The balancing principle of [90] was originally derived
for statistical estimation from direct observations in a white noise model. Since
then it has been developed further for regularization of linear and nonlinear inverse
problems (see, e.g., [6, 13, 11, 58, 129, 105, 106]) in deterministic and stochastic
settings. The idea is to balance the known propagated noise error bound δ�(n) in
(49) with the unknown regularization error (48) by an adaptive procedure that
employs a collection of differences of regularized solutions. As input the balancing
principle needs:

• Maximal index nmax, e.g., as defined in (52).
• All regularized solutions {xδ

n}n≤nmax up to the index nmax.
• An upper bound δ�(n) for the propagated noise error ‖x0

n − xδ
n‖ or a bound

or estimate δ2�2(n) of the variance E‖x0
n − xδ

n‖2.
• Noise level δ (and the covariance in the stochastic setting if known). Then one
can use known expressions for δ�(n). Alternatively, if one has two or more
independent sets of data yδi , then E‖x0

n − xδ
n‖2 can be estimated by (53).

• Tuning constant κ, typically κ ∈ [0.5, 1.5] (cf. [9] and the references therein).

The balancing functional is defined by

b(n) = max
n<k≤nmax

{
4−1‖xn − xk‖/(δ�(k))

}
. (55)

The smoothed balancing functional (which is monotonously decreasing) is defined
as B(n) = maxn≤k≤nmax {b(k)}. Then the parameter choice n∗ is the first n such
that B(n) ≤ κ.

The balancing principle is one of the few parameter choice methods for which
oracle inequalities for the error are known (cf. [121, 13]), i.e., there are stronger
results than rates of convergence alone. For variants we refer to [10, 105] and for
comparative studies we mention [9, 14].

One variant should be noted: The hardened balancing principlewhich is a
modified version of the balancing principle in the stochastic setting first proposed
in [5]. The input is the same as before, but without the tuning parameter and the
noise level. Furthermore, an expression or approximation of the scaled variance
�2(n) = δ−2E‖x0

n − xδ
n‖2, or any scalar multiple of this (so δ can be unknown),

is required. The balancing functional b(n) is defined as in (55) and the smoothed
balancing functional B(n) = maxn≤k≤nmax {b(k)}. The parameter choice is

n∗ = argminn≤nmax

{
B(n)

√
�(n)

}
, (56)

where any scalar multiple of �(n) gives the same choice. The method has the
advantage that it does not require a tuning parameter. Numerical experiments in
[5, 12, 9, 14] indicate that the method is very stable even for colored noise.

4.4.3. Quasi-optimality criterion. The quasi-optimality criterion by Tikhonov and
Arsenin [127], Tikhonov and Glasko [128] (see also [77]) is one of the oldest and
simplest available parameter choice methods. An overview of the method and its
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history can be found, e.g., in [8]. As input for the minimization the following is
required:

• Maximal index nmax, e.g., as defined in (52).
• All regularized solutions {xδ

n}n≤nmax up to nmax.

The noise level does not need to be known, and there is no tuning parameter. The
parameter choice n∗ is defined simply as

n∗ = argminn≤nmax

{
‖xδ

n − xδ
n+1‖

}
. (57)

The well-known continuous version for Tikhonov regularization defines the param-

eter choice by β∗ = argmin
∥∥∥β d

dβx
δ
β

∥∥∥. Using a difference quotient in place of the

derivative for the discrete parameters βn = β0q
n
β we obtain (57).

For a discrete set of regularization parameters, the use of a suitable maximal
index nmax is essential, because the method is based on a discrete evaluation
of a differential. Hence is very sensitive to a situation where the regularization
operators A−1

n are formally different, but are practically the same (cf. [9] and the
references therein). Convergence results for the Tikhonov regularization with the
quasi-optimality criterion for different settings can be found in [89, 56], for further
convergence properties see [7, 84, 85, 113].

4.4.4. L-curve method. The L-curve method, proposed by Hansen [72, 73] and
Hansen and O’Leary [74], is based on the long-known fact that a log-log parametric
plot of (‖Axδ

n − yδ‖, ‖xδ
n‖) often has a distinct L-shape (cf. [88]). Points on the

vertical part correspond to large n (under-smoothed solutions) and those on the
horizontal part correspond to small n (over-smoothed solutions), which suggests
that the “corner point” of the L-curve should define a good value of the parameter
n. It is usually applied manually and can provide good results then whereas finding
the L-curve corner is hard to automate. As input to minimize a certain function
the following is used:

• Norms of all residuals {Axδ
n − yδ}n≤nmax .

• Norms of the regularized solutions {xδ
n}n≤nmax .

The noise level does not need to be known. The parameter choice can be defined
by the product of the norms of the residual and regularized solution, i.e.,

n∗ = argminn≤nmax

{
‖Axδ

n − yδ‖ · ‖xδ
n‖

}
. (58)

Here the “corner point” is defined by the slope of its “tangent” being −1 as in
[122] (see also [33]). The generalizations minimize ‖Axδ

n−yδ‖‖xδ
n‖τ (see [122, 93]),

where τ is a tuning constant.
Since “corner point” is not a well-defined notion, several algorithms have

evolved with different definitions (see [74, 18, 75, 122]). [93] derived first rigorous
optimality results for the L-curve criterion. In many (but not all) problems, vari-
ants of the L-curve method has been observed to give a reasonably good parameter
choice which can deal with correlated errors. See [9] for an overview of references
where the method works or runs into severe limitations.
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4.4.5. Generalized cross-validation. Generalized cross-validation (GCV), due to
[133], is a popular method for problems with discrete data and stochastic noise as
(20). It goes back to ordinary cross-validation, where the idea is to consider all the
“leave-one-out” regularized solutions and choose the parameter that minimizes
the average of the squared prediction errors using each solution to predict the
missing data value. These calculations do not require the computation of all the
regularized solutions. Weighting the prediction errors, [27, 60, 133, 135] derived
the GCV method, which has is invariant under orthogonal transformations of the
data. Some other parameter choice methods proposed in the literature have been
shown to be closely related to GCV, in particular the Akaike information criterion
(AIC) of [2, 35]. As input to minimize a certain function we need:

• Sums of squares of all the residuals {Axδ
n − yδ}n≤nmax where yδ ∈ RN .

• The trace of the influence matrix AA−1
n mapping yδ to Axδ

n.

The noise level does not need to be known. The GCV parameter estimate is de-
fined by

n∗ = argminn≤nmax

{
‖Axδ

n − yδ‖2

(N−1 tr(I −AA−1
n ))2

}
. (59)

GCV is closely related to and behaves like the unbiased prediction risk method
(also known as Mallows Cp or CL; see [31, 92, 135]). It is asymptotically optimal
with respect to the prediction risk as N → ∞ for stochastic white noise and the
Tikhonov regularization (cf. [66, 91, 96, 132, 136]). The GCV method has been
used widely and performs very well for reasonably large data sets with uncorrelated
errors (white noise). However, it is known (see, e.g., [31, 86, 87, 99, 101, 126, 135])
that for smaller data sets or correlated errors of red noise type, the method is
rather unstable, often resulting in under-smoothing.

The term tr(AA−1
n ) in the GCV function is a measure of the degrees of free-

dom in the regularized solution. For its fast computation making use of the FMM
trace estimation methods are needed that use stochastic (Monte-Carlo) algorithms
(cf. [54, 55, 59, 80, 81]).

In order to overcome the instability of GCV, several variants have evolved.
The robust GCV (RGCV) method has been developed and investigated in [99,
100, 123]. It needs the same input as for GCV and additionally:

• The trace of the square of the influence matrix (AA−1
n )2.

• A robustness parameter γ ∈ (0, 1). Note that with γ = 1 the RGCV method
is just GCV.

The RGCV parameter estimate is defined by minimizing a certain function:

n∗ = argmin
n≤nmax

{
‖Axδ

n − yδ‖2

(N−1 tr(I −AA−1
n ))2

(
γ + (1 − γ)N−1 tr((AA−1

n )2)
)}

. (60)

The family of robust GCV methods developed in [100] also includes the strong
robust GCV method, denoted R1GCV. As input one needs the same as for GCV
as well as
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• The trace of A−1 ∗
n A−1

n .
• A robustness parameter γ ∈ (0, 1). Note that for γ = 1 the R1GCV method
is just GCV.

The R1GCV parameter estimate is defined by minimizing a certain function:

n∗ = argmin
n≤nmax

{
‖Axδ

n − yδ‖2

(N−1 tr(I −AA−1
n ))2

(
γ + (1− γ)N−1 tr((A−1 ∗

n A−1
n )

)}
. (61)

The modified GCV method involves a simple modification of the GCV func-
tion that is designed to stabilize the method (cf. [28, 131]). The inputs are the
same as for GCV plus:

• A stabilization parameter c > 1. For c = 1 the method reduces to GCV.

The noise level does not need to be known. The modified GCV estimate is de-
fined by

n∗ = argminn≤nmax

{
‖Axδ

n − yδ‖2

(N−1 tr(I − cAA−1
n ))2

}
. (62)

For comparative studies of these variants and further details we refer to [9, 14]
and the references therein.

5. Conclusion

Using the FMM in an iterative algorithm like, e.g., conjugate gradients or GMRES
is an efficient solution strategy that can treat interpolation problems and Dirichlet
boundary value problems with many data points on regular surfaces (e.g., the ac-
tual topography of the Earth) (see [67, 68, 69]). It should be pointed out that this
spline approach is not restricted to a global treatment, but also applies to regional
domains (cf. [67, 68]). This can lead to a local improvement of the gravitational
field in areas of particular interest. The approach can be extended to spline ap-
proximation (in particular for diagonal covariance matrices) as seen in Section 2.4
and the end of Section 3.4).

The smoothing parameter(s) plays a crucial role in this approach and must
be chosen very carefully or a lot of information is lost to oversmoothing, in partic-
ular the high-frequent details of the signal. We have presented several parameter
choice methods the can be used without losing the advantages of the FMM. Their
performance for the regularization of inverse problems has been investigated in
several studies with different solution techniques (see, e.g., [9, 14, 70] and the ref-
erences therein). Tests of the combination of the FMM with these parameter choice
methods (cf. [9, 14, 70] and the references therein) are an interesting challenge for
the future. In particular the interaction with stopping criteria for iterative solvers
needs further investigation. Note that often the solution (even using the FMM)
requires much more computational effort than the evaluation of the parameter
choice. It can be advisable to apply several parameter choice methods to find the
best choice of the parameter.
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For highly irregular distributions of data points, the spline approach reaches
its limits due to large data gaps which result in severe ill-conditioning. Even
smoothing splines cannot completely bridge this gap so far though further in-
vestigation is required. However, functional matching pursuit methods (RFMP or
ROFMP) can result in better approximations (see [36, 70, 108] and the references
therein), but so far these algorithms require high numerical costs. These meth-
ods are also iterative regularizations and the combination of stopping criteria and
regularization parameters has been investigated for a class of ill-posed problems
in [70].
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[119] T. Raus. An a posteriori choice of the regularization parameter in case of approxi-
mately given error bound of data. In Pedas, A., editor, Collocation and Projection
Methods for Integral Equations and Boundary Value Problems, pages 73–87. Tartu
University, Tartu, 1990.

[120] T. Raus. About regularization parameter choice in case of approximately given error
bounds of data. In G. Vainikko, editor, Methods for solution of integral equations
and ill-posed problems, pages 77–89. Tartu University, Tartu, 1992.
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