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Abstract. For the determination of the Earth’s gravitational field various
types of observations are available nowadays, e.g., from terrestrial gravimetry,
airborne gravimetry, satellite-to-satellite tracking, satellite gravity gradiome-
try, etc. The mathematical relation between these observables on the one hand
and the gravitational field and the shape of the Earth on the other hand is
called the integrated concept of physical geodesy. In this paper, an integrated
concept of physical geodesy in terms of harmonic wavelets is presented. Es-
sential tools for approximation are Runge–Walsh type integration formulas
relating an integral over an internal sphere to suitable linear combinations of
observational functionals, i.e., linear functionals representing the geodetic ob-
servables in terms of gravitational quantities on and outside the Earth. A scale
discrete version of multiresolution is described for approximating the gravi-
tational potential on and outside the Earth’s surface. Furthermore, an exact
fully discrete wavelet approximation is developed for the case of bandlimited
wavelets. A method for combined global outer harmonic and local harmonic
wavelet modeling is proposed corresponding to realistic Earth’s models.

Keywords. Integrated wavelet concept, scaling function, Runge–Walsh approx-
imation, geodetic observables, Meissl schemata.

1. Introduction

Gravity as observed on the Earth’s surface is the combined effect of the gravita-
tional mass attraction and the centrifugal force due to the Earth’s rotation. Under
the assumption that the centrifugal force is explicitly known, the determination
of the gravity mainly reduces to getting knowledge of the gravitation. According
to the classical Newton Law of Gravitation (1687), knowing the density distribu-
tion of a body such as the Earth, the gravitational potential can be computed
everywhere in the Euclidean space R3.
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Although Earth’s gravitational field modeling is always governed by the same
physical laws, it changes its nature when it is seen from different spatial and time
scales. To be more concrete, if one looks at gravitational field determination on
the basis of an increasing spatial magnification and accuracy, we have to go from
something that is suitably characterized by a simple mass point, on astronomical
scale, to what is described by a global truncated multipole (i.e., outer harmonic)
model, at scales corresponding to satellite altimetry, down to wavelengths of about
100 km. By further zooming in we can reach a spatial resolution of about 1 km
showing a very complicated pattern, strongly related to the shape of the Earth
and to irregular masses inside the Earth’s crust. Simultaneously, the error in the
knowledge of the gravitational field models goes from 5 Gal, the flattening effect,
down to 10 mGal in a today’s global model, down to about 10−1 mGal at the
regional 1 km resolution or even better. There is also a change of the gravitational
field in the time scale depending on the time interval under consideration, for in-
stance, gravitational changes due to geotectonic displacements of masses inside the
Earth on very long time scales. It changes because of motions of the rotational axis
inside the Earth’s body and it shows a periodic change because of the continent
and ocean reactions to the torques generated by the moon and the sun. Finally,
gravitation shows a change because of human activities, for instance, because of
the presence of artificial lakes, height’s variations in the water-bearing stratum un-
der cities, etc. It is also worth mentioning that there are certain relations between
different scales in the time-like behaviour and in the space-like behaviour of the
gravitational field. In any way, it may be assumed for global up to regional mod-
eling purposes that the time-like variations of the field are either well predictable
(like tides etc.) or so slow as to be neglected, e.g., on the scale of a decade, or so
small and local as to be beyond the scope of interest. Thus, global gravitational
field modeling as scientific issue is by definition based on the assumption of a sta-
tionary gravitational field with a spatial resolution ranging from a worldwide scale
down to about 1 km and from about 1000 Gal of the full field down to, at least,
10−1 mGal, or even better in some regional areas.

What we would like to present in this contribution are mathematical struc-
tures in straightforward continuation to the monograph [19] by which the grav-
itational part of the gravity field can be approximated progressively better and
better, reflecting an increasing flow of observations of terrestrial, airborne and/or
satellite type, e.g., terrestrial gravimetry, airborne gravimetry, satellite altime-
try, satellite-to-satellite tracking (SST), satellite gravity gradiometry (SGG), etc.
More precisely, we shall try to outline the canonical bridge of gravitational field
determination from the well-established global outer harmonic approximation cor-
responding to a spherical Earth to modern multiscale methods involving the actual
geometry of the Earth’s surface (thereby neglecting, e.g., the small effect of the
atmosphere in the outer space).

The so-called disturbing potential is probably the most crucial quantity in
gravity field modeling. The disturbing potential is a scalar quantity which is ob-
tained as the difference between the gravity potential of the Earth and the normal
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gravity potential of a reference surface, usually an ellipsoid. The deviations of the
gravity potential from the normal potential are relatively small. Note that both
the gravity potential and the normal gravity potential contain the same centrifugal
potential. Thus, the disturbing potential is harmonic in the outer space.

At this stage some remarks should be made in order to clarify our approach
in more detail:

1. The mathematical connection between the observables, the gravity field and
the shape of the Earth is called the integrated concept of physical geodesy.

2. The foundation of the integrated geodesy approach is the fact that every
geodetic measurement is a functional which may assumed to be suitably
linearizable by introducing, e.g., normal potentials associated to a reference
surface such as an ellipsoid. In other words, the relation between the object
function, i.e., the geopotential and the data, may be supposed to be linear.

3. More and more measurements refer to satellites and cannot be modeled as
functionals of the gravitational potential on the boundary. Although these
observations show a denser observational distribution, they are much more
difficult to handle, since they show an exponentially spectral smoothing while
moving to the outer space. As a consequence, essential knowledge of the grav-
itational potential should be based on ground observations, but gravitational
field modeling cannot be treated only within a boundary-value formulation
because of spaceborne observations. This fact is the reason why we do not
speak of the “geodetic boundary-value problem (GBVP)” but of the “inte-
grated concept”.

4. Concerning the layout of this contribution a particular interest is focussed
on the satellite methods SST und SGG, which are introduced within the
framework of pseudodifferential operators assuming non-spherical (orbital)
geometry.

5. An important feature of our contribution are the so-called Meissl schemata
which are graphical illustrations for the conversion of data both on different
heights (terrestrial level, satellite orbit) and of different degrees of derivative
of the gravitational potential. The comparison between data on the (spheri-
cal) Earth’s surface and the orbital sphere was primarily carried out by Meissl
(1971) and has been transformed by Rummel [60, 61, 63] and by Rummel and
van Gelderen [64, 65] into a more general framework concerning relations be-
tween different gravity quantities in the framework of outer harmonics. One
of our objectives is the extension of the Meissl schemata to the concept of
multiscale decomposition of scalar functions, vector, and tensor fields. In
principle, we follow the ideas of mathematical classification first presented in
[19, 29, 32–34] for the scalar case and extended in the Ph.D.-thesis [58] to
the vector and tensor approach.
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2. Current state of gravity field determination

Positioning systems are ideally located as far as possible from the Earth, whereas
gravity field sensors are ideally located as close as possible to the Earth. Following
these basic principles, various positioning and gravity field determination tech-
niques have been designed. Sensors may be sensitive to local or global features of
the gravity field. Considering the spatial location of the data, we may distinguish
between terrestrial (surface), airborne, and spaceborne methods. Regarding the
data type we have various measurement principles of the gravity field (see, for
example, [9–11, 51] and the references therein for more details) leading to different
types of data.

2.1. Important geodetic observables

(a) Gravity Measurements: The force of gravity provides a directional structure
to the space above the Earth’s surface. It is tangential to the vertical plumb
lines and perpendicular to all (level) equipotential surfaces. Any water sur-
face at rest is part of a level surface. Level (equipotential) surfaces are ideal
reference surfaces, for example, for heights. The geoid is defined as that level
surface of the gravity field which best fits the mean sea level. Gravity vectors
can be measured by absolute or relative gravimeters. The highest available ac-
curacy relative gravity measurements are conducted at the Earth’s surface.
Measurements on ships and in aircrafts deliver reasonably good data only
after the removal of inertial noise. Gravity data are converted into gravity
anomalies by subtracting a corresponding reference potential derived from
a simple gravity field model associated to an, e.g., ellipsoidal surface (see
also Appendix A). Gravity anomalies are furthermore converted into mean
gravity anomalies by a proper averaging process over well defined areas. It
should be pointed out that the distribution of Earth’s gravity data on a
global scale is far from being homogeneous with large gaps, in particular over
oceans but also over land. In addition, the quality of the data is very distinct.
Thus, terrestrial gravity data coverage now and in the foreseeable future is
far from being satisfactory for the global purpose of geoidal determination
(at an accuracy of essentially less than one centimeter).

(b) Vertical Deflections. The direction of the gravity vector can be obtained by
astronomical positioning. Measurements are only possible on the Earth’s sur-
face. Observations of the gravity vector are converted into so-called vertical
deflections by subtracting a corresponding reference direction derived from a
simple gravity field model associated to an ellipsoidal surface. Vertical deflec-
tions are tangential fields of the anomalous potential in a spherical Earth’s
model. Due to the high measurement effort required to acquire these types
of data compared to a gravity measurement, the data density of vertical
deflections is much less than that of gravity anomalies. Gravitational field
determination based on the observation of vertical deflections and combined
with gravity is feasible in smaller areas with good data coverage.
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(c) Satellite Radar Altimetry. Satellite radar altimetry has demonstrated an im-
pressive capability of mapping the surface of the oceans. The ocean surface
is a good approximation of an equipotential surface and, as such, its offset
from the geoid at mean sea level (mean in terms of time) is called sea surface
topography. This offset, which can be as large as two meters, reflects many
effects including the variables salinity, ocean temperature, ocean currents,
variable atmospheric conditions such as wind and air pressure perturbations,
tides, etc. Since the sea surface topography refers to the geoid, the precise
and sufficiently detailed knowledge of the geoid is mandatory.

(d) Global Gravitational Field Models. On the basis of all satellite data, collected
over the last decades in orbits at different altitudes and inclinations, only long
wavelength components of the global gravity field can be recovered. There
are two reasons for this fact: First, an orbit as such is rather insensitive to
local features of the gravitational field, and this insensitivity increases with
increasing orbit altitude. Second, the satellites which can and are being used
are flying at altitudes which are too high for a better purpose such as local
gravimetry. Therefore, satellite-only global gravity field models are reliable
to a moderate maximum degree expressed in a potential representation in
terms of spherical harmonics. Considering the shortcomings of satellite-only
gravity field models and of the information content of surface data, several in-
stitutions have been working for many years on the combination of both data
sets. This work in geodesy has resulted in various gravitational field models in
terms of spherical harmonics. All gravity field data available worldwide have
entered into the production of this model. Therefore, such models represent
the latest state of the art in global gravitational field knowledge.

2.2. Satellite concepts and airborne data

The three satellite concepts which are of importance for gravity field determination
are satellite-to-satellite tracking in the high-low mode (SST hi-lo), satellite-to-
satellite tracking in the low-low mode (SST lo-lo), and satellite gravity gradiometry
(SGG). Common to all three concepts is that the determination of the Earth’s
gravitational field is based on the measurement of the relative motion (in the
Earth’s gravity field) of test masses.

1. Satellite-to-Satellite Tracking. In the case of SST hi-lo the low flying test mass
is a low earth orbiter (LEO) and the high flying test masses are the satellites
of the GNSS-system (i.e., GPS, GLONASS, Galileo, and Beidou). As, for
example, the GNSS-receiver mounted on the LEO always “contacts” four or
even more of the GNSS satellites the relative motion of the LEO can be mon-
itored three-dimensionally, i.e., in all three coordinate directions. The lower
the orbit of the LEO the higher is its sensitivity with respect to the spatial
variations of the gravitational forces but to skin forces as well (atmospheric
drag, solar radiation, albedo, etc.). The latter have either to be compensated
for by a drag-free mechanism or be measured by a three axis accelerometer.
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Also the high orbiters, the GNSS satellites, are affected by non-gravitational
forces. However the latter can be modeled quite well. They affect mainly
the very long spatial scales, and to a large extent their effect averages out.
In addition, the ephemerides of the GNSS satellites are determined very ac-
curately by the large network of ground stations. In the case of SST lo-lo
the relative motion between two LEOs, chasing each other, is measured with
highest precision. The quantity of interest is the relative motion of the centre
of mass of the two satellites. Again, the effect of non-gravitational forces on
the two spacecraft either has to be compensated actively or be measured.

2. Satellite Gravity Gradiometry. The satellite gravity gradiometry technique
is the measurement of the relative acceleration, not between free falling test
masses like satellites, but of test masses at different locations inside one satel-
lite. Each test mass is enclosed in a housing and kept levitated (floating, with-
out ever touching the walls) by a capacitive or inductive feedback mechanism.
The difference in feedback signals between two test masses is proportional to
their relative acceleration and exerted purely by the differential gravitational
field. Non-gravitational acceleration of the spacecraft affects all accelerome-
ters inside the satellite in the same manner and so ideally drops out during
differencing. The rotational motion of the satellite affects the measured dif-
ferences. However, the rotational signal (angular velocities and accelerations)
can be separated from the gravitational signal, if acceleration differences are
taken in all possible (spatial) combinations (= full tensor gradiometer). In
order to achieve a higher sensitity, an orbit as low as possible is of great
importance.

In a unified view on spaceborne missions (see, e.g., [9–11, 51]), one can argue
that the basic observable in all three cases is gravitational acceleration. In the case
of SST hi-lo, with the motion of the high orbiting GNSS satellites assumed to be
perfectly known, this corresponds to an in situ 3-D acceleration measurement in
the LEO. For SST lo-lo it is the measurement of acceleration difference over the
intersatellite distance and in the line-of-sight (LOS) of the LEOs. Finally, in the
case of gradiometry, it is the measurement of acceleration differences in 3-D over
the tiny baseline of the gradiometer. In short we are confronted with the following
situation:

SST hi-lo: 3-D acceleration = gravitational gradient,
SST lo-lo: acceleration difference = difference in gradient,
SGG: differential = gradient of gradient (“tensor”).

As explained in more detail by W. Freeden [19], in mathematical sense, it is a
transition from the first derivative of the gravitational potential via a difference in
the first derivative to the second derivative. The guiding parameter that determines
sensitivity with respect to the spatial scales of the Earth’s gravitational potential
is the distance between the test masses, being almost infinite for SST hi-lo and
almost zero for gradiometry.
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3. Airborne Gravimetry. Airborne gravimetry is a highly sensitive detection
method of the gravitational potential of the Earth by a gravity accelero-
meter mostly for regional and/or local purposes. Proposals to implement
airborne gravimetry go back to the late fifties of the last century, and first
flight experiments were already done in the early sixties. A major obstacle
of such techniques at that time was the inaccuracy of navigational informa-
tion (e.g., velocity and acceleration of the space vehicle) which is needed to
obtain the desired precision. Although at an appropriate level of accuracy
airborne gravimetry is vastly superior in economy and efficiency to pointwise
terrestrial methods, there were serious doubts in the seventies and eighties of
ever achieving useful results. In the early nineties, however, great advances
in GNSS technology opened new ways to resolve the navigational problems.
More explicitly, altitude, position, and velocity of the airborne gravity sys-
tem become sufficiently computable from the inertial measurements updated
by GNSS carrier phase and Doppler observations. Vehicle accelerations are
derivable from GNSS data only, so that in a third step the airborne gravity
disturbance is determinable from the difference between the force vector and
the GNSS-derived acceleration vector. Nowadays, some industrial companies
are perfecting their system concepts by paying careful attention to the op-
erational conditions under which an airborne gravimeter works best, also for
progress in gravimetric exploration.

All in all, over the last decades, geoscientists have realized the great complex-
ity of the Earth and its environment. In particular, the knowledge of the gravity
potential and its level (equipotential) surfaces have become an important issue. It
was realized that dedicated highly accurate gravity field sensors, when operating
in an isolated manner, have their shortcomings, and combining data from differ-
ent sensors is therefore the way forward. At this stage of development, the global
determination of the Earth’s gravitational field is a mathematical challenge which
should include the numerical progress obtainable by modern multiscale approxi-
mation.

2.3. Gravity field applications

The knowledge of the gravitational field of the Earth is of great importance
for many applications from which we only mention some significant examples
(cf. [19, 61]):

(i) Geodesy and Civil Engineering. Accurate heights are needed for civil con-
structions, mapping, etc. They are obtained by leveling, a very time consum-
ing and expensive procedure. Nowadays, geometric heights can be obtained
fast and efficiently from space positioning (GNSS). The geometric heights
are convertible to leveled heights by subtracting the precise geoid, which is
achieved by a high resolution gravitational potential. To be more specific, in
those areas where good gravity information is available already, the future
data information will eliminate all medium and long wavelength distortions in
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unsurveyed areas. For example, GNSS (GPS, GLONASS, Galileo, or Beidou)
together with today’s satellite missions provide high quality height informa-
tion at global scale.

(ii) Satellite Orbits. For any positioning from space, the uncertainty in the orbit
of the spacecraft is the limiting factor. The spaceborne techniques eliminate
basically all gravitational uncertainties in satellite orbits.

(iii) Solid Earth Physics. The gravity anomaly field derivable from future satellite
observations has its origin mainly in mass inhomogeneities of the continen-
tal and oceanic lithosphere. Together with height information and regional
tomography, a much deeper understanding of tectonic processes is obtainable.

(iv) Physical Oceanography. Altimeter satellites in combination with a precise
geoid deliver global dynamic ocean topography. From ocean topography,
global surface circulation and its variations in time can be computed re-
sulting in efficient ocean modeling. Circulation allows the determination of
transport processes of, e.g., polluted material. Moreover, ocean modeling is
an important indicator of climate change.

(v) Earth System. There is a growing awareness of global environmental problems
(for example, the CO2-question, the rapid decrease of rain forests, global sea
level changes, etc.). What is the role of the airborne methods and satellite
missions in this context? They do not tell us the reasons for physical pro-
cesses, but it is essential to bring the phenomena into one system (e.g., to
make sea level records comparable in different parts of the world). In other
words, equipotential surfaces such as the geoid may be viewed as an almost
static reference for many rapidly changing processes and at the same time as
a “frozen picture” of tectonic processes that evolve in geological time spans.

(vi) Exploration Geophysics and Prospecting. Knowledge of local geologic struc-
tures can easily be gained by means of terrestrial and airborne data so grav-
ity prospecting can be done over land or sea areas using different techniques
and equipment. Terrestrial gravimetry was first applied to prospect for salt
domes (e.g., in the Gulf of Mexico), and later for looking for anticlines in
continental areas. In future, embedded in (regional) airborne and (global)
spaceborne gravity information such as satellite-to-satellite tracking (SST)
and/or satellite gravity gradiometry (SGG) (see, e.g., [19, 27, 32] and the
references therein), new promising components in gravimetrically oriented
modeling can be expected, for example, based on multiscale modeling pro-
viding reconstruction and decomposition of geological signatures.

2.4. Principles of multiscale approximation

Spaceborne observation combined with terrestrial and airborne activities provide
huge datasets of the order of millions of data (see [9–11, 51, 63]). Standard math-
ematical theory and numerical methods are not at all adequate for the solution
of data systems with such a structure, because these methods are not adapted
to the specific properties of the data set. They quickly reach their capacity limit
even on very powerful computers. An adequate reconstruction of the gravitational
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field from the huge and heterogeneous data material requires a careful multiscale
analysis of the gravitational potential, fast solution techniques, and a proper sta-
bilization of the inverse character of satellite problems by regularization. In order
to achieve these objectives various strategies and structures must be introduced
reflecting the different aspects of geopotential determination. While global long-
wavelength modeling can be adequately done by use of spherical harmonic expan-
sions, it becomes more and more obvious that harmonic splines and/or wavelets
are most likely the candidates for medium and short-wavelength approximation.
The concept of harmonic wavelets, however, demands its own nature which only on
exploration areas of small size may be developed to some extend from the theory
in Euclidean spaces. Fundamental results known from the Euclidean wavelet ap-
proach have to be recovered. Nevertheless, the stage is set for working out and im-
proving essential ideas and results involving harmonic wavelets. Why are harmonic
wavelets important in future gravitational potential determination? Following [19],
the answer is summarized in the following sentence:

Harmonic wavelets are “building blocks” that enable fast decorrelation of gravi-
tational data. Thus three features are incorporated in this way of thinking about
georelevant harmonic wavelets, namely basis property, decorrelation, and efficient
algorithms. These aspects should be discussed in more detail:

(i) Basis property
Wavelets are building blocks for the approximation of arbitrary functions
(signals). In mathematical understanding this formulation expresses that the
set of wavelets forms a “frame” (see, e.g., [6] for details in classical one-
dimensional theory).

(ii) Decorrelation
Wavelets possess the ability to decorrelate the signal. This means, that the
representation of the signal via wavelet coefficients occurs in a “more con-
stituting” form as in the original form reflecting a certain amount of space
and frequency (more accurately, momentum) information. The decorrelation
enables the extraction of specific information contained in a signal through
a particular number of coefficients. Signals usually show a correlation in the
frequency (momentum) domain as well as in the space domain. Obviously,
since data points in a local neighborhood are stronger correlated as those data
points far-off from each other, signal characteristics often appear in certain
frequency bands. In order to analyze and reconstruct such signals, we need
“auxiliary functions” providing localized information in the space as well as
in the frequency domain. In applications, different approaches have been re-
alized in the field of signal analysis before the occurrence of wavelets: on the
one hand, the Fourier theory allows a trendsetting bandlimited decomposi-
tion, on the other hand, the Haar theory offers short-wavelets spacelimited
decomposition. The (Heisenberg) uncertainty principle (see, e.g., [21]) tells
us that a simultaneous sharp localization in frequency as well as space do-
main is exclusive. Even more within a “zooming-in process”, the amount of
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frequency as well as space contribution can be specified in quantitative way.
A so-called scaling function forms a compromise in which a certain balanced
amount of frequency and space localization in the sense of the uncertainty
principle is realized. In consequence, each scaling function depends on two
variables, namely a “shifting” and a scaling parameter, which control the
amount of the space localization to be available at the price of the frequency
localization, and vice versa. Associated to each scaling function is a wavelet
function, which here is simply understood to be the difference of two succes-
sive scaling functions. All in all, filtering (convolution) with a scaling function
takes the part of a lowpass filter, while convolution with the corresponding
wavelet function provides a bandpass filtering. A multiscale approximation of
a signal is the successive execution of an efficient evaluation process by use of
scaling and wavelet functions which show more and more space localization at
the cost of frequency localization. The wavelet transform within a multiscale
approximation lays the foundation for the decorrelation of a signal.

(iii) Efficient algorithms
Wavelet transformation provides efficient algorithms because of the space-
localizing character. The successive decomposition of the signal by use of
wavelets at different scales offers the advantage for efficient and economic
numerical calculation (e.g., tree algorithm). The detail information stored
in the wavelet coefficients leads to a reconstruction from a rough to a fine
resolution and to a decomposition from fine to rough resolution in form of tree
algorithms. In particular, the decomposition algorithm is an excellent tool for
the post-processing of a signal into “constituting blocks” by decorrelation,
e.g., the specification of signature bands corresponding to certain geological
formations.

3. Geodetically relevant Sobolev spaces

We start our mathematical foundation of Meissl schemata by introducing some
basic information related to the theory of geodetic observables within the frame-
work of Sobolev spaces. We adopt the following general scheme of notation which
is non-standard in geodesy, but extremely helpful in establishing Meissl schemata
especially for the vectorial and tensorial framework. Capital letters (F , G, . . . )
are used for scalar functions, small letters (f , g, . . . ) represent vector fields and
small boldface letters (f , g, . . . ) represent tensor fields of second rank. As usual, a
scalar function having k continuous derivatives is said to be of class C(k) whereas
L2 denotes the Hilbert space of square integrable functions. A vector field having
k continuous derivatives is said to be of class c(k) and l2 denotes the Hilbert space
of square-integrable vector fields. Finally, the space of all tensor fields having k
continuous derivatives is denoted by c(k) and l2 denotes the Hilbert space of all
square-integrable tensor fields.
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Σ ⊂ R3 is called a regular surface if Σ is the boundary of a regular region
Σint ⊂ R3, i.e., Σ = ∂Σint, with the following properties (cf. [20]):

(i) Σ constitutes an orientable piecewise smooth Lipschitzian manifold
of dimension 2.

(ii) The origin is contained in Σint.
(iii) Σ divides R3 into the “inner space” Σint and the “outer space”

Σext = R3\Σint, Σint = Σint ∪ Σ.

Georelevant regular surfaces Σ are, for example, the sphere, the ellipsoid, the
telluroid, the geoid, and the regular Earth’s surface.

The geometric concept to be discussed in our approach is as follows (see
Figure 3.1): Σ denotes the Earth’s surface which we assume to be known and

Figure 3.1. Geometric concept characterizing the surface of the
Earth Σ and the orbit of a satellite Γ.

regular. Γ is the orbit of a satellite which is not necessarily a closed surface. σ is the
radius of a so-called Runge (in the jargon of geodesy, Bjerhammar) sphere inside
the Earth, that is σ < α = infx∈Σ |x|. The value γ is a lower bound of the lowest
possible altitude of the satellite, i.e., γ < infx∈Γ |x|. Ωext

σ = {x ∈ R3 : |x| > σ}
denotes the outer space of the sphere Ωσ with radius σ around the origin 0, whereas
Σext denotes the outer space of the (actual) Earth.

Let V : Ωext
σ → R, v : Ωext

σ → R3, and v : Ωext
σ → R3 ⊗ R3, respectively, be a

scalar, vector, and tensor field on the set Ωext
σ . We say that V , v, v, respectively,

are harmonic on Ωext
σ if V , v, v are twice continuously differentiable on Ωext

σ and
ΔV = 0, Δv = 0, Δv = 0 on Ωext

σ .
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Without proof we mention some well-known theorems concerning harmonic
fields on Ωext

σ (for the proofs see, for example, [20, 38, 47]):

(1) Every harmonic field in Ωext
σ is analytic in Ωext

σ , i.e., every harmonic field is
determined by its local properties.

(2) Harnack’s convergence theorem: Let Vδ : Ωext
σ → R, vδ : Ωext

σ → R3, and
vδ : Ωext

σ → R3 ⊗R3, respectively, be harmonic on Ωext
σ for each value δ (0 <

δ < δ0), and regular at infinity. Moreover, let

Vδ → V, δ → 0, δ > 0, (3.1)

vδ → v, δ → 0, δ > 0, (3.2)

vδ → v, δ → 0, δ > 0, (3.3)

uniformly on each subsetK of Ωext
σ with dist(K, ∂Ωext

σ ) > 0. Then V : Ωext
σ →

R, v : Ωext
σ → R3, and v : Ωext

σ → R3 ⊗ R3, respectively, is harmonic on Ωext
σ

and regular at infinity.
(3) Let V : Ωext

σ → R be twice continuously differentiable on Ωext
σ and continuous

on Ωext
σ , i.e., V ∈ C(0)(Ωext

σ ) ∩ C(2)(Ωext
σ ), harmonic on Ωext

σ , and regular at
infinity. Then the maximum/minimum principle tells us that

sup
x∈Ωext

σ

|V (x)| ≤ sup
x∈Ωσ

|V (x)| . (3.4)

(4) There is a so-called fundamental solution (singularity function) S : x �→
|x − y|−1, x �= y, with respect to the Laplace operator Δ such that the
fundamental theorem of potential theory∫

∂Ωext
σ

(
1

|x− y|
∂V

∂ν
(y)− V (y)

∂

∂νy

1

|x− y|

)
dω(y)

=

⎧⎨⎩
−4πV (x), x ∈ Ωext

σ ,
−2πV (x), x ∈ ∂Ωext

σ ,

0, x /∈ Ωext
σ ,

holds true.

3.1. Scalar outer harmonic and Sobolev theory

As already explained, we let Ωσ ⊂ R3 be the sphere around the origin with radius
σ > 0, Ωint

σ is the inner space of Ωσ, and Ωext
σ is the outer space. We let Ω = Ω1.

By virtue of the isomorphism Ω � ξ �→ σξ ∈ Ωσ we assume functions F : Ωσ → R
to be defined on Ω. It is clear that the function spaces defined on Ω admit their
natural generalizations as spaces of functions defined on Ωσ. We have, for example,
C(∞)(Ωσ), L

p(Ωσ), etc.

Let {Yn,m}n∈N0;m=1,...,2n+1 be an L2-orthonormal system of (surface) spheri-
cal harmonics. Obviously, such an L2(Ω)-orthonormal system of spherical harmon-
ics forms an orthogonal system on Ωσ (with respect to (·, ·)L2(Ωσ)). More explicitly,
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we have

(Yn,k, Yp,q)L2(Ωσ) =

∫
Ωσ

Yn,k

(
x

|x|

)
Yp,q

(
x

|x|

)
dω(x) = σ2δn,pδk,q, (3.5)

where δn,p is the Kronecker symbol and dω is the surface element. With the re-
lationship ξ ↔ σξ, the surface gradient ∇∗;σ and the Beltrami operator Δ∗;σ on
Ωσ, respectively, have the representation ∇∗;σ = (1/σ)∇∗;1 = (1/σ)∇∗, Δ∗;σ =
(1/σ2)Δ∗;1 = (1/σ2)Δ∗, where ∇∗, Δ∗ are the surface gradient and the Beltrami
operator of the unit sphere Ω.

We now introduce the system {Y σ
n,k}n=0,1,...; k=1,...,2n+1 by letting

Y σ
n,k(x) =

1

σ
Yn,k

(
x

|x|

)
, x ∈ Ωσ. (3.6)

Due to (3.5) the system {Y σ
n,k}n=0,1,...;k=1,...,2n+1 is an orthonormal basis inL2(Ωσ):

L2(Ωσ) = span n=0,1,...;
k=1,...,2n+1

(Y σ
n,k)

‖·‖L2(Ωσ) . (3.7)

The system {Hn,m(σ; ·)}n∈N0;m=1,...,2n+1, of scalar outer harmonics defined by

Hn,m(σ;x) =
1

σ

(
σ

|x|

)n+1

Yn,m

(
x

|x|

)
, x ∈ Ωext

σ ,

satisfies the following properties:

• Hn,m(σ; ·) is of class C(∞)(Ωext
σ ),

• Hn,m(σ; ·) is harmonic in Ωext
σ , i.e., ΔxHn,m(σ;x) = 0 for x ∈ Ωext

σ ,
• Hn,m is regular at infinity, i.e., |Hn,m(σ;x)| = O(|x|−1), x| → ∞,
• Hn,m(σ; ·)|Ωσ = 1

σYn,m,
•
∫
Ωσ

Hn,m(σ;x)Hk,l(σ;x)dω(x) = δn,kδm,l.

As it is well known (cf., e.g., [32, 57]), the addition theorem of outer harmonics
reads as follows:

2n+1∑
m=1

Hn,m(σ;x)Hn,m(σ; y) =
2n+ 1

4πσ2

(
σ2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
, (3.8)

for all (x, y) ∈ Ωext
σ ×Ωext

σ and n ∈ N0, where Pn denotes the Legendre polynomial

of degree n. Harmn(Ωext
σ ) denotes the space of all outer harmonics of order n,

n ∈ N0:

Harmn(Ωext
σ ) = spanm=1,...,2n+1(Hn,m(σ; ·)).

It is well known that dim(Harmn(Ωext
σ )) = 2n+1. We let Harmp,...,q(Ωext

σ ) be the

space of all linear combinations of the functions Hn,m(σ; ·) on Ωext
σ , n = p, . . . , q,

m = 1, . . . , 2n+ 1, i.e.,

Harmp,...,q(Ωext
σ ) =

q⊕
n=p

Harmn(Ωext
σ ).
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The space Harmp,...,q(Ωext
σ ) has the reproducing kernel KHarmp,...,q(Ωext

σ )(·, ·)
given by

KHarmp,...,q(Ωext
σ )(x, y) =

q∑
n=p

2n+1∑
m=1

Hn,m(σ;x)Hn,m(σ; y)

=

q∑
n=p

2n+ 1

4πσ2

(
σ2

|x| |y|

)2

Pn

(
x

|x| ·
y

|y|

)
. (3.9)

Pot(Σext) denotes the space of all functions (potentials) U : Σext → R with

• U ∈ C(2)(Σext),
• U satisfies the Laplace equation in the outer space, i.e., ΔxU(x) = 0, x ∈ Σext,
• U is regular at infinity, i.e., |U(x)| = O(|x|−1), |x| → ∞.

As usual, for k = 0, 1, . . . , we let Pot (k)(Σext) be the space of functions F : Σext →
R such that F |Σext ∈ Pot(Σext) and F ∈ C(k)(Σext), in brief,

Pot (k)(Σext) = Pot(Σext) ∩C(k)(Σext). (3.10)

It is known from [13] and [17] that

L2(Σ) = span n=0,1,...;
m=1,...,2n+1

(Hn,m(σ; ·))|Σ
‖·‖L2(Σ) , (3.11)

C(0)(Σ) = span n=0,1,...;
m=1,...,2n+1

(Hn,m(σ; ·))|Σ
‖·‖

C(0)(Σ) . (3.12)

Furthermore (cf. [13]),

Pot (0)(Σext) = span n=0,1,...;
m=1,...,2n+1

(Hn,m(σ; ·))|Σext

‖·‖
C(0)(Σext) . (3.13)

Next we introduce Sobolev spaces H(Ωext
σ ) (cf. [14]). We start with a general

definition based on the concept of summable sequences, give some examples for
spaces with a reproducing kernel structure, and, finally, introduce the well-known
Hs(Ωext

σ )-spaces.

The introduction of the Sobolev spaces may be based on a linear space A
consisting of all sequences {An} of real numbers An, n = 0, 1, . . ., i.e.,

A = {{An} : An ∈ R, n = 0, 1, . . .} .

For given sequences {An}, {Bn} ∈ A we denote by N (B−1
n An) the set of all non-

negative integers n for which BnA
−1
n exists and is different from 0. Let N0(B

−1
n An)

denote the complement of N (B−1
n An) in N0. Consequently, it follows that N0 =

N (B−1
n An)∪N0(B

−1
n An) and N (B−1

n An)∩N0(B
−1
n An) = ∅. In particular, if {Bn}

is chosen such that Bn = 1 for all n ∈ N0,N (An) is the set of all integers n ∈ N0 for
which An �= 0, and N0(An) is the set of all integers n ∈ N0 with An = 0. Further
on N (An) is always assumed to be non-void. Moreover, we write N instead of
N (An) if no confusion is likely to arise.
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Consider the set E(Ωext
σ )

(
= E({An}; Ωext

σ )
)
of all functions F ∈ Pot (∞)(Ωext

σ )

of the form

F =
∑
n∈N

2n+1∑
m=1

F∧(n,m)Hn,m(σ; ·) (3.14)

with

F∧(n,m) = F∧L2(Ωσ)(n,m) =

∫
Ωσ

F (y)Hn,m(σ; y) dω(y)

satisfying ∑
n∈N

2n+1∑
m=1

A2
n (F∧(n,m))2 < ∞ (3.15)

(note that Σn∈N means that the sum is extended over all non-negative integers n
with n ∈ N ). From the Cauchy–Schwarz inequality it follows that∣∣∣∣∣∑

n∈N

2n+1∑
m=1

A2
n F∧(n,m)G∧(n,m)

∣∣∣∣∣ (3.16)

≤
(∑

n∈N

2n+1∑
m=1

A2
n (F∧(n,m))2

)1/2(∑
n∈N

2n+1∑
m=1

A2
n (G∧(n,m))2

)1/2

for all F,G ∈ E(Ωext
σ ), hence, the left-hand side of (3.16) is finite whenever each

member of the right-hand side is finite. This is the reason why we are able to
impose on E(Ωext

σ ) an inner product (·, ·)H({An};Ωext
σ ) by letting

(F,G)H({An};Ωext
σ ) =

∑
n∈N

2n+1∑
m=1

A2
n F∧(n,m)G∧(n,m). (3.17)

The associated norm is given by

‖F‖H({An};Ωext
σ ) =

(∑
n∈N

2n+1∑
m=1

A2
n (F∧(n,m))2

)1/2

. (3.18)

Summarizing our results we therefore obtain the following definition.

Definition 3.1. The Sobolev space H(Ωext
σ ) (more accurately: H({An}; Ωext

σ )) is the

completion of E(Ωext
σ )(= E({An}; Ωext

σ )) under the norm ‖ · ‖H({An};Ωext
σ ):

H({An}; Ωext
σ ) = E({An}; Ωext

σ )
‖·‖H({An};Ωext

σ )
.

H(Ωext
σ ) equipped with the inner product corresponding to the norm (3.18) is a

Hilbert space. The system {H∗{An}
n,m (σ; ·)} given by

H∗{An}
n,m (σ;x) = A−1

n Hn,m(σ;x), x ∈ Ωext
σ , (3.19)

is a Hilbert basis. We simply writeH∗
n,m(σ; ·) instead ofH

∗{An}
n,m (σ; ·) if no confusion

is likely to arise.
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Consider the Beltrami operator Δ∗;σ on the sphere Ωσ. We know that

Δ∗;σYn,m =
1

σ2
Δ∗Yn,m = − 1

σ2
n(n+ 1)Yn,m

for n ∈ N0; m = 1, . . . , 2n+ 1 (note that Δ∗;1 = Δ∗). Thus we formally have(
−Δ∗;σ +

1

4σ2

)s/2

Yn,k =

(
n+ 1

2

σ

)s

Yn,m

and ((
−Δ∗;σ +

1

4σ2

)s/2

F

)∧
(n,m) =

(
n+ 1

2

σ

)s

F∧(n,m)

for all n ∈ N0; m = 1, . . . , 2n+ 1.

Definition 3.2. For any given value s ∈ R, the Sobolev space Hs(Ωext
σ ) is the

completion of E(Ωext
σ ) under the norm ‖ · ‖Hs(Ωext

σ ):

Hs(Ωext
σ ) = E(Ωext

σ )
‖·‖Hs(Ωext

σ )
.

Hs(Ωext
σ ) equipped with the inner product (·, ·)Hs(Ωext

σ ) is a Hilbert space. The

system {Hs
n,m(σ; ·)} given by

Hs
n,m(σ;x) =

(
σ

n+ 1
2

)s

Hn,m(σ;x), x ∈ Ωext
σ , (3.20)

is a Hilbert basis.

Hence, the norm in Hs(Ωext
σ ) reads as follows:

‖F‖Hs(Ωext
σ ) =

⎛⎝∫
Ωσ

((
−Δ∗;σ

x +
1

4σ2

)s/2

F (x)

)2

dω(x)

⎞⎠1/2

. (3.21)

H0(Ωext
σ ) may be understood as the space of all harmonic functions in Ωext

σ , regular

at infinity, corresponding to L2-restrictions (note that the potentials in H0(Ωext
σ )

are uniquely determined by their L2-(Dirichlet) boundary conditions on Ωσ). Ac-

cording to our construction, Pot (∞)(Ωext
σ ) is a dense subspace of Hs(Ωext

σ ) for each

s. If t < s, then ‖F‖Ht(Ωext
σ ) ≤ ‖F‖Hs(Ωext

σ ) and Hs(Ωext
σ ) ⊂ Ht(Ωext

σ ).

If we associate to U the outer harmonic expansion (3.14) it is of fundamental
importance to know when the series (3.14) converges uniformly on the whole set

Ωext
σ . To this end we need the concept of summable sequences.

Definition 3.3. A sequence {An}n∈N0 ∈ A is called summable if

∞∑
n=0

2n+ 1

A2
n

< ∞. (3.22)
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Lemma 3.4 (Sobolev Lemma). Assume that the sequences {An}n∈N0 , {Bn}n∈N0 ∈
A are such that {B−1

n An}n∈N0 is summable. Then each F ∈ H
(
{B−1

n An}; Ωext
σ

)
corresponds to a potential of class Pot (0)(Ωext

σ ).

The Sobolev Lemma which is proved in [19] states that in the case of summa-
bility of the sequence {B−1

n An}n∈N0 , the Fourier series in terms of the basis func-

tionsHn,m ∈ H
(
{B−1

n An}; Ωext
σ

)
is continuous on the boundary Ωσ. In particular,

we have the following statement (cf. [19]).

Lemma 3.5. If U ∈ Hs(Ωext
σ ), s > k+1, then U corresponds to a potential of class

Pot (k)(Ωext
σ ).

3.2. Vectorial outer harmonic and Sobolev theory

We now extend the theory of scalar outer harmonics and scalar Sobolev spaces
to the vectorial case. We use a system of vector spherical harmonics (cf. [21]) in
order to generate the set of vector outer harmonics in such a way, that the Laplace
equation is fulfilled componentwise.

Let {ỹ(i)n,m}i=1,2,3;n∈N0i
;m=1,...,2n+1 be a set of vector spherical harmonics sat-

isfying the condition of being a set of eigenfunctions of the Beltrami operator,
with

0i =

{
0, i = 1,
1, i = 2, 3.

(3.23)

(see, e.g., [21, 32, 58], for a detailed introduction and profound discussion of these
vector spherical harmonics). In the nomenclature of [32], the vector outer harmon-

ics h
(i)
n,m(σ; ·) of degree n and kind i are defined by

h(1)
n,m(σ;x) =

1

σ

(
σ

|x|

)n+2

ỹ(1)n,m

(
x

|x|

)
, n = 0, 1, . . . ;m = 1, . . . , 2n+ 1, (3.24)

h(2)
n,m(σ;x) =

1

σ

(
σ

|x|

)n

ỹ(2)n,m

(
x

|x|

)
, n = 1, 2, . . . ;m = 1, . . . , 2n+ 1, (3.25)

h(3)
n,m(σ;x) =

1

σ

(
σ

|x|

)n+1

ỹ(3)n,m

(
x

|x|

)
, n = 1, 2, . . . ;m = 1, . . . , 2n+ 1, (3.26)

for x ∈ Ωext
σ . The following properties are satisfied:

• h
(i)
n,m(σ; ·) is of class c(∞)(Ωext

σ ),

• Δxh
(i)
n,m(σ;x) = 0 for x∈Ωext

σ , i.e., every component function h
(i)
n,m · εk satis-

fies the Laplace equation,

• h
(i)
n,m is regular at infinity, i.e., |h(i)

n,m(σ;x)| = O(|x|−1),

|h(2)
n,m(σ · x)| = O(|x|−2), |x| → ∞

• h
(i)
n,m(σ; ·)|Ωσ = (1/σ)ỹ

(i)
n,m,

• (h
(i)
n,m(σ; ·), h(j)

l,s (σ; ·))l2(Ωσ) =
∫
Ωσ

h
(i)
n,m(σ;x)h

(j)
l,s (σ;x) dω(x) = δi,jδn,lδm,s.
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We introduce

harm(i)(Ωext
σ ) = span n=0i,...;

m=1,...,2n+1
h
(i)
n,m(σ; ·)

‖·‖
c(0)(Ωext

σ )

, (3.27)

harm(Ωext
σ ) = spani=1,2,3;n=0i,...;

m=1,...,2n+1

h
(i)
n,m(σ; ·)

‖·‖
c(0)(Ωext

σ )

. (3.28)

Some results concerning addition theorems for outer harmonics using Legendre
tensors and Legendre vectors can be found in the Ph.D.-thesis [58] and are not
discussed here.

Lemma 3.6. Let {Hn,m(σ; ·)}n∈N0;m=1,...,2n+1 be a system of scalar outer harmon-
ics. Then

span{Hn,m(σ; ·)εi|Σ}i=1,2,3
‖·‖l2(Σ) = l2(Σ),

span{Hn,m(σ; ·)εi|Σ}i=1,2,3
‖·‖

c(0)(Σ) = c(0)(Σ).

Theorem 3.7. Let {h(i)
n,m(σ; ·)}i=1,2,3;n=0i,...;

m=1,...,2n+1

be a system of vector outer harmonics

as defined in (3.24)–(3.26). Then the following statements hold true:

l2(Σ) = span
i=1,2,3;n=0i,...;

m=1,...,2n+1

(h
(i)
n,m(σ; ·))|Σ

‖·‖l2(Σ)

,

c(0)(Σ) = span
i=1,2,3;n=0i,...;

m=1,...,2n+1

(h
(i)
n,m(σ; ·))|Σ

‖·‖
c(0)(Σ)

.

In order to define the vectorial potential space pot(Σext) we need the diver-
gence and curl operator, which are defined by

div f(x) =

3∑
i=1

∂Fi

∂xi
(x), f =

3∑
i=1

Fiε
i, (3.29)

and

(curl f(x))i =

3∑
j,k=1

εijk
∂Fk

∂xj
(x), (3.30)

where εijk is the alternator defined by

εijk =

⎧⎪⎨⎪⎩
+1, (i, j, k) is an even permutation of (1, 2, 3),

−1, (i, j, k) is an odd permutation of (1, 2, 3),

0, (i, j, k) is not a permutation of (1, 2, 3).

(3.31)

By pot(Σext) we denote the space of all vector fields f : Σext → R3 satisfying
the following properties:

(i) f ∈ c(1)(Σext),
(ii) f is a harmonic vector field: divf = 0, curlf = 0 in Σext,
(iii) f is regular at infinity: |f(x)| = O(|x|−2), |x| → ∞.
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Furthermore, we let

pot (k)(Σext) = pot(Σext) ∩ c(k)(Σext), (3.32)

which is meant in the same sense as we explained in the scalar case. It is well
known (see, e.g., [38]), that every function f ∈ c(k)(Σext) satisfying curlf = 0
is the gradient of a function V ∈ C(k+1)(Σext): f = ∇V . As a consequence, we
get that every f ∈ pot(Σext) can be represented as a gradient field f = ∇V ,
where V ∈ Pot(Σext), and vice versa. Furthermore, it is obvious, that a function

f ∈ pot(Σext) of the form f =
∑3

i=1 Fiε
i fulfills Fi ∈ Pot(Σext).

For arbitrary ε > 0, we have an integer N = N(ε) and coefficients an,m,
n = 0, . . . , N ; m = 1, . . . , 2n+ 1, such that

sup
x∈Σ

∣∣∣∣∣F (x) −
N∑

n=0

2n+1∑
m=1

an,mHn,m(σ;x)

∣∣∣∣∣ < ε. (3.33)

For the gradient of Hn,m(σ; ·) we obtain

∇xHn,m(σ;x) = C h(1)
n,m(σ;x), (3.34)

with a constant factor C, which leads us to (cf. [25])

pot (0)(Σext) = span n∈N0;
m=1,...,2n+1

(h
(1)
n,m(σ; ·))|Σext

‖·‖
c(0)(Σext)

(3.35)

(Runge–Walsh approximation property).

In analogy to the scalar case, we define Sobolev spaces for vector fields. We do
not restrict our considerations to pot (∞)(Ωext

σ ) as a reference space for the definition

of vectorial Sobolev spaces, because in this case only the h
(1)
n,m-part would be taken

into account.

Consider the space a defined by

a = {{an} | an =
(
A(1)

n , A(2)
n , A(3)

n

)T
∈ R3, A(i)

n �= 0, n ∈ N0}. (3.36)

Obviously, we have {A(i)
n }n∈N0 ∈ A for i ∈ {1, 2, 3}.

For {an}n∈N0 ∈ a we define

e(i)(Ωext
σ ) =

{
f ∈ harm(i)(Ωext

σ ) :

∞∑
n=0i

2n+1∑
m=1

|A(i)
n |2(f, h(i)

n,m)2l2(Ωσ)
< ∞

}
, (3.37)

i ∈ {1, 2, 3}. Equipped with the inner product

(f, g)h(Ωext
σ ) =

3∑
i=1

∞∑
n=0i

2n+1∑
m=1

|A(i)
n |2(f, h(i)

n,m)l2(Ωσ)(g, h
(i)
n,m)l2(Ωσ), (3.38)

f, g ∈ e(i)(Ωext
σ ), the space e(i)(Ωext

σ ) becomes a pre-Hilbert space. We define the

Sobolev space h(i)(Ωext
σ ) = h(i)({A(i)

n }; Ωext
σ ) to be the completion of e(i)(Ωext

σ )
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under the norm ‖ · ‖h(Ωext
σ ), which denotes the norm associated to (·, ·)h(Ωext

σ ):

h(i)({A(i)
n }; Ωext

σ ) = e(i)(Ωext
σ )

‖·‖
h(Ωext

σ )
. (3.39)

We use the following notation

h(Ωext
σ ) = h({an}; Ωext

σ ) =

3⊕
i=1

h(i)(Ωext
σ ) =

3⊕
i=1

h(i)({A(i)
n }; Ωext

σ ). (3.40)

The space h(Ωext
σ ) equipped with the inner product (·, ·)h(Ωext

σ ) is a Hilbert space

with Hilbert basis {h(i)∗{A(i)
n }

n,m (σ; ·)}i=1,2,3;n=0i,...;m=1,...,2n+1 given by

h
(i)∗{A(i)

n }
n,m (σ;x) = (A(i)

n )−1h(i)
n,m(σ;x), x ∈ Ωext

σ . (3.41)

We can, therefore, expand a function f ∈ h(Ωext
σ ) as a Fourier series in terms of

the basis h
(i)∗{A(i)

n }
n,m :

f =

3∑
i=1

∞∑
n=0i

2n+1∑
m=1

f
(i)∧

h({an};Ωext
σ )(n,m)h

(i)∗{A(i)
n }

n,m , (3.42)

where

f
(i)∧

h({an};Ωext
σ )(n,m) = f (i)∧(n,m) = (f, h

(i)∗{A(i)
n }

n,m )h(Ωext
σ ). (3.43)

In analogy to the scalar spaces Hs(Ωext
σ ), we define the vectorial spaces

hs(Ωext
σ ) by

h(i)
s (Ωext

σ ) = h(i)

({(
n+ 1

2

σ

)s
}
; Ωext

σ )

)
, (3.44)

hs(Ωext
σ ) =

3⊕
i=1

h(i)
s (Ωext

σ ). (3.45)

The space hs(Ωext
σ ) equipped with the inner product (·, ·)hs(Ωext

σ ) is a Hilbert space

with Hilbert basis {h(i)s
n,m(σ; ·)}i=1,2,3;n=0i,...;m=1,...,2n+1 given by

h(i)s
n,m(σ;x) =

(
σ

n+ 1
2

)s

h(i)
n,m(σ;x), x ∈ Ωext

σ . (3.46)

In the case of the space h0(Ωext
σ ) we understand the norm ‖ · ‖h0(Ωext

σ ) to be the

‖ · ‖l2(Ωσ)- norm.

Next, the scalar Sobolev Lemma 3.4 will be extended to vector fields.

Definition 3.8. A sequence {an}n∈N0 ∈ a is called summable if
∞∑

n=0i

2n+ 1(
A

(i)
n

)2 < ∞, (3.47)

for i = 1, 2, 3.
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In the sequel, {b−1
n }n∈N0 ∈ a means the sequence given by

b−1
n =

((
B(1)

n

)−1
,
(
B(2)

n

)−1
,
(
B(3)

n

)−1
)T

, (3.48)

and

b−1
n an =

(
A(1)

n

(
B(1)

n

)−1
, A(2)

n

(
B(2)

n

)−1
, A(3)

n

(
B(3)

n

)−1
)T

. (3.49)

Lemma 3.9 (Vectorial Sobolev Lemma). Assume, that {an}n∈N0 , {bn}n∈N0 ∈ a are

sequences such that {b−1
n an}n∈N0 ∈ a is summable. Then each f ∈ h({b−1

n an}; Ωext
σ )

corresponds to a function of class harm(Ωext
σ ).

3.3. Tensorial outer harmonic and Sobolev theory

The extension of vectorial to tensorial theory is straightforward (see [21, 32, 58]).

With the help of a system {ỹ(i,k)
n,m } of tensor spherical harmonics we can derive a

set of tensor outer harmonics {h(i,k)
n,m (σ; ·)} satisfying the Laplace equation compo-

nentwise.

Let {ỹ(i,k)
n,m }i,k=1,2,3;n∈N0;m=1,...,2n+1 with

0ik =

⎧⎪⎨⎪⎩
0, (i, k) ∈ {(1, 1), (2, 1), (3, 1)},
1, (i, k) ∈ {(1, 2), (1, 3), (2, 3), (3, 3)},
2, (i, k) ∈ {(2, 2), (3, 2)},

(3.50)

be a set of tensorial spherical harmonics satisfying the condition of being eigen-
functions of the Beltrami operator (see, e.g., the Ph.D.-thesis [58] for a detailed
introduction and profound discussion of these tensor spherical harmonics). The

tensor outer harmonics h
(i,k)
n,m (σ; ·) of degree n and kind (i, k) are then defined by

h(1,1)
n,m (σ;x) =

1

σ

(
σ

|x|

)n+3

ỹ(1,1)
n,m

(
x

|x|

)
, (3.51)

h(1,2)
n,m (σ;x) =

1

σ

(
σ

|x|

)n+1

ỹ(1,2)
n,m

(
x

|x|

)
, (3.52)

h(2,1)
n,m (σ;x) =

1

σ

(
σ

|x|

)n+1

ỹ(2,1)
n,m

(
x

|x|

)
, (3.53)

h(2,2)
n,m (R;x) =

1

σ

(
σ

|x|

)n−1

ỹ(2,2)
n,m

(
x

|x|

)
, (3.54)

h(3,3)
n,m (σ;x) =

1

σ

(
σ

|x|

)n+1

ỹ(3,3)
n,m

(
x

|x|

)
, (3.55)

h(1,3)
n,m (σ;x) =

1

σ

(
σ

|x|

)n+2

ỹ(1,3)
n,m

(
x

|x|

)
, (3.56)

h(2,3)
n,m (σ;x) =

1

σ

(
σ

|x|

)n

ỹ(2,3)
un,m

(
x

|x|

)
, (3.57)



336 W. Freeden and H. Nutz

h(3,1)
n,m (σ;x) =

1

σ

(
σ

|x|

)n+2

ỹ(3,1)
n,m

(
x

|x|

)
, (3.58)

h(3,2)
n,m (σ;x) =

1

σ

(
σ

|x|

)n

ỹ(3,2)
n,m

(
x

|x|

)
, (3.59)

where x ∈ Ωext
σ , n = 0ik, . . . ; m = 1, . . . , 2n + 1. The following properties are

satisfied:

• h
(i,k)
n,m (σ; ·) is of class c(∞)(Ωext

σ ),

• Δxh
(i,k)
n,m (σ;x) = 0 for x ∈ Ωext

σ , i.e., the component functions of h
(i,k)
n,m (σ; ·)

fulfill the Laplace equation,

• h
(i,k)
n,m is regular at infinity, i.e., |h(i,k)

n,m (σ;x)| = O(|x|−3), |x| → ∞.

• h
(i,k)
n,m (σ; ·)|Ωσ = (1/σ)ỹ

(i,k)
n,m ,

• (h
(i,k)
n,m (σ; ·),h(p,q)

l,s (σ; ·))l2(Ωσ) =
∫
Ωσ

h
(i,k)
n,m (σ;x)hp,q

l,s (σ;x)dω(x)

= δi,pδk,qδn,lδm,s.

Moreover, we define

harm(i,k)(Ωext
σ ) = span n=0ik...;

m=1,...,2n+1

h
(i,k)
n,m (σ; ·)

‖·‖
c(0)(Ωext

σ )

, (3.60)

harm(Ωext
σ ) = spani,k∈{1,2,3};n=0ik...;

m=1,...,2n+1

h
(i,k)
n,m (σ; ·)

‖·‖
c(0)(Ωext

σ )

. (3.61)

Some results concerning addition theorems for outer harmonics can be for-
mulated both for the tensor product of two tensor outer harmonics and for the
product of a scalar and a tensor outer harmonic. They can be found in the Ph.D.-
thesis [58] and are not discussed in this contribution.

Lemma 3.10. Let {Hn,m(σ; ·)}n∈N0ik
;m=1,...,2n+1 be a system of scalar outer har-

monics. Then

span{Hn,m(σ; ·)εi ⊗ εk|Σ}
‖·‖l2(Σ)

= l2(Σ), (3.62)

span{Hn,m(σ; ·)εi ⊗ εk|Σ)}
‖·‖

c(0)(Σ) = c(0)(Σ). (3.63)

Theorem 3.11. Let {h(i,k)
n,m }i,k=1,2,3;n=0ik,...;

m=1,...,2n+1

be a system of tensor outer harmonics.

Then the following statements hold true:

l2(Σ) = span
i,k=1,2,3;n=0ik,...;

m=1,...,2n+1

(h
(i,k)
n,m (σ; ·))|Σ

‖·‖l2(Σ)

, (3.64)

c(Σ) = span
i,k=1,2,3;n=0ik,...;

m=1,...,2n+1

(h
(i,k)
n,m (σ; ·))|Σ

‖·‖c(Σ)

. (3.65)

In order to define a tensorial counterpart pot(Σext) of the space pot(Σext),
we need the divergence and the curl operator of tensor fields. Having (3.29) in
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mind, we define div f by

(div f(x))i =

3∑
j=1

∂Fi,j

∂xj
(x), f =

3∑
i,j=1

Fi,jε
i ⊗ εj. (3.66)

Furthermore, based on (3.30) we have the following definition of curl f :

(curl f(x))i,j =

3∑
p,k=1

εipk
∂Fj,k

∂xp
(x). (3.67)

The space pot(Σext) denotes the space of all tensor fields f : Σext → R3 ⊗ R3

satisfying the following properties:

(i) f ∈ c(1)(Σext),
(ii) f is a harmonic tensor field: div f = 0, curl f = 0 in Σext,
(iii) f is regular at infinity: |f(x)| = O(|x|−3), |x| → ∞.

Furthermore, we let

pot(k)(Σext) = pot(Σext) ∩ c(k)(Σext), (3.68)

which we understand in the same sense as in the scalar and vectorial case. As
shown, e.g., in [38], every tensor function f ∈ c(k)(Σext) with curl f = 0 is the
gradient of a vector field v ∈ c(k+1)(Σext):

f = ∇v, (3.69)

where ∇v is the tensor of second rank defined by

(∇xv)ij (x) =
∂vi
∂xj

(x). (3.70)

Therefore, every member v ∈ pot(Σext) can be represented as a gradient field
v = ∇v, where v is of class pot(Σext), and vice versa. As a consequence of this, in
connection with the fact that every v ∈ pot(Σext) can be represented as a gradient
field v = ∇V with V ∈ Pot(Σext), we finally get that a tensor field v ∈ pot(Σext)
can be represented as the Hesse tensor of a scalar field V ∈ Pot(Σext):

v = ∇⊗∇V, (3.71)

and vice versa.
It is obvious, that f ∈ pot(Σext) of the form f =

∑3
i,k=1 Fi,kε

i ⊗ εk fulfills

Fi,k ∈ Pot(Σext). In addition, we are able to show that

pot(0)(Σext) = span n∈N0;
m=1,...,2n+1

(h
(1,1)
n,m (σ; ·))|Σext

‖·‖
c(0)(Σext)

(3.72)

(Runge–Walsh approximation property).
Our purpose is now to define Sobolev spaces for tensor fields in analogy to

the vectorial Sobolev spaces. We introduce the linear space a in the following way:

a = {{an} | an ∈ R3 ⊗ R3, A(i,k)
n �= 0, n ∈ N0;m = 1, . . . , 2n+ 1; i, k ∈ {1, 2, 3}},

(3.73)
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where

an =

⎛⎜⎝ A
(1,1)
n A

(1,2)
n A

(1,3)
n

A
(2,1)
n A

(2,2)
n A

(2,3)
n

A
(3,1)
n A

(3,2)
n A

(3,3)
n

⎞⎟⎠ , (3.74)

with {A(i,k)
n }n∈N0 ∈ A for i, k ∈ {1, 2, 3}.

Let us now consider a sequence {an}n∈N0 ∈ a. Then we define

e(i,k)(Ωext
σ ) =

{
f ∈ harm(i,k)(Ωext

σ ) :

∞∑
n=0ik

2n+1∑
m=1

|A(i,k)
n |2(f ,h(i,k)

n,m )2l2(Ωσ)
< ∞

}
,

(3.75)
i, k ∈ {1, 2, 3}. Equipped with the inner product

(f ,g)h(Ωext
σ ) =

3∑
i,k=1

∞∑
n=0ik

2n+1∑
m=1

|A(i,k)
n |2(f ,h(i,k)

n,m )l2(Ωσ)(g,h
(i,k)
n,m )l2(Ωσ), (3.76)

f ,g ∈ e(i,k)(Ωext
σ ), the space e(i,k)(Ωext

σ ) becomes a pre-Hilbert space. We de-

fine the Sobolev space h(i,k)(Ωext
σ ) = h(i,k)({A(i,k)

n }; Ωext
σ ) to be the completion

of e(i,k)(Ωext
σ ) under the norm ‖ · ‖h(Ωext

σ ), which denotes the norm associated to

(·, ·)h(Ωext
σ ):

h(i,k)({A(i,k)
n }; Ωext

σ ) = e(i,k)(Ωext
σ )

‖·‖
h({Ωext

σ )
. (3.77)

We use the following notation

h(Ωext
σ ) =

3⊕
i,k=1

h(i,k)(Ωext
σ ). (3.78)

The space h(Ωext
σ ) equipped with the inner product (·, ·)h({Ωext

σ ) is a Hilbert space.

The system {h(i,k)∗{A(i,k)
n }

n,m (σ; ·)}i,k∈{1,2,3};n∈N0ik
;

m=1,...,2n+1

, given by

h
(i,k)∗{A(i,k)

n }
n,m (σ;x) = (A(i,k)

n )−1h(i,k)
n,m (σ;x), x ∈ Ωext

σ , (3.79)

represents an h(Ωext
σ )-orthonormal Hilbert basis in h(Ωext

σ ).

As a consequence, we can expand a function f ∈ h(Ωext
σ ) as a Fourier series

in terms of the basis h
(i,k)∗{A(i,k)

n }
n,m :

f =

3∑
i,k=1

∞∑
n=0ik

2n+1∑
m=1

f
(i,k)∧

h({an};Ωext
σ )(n,m)h

(i,k)∗{A(i,k)
n }

n,m , (3.80)

where

f
(i,k)∧

h({an};Ωext
σ )(n,m) = f (i,k)∧(n,m) = (f ,h

(i,k)∗{A(i,k)
n }

n,m )h(Ωext
σ

. (3.81)
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Finally, in analogy to the vectorial spaces h
(i)
s (Ωext

σ ), we define

h(i,k)
s (Ωext

σ ) = h(i,k)

({(
n+ 1

2

σ

)s
}
; Ωext

σ

)
, (3.82)

hs(Ωext
σ ) =

3⊕
i,k=1

h(i,k)
s (Ωext

σ ). (3.83)

The space hs(Ωext
σ ) equipped with the inner product (·, ·)hs(Ωext

σ ) is a Hilbert

space. The system {h(i,k)s
n,m (σ; ·)}i,k∈{1,2,3};n∈N0ik

;m=1,...,2n+1, given by

h(i,k)s
n,m (σ;x) =

(
σ

n+ 1
2

)s

h(i,k)
n,m (σ;x), x ∈ Ωext

σ , (3.84)

represents an h(Ωext
σ )-orthonormal Hilbert basis in h(Ωext

σ ).

Our next goal is to extend the Sobolev Lemma 3.4 to tensor fields.

Definition 3.12. A sequence {an}n∈N0 ∈ a is called summable if

∞∑
n=0ik

2n+ 1(
A

(i,k)
n

)2 < ∞ (3.85)

for i, k ∈ {1, 2, 3}.

In the sequel, {b−1
n }n∈N0 ∈ a represents the sequence given by

b−1
n =

⎛⎜⎜⎜⎜⎝
(
B

(1,1)
n

)−1 (
B

(1,2)
n

)−1 (
B

(1,3)
n

)−1(
B

(2,1)
n

)−1 (
B

(2,2)
n

)−1 (
B

(2,3)
n

)−1(
B

(3,1)
n

)−1 (
B

(3,2)
n

)−1 (
B

(3,3)
n

)−1

⎞⎟⎟⎟⎟⎠ , (3.86)

and {a−1
n bn}n∈N0 ∈ a is given by

b−1
n an =

⎛⎜⎜⎜⎜⎝
A

(1,1)
n

(
B

(1,1)
n

)−1

A
(1,2)
n

(
B

(1,2)
n

)−1

A
(1,3)
n

(
B

(1,3)
n

)−1

A
(2,1)
n

(
B

(2,1)
n

)−1

A
(2,2)
n

(
B

(2,2)
n

)−1

A
(2,3)
n

(
B

(2,3)
n

)−1

A
(3,1)
n

(
B

(3,1)
n

)−1

A
(3,2)
n

(
B

(3,2)
n

)−1

A
(3,3)
n

(
B

(3,3)
n

)−1

⎞⎟⎟⎟⎟⎠ . (3.87)

Lemma 3.13 (Tensorial Sobolev Lemma). Assume, that the sequences {an}n∈N0 ,
{bn}n∈N0 ∈ a are such that {b−1

n an}n∈N0 ∈ a is summable. Then each f ∈
h
(
{b−1

n an}; Ωext
σ

)
corresponds to a function of class harm(Ωext

σ ).
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4. Pseudodifferential operators and geodetic nomenclature

All gravitational information under discussion in physical geodesy leads to operator
equations relating the (disturbing) potential to geodetically relevant observables.
In physical geodesy, one can think of observables as operating on an “input signal”
F (e.g., the (disturbing) potential) to produce an (scalar, vectorial or tensorial)
output signal of the form

ΛF = G (4.1)

(for example, geoidal undulation, gravity anomaly, radial or tangential deriva-
tives), where Λ is a certain (scalar, vectorial or tensorial) operator. Note, that
later on we will differentiate in our notation weather we deal with scalar, vecto-
rial or tensorial observables, but in this introductory part of the text for reason of
readability we do not distinguish the geodetic quantities. Fortunately, it is the case
in geodetic applications involving the (disturbing) potential that large portions of
interest can be well approximated by operators that represent linear, rotation-
invariant pseudodifferential operators.

The standard pseudodifferential operators Λ occurring in physical geodesy
(cf. [69]) have to reflect the Pizzetti concept (cf. [36, 59]):

1. The mass within the reference ellipsoid for establishing the disturbing poten-
tial F is equal to the mass of the Earth.

2. The center of the reference ellipsoid coincides with the center of the Earth.
3. The value of the potential on the geoidal surface and the value of the normal

potential on the reference ellipsoidal surface are the same.
4. There are no masses outside the geoid (remove-restore-principle from masses

outside the geoid).
5. The constructive approximation is simplified for reasons of computational

economy from an ellipsoidal to a spherical framework by Runge–Walsh jus-
tification (see the contribution [4] in this volume).

The presentation of the classical quantities in gravitational potential determi-
nation can be formulated within the framework of pseudodifferential operators. To
be more concrete, in our approach we deal with radial, tangential and mixed (first-
and second-order) derivatives of the Earth gravitational potential. Two important
properties have to be taken into account specifying the operators which we study
in the sequel. On the one hand, the mathematical modeling should lead to a consis-
tent setup. It turns out that this requirement is, in fact, assured by the operators.
On the other hand, we demand the assigned operators to be isotropic for structural
reasons. In consequence (see also [63]), the (scalar) tangential derivatives ∂

∂ϕ and
∂
∂t are of no interest for us because they do not lead to isotropic operators in a
scalar framework. Instead of using scalar tangential operators we decide to go over
to the vectorial (and tensorial) tangential derivative using the surface gradient∇∗.
Indeed, we want to point out that we have the choice between two viable variants
namely either to develop a scalar anisotropic theory for component modeling, or to
turn over to vectorial/tensorial isotropic theory. In this contribution, we prefer the
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second variant, expecting that the development of a vector/tensor theory provides
us with a versatile tool for modeling geodetically relevant vector and tensor fields
and solving the SST and SGG problem in a simply structured isotropic framework.
The observables we discuss are presented in Tables 1, 2 and 3.

Quantity Operator Symbol Order

gravity anomaly ΛA
n−1
σ 1

geoid undulations ΛU σ2 0

Stokes operator ΛSt
σ

n−1 −1

first radial derivative Λ ∂
∂r

−n+1
σ 1

second radial derivative Λ ∂2

∂r2

(n+1)(n+2)
σ2 2

upward continuation ΛUPC

(
σ
γ

)n
−∞

scalar SST ΛSST

(
σ
γ

)n
n+1
γ −∞

scalar SGG ΛSGG

(
σ
γ

)n
(n+1)(n+2)

γ2 −∞

Table 1. Scalar geodetic observables leading to isotropic pseudodiffer-
ential operators (note that the symbol is given with respect to Hn,m).

4.1. Scalar theory

We start with the scalar definition and give some examples.

Definition 4.1. Let Hs(Ωext
τ ) and Hs(Ωext

ρ ) be Sobolev spaces, τ, ρ > 0. Further-

more, let {Λ∧(n)}n∈N0 be a sequence of real numbers. The operator Λ : Hs(Ωext
τ ) →

Hs(Ωext
ρ ) defined by

ΛF =

∞∑
n=0

2n+1∑
m=1

Λ∧(n)F∧(n,m)Hs
n,m(ρ; ·) (4.2)

is called a scalar pseudodifferential operator of order t, if

lim
n→∞

|Λ∧(n)|(
n+ 1

2

)t = const �= 0 (4.3)

for some t ∈ R. The sequence {Λ∧(n)}n∈N0 is called the symbol of Λ. Moreover, if
the limit relation

lim
n→∞

|Λ∧(n)|(
n+ 1

2

)t = 0 (4.4)

holds for all t ∈ R, then the operator is called a pseudodifferential operator of order
−∞.
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Quantity Operator Symbol Order

first tangential derivative ∇∗ n
σ

√
n+1
2n+1 , 1

n+1
σ

√
n

2n+1 ,

0

second mixed derivative ∇∗ ∂V
∂r ,

n(n+1)
σ2

√
n+1
2n+1 , 2

(n+1)2

σ2

√
n

2n+1 ,

0

vectorial SST λSST

(
σ
γ

)n
n
γ

√
n+1
2n+1 , −∞,(

σ
γ

)n
n+1
γ

√
n

2n+1 ,

0

vectorial SGG λSGG

(
σ
γ

)n
n(n+1)

γ2

√
n+1
2n+1 −∞(

σ
γ

)n
(n+1)2

γ

√
n

2n+1 ,

0

Table 2. Vectorial geodetic observables leading to isotropic pseudodif-

ferential operators (note that the symbol is given with respect to h
(i)
n,m,

i = 1, 2, 3 from top to down for each operator).

Note that the convergence of the series in (4.2) is understood in Hs(Ωext
ρ )-

topology. As an immediate consequence (cf. [69]), we have the important relation

ΛHs
n,m(τ ; ·) = Λ∧(n)Hs

n,m(ρ; ·). (4.5)

In other words, we have the requirement that the outer harmonics are the eigen-
functions of the operator Λ, and the invertibility has to be controlled by the in-
vertibility of the values Λ∧(n), n ∈ N0. The symbol has many appealing properties
(cf. [69]): It is easily seen that

(Λ′ + Λ′′)∧(n) = (Λ′)∧(n) + (Λ′′)∧(n), (4.6)

(Λ′Λ′′)∧(n) = (Λ′)∧(n)(Λ′′)∧(n), (4.7)

for all n ∈ N0.
As any “output function” (output signal) can be expanded into an orthogonal

series of outer harmonics

G = ΛF =

∞∑
n=0

2n+1∑
m=1

Λ∧(n)F∧(n,m)Hs
n,m(ρ; ·) =

∞∑
n=0

2n+1∑
m=1

G∧(n,m)Hs
n,m(ρ; ·)

(4.8)
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Table 3. Tensorial geodetic observables leading to isotropic pseudodif-

ferential operators (note that the symbol is given with respect to h
(i,k)
n,m ,

i, k = 1, 2, 3, from top to down ((1, 1), (1, 2), . . . , (3, 2), (3, 3)) for each
operator).

in the sense of ‖ · ‖Hs(Ωext
ρ ), we are confronted with a spectral representation of the

form

G∧(n,m) = (ΛF )∧(n,m) = Λ∧(n) F∧(n,m), n ∈ N0, k = 1, . . . , 2n+ 1. (4.9)

This means that the “amplitude spectrum” {G∧(n,m)} of the response of Λ is
described in terms of the amplitude spectrum of functions (signals) F by a simple
multiplication by the “transfer” Λ∧(n).

The following list contains (scalar) pseudodifferential operators which are of
importance for geodetic applications.
Consider a potential F of the class Hs(Ωext

σ ), that is

F =

∞∑
n=0

2n+1∑
m=1

F∧(n,m)Hs
n,m(σ; ·), (4.10)

where we use the geometric concept as explained in Section 3 and shown in Fig-
ure 3.1.

(i) Gravity Anomalies . The problem of determining the disturbing potential U
with Λ(U) = F from prescribed gravity anomalies F is the “fundamental
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problem of classical physical geodesy” (see, e.g., [37, 43, 53, 69]). The operator

related to gravity anomalies Λ : Hs(Ωext
σ ) → Hs(Ωext

σ ) has the symbol

Λ∧(n) =
n− 1

σ
. (4.11)

(ii) Geoid Undulations . The operator related to geoid undulations Λ : Hs(Ωext
σ ) →

Hs(Ωext
σ ) has the symbol

Λ∧(n) = σ2. (4.12)

(iii) Stokes Operator . This operator is defined by

Λ(F )(x) =
σ

4π

∫
Ωσ

St(x, y)F (y), dω(y), x ∈ Ωσ (4.13)

where St(·, ·) is the Stokes kernel (cf. [32, 68, 69]).

The Stokes operator Λ : Hs(Ωext
σ ) → Hs(Ωext

σ ) has the symbol

(Λ)∧(n) =
{

0 , for n = 1
σ

n−1 , for n = 0, 2, 3, 4, . . . .
(4.14)

(iv) Upward Continuation Operator . The upward continuation operator associates

to F ∈ Hs(Ωext
σ ) the solution ΛF of the Dirichlet problem ΛF ∈ Pot (0)(Ωext

γ )
corresponding to the boundary values (ΛF )|Ωγ = F |Ωγ . The upward contin-

uation operator Λ : Hs(Ωext
σ ) → Hs(Ωext

γ ) has the symbol

Λ∧(n) =
(
σ

γ

)n

, n ∈ N0. (4.15)

The upward continuation operator indeed plays an important role in the
mathematical treatment of spaceborne problems, since it relates potential
values at height σ to potential values at height γ(> σ).

(v) Operator of the (Negative) First-order Radial Derivative on Ωσ. This operator

associates to F ∈ Hs(Ωext
σ ) the solution ΛF of the Dirichlet problem ΛF ∈

Pot (0)(Ωext
σ ) corresponding to the boundary values (ΛF )|Ωσ = − ∂

∂rF |Ωσ . Λ
is a pseudodifferential operator of order 1 with symbol {Λ∧(n)}n∈N0 given by

Λ∧(n) =
n+ 1

σ
, n ∈ N0. (4.16)

In fact, Λ is the “harmonic continuation” of the radial derivative on Ωσ into
the outer space Ωext

σ and is important in case of the SST problem.

(vi) Operator of the Second-order Radial Derivative on Ωσ. This operator as-

sociates to F ∈ Hs(Ωext
σ ) the solution ΛF of the Dirichlet problem ΛF ∈

Pot (0)(Ωext
σ ) corresponding to the boundary values (ΛF )|Ωσ = ∂2

∂r2F |Ωσ . Λ is
a pseudodifferential operator of order 2 with symbol {Λ∧(n)}n∈N0 given by

Λ∧(n) =
(n+ 1)(n+ 2)

σ2
, n ∈ N0. (4.17)

Λ is the “harmonic continuation” of the second radial derivative on Ωσ into
the outer space Ωext

σ and is important in case of the SGG problem.
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4.2. Vectorial theory

We now introduce vectorial pseudodifferential operators and give two examples.

Definition 4.2. Let Hs(Ωext
τ ) be a scalar Sobolev space and h

(i)
s (Ωext

ρ ) a vectorial

Sobolev space, τ, ρ > 0, i ∈ {1, 2, 3}. Furthermore, let {λ(i)∧(n)}n∈N0i
be a se-

quence of real numbers for i = 1, 2, 3. The operator λ(i) : Hs(Ωext
τ ) → h

(i)
s (Ωext

ρ )
defined by

λ(i)F =

∞∑
n=0i

2n+1∑
m=1

λ(i)∧(n)F∧(n,m)h(i)s
n,m(ρ; ·) (4.18)

is called a vectorial pseudodifferential operator of kind i and order t, if

lim
n→∞

|λ(i)∧(n)|
(n+ 1

2 )
t
= const �= 0 (4.19)

for some t ∈ R. Moreover, if the limit relation

lim
n→∞

|λ(i)∧(n)|
(n+ 1

2 )
t
= 0 (4.20)

holds for all t ∈ R, then the operator λ(i) is called a vectorial pseudodifferential
operator of kind i and order −∞. The sequence {λ(i)∧(n)} is called the symbol of

λ(i). Further on, the operator λ : Hs(Ωext
τ ) → hs(Ωext

ρ ) defined by

λ =

3∑
i=1

λ(i), (4.21)

is called a vectorial pseudodifferential operator of order t, where t = max3i=1 (order

of λ(i)). Moreover, if the limit relation

lim
n→∞

|λ(i)∧(n)|
(n+ 1

2 )
t
= 0 (4.22)

holds for all t ∈ R, and all i ∈ {1, 2, 3}, then the operator λ is called a vectorial
pseudodifferential operator of order −∞.

We now give two examples of vectorial pseudodifferential operators which are
important for geodetic applications. We use the surface gradient on the sphere Ωσ

defined by

∇∗;σ =
1

σ
∇∗. (4.23)

(iv) The Operator of the First-order Tangential Derivatives on Ωσ. This operator

associates to F ∈ Hs(Ωext
σ ) the solution λF of the Dirichlet problem λF ∈

hs(Ωext
σ ) corresponding to the boundary value (λF )|Ωσ = ∇∗,σF |Ωσ . λ is a
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pseudodifferential operator of order 1 with symbol {λ(i)∧(n)}n∈N0i
given by

λ(i)∧(n) =

⎧⎪⎪⎨⎪⎪⎩
n
σ

√
n+1
2n+1 , i = 1,

n+1
σ

√
n

2n+1 , i = 2,

0, i = 3.

(4.24)

In fact, Λ is the “harmonic continuation” of the tangential derivative on Ωσ

into the outer space Ωext
σ and is important in case of the SST problem.

(v) The Operator of the (Negative) Second-order Mixed Derivatives on Ωσ. This

operator associates to F ∈Hs(Ωext
σ ) the solution λF of the Dirichlet problem

λF ∈hs(Ωext
σ ) corresponding to the boundary values (λF )|Ωσ =− ∂

∂r∇
∗,σ
ξ F |Ωσ .

λ is a pseudodifferential operator of second order with symbol {λ(i)∧(n)}n∈N0i

given by

λ(i)∧(n) =

⎧⎪⎪⎨⎪⎪⎩
n(n+1)

σ2

√
n+1
2n+1 , i = 1,

(n+1)2

σ2

√
n

2n+1 , i = 2,

0, i = 3.

(4.25)

Λ is the “harmonic continuation” of the second-order mixed derivatives on
Ωσ into the outer space Ωext

σ and is important in case of the SGG problem.

4.3. Tensorial theory

The introduction of tensorial pseudodifferential operators is straightforward.

Definition 4.3. Let Hs(Ωext
τ ) be a scalar Sobolev space and h

(i,k)
s (Ωext

ρ ) a ten-
sorial Sobolev space, τ, ρ > 0, i, k ∈ {1, 2, 3}. Furthermore, for i, k ∈ {1, 2, 3},
let λ(i,k)∧(n)n∈N0ik

be a sequence of real numbers. The operator λ(i,k)∧(n) :

Hs(Ωext
τ ) → h

(i,k)
s (Ωext

ρ ) defined by

λ(i,k)F =

∞∑
n=0ik

2n+1∑
m=1

λ(i,k)∧(n)}F∧(n,m)h(i,k)s
n,m (ρ; ·) (4.26)

is called a tensorial pseudodifferential operator of kind (i, k) and order t, if the
limit relation

lim
n→∞

| λ(i,k)∧(n)|
(n+ 1

2 )
t

= const �= 0 (4.27)

is satisfied for some t ∈ R. Moreover, if the limit relation

lim
n→∞

| λ(i,k)∧(n)|
(n+ 1

2 )
t

= 0 (4.28)

holds for all t ∈ R, then the operator λ is called a pseudodifferential operator

of kind (i, k) and order −∞. The sequence { λ(i,k)∧(n)} is called the (spherical)
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symbol of λ(i,k). Further on, the operator λ : Hs(Ωext
τ ) → hs(Ωext

ρ ) defined by

λ =

3∑
i=1

3∑
k=1

λ(i,k), (4.29)

is called a tensorial pseudodifferential operator of order t, where t = max3i,k=1

(order of λ(i,k)). Moreover, if the limit relation

lim
n→∞

| λ(i,k)∧(n)|
(n+ 1

2 )
t

= 0 (4.30)

holds for all t ∈ R, and all i, k ∈ {1, 2, 3}, then the operator λ is called a pseudo-
differential operator of order −∞.

Finally, we mention one important example.

(iv) The Operator of the Second-order Tangential Derivatives on Ωσ. This op-

erator associates to F ∈ Hs(Ωext
σ ) the solution λF of the Dirichlet prob-

lem λF ∈ hs(Ωext
σ ) corresponding to the boundary values ( λF )|Ωσ =

∇∗,σ⊗∇∗,σF |Ωσ . It is a pseudodifferential operator of order 2 with the symbol

{ λ(i,k)∧(n)}n∈N0ik
given by

λ(i,k)∧(n) (4.31)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n(n+1)
σ2(2n+1)(2n+3)

√
(n+ 2)(n+ 1)(2n+ 1)(2n+ 3), (i, k) = (1, 1),

−(n+1)(n−1)
σ2(2n−1)(2n+1)

√
3n2, (i, k) = (1, 2),

−n(n+2)
σ2(2n+3)(2n+1) (n+ 1)

√
(2n+ 1)(2n+ 3), (i, k) = (2, 1),

n(n+1)(n+2)
σ2(2n−1)(2n+1)

√
n(n− 1)(2n− 1)(2n+ 1), (i, k) = (2, 2),

0, else.

Λ is the “harmonic continuation” of the second-order tangential derivatives
on Ωσ into the outer space Ωext

σ and is important in case of the SGG problem.

5. Reproducing kernel structure and observational functionals

Of great importance for our considerations are Sobolev spaces equipped with a
reproducing kernel structure. The importance of the reproducing kernel lies in the
fact that it determines the norm of the dual space. Furthermore, no computational
work must be done to evaluate inner products involving reproducing kernel expres-
sions. Within this section, we focus on scalar theory and essentially follow [19].
The extension to vectorial and tensorial reproducing kernel Sobolev spaces is not
hard to perform.
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5.1. Reproducing Hilbert spaces

Theorem 5.1. Let the sequence {An} be summable in the sense of Definition 3.3.

Then H(Ωext
σ ) (more explicitly, H({An}; Ωext

σ )) is a Hilbert subspace of the space

Pot (0)(Ωext
σ ). The space H(Ωext

σ ) has the reproducing kernel function

KH(Ωext
σ ) (·, ·) : Ωext

σ × Ωext
σ → R

given by

KH(Ωext
σ )(x, y) =

∑
n∈N (An)

2n+1∑
m=1

H∗{An}
n,m (σ;x)H∗{An}

n,m (σ; y),

x, y ∈ Ωext
σ .

If H(Ωext
σ ) has a reproducing kernel, then the Fourier (orthogonal) expan-

sion of a potential in terms of the Hilbert basis {H∗
n,k(σ; ·)} in H(Ωext

σ ) converges

uniformly on the domain Ωext
σ (cf. [3, 7]). To be more specific, the relation

lim
N→∞

∥∥∥∥∥F −
∑
n∈N
n≤N

2n+1∑
m=1

F∧(n,m)H∗{An}
n,m (σ; ·)

∥∥∥∥∥
H(Ωext

σ )

= 0

implies

lim
N→∞

sup
x∈Ωext

σ

∣∣∣∣∣F (x)−
∑
n∈N
n≤N

2n+1∑
m=1

F∧(n,m)H∗
n,m(σ;x)

∣∣∣∣∣ = 0.

The representer of a bounded linear functional L on H(Ωext
σ ) has a sim-

ple expression. More explicitly, L(x) = LKH(Ωext
σ )(·, x), x ∈ Ωext

σ , is in H(Ωext
σ ),

and for all F ∈ H(Ωext
σ ) we have LF = (F,L)H(Ωext

σ ) (note that x is held fixed

and L is applied to KH(Ωext
σ )(·, x) as a function of the first variable). Obviously,

(L,L)H(Ωext
σ ) = LLKH(Ωext

σ )(·, ·) = (L,L)H(Ωext
σ )∗ . The dual space H(Ωext

σ )∗ of

H(Ωext
σ ) (i.e., the space of all linear bounded functionals on H(Ωext

σ )) is a Hilbert

space with respect to ‖ ·‖H(Ωext
σ )∗ = (·, ·)

1
2

H(Ωext
σ )∗

; the spaces H(Ωext
σ ) and H(Ωext

σ )∗

are known as isomorphic and isometric (see, e.g., [7]).

Reproducing kernel representations may be used to act as basis system in
reproducing Sobolev spaces.

Theorem 5.2. Let {An} be summable in the sense of Definition 3.3. Assume that

X is a countable dense set of points on a regular surface Ξ ⊂ Ωext
σ (for example,

Runge sphere Ωσ, real Earth’s surface Σ). Then

spanx∈XKH(Ωext
σ )(x, ·)

‖·‖H(Ωext
σ ) = H(Ωext

σ ).



Geodetic Observables and Their Mathematical Treatment 349

Theorem 5.2 allows an obvious generalization by means of bounded linear
functionals on H(Ωext

σ ).

Theorem 5.3. Let {An} be summable. Assume that X is a countable dense set of

linear functionals in H(Ωext
σ )∗. Then

spanL∈XLKH(Ωext
σ )(·, ·)

‖·‖H(Ωext
σ ) = H(Ωext

σ ).

The set of all finite linear combinations of outer harmonics is dense in the
space Pot (0)(Ωext

σ ) in the sense of ‖ · ‖C(0)(Ωext
σ ). Hence, H(Ωext

σ ) is a dense subset

of Pot (0)(Ωext
σ ), too. This leads us to the following corollary.

Corollary 5.4. Under the assumption of Theorem 5.3

spanL∈XLKH(Ωext
σ )(·, ·)

‖·‖
C(0)(Ωext

σ ) = Pot (0)(Ωext
σ ).

Next we come to the problem of specifying certain types of sequences {An}
such that H(Ωext

σ )(= H({An}; Ωext
σ )) is a reproducing kernel Hilbert space. We

restrict ourselves to those kernel functions which are usable later on in multiscale
approximation. Other types of kernel functions which are known from spline inter-
polation or smoothing procedures (see, for example, [14–16, 18, 20, 49, 55, 56, 72])
are not discussed here.

Our list of (reproducing) kernel functions is divided into two parts, namely
bandlimited kernel functions such as Shannon’s kernel, smoothed Shannon ker-
nels, etc., and non-bandlimited kernel functions such as rational kernel functions,
exponential kernel functions, (smoothed) Haar kernel functions, etc.

5.2. Bandlimited kernel functions

These kernel functions are characterized by the property that only a finite number
of coefficients An does not vanish. Consequently, the reproducing kernel Hilbert
space is of finite dimension.

At this stage two important cases of bandlimited kernels should be mentioned:

(a) The Shannon Kernel (see Figure 5.1). For a non-negative integer N we let

An =

{
1, n ∈ [0, N + 1),
0, n ∈ [N + 1,∞),

i.e., N (An) = {0, . . . , N}. Obviously, the reproducing kernel Hilbert space

H(Ωext
σ ) is equal to the space Harm0,...,N (Ωext

σ ) of outer harmonics of degree

≤ N . The reproducing kernel function KH(Ωext
σ )(·, ·) : Ωext

σ × Ωext
σ → R, i.e.,

the Shannon kernel, reads as follows:

KH(Ωext
σ )(x, y) =

∑
0≤n≤N

2n+1∑
m=1

H∗
n,m(σ;x)H∗

n,m(σ; y)

=
∑

0≤n≤N

2n+ 1

4πσ2

(
σ2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
. (5.1)
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Observing the well-known recursion relation for Legendre polynomials

(n+1)(Pn+1(t)−Pn(t))−n(Pn(t)−Pn−1(t)) = (2n+1)(t−1)Pn(t), n ≥ 1, (5.2)

we obtain for (x, y) ∈ Ωσ × Ωσ(
x

|x| ·
y

|y| − 1

)
KH(Ωext

σ )(x, y) =
N + 1

4πσ2

(
PN+1

(
x

|x| ·
y

|y|

)
− PN

(
x

|x| ·
y

|y|

))
.

(5.3)

(a) K(x, y) for N = 25 − 1 (b) K∧(n) for N = 25 − 1

(c) K(x, y) for N = 27 − 1 (d) K∧(n) for N = 27 − 1

Figure 5.1. Shannon kernel with N = 25 − 1 (above) and N = 27 − 1
(below): space domain, i.e., K(x, y) for (x, y) ∈ Ωσ × Ωσ in sectional
representation (left) and frequency domain, i.e., K∧(n) = An (right).

(b) Smoothed Shannon Kernels (see Figure 5.2). For (fixed) non-negative integers
N,M with N > M + 1 we let

An =

⎧⎪⎨⎪⎩
1, n ∈ [0,M + 1),
N−m
N−M , n ∈ [M + 1, N + 1),

0, n ∈ [N + 1,∞).

Of course, many other suitable choices can be found for practical purposes.
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(a) K(x, y) (b) K∧(n)

Figure 5.2. Smoothed Shannon kernel with M = 26 and N = 27 − 1:
space domain, i.e., K(x, y) for (x, y) ∈ Ωσ ×Ωσ in sectional representa-
tion (left) and frequency domain, i.e., K∧(n) = An (right).

5.3. Non-bandlimited kernel functions

All non-bandlimited kernels share the property that an infinite number of coef-
ficients An is different from zero. The corresponding reproducing Hilbert kernel
spaces are infinite-dimensional. We mention rational kernels, exponential kernels,
and “locally supported” kernels, i.e., (smoothed) Haar kernels.

(a) Rational Kernels (see Figure 5.3). Let {An} be a sequence of real numbers
An satisfying the following conditions:
(i) n �→ A2

n, n ∈ N0, is a (real) rational function (in the integer variable n).
(ii) There exist two positive constants C,C ′ with

C

(
n+ (12 )

σ

)2+ε

≤ A2
n ≤ C′

(
n+ (12 )

σ

)α

(5.4)

for some ε > 0, α ≥ 2 + ε.
Then the norm reads

‖F‖2H(Ωext
σ )

=

∞∑
n=0

2n+1∑
m=1

A2
n (F∧(n,m))

2
.

For the reproducing kernel in H(Ωext
σ ) we find the representation

KH(Ωext
σ )(x, y) =

∞∑
n=0

1

A2
n

2n+ 1

4πσ2

(
σ2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
.

{
An

(
n+ 1

2

σ

)−β
}

is summable for all β < ε/2.

(b) Exponential Kernels . An alternative to come to candidates of reproducing
kernel sum representations with an exponential rate of convergence is to use
a sequence {An} of the form

An =
( σ

σ′
)n

Bn, n ∈ N , (5.5)
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(a) K(x, y) (b) K∧(n)

Figure 5.3. Rational kernel with A2
n = (1 + n)−s, s = 6.5 : space

domain, i.e., K(x, y) for (x, y) ∈ Ωσ × Ωσ in sectional representation
(left) and frequency domain, i.e., K∧(n) = An (right).

with σ′ < σ and Bn satisfying

0 < B2
n ≤ C′

(
n+ (12 )

σ

)α

(5.6)

for all n ∈ N , some value α and a positive constant C′. The radius σ′(< σ)
should be taken close to the value σ (i.e., σ′ is assumed to be the radius of a
Runge sphere so that σ/σ′ is close to 1). It is evident that an “inner radius” σ′

gives additional flexibility in choosing the norm of the Hilbert space and also
results in more general sequences {An} being possible. On the other hand,
the radius σ′ appears as an artificial value in the infinite sum of the kernel
to force an exponential rate of sum convergence. In conclusion, the sequence{
An

(
n+ 1

2

σ

)−β
}

is summable for every β.

Kernel representations of type (5.5) for (x, y) ∈ Ωext
σ × Ωext

σ

KH(Ωext
σ )(x, y) =

∑
n∈N

1

B2
n

2n+ 1

4πσ′2

(
σ′2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
are well known from geophysical applications (see, for example, [14, 32, 55,
72]).

Far- and Near-Field Methods as well as Multipole Methods are explained
in the Ph.D.-thesis [39] and can also be found in [24, 40, 41] and in the
contribution [42] in this volume.

Of particular importance for purposes of minimum norm (spline) in-
terpolation and smoothing (cf., e.g., [14–16, 18, 72]) are kernels, which are
available in terms of elementary functions. We only mention here (cf. [52]):
(i) Abel–Poisson kernel (see Figure 5.4):

B2
n = 1, n ∈ N0. (5.7)
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(a) K(x, y) for σ′
σ

= 0.7 (b) K∧(n) for σ′
σ

= 0.7

(c) K(x, y) for σ′
σ

= 0.9 (d) K∧(n) for σ′
σ

= 0.9

Figure 5.4. Abel–Poisson kernel with σ′
σ = 0.7 (above) and σ′

σ = 0.9
(below): space domain, i.e., K(x, y) for (x, y) ∈ Ωσ × Ωσ in sectional
representation (left) and frequency domain, i.e., K∧(n) = An (right).

The kernel reads as follows:

KH(Ωext
σ )(x, y) =

|x| |y|
4πσ′2

|x|2|y|2 − σ′4

(L(x, y))3/2
, x, y ∈ Ωext

σ ,

where we have used the abbreviation

L(x, y) = |x|2|y|2 − 2σ′2x · y + σ′4.

(ii) “Singularity kernel” (see Figure 5.5)

B2
n = (2n+ 1)/2, n ∈ N0. (5.8)

The kernel is given by

KH(Ωext
σ )(x, y) =

1

4π

1

(L(x, y))
1
2

, x, y ∈ Ωext
σ .

(iii) “Logarithmic kernel” (see Figure 5.6)

B2
n = (2n+ 1)(n+ 1), n ∈ N0. (5.9)
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(a) K(x, y) (b) K∧(n)

Figure 5.5. Singularity kernel with σ′
σ = 0.7: space domain, i.e.,

K(x, y) for (x, y) ∈ Ωσ × Ωσ in sectional representation (left) and fre-
quency domain, i.e., K∧(n) = An (right).

(a) K(x, y) (b) K∧(n)

Figure 5.6. Logarithmic kernel with σ′
σ = 0.7: space domain, i.e.,

K(x, y) for (x, y) ∈ Ωσ × Ωσ in sectional representation (left) and fre-
quency domain, i.e., K∧(n) = An (right).

Now we have

KH(Ωext
σ )(x, y) =

1

4πσ′2 ln
(
1 +

2σ′2

M(x, y)

)
, x, y ∈ Ωext

σ ,

with

M(x, y) = (L(x, y))
1
2 + |x| |y| − σ′2.

(c)“Locally Supported” Kernels (Smoothed Haar Kernels, see Figure 5.7):

Consider the piecewise polynomial function B
(k)
h : [−1,+1] → R, k = 0, 1, . . .

and h ∈ (0, 1) given by

B
(k)
h (t) =

{
0, t ∈ [−1, h),
(t−h)k

(1−h)k , t ∈ [h, 1],
(5.10)
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(cf. [5, 20, 21, 26, 35, 67]). Let ξ ∈ Ω = Ω1 be fixed. Then the ξ-zonal function

B
(k)
h (ξ ·) : Ω → R has a local support. More explicitly, the support of B

(k)
h (ξ ·)

is the cap with centre ξ characterized by

suppB
(k)
h (ξ ·) = {η ∈ Ω : h ≤ ξ · η ≤ 1}.

The ξ-zonal function B
(0)
h (ξ ·) : Ω → R given by

B
(0)
h (ξ · η) =

{
0 for ξ · η ∈ [−1, h),

1 for ξ · η ∈ [h, 1].

is called the Haar kernel at position ξ ∈ Ω, while B
(k)
h (ξ ·), k > 0, are called

“smoothed” Haar kernels at position ξ ∈ Ω.

(a) Haar kernel K(x, y) (b) Symbol K∧(n) of the Haar kernel

(c) Smoothed Haar kernel K(x, y) (d) Symbol K∧(n) of the smoothed
Haar kernel

Figure 5.7. Haar kernel (above) and smoothed Haar kernel (below)
with h = 0.7: space domain, i.e.,K(x, y) for (x, y) ∈ Ωσ×Ωσ in sectional
representation (left) and frequency domain, i.e., K∧(n) = An (right).

An easy calculation shows that the iterated “Haar kernel”

(B
(k)
h )(2)(ξ ·) = (B

(k)
h ∗L2(Ω) B

(k)
h )(ξ ·)

also has a cap with centre ξ as a local support:

supp(B
(k)
h )(2)(ξ ·) = {η ∈ Ω : 2h2 − 1 ≤ ξ · η ≤ 1}.
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Expanding B
(k)
h in terms of Legendre polynomials we obtain

B
(k)
h =

∞∑
n=0

2n+ 1

4π
(B

(k)
h )∧(n)Pn, (5.11)

where

(B
(k)
h )∧(n) = 2π

∫ +1

−1

(
t− h

1− h

)k

Pn(t) dt, n = 0, 1, . . . .

The recurrence formulae for Legendre polynomials give us

(k + 1)(B
(k)
h )∧(0) = 2π(1− h), (5.12)

(k + 2)(B
(k)
h )∧(1) = (k + 1 + h)(B

(k)
h )∧(0), (5.13)

(n+ k + 2)(B
(k)
h )∧(n+ 1) = (2n+ 1)h(B

(k)
h )∧(n)

+ (k + 1− n)(B
(k)
h )∧(n− 1) (5.14)

(for more details the reader is referred to [26]).

For k = 0 it is easy to see that
∣∣∣(B(0)

h )∧(n)
∣∣∣ = O(n−3/2), n → ∞.

Moreover, from the recurrence relations Eqs. (5.12)–(5.14) it follows that∣∣∣(B(k)
h )∧(n)

∣∣∣ = O(n−(3/2)−k), n → ∞.

Furthermore, [67] has shown the following statements:

(i) (B
(k)
h )∧(n) �= 0 for n = 0, 1, . . ., k + 2.

(ii) For n ≥ k + 2, (B
(k)
h )∧(n) = 0 if and only if C

k+ 3
2

n−k−1(h) = 0 (where

C
k+ 3

2
m is the Gegenbauer polynomial of order m with respect to k + 3

2 ).

This leads us to the following result: For k ≥ 0, h ∈ (0, 1), the sequence

An =

{
((B

(k)
h )∧(n))−1, n ∈ N ,

0, n ∈ N0

(5.15)

is summable.

In case of locally supported kernels we have the following lemma:

Lemma 5.5. H(Ωext
σ ) ⊂ Pot (0)(Ωext

σ ), as defined by (5.15), is a reproducing kernel
Hilbert space with the reproducing kernel

KH(Ωext
σ )(x, y) =

∑
n∈N

((
B

(k)
h

)(2))∧
(n)

2n+ 1

4πσ2

(
σ2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
.

(5.16)
Moreover, for x = σξ, y = ση, we have

σ2KH(Ωext
σ )(x, y)

∣∣∣∣|x|=σ,
|y|=σ

=
(
B

(k)
h

)(2)( x

|x| ·
y

|y|

)
=
(
B

(k)
h

)(2)
(ξ · η),
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where

supp
(
B

(k)
h

)(2)(
· x

|x|

)
=

{
y ∈ Ωσ : 2h2 − 1 ≤ x

|x| ·
y

|y| ≤ 1

}
.

In other words, reproducing kernel Hilbert spaces of potentials defined
on and outside the sphere Ωσ are found such that the “restriction” (x, y) �→
KH(Ωext

σ )(x, y), (x, y) ∈ Ωσ × Ωσ, is a locally supported (zonal) function on Ωσ

(note that (B
(k)
h )(2)(ξ · η) is a zonal function, i.e., depends only on the scalar

product of the unit vectors ξ and η).

6. Ill-posedness of the satellite problems

The question of subsets X ⊂ Ωext
γ on which observations are required in order

to uniquely determine the potential F |Σext , is answered in this section. In order
to handle existence and stability of the solution we give a reformulation of the
pseudodifferential operators as convolution operators.

6.1. Scalar SST and SGG problem

Throughout the remaining part of this contribution, the sequence {An} ∈ A gener-

ating the reference space H(Ωext
σ ) for gravitational field determination is assumed

to satisfy the so-called ‘consistency conditions’:

Definition 6.1. A sequence {An} ∈ A is said to satisfy the consistency conditions
(CC1) and (CC2) relative to [σ, σinf), if the following conditions are satisfied:

(CC1) An is different from 0 for all n ∈ N0, i.e.,

An �= 0, n = 0, 1, . . . , (6.1)

and

(CC2) there exists a value τ with σ ≤ τ < σinf such that
∞∑

n=0

(2n+ 1)
(σ
τ

)n 1

A2
n

< ∞. (6.2)

The “downward continuation problem” of determining the potential F ∈
Hs(Ωext

σ ) from “satellite data” G ∈ Hs(Ωext
γ ) reads as follows.

(i) (Scalar) SST Problem (Corresponding to the First-order Radial Derivative).

Let the values G(x), x ∈ X , for some subset X ⊂ Ωext
γ be known from a

function G of the class Hs(Ωext
γ ). We search for a potential F |Σext with F

being from Hs(Ωext
σ ) that fulfills the (scalar) SST operator equation with the

SST operator Λ : Hs(Ωext
σ ) → Hs(Ωext

γ ) given by

ΛF (x) = G(x), x ∈ X, (6.3)

where

(ΛF )(x) =

(
− x

|x| · ∇x

)
F (x)||x|=γ = G(x), x ∈ X. (6.4)
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Equation (6.4) means that the SST operator is the composition of the radial
derivative and the upward continuation operator. Having in mind that the
symbol of a pseudodifferential operator Λ : Hs(Ωext

σ ) → Hs(Ωext
γ ) satisfies

ΛHs
n,m(σ; ·) = Λ∧(n)Hs

n,m(γ; ·), we have

Λ∧(n) =
n+ 1

γ

(
σ

γ

)n

, n = 0, 1, . . . , (6.5)

and the SST operator is given by

ΛF (x) =
∞∑
n=0

2n+1∑
m=1

Λ∧(n)F∧(n,m)Hs
n,m(γ;x). (6.6)

(ii) (Scalar) SGG problem (Corresponding to the Second-order Radial Derivative).

Let the values G(x), x ∈ X , for some subset X ⊂ Ωext
γ be known from a func-

tion G of the class Hs(Ωext
γ ). We search for a potential F |Σext with F being

from Hs(Ωext
σ ) such that

ΛF (x) = G(x), x ∈ X, (6.7)

where the SGG operator Λ : Hs(Ωext
σ ) → Hs(Ωext

γ ) with the symbol

Λ∧(n) =
(n+ 1)(n+ 2)

γ2

(
σ

γ

)n

, n = 0, 1, . . . , (6.8)

is given by

ΛF (x) =

(
− x

|x| · ∇x

)(
− x

|x| · ∇x

)
F (x)||x|=γ

=

∞∑
n=0

2n+1∑
m=1

Λ∧(n)F∧(n,m)Hs
n,m(γ;x). (6.9)

In the case of combined SST/SGG data we have the following formulation in terms
of pseudodifferential operators.

(iii) Combined (scalar) SST/SGG problem. Let the values G1(x), x ∈ X1 ⊂ Ωext
γ

and G2(x), x ∈ X2 ⊂ Ωext
γ be known from a function of class Hs(Ωext

γ ). Let
the symbols of the two corresponding pseudodifferential operators Λ1 and Λ2

be given by

Λ∧
1 (n) =

(
σ

γ

)n
n+ 1

γ
, n = 0, 1, . . . for SST, (6.10)

Λ∧
2 (n) =

(
σ

γ

)n
(n+ 1)(n+ 2)

γ2
, n = 0, 1, . . . for SGG. (6.11)

Find a potential F ∈ Hs(Ωext
σ )|Σext such that

(Λ1F ) (x) = G1(x), x ∈ X1, (6.12)

(Λ2F ) (x) = G2(x), x ∈ X2. (6.13)



Geodetic Observables and Their Mathematical Treatment 359

In order to give an answer to the question of subsets X ⊂ Ωext
γ on which

data are necessary to assure uniqueness of the solution F , we define Hs(Ωext
σ )-

fundamental systems.

Definition 6.2. A system X = {xn}n=0,1,... of points xn ∈ Ωext
γ is called an

Hs(Ωext
σ )-fundamental system in Ωext

γ , if the conditions F ∈ Hs(Ωext
σ ) and

F (xn) = 0 for n = 0, 1, . . . imply F = 0.

For fundamental systems we get the following uniqueness theorems which are
proved in the Ph.D.-thesis [58].

Theorem 6.3. Let X = {xn}n=0,1,... be an Hs(Ωext
σ )-fundamental system in Ωext

γ .
Then the potential F |Σext solving the (scalar) SST or SGG problem is uniquely
defined.

Theorem 6.4. Let X1 ⊂ Ωext
σ , X2 ⊂ Ωext

σ such that X = X1 ∪ X2 = {xn}n=0,1,...

is an Hs(Ωext
σ )-fundamental system in Ωext

γ . Then the potential F |Σext solving the
combined (scalar) SST/SGG problem is uniquely defined.

In order to present the results concerning the ill-posedness of the satellite
problems, we essentially follow [19]. We reformulate the SST and SGG problem as
a convolution equation using kernel functions.

Definition 6.5. Let α, β ∈ R, α ≥ σ and β ≥ σ. Then any kernel Kα,β(·, ·) :

Ωext
α × Ωext

β → R of the form

Kα,β(x, y) =
∞∑
n=0

K∧(n)
2n+1∑
m=1

Hs
n,m(α;x)Hs

n,m(β; y) (6.14)

(x, y) ∈ Ωext
α × Ωext

β , is called an Hα,β-kernel.

The sequence {(Kα,β)∧(n)}n∈N0 with (Kα,β)∧(n) =
(

αβ
σ2

)n
K∧(n), n =

0, 1, . . ., is called the (α, β)-symbol of the Hα,β-kernel K
α,β(·, ·). The (σ, σ)-symbol

of the Hα,β-kernel K
α,β(·, ·) is simply called the symbol of the Hα,β-kernel.

Definition 6.6. An Hα,β-kernel K
α,β(·, ·) with symbol {K∧(n)}n=0,1,... is called

admissible, if the following conditions are satisfied:

(i)
∑∞

n=0(K
∧(n))2 < ∞,

(ii)
∑∞

n=0(2n+ 1) (K∧(n))2
(

σ
n+ 1

2

)2s
< ∞.

The first property in Definition 6.6 ensures that K∧(n) → 0 as n → ∞,
whereas the second condition implies the following lemma.

Lemma 6.7. Let α, β ∈ R, α ≥ σ, β ≥ σ.

(i) If Kα,β(·, ·) is an admissible Hα,β-kernel with the symbol {K∧(n)}n=0,1,...,

then Kα,β(x, ·) is an element of Hs(Ωext
β ) for every (fixed) x ∈ Ωext

α .
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(ii) If Kα,β(·, ·) is an admissible Hα,β-kernel with the symbol {K∧(n)}n=0,1,...,

then Kα,β(·, y) is an element of Hs(Ωext
α ) for every (fixed) x ∈ Ωext

β .

Suppose now that F,G are elements of class Hs(Ωext
σ ). Then we understand

the Hs(Ωext
σ )-convolution of F and G simply to be the inner product in Hs(Ωext

σ ),
i.e.:

F ∗G = (F,G)Hs(Ωext
σ ). (6.15)

(More precisely, we had to write F ∗G = F ∗Hs(Ωext
σ ) G.) By definition, we let

F∧(n, k) = F ∗Hs
n,k(σ; ·) (6.16)

for n ∈ N (An); k = 1, . . . , 2n+ 1. It follows from (6.15) via the Parseval identity
that

F ∗G =
∑
n∈N

2n+1∑
k=1

F∧(n, k)G∧(n, k),

for F,G ∈ Hs(Ωext
σ ).

We now define the convolution of an admissibleHα,β-kernel against a function

F ∈ Hs(Ωext
β ) as follows:

(Kα,β ∗ F )(x) = Kα,β(x, ·) ∗ F

=

∞∑
n=0

2n+1∑
m=1

K∧(n)F∧(n,m)Hs
n,m(α;x), x ∈ Ωext

α . (6.17)

It directly follows that (Kα,β ∗ F )∧(n,m) = K∧(n)F∧(n,m) and Kα,β ∗ F ∈
Hs(Ωext

α ). In analogous way we define the convolution of an Hα,β-kernel K
α,β(·, ·)

against a function F ∈ Hs(Ωext
α ) by

(Kα,β ∗ F )(y) = Kα,β(·, y) ∗ F

=
∞∑

n=0

2n+1∑
m=1

K∧(n)F∧(n,m)Hs
n,m(β; y), y ∈ Ωext

β , (6.18)

and Kα,β ∗ F is an element of Hs(Ωext
β ).

If L, K are admissible Hσ,σ-kernels, then the Hs(Ωext
σ )-convolution L ∗ K is

defined by

(L ∗K)(x, y) = (L(x, ·),K(·, y))Hs(Ωext
σ ), (x, y) ∈ Ωext

σ × Ωext
σ .

Obviously, (L ∗K)(·, ·) is an admissible Hσ,σ-kernel, and it is not difficult to see
that

(L ∗K)∧(n) = L∧(n)K∧(n), n ∈ N
(
(K∧(n)L∧(n))−1An

)
.

We usually write K(2)(·, ·) = (K ∗K)(·, ·) to indicate the convolution of an
Hσ,σ-kernel with itself. K(2)(·, ·) = (K ∗ K)(·, ·) is said to be the iterated ker-

nel of K(·, ·). More generally, K(p)(·, ·) = (K(p−1) ∗ K)(·, ·) for p = 2, 3, . . ., and
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K(1)(·, ·) = K(·, ·) for p = 1. Obviously, we have

(K(2))∧(n) = (K∧(n))2.

In order to give an answer to the question of ill-posedness of the (scalar)
SST or SGG problem, the continuity of the inverse additionally has to be inves-
tigated. The answer to this question requires the reformulation of the problem as
convolution equation. Starting from a pseudodifferential operator Λ : Hs(Ωext

σ ) →
Hs(Ωext

γ ) given by

ΛF =

∞∑
n=0

2n+1∑
m=1

Λ∧(n)F∧(n,m)Hs
n,m(γ; ·), (6.19)

we can interpret the symbol of the pseudodifferential operator as the symbol of an
Hσ,γ-kernel (K

Λ)σ,γ presuming that the symbol satisfies the admissibility condi-
tions. The pseudodifferential operator is then given by the convolution identity

ΛF (x) = (KΛ)σ,γ(·, x) ∗ F, x ∈ Ωext
γ , (6.20)

for F ∈ Hs(Ωext
σ ), where (KΛ)∧(n) = Λ∧(n), n = 0, 1, . . .. Obviously, we have

(KΛ)σ,γ(·, x) ∗Hs
n,m(σ; ·) = (KΛ)γ,σ(x, ·) ∗Hs

n,m(σ; ·)
= Λ∧(n)Hs

n,m(γ;x), (6.21)

for all n ∈ N; m = 1, . . . , 2n+ 1, or, equivalently,

ΛHs
n,m(σ; ·) = Λ∧(n)Hs

n,m(γ; ·). (6.22)

Having a look at the (scalar) SST and SGG operator, we get the following result.

Theorem 6.8. The Hσ,γ-kernel (K
Λ)σ,γ defined by the symbol

Λ∧(n) =

⎧⎨⎩
(

σ
γ

)n
n+1
γ , n = 0, 1, . . . for SST,(

σ
γ

)n
(n+1)(n+2)

γ2 , n = 0, 1, . . . for SGG,
(6.23)

is admissible, if {
(

n+ 1
2

σ

)s
} is summable in the sense of Eq. (3.3).

Theorem 6.9. Let Λ : Hs(Ωext
σ ) → Hs(Ωext

γ ) be a pseudodifferential operator with

(KΛ)σ,γ satisfying the admissibility conditions. Then the pseudodifferential opera-
tor Λ is bounded and ‖Λ‖ = max

n∈N0

|Λ∧(n)|. Further on, Λ is an injective operator.

From functional analysis (see, e.g., [70, 77]), we know that the SST and SGG
operators are compact as being so-called Hilbert–Schmidt operators. Summing up
the preceding considerations we finally get the following result.

Theorem 6.10. Let

ΛF = G, F ∈ Hs(Ωext
σ ), G ∈ Hs(Ωext

γ ), (6.24)
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be the (scalar) SST or SGG problem. Then Λ is a compact operator with infinite-

dimensional range. Furthermore, Λ−1 is not bounded on Hs(Ωext
γ ). The (scalar)

SST or SGG problem is solvable if and only if

∞∑
n=0

2n+1∑
m=1

(
G∧(n,m)

Λ∧(n)

)2

< ∞. (6.25)

Remembering Hadamard’s definition of a well-posed problem (existence,
uniqueness and continuity of the inverse), we consequently see that the (scalar)
SST or SGG problem is ill posed, as it violates the first and third condition.

6.2. Vectorial SST and SGG problem

Following [58], we additionally formulate uniqueness results for the (vectorial)

SST and SGG problems. Let Hs(Ωext
σ ) be a (scalar) Sobolev space with

(
n+ 1

2

σ

)s
satisfying the consistency condition (CC2) relative to [σ, τ) (see Eq. (6.2)). Further

on, let h
(i)
s (Ωext

γ ), i = 1, 2, be (vectorial) Sobolev spaces. Then the “downward

continuation problem” of determining the potential F ∈ Hs(Ωext
σ ) from “satellite

data” g ∈ h
(1)
s (Ωext

γ )⊕ h
(2)
s (Ωext

γ ) reads as follows.

(i) (Vectorial) SST problem (Corresponding to the First-order Tangential Deriv-

ative). Let the values g(x), x ∈ X , for some subset X ⊂ Ωext
γ be known from

a function g of the class h
(1)
s (Ωext

γ ) ⊕ h
(2)
s (Ωext

γ ). We search for a potential

F |Σext with F being of the class Hs(Ωext
σ ) such that

λF (x) = g(x), x ∈ X, (6.26)

where the SST Operator λ : Hs(Ωext
σ ) → h

(1)
s (Ωext

γ )⊕ h
(2)
s (Ωext

γ ) is given by

(λF )(x) = ∇∗,σ
ξ F (x)||x|=γ , (6.27)

with x = |x|ξ. Observing the symbol

λ(i)∧(n) =

⎧⎨⎩
(

σ
γ

)n
n
γ

√
n+1
2n+1 , i = 1; n = 0, 1, . . . ,(

σ
γ

)n
n+1
γ

√
n

2n+1 , i = 2; n = 1, 2, . . . ,
(6.28)

the (vectorial) SST operator can be written as

λF (x) =

2∑
i=1

∞∑
n=1

2n+1∑
m=1

λ(i)∧(n)F∧(n,m)h(i)s
n,m(γ;x). (6.29)

In the case of SGG-data the mixed derivatives can be handled within vectorial
framework.

(ii) (Vectorial) SGG problem (Corresponding to the Second-order Mixed Deriva-

tives). Let the values g(x), x ∈ X , for some subset X ⊂ Ωext
γ be known from
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a function g of the class h
(1)
s (Ωext

γ ) ⊕ h
(2)
s (Ωext

γ ). We search for a potential

F |Σext with F being of the class Hs(Ωext
σ ) such that

λF (x) = g(x), x ∈ X, (6.30)

where the SGG operator λ : Hs(Ωext
σ ) → h

(1)
s (Ωext

γ )⊕ h
(2)
s (Ωext

γ ) with symbol

λ(i)∧(n) =

⎧⎨⎩
(

σ
γ

)n
n(n+1)

γ2

√
n+1
2n+1 , i = 1; n = 0, 1, . . . ,(

σ
γ

)n
(n+1)2

γ2

√
n

2n+1 , i = 2; n = 1, 2, . . . ,
(6.31)

is given by
2∑

i=1

∞∑
n=1

2n+1∑
m=1

λ(i)∧(n)F∧(n,m)h(i)s
n,m(γ;x). (6.32)

In order to give an answer to the question of subsets X ⊂ Ωext
γ on which data

are necessary to get uniqueness of the solution F , we define h
(i)
s (Ωext

σ )-fundamental
systems.

Definition 6.11. A system X = {xn}n=0,1,... of points xn ∈ Ωext
σ is called an

h
(i)
s (Ωext

σ )-fundamental system in Ωext
σ , if the conditions g ∈ h

(i)
s (Ωext

σ ) and
g(xn) = 0 for n ∈ N0 imply g = 0, i ∈ {1, 2, 3}. Further on, X is called an

h
(i)
s (Ωext

σ ) ⊕ h
(j)
s (Ωext

σ )-fundamental system, if g ∈ h
(i)
s (Ωext

σ ) ⊕ h
(j)
s (Ωext

σ ) and
g(xn) = 0 for n ∈ N0 imply g = 0 for i, j ∈ {1, 2, 3} with i �= j.

We now obtain the following uniqueness theorem.

Theorem 6.12. Let X = {xn}n=0,1,... be an h
(1)
s (Ωext

γ ) ⊕ h
(2)
s (Ωext

γ )-fundamental

system in Ωext
γ . Then the potential F |Σext solving the (vectorial) SST or SGG

problem is uniquely defined up to an additive constant C.

Definition 6.13. Let α, β ∈ R, α ≥ σ and β ≥ σ. Then any kernel k(i),α,β(·, ·) :

Ωext
α × Ωext

β → R3 of the form

k(i),α,β(x, y) =
∞∑

n=0i

k(i)∧(n)
2n+1∑
m=1

Hs
n,m(α;x)h(i)s

n,m(β; y), (6.33)

(x, y) ∈ Ωext
α × Ωext

β , is called an h
(i)
α,β-kernel. Furthermore,

kα,β(x, y) =

3∑
i=1

k(i),α,β(x, y), (6.34)

(x, y) ∈ Ωext
α × Ωext

β , is called an hα,β-kernel.

The sequence {
(
k(i),α,β

)∧
(n)}n∈N0i

with(
k(i),α,β

)∧
(n) =

(
αβ

σ2

)n

k(i)∧(n), n = 0i, . . . , (6.35)
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is called the (α, β)-symbol of the h
(i)
α,β-kernel k

(i),α,β(·, ·). The (σ, σ)-symbol of the

h
(i)
α,β-kernel k

(i),α,β(·, ·) is simply called the symbol of the h
(i)
α,β-kernel.

Definition 6.14. An h
(i)
α,β-kernel k

(i),α,β(·, ·) with symbol {k(i)∧(n)}n=0i,... is called
admissible, if the following conditions are satisfied:

(i)
∑∞

n=0i
(k(i)∧(n))2 < ∞,

(ii)
∑∞

n=0i
(2n+ 1)

(
k(i)∧(n)

)2 ( σ
n+ 1

2

)2s
< ∞,

(iii) (a)
∑∞

n=0(2n+ 1)(2n+ 3)
(
k(1)∧(n)

)2 ( σ
n+ 1

2

)2s
< ∞,

(b)
∑∞

n=1(2n+ 1)(2n− 1)
(
k(2)∧(n)

)2 ( σ
n+ 1

2

)2s
< ∞,

(c)
∑∞

n=1(2n+ 1)(2n+ 1)
(
k(3)∧(n)

)2 ( σ
n+ 1

2

)2s
< ∞.

Furthermore, the hα,β-kernel is called admissible, if the h
(i)
α,β-kernels, i ∈ {1, 2, 3},

are admissible.

The second and the third condition imply the following lemma.

Lemma 6.15. Let α, β ∈ R, α ≥ σ, β ≥ σ.

(i) If k(i),α,β(·, ·) is an admissible h
(i)
α,β-kernel with the symbol {k(i)∧(n)}n=0i,...,

then k(i),α,β(x, ·) is an element of h
(i)
s (Ωext

β ) for every (fixed) x ∈ Ωext
α .

(ii) If k(i),α,β(·, ·) is an admissible h
(i)
α,β-kernel with the symbol {k(i)∧(n)}n=0i,...,

then the component functions k(i),α,β(·, y)T εl are elements of Hs(Ωext
α ) for

every (fixed) x ∈ Ωext
β , l ∈ {1, 2, 3}.

Our next step is the definition of the convolution of an admissible h
(i)
α,β-kernel

against a function f ∈ hs(Ωext
β ) as follows:

(k(i),α,β ∗ f)(x) = k(i),α,β(x, ·) ∗ f

=
∞∑

n=0i

2n+1∑
m=1

k(i)∧(n)f (i)∧(n,m)Hs
n,m(α;x), x ∈ Ωext

α . (6.36)

It directly follows that (k(i),α,β ∗ f)∧(n,m) = k(i)∧(n)f (i)∧(n,m), n = 0i, i ∈
{1, 2, 3}, and k(i),α,β ∗f ∈ Hs(Ωext

α ). In an analogous way we define the convolution

of an hα,β-kernel k
α,β(·, ·) against a function F ∈ Hs(Ωext

α ) by

(kα,β � F )(y) = kα,β(·, y) � F

=

3∑
i=1

∞∑
n=0i

2n+1∑
m=1

k(i)∧(n)F∧(n,m)h(i)s
n,m(β; y), y ∈ Ωext

β , (6.37)

and kα,β � F is an element of hs(Ωext
β ).

Our next purpose is to present the formulation of the vectorial SST respec-
tively SGG operators with the help of convolutions. This enables us to give an
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answer to the question of continuity of the inverse. We start from a pseudodiffer-
ential operator λ : Hs(Ωext

σ ) → hs(Ωext
γ ) given by

λF =

3∑
i=1

∞∑
n=0i

2n+1∑
m=1

λ(i)∧(n)F∧(n,m)h(i)s
n,m(γ; ·), (6.38)

and interpret the symbol of the pseudodifferential operator as the symbol of an
hσ,γ-kernel (k

λ)σ,γ presuming that the symbol satisfies the admissibility condi-
tions. The pseudodifferential operator is then given by the convolution identity

λF (x) = (kλ)σ,γ(·, x) � F, x ∈ Ωext
γ , (6.39)

for F ∈ Hs(Ωext
σ ), where (kλ)(i)∧(n) = λ(i)∧(n), i = 1, 2, 3; n = 0i, . . .. Obviously,

we have

(kλ
(i)

)σ,γ(·, x) � Hs
n,m(σ; ·) = λ(i)∧(n)h(i)s

n,m(γ;x), (6.40)

for all i = 1, 2, 3; n = 0i, . . .; m = 1, . . . , 2n+ 1, or, equivalently

λ(i)Hs
n,m(σ; ·) = λ(i)∧(n)h(i)s

n,m(γ; ·). (6.41)

Having a look at the (vectorial) SST and SGG operator, we get the following
result.

Theorem 6.16. The hσ,γ-kernel (k
λ)σ,γ defined by the symbol

(kλ)(1)∧(n) = λ(1)∧(n) =

⎧⎨⎩
(

σ
γ

)n
n
γ

√
n+1
2n+1 , n = 0, 1, . . . for SST,(

σ
γ

)n
n(n+1)

γ2

√
n+1
2n+1 , n = 0, 1, . . . for SGG,

(6.42)
and

(kλ)(2)∧(n) = λ(2)∧(n) =

⎧⎨⎩
(

σ
γ

)n
n+1
γ

√
n

2n+1 , n = 1, 2, . . . for SST,(
σ
γ

)n
(n+1)2

γ2

√
n

2n+1 , n = 1, 2, . . . for SGG,

(6.43)

is admissible, if {
(

n+ 1
2

σ

)s
} is summable and satisfies, in addition, condition (iii)

in Definition 6.14.

Theorem 6.17. Let λ : Hs(Ωext
σ ) → hs(Ωext

γ ) be a pseudodifferential operator with

(kλ)σ,γ satisfying the admissibility conditions, and λ(i)∧(n) �= 0, i ∈ {1, 2, 3},
n = 0i, . . .. Then the pseudodifferential operator λ is bounded and

‖λ‖ = max
n∈N0

∣∣∣∣ 3∑
i=1

λ(i)∧(n)
∣∣∣∣, (6.44)

where we let λ(2)∧(0) = λ(3)∧(0) = 0. Further on, λ is an injective operator.
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Finally, we get the following result.

Theorem 6.18. Let

λF = g, F ∈ Hs(Ωext
σ ), g ∈ h(1)

s (Ωext
γ )⊕ h(2)

s (Ωext
γ ) (6.45)

be the (vectorial) SST or SGG problem. Then λ is a compact operator with infinite-

dimensional range. Furthermore, λ−1 is not bounded on h
(1)
s (Ωext

γ ) ⊕ h
(2)
s (Ωext

γ ).
The SST/SGG problem is solvable if and only if

2∑
i=1

∞∑
n=0i

2n+1∑
m=1

(
g(i)∧(n,m)

λ(i)∧(n)

)2

< ∞. (6.46)

We consequently get that the (vectorial) SST/SGG problem is ill posed be-
cause existence and continuity of the inverse are violated.

6.3. Tensorial SGG problem

The formulation of the definitions and theorems for the tensorial case is straight-
forward. Let Hs(Ωext

σ ) be a (scalar) Sobolev space satisfying the consistency con-

dition (CC2) relative to [σ, τ) (see Eq. (6.2)). Further on, let h
(i,k)
s (Ωext

γ ), (i, k) ∈
{(1, 1), (1, 2), (2, 1), (2, 2)}, be (tensorial) Sobolev spaces. Then the “downward

continuation problem” of determining the potential F ∈ Hs(Ωext
σ ) from “satel-

lite data” g ∈ hSGG
s (Ωext

γ ), where we use the abbreviation

hSGG
s (Ωext

γ ) = h(1,1)(Ωext
γ )⊕ h(1,2)

s (Ωext
γ )⊕ h(2,1)

s (Ωext
γ )⊕ h(2,2)

s (Ωext
γ ), (6.47)

reads as follows.

(i) (Tensorial) SGG problem (Corresponding to the Second-order Tangential Der-

ivative). Let the values g(x), x ∈ X , for some subset X ⊂ Ωext
γ be known

from a function g of the class hSGG
s (Ωext

γ ). We search for a potential F |Σext

with F being from Hs(Ωext
σ ) such that

λF (x) = g(x), x ∈ X, (6.48)

where the SGG operator λ : Hs(Ωext
σ ) → hSGG

s (Ωext
γ ) is given by

( λF )(x) = ∇∗,σ ⊗∇∗,σF (x)||x|=γ , (6.49)

with x = |x|ξ. With the help of the symbol

λ(i,k)∧(n)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
σ
γ

)n
n(n+1)

γ2(2n+1)(2n+3)

√
ν
(1,1)
n , (i, k) = (1, 1), n = 0, 1, . . . ,

−
(

σ
γ

)n
(n+1)(n−1)

γ2((2n−1)(2n+1)

√
ν
(1,2)
n , (i, k) = (1, 2), n = 1, 2, . . . ,

−
(

σ
γ

)n
n(n+2)

γ2(2n+3)(2n+1)

√
ν
(2,1)
n , (i, k) = (2, 1), n = 0, 1, . . . ,(

σ
γ

)n
n(n+1)(n+2)

γ2(2n−1)(2n+1)

√
ν
(2,2)
n , (i, k) = (2, 2), n = 2, 3, . . . ,

(6.50)
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with

ν(1,1)n = (n+ 1)(n+ 2)(2n+ 1)(2n+ 3), (6.51)

ν(1,2)n = 3n4, (6.52)

ν(2,1)n = (n+ 1)2(2n+ 1)(2n+ 3), (6.53)

ν(2,2)n = n(n− 1)(2n− 1)(2n+ 1), (6.54)

the SGG operator can be written as

λF (x) =
∑

(i,k)∈ISGG

∞∑
n=0ik

2n+1∑
m=1

λ(i,k)∧(n)F∧(n,m)h(i,k)s
n,m (γ;x), (6.55)

where ISGG = {(1, 1), (1, 2), (2, 1), (2, 2)} is the index set for the tensorial
SGG problem.

In order to give an answer to the question of subsets X ⊂ Ωext
γ on which

data are necessary to get uniqueness of the solution F , we define h
(i,k)
s (Ωext

σ )-
fundamental systems.

Definition 6.19. A system X = {xn}n=0,1,... of points xn ∈ Ωext
σ is called an

h
(i,k)
s (Ωext

σ )-fundamental system in Ωext
σ , if the conditions g ∈ h

(i,k)
s (Ωext

σ ) and
g(xn) = 0 for n ∈ N0 imply g = 0, i, k ∈ {1, 2, 3}. In analogy the fundamental

systems are defined for spaces which are direct sums of the spaces h
(i,k)
s (Ωext

σ ),
i, k ∈ {1, 2, 3}.

As in the scalar and vectorial case we have the following theorem.

Theorem 6.20. Let X = {xn}n=0,1,... be an hSGG
s (Ωext

γ )-fundamental system in

Ωext
γ . Then the potential F |Σext solving the (tensorial) SGG problem is uniquely

defined up to a term of the form

V (x) =

1∑
n=0

2n+1∑
m=1

cnm

(
σ

|x|

)n+1
1

σ
Yn,m

(
x

|x|

)
, x ∈ Ωext

σ , (6.56)

for constants c01, c11, c12, c13 ∈ R.

We finally shortly present the results using the reformulation as convolution
equation.

Definition 6.21. Let α, β ∈ R, α ≥ σ and β ≥ σ. Then any kernel k(i,k),α,β(·, ·) :
Ωext

α × Ωext
β → R3 ⊗ R3 of the form

k(i,k),α,β(x, y) =

∞∑
n=0ik

k(i,k)∧(n)
2n+1∑
m=1

Hs
n,m(α;x)h(i,k)s

n,m (β; y), (6.57)
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(x, y) ∈ Ωext
α × Ωext

β , is called an h
(i,k)
α,β -kernel. Furthermore,

kα,β(x, y) =

3∑
i,k=1

k(i,k),α,β(x, y), (6.58)

(x, y) ∈ Ωext
α × Ωext

β , is called an hα,β-kernel.

The sequence {
(
k(i,k),α,β

)∧
(n)}n∈N0ik

with(
k(i,k),α,β

)∧
(n) =

(
αβ

σ2

)n

k(i,k)∧(n), n = 0ik, . . . , (6.59)

is called the (α, β)-symbol of the h
(i,k)
α,β -kernel k(i,k),α,β(·, ·). The (σ, σ)-symbol of

the h
(i,k)
α,β -kernel k(i,k),α,β(·, ·) is simply called the symbol of the h

(i,k)
α,β -kernel.

Definition 6.22. An h
(i,k)
α,β -kernel k(i,k),α,β(·, ·) with the symbol {k(i,k)∧(n)}n=0ik,...

is called admissible, if the following conditions are satisfied:

(i)
∑∞

n=0ik
(k(i,k)∧(n))2 < ∞,

(ii)
∑∞

n=0ik
(2n+ 1)(k(i,k)∧(n))2

(
σ

n+ 1
2

)2s
< ∞,

(iii) (a)
∑∞

n=0(2n+ 1)(2n+ 5)(k(1,1)∧(n))2
(

σ
n+ 1

2

)2s
< ∞,

(b)
∑∞

n=0ik
(2n+ 1)(2n+ 3)(k(i,k)∧(n))2

(
σ

n+ 1
2

)2s
< ∞,

(i, k) ∈ {(1, 3), (3, 1)},

(c)
∑∞

n=0ik
(2n+ 1)(2n+ 1)(k(i,k)∧(n))2

(
σ

n+ 1
2

)2s
< ∞,

(i, k) ∈ {(1, 2), (2, 1), (3, 3)},

(d)
∑∞

n=0ik
(2n+ 1)(2n− 1)(k(i,k)∧(n))2

(
σ

n+ 1
2

)2s
< ∞,

(i, k) ∈ {(2, 3), (3, 2)},

(e)
∑∞

n=2(2n+ 1)(2n− 3)(k(2,2)∧(n))2
(

σ
n+ 1

2

)2s
< ∞.

Furthermore, the hα,β-kernel is called admissible, if all h
(i,k)
α,β -kernels, i, k ∈

{1, 2, 3}, are admissible.

The second and the third condition imply the following lemma.

Lemma 6.23. Let α, β ∈ R, α ≥ σ, β ≥ σ.

1. If the kernel k(i,k),α,β(·, ·) is an admissible h
(i,k)
α,β -kernel with the symbol given

by {k(i,k)∧(n)}n=0ik,..., then k(i,k),α,β(x, ·) is an element of h
(i,k)
s (Ωext

β ) for

every (fixed) x ∈ Ωext
α .

2. If the kernel k(i,k),α,β(·, ·) is an admissible h
(i,k)
α,β -kernel with the symbol

{k(i,k)∧(n)}n=0ik,..., then the component functions k(i,k),α,β(·, y) · εj ⊗ εl are

elements of Hs(Ωext
α ) for every (fixed) x ∈ Ωext

β , j, l ∈ {1, 2, 3}.



Geodetic Observables and Their Mathematical Treatment 369

We now define the convolution of an admissible h
(i,k)
α,β -kernel against a func-

tion f ∈ hs(Ωext
β ) as follows:

(k(i,k),α,β ∗ f)(x) = k(i,k),α,β(x, ·) ∗ f (6.60)

=

∞∑
n=0ik

2n+1∑
m=1

k(i,k)∧(n)f (i,k)∧(n,m)Hs
n,m(α;x), x ∈ Ωext

α .

It follows directly that (k(i,k),α,β ∗ f)∧(n,m) = k(i,k)∧(n)f (i,k)∧(n,m), n = 0ik,

i, k ∈ {1, 2, 3}, and k(i,k),α,β ∗ f ∈ Hs(Ωext
α ). In an analogous way we define the

convolution of an hα,β-kernel k
α,β(·, ·) against a function F ∈ Hs(Ωext

α ) by

(kα,β � F )(y) = kα,β(·, y) � F (6.61)

=

3∑
i,k=1

∞∑
n=0ik

2n+1∑
m=1

k(i,k)∧(n)F∧(n,m)h(i,k)s
n,m (β; y), y ∈ Ωext

β ,

and kα,β � F is an element of hs(Ωext
β ). Our next purpose is to present the formu-

lation of the tensorial SGG operator with the help of convolutions. This enables
us to give an answer to the question of continuity of the inverse. We start from a
pseudodifferential operator λ : Hs(Ωext

σ ) → hs(Ωext
γ ) given by

λF =

3∑
i,k=1

∞∑
n=0ik

2n+1∑
m=1

λ(i,k)∧(n)F∧(n,m)h(i,k)s
n,m (γ; ·), (6.62)

and interpret the symbol of the pseudodifferential operator as the symbol of an

hσ,γ-kernel (k
λ)σ,γ presuming that the symbol satisfies the admissibility condi-

tions. The pseudodifferential operator is then given by the convolution identity

λF (x) = (k λ)σ,γ(·, x) � F, x ∈ Ωext
γ , (6.63)

for F ∈ Hs(Ωext
σ ), where (k λ)(i,k)∧(n) = λ(i,k)∧(n), i, k = 1, 2, 3;n = 0ik, . . ..

Obviously, we have

(k λ)σ,γ(·, x) � Hs
n,m(σ; ·) = λ(i,k)∧(n)h(i,k)s

n,m (γ;x), (6.64)

for all i, k = 1, 2, 3; n = 0ik, . . .; m = 1, . . . , 2n+ 1, or, equivalently,

λ(i,k)Hs
n,m(σ; ·) = λ(i,k)∧(n)h(i,k)s

n,m (γ; ·). (6.65)

Having a look at the (tensorial) SGG operator, we get the following result.
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Theorem 6.24. The hSGG
σ,γ -kernel (k λ)σ,γ defined by the symbol

λ(i,k)∧(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
σ
γ

)n
n(n+1)

γ2(2n+1)(2n+3)

√
ν
(1,1)
n , (i, k) = (1, 1),

−
(

σ
γ

)n
(n+1)(n−1)

γ2((2n−1)(2n+1)

√
ν
(1,2)
n , (i, k) = (1, 2),

−
(

σ
γ

)n
n(n+2)

γ2(2n+3)(2n+1)

√
ν
(2,1)
n , (i, k) = (2, 1),(

σ
γ

)n
n(n+1)(n+2)

γ2(2n−1)(2n+1)

√
ν
(2,2)
n , (i, k) = (2, 2),

(6.66)

is admissible, if
(

n+ 1
2

σ

)s
is summable and satisfies, in addition, condition (iii) in

Definition 6.22.

We finally get the following results.

Theorem 6.25. Let λ : H(Ωext
σ ) → h(Ωext

γ ) be a pseudodifferential operator with

(k λ)σ,γ satisfying the admissibility conditions, and λ(i,k)∧(n) �= 0, i ∈ {1, 2, 3},
n = 0ik, . . .. Then the pseudodifferential operator λ is bounded and

‖λ‖ = max
n∈N0

∣∣∣∣ 3∑
i,k=1

λ(i,k)∧(n)
∣∣∣∣, (6.67)

where the sum has to be understood in the same sense as in the vectorial case.
Further on, λ is an injective operator.

Theorem 6.26. Let

λF = g, F ∈ Hs(Ωext
σ ), g ∈ hSGG

s (Ωext
γ ), (6.68)

be the (tensorial) SGG problem. Then λ is a compact operator with infinite-

dimensional range. Furthermore, λ−1 is not bounded on hSGG
s (Ωext

γ ). The SGG
problem is solvable if and only if∑

(i,k)∈ISGG

∞∑
n=0ik

2n+1∑
m=1

(
g(i,k)∧(n,m)

λ(i,k)∧(n)

)2

< ∞. (6.69)

We consequently have that the (tensorial) SGG problem is ill posed because
existence and continuity of the inverse are violated.

7. Geodetically oriented wavelet approximation

In this section we present a multiscale approach based on wavelet approximation.
Note that all modern multiscale approaches have a conception of wavelets as con-
stituting multiscale building blocks in common, which provide a fast and efficient
way to decorrelate a given signal data set. As already mentioned in Section 2.4,
this characterization contains three basic attributes (basis property, decorrelation
and efficient algorithms), which are common features of all classical wavelets and
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form the key for a variety of applications, particularly for signal reconstruction
and decomposition, thresholding, data compression, denoising, etc.

7.1. Scalar wavelet theory

We start with the presentation of the scalar theory, where we follow the approach
given in [19]. First, we define an Hσ,σ-multiresolution analysis. We use the abbre-

viation Φ(2)(·, ·) = (Φ ∗ Φ)(·, ·), where Φ is an Hσ,σ-kernel.

Definition 7.1. Let {Φj(·, ·)}j∈N0 be a family of admissible Hσ,σ-kernels as de-

fined in Definition 6.6. Then the family {Vj(Ωext
σ )}j∈N0 of scale spaces Vj(Ωext

σ )
defined by

Vj(Ωext
σ ) = {Φ(2)

j ∗ F : F ∈ Hs(Ωext
σ )}, (7.1)

is called an Hσ,σ-multiresolution analysis, if the following properties are satisfied:

(i) V0(Ωext
σ ) ⊂ · · · ⊂ Vj(Ωext

σ ) ⊂ Vj+1(Ωext
σ ) ⊂ · · · ⊂ Hs(Ωext

σ ),

(ii)
⋃

j∈N0

Vj(Ωext
σ )

‖·‖Hs(Ωext
σ )

= Hs(Ωext
σ ).

Wavelet analysis is based on the idea of splitting the function into a lowpass
part and several bandpass parts. The so-called scaling function corresponds to the
lowpass filter, whereas the bandbass filters are the shifted and dilated versions of
the wavelet, which are defined as differences between successive scaling functions
with the help of a so-called refinement equation.

Definition 7.2. A family {{ϕj(n)}n∈N0}j∈N0 of sequences {ϕj(n)}n∈N0 is called a
generator of a scaling function, if it satisfies the following requirements:

(i) (ϕj(0))
2 = 1, for all j ∈ N0,

(ii) (ϕj(n))
2 ≤ (ϕj′ (n))

2
, for all j, j′ ∈ N0 with j ≤ j′ and all n ∈ N,

(iii) lim
j→∞

(ϕj(n))
2 = 1, for all n ∈ N.

Based on the definition of a generator of a scaling function, we now introduce
Hσ,σ-scaling functions.

Definition 7.3. A family {Φj(·, ·)}j∈N0 of Hσ,σ-kernels Φj(·, ·) defined by Φ∧
j (n) =

ϕj(n), n, j ∈ N0, i.e.,

Φj(x, y) =
∞∑

n=0

ϕj(n)
2n+1∑
m=1

Hs
n,m(σ;x)Hs

n,m(σ; y), x, y ∈ Ωext
σ , (7.2)

is called an Hσ,σ-scaling function, if it satisfies the following properties:

(i) Φj(·, ·) is an admissibleHσ,σ-kernel for every j ∈ N0 (in the sense of Definition
6.6),

(ii) {Φ∧
j (n)n∈N0}j∈N0 constitutes a generator of a scaling function (in the sense

of Definition 7.2).

The following theorem shows the approximation property of an Hσ,σ-scaling
function.
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Theorem 7.4. Let {Φj(·, ·)}j∈N0 be an Hσ,σ-scaling function. Then

lim
j→∞

‖F − Φ
(2)
j ∗ F‖Hs(Ωext

σ ) = 0 (7.3)

holds for all F ∈ Hs(Ωext
σ ).

We now introduce the dilation and the shifting operator in order to define
an Hσ,σ-approximate identity. Let J, J1, J2 ∈ N0 and x ∈ Ωext

σ . Then we define the
dilation operator DJ1 and the shifting operator Sx by

DJ1 : ΦJ2(·, ·) �→ DJ1ΦJ2(·, ·) = ΦJ1+J2(·, ·), (7.4)

Sx : ΦJ (·, ·) �→ SxΦJ(·, ·) = ΦJ(x, ·). (7.5)

The shifting operator Sy acting on the second variable is defined in an analogous
way. Note that by definition ΦJ (·, ·) = DJΦ0(·, ·) for any J ∈ N0.

Definition 7.5. Let {Φj(·, ·)}j∈N0 be an Hσ,σ-scaling function. Then {Pj}j∈N0 with

Pj : Hs(Ωext
σ ) → Hs(Ωext

σ ) defined by

Pj(F )(x) =
(
SxDjΦ

(2)
0 (·, ·), F

)
Hs(Ωext

σ )

=
(
Φ

(2)
j (x, ·), F

)
Hs(Ωext

σ )

= (Φ
(2)
j ∗ F )(x), (7.6)

for F ∈ Hs(Ωext
σ ), x ∈ Ωext

σ , is called an Hσ,σ-approximate identity.

The kernel Φ0 is called mother kernel of the Hσ,σ-scaling function. Theorem
7.4 leads to

lim
j→∞

‖F − Pj(F )‖Hs(Ωext
σ ) = 0. (7.7)

The following theorem clarifies the connection between the concept of multireso-
lution analysis and the scaling functions.

Theorem 7.6. Let {Φj(·, ·)}j∈N0 be an Hσ,σ-scaling function. Then {Vj(Ωext
σ )}j∈N0

forms an Hσ,σ-multiresolution analysis.

We now turn to the definition of the primal and dual wavelet.

Definition 7.7. Let {Φj(·, ·)}j∈N0 be an Hσ,σ-scaling function. Then the families of

Hσ,σ-kernels {Ψj(·, ·)}j∈N0 , {Ψ̃j(·, ·)}j∈N0 given by

Ψ∧
j (n) = ψj(n), n, j ∈ N0, (7.8)

Ψ̃∧
j (n) = ψ̃j(n), n, j ∈ N0, (7.9)

are called (primal) Hσ,σ-wavelet and dual Hσ,σ-wavelet, respectively, if all Hσ,σ-

kernels Ψj(·, ·), Ψ̃j(·, ·), j ∈ N0, are admissible and the symbols {ψj(n)}, {ψ̃j(n)},
in addition, satisfy the (scalar) refinement equation

ψ̃j(n)ψj(n) = (ϕj+1(n))
2 − (ϕj(n))

2 (7.10)

for all j, n ∈ N0.
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The following equation is a direct consequence of the refinement equation:

(ϕJ+1(n))
2 = (ϕ0(n))

2 +
J∑

j=0

ψ̃j(n)ψj(n), J ∈ N0, (7.11)

for all n ∈ N0. This property finally leads to the reconstruction formula which
states how the original function F ∈ Hs(Ωext

σ ) can be derived from a lowpass part
and the corresponding bandpass parts (see Theorem 7.9).

We now turn to the definition of the wavelet transform. To this end we define
N−1 = N0 ∪ {−1} and let ψ−1(n) = ψ̃−1(n) = ϕ0(n), for n ∈ N0, Ψ−1(·, ·) =

Ψ̃−1(·, ·) = Φ0(·, ·). This abbreviation simplifies our notation. Then we define the
space

Hs(N−1 × Ωext
σ ) = {H : N−1 × Ωext

σ → R :

∞∑
j=−1

(H(j; ·), H(j; ·))Hs(Ωext
σ ) < ∞}

(7.12)
with inner product

(H1, H2)Hs(N−1×Ωext
σ ) =

∞∑
j=−1

(H1(j; ·), H2(j; ·))Hs(Ωext
σ ) (7.13)

and corresponding norm

‖H‖Hs(N−1×Ωext
σ ) =

⎛⎝ ∞∑
j=−1

‖H(j; ·)‖2Hs(Ωext
σ )

⎞⎠ 1/2

. (7.14)

With the help of the dilation operator Dj and the shifting operator Sy we
introduce the following abbreviation:

Ψj;y(·) = Ψj(·, y) = SyΨj(·, ·) = SyDjΨ0(·, ·), (7.15)

Ψ̃j;y(·) = Ψ̃j(·, y) = SyΨ̃j(·, ·) = SyDjΨ̃0(·, ·). (7.16)

Definition 7.8. Let {Ψj(·, ·)}j∈N−1 be a (primal) Hσ,σ-wavelet. Then

WT : Hs(Ωext
σ ) → Hs(N−1 × Ωext

σ ),

defined by

(WT )(F )(j; y) = (Ψj;y, F )H(Ωext
σ ) = (Ψj ∗ F )(y), (7.17)

is called Hσ,σ-wavelet transform of F at position y ∈ Ωext
σ and scale j ∈ N−1.

Having the definition of the scale spaces Vj(Ωext
σ ) in mind, we now define the

detail spaces Wj(Ωext
σ ) at scale j by

Wj(Ωext
σ ) =

{
Ψ̃j ∗Ψj ∗ F : F ∈ Hs(Ωext

σ )
}
, j ∈ N0. (7.18)
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Theorem 7.9 (Scalar Reconstruction Formula for the Outer Space). Let the fami-

lies {Ψj(·, ·)}j∈N0 and {Ψ̃j(·, ·)}j∈N0 , respectively, be a (primal) Hσ,σ-wavelet and
its dual corresponding to an Hσ,σ-scaling function {Φj(·, ·)}j∈N0 . Then

F =

∞∑
j=−1

Ψ̃j ∗Ψj ∗ F (7.19)

holds for all F ∈ Hs(Ωext
σ ) (in ‖ · ‖Hs(Ωext

σ )-sense).

We now solve the (scalar) SST or SGG problem using bandlimited harmonic
wavelets. First, we define Hα,α-scaling functions with the help of a generator of
a scaling function {{ϕj(n)}n∈N0}j∈N0 . Since the generator does not depend on σ,
we can directly extend the theory to the case of Hα,α-scaling functions Φα,α

j with
α ≥ σ:

Φα,α
j (x, y) =

∞∑
n=0

ϕj(n)

2n+1∑
m=1

Hs
n,m(α;x)Hs

n,m(α; y), (7.20)

where

(Φα,α
j )∧(n) = ϕj(n). (7.21)

As a consequence, Theorem 7.4 is valid substituting σ by α. Furthermore, the
definition of the scale spaces can be directly transferred in the following way:

Vj(Ωext
α ) = {(Φ(2)

j )α,α ∗ F : F ∈ Hs(Ωext
α )}, (7.22)

where

(Φ
(2)
j )α,α = Φα,α

j ∗ Φα,α
j . (7.23)

The system {Vj(Ωext
α )} of scale spaces forms a multiresolution analysis due to

Theorem 7.6. We now investigate the solution of the restriction of an operator
Λ : Hs(Ωext

σ ) → Hs(Ωext
γ ) to a scale space Vj :

Λ : Vj(Ωext
σ ) → Vj(Ωext

γ ). (7.24)

Note that Λ(Vj(Ωext
σ )) ⊂ Vj(Ωext

γ ) is automatically fulfilled, because every F ∈
Vj(Ωext

σ ) of the form

F = Φ
(2)
j ∗Q, Q ∈ Hs(Ωext

σ ) (7.25)

with Fourier coefficients F∧(n,m) = (ϕ∧
j (n))

2Q∧(n,m) leads to

ΛF (x) =

∞∑
n=0

2n+1∑
m=1

Λ∧(n)F∧(n,m)Hs
n,m(γ;x)

=

∞∑
n=0

2n+1∑
m=1

Λ∧(n)(ϕ∧
j (n))

2Q∧(n,m)Hs
n,m(γ;x)

= (Φ
(2)
j )γ,γ ∗ (ΛQ) = (Φ

(2)
j )γ,γ ∗G, (7.26)

where we let G = ΛQ ∈ Hs(Ωext
γ ). Thus, we get the following theorem.
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Theorem 7.10. The restriction of the operator Λ : Hs(Ωext
σ ) → Hs(Ωext

γ ) to a scale

space Vj(Ωext
σ ), j ∈ N0, i.e.,

Λ|Vj(Ωext
σ ) : Vj(Ωext

σ ) → Vj(Ωext
γ ) (7.27)

is injective. Moreover, we have the following results:

(i) If the families {{ψj(n)}n∈N0}j∈N0 and {{ψ̃j(n)}n∈N0}j∈N0 are bandlimited

(for example, ψj(n) = ψ̃j(n) = 0 for all n ≥ 2j), then the restricted operator

is even bijective. To be more specific, for G ∈ Hs(Ωext
γ ) the unique solution

Fj ∈ Vj(Ωext
σ ), j ∈ N0, of the equation

ΛFj = (Φ
(2)
j )γ,γ ∗G (7.28)

is given by

Fj = (Φ
(2)
j )σ,σ ∗Q, (7.29)

where Q ∈ Hs(Ωext
σ ) is given by

Q∧(n,m) =

{
G∧(n,m)
Λ∧(n) , n ∈ [0, 2j),

0, n ∈ [2j ,∞),
(7.30)

n = 0, 1, . . . ;m = 1, . . . , 2n+ 1.

(ii) If the families {{ψj(n)}n∈N0}j∈N0 and {{ψ̃j(n)}n∈N0}j∈N0 are not bandlim-
ited, the equation

ΛFj = (Φ
(2)
j )γ,γ ∗G (7.31)

has a solution Fj ∈ Vj(Ωext
σ ) provided that G ∈ HΛ

s (Ω
ext
σ ), where HΛ

s (Ω
ext
σ ) is

a suitable Sobolev space (see the Ph.D.-thesis [58] for a detailed introduction).
In this case, the unique solution of the equation is given by

Fj = (Φ
(2)
j )σ,σ ∗Q, (7.32)

where Q ∈ Hs(Ωext
σ ) is obtainable by

Q∧(n,m) =
G∧(n,m)

Λ∧(n)
, (7.33)

n = 0, 1, . . .; m = 1, . . . , 2n+ 1.

We now define the primal wavelets {Ψα,α
j (·, ·)}j∈N0 and the dual wavelets

{Ψ̃α,α
j (·, ·)}j∈N0 for α ≥ σ in the way as we did in the case of the scaling functions

and get

Ψα,α
j (x, y) =

∞∑
n=0

ψj(n)
2n+1∑
m=1

Hs
n,m(α;x)Hs

n,m(α; y), (7.34)

Ψ̃α,α
j (x, y) =

∞∑
n=0

ψ̃j(n)
2n+1∑
m=1

Hs
n,m(α;x)Hs

n,m(α; y), (7.35)



376 W. Freeden and H. Nutz

where

(Ψα,α
j )∧(n) = ψj(n), (Ψ̃α,α

j )∧(n) = ψ̃j(n). (7.36)

The detail spaces are defined in canonical manner:

Wj(Ωext
α ) = {(Ψj ∗ Ψ̃j)

α,α ∗ F : F ∈ Hs(Ωext
α )}, (7.37)

where

(Ψj ∗ Ψ̃j)
α,α = Ψα,α

j ∗ Ψ̃α,α
j . (7.38)

The reconstruction formula given in Theorem 7.9 is valid substituting Ψ̃j ∗Ψ ∗ F
by (Ψ̃j ∗ Ψ)α,α ∗ F . Theorem 7.10 can now be transferred to the restriction on
detail spaces and we get the following theorem.

Theorem 7.11. The restriction of the operator Λ : Hs(Ωext
σ ) → Hs(Ωext

γ ) to a detail

space Wj(Ωext
σ ), j ∈ N0, i.e.,

Λ|Wj(Ωext
σ ) : Wj(Ωext

σ ) → Wj(Ωext
γ ) (7.39)

is injective. Moreover, we have the following results:

(i) If the family {{ϕj(n)}n∈N0}j∈N0 is bandlimited (for example, ϕj(n) = 0 for
all n ≥ 2j), then the restricted operator is even bijective. To be more specific,

for G ∈ Hs(Ωext
γ ) the unique solution Hj ∈ Wj(Ωext

σ ), j ∈ N0, of the equation

ΛHj = (Ψ̃j ∗Ψj)
γ,γ ∗G (7.40)

is given by

Hj = (Ψ̃j ∗Ψj)
σ,σ ∗Q, (7.41)

where Q ∈ Hs(Ωext
σ ) is obtainable by

Q∧(n,m) =

{
G∧(n,m)
Λ∧(n) , n ∈ [0, 2j+1),

0, n ∈ [2j+1,∞),
(7.42)

n ∈ N0; m = 1, . . . , 2n+ 1.

(ii) If the family {{ϕj(n)}n∈N0}j∈N0 is non-bandlimited, the equation

ΛHj = (Ψ̃j ∗Ψj)
γ,γ ∗G (7.43)

has a solution Hj ∈ Wj(Ωext
σ ) provided that G ∈ HΛ

s (Ω
ext
σ ), where HΛ

s (Ω
ext
σ )

is a suitable Sobolev space (cf. the Ph.D.-thesis [58] for a detailed definition).
In this case, the unique solution of the equation is given by

Hj = (Ψ̃j ∗Ψj)
σ,σ ∗Q, (7.44)

where Q ∈ Hs(Ωext
σ ) is obtainable by

Q∧(n,m) =
G∧(n,m)

Λ∧(n)
, (7.45)

n ∈ N0; m = 1, . . . , 2n+ 1.
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Up to now, we have summarized some results about the filtered solution, i.e.,
the solution when we restrict the operator to scale or detail spaces. In the case of
the unfiltered solution, we have the following theorem.

Theorem 7.12. Let G ∈ Hs(Ωext
γ ) satisfy the condition G ∈ im(Λ). Then the unique

solution F ∈ Hs(Ωext
σ ) of the equation ΛF = G is given by

F∧(n,m) =
G∧(n,m)

Λ∧(n)
, (7.46)

n ∈ N0; m = 1, . . . , 2n+ 1.

Examples for scaling functions

To make the preceding considerations more concrete, we would like to show that all
reproducing kernel functions introduced in Section 5 may be used as Hσ,σ-scaling
functions. We essentially follow [19] and distinguish in accordance with Definition
7.2 two cases, viz. (1) bandlimited Hσ,σ-scaling functions and (2) non-bandlimited
Hσ,σ-scaling functions.

(1) Bandlimited Hσ,σ-scaling Functions. Suppose that H(Ωext
σ ) is a Sobolev space

(satisfying the consistency conditions (CC1) and (CC2) relative to [σ, σinf)).
Consider sequences {ϕj(n)}n∈N0 with “local support” (for example, ϕj(n) =
0 for all n ≥ 2j , j ∈ N0). Thus all members Φj(·, ·) of an associated Hσ,σ-
scaling function {Φj(·, ·)}j∈N0 with (Φj)

∧(n) = ϕj(n), n ∈ N0, are band-

limited. This allows to deal with finite-dimensional scale spaces Vj(Ωext
σ ).

Consequently, all spaces Vj(Ωext
σ ) have finite-dimensional basis systems.

(1a) Shannon Hσ,σ-scaling function (see Figure 7.1). Consider the family

{{ϕj(n)}n∈N0}j∈N0

(a) Φ4(x, y) (b) ϕ4(n)

Figure 7.1. Shannon Hσ,σ-scaling function for j = 4 and An = 1:
space domain, i.e., Φj(x, y) for (x, y) ∈ Ωσ × Ωσ in sectional represen-
tation (left) and frequency domain, i.e., ϕj(n) (right).
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given by

ϕj(n) =

{
1, n ∈ [0, 2j),

0, n ∈ [2j ,∞).

The family {{ϕj(n)}n∈N0}j∈N0 forms a generator of a scaling function in
the sense of Definition 7.2. The Hσ,σ-scaling function {Φj(·, ·)}j∈N0 reads as
follows:

Φj(x, y) =
∑

n≤2j−1

1

A2
n

2n+ 1

4πσ2

(
σ2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
,

(x, y) ∈ Ωext
σ ×Ωext

σ . A remarkable property is that Φj(·, ·) coincides with its
iterations:

Φ
(k)
j (·, ·) = (Φj ∗H Φ

(k−1)
j )(·, ·), k = 2, 3, . . . .

The scale spaces

Vj(Ωext
σ ) = Pj(H(Ωext

σ )) =
⊕

n≤2j−1

Harmn(Ωext
σ ), j ∈ N0,

satisfy the properties:
(i) V0(Ωext

σ ) ⊂ · · · ⊂ Vj(Ωext
σ ) ⊂ Vj+1(Ωext

σ ) ⊂ · · · ⊂ H(Ωext
σ ),

(ii)
⋃

j∈N0

Vj(Ωext
σ )

‖·‖H(Ωext
σ )

= H(Ωext
σ ),

(iii)
⋂

j∈N0

Vj(Ωext
σ ) = Harm0(Ωext

σ ).

The multiresolution analysis is orthogonal. As a matter of fact, the Shannon
“detail spaces” Wj(Ωext

σ ) = Vj+1(Ωext
σ ) � Vj(Ωext

σ ) of different scales j do
not have any common frequencies. Consequently, the orthogonality of the
outer harmonics immediately implies the orthogonality of the Shannon detail
spaces. The scale spaces Vj(Ωext

σ ), j ∈ N0, form an H(Ωext
σ )-multiresolution

analysis. Apart from this, it can be even verified that the decomposition
of the scale space Vj+1(Ωext

σ ) into the scale space Vj(Ωext
σ ) and the detail

space Wj(Ωext
σ ) is orthogonal. This orthogonality of the decomposition easily

follows from the already known fact that

Vj+1(Ωext
σ ) =

⊕
0≤n≤2j+1−1

Harmn(Ωext
σ )

=
⊕

0≤n≤2j−1

Harmn(Ωext
σ )⊕

⊕
2j≤n≤2j+1−1

Harmn(Ωext
σ )

= Vj(Ωext
σ )⊕Wj(Ωext

σ ). (7.47)

On the one hand, the orthogonal structure of the Shannon multiresolution
analysis seems to be very profitable. On the other hand, it is not surprising
that the Shannon Hσ,σ-scaling function shows strong oscillations. This is the
price to be paid for the sharp separation “in momentum space”. For numerical
purposes it is often advisable to discuss “smoothed versions” of the Shannon
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(a) Φ4(x, y) (b) ϕ4(n)

Figure 7.2. Smoothed Shannon Hσ,σ-scaling function for j = 4 and
An = 1, h = 1

2 : space domain, i.e., Φj(x, y) for (x, y) ∈ Ωσ × Ωσ in
sectional representation (left) and frequency domain, i.e., ϕj(n) (right).

kernels. But this automatically implies the loss of the orthogonality in the
multiresolution analysis.

(1b) Smoothed Shannon Hσ,σ-scaling Function (see Figure 7.2). For fixed h ∈ [0, 1)
we now consider the family {{ϕj(n)}n∈N0}j∈N0 given by

ϕj(n) =

⎧⎪⎨⎪⎩
1, n ∈ [0, 2jh),
1−2−jn
1−h , n ∈ [2jh, 2j),

0, n ∈ [2j,∞).

The family {{ϕj(n)}n∈N0}j∈N0 defines a generator of an Hσ,σ-scaling func-
tion. Obviously, {Φj(·, ·)}j∈N0 with (Φj)

∧(n) = ϕj(n) for n, j ∈ N0 is an
Hσ,σ-scaling function. Clearly, for each n ∈ N0, {ϕj(n)}j∈N0 is monotonously

increasing. The kernels Φj(·, ·): Ωext
σ × Ωext

σ → R read as follows:

Φj(x, y) =
∑

n≤2j−1

2n+ 1

4πσ2

ϕj(n)

A2
n

(
σ2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
.

The value h ∈ [0, 1) represents a “control parameter” of the smoothing ef-

fect of the Hσ,σ-scaling function {Φj(·, ·)}j∈N0 . The scale spaces Vj(Ωext
σ ),

j ∈ N0, form an Hσ,σ-multiresolution analysis. This multiresolution analysis,

however, is not orthogonal, since Vj+1(Ωext
σ ) = Vj(Ωext

σ ) +Wj(Ωext
σ ), j ∈ N0,

cannot be understood as orthogonal sum decomposition.
(1c) Cubic Polynomial (CP) Hσ,σ-scaling Function (see Figure 7.3). In order to

gain a higher intensity of the smoothing effect than in the case of the Hσ,σ-
scaling function (1b), we introduce a function ϕ0 : [0,∞) → R in such a
way that ϕ0|[0,1] coincides with the uniquely determined cubic polynomial
p : [0, 1] → [0, 1] with the properties:

p(0) = 1, p(1) = 0, p′(0) = 0, p′(1) = 0.
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(a) Φ4(x, y) (b) ϕ4(n)

Figure 7.3. CP Hσ,σ-scaling function for j = 4 and An = 1: space
domain, i.e., Φj(x, y) for (x, y) ∈ Ωσ × Ωσ in sectional representation
(left) and frequency domain, i.e., ϕj(n) (right).

It is not difficult to see that these properties are fulfilled by

p(t) = (1− t)2(1 + 2t), t ∈ [0, 1].

This leads us to a function ϕ0 : [0,∞) → R given by

ϕ0(t) =

{
(1 − t)2(1 + 2t), t ∈ [0, 1),
0, t ∈ [1,∞).

It is obvious that ϕ0 is a monotonously decreasing function. In [31] a con-
struction principle of deriving scaling functions from a “mother function”
ϕ0 : [0,∞) → R by letting ϕj(t) = ϕ0(2

−jt), t ∈ [0,∞), is described and we
thus define the family {{ϕj}j∈N0}n∈N0 with ϕj(t) = ϕ0(2

−jt), t ∈ [0,∞), by

ϕj(t) = ϕ0(2
−jt) =

{
(1− 2−jt)2(1 + 2−j+1t), t ∈ [0, 2j),
0, t ∈ [2j ,∞).

{ϕj(n)}j∈N0 is a monotonously increasing sequence for each n ∈ N0, hence,
{Φj(·, ·)}j∈N0 defines an Hσ,σ-scaling function. The finite-dimensional scale

spaces Vj(Ωext
σ ), j ∈ N0, represent a non-orthogonal Hσ,σ-multiresolution

analysis.

Finally, it should be remarked that one can think of other ways to “smooth”
the Shannon generator but these are not discussed.

(2) Non-bandlimited Hσ,σ-scaling functions. Next we take a look at non-bandli-
mited generators of scaling functions. In other words, all Hσ,σ-scaling func-
tions {Φj(·, ·)}j∈N0 discussed in the following share the property that their
“generators” {{ϕj(n)}n∈N0}j∈N0 have a “global support”. Since there are only
a few conditions for a family {{ϕj(n)}n∈N0}j∈N0 to generate an Hσ,σ-scaling
function, there are various possibilities for its concrete realization. In our ap-
proach we concentrate on three types: Tikhonov, rational, and exponential
Hσ,σ-scaling functions.
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(a) Φ5(x, y) (b) ϕ5(n)

(c) Φ7(x, y) (d) ϕ7(n)

Figure 7.4. Tikhonov Hσ,σ-scaling function for j = 5 (above) and j =
7 (below) and An = 1: space domain, i.e., Φj(x, y) for (x, y) ∈ Ωσ ×Ωσ

in sectional representation (left) and frequency domain, i.e., ϕj(n)
(right).

(2a) Tikhonov Hσ,σ-scaling Function (see Figure 7.4). Consider the family

{{ϕj(n)}n∈N0}j∈N0

given by

ϕj(n) =

{
1, n = 0,(

τ2
n

τ2
n+(2−j)2

)1/2

, n = 1, 2, . . . ,
(7.48)

where the sequence {τn}n∈N0 with τn �= 0 for all n ∈ N0 is given in such a
way that

(i)

∞∑
n=0

τ2n < ∞ , (ii)

∞∑
n=0

(2n+ 1)

(
τn
An

)2

< ∞.

It is not hard to see that the family {Φj(·, ·)}j∈N0 constitutes an Hσ,σ-scaling
function. The Tikhonov Hσ,σ-scaling function plays an important role in the
theory of regularization wavelets.
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(a) Φ4(x, y) (b) ϕ4(n)

Figure 7.5. Rational Hσ,σ-scaling function for j = 4 and An = 1,
τ = 5: space domain, i.e., Φj(x, y) for (x, y) ∈ Ωσ × Ωσ in sectional
representation (left) and frequency domain, i.e., ϕj(n) (right).

(2b) Rational Hσ,σ-scaling Functions (see Figure 7.5). Consider ϕj : [0,∞) → R
given by

ϕj(t) = (1 + 2−jt)−τ , t ∈ [0,∞), τ > 1. (7.49)

Clearly, for all values τ > 1, the family {{ϕj(n)}n∈N0}j∈N0 forms a generator
of a scaling function. All functions ϕj , j ∈ N0, define admissible Hσ,σ-kernels
Φj(·, ·), j ∈ N0, if, in addition, τ > 1 is chosen in such a way that

∞∑
n=0

(2n+ 1)
(1 + 2−jn)−2τ

A2
n

< ∞ (7.50)

for j ∈ N0. For example, in the case of Hs(Ωext
σ ), i.e., An =

(
n+ 1

2

σ

)s
for

n = 0, 1, . . ., we find s+ τ > 1 to satisfy the estimate (7.50). More generally,
(1 + n)−2τA−2

n = O(n−2−ε) for n → ∞ with ε > 0 together with τ > 1 is a
sufficient condition to define an admissible Hσ,σ-kernel Φj(·, ·), j ∈ N0. The
Hσ,σ-scaling function {Φj(·, ·)}j∈N0 consists of the kernels

Φj(x, y) =

∞∑
n=0

(1 + 2−jn)−τ

A2
n

2n+ 1

4πσ2

(
σ2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
,

(x, y) ∈ Ωext
σ × Ωext

σ . The functions ϕj , j ∈ N0, are monotonously decreasing
on the interval [0,∞) for all values τ > 1 and all j ∈ N0. Therefore, the scale

spaces Vj(Ωext
σ ) form an Hσ,σ-multiresolution analysis provided that both

τ > 1 and the summability condition (7.50) is valid.
(2c) Exponential Hσ,σ-scaling Functions (see Figures 7.6 and 7.7). Choose ϕj :

[0,∞) → R, j ∈ N0, to be defined by

ϕj(t) = e−2−jH(t), t ∈ [0,∞), (7.51)
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(a) Φ4(x, y) (b) ϕ4(n)

Figure 7.6. Abel–Poisson Hσ,σ-scaling function for j = 4 and An = 1,
τ = 1: space domain, i.e., Φj(x, y) for (x, y) ∈ Ωσ × Ωσ in sectional
representation (left) and frequency domain, i.e., ϕj(n) (right).

(a) Φ4(x, y) (b) ϕ4(n)

Figure 7.7. Gauss–Weierstraß Hσ,σ-scaling function for j = 4 and
An = 1, τ = 1: space domain, i.e., Φj(x, y) for (x, y) ∈ Ωσ × Ωσ in
sectional representation (left) and frequency domain, i.e., ϕj(n) (right).

where H : [0,∞) → [0,∞) satisfies the properties:
– H ∈ C(∞)[0,∞),
– H(0) = 0,
– H(t) > 0 for t > 0,
– H(t) < H(t′) whenever 0 < t < t′.

The sequence {ϕj(n)}j∈N0 is monotonously increasing for each n ∈ N0. The
functions ϕj , j ∈ N0, define an Hσ,σ-scaling function {Φj(·, ·)}j∈N0 by letting
(Φj)

∧(n) = ϕj(n), n ∈ N0, provided that Φj(·, ·), j ∈ N0, are admissible
Hσ,σ-kernel functions. It is not hard to see that

(Φj ∗ Φj)(x, y)

=
∞∑
n=0

(e−2−jH(n))2

A2
n

2n+ 1

4πσ2

(
σ2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
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=

∞∑
n=0

e−2−(j−1)H(n)

A2
n

2n+ 1

4πσ2

(
σ2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
= Φj−1(x, y) (7.52)

holds for all j ∈ N and all (x, y) ∈ Ωext
σ × Ωext

σ . The scale spaces Vj(Ωext
σ )

constitute an Hσ,σ-multiresolution analysis. Altogether we find the following
result for exponential Hσ,σ-scaling functions: The family {Pj}j∈N0 of opera-

tors Pj : H(Ωext
σ ) → H(Ωext

σ ) (defined by Pj(F ) = Φ
(2)
j ∗ F , F ∈ H(Ωext

σ ))

forms an Hσ,σ-contracting approximate identity (called the exponential Hσ,σ-
contracting approximate identity), i.e., the following properties are satisfied:

(i) Pj is a bounded linear operator for every j ∈ N0 and P∞ = I (identity),
(ii) Pj−1 = PjPj for all j ∈ N0,

(iii) limj→∞ ‖F − Pj(F )‖H(Ωext
σ ) = 0 for all F ∈ H(Ωext

σ ),

(iv) ‖Pj(F )‖H(Ωext
σ ) ≤ ‖F‖H(Ωext

σ ) for all j ∈ N0, F ∈ H(Ωext
σ ).

As examples we mention the Abel–Poisson Hσ,σ-contracting approxi-
mate identity given by H(t) = αt, α > 0, and the Gauss–Weierstraß Hσ,σ-
contracting approximate identity given by H(t) = αt(t+ 1), α > 0.

Remark 7.13. Non-bandlimited scaling functions become bandlimited ones by suit-
able truncation in momentum space. To be more specific, if {Φj(·, ·)}j∈N0 is a
non-bandlimited Hσ,σ-scaling function, then {Γj(·, ·)}j∈N0 given by (Γj)

∧(n) =
(Φj)

∧(n) for n ∈ [0, 2j) and (Γj)
∧(n) = 0 for n ∈ [2j,∞) represents a bandlimited

Hσ,σ-scaling function.

We now explain the connection between the solution in the scale spaces and
the unfiltered solution.

Theorem 7.14. Suppose that G is of class HΛ
s (Ω

ext
γ ). Let F ∈ Hs(Ωext

σ ) be the
unique solution of ΛF = G. Then

Fj = (Φ
(2)
j )σ,σ ∗ F (7.53)

is the unique solution in Vj(Ωext
σ ) of the equation

ΛFj = (Φ
(2)
j )γ,γ ∗G (7.54)

for every j ∈ N0. Furthermore, the limit relation

lim
J→∞

(Φ
(2)
J )σ,σ ∗ F = F (7.55)

holds (in ‖ · ‖Hs(Ωext
σ )-sense).

In the case of bandlimited scaling functions, the preceding theorem shows
that the (scalar) SST or SGG problem is well posed: A unique solution always
exists and due to the finite dimension of the scale spaces the solution is also
stable. According to the multiscale approach the solution in the scale space is
given by adding the solution of the corresponding detail spaces to the solution of
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the scale space of a lower scale. Because of the limit relation given in Theorem
7.14 the filtered solutions converge to the unfiltered solution in the Sobolev space
Hs(Ωext

σ ). If we now turn to non-bandlimited scaling functions, the stability of
the solution cannot be ensured, because the (scalar) SST or SGG problem is an
exponentially ill-posed problem with unbounded inverse operator Λ−1. In order
to obtain a well-posed problem, we have to replace the inverse operator by an
appropriate bounded operator, that is we have to use a regularization of Λ−1.

Definition 7.15. A family of linear operators Sj : Hs(Ωext
γ ) → Hs(Ωext

σ ), j ∈ N0, is

called a regularization of Λ−1, if it satisfies the following properties:

(i) Sj is bounded on Hs(Ωext
γ ) for all j ∈ N0,

(ii) for any member G ∈ im(Λ), the limit relation lim
J→∞

SJG = Λ−1G holds (in

‖ · ‖Hs(Ωext
σ )-sense).

The function FJ = SJG is called the J-level regularization of Λ−1G. In our
approach we want to represent the J-level regularization with the help of harmonic
wavelets which guarantees that we can calculate the J + 1-level regularization by
adding the corresponding detail information to the J-level regularization. In order
to formulate the multiscale regularization concept, we start with the definition of
a generator of a regularization scaling function by modifying Definition 7.2.

Definition 7.16. A family {{ϕj(n)}n∈N0}j∈N0 of sequences {ϕj(n)}n∈N0 is called a
generator of a regularization scaling function with respect to Λ−1, if it satisfies the
following requirements:

(i) (ϕj(0))
2 = 1

Λ∧(0) , for all j ∈ N0,

(ii) (ϕj(n))
2 ≤ (ϕj′ (n))

2, for all j, j′ ∈ N0 with j ≤ j′ and all n ∈ N,
(iii) lim

j→∞
(ϕj(n))

2 = 1
Λ∧(n) , for all n ∈ N.

Now we are able to define the decomposition and reconstruction regulariza-
tion scaling functions in such a way that the corresponding convolutions lead to
the J-level approximation of Λ−1G, G ∈ im(Λ).

Definition 7.17. Let {{ϕj(n)}n∈N0}j∈N0 be a generator of a regularization scaling

function with respect to Λ−1. Then a family {dΦσ,γ
j (·, ·)}j∈N0 of admissible Hσ,γ-

kernels given by

dΦ
σ,γ

j (x, z) =
∞∑

n=0

ϕj(n)
2n+1∑
m=1

Hs
n,m(σ;x)Hs

n,m(γ; z), (7.56)

(x, z) ∈ Ωext
σ ×Ωext

γ , is called a decomposition regularization Hσ,γ-scaling function

with respect to Λ−1, whereas a family {rΦσ,σ
j (·, ·)}j∈N0 of admissible Hσ,σ-kernels

given by

rΦσ,σ
j (x, y) =

∞∑
n=0

ϕj(n)
2n+1∑
m=1

Hs
n,m(σ;x)Hs

n,m(σ; y), (7.57)
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(x, y) ∈ Ωext
σ × Ωext

σ is called a reconstruction regularization Hσ,σ-scaling function
with respect to Λ−1.

Obviously, the regularization scaling functions fulfill

dΦ
σ,γ

j (x, ·) ∈ Hs(Ωext
γ ), x ∈ Ωext

σ , j ∈ N0, (7.58)

rΦσ,σ
j (x, ·) ∈ Hs(Ωext

σ ), x ∈ Ωext
σ , j ∈ N0. (7.59)

As already stated, we obtain the following theorem:

Theorem 7.18. Let {{ϕj(n)}n∈N0}j∈N0 be a generator of a regularization scal-
ing function with respect to Λ−1. If we define the admissible Hσ,γ-kernel (

rΦj ∗
dΦj)

σ,γ(·, ·) by

(rΦj ∗ dΦj)
σ,γ(x, z) = rΦσ,σ

j (x, ·) ∗ dΦ
σ,γ

j (·, z), (7.60)

(x, z) ∈ Ωext
σ × Ωext

γ , then

FJ = (rΦJ ∗ dΦJ)
σ,γ ∗G, G ∈ Hs(Ωext

γ ), (7.61)

represents the J-level regularization of Λ−1G.

If, in addition, G ∈ im(Λ) = HΛ
s (Ω

ext
γ ), then

lim
J→∞

‖FJ − Λ−1G‖Hs(Ωext
σ ) = 0. (7.62)

If we define the convolution operators SJ : Hs(Ωext
γ ) → Hs(Ωext

σ ), J ∈ N0, by

SJ(G) = (rΦJ ∗ dΦJ )
σ,γ ∗G, (7.63)

and introduce the scale spacesSJ(im(Λ)) as follows

SJ(im(Λ)) = {(rΦJ ∗ dΦJ)
σ,γ ∗G : G ∈ im(Λ)}, (7.64)

the following theorem holds.

Theorem 7.19. The scale spaces satisfy the following properties:

(i) S0(im(Λ)) ⊂ · · · ⊂ SJ (im(Λ)) ⊂ SJ′(im(Λ)) ⊂ Hs(Ωext
σ ), J ≤ J ′, i.e., for any

right-hand side G ∈ im(Λ) of the (scalar) SST or SGG problem, all J-level
regularizations with fixed parameter J are sampled in a scale space SJ (im(Λ))
with the above property,

(ii)
⋃∞

J=0 SJ (im(Λ))
‖·‖Hs(Ωext

σ ) = Hs(Ωext
σ ).

A set of subspaces of Hs(Ωext
σ ) satisfying the conditions of Theorem 7.19 is

called regularization Hσ,γ-multiresolution analysis (RMRA) of the (scalar) SST or
SGG problem.

We now turn to the definition of regularization wavelets following the proce-
dure described in the case of regularization scaling functions. Obviously, we have
to define decomposition and reconstruction regularization wavelets.
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Definition 7.20. Let {{ϕj(n)}n∈N0}j∈N0 be a generator of a regularization scal-
ing function with respect to Λ−1. Then the generating symbols {ψj(n)}n∈N0 and

{ψ̃j(n)}n∈N0 of the corresponding regularization wavelets are defined by the re-

finement equation (7.10). The admissible Hσ,γ-kernel {dΨ
σ,γ
j (·, ·)}j∈N0 given by

dΨ
σ,γ

j (x, z) =

∞∑
n=0

ψj(n)

2n+1∑
m=1

Hs
n,m(σ;x)Hs

n,m(γ; z), (7.65)

(x, z) ∈ Ωext
σ × Ωext

γ is called the decomposition regularization Hσ,γ-wavelet, while

the admissible Hσ,σ-kernel {rΨ̃
σ,σ

j (·, ·)}j∈N0 given by

rΨ̃
σ,σ

j (x, y) =

∞∑
n=0

ψ̃j(n)

2n+1∑
m=1

Hs
n,m(σ;x)Hs

n,m(σ; y), (7.66)

(x, y) ∈ Ωext
σ × Ωext

σ is called the reconstruction regularization Hσ,σ-wavelet.

We now define the convolution operators Tj : Hs(Ωext
γ ) → Hs(Ωext

σ ), j ∈
N0, by

Tj(G) = (rΨ̃j ∗ dΨj)
σ,γ ∗G, G ∈ Hs(Ωext

γ ). (7.67)

Obviously, due to the refinement equation, the operator SJ+1 can be represented
in the form

SJ+1 = S0 +

J∑
j=0

Tj. (7.68)

Thus, we now introduce the detail spaces TJ(im(Λ)) by

TJ(im(Λ)) =
{
(rΨ̃J ∗ dΨJ)

σ,γ ∗G : G ∈ im(Λ)
}
. (7.69)

The space TJ(im(Λ)) contains the detail information which has to be added in
order to turn from the J-level regularization to the J + 1-level regularization:

SJ+1(im(Λ)) = SJ(im(Λ)) + TJ(im(Λ)). (7.70)

In general, the sum is neither direct nor orthogonal.

Theorem 7.21. Let {{ϕj(n)}n∈N0}j∈N0 be a generator of a regularization scaling

function with respect to Λ−1. Suppose that {{ψj(n)}n∈N0}j∈N0 , {{ψ̃j(n)}n∈N0}j∈N0

are the generating symbols of the corresponding regularization wavelets. Further-
more, let G be of class Hs(Ωext

γ ). Define the regularizationHσ,γ-wavelet transform

at scale j ∈ N0 and position x ∈ Ωext
σ by

(RWT)(G)(j;x) = dΨ
σ,γ

J (x, ·) ∗G, G ∈ Hs(Ωext
γ ). (7.71)

Then

FJ =
(
rΦ0 ∗ dΦ0

)σ,γ ∗G+

J−1∑
j=0

rΨ̃
σ,σ

J ∗ (RWT )(G)(j; ·) (7.72)



388 W. Freeden and H. Nutz

is the J-level regularization of the (scalar) SST or SGG problem satisfying

lim
J→∞

‖FJ − Λ−1G‖Hs(Ωext
σ ) = 0 (7.73)

provided that G ∈ im(Λ) = HΛ
s (Ω

ext
γ ).

Some examples of regularization wavelets and numerical calculations can be
found in [19], where, in addition, all the above-mentioned theorems are proved.

7.2. Vectorial wavelet theory

We now give the extension of the scalar wavelet theory to the vectorial case. First
we define vectorial scaling functions and wavelets. The reconstruction formula is
the main result stating how the function can be split into a lowpass part and an
infinite sum of bandpass parts. Then we solve the (vectorial) SST or SGG problem

defining regularization wavelets. We use the notation Φ̂
(i)
j � Φ̂

(i)
j ∗ f instead of

Φ̂
(i)
j � (Φ̂

(i)
j ∗ f), and Φ̂j � Φ̂j ∗ f =

∑3
i=1 Φ̂

(i)
j � Φ̂

(i)
j ∗ f (i).

Definition 7.22. Let {Φ̂(i)
j (·, ·)}j∈N0 be a family of admissible h

(i)
σ,σ-kernels, i ∈

{1, 2, 3}. Then the family {V(i)
j (Ωext

σ )}j∈N0 of scale spaces V(i)
j (Ωext

σ ) defined by

V(i)
j (Ωext

σ ) = {Φ̂(i)
j � Φ̂

(i)
j ∗ f : f ∈ hs(Ωext

σ )}, (7.74)

is called an h
(i)
σ,σ-multiresolution analysis, if the following properties are satisfied:

(i) V(i)
0 (Ωext

σ ) ⊂ · · · ⊂ V(i)
j (Ωext

σ ) ⊂ V(i)
j+1(Ω

ext
σ ) ⊂ · · · ⊂ h

(i)
s (Ωext

σ ),

(ii)
⋃

j∈N0

V(i)
j (Ωext

σ )
‖·‖

hs(Ωext
σ )

= h
(i)
s (Ωext

σ ).

Definition 7.23. Let {Φ̂j(·, ·)}j∈N0 be a family of admissible hσ,σ-kernels. The set

of scale spaces Vj(Ωext
σ ) defined by

Vj(Ωext
σ ) = {Φ̂j � Φ̂j ∗ f : f ∈ hs(Ωext

σ )} (7.75)

is called an hσ,σ-multiresolution analysis, if {V(i)
j (Ωext

σ )}j∈N0 is an h
(i)
s (Ωext

σ )-multi-

resolution analysis for every i ∈ {1, 2, 3}.

Our next purpose is to define scaling functions.

Definition 7.24. A family {{ϕ(i)
j (n)}n∈N0i

}j∈N0 of sequences {ϕ
(i)
j (n)}n∈N0i

is called

a generator of a scaling function of kind i, i ∈ {1, 2, 3}, if it satisfies the following
requirements:

(i) (ϕ
(i)
j (0i))

2 = 1 for all j ∈ N0,

(ii) (ϕ
(i)
j (n))2 ≤

(
ϕ
(i)
j′ (n)

)2
for all j, j′ ∈ N0 with j ≤ j′ and all n ∈ N0i+1,

(iii) lim
j→∞

(ϕ
(i)
j (n))2 = 1 for all n ∈ N0i+1.
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Furthermore, the family {{{ϕ(i)(n)}i∈{1,2,3}}n∈N0i+1}j∈N0 is called a generator of

a scaling function, if {{ϕ(i)(n)}n∈N0i
}j∈N0 are generators of a scaling function of

kind i, i ∈ {1, 2, 3}.

Based on the definition of a generator of a scaling function, we now introduce
hσ,σ-scaling functions.

Definition 7.25. A family {Φ̂(i)
j (·, ·)}j∈N0 of h(i)-kernels Φ̂

(i)
j (·, ·) defined by

Φ̂
(i)∧
j (n) = ϕ

(i)
j (n), j ∈ N0, n ∈ N0i , i ∈ {1, 2, 3},

i.e.,

Φ̂
(i)
j (x, y) =

∞∑
n=0i

ϕ
(i)
j (n)

2n+1∑
m=1

Hs
n,m(σ;x)h(i)s

n,m(σ; y), x, y ∈ Ωext
σ , (7.76)

is called an h
(i)
σ,σ-scaling function, if it satisfies the following properties:

(i) Φ̂
(i)
j (·, ·) is an admissible h

(i)
σ,σ-kernel for every j ∈ N0,

(ii) {{Φ̂(i)∧
j (n)}n∈N0i

}j∈N0 constitutes a generator of a scaling function of kind i.

Furthermore, the family {Φ̂j(·, ·)}j∈N0 of hσ,σ-kernels Φ̂j(·, ·) is called an hσ,σ-

scaling function, if {Φ̂(i)
j }j∈N0 are h

(i)
σ,σ-scaling functions for i ∈ {1, 2, 3}.

The following approximation property can be derived.

Theorem 7.26. Let {Φ̂j(·, ·)}j∈N0 be an hσ,σ-scaling function. Then

lim
j→∞

‖f − Φ̂j � Φ̂j ∗ f‖hs(Ωext
σ ) = 0 (7.77)

holds for all f ∈ hs(Ωext
σ ).

Definition 7.27. Let {Φ̂j(·, ·)}j∈N0 be an hσ,σ-scaling function. Then {Pj}j∈N0 with

Pj : hs(Ωext
σ ) → hs(Ωext

σ ) defined by

Pj(f)(x) = Φ̂j � Φ̂j ∗ f, f ∈ hs(Ωext
σ ), x ∈ Ωext

σ , (7.78)

is called an hσ,σ-approximate identity.

The kernel Φ̂0 is called the mother kernel of the hσ,σ-scaling function.

Theorem 7.28. Let {Φ̂j(·, ·)}j∈N0 be an hσ,σ-scaling function. Then {Vj(Ωext
σ )}j∈N0

defined in (7.75) forms an hσ,σ-multiresolution analysis.

We are now at the point to define the (primal/dual) wavelet with the help of
the bilinear refinement equation.
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Definition 7.29. Let {Φ̂j(·, ·)}j∈N0 be an hσ,σ-scaling function. Then the families

of hσ,σ-kernels {Ψ̂j(·, ·)}j∈N0 , {
˜̂
Ψj(·, ·)}j∈N0 given by

(Ψ̂j)
(i)∧(n) = ψ

(i)
j (n), j ∈ N0, n ∈ N0i , i ∈ {1, 2, 3}, (7.79)

(
˜̂
Ψj)

(i)∧(n) = ψ̃
(i)
j (n), j ∈ N0, n ∈ N0i , i ∈ {1, 2, 3}, (7.80)

are called (primal) hσ,σ-wavelet and dual hσ,σ-wavelet, respectively, if all hσ,σ-ker-

nels Ψ̂j(·,·), ˜̂
Ψj(·, ·), j ∈N0, are admissible and the symbols {ψ(i)

j (n)}, {ψ̃(i)
j (n)},

in addition, satisfy the (vectorial) refinement equation

ψ̃
(i)
j (n)ψ

(i)
j (n) = (ϕ

(i)
j+1(n))

2 − (ϕ
(i)
j (n))2 (7.81)

for all j ∈ N0, n ∈ N0i , i ∈ {1, 2, 3}.

The following equation can directly be seen:

(ϕ
(i)
J+1(n))

2 = (ϕ
(i)
0 (n))2 +

J∑
j=0

ψ̃
(i)
j (n)ψ

(i)
j (n), J ∈ N0, (7.82)

for all n ∈ N0i . We now define the wavelet transform. To this end we let ψ
(i)
−1(n) =

ψ̃
(i)
−1(n) = ϕ

(i)
0 (n) and Ψ̂−1(·, ·) =

˜̂
Ψ−1(·, ·) = Φ̂0(·, ·) for n ∈ N0i , i ∈ {1, 2, 3}.

We remember that we have already defined the space Hs(N−1 × Ωext
σ ) (see Eqs.

(7.12)–(7.14))

Definition 7.30. Let {Ψ̂j(·, ·)}j∈N−1 be a (primal) hσ,σ-wavelet. Then (WT )(i) :

hs(Ωext
σ ) → Hs(N−1 × Ωext

σ ) defined by

(WT )(i)(f)(j; y) = (Ψ̂
(i)
j ∗ f)(y) (7.83)

is called hσ,σ-wavelet transform of kind i of f at position y ∈ Ωext
σ and scale

j ∈ N−1.

As usual, we define the detail space W(i)
j (Ωext

σ ) at scale j by

W(i)
j (Ωext

σ ) =
{ ˜̂
Ψ

(i)
j � Ψ̂

(i)
j ∗ f : f ∈ hs(Ωext

σ )
}
, (7.84)

and
Wj(Ωext

σ ) =
{ ˜̂
Ψj � Ψ̂j ∗ f : f ∈ hs(Ωext

σ )
}
. (7.85)

Theorem 7.31 (Vectorial Reconstruction Formula for the Outer Space). Let the

families {Ψ̂j(·, ·)}j∈N0 and { ˜̂Ψj(·, ·)}j∈N0 , respectively, be a (primal) hσ,σ-wavelet

and its dual corresponding to an hσ,σ-scaling function {Φ̂j(·, ·)}j∈N0 . Then

f =

∞∑
j=−1

˜̂
Ψj � Ψ̂j ∗ f (7.86)

holds for all f ∈ hs(Ωext
σ ) (in ‖ · ‖hs(Ωext

σ )-sense).
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Our next purpose is to solve the (vectorial) SST or SGG problem with the

help of bandlimited harmonic wavelets. First, we transfer the theory of h
(i)
σ,σ-scaling

functions to the case of h
(i)
α,α-scaling functions Φ̂

(i),α,α
j with α ≥ σ:

Φ̂
(i),α,α
j (x, y) =

∞∑
n=0i

ϕ
(i)
j (n)

2n+1∑
m=1

Hs
n,m(α;x)h(i)s

n,m(α; y), (7.87)

where

(Φ̂
(i),α,α
j )∧(n) = ϕ

(i)
j (n). (7.88)

Obviously, Theorem 7.26 can be directly transferred substituting σ by α. The scale
spaces are defined in the following way:

V(i)
j (Ωext

α ) = {Φ̂(i),α,α
j � Φ̂

(i),α,α
j ∗ f : f ∈ hs(Ωext

α )}. (7.89)

The system {V(i)
j (Ωext

α )} of scale spaces forms a multiresolution analysis.

Theorem 7.32. The restriction of the operator λ(i) : Hs(Ωext
σ ) → h

(i)
s (Ωext

γ ) to a

scale space Vj(Ωext
σ ), j ∈ N0, i.e.,

λ(i)|Vj(Ωext
σ ) : Vj(Ωext

σ ) → V(i)
j (Ωext

γ ), (7.90)

is injective for i = 1, whereas in the case of i ∈ {2, 3} the Fourier coefficient
of degree 0 cannot be recovered and the Fourier coefficients of degree n ≥ 1 are
uniquely defined. Moreover, we have the following results:

(i) If the families {{ϕ(i)
j (n)}n∈N0i

}j∈N0 , i ∈ {1, 2, 3}, and {{ϕj(n)}n∈N0}j∈N0

are bandlimited (for example, ϕ
(i)
j (n) = ϕj(n) = 0 for all n ≥ 2j), then

the restricted operator is even bijective (in the sense described above). To be

more specific, for g(i) ∈ h
(i)
s (Ωext

γ ) the (in the case of i = 2, 3 up to Fourier

coefficients of degree 0) unique solution Fj ∈ Vj(Ωext
σ ), j ∈ N0, of the equation

λ(i)Fj = Φ̂
(i),γ,γ
j � Φ̂

(i),γ,γ
j ∗ g(i) (7.91)

is given by

Fj = Φσ,σ
j ∗ Φσ,σ

j ∗Q, (7.92)

where Q ∈ Hs(Ωext
σ ) is obtainable by

Q∧(n,m) =

{
g(i)∧(n,m)
λ(i)∧(n)

, n ∈ [0i, 2
j),

0, n ∈ [2j ,∞).
(7.93)

(ii) If the families {{ϕ(i)
j (n)}n∈N0i

}j∈N0 , i ∈ {1, 2, 3}, and {{ϕj(n)}n∈N0}j∈N0 are
non-bandlimited, the equation

λ(i)Fj = Φ̂
(i),γ,γ
j � Φ̂

(i),γ,γ
j ∗ g(i) (7.94)

has a solution Fj∈Vj(Ωext
σ ) provided that g(i)∈h

(i)Λ
s (Ωext

γ ), where h
(i)Λ
s (Ωext

γ )
is a suitable Sobolev space (see the Ph.D.-thesis [58] for more details). In this
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case, the (in the case of i = 2, 3 up to Fourier coefficients of degree 0) unique
solution is given by

Fj = Φσ,σ
j ∗ Φσ,σ

j ∗Q, (7.95)

where Q ∈ Hs(Ωext
σ ) is obtainable in spectral language by

Q∧(n,m) =
g(i)∧(n,m)

λ(i)∧(n)
, (7.96)

n = 0i, . . . ;m = 1, . . . , 2n+ 1.

The following corollary shows that in the case of general operators λ =∑3
i=1 λ

(i) we have to claim an additional assumption onto the function g.

Corollary 7.33. The restriction of the operator λ =
∑3

i=1 λ
(i) to a scale space

Vj(Ωext
σ ), j ∈ N0, i.e.,

λ|Vj(Ωext
σ ) : Vj(Ωext

σ ) →
3⊕

i=1

V(i)
j (Ωext

γ ) (7.97)

has, in general, no solution. Under the assumption ϕ
(i)
j (n) = ϕj(n), i ∈ {1, 2, 3},

we have to claim, in addition, that

g(i)∧(n,m)

λ(i)∧(n)
=

g(l)∧(n,m)

λ(l)∧(n)
, (7.98)

with i, l ∈ {1, 2, 3}; n = max
i,l∈{1,2,3}

(0i, 0l), . . .; m = 1, . . . , 2n+ 1.

Then the results in Theorem 7.32 can directly be transferred.

Note that according to Theorem 7.32 the restriction of a pseudodifferential
operator of kind i to a scale space Vj(Ωext

σ ) is injective. Therefore, in the case of

a pseudodifferential operator λ =
∑3

i=1 λ
(i) each pseudodifferential operator λ(i)

leads to a unique solution. The additional assumption (7.98) is thus necessary, in
order to guarantee that the pseudodifferential operators of kind i do not lead to
different solutions.

With the help of the refinement equation (7.81) we now define the primal

wavelets {Ψ̂(i),α,α
j (·, ·)}j∈N0 and the dual wavelets { ˜̂Ψ(i),α,α

j (·, ·)}j∈N0 for α ≥ σ,

i ∈ {1, 2, 3}:

Ψ̂
(i),α,α
j (x, y) =

∞∑
n=0i

ψ
(i)
j (n)

2n+1∑
m=1

Hs
n,m(α;x)h(i)s

n,m(α; y), (7.99)

˜̂
Ψ

(i),α,α
j (x, y) =

∞∑
n=0i

ψ̃
(i)
j (n)

2n+1∑
m=1

Hs
n,m(α;x)h(i)s

n,m(α; y), (7.100)

where

(Ψ̂
(i),α,α
j )∧(n) = ψ

(i)
j (n), (

˜̂
Ψ

(i),α,α
j )∧(n) = ψ̃

(i)
j (n). (7.101)
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The detail spaces are defined in canonical manner:

W(i)
j (Ωext

α ) = {Ψ̂(i),α,α
j �

˜̂
Ψ

(i),α,α
j ∗ f : f ∈ hs(Ωext

α )}. (7.102)

Theorem 7.31 can be directly transferred by substituting the convolutions
with respect to the sphere Ωσ by the corresponding convolutions with respect to
the sphere Ωα. We now transfer Theorem 7.32 to the case of the detail spaces
and get the following theorem, where we use the terms injectivity, bijectivity, and
uniqueness in the same sense as before (i.e., up to Fourier coefficients of degree 0
in the case of i = 2, 3).

Theorem 7.34. The restriction of the operator λ(i) : Hs(Ωext
σ ) → h

(i)
s (Ωext

γ ) to a

detail space Wj(Ωext
σ ), j ∈ N0, i.e.,

λ(i)|Wj(Ωext
σ ) : Wj(Ωext

σ ) → W(i)
j (Ωext

γ ) (7.103)

with ψj(n) = ψ
(i)
j (n) is injective. Moreover, we have the following results:

(i) If the families {{ϕ(i)
j (n)}n∈N0i

}j∈N0 , i ∈ {1, 2, 3}, and {{ϕj(n)}n∈N0}j∈N0

are bandlimited (for example, ϕ
(i)
j (n) = ϕj(n) = 0 for all n ≥ 2j), then the

restricted operator is even bijective. To be more specific, for g(i) ∈ h
(i)
s (Ωext

γ )

the unique solution Hj ∈ Wj(Ωext
σ ), j ∈ N0, of the equation

λ(i)Hj =
˜̂
Ψ

(i),γ,γ
j � Ψ̂

(i),γ,γ
j ∗ g(i) (7.104)

is given by

Hj = Ψ̃σ,σ
j ∗Ψσ,σ

j ∗Q, (7.105)

where Q ∈ Hs(Ωext
σ ) is obtainable by

Q∧(n,m) =

{
g(i)∧(n,m)
λ(i)∧(n)

, n ∈ [0i, 2
j+1),

0, n ∈ [2j+1,∞).
(7.106)

(ii) If the families {{ϕ(i)
j (n)}n∈N0i

}j∈N0 , i ∈ {1, 2, 3}, and {{ϕj(n)}n∈N0}j∈N0 are
non-bandlimited, the equation

λ(i)Hj =
˜̂
Ψ

(i),γ,γ
j � Ψ̂

(i),γ,γ
j ∗ g(i) (7.107)

has a solution Hj ∈ Wj(Ωext
σ ) provided that the condition

∞∑
n=0i

2n+1∑
m=1

g(i)∧(n,m)

λ(i)∧(n)
< ∞ (7.108)

is satisfied for g(i) ∈ h
(i)
s (Ωext

γ ). In this case, the unique solution of the equa-
tion is given by

Hj = Ψ̃σ,σ
j ∗Ψσ,σ

j ∗Q, (7.109)
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where Q ∈ Hs(Ωext
σ ) is obtainable by

Q∧(n,m) =
g(i)∧(n,m)

λ(i)∧(n)
, (7.110)

n = 0i, . . .; m = 1, . . . , 2n+ 1.

Corollary 7.35. The restriction of the operator λ =
∑3

i=1 λ
(i) to a detail space

Wj(Ωext
σ ), j ∈ N0, i.e.,

λ|Wj(Ωext
σ ) : Wj(Ωext

σ ) →
3⊕

i=1

W(i)
j (Ωext

γ ) (7.111)

has, in general, no solution. Under the assumption ψ
(i)
j (n) = ψj(n) and ψ̃

(i)
j (n) =

ψ̃j(n), i ∈ {1, 2, 3}, we have to claim, in addition, that

g(i)∧(n,m)

λ(i)∧(n)
=

g(l)∧(n,m)

λ(l)∧(n)
, (7.112)

with i, l ∈ {1, 2, 3}; n = max
i,l∈{1,2,3}

(0i, 0l), . . .; m = 1, . . . , 2n+ 1.

Then the results in Theorem 7.34 can be directly transferred.

Up to now, we have summarized some results about the filtered solution, i.e.,
the solution when we restrict the operator to scale or detail spaces. In this case,
we have injectivity (in the case of i = 2, 3 up to Fourier coefficients of degree 0)

for the operators λ(i), whereas in the case of general operators λ =
∑3

i=1 λ
(i) we

have to claim that (7.98) is valid. In the case of the unfiltered solution, we obtain
the following theorem.

Theorem 7.36. Let g(i)∈h
(i)
s (Ωext

γ ) satisfy the condition g(i)∈ im(λ(i)), i∈{1,2,3}.
Then the unique solution F ∈ Hs(Ωext

σ ) (in the case of i = 2, 3 up to Fourier
coefficients of degree 0) of the equation λ(i)F = g(i) is given by

F∧(n,m) =
g(i)∧(n,m)

λ(i)∧(n)
, (7.113)

n = 0i, . . .; m = 1, . . . , 2n+ 1. In the case of the operator λ =
∑3

i=1 λ
(i) we have

to claim, in addition, that (7.112) holds in order to guarantee the solvability.

Last, we explain the connection between the solution in the scale spaces and
the unfiltered solution.

Theorem 7.37. Suppose that g(i) is of the class h
(i)Λ
s (Ωext

γ ). Let F ∈ Hs(Ωext
σ ) be

the unique (in the case of i = 2, 3 up to Fourier coefficients of degree 0) solution
of λ(i)F = g(i). Then

Fj = (Φ
(2)
j )σ,σ ∗ F (7.114)

is the unique solution in Vj(Ωext
σ ) of the equation

λ(i)Fj = Φ̂
(i),γ,γ
j � Φ̂

(i),γ,γ
j ∗ g(i) (7.115)
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for every j ∈ N0. Furthermore, the limit relation

lim
J→∞

(Φ
(2)
J )σ,σ ∗ F = F (7.116)

holds (in ‖ · ‖Hs(Ωext
σ )-sense).

The preceding theorem shows that in the case of bandlimited scaling functions
the (vectorial) SST or SGG problem is well posed, because a unique solution always
exists and due to the finite dimension of the scale spaces the solution is also stable.
We now investigate the case of non-bandlimited scaling functions and it turns out
that the stability cannot be ensured. The reason is that the (vectorial) SST or SGG
problem is an exponentially ill-posed problem with unbounded inverse operator
λ−1. Therefore, we have to turn to regularization methods and replace the inverse
operator by an appropriate bounded operator.

Definition 7.38. A family of linear operators S
(i)
j :h

(i)
s (Ωext

γ )→Hs(Ωext
σ ), j ∈N0,

is called a regularization of (λ(i))−1, i ∈ {1, 2, 3}, if it satisfies the following prop-
erties:

(i) S
(i)
j is bounded on h

(i)
s (Ωext

γ ) for all j ∈ N0,

(ii) for any member g(i) ∈ im(λ(i)), the limit relation

lim
J→∞

S
(i)
J g(i) = (λ(i))−1g(i) (7.117)

holds (in ‖ · ‖Hs(Ωext
σ )-sense).

The operator S : hs(Ωext
γ ) → Hs(Ωext

σ ) given by S|
h
(i)
s (Ωext

γ )
= S

(i)
j is called a

regularization of λ−1.

The function FJ = SJg is called the J-level regularization of λ−1g, whereas

F
(i)
J = S

(i)
J g(i) is called the J-level regularization of (λ(i))−1g. Within our multi-

scale approach, we now represent the (J +1)-level regularization using the J-level
regularization by adding the corresponding detail information. To this end, we
first introduce a multiscale regularization concept starting with the definition of a
generator of a regularization scaling function.

Definition 7.39. A family {{ϕ(i)
j (n)}n∈N0i

}j∈N0 of sequences {ϕ(i)
j (n)}n∈N0i

,

i ∈ {1, 2, 3}, is called a generator of a regularization scaling function with respect
to (λ(i))−1, if it satisfies the following requirements:

(i) (ϕ
(i)
j (0i))

2 = 1
λ(i)∧(0i)

for all j ∈ N0,

(ii) (ϕ
(i)
j (n))2 ≤ (ϕ

(i)
j′ (n))

2 for all j, j′ ∈ N0 with j ≤ j′ and all n ∈ N0i+1,

(iii) lim
j→∞

(ϕ
(i)
j (n))2 = 1

λ(i)∧(n)
for all n ∈ N0i+1.

Furthermore, {{{ϕ(i)
j (n)}i∈{1,2,3}}n∈N0i

}j∈N0 is called a generator of a regulariza-

tion scaling function with respect to λ−1, if (λ(i))−1 is a generator of a regulariza-
tion scaling function with respect to (λ(i))−1 for every i = 1, 2, 3.
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We now define decomposition and reconstruction regularization scaling func-
tions.

Definition 7.40. Let {{ϕ(i)
j (n)}n∈N0i

}j∈N0 be a generator of a regularization scaling

function with respect to (λ(i))−1. Then a family {dΦ̂(i),σ,γ

j (·, ·)}j∈N0 of admissible

h
(i)
σ,γ-kernels given by

dΦ̂
(i),σ,γ

j (x, z) =

∞∑
n=0i

ϕ
(i)
j (n)

2n+1∑
m=1

Hs
n,m(σ;x)h(i)s

n,m(γ; z), (7.118)

(x, z) ∈ Ωext
σ × Ωext

γ , is called a decomposition regularization h
(i)
σ,γ-scaling function

with respect to (λ(i))−1, whereas a family {rΦ̂(i),σ,σ

j (·, ·)}j∈N0 of admissible h
(i)
σ,σ-

kernels given by

rΦ̂
(i),σ,σ

j (x, y) =

∞∑
n=0i

ϕ
(i)
j (n)

2n+1∑
m=1

Hs
n,m(σ;x)h(i)s

n,m(σ; y), (7.119)

(x, y) ∈ Ωext
σ ×Ωext

σ , is called a reconstruction regularization h(i),σ,σ-scaling function
with respect to (λ(i))−1.

We obtain the following theorem:

Theorem 7.41. Let {{ϕ(i)
j (n)}n∈N0i

}j∈N0 be a generator of a regularization scaling

function with respect to (λ(i))−1, i ∈ {1, 2, 3}. If we formally define

(rΦ̂
(i)

j � dΦ̂
(i)

j )σ,γ(·, ·)
by

(rΦ̂
(i)

j � dΦ̂
(i)

j )σ,γ(x, z) = rΦ̂
(i),σ,σ

j (x, ·) � dΦ̂
(i),σ,γ

j (·, z), (7.120)

(x, z) ∈ Ωext
σ × Ωext

γ , then

F
(i)
J = (rΦ̂

(i)

J � dΦ̂
(i)

J )σ,γ ∗ g(i), g(i) ∈ h(i)
s (Ωext

γ ), (7.121)

represents the J-level regularization of (λ(i))−1g(i). If, in addition, g(i) ∈ im(λ(i)),
then

lim
J→∞

‖F (i)
J − (λ(i))−1g(i)‖Hs(Ωext

σ ) = 0. (7.122)

Furthermore,

FJ =

3∑
i=1

(rΦ̂
(i)

J � dΦ̂
(i)

J )σ,γ ∗ g(i), g =

3∑
i=1

g(i) ∈ hs(Ωext
γ ), (7.123)

represents the J-level regularization of λ−1g. If, in addition, g ∈ im(λ), then

lim
J→∞

‖FJ − λ−1g‖Hs(Ωext
σ ) = 0. (7.124)
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We now define the convolution operators S
(i)
J : h

(i)
s (Ωext

γ ) → Hs(Ωext
σ ),

J ∈ N0, by

S
(i)
J (g(i)) = (rΦ̂

(i)

J � dΦ̂
(i)

J )σ,γ ∗ g(i), (7.125)

whereas the convolution operator SJ : hs(Ωext
γ ) → Hs(Ωext

σ ), J ∈ N0, is given by

SJ (g) =

3∑
i=1

S
(i)
J (g(i)). (7.126)

Furthermore, we introduce the corresponding scale spaces S
(i)
J (im(λ(i))),

i ∈ {1, 2, 3}, and SJ(im(λ)) as follows

S
(i)
J (im(λ(i))) =

{
(rΦ̂

(i)

J � dΦ̂
(i)

J )σ,γ ∗ g(i) : g(i) ∈ im(λ(i))
}
, (7.127)

SJ(im(λ)) =

{
3∑

i=1

(rΦ̂
(i)

J � dΦ̂
(i)

J )σ,γ ∗ g(i) : g =

3∑
i=1

g(i) ∈ im(λ)

}
. (7.128)

Theorem 7.42. The scale spaces satisfy the following properties:

(i) S
(i)
0 (im(λ(i))) ⊂ · · · ⊂ S

(i)
J (im(λ(i))) ⊂ S

(i)
J′ (im(λ(i))) ⊂ Hs(Ωext

σ ), J ≤ J ′,
i.e., for any right-hand side g(i) ∈ im(λ(i)) of the (vectorial) SST or SGG
problem, all J-level regularizations with fixed parameter J are sampled in a

scale space S
(i)
J (im(λ(i))) with the above property,

(ii)
⋃∞

J=0 S
(i)
J (im(λ(i)))

‖·‖Hs(Ωext
σ )

= Hs(Ωext
σ ).

Obviously, Theorem 7.42 is also valid substituting S
(i)
J by SJ which leads to

the following corollary.

Corollary 7.43. The scale spaces satisfy the following properties:

(i) S0(im(λ)) ⊂ · · · ⊂ SJ (im(λ)) ⊂ SJ′(im(λ)) ⊂ Hs(Ωext
σ ), J ≤ J ′, i.e., for any

right-hand side g ∈ im(λ) of the (vectorial) SST or SGG problem, all J-level
regularizations with fixed parameter J are sampled in a scale space SJ(im(λ))
with the above property,

(ii)
⋃∞

J=0 SJ (im(λ))
‖·‖Hs(Ωext

σ ) = Hs(Ωext
σ ).

A set of subspaces of Hs(Ωext
σ ) satisfying the conditions of Corollary 7.43 is

called regularization hσ,γ-multiresolution analysis (RMRA) of the (vectorial) SST
or SGG problem.

Definition 7.44. Let {{ϕ(i)
j (n)}n∈N0i

}j∈N0 be a generator of a regularization scal-

ing function with respect to (λ(i))−1. Then the generating symbols {ψ(i)
j (n)}n∈N0i

,

{ψ̃(i)
j (n)}n∈N0i

of the corresponding regularization wavelets are defined by the re-

finement equation (7.81). The admissible h
(i)
σ,γ-kernels {dΨ̂

(i),σ,γ

j (·, ·)}j∈N0 given by

dΨ̂
(i),σ,γ

j (x, z) =

∞∑
n=0i

ψ
(i)
j (n)

2n+1∑
m=1

Hs
n,m(σ;x)h(i)s

n,m(γ; z), (7.129)
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(x, z) ∈ Ωext
σ ×Ωext

γ , are called the decomposition regularization h
(i)
σ,γ-wavelets, while

the admissible h
(i)
σ,σ-kernels {r ˜̂Ψ

(i),σ,σ

j (·, ·)}j∈N0 given by

r ˜̂Ψ
(i),σ,σ

j (x, y) =
∞∑

n=0i

ψ̃
(i)
j (n)

2n+1∑
m=1

Hs
n,m(σ;x)h(i)s

n,m(σ; y), (7.130)

(x, y) ∈ Ωext
σ × Ωext

σ are called the reconstruction regularization h
(i)
σ,σ-wavelets.

We now define the convolution operators T
(i)
j : h

(i)
s (Ωext

γ ) → Hs(Ωext
σ ), j ∈

N0, i = 1, 2, 3, by

T
(i)
j (g(i)) = (r

˜̂
Ψ

(i)
j � dΨ̂

(i)

j )σ,γ ∗ g(i), g(i) ∈ h(i)
s (Ωext

γ ), (7.131)

and the convolution operator Tj : hs(Ωext
γ ) → Hs(Ωext

σ ), j ∈ N0, by

TJ(g) =
3∑

i=1

T
(i)
J (g(i)). (7.132)

Obviously, due to the refinement equation, the operators S
(i)
J+1 and SJ+1 can be

represented in the form

S
(i)
J+1 = S

(i)
0 +

J∑
j=0

T
(i)
j , (7.133)

SJ+1 = S0 +
J∑

j=0

Tj . (7.134)

Thus, we now introduce the detail spaces T
(i)
J (im(λ(i))) and TJ(im(λ)) by

T
(i)
J (im(λ(i))) =

{
(r
˜̂
Ψ

(i)
J � dΨ̂

(i)
J )σ,γ ∗ g(i) : g(i) ∈ im(λ(i))

}
, (7.135)

TJ(im(λ)) =

{
3∑

i=1

(r
˜̂
Ψ

(i)

J � dΨ̂
(i)

J )σ,γ ∗ g(i) : g =

3∑
i=1

g(i) ∈ im(λ)

}
. (7.136)

In terms of the multiscale concept, the space TJ(im(λ)) contains the detail
information which has to be added in order to turn from the J-level regularization
to the (J + 1)-level regularization:

SJ+1(im(λ)) = SJ(im(λ)) + TJ(im(λ)). (7.137)

In general, the sum is neither direct nor orthogonal.

Theorem 7.45. Let {{ϕ(i)
j (n)}n∈N0i

}j∈N0 be a generator of a regularization scaling

function with respect to (λ(i))−1, i ∈ {1, 2, 3}. Suppose that {{ψ(i)
j (n)}n∈N0i

}j∈N0 ,
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{{ψ̃(i)
j (n)}n∈N0i

}j∈N0 are the generating symbols of the corresponding regulariza-

tion wavelets. Furthermore, let g(i) be of class h
(i)
s (Ωext

γ ). Define the regularization

h
(i)
σ,γ-wavelet transform at scale j ∈ N0 and position x ∈ Ωext

σ by

(RWT )(g(i))(j;x) = dΨ̂
(i),σ,γ

j (x, ·) ∗ g(i), g(i) ∈ h(i)
s (Ωext

γ ). (7.138)

Then

FJ = (rΦ̂
(i)

0 � dΦ̂
(i)

0 )σ,γ ∗ h(i) +

J−1∑
j=0

r ˜̂Ψ
(i),σ,σ

j � (RWT )(g(i))(j; ·)

is the J-level regularization of the (vectorial) SST or SGG problem satisfying

lim
J→∞

‖FJ − (λ(i))−1g(i)‖Hs(Ωext
σ ) = 0 (7.139)

provided that g(i) ∈ im(λ(i)).

7.3. Tensorial wavelet theory

The extension from vector to tensor theory is performed in this section. First,
we define tensorial scaling functions and wavelets and give the reconstruction for-
mula. The solution of the tensorial SGG problem is presented using regularization
wavelets.

Definition 7.46. Let {Φ(i,k)
j (·, ·)}j∈N0 , i, k ∈ {1, 2, 3}, be a family of admissible

h
(i,k)
σ,σ -kernels. Then the family {V(i,k)

j (Ωext
σ )}j∈N0 of scale spaces V(i,k)

j (Ωext
σ ) de-

fined by

V(i,k)
j (Ωext

σ ) = {Φ(i,k)
j �Φ

(i,k)
j ∗ f : f ∈ hs(Ωext

σ )}, (7.140)

is called an h
(i,k)
σ,σ -multiresolution analysis, if the following properties are satisfied:

(i) V(i,k)
0 (Ωext

σ ) ⊂ · · · ⊂ V(i,k)
j (Ωext

σ ) ⊂ V(i,k)
j+1 (Ωext

σ ) ⊂ · · · ⊂ h
(i,k)
s (Ωext

σ ),

(ii)
⋃

j∈N0

V(i,k)
j (Ωext

σ )
‖·‖

hs(Ωext
σ )

= h
(i,k)
s (Ωext

σ ).

Definition 7.47. Let {Φj(·, ·)}j∈N0 be a family of admissible hσ,σ-kernels. The set

of scale spaces Vj(Ωext
σ ) defined by

Vj(Ωext
σ ) = {Φj �Φj ∗ f : f ∈ hs(Ωext

σ )} (7.141)

is called an hσ,σ-multiresolution analysis, if {V(i,k)
j (Ωext

σ )}j∈N0 is an h
(i,k)
s (Ωext

σ )-

multiresolution analysis for every i, k ∈ {1, 2, 3}.

We now define the scaling functions.

Definition 7.48. A family {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 of sequences {ϕ(i,k)
j (n)}n∈N0ik

is

called a generator of a scaling function of kind (i, k), i, k ∈ {1, 2, 3}, if it satisfies
the following requirements:
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(i) (ϕ
(i,k)
j (0ik))

2 = 1, for all j ∈ N0,

(ii) (ϕ
(i,k)
j (n))2 ≤

(
ϕ
(i,k)
j′ (n)

)2
, for all j, j′ ∈ N0 with j ≤ j′ and all n ∈ N0ik+1,

(iii) lim
j→∞

(ϕ
(i,k)
j (n))2 = 1, for all n ∈ N0ik+1.

Furthermore, the family {{{ϕ(i,k)(n)}i,k∈{1,2,3}}n∈N0ik
}j∈N0 is called a generator

of a scaling function, if {{ϕ(i,k)(n)}n∈N0ik
}j∈N0 are generators of a scaling function

of kind (i, k), i, k ∈ {1, 2, 3}.
Based on the definition of a generator of a scaling function, we now introduce

hσ,σ-scaling functions.

Definition 7.49. A family {Φ(i)
j (·, ·)}j∈N0 of h(i,k)-kernels Φ

(i,k)
j (·, ·) defined by

Φ
(i,k)∧
j (n) = ϕ

(i,k)
j (n), j ∈ N0, n ∈ N0ik , i.e.,

Φ
(i,k)
j (x, y) =

∞∑
n=0ik

ϕ
(i,k)
j (n)

2n+1∑
m=1

Hs
n,m(σ; y)h(i,k)s

n,m (σ;x), x, y ∈ Ωext
σ , (7.142)

is called an h
(i,k)
σ,σ -scaling function, if it satisfies the following properties:

(i) Φ
(i,k)
j (·, ·) is an admissible h

(i,k)
σ,σ -kernel for every j ∈ N0,

(ii) {{Φ(i,k)∧
j (n)n∈N0ik

}j∈N0 constitutes a generator of a scaling function of kind

(i, k).

Furthermore, the family {Φj(·, ·)}j∈N0 of hσ,σ-kernels Φj(·, ·) is called an hσ,σ-

scaling function, if {Φ(i,k)
j }j∈N0 are h

(i,k)
σ,σ -scaling functions for i, k ∈ {1, 2, 3}.

As in the scalar and vectorial theory, the following approximation theorem is
valid.

Theorem 7.50. Let {Φj(·, ·)}j∈N0 be an hσ,σ-scaling function. Then

lim
j→∞

‖f −Φj �Φj ∗ f‖hs(Ωext
σ ) = 0 (7.143)

holds for all f ∈ hs(Ωext
σ ).

Definition 7.51. Let {Φj(·, ·)}j∈N0 be an hσ,σ-scaling function. Then {Pj}j∈N0 with

Pj : hs(Ωext
σ ) → hs(Ωext

σ ) defined by

Pj(f)(x) = Φj �Φj ∗ f , f ∈ hs(Ωext
σ ), x ∈ Ωext

σ , (7.144)

is called an hσ,σ-approximate identity.

The kernel Φ0 is called the mother kernel of the hσ,σ-scaling function. We
obtain the following theorem.

Theorem 7.52. Let {Φj(·, ·)}j∈N0 be an hσ,σ-scaling function. Then {Vj(Ωext
σ )}j∈N0

given in (7.141) forms an hσ,σ-multiresolution analysis.

The next purpose is to define the primal and dual wavelet with the help of
the tensorial refinement equation.
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Definition 7.53. Let {Φj(·, ·)}j∈N0 be an hσ,σ-scaling function. Then the families

of hσ,σ-kernels {Ψj(·, ·)}j∈N0 , {Ψ̃j(·, ·)}j∈N0 given by

(Ψj)
(i,k)∧(n) = ψ

(i,k)
j (n), j ∈ N0, n ∈ N0ik , i, k ∈ {1, 2, 3}, (7.145)

(Ψ̃j)
(i,k)∧(n) = ψ̃

(i,k)
j (n), j ∈ N0, n ∈ N0ik , i, k ∈ {1, 2, 3}, (7.146)

are called (primal) hσ,σ-wavelet and dual hσ,σ-wavelet, respectively, if all hσ,σ-

kernels Ψj(·, ·), Ψ̃j(·, ·), j ∈ N0, are admissible and the symbols {ψ(i,k)
j (n)},

{ψ̃(i,k)
j (n)}, in addition, satisfy the (tensorial) refinement equation

ψ̃
(i,k)
j (n)ψ

(i,k)
j (n) = (ϕ

(i,k)
j+1 (n))

2 − (ϕj(n)
(i,k))2 (7.147)

for all j ∈ N0, n ∈ N0ik , i, k ∈ {1, 2, 3}.

As a direct consequence we get the following equation:

(ϕ
(i,k)
J+1 (n))

2 = (ϕ
(i,k)
0 (n))2 +

J∑
j=0

ψ̃
(i,k)
j (n)ψ

(i,k)
j (n), J ∈ N0, (7.148)

for all n ∈ N0ik . We now define the wavelet transform. To this end we let ψ
(i,k)
−1 (n) =

ψ̃
(i,k)
−1 (n) = ϕ

(i,k)
0 (n), for n ∈ N0ik , i, k ∈ {1, 2, 3}, Ψ−1(·, ·) = Ψ̃−1(·, ·) = Φ0(·, ·).

We remember the space H(N−1 × Ωext
σ ) (see Eqs. (7.12)–(7.14)).

Definition 7.54. Let {Ψj(·, ·)}j∈N−1 be a (primal) hσ,σ-wavelet. Then (WT )(i,k) :

hs(Ωext
σ ) → Hs(N−1 × Ωext

σ ) defined by

(WT )(i,k)(f)(j; y) = (Ψ
(i,k)
j ∗ f)(y) (7.149)

is called hσ,σ-wavelet transform if kind (i, k) of f at position y ∈ Ωext
σ and scale

j ∈ N−1.

As usual, we define the detail space W(i,k)
j (Ωext

σ ) at scale j by

W(i,k)
j (Ωext

σ ) = {Ψ̃(i,k)
j �Ψ

(i,k)
j ∗ f : f ∈ h(sΩext

σ )}, (7.150)

and

Wj(Ωext
σ ) = {Ψ̃j �Ψj ∗ f : f ∈ hs(Ωext

σ )}. (7.151)

Theorem 7.55 (Tensorial Reconstruction Formula for the Outer Space). Let the

families {Ψj(·, ·)}j∈N0 and {Ψ̃j(·, ·)}j∈N0 , respectively, be a (primal) hσ,σ-wavelet
and its dual corresponding to an hσ,σ-scaling function {Φj(·, ·)}j∈N0 . Then

f =

∞∑
j=−1

Ψ̃j �Ψj ∗ f (7.152)

holds for all f ∈ hs(Ωext
σ ) (in ‖ · ‖hs(Ωext

σ )-sense).
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We now solve the (tensorial) SGG problem using regularization wavelets.

First, we transfer the theory of h
(i,k)
σ,σ -scaling functions to the general case of h

(i,k)
α,α -

scaling functions Φ
(i,k),α,α
j with α ≥ σ:

Φ
(i,k),α,α
j (x, y) =

∞∑
n=0ik

ϕ
(i,k)
j (n)

2n+1∑
m=1

Hs
n,m(α;x)h(i,k)s

n,m (α; y), (7.153)

where

(Φ
(i,k),α,α
j )∧(n) = ϕ

(i,k)
j (n). (7.154)

Theorem 7.50 can be directly transferred substituting σ by α. The scale spaces
are defined in the following way:

V(i,k)
j (Ωext

α ) = {Φ(i,k),α,α
j �Φ

(i,k),α,α
j ∗ f : f ∈ hs(Ωext

α )}. (7.155)

The system {V(i,k)
j (Ωext

α )} of scale spaces forms a multiresolution analysis.

Theorem 7.56. The restriction of the operator λ(i,k) : Hs(Ωext
σ ) → h

(i,k)
s (Ωext

γ ) to

a scale space Vj(Ωext
σ ), j ∈ N0, i.e.,

λ(i,k)|Vj(Ωext
σ ) : Vj(Ωext

σ ) → V(i,k)
j (Ωext

γ ), (7.156)

is injective for (i, k) ∈ {(1, 1), (2, 1), (3, 1)}, whereas in the case of (i, k) ∈ {(1, 2),
(1, 3), (2, 3), (3, 3)} the Fourier coefficient of degree 0 cannot be recovered and the
Fourier coefficients of degree n ≥ 1 are uniquely defined. In the case of (i, k) ∈
{(2, 2), (3, 2)} the Fourier coefficient of degree 0 and 1 cannot be recovered and the
Fourier coefficients of degree n ≥ 2 are uniquely defined (in the following text,
injectivity, bijectivity and uniqueness is always used in this sense).

Moreover, we have the following results:

(i) If the families {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 and {{ϕj(n)}n∈N0}j∈N0 , i,k∈{1,2,3},
are bandlimited (for example, ϕ

(i,k)
j (n) = ϕj(n) = 0 for all n ≥ 2j), then the

restricted operator is even bijective (in the sense described above). To be more

specific, for g(i,k) ∈ h
(i,k)
s (Ωext

γ ) the unique solution Fj ∈ Vj(Ωext
σ ), j ∈ N0,

of the equation

λ(i,k)Fj = Φ
(i,k),γ,γ
j �Φ

(i,k),γ,γ
j ∗ g(i,k) (7.157)

is given by

Fj = Φσ,σ
j ∗ Φσ,σ

j ∗Q, (7.158)

where Q ∈ Hs(Ωext
σ ) is obtainable by

Q∧(n,m) =

{
g(i,k)∧(n,m)

λ(i,k)∧
(n)

, n ∈ [0ik, 2
j),

0, n ∈ [2j ,∞).
(7.159)
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(ii) If the families {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 , i,k∈{1,2,3}, and {{ϕj(n)}n∈N0}j∈N0

are non-bandlimited, the equation

λ(i,k)Fj = Φ
(i,k),γ,γ
j �Φ

(i,k),γ,γ
j ∗ g(i,k) (7.160)

has a solution Fj ∈ Vj(Ωext
σ ) provided that g(i,k) ∈ h

(i,k)Λ
s (Ωext

γ ), where

h
(i,k)Λ
s (Ωext

γ ) is an appropriate Sobolev space (see the Ph.D.-thesis [58] for
more details). In this case, the unique solution of the equation is given by

Fj = Φσ,σ
j ∗ Φσ,σ

j ∗Q, (7.161)

where Q ∈ Hs(Ωext
σ ) is obtainable in spectral language by

Q∧(n,m) =
g(i,k)∧(n,m)

λ(i,k)∧(n)
, (7.162)

n = 0ik, . . .; m = 1, . . . , 2n+ 1.

The following corollary shows that in the case of general operators λ =∑3
i,k=1 λ

(i,k) we have to claim an additional assumption onto the function g.

Corollary 7.57. The restriction of the operator λ =
∑3

i,k=1 λ
(i,k) to a scale space

Vj(Ωext
σ ), j ∈ N0, i.e.,

λ|Vj(Ωext
σ ) : Vj(Ωext

σ ) →
3⊕

i,k=1

V(i,k)
j (Ωext

γ ) (7.163)

has, in general, no solution. Under the assumption ϕ
(i,k)
j (n) = ϕj(n), i, k ∈

{1, 2, 3}, we have to claim, in addition, that

g(i,k)∧(n,m)

λ(i,k)∧(n)
=

g(l,r)∧(n,m)

λ(l,r)∧(n)
, (7.164)

with i, k, l, r ∈ {1, 2, 3}; n = max
i,k,l,r∈{1,2,3}

(0ik, 0lr), . . .; m = 1, . . . , 2n+1. Then the

results in Theorem 7.56 can be directly transferred.

With the help of the refinement equation (7.147) we now define the primal

wavelets {Ψ(i,k),α,α
j (·, ·)}j∈N0 and the dual wavelets {Ψ̃(i,k),α,α

j (·, ·)}j∈N0 for α ≥ σ,

i, k ∈ {1, 2, 3}:

Ψ
(i,k),α,α
j (x, y) =

∞∑
n=0ik

ψ
(i,k)
j (n)

2n+1∑
m=1

Hs
n,m(α;x)h(i,k)s

n,m (α; y), (7.165)

Ψ̃
(i,k),α,α
j (x, y) =

∞∑
n=0ik

ψ̃
(i,k)
j (n)

2n+1∑
m=1

Hs
n,m(α;x)h(i,k)s

n,m (α; y), (7.166)

where

(Ψ
(i,k),α,α
j )∧(n) = ψ

(i,k)
j (n), (Ψ̃

(i,k),α,α
j )∧(n) = ψ̃

(i,k)
j (n). (7.167)
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The detail spaces are defined in canonical manner:

W(i,k)
j (Ωext

α ) = {Ψ(i,k),α,α
j � Ψ̃

(i,k),α,α
j ∗ f : f ∈ hs(Ωext

α )}. (7.168)

Theorem 7.55 can be directly transferred by substituting the convolutions with
respect to the sphere Ωσ by the corresponding convolutions with respect to the
sphere Ωα. We now transfer Theorem 7.56 to the detail spaces and get the following
theorem, where we use the terms injectivity, bijectivity, and uniqueness in the same
sense as before.

Theorem 7.58. The restriction of the operator λ(i,k) : Hs(Ωext
σ ) → h

(i,k)
s (Ωext

γ ) to

a detail space Wj(Ωext
σ ), j ∈ N0, i.e.,

λ(i,k)|Wj(Ωext
σ )Wj(Ωext

σ ) → W(i,k)
j (Ωext

γ ) (7.169)

with ψj(n) = ψ
(i,k)
j (n) is injective. Moreover, we have the following results:

(i) If the families {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 and {{ϕj(n)}n∈N0}j∈N0 , i,k∈{1,2,3},
are bandlimited (for example, ϕ

(i,k)
j (n) = ϕj(n) = 0 for all n ≥ 2j), then

the restricted operator is even bijective. To be more specific, for g(i,k) ∈
h
(i,k)
s (Ωext

γ ) the unique solution Hj ∈ Wj(Ωext
σ ), j ∈ N0, of the equation

λ(i,k)Hj = Ψ̃
(i,k),γ,γ
j ∗Ψ(i,k),γ,γ

j ∗ g(i,k) (7.170)

is given by

Hj = Ψ̃σ,σ
j ∗Ψσ,σ

j ∗Q, (7.171)

where Q ∈ Hs(Ωext
σ ) is obtainable by

Q∧(n,m) =

{
g(i,k)∧(n,m)

λ(i,k)∧
(n)

, n ∈ [0ik, 2
j+1),

0, n ∈ [2j+1,∞).
(7.172)

(ii) If the families {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 , i,k∈{1,2,3}, and {{ϕj(n)}n∈N0}j∈N0

are non-bandlimited, the equation

λ(i,,k)Hj = Ψ̃
(i,k),γ,γ
j �Ψ

(i,k),γ,γ
j ∗ g(i,k) (7.173)

has a solution Hj ∈ Wj(Ωext
σ ) provided that the condition

∞∑
n=0ik

2n+1∑
m=1

g(i,k)∧(n,m)

λ(i,k)∧(n)
< ∞ (7.174)

is satisfied for g(i,k) ∈ hs
(i,k)(Ωext

γ ). In this case, the unique solution of the
equation is given by

Hj = Ψ̃σ,σ
j ∗Ψσ,σ

j ∗Q, (7.175)
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where Q ∈ Hs(Ωext
σ ) is obtainable by

Q∧(n,m) =
g(i,k)∧(n,m)

λ(i,k)∧(n)
, (7.176)

n = 0ik, . . .; m = 1, . . . , 2n+ 1.

Furthermore, we have the following corollary.

Corollary 7.59. The restriction of the operator λ =
∑3

i,k=1 λ
(i,k) to a detail space

Wj(Ωext
σ ), j ∈ N0, i.e.,

λ|Wj(Ωext
σ ) : Wj(Ωext

σ ) →
3⊕

i,k=1

W(i,k)
j (Ωext

γ ) (7.177)

has, in general, no solution. Under the assumption

ψ
(i,k)
j (n) = ψj(n) and ψ̃

(i,k)
j (n) = ψ̃j(n), i, k ∈ {1, 2, 3},

we have to claim, in addition, that

g(i,k)∧(n,m)

λ(i,k)∧(n)
=

g(l,r)∧(n,m)

λ(l,r)∧(n)
, (7.178)

with i, k, l, r ∈ {1, 2, 3}; n = max
i,k,l,r

(0ik, 0lr), . . . ; m = 1, . . . , 2n+1. Then the results

in Theorem 7.58 can be directly transferred.

Up to now, we have summarized some results about the filtered solution, i.e.,
the solution when we restrict the operator to the scale or detail spaces. In this

case, the injectivity for the operators λ(i,k) could be proved, whereas in the case

of general operators λ =
∑3

i,k=1 λ
(i,k) we have to claim that (7.164) is valid. In

the case of the unfiltered solution, we obtain the following theorem.

Theorem 7.60. Let g(i,k) ∈ h
(i,k)
s (Ωext

γ ) satisfy the condition g ∈ im(λ(i,k)), i, k ∈
{1, 2, 3}. Then the unique solution F ∈ Hs(Ωext

σ ) of the equation λ(i,k)F = g(i,k)

is given by

F∧(n,m) =
g(i,k)∧(n,m)

λ(i,k)∧(n)
, (7.179)

n = 0ik, . . .; m = 1, . . . , 2n+ 1. In the case of the operator λ =
∑3

i,k=1 λ
(i,k) we

have to claim, in addition, that (7.178) holds in order to guarantee the solvability.

Last, we explain the connection between the solution in the scale spaces and
the unfiltered solution.

Theorem 7.61. Suppose that g(i,k) is of the class h
(i,k)Λ
s (Ωext

γ ). Let F ∈ Hs(Ωext
σ )

be the unique solution of λ(i,k)F = g(i,k). Then

Fj = (Φ
(2)
j )σ,σ ∗ F (7.180)
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is the unique solution in Vj(Ωext
σ ) of the equation

λ(i,k)Fj = Φ
(i,k),γ,γ
j �Φ

(i,k),γ,γ
j ∗ g(i,k) (7.181)

for every j ∈ N0. Furthermore, the limit relation

lim
J→∞

(Φ
(2)
J )σ,σ ∗ F = F (7.182)

holds (in ‖ · ‖Hs(Ωext
σ )-sense).

The preceding theorem shows that in the case of bandlimited scaling functions
the (tensorial) SGG-problem is well posed, because a unique solution always exists
and due to the finite dimension of the scale spaces the solution is also stable. We
now investigate the case of non-bandlimited scaling functions, where the stability
cannot be ensured and we have to use regularization methods.

Definition 7.62. A family of linear operators S
(i,k)
j : h

(i,k)
s (Ωext

γ ) → Hs(Ωext
σ ),

j ∈ N0, is called a regularization of (λ(i,k))−1, i, k ∈ {1, 2, 3}, if it satisfies the
following properties:

(i) S
(i,k)
j is bounded on h

(i,k)
s (Ωext

γ ) for all j ∈ N0,

(ii) for any member g(i,k) ∈ im(λ(i,k)), the limit relation

lim
J→∞

S
(i,k)
J g(i,k) = (λ(i,k))−1g(i,k) (7.183)

holds (in ‖ · ‖Hs(Ωext
σ )-sense).

The operator S : hs(Ωext
γ ) → Hs(Ωext

σ ) given by S|
h

(i,k)
s (Ωext

γ )
= S

(i,k)
j is called a

regularization of λ−1.

The function FJ = SJg is called the J-level regularization of λ−1g, whereas

F
(i,k)
J = S

(i,k)
J g(i,k) is called the J-level regularization of (λ(i,k))−1g. Within our

multiscale approach, we now represent the (J + 1)-level regularization using the
J-level regularization by adding the corresponding detail information. To this end
we first introduce a multiscale regularization concept starting with the definition
of a generator of a regularization scaling function.

Definition 7.63. A family {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 of sequences {ϕ(i,k)
j (n)}n∈N0ik

,

i, k ∈ {1, 2, 3}, is called a generator of a regularization scaling function with respect

to (λ(i,k))−1, if it satisfies the following requirements:

(i) (ϕ
(i,k)
j (0ik))

2 = 1

λ(i,k)∧
(0ik)

, for all j ∈ N0,

(ii) (ϕ
(i,k)
j (n))2 ≤ (ϕ

(i,k)
j′ (n))2, for all j, j′ ∈ N0 with j ≤ j′ and all n ∈ N0ik+1,

(iii) lim
j→∞

(ϕ
(i,k)
j (n))2 = 1

(λ(i,k)
)∧(n)

, for all n ∈ N0ik+1.

Furthermore, {{{ϕ(i,k)
j (n)}i,k∈{1,2,3}}n∈N0ik

}j∈N0 is called a generator of a regu-

larization scaling function with respect to λ−1, if (λ(i,k))−1 is a generator of a

regularization scaling function with respect to (λ(i,k))−1 for every i, k = 1, 2, 3.
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We now define decomposition and reconstruction regularization scaling func-
tions.

Definition 7.64. Let {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 be a generator of a regularization

scaling function with respect to (λ(i,k))−1, i, k ∈ {1, 2, 3}.
Then a family {dΦ(i,k),σ,γ

j (·, ·)}j∈N0 of admissible h
(i,k)
σ,γ -kernels given by

dΦ
(i,k),σ,γ

j (x, z) =

∞∑
n=0ik

ϕ
(i,k)
j (n)

2n+1∑
m=1

Hs
n,m(σ;x)h(i,k)s

n,m (γ; z), (7.184)

(x, z) ∈ Ωext
σ × Ωext

γ , is called a decomposition regularization h
(i,k)
σ,γ -scaling func-

tion with respect to (λ(i,k))−1, whereas a family {rΦ(i,k),σ,σ
j (·, ·)}j∈N0 of admissible

h
(i,k)
σ,σ -kernels given by

rΦ
(i,k),σ,σ
j (x, y) =

∞∑
n=0ik

ϕ
(i,k)
j (n)

2n+1∑
m=1

Hs
n,m(σ;x)h(i,k)s

n,m (σ; y), (7.185)

(x, y) ∈ Ωext
σ ×Ωext

σ is called a reconstruction regularization h
(i,k)
σ,σ -scaling function

with respect to (λ(i,k))−1.

We obtain the following theorem:

Theorem 7.65. Let {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 be a generator of a regularization scal-

ing function with respect to (λ(i,k))−1, i, k ∈ {1, 2, 3}. If we formally define

(rΦ
(i,k)
j � dΦ

(i,k)

j )σ,γ(·, ·)
by

(rΦ
(i,k)
j � dΦ

(i,k)

j )σ,γ(x, z) = rΦ
(i,k),σ,σ
j (x, ·) � dΦ

(i,k),σ,γ

j (·, z), (7.186)

(x, z) ∈ Ωext
σ × Ωext

γ , then

F
(i,k)
J = (rΦ

(i,k)
J � dΦ

(i,k)

J )σ,γ ∗ g(i,k), g(i,k) ∈ h(i,k)
s (Ωext

γ ), (7.187)

represents the J-level regularization of (λ(i,k))−1g(i,k). If, in addition, g(i,k) ∈
im(λ(i,k)), then

lim
J→∞

‖F (i,k)
J − (λ(i,k))−1g(i,k)‖Hs(Ωext

σ ) = 0. (7.188)

Furthermore,

FJ =

3∑
i,k=1

(rΦ
(i,k)
J � dΦ

(i,k)

J )σ,γ ∗ g(i,k), g =

3∑
i,k=1

g(i,k) ∈ hs(Ωext
γ ), (7.189)

represents the J-level regularization of λ−1g. If, in addition, g ∈ im(λ), then

lim
J→∞

‖FJ − λ−1g‖Hs(Ωext
σ ) = 0. (7.190)
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We define the convolution operators S
(i,k)
J : h

(i,k)
s (Ωext

γ ) → Hs(Ωext
σ ),

J ∈ N0, by

S
(i,k)
J (g(i,k)) = (rΦ

(i,k)
J � dΦ

(i,k)

J )σ,γ ∗ g(i,k), (7.191)

whereas the convolution operator SJ : hs(Ωext
γ ) → Hs(Ωext

σ ), J ∈ N0, is given by

SJ(g) =

3∑
i,k=1

S
(i,k)
J (g(i,k)). (7.192)

Furthermore, we introduce the corresponding scale spaces S
(i,k)
J (im(λ(i,k))), i, k ∈

{1, 2, 3}, and SJ(im(λ)) as follows

S
(i,k)
J (im(λ(i,k))) =

{
(rΦ

(i,k)
J � dΦ

(i,k)

J )σ,γ ∗ g(i,k) : g(i,k) ∈ im(λ(i,k))
}
, (7.193)

SJ(im(λ)) =

{ 3∑
i,k=1

(rΦ
(i,k)
J � dΦ

(i,k)

J )σ,γ ∗ g(i,k) : g =

3∑
i,k=1

g(i,k) ∈ im(λ)

}
.

(7.194)

Theorem 7.66. The scale spaces satisfy the following properties:

(i) S
(i,k)
0 (im(λ(i,k))) ⊂ · · · ⊂ S

(i,k)
J (im(λ(i,k))) ⊂ S

(i,k)
J′ (im(λ(i,k))) ⊂ Hs(Ωext

σ ),

J ≤ J ′, i.e., for any right-hand side g(i,k) ∈ im(λ(i,k)) of the (tensorial) SGG
problem, all J-level regularizations with fixed parameter J are sampled in a

scale space S
(i,k)
J (im(λ(i,k))) with the above property,

(ii)
⋃∞

J=0 S
(i,k)
J (im(λ(i,k)))

‖·‖Hs(Ωext
σ )

= Hs(Ωext
σ ).

Obviously, Theorem 7.66 is also valid substituting S
(i,k)
J by SJ which leads

to the following corollary.

Corollary 7.67. The scale spaces satisfy the following properties:

(i) S0(im(λ)) ⊂ · · · ⊂ SJ(im(λ)) ⊂ SJ′(im(λ)) ⊂ Hs(Ωext
σ ), J ≤ J ′, i.e., for

any right-hand side g ∈ im(λ) of the (tensorial) SGG problem, all J-level
regularizations with fixed parameter J are sampled in a scale space SJ (im(λ))
with the above property,

(ii)
⋃∞

J=0 SJ (im(λ))
‖·‖Hs(Ωext

σ ) = Hs(Ωext
σ ).

A set of subspaces of Hs(Ωext
σ ) satisfying the conditions of Corollary 7.67 is

called regularization hσ,γ-multiresolution analysis (RMRA) of the (tensorial) SGG
problem.

Definition 7.68. Let {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 be a generator of a regularization

scaling function with respect to
(
λ(i,k)

)−1
. Then the generating symbols

{ψ̃(i,k)
j (n)}n∈N0ik

, {ψ(i,k)
j (n)}n∈N0ik

of the corresponding regularization wavelets are defined by the refinement equation
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(7.147). The admissible h
(i,k)
σ,γ -kernels {dΨ(i,k),σ,γ

j (·, ·)}j∈N0 given by

dΨ
(i,k),σ,γ

j (x, z) =

∞∑
n=0ik

ψ
(i,k)
j (n)

2n+1∑
m=1

Hs
n,m(σ;x)h(i,k)s

n,m (γ; z), (7.195)

(x, z) ∈ Ωext
σ × Ωext

γ are called the decomposition regularization h
(i,k)
σ,γ -wavelets,

while the admissible h
(i,k)
σ,σ -kernels {rΨ̃(i,k),σ,σ

j (·, ·)}j∈N0 given by

rΨ̃
(i,k),σ,σ

j (x, y) =

∞∑
n=0ik

ψ̃
(i,k)
j (n)

2n+1∑
m=1

Hs
n,m(σ;x)h(i,k)s

n,m (σ; y), (7.196)

(x, y) ∈ Ωext
σ × Ωext

σ are called the reconstruction regularization h
(i,k)
σ,σ -wavelets.

We now define the convolution operators T
(i,k)
j : h

(i,k)
s (Ωext

γ ) → Hs(Ωext
σ ),

j ∈ N0, i, k = 1, 2, 3, by

T
(i,k)
j (g(i,k)) = (rΨ̃

(i,k)
j � dΨ

(i,k)

j )σ,γ ∗ g(i,k), g(i,k) ∈ h(i,k)
s (Ωext

γ ), (7.197)

and the convolution operator Tj : hs(Ωext
γ ) → Hs(Ωext

σ ), j ∈ N0, by

TJ(g) =

3∑
i,k=1

T
(i,k)
J (g(i,k)). (7.198)

Obviously, due to the refinement equation the operators S
(i,k)
J+1 and SJ+1 can be

represented in the form

S
(i,k)
J+1 = S

(i,k)
0 +

J∑
j=0

T
(i,k)
j , (7.199)

SJ+1 = S0 +

J∑
j=0

Tj. (7.200)

Thus, we now introduce the detail spaces T
(i,k)
J (im(λ(i,k))) and TJ(im(λ)) by

T
(i,k)
J (im(λ(i,k))) =

{
(rΨ̃

(i,k)
J � dΨ

(i,k)
J )σ,γ ∗ g(i,k) : g(i,k) ∈ im(λ(i,k))

}
, (7.201)

TJ(im(λ)) =

{ 3∑
i,k=1

(rΨ̃
(i,k)

J � dΨ
(i,k)

J )σ,γ ∗ g(i,k) : g =
3∑

i=1

g(i,k) ∈ im(λ)

}
.

(7.202)

In terms of the multiscale concept, the space TJ(im(λ)) contains the detail infor-
mation which has to be added in order to turn from the J-level regularization to
the (J + 1)-level regularization:

SJ+1(im(λ)) = SJ(im(λ)) + TJ(im(λ)). (7.203)

In general, the sum is neither direct nor orthogonal.
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Theorem 7.69. Let {{ϕ(i,k)
j (n)}n∈N0ik

}j∈N0 be a generator of a regularization scal-

ing function with respect to (λ(i,k))−1, i, k ∈ {1, 2, 3}. Suppose that

{{ψ(i,k)
j (n)}n∈N0ik

}j∈N0 , {{ψ̃
(i,k)
j (n)}n∈N0ik

}j∈N0

are the generating symbols of the corresponding regularization wavelets. Further-

more, let g(i,k) be of the class h
(i,k)
s (Ωext

γ ). Define the regularization h
(i,k)
σ,γ -wavelet

transform at scale j ∈ N0 and position x ∈ Ωext
σ by

(RWT )(g(i,k))(j;x) = dΨ
(i,k),σ,γ

j (x, ·) ∗ g(i,k), g(i,k) ∈ h(i,k)
s (Ωext

γ ). (7.204)

Then

FJ =
(
rΦ

(i,k)
0 � dΦ

(i,k)

0

)σ,γ
∗ h(i,k) +

J−1∑
j=0

rΨ̃
(i,k),σ,σ

j � (RWT )(g(i,k))(j; ·) (7.205)

is the J-level regularization of the (tensorial) SGG problem satisfying

lim
J→∞

‖FJ − (λ(i,k))−1g(i,k)‖Hs(Ωext
σ ) = 0 (7.206)

provided that g(i,k) ∈ im(λ(i,k)).

7.4. Combined outer harmonic and wavelet concept

In geodetic practice, there exists a variety of realizations of spherical harmonic
models of the Earth’s external gravitational potential. In [19] it is explained how
to combine an outer harmonic model of fixed order m with a harmonic wavelet
model. The justification for such a combined model is the fact that on the one
hand the appropriate candidate for the approximation of the low frequency parts
of the gravitational potential (i.e., global modeling) is a spherical harmonic (i.e., a
multipole) model of moderate orderm and on the other hand for the representation
of the high frequency parts (i.e., local modeling) new wavelet techniques have to
come into play (see also the investigations in spherical continuous wavelet theory
[33, 34]).

Starting point of this model is the “refinement equation” (compare Eq. (7.10))

ψ̃j(n)ψj(n) = (ϕj+1(n))
2 − (ϕj(n))

2.

It is clear that ψ̃j(n)ψj(n) = 0 if and only if (ϕj+1(n))
2 = (ϕj(n))

2. Due to condi-
tion (i) in Definition 7.2, the wavelet (or its dual) satisfy the mean value condition
ψj(0) = 0, i.e., it has to oscillate. For purposes of combined approximation we need,
however, (ϕj+1(n))

2 = (ϕj(n))
2 for all n ∈ [0, . . . ,m]. Under these assumptions it

may be guaranteed that the wavelets constructed in this way have more vanishing
moments and we call them wavelets of order m. In [19] the reconstruction formula
for such wavelets is studied in more detail. The transition of the combined outer
harmonic and wavelet concept to the vectorial and tensorial case is also easy to
perform.
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8. Bandlimited Runge–Walsh multiscale approximation

In the previous sections we developed several methods of wavelet approximation.
We briefly reformulate the main results: Let {Ψj(·, ·)}j∈N0 be an Hσ,σ-wavelet
corresponding to an Hσ,σ-scaling function {Φj(·, ·)}j∈N0 . Then any potential F ∈
Hs(Ωext

σ ) can be expressed by a multiscale approximation given by

Φ
(2)
0 ∗ F +

J−1∑
j=0

Ψ̃j ∗Ψj ∗ F, F ∈ Hs(Ωext
σ ). (8.1)

For a numerical realization, the discretization of the Hs(Ωext
σ )-convolutions

(i.e., the Hs(Ωext
σ )-inner products) occurring in the J-level wavelet approximation

is necessary. For that purpose we observe that anyHs(Ωext
σ )-convolution is express-

ible as a bounded linear functional on Hs(Ωext
σ ). Thus fully discretized wavelet ap-

proximation amounts to the problem of approximating a bounded linear functional
(i.e., an Hs(Ωext

σ )-inner product) by a linear combination of known bounded linear
functionals. In this context it should again be mentioned that following our nomen-
clature an H0(Ωext

σ )-inner product can be identified with an ordinary integral over

the sphere Ωσ. Therefore, fully discretized H0(Ωext
σ )-wavelet approximation can

be organized appropriately by numerical integration (cubature) over the sphere

Ωσ. Looking at the inner products in our general Hs(Ωext
σ )-framework we are con-

fronted with convolutions involving a pseudodifferential operator Λ with symbol
Λ∧(n) = An for n ∈ N0. Their discretization requires the knowledge of linear

(observational) functionals for the potential F ∈ Hs(Ωext
σ ) under consideration.

Usually, in gravitational field determination, these (observational) functionals are
heterogeneous in nature. In addition, the approximate formulae have to be for-
mulated in dependence on the scale parameter, since increasing space localization
demands increasing data material.

All these requirements, however, do not lead to a unique procedure for dis-
cretizing Hs(Ωext

σ )-convolutions. Many variants of approximate formulae are rea-
sonable and conceivable. In fact, the choice of a suitable method is essentially
dependent on the purpose for which scaling functions and wavelets are used. Un-
fortunately, it turns out that each of the discretization methods has its own draw-
back. Nevertheless, a lot of approximation schemata for Hs(Ωext

σ )-convolutions can
be found so that at least some of the requests can be fulfilled. As most important
discretization rules we mention:

1. Fast Fourier techniques and multipole techniques (cf. [19, 39, 74]) are eco-
nomical in time, but they are based on evaluation functionals on equiangular
latitude-longitude grids. Thus the sample points are merely equidistributed
on the (ϑ, ϕ)-parameter interval [0, π]× [0, 2π] in Euclidean space R2, but not
on a sphere.

2. Polynomial (i.e., outer harmonic) exact approximation of bandlimited func-
tions is a well-established tool for application to bandlimited potentials of
moderate degree (cf. [12, 28, 29, 54]). The problem is that the preliminary
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work includes the solution of a linear system of equations (which is full-sized
and tends to be ill conditioned for an increasing number of nodal points).
However, it can be shown that (outer harmonics) exact approximation of
bandlimited potentials can be used very efficiently (without a priori solving
any linear system) on equiangular grids (cf. [23, 39]).

3. Another method for the approximate evaluation of Hs(Ωext
σ )-convolutions,

which includes the exact approximation of bandlimited functions as a special
case, is harmonic spline exact best approximation (cf. [12, 14, 19]). It can be
applied appropriately for modeling the medium to short wavelength parts of
a signal.

4. The low discrepancy method (cf. [21, 48]) represents an adequate tool if a
great number of data is available, so that the solution of linear equations
should be avoided. Sufficient accuracy can be guaranteed only if a high num-
ber of equidistributed data points are available. Thus it is of advantage for
integrands of high complexity (e.g., short wavelength parts of a signal).

In what follows, it will be shown that both discretization techniques, i.e.,
outer harmonic and spline exact integration, lead to pyramid schemata adapted to
the space localization properties of the potential we are interested in. To be more
specific, the bandlimited variant of fast wavelet computation (based on the Shan-
non kernel and its modifications) can be based on outer harmonic exact formulae

for the evaluation of Hs(Ωext
σ )-inner products. It is proposed for the application

to moderate phenomena of space localization (i.e., low-to-medium wavelength ap-
proximation) so that one can work with smaller data sets (cf. [31, 32]). In fast
computation by bandlimited wavelets the number of wavelet coefficients is re-
duced, since they contain information of a more extended area. In addition, a
certain spectral band is expressible exactly in terms of wavelets because of their
bandlimited character. The non-bandlimited variant of fast wavelet evaluation (us-
ing non-bandlimited kernels such as Tikhonov, rational, exponential, and “locally
supported” kernels (cf. [29, 31]) is meant for the application to seriously space
localizing potentials (i.e., short wavelength approximation). In consequence, huge
data sets can be handled since only a small subset of the data is needed for the
purpose of numerical evaluation. On the other hand, a large number of wavelet
coefficients is needed, since they only give local information related to a small
area. Again, we are confronted with the drawback that large linear systems must
be solved in an a priori step to obtain the weights in (spline exact) best approxi-
mation formulae. In the non-bandlimited case, however, panel clustering or sparse
matrix techniques (cf. [23]) are efficiently applicable because of the strong space
localization properties of the non-bandlimited kernel functions.

Next, the use of outer harmonic exact approximation will be discussed in
more detail following [19]. A constructive version of the Runge–Walsh theorem
will be developed in terms of bandlimited wavelets. The advantage is that when
using bandlimited wavelets, we do not need the wavelet transform at all positions.
It suffices to know a finite set of linear functionals for each scale J to evaluate
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the wavelet transform exactly. In conclusion, each J-level wavelet approximation

Φ
(2)
J ∗ F can be expressed exactly as a finite sum.

Our concept using bandlimited wavelets is presented under the assumption
that the families {Φj(·, ·)}j∈N0 , {Ψj(·, ·)}j∈N0 , and {Ψ̃j(·, ·)}j∈N0 consist of band-
limited kernels such that

ϕj(n) �= 0, n = 0, . . . , 2j − 1 (8.2)

and

ϕj(n) = 0, n = 2j, 2j + 1, . . . . (8.3)

In the following we use the notation

Hp,...,q(Ωext
σ ) = Harmp,...,q(Ωext

σ ). (8.4)

Consequently, we have

Φj(x, ·) ∈ H0,...,2j−1(Ωext
σ ), (8.5)

and

Ψj(x, ·), Ψ̃j(x, ·) ∈ H0,...,2j+1−1(Ωext
σ ) (8.6)

for all x ∈ Ωext
σ . Thus the scale spaces and the detail spaces, respectively, fulfill

the relations

Vj = H0,...,2j−1(Ωext
σ ), Wj ⊂ H0,...,2j+1−1(Ωext

σ ). (8.7)

Suppose now that there is known a set {v1, . . . , vM} of M values vi,
i = 1, . . . ,M , from a potential V (for example, the gravitational potential or

the anomalous potential of the Earth) of class Pot (0)(Σext) corresponding to lin-
ear (observational) functionals L1, . . . ,LM . Then an extended version of Helly’s

theorem (cf. [76]) tells us that, corresponding to the potential V ∈ Pot (0)(Σext),
there exists a member F (i.e., a Runge–Walsh approximation of the (anomalous)

potential) of class Hs(Ωext
σ ) such that F |Σext is in an (ε/2)-neighbourhood to V

(understood in uniform topology on Σext) and LiF = vi, i = 1, . . . ,M (note that
we may write more accurately F0,...,∞ instead of F to indicate that all Harmn-
spaces generally contribute to the “nature” of F when the Earth’s gravitational
potential is required). Moreover, there exists an element F0,...,m (i.e., a bandlim-

ited approximation to the Runge–Walsh approximation) of class H0,...,m(Ωext
σ )

such that the restriction F0,...,m|Σext may be considered to be in (ε/2)-accuracy to

F |Σext uniformly on Σext and, in addition, LiF0,...,m = LiF = vi, i = 1, . . . ,M . In

other words, corresponding to a potential V ∈ Pot (0)(Σext) there exists on Σext

a bandlimited potential in H(Ωext
σ ), (namely, F0,...,m ∈ H0,...,m(Ωext

σ )) consistent
with the original data in ε-accuracy (i.e., vi = LiF = LiF0,...,m, i = 1, . . . ,M).
This is the reason why we are interested in wavelet approximations of potentials
F0,...,m of class H0,...,m(Ωext

σ ) uniformly on Σext from a finite set of functional val-
ues (note that, for the Earth’s anomalous potential, the approximation consistent

with the original data may be found in the class H2,...,m(Ωext
σ ) which is a subspace

of H0,...,m(Ωext
σ )).
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Our strategy is to represent F0,...,m ∈ H0,...,m(Ωext
σ ) by a J-level approxima-

tion Φ
(2)
J ∗ F0,...,m with J chosen in such a way that 2J+1 − 1 ≥ m (note that

F0,...,m coincides with Φ
(2)
J+1 ∗ F0,...,m uniformly on Σext in the case of Shannon

wavelets). We want to express the J-level wavelet approximation Φ
(2)
J+1 ∗ F0,...,m

of the potential F0,...,m( with 2J+1 − 1 ≥ m) exactly only by use of the M values
v1, . . . , vM corresponding to the linear functionals L1, . . . ,LM .

First, our purpose is to apply outer harmonic based approximation formulae.
To this end, we introduce fundamental systems of bounded linear functionals and
derive some approximation formulae. Consider the matrix

m =

⎛⎜⎝ L1H0,1(σ; ·) . . . LNH0,1(σ; ·)
...

...
L1Hm,2m+1(σ; ·) . . . LNHm,2m+1(σ; ·)

⎞⎟⎠ (8.8)

associated to a system of N ≥
∑m

n=0(2n + 1) = (m + 1)2 (linearly independent)

bounded linear functionals L1, . . . ,LN on H(Ωext
σ ). According to well-known ar-

guments of approximation theory, the matrix (8.8) is not of maximal rank for all
systems {L1, . . . ,LN}, N ≥ (m+ 1)2. However, it is clear from a well-known con-
struction principle (see, for example, [19]) that there exist systems {L1, . . . ,LN}
possessing a non-degenerate matrix (8.8).

Definition 8.1. A system {L1, . . . ,LN} of N ≥ (m+1)2 bounded linear functionals

on H(Ωext
σ ) is called an H0,...,m(Ωext

σ )-fundamental system, if the conditions F ∈
H0,...,m(Ωext

σ ) and LiF = 0, i = 1, . . . , N , imply F = 0.

From Definition 8.1 it is clear that the matrix (8.8) is of maximal rank (m+1)2

if and only if {L1, . . . ,LN} is an H0,...,m(Ωext
σ )-fundamental system. Moreover, it

should be noted that the addition theorem of outer harmonics gives us

mTm =

⎛⎜⎝ L1L1KH0,...,m(Ωext
σ )(·, ·) . . . L1LNKH0,...,m(Ωext

σ )(·, ·)
...

...
LNL1KH0,...,m(Ωext

σ )(·, ·) . . . LNLNKH0,...,m(Ωext
σ )(·, ·)

⎞⎟⎠ .

The Gram matrix mTm is regular if and only if the system {L1, . . . ,LN} is

an H0,...,m(Ωext
σ )-fundamental system. Moreover, it is clear that the property of

{L1, . . . ,LN} of being an H0,...,m(Ωext
σ )-fundamental system, is independent of the

choice of the H0,...,m(Ωext
σ )-orthonormal basis.

For later use we introduce the following definition.

Definition 8.2. Let Ξ be a regular surface with Ξ ⊂ Ωext
σ .

Let {L1, . . . ,LN} be an H0,...,m(Ωext
σ )-fundamental system of Dirichlet func-

tionals L1, . . . ,LN on H(Ωext
σ ) (i.e., LiF = F (yi) for yi ∈ Ξ, i = 1, . . . , N and all

F ∈ H(Ωext
σ )). Then the associated system {y1, . . . , yN} is called an H0,...,m(Ωext

σ )-
Dirichlet-fundamental system on Ξ.
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Let {L1, . . . ,LN} be an H0,...,m(Ωext
σ )-fundamental system of Neumann func-

tionals Li, i = 1, . . . , N (i.e., LiF = (λ · (∇F ))(yi) for yi ∈ Ξ and all F ∈ H(Ωext
σ ))

with λ : Ξ → R3 being a unit vector field satisfying infx∈Ξ ν(x) · λ(x) > 0
(where ν denotes the outer normal). Then the system {y1, . . . , yN} is called an

H0,...,m(Ωext
σ )-Neumann-fundamental system on Ξ (relative to λ).

Let {L1, . . . ,LN} be an H0,...,m(Ωext
σ )-fundamental system in the sense of

Definition 8.1. Suppose that F is a potential of class H(Ωext
σ ). Furthermore, let P

be an element of H0,...,m(Ωext
σ ) with the representation

P =

m∑
n=0

2n+1∑
l=1

P∧(n, l)Hn,l(σ; ·).

Then, for all solutions a ∈ RN , a = (a1, . . . , aN)T , of the linear system

N∑
k=1

akLkHn,l(σ; ·) = P∧(n, l), (8.9)

n = 0, . . . ,m; l = 1, . . . , 2n+ 1, we find

P =

N∑
k=1

ak

m∑
n=0

2n+1∑
l=1

(LkHn,l(σ; ·))Hn,l(σ; ·). (8.10)

Observing this fact we get the following theorem.

Theorem 8.3. Let {L1, . . . ,LN} be anH0,...,m(Ωext
σ )-fundamental system of bounded

linear functionals on H(Ωext
σ ). Then the identity

F ∗ P =
N∑

k=1

akLkF −
N∑

k=1

akLkKHm+1,...,∞(Ωext
σ ) ∗ F

holds for all F ∈ H(Ωext
σ ) and all solutions a ∈ RN , a = (a1, . . . , aN )T , satisfying

the linear system (8.9).

By virtue of the Cauchy–Schwarz inequality it follows from Theorem 8.3 that
the estimate∣∣∣∣∣F ∗ P −

N∑
k=1

akLkF

∣∣∣∣∣
≤
(

N∑
k=1

N∑
s=1

akasLkLsKHm+1,...,∞(Ωext
σ )(·, ·)

)1/2

‖F‖Hm+1,...,∞(Ωext
σ )

(8.11)

holds for all F ∈ H(Ωext
σ ) and all solutions a ∈ RN , a = (a1, . . . , aN )T , satisfying

(8.9). In particular, we have for F ∈ H0,...,m(Ωext
σ )

F ∗ P =

N∑
k=1

akLkF, (8.12)
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since ‖F‖Hm+1,...,∞(Ωext
σ ) = 0. But this shows us that

KH0,...,m ∗ P =

N∑
k=1

akLkKH0,...,m(Ωext
σ )(·, ·) (8.13)

holds for all a ∈ Rn, a = (a1, . . . , aN )T , satisfying the linear equations (8.9).

Next we adopt a famous criterion due to [73] from Theorem 8.3.

Lemma 8.4. The following statements are equivalent:

(i) lim
N→∞

N∑
k=1

akLkHn,l(σ; ·) = 0, n = m+ 1,m+ 2, . . .; l = 1, . . . , 2n+ 1,

(ii) F ∗ P = lim
N→∞

N∑
k=1

akLkF, F ∈ H(Ωext
σ ).

As shown in [19], the definition of fundamental systems and approximation

formulae leads us to exact approximation rules on H0,...,2m(Ωext
σ )-spaces. To this

end we have to summarize shortly some results concerning interpolation by outer
harmonics (see [19]).

We start mentioning the Shannon sampling theorem for the finite-dimensional
space H0,...,m(Ωext

σ ).

Lemma 8.5. Let F be in H0,...,m(Ωext
σ ). Assume that {L1, . . . ,LN} forms an

H0,...,m(Ωext
σ )-fundamental system. Then F can be reconstructed from its samples

at the bounded linear functionals L1, . . . ,LN by the following interpolation formula

F (x) =

N∑
k=1

(LkF )PN
k (x), x ∈ Ωext

σ ,

where the “Lagrangians” PN
k ∈ H0,...,m(Ωext

σ ), k = 1, . . . , N , are given by

PN
k =

N∑
l=1

wN
l,kLlKH0,...,m(Ωext

σ )(·, ·)

and the coefficients wN
l,k have to satisfy the linear equations

N∑
l=1

wN
l,kLiLlKH0,...,m(Ωext

σ )(·, ·) = δi,k,

i, k = 1, . . . , N .

Next we come to some aspects on numerical integration on the sphere. The-
orem 8.3 allows as special cases the following variants.

Lemma 8.6 (Koksma–Hlawka formula of approximation order 0). Let F be of class

H(Ωext
σ ) with {An} being summable in the sense of Definition 3.3. Assume that
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{yN1 , . . . , yNN } is a subset of points on Ωσ. Then the integral formula

1

4πσ2

∫
Ωσ

F (y) dω(y)

=

N∑
k=1

wN
k F (yNk )−

N∑
k=1

wN
k

(
KH1,...,∞(Ωext

σ )(· , y
N
k ), F

)
H1,...,∞(Ωext

σ )

(8.14)

holds for all wN = (wN
1 , . . . , wN

N )T with
∑N

k=1 w
N
k = 1 (e.g., wN

k = 1/N).

Lemma 8.7 (Koksma–Hlawka formula of approximation order m). Let F be a

member of class H(Ωext
σ ) with {An} being summable in the sense of Definition

3.3. Assume that {yN1 , . . . , yNN } ⊂ Ωext
σ is an H0,...,m(Ωext

σ )-Dirichlet-fundamental
system, i.e., a pointset on the sphere Ωσ such that⎛⎜⎝ KH0,...,m(Ωext

σ )(y
N
1 , yN1 ) . . . KH0,...,m(Ωext

σ )(y
N
1 , yNN )

...
...

KH0,...,m(Ωext
σ )(y

N
N , yN1 ) . . . KH0,...,m(Ωext

σ )(y
N
N , yNN )

⎞⎟⎠
is regular. Then the integral formula

1

4πσ2

∫
Ωσ

F (y) dω(y) (8.15)

=
N∑

k=1

wN
k F (yNk )−

N∑
k=1

wN
k

(
KHm+1,...,∞(Ωext

σ )(· , y
N
k ), F

)
Hm+1,...,∞(Ωext

σ )

holds for all wN = (wN
1 , . . . , wN

N )T , satisfying

N∑
l=1

wN
l = 1, (8.16)

N∑
l=1

wN
l Hn,k(σ; y

N
l ) = 0, n = 1, . . . ,m, k = 1, . . . , 2n+ 1. (8.17)

Finally we are interested in an extension of the Koksma–Hlawka formula
for spherical integrals (see Lemma 8.7) to H0,...,m(Ωext

σ )-inner products. To this
end we understand the summable sequence {An} generating the reference space

H(Ωext
σ ) to be the symbol of a pseudodifferential operator A with AHn,k(σ; ·) =

A∧(n)Hn,k(σ; ·) = AnHn,k(σ; ·) for all n ∈ N0; k = 1, . . . , 2n+ 1. Then the frame-

work of the space H0,...,m(Ωext
σ ) tells us that

F ∗ P =

m∑
n=0

2n+1∑
k=1

F∧(n, k)P∧(n, k)

=

∫
Ωσ

(AF )(y)(AP )(y) dω(y) (8.18)
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holds for all F ∈ H(Ωext
σ ) and P ∈ H0,...,m(Ωext

σ ). Moreover, we see that∫
Ωσ

(AF )(y)(AP )(y) dω(y) =

∫
Ωσ

F (y)(A2P )(y) dω(y).

Clearly, A2P is a member of class H0,...,m(Ωext
σ ) (as defined in the foregoing). As-

suming F to be of class H0,...,m(Ωext
σ ), F (A2P )|Ωext

σ
is the product of two elements

of class H0,...,m(Ωext
σ ), hence, F (A2P )|Ωext

σ
is a member of class H0,...,2m(Ωext

σ ). In

connection with Lemma 8.7 this leads us to the following result.

Lemma 8.8. Let F and P be elements of class H0,...,m(Ωext
σ ).

Assume that {yN1 , . . . , yNN } ⊂ Ωσ is an H0,...,2m(Ωext
σ )-Dirichlet-fundamental

system on Ωσ (with N ≥ (2m+ 1)2). Then the identity

F ∗ P =

N∑
k=1

wN
k F (yNk )(A2P )(yNk )

holds for all wN = (wN
1 , . . . , wN

N )T satisfying

N∑
l=1

wN
l = 1, (8.19)

N∑
l=1

wN
l Hn,k(σ; y

N
l ) = 0, n = 1, . . . , 2m; k = 1, . . . , 2n+ 1. (8.20)

In particular, we have

KH0,...,m ∗ F =
N∑

k=1

wN
k F (yNk )KHarm0,...,m(Ωext

σ )(·, y
N
k ).

Lemma 8.8 is an essential tool for the development of “tree algorithms” (pyra-
mid schemata) in bandlimited harmonic wavelet theory.

Lemma 8.9. Let the system {yM1 , . . . , yMM } ⊂ Ωσ, M = (2m + 1)2, define an

H0,...,2m(Ωext
σ )-Dirichlet-fundamental system. Furthermore, suppose that P0,...,m,

Q0,...,m, respectively, are elements of class H0,...,m(Ωσ). Then the identity

P0,...,m ∗Q0,...,m =
M∑
n=1

bMn P0,...,m(yMn )(A2Q)0,...,m(yMn ) (8.21)

holds for all weights bM1 , . . . , bMM satisfying

M∑
r=1

bMr KH0,...,2m(Ωext
σ )(y

M
i , yMr )

=

∫
Ωσ

KH0,...,2m(Ωext
σ )(y

M
i , x) dω(x), i = 1, . . . ,M. (8.22)

Furthermore, we have the following results.
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Lemma 8.10. Let {LM
1 , . . . ,LM

M}, M = (m+1)2, be an H0,...,m(Ωext
σ )-fundamental

system, and suppose that P0,...,m and Q0,...,m are members of H0,...,m(Ωext
σ ). Then

the identity

P0,...,m ∗Q0,...,m =
m∑

n=0

2n+1∑
k=1

M∑
r=1

dn,kr (Q0,...,m ∗Hn,k(σ; ·))LM
r P0,...,m (8.23)

holds for all weights dn,k1 , . . . , dn,kM ; n = 0, . . . ,m; k = 1, . . . , 2n+ 1, satisfying the
linear equations

M∑
r=1

dn,kr LM
r Hl,i(σ; ·) = δn,lδk,i,

l = 0, . . . ,m; i = 1, . . . , 2l+ 1.

In order to reduce the number of weights in our approximation rules we
formulate the following lemma.

Lemma 8.11. Under the assumptions of Lemma 8.10, the formula

Q0,...,m ∗ P0,...,m =

M∑
r=1

dMr LM
r P0,...,m (8.24)

holds for all weights dM1 , . . . , dMM satisfying the linear equations

M∑
r=1

dMr LM
i LM

r KH0,...,m(Ωext
σ )(·, ·)

=

m∑
n=0

2n+1∑
k=1

(
LM
i Hn,k(σ; ·)

)
Q0,...,m ∗Hn,k(σ; ·) = LM

i Q0,...,m, (8.25)

i = 1, . . . ,M.

It should be mentioned that on the one hand the number of integration
weights is reduced, but on the other hand the integration weights depend on
Q0,...,m. Other variants of discretization rules have been presented by W. Free-
den and W. Schneider [30] which allow different aspects of approximation. In this
work, however, we restrict ourselves to the above results (more explicitly, Lemma
8.9, Lemma 8.10, Lemma 8.11) based on linear systems of O(M)-dimension.

In what follows the Runge concept is of basic interest. Once again, it tells

us that to any potential V ∈ Pot (0)(Σext) (for example, the Earth’s gravitational
potential) there exists a function F (namely, a Runge–Walsh approximation) har-
monic in Ωext

σ and being regular at infinity in the sense that the absolute error

becomes arbitrarily small on the whole space Σext. In this formulation as we already
mentioned, the Runge–Walsh theorem is a pure existence theorem. It guarantees
only the existence of an approximating potential and does not provide a method
to find it. The theorem merely describes the theoretical background of approxi-
mating a potential by another one defined on a larger harmonicity domain. The
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results developed now, however, enable us to derive a constructive version of the
Runge–Walsh theorem by means of a J-level wavelet approximation when the po-
tential F we are looking for is assumed to be a member of class H(Ωext

σ )|Σext (note

that H(Ωext
σ )|Σext is a uniformly dense subset of Pot (0)(Σext)). Essential tools of

our considerations are the approximation formulae formulated above.

Theorem 8.12. Let {LM
1 , . . . ,LM

M},M = (m+1)2, be an H0,...,m(Ωext
σ )-fundamental

system. Furthermore, suppose that {yMj

1 , . . . , y
Mj

Mj
} ⊂ Ωσ, Mj = (2mj + 1)2, de-

fine H0,...,2mj (Ω
ext
σ )-Dirichlet-fundamental systems for j = 0, . . . , J . Moreover,

assume that from a potential F0,...,m ∈ Harm0,...,m(Ωext
σ ) there are known the

data LM
i F0,...,m = vi, i = 1, . . . ,M . Then, under our assumption of bandlim-

ited wavelets, the fully discrete J-level wavelet approximation of F0,...,m reads as
follows:

(α) Φ
(2)
J ∗ F0,...,m

=

M0∑
n=1

b0n

m∑
k=0

2k+1∑
l=1

M∑
s=1

dk,ls A2
kϕ0(k)vsHk,l(σ; y

M0
n )Φ0(y

M0
n , ·)

+

J−1∑
j=0

Mj∑
n=1

bjn

m∑
k=0

2k+1∑
l=1

M∑
s=1

dk,ls A2
kψj(k)vsHk,l(σ; y

Mj
n )Ψ̃j(y

Mj
n , ·), (8.26)

where the weights dk,l1 , . . . , dk,lM ; k = 0, . . . ,m; l = 1, . . . , 2k + 1, satisfy the
linear equations

M∑
s=1

dk,ls LM
s Hn,i(σ; ·) = δn,kδi,l, (8.27)

n = 0, . . . ,m; i = 1, . . . , 2n + 1, and bj1, . . . , b
j
Mj

; j = 0, . . . , J , satisfy the

linear equations

Mj∑
n=1

bjnKH0,...,2mj
(Ωext

σ )(y
Mj

i , yMj
n ) =

∫
Ωσ

KH0,...,2mj
(Ωext

σ )(y
Mj

i , x) dω(x),

(8.28)

i = 1, . . . ,Mj .

(β) Φ
(2)
J ∗ F0,...,m =

M0∑
n=1

b0n

M∑
s=1

d̃0,ns vsΦ0(y
M0
n , ·) +

J−1∑
j=0

Mj∑
n=1

bjn

M∑
s=1

dj,ns vsΨ̃j(y
Mj
n , ·),
(8.29)

where the weights d̃0,n1 , . . . , d̃0,nM ; n = 1, . . . ,M0, satisfy the linear equations

M∑
s=1

d̃0,ns LM
i LM

s KHarm0,...,m(Ωext
σ )(·, ·) = LM

i (A2Φ0)(y
M0
n , ·), (8.30)
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i = 1, . . . ,M , and the weights dj,n1 , . . . , dj,nM ; j = 0, . . . , J ; n = 1, . . . ,Mj,
satisfy

M∑
s=1

dj,ns LM
i LM

s KHarm
0,...,m(Ωext

σ )
(·, ·) = LM

i (A2Ψj)(y
Mj
n , ·), (8.31)

i = 1, . . .M , and the coefficients bj1, . . . , b
j
Mj

; j = 0, . . . , J satisfy the linear

system (8.28).

It should be remarked that a great number of linear systems must be solved
in an a priori step. But if we look carefully we realize that we are always confronted
with the same coefficient matrix. Having inverted the coefficient matrix once, all
weights for numerical integration can be obtained by a matrix-vector multiplication
and stored elsewhere (in an a priori step for computation). In addition, it should
be mentioned that the solution of the linear systems determining the weights of
the reconstruction step (8.28) can be avoided completely if we place the knots for
numerical integration of the wavelet coefficients for each detail step j = 0, . . . , J−1
on a special longitude-latitude grid on the sphere Ωσ. The corresponding set of
integration weights for reconstruction purposes are explicitly available without
solving any linear system (for more details concerning numerical integration the
reader is referred, e.g., to a paper due to Driscoll Healy [8]).

Until now the linear (observational) functionals have not been specified in
more detail in our bandlimited wavelet approach presented above. In fact, the
different types of linear functionals enable us to develop three important variants
of wavelet approximation in the reality of gravitational potential determination:

(1) Terrestrial-only Multiscale Approximation. The linear functionals are under-
stood to represent gravity observations (function values and/or derivatives)
related to locations on the Earth’s surface. If the data material is homoge-
neous, i.e., the linear functionals are all of the same type, terrestrial-only
approximation reduces to the wavelet solution of a boundary-value problem
of potential theory from discretely given data.

(2) Spaceborne-only Multiscale Approximation. In this case the linear functionals

are understood to represent data measured by spacecraft in locations of Ωext
γ .

As result we get a spaceborne-only approximation.

In practice, however, we are confronted with the situation that terrestrial,
airborne as well as spaceborne data are available in gravitational potential deter-
mination (cf. [1, 2, 19, 22, 32, 45, 46, 50, 60, 62, 63, 66, 71, 75]). As a matter of
fact, there are some areas on the continents (for example, some parts of Australia,
Europe, and North-America), where the gravity field has been surveyed in much
detail. Thus it is reasonable that such areas may be used for the verification or
the calibration of the results obtained from spaceborne data.

(3) Combined Multiscale Approximation. Linear functionals representing terres-
trial, airborne, and spaceborne observations are taken into account, i.e., nu-
merical computation is required for a heterogeneous data set.
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8.1. Runge–Walsh wavelet approximation of classical boundary value problems
corresponding to regular surfaces

The wavelet representations (Theorem 8.12) of a bandlimited potential from a
given finite set of linear functionals admit a variety of applications. The list includes
the following examples of classical boundary value problems:

(i) Dirichlet Problem. First we are interested in the wavelet approximation

Φ
(2)
J ∗ F0,...,m of the solution of the exterior Dirichlet problem

F0,...,m|Σext ∈ Harm0,...,m(Σext), F0,...,m|Σ = G0,...,m.

under the knowledge of the M = (m+ 1)2 boundary data

vi = LM
i F0,...,m = F0,...,m(xM

i ) = G0,...,m(xM
i ), i = 1, . . . ,M.

Theorem 8.13. Under the assumptions of Theorem 8.12 the fully discrete J-level
wavelet approximation of the solution of the exterior Dirichlet problem F0,...,m |Σext

∈ Harm0,...,m(Σext), (F0,...,m)|Σ = G0,...,m reads as follows:

(α) Φ
(2)
J ∗ F0,...,m (8.32)

=

M0∑
n=1

b0n

m∑
k=0

2k+1∑
l=1

M∑
s=1

dk,ls A2
kϕ0(k)G0,...,m(xM

s )Hk,l(σ; y
M0
n )Φ0(y

M0
n , ·)

+
J−1∑
j=0

Mj∑
n=1

bjn

m∑
k=0

2k+1∑
l=1

M∑
s=1

dk,ls A2
kψj(k)G0,...,m(xM

s )Hk,l(σ; y
Mj
n )Ψ̃j(y

Mj
n ; ·)

(β) Φ
(2)
J ∗ F0,...,m =

M0∑
m=1

b0n

M∑
s=1

d̃0,ns G0,...,m(xM
s )Φ0(y

M0
n , ·) (8.33)

+

J−1∑
j=0

Mj∑
n=1

bjn

M∑
s=1

dj,ns G0,...,m(xM
s )Ψ̃j(y

Mj
n , ·).

The formulae (α), (β) of Theorem 8.13 are especially valid on the regular

(Earth’s) surface Σ, i.e., we automatically obtain by Φ
(2)
J ∗ F0,...,m|Σ a J-level

wavelet approximation of the “boundary function” F0,...,m|Σ = G0,...,m (by apply-

ing Shannon wavelets we even know that Φ
(2)
J ∗F0,...,m = F0,...,m). In other words,

a wavelet representation of a (bandlimited) function on regular surfaces has been
found from a discrete data set of function values.

By treating non-bandlimited potentials F ∈ Hs(Ωext
σ ), s > 1, the developed

integration formulae are only valid in approximate sense. To be more concrete,

if Φ
(2)
J ∗ F denotes the J-level wavelet approximation we actually calculate an

approximation Φ
(2)
J ∗ F0,...,m by performing the numerical integration methods

in (α), (β) of Theorem 8.13. Since this approximation also is harmonic in Σext the

biggest absolute error between Φ
(2)
J ∗ F and its numerical approximation Φ

(2)
J ∗

F0,...,m is attained at the boundary Σ. Thus, the numerical error can be estimated
by the use of the following theorem (cf. [29, 30]).
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Theorem 8.14. Let F satisfy F ∈ Hs(Ωext
σ ), F |Σ = G, s > 1. Furthermore, assume

that XΣ
M = {xM

1 , . . . , xM
M} ⊂ Σ, M = (m + 1)2, is an H0,...,m(Ωext

σ )-Dirichlet-

fundamental system on Σ. Then, for any Q ∈ H0,...,m(Ωext
σ ), we have∣∣∣∣∣

∫
Ωσ

F (x)Q(x) dω(x) −
M∑
r=1

drG(xM
r )

∣∣∣∣∣ ≤ C

ms−1

(
M∑
r=1

|dMr |
)
‖F‖Hs(Ωext

σ ),

(8.34)

where C is a constant depending only on s and dM1 , . . . , dMM are the weights of the
integration rule.

(ii) Neumann Problem. Now we are interested in the wavelet approximation Φ
(2)
J ∗

F0,...,m of the solution of the oblique Neumann problem

F0,...,m|Σext ∈ Harm0,...,m(Σext),
∂F0,...,m

∂λ
= G0,...,m,

under the knowledge of the M = (m+ 1)2 boundary data

vi = LM
i F0,...,m =

∂F0,...,m

∂λ
(xM

i ) = G0,...,m(xM
i ), i = 1, . . . ,M,

where λ : Σ → R3 is a C [1,ρ)-unit vector field (such that 0 < ρ < 1 for λ �= ν
and ρ = 0 for λ = ν) forming an angle with the outer normal ν satisfying

inf
x∈Σ

ν(x) · λ(x) > 0 (8.35)

at any point of Σ.

Note that the boundedness of the linear functionals of the oblique derivative on Σ
follows from well-known arguments (cf. [16, 18, 20]).

For the decomposition step we need in contrast to the Dirichlet problem an
integration method in terms of oblique derivatives on Σ. From our results we obtain
a fully discrete wavelet approximation for the solution of the exterior Neumann
problem.

Theorem 8.15. Let XΣ
M = {xM

1 , . . . , xM
M} ⊂ Σ, M = (m+1)2, be an H0,...,m(Ωext

σ )-

Neumann-fundamental system on Σ. Furthermore, let XMj = {yMj

1 , . . . , y
Mj

Mj
},

Mj = (2mj + 1)2, be H0,...,2mj (Ω
ext
σ )-Neumann-fundamental systems on Ωσ for

j = 0, . . . , J . Moreover, assume that from a function F0,...,m ∈ H0,...,m(Ωext
σ ) there

are known the oblique derivatives G0,...,m = (∂F0,...,m/∂λ) at all points of XΣ
M .

Then, under our assumption of bandlimited wavelets, the fully discrete J-level
wavelet approximation of the solution of the exterior Neumann problem F0,...,m ∈



424 W. Freeden and H. Nutz

H0,...,m(Σext), (∂F0,...,m)/∂λ = G0,...,m reads as follows:

(α) Φ
(2)
J ∗ F0,...,m

=

M0∑
n=1

b0n

m∑
k=0

2k+1∑
l=1

M∑
s=1

dk,ls A2
kϕ0(k)G0,...,m(xM

s )Hk,l(σ; y
M0
n )Φ0(y

M0
n , ·)

+

J−1∑
j=0

Mj∑
n=1

bjn

m∑
k=0

2k+1∑
l=1

M∑
s=1

dk,ls A2
kψj(k)G0,...,m(xM

s )Hk,l(σ; y
Mj
n )Ψ̃j(y

Mj
n , ·),

(8.36)

where the weights dk,l1 , . . . , dk,lM ; k = 0, . . . ,m; l = 1, . . . , 2k + 1 have to satisfy the
linear equations

M∑
s=1

dk,ls

∂Hn,i(σ;x
M
s )

∂λ
= δn,kδi,l, n = 0, . . . , m; i = 1, . . . , 2n+ 1,

and bj1, . . . , b
j
M , j = 0, . . . , J must satisfy the linear equations (8.28).

(β) Φ
(2)
J ∗ F0,...,m

=

M0∑
n=1

b0n

M∑
s=1

d̃0,ns G0,...,m(xM
s )Φ0(y

M0
n , ·)

+

J−1∑
j=0

Mj∑
n=1

bjn

M∑
s=1

dj,ns G0,...,m(xM
s )Ψ̃j(y

Mj
n , ·), (8.37)

where the weights d̃0,n1 , . . . , d̃0,nM ; n = 1, . . . ,M0, have to satisfy the linear equations

M∑
s=1

d̃0,ns

∂

∂λyM
i

∂

∂λyM
s

KH0,...,m(Ωext
σ )(·, ·) = ∂

∂λyM
i

(A2Φ0)(y
M0
n , ·), (8.38)

i = 1, . . . ,M , and the weights dj,n1 , . . . , dj,nM ; j = 0, . . . , J ; n = 1, . . . ,Mj, must
satisfy

M∑
s=1

dj,ns

∂

∂λyM
i

∂

∂λyM
s

KH0,...,m(Ωext
σ )(·, ·) =

∂

∂λyM
i

(A2Ψj)(y
Mj
n , ·), (8.39)

i = 1, . . . ,M , and bj1, . . . , b
j
Mj

; j = 0, . . . , J , satisfy the linear equations (8.28).

The formulae (α), (β) of Theorem 8.15 are especially valid on Σ. Thus, we

obtain by ∂(Φ
(2)
J ∗ F0,...,m)/∂λ a J-level wavelet approximation of G0,...,m =

∂F0,...,m/∂λ.

In order to examine the error in the integration formulae when we turn over
to non-bandlimited potentials we finally mention the following theorem.
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Theorem 8.16. Let F satisfy F ∈ Hs(Ωext
σ ), ∂F

∂λ = G, s > 2. Furthermore, let

XΣ
M = {xM

1 , . . . , xM
M} ⊂ Σ, M = (m + 1)2, be an H0,...,m(Ωext

σ )-Neumann-funda-

mental system on Σ. Then, for any Q ∈ H0,...,m(Ωext
σ ), we have∣∣∣∣∣

∫
Ωσ

F (x)Q(x) dω(x)−
M∑
r=1

dMr G(xM
r )

∣∣∣∣∣ ≤ C

ms−2

(
M∑
r=1

|dMr |
)
‖F‖Hs(Ωext

σ ),

(8.40)

where C is a constant depending only on s and dM1 , . . . , dMM are the weights of the
integration rule.

Hence, by treating non-bandlimited potentials F ∈ Hs(Ωext
σ ), s > 2, we

obtain in similarity to the Dirichlet case a J-level wavelet approximation by per-
forming the numerical rules as indicated by (α), (β) of Theorem 8.15, and the
numerical errors can be estimated using Theorem 8.16.

Remark 8.17. The existence of all types of fundamental systems to be needed
in our preceding approximation rules is guaranteed by a well-known induction
procedure (as described, for example in [21, 24, 57]. Furthermore, more detailed
remainder estimates for the integration formulae can be found in [28]).

8.2. Pyramid schemata based on outer harmonic exact approximation

Our purpose now is to use two variants of exact (outer harmonic) approximation
to derive tree algorithms, i.e., pyramid schemata for fast evaluation of bandlimited
potentials. Without loss of generality, we assume that {Φj(·, ·)}j∈N0 , {Ψj(·, ·)}j∈N0 ,

and {Ψ̃j(·, ·)}j∈N0 are families of bandlimited kernels satisfying the conditions (8.2)
and (8.3). Variant 1 is based on the ideas of Lemma 8.8 using evaluation (i.e.
Dirichlet functionals) on a sphere, while Variant 2 is based on the Shannon sam-
pling Theorem 8.5 in terms of linear functionals. Both variants are particularly
suitable for application to medium wavelength parts of a signal (potential). As
shown in [19], Variant 2 can be extended to non-bandlimited potentials. This vari-
ant is therefore also suitable for the transition from medium to short wavelength
parts of a signal (potential).

Variant 1. The key ideas of our first discretization method using outer harmonic
exact approximation formulae are based on the following observations:

(1) For some suitably large J , the scale space VJ+1(Ωext
σ ) = H0,...,2J+1−1(Ωext

σ )

is “sufficiently close” to H(Ωext
σ ). Consequently, for each potential F ∈ H(Ωext

σ ),

there exists a bandlimited potential of class VJ+1(Ωext
σ ) such that the error between

F and Φ
(2)
J+1∗F (understood in ‖·‖H(Ωext

σ )-topology) is negligible. This is the reason

why the input data vNJ

l , l = 1, . . . , NJ , are assumed to be given from a potential

of class VJ+1(Ωext
σ ) (for the remainder of this subsection).



426 W. Freeden and H. Nutz

(2) For j = 0, . . . , J , the generating coefficients b
Nj

l and nodal points

y
Nj

l ∈ Ωσ of the exact outer harmonic formulae of order 2j+2 − 2(= 2 · (2j+1 − 1))
(cf. Lemma 8.8) are determined such that

KH
0,...,2j−1

(Ωext
σ ) ∗ P =

Nj∑
l=1

b
Nj

l KHarm
0,...,2j−1

(Ωext
σ )(·, y

Nj

l )P (y
Nj

l )

holds for all P ∈ H0,...,2j−1(Ωext
σ ) with Nj ≥ ((2j+2 − 2) + 1)2 = (2j+2 − 1)2. The

coefficients b
Nj

l may be calculated from the linear equations

Nj∑
l=1

b
Nj

l KH
0,...,2j+2−2

(Ωext
σ )(y

Nj

i , y
Nj

l )

=
1

4πσ2

∫
Ωσ

KH0,...,2j+2−2(Ω
ext
σ )(x, y

Nj

i ) dω(x), (8.41)

i = 1, . . . , Nj , in an a priori step and stored elsewhere.

Our goal is to show that all convolutions occurring in the J-level wavelet
approximation of a bandlimited potential (of order 2J+1 − 1) can be evaluated
exactly by means of outer harmonic approximation formulae. As a matter of fact,
what we realize is the following pyramid scheme: Starting from a sufficiently large
J , there exist vectors aNj ∈ RNj , j = 0, . . . , J (being, of course, dependent on the

potential F ∈ H(Ωext
σ ) under consideration) such that the following statements

hold true:

(i) For j = 0, . . . , J , all wavelet coefficients can be calculated via the formulae

(WT )(F )(j; ·) =
∑Nj

i=1
a
Nj

i Ψj(·, yNj

i ).

(ii) The vectors aj ∈ RNj are obtainable from aj+1 ∈ RNj+1 by recursion:

a
Nj

i = b
Nj

i

∑Nj+1

l=1
a
Nj+1

l KHarm0,...,2j+1−1(Ω
ext
σ )(y

Nj

i , y
Nj+1

l ),

i = 1, . . . , Nj .
(iii) The vectors satisfy, in addition, the identities

Φ
(2)
j+1 ∗ F =

Nj∑
i=1

a
Nj

i Φ
(2)
j+1(·, y

Nj

i )

and

(Ψ̃j ∗Ψj) ∗ F =

Nj∑
i=1

a
Nj

i (Ψ̃j ∗Ψj)(·, yNj

i ).

Our considerations are divided into two parts, viz. the initial step concerning the
scale level J and the pyramid step establishing the recursion relation.
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The Initial Step. Observing the exact (outer harmonic) formulae we obtain from

Lemma 8.8 for all potentials F ∈ VJ+1(Ωext
σ ) = H0,...,2J+1−1(Ωext

σ )

KH
0,...,2J+1−1

(Ωext
σ ) ∗ F =

NJ∑
l=1

bNJ

l F (yNJ

l )KHarm
0,...,2J+1−1

(Ωext
σ )(·, y

NJ

l ).

It follows that aNJ ∈ RNJ , aNJ = (aNJ
1 , . . . , aNJ

NJ
)T , given by

aNJ

l = bNJ

l F (yNJ

l ) = bNJ

l vNJ

l , l = 1, . . . , NJ , (8.42)

satisfies the equation

KH
0,...,2J+1−1

(Ωext
σ ) ∗ F =

NJ∑
i=1

aNJ

i KHarm
0,...,2J+1−1

(Ωext
σ )(·, y

NJ

i ).

Note that the coefficients aNJ

i are dependent on F . Again Lemma 8.8 now implies
the following result.

Lemma 8.18. Let F be of class VJ+1(Ωext
σ ) = H0,...,2J+1−1(Ωext

σ ). Suppose that

K(·, ·) is (an Hσ,σ-kernel) such that K∧(n) = 0 for all n > 2J+1 − 1. Then the
coefficients (8.42) satisfy the equation

K ∗ F =

NJ∑
i=1

aNJ

i A2K(·, yNJ

i ).

It should be noted that

A2K(x, y) =

2J+1−1∑
n=0

A2
nK

∧(n)
2n+1∑
k=1

H∗
n,k(σ;x)Hn,k(σ; y) (8.43)

for all (x, y) ∈ Ωext
σ × Ωext

σ . Furthermore, the vector aNJ is independent of the
choice of the Hσ,σ-kernel K(·, ·).

As special cases we obtain from Lemma 8.18 the following identities:

ΦJ+1 ∗ F =

NJ∑
i=1

aNJ

i A2ΦJ+1(·, yNJ

i ), (8.44)

(ΦJ+1 ∗ ΦJ+1) ∗ F =

NJ∑
i=1

aNJ

i A2(ΦJ+1 ∗ ΦJ+1)(·, yNJ

i ), (8.45)

and

ΨJ ∗ F =

NJ∑
i=1

aNJ

i A2ΨJ(·, yNJ

i ), (8.46)

(Ψ̃J ∗ΨJ) ∗ F =

NJ∑
i=1

aNJ

i A2(Ψ̃J ∗ΨJ)(·, yNJ

i ). (8.47)
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The Pyramid Step. An essential tool for the pyramid step is the following lemma.

Lemma 8.19. Let F be of class VJ+1(Ωext
σ ). Suppose that K(·, ·) is an Hσ,σ-kernel

with K∧(n) = 0 for all n > 2J − 1. Then the vector aNJ−1 ∈ RNJ−1 , aNJ−1 =

(a
NJ−1

1 , . . . , a
NJ−1

NJ−1
)T , given by

a
NJ−1

i = b
NJ−1

i (KH
0,...,2J−1

(Ωext
σ ) ∗ F )(y

NJ−1

i ), i = 1, . . . , NJ−1,

satisfies the equation

K ∗ F =

NJ−1∑
i=1

a
NJ−1

i A2K(·, yNJ−1

i ).

Suppose that K(·, ·) satisfies the assumption of Lemma 8.19. Looking at our
foregoing results we notice that there are two ways of discretizing anH-convolution
K ∗ F . On the one hand we obtain from Lemma 8.18

K ∗ F =

NJ∑
i=1

aNJ

i A2K(·, yNJ

i ) (8.48)

with coefficients aNJ
1 , . . . , aNJ

NJ
given by

aNJ

i = bNJ

i F (yNJ

i ) = bNJ

i vNJ

i , i = 1, . . . , NJ . (8.49)

It is remarkable that the coefficients are independent of the choice of the kernel
K(·, ·). As particularly important case we mention

KH0,...,2J−1(Ω
ext
σ ) ∗ F =

NJ∑
i=1

aNJ

i KHarm0,...,2J−1(Ω
ext
σ )(y

NJ

i , ·). (8.50)

On the other hand, we are able to deduce from Lemma 8.19 that

K ∗ F =

NJ−1∑
i=1

a
NJ−1

i A2K(·, yNJ−1

i ) (8.51)

with coefficients a
NJ−1

1 , . . . , a
NJ−1

NJ−1
given by

a
NJ−1

i = b
NJ−1

i (KH0,...,2J−1(Ω
ext
σ ) ∗ F )(y

NJ−1

i ), (8.52)

i = 1, . . . , NJ−1. Inserting (8.50) into (8.52) we find

a
NJ−1

i = b
NJ−1

i

NJ∑
l=1

aNJ

l KHarm
0,...,2J−1

(Ωext
σ )(y

NJ−1

i , yNJ

l ) (8.53)

for i = 1, . . . , NJ−1. In other words, the coefficients a
NJ−1

i can be calculated recur-
sively. Moreover, the coefficients are independent of the special choice of the kernel
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K(·, ·). This finally leads us to the following discretization of the H-convolutions

ΦJ ∗ F =

NJ−1∑
i=1

a
NJ−1

i A2ΦJ (·, yNJ−1

i ), (8.54)

(ΦJ ∗ ΦJ) ∗H F =

NJ−1∑
i=1

a
NJ−1

i A2(ΦJ ∗ ΦJ )(·, yNJ−1

i ), (8.55)

and

ΨJ−1 ∗ F =

NJ−1∑
i=1

a
NJ−1

i A2ΨJ−1(·, yNJ−1

i ), (8.56)

(Ψ̃J−1 ∗ΨJ−1) ∗ F =

NJ−1∑
i=1

a
NJ−1

i A2(Ψ̃J−1 ∗ΨJ−1)(·, yNJ−1

i ). (8.57)

In conclusion, we end up with the following pyramid scheme for the decomposition
of a potential F :

F −→ aNJ −→ aNJ−1 −→ · · · −→ aN0

↓ ↓ ↓
(WT )(F )(J ; ·) (WT )(F )(J − 1; ·) (WT )(F )(0; ·).

The reconstruction of the wavelet coefficients can be performed as described before
via the formula

Rj(F ) = Ψ̃j ∗ (WT )(F )(j; ·)

=

Nj∑
i=1

b
Nj

i (WT )(F )(j; y
Nj

i )A2Ψ̃j(·, yNj

i ). (8.58)

This leads us to the following scheme:

(WT )(F )(0; yN0

i ) (WT )(F )(1; yN1

i )
↓ ↓

R0(F ) R1(F )
↘ ↘

P0(F ) → + P1(F ) → + · · · .

According to our approach the wavelet transform (WT )(F )(j; ·) is given by the

coefficients a
Nj

1 , . . . , a
Nj

Nj
. This also enables us to reconstruct the potential only by

use of the coefficients a
Nj

i , rather than calculating the wavelet coefficients of F :

Rj(F ) =

Nj∑
i=1

a
Nj

i A2(Ψ̃j ∗Ψj)(·, yNj

i ).

Thus the decomposition and reconstruction, respectively, can be simplified as fol-
lows:

F → aNJ → aNJ−1 → · · · → aN0
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and

aN0 aN1 aN2

↓ ↓ ↓
R0(F ) R1(F ) R2(F )

↘ ↘ ↘
P0(F ) → + → P1(F ) → + → P2(F ) → + → · · · .

That means the reconstruction of the potential is not performed with Ψ̃j . Instead

we have used the H(Ωext
σ )-convolution Ψ̃j ∗ Ψj . Of particular significance is that

the vectors aNj do not depend on the special choice of the bandlimited scaling
function. As a matter of fact, we are able to reconstruct the potential with respect
to different types of wavelets just by use of the vectors aNj .

Remark 8.20. The critical point of our pyramid scheme is the determination of the

coefficients b
Nj

l , j = 0, . . . , J , from the linear system (8.41) which provides outer
harmonic exactness up to the order 2j+2 − 2. It should be mentioned that the
solution of this linear system can be avoided completely if we place the knots for
each detail step j = 0, . . . , J on a spherical longitude-latitude grid on the sphere
Ωσ. The corresponding set of weights is explicitly available without solving any
linear system from results due to [8].

Variant 2. In what follows we use outer harmonic exact approximation (Lemma
8.5) to develop a bandlimited variant of the pyramid scheme based on the Shannon
sampling theorem. Our approach consists of the following steps:

(i) According to our bandlimited wavelet approach the (reference) Sobolev space

H(Ωext
σ ) is subdivided by a nested sequence of 22j-dimensional scale spaces

Vj(Ωext
σ ) as follows: · · · ⊂ Vj(Ωext

σ ) ⊂ Vj+1(Ωext
σ ) ⊂ · · · ⊂ H(Ωext

σ ).

(ii) Vj(Ωext
σ ), j ∈ N0, can be identified with the set

H0,...,2j−1(Ωext
σ ) = H({An/(ϕj(n))

2}; Ωext
σ ),

and Φ
(4)
j (·, ·) is the uniquely determined reproducing kernel in (Vj(Ωext

σ ),

(·, ·)Vj(Ωext
σ )) with (·, ·)Vj(Ωext

σ ) given by

(·, ·)Vj(Ωext
σ ) = (·, ·)H({An/(ϕj(n))2};Ωext

σ ).

(iii) For each j ∈ N0, consider sequences {LNj

1 , . . . ,LNj

Nj
} of Nj ≥ 22j (linearly

independent) bounded linear functionals on H(Ωext
σ ) such that

Vj(Ωext
σ ) = span

(
LNj

1 Φ
(4)
j (·, ·), . . . ,LNj

Nj
Φ

(4)
j (·, ·)

)
.

Then it also follows that

Vj(Ωext
σ ) = span

(
LNj

1 Φ
(2)
j (·, ·), . . . ,LNj

Nj
Φ

(2)
j (·, ·)

)
.



Geodetic Observables and Their Mathematical Treatment 431

(iv) Vj(Ωext
σ ), j ∈ N0, can be identified with the set H({An/ϕj(n)}; Ωext

σ ),

and Φ
(2)
j (·, ·) is the reproducing kernel in

(
Vj(Ωext

σ ), (·, ·)V(1/2)
j (Ωext

σ )

)
with

(·, ·)V(1/2)
j (Ωext

σ )
defined by

(·, ·)V(1/2)
j (Ωext

σ )
= (·, ·)H({An/ϕj(n)};Ωext

σ ).

The key idea of our fast evaluation method using the Shannon sampling
theorem in terms of linear functionals is based on the following observations:

(1) For some suitably large J , the scale space VJ(Ωext
σ ) is “sufficiently close”

to H(Ωext
σ ). Consequently, for each F ∈ H(Ωext

σ ), there exists a function of class

VJ(Ωext
σ ) such that the error between F and Φ

(2)
J ∗ F (understood in ‖ · ‖H(Ωext

σ )-

topology) is negligible. This is the reason why the input data vNJ

k = LNJ

k F ,

k = 1, . . . , NJ , are assumed to be of a potential F of class VJ(Ωext
σ ) for the re-

mainder of this subsection.

(2) For j = 0, . . . , J , consider sequences {LNj

1 , . . . ,LNj

Nj
} of Nj ≥ 22j (linearly

independent) bounded linear functionals on H(Ωext
σ ) such that

Vj(Ωext
σ ) = H0,...,2j−1(Ωext

σ ) = span
(
LNj

1 Φ
(2)
j (·, ·), . . . ,LNj

Nj
Φ

(2)
j (·, ·)

)
.

In an a priori step the coefficients w
Nj

l,k have to be determined from the systems

of linear equations (see Lemma 8.5)

Nj∑
l=1

w
Nj

l,kL
Nj

i LNj

l Φ
(2)
j (·, ·) = δi,k, i, k = 1, . . . , Nj,

j = 0, . . . , J , and can be stored elsewhere. Looking carefully at the linear systems,

it can be recognized that the coefficients w
Nj

l,k do not depend on the particular
function F under consideration, but only on the chosen linear functionals and
pointsets.

Next our considerations are divided into two parts, viz. the initial step con-
cerning the scale level J and the pyramid step establishing the recursion relation.

The Initial Step. The exact approximation

JNJS =

NJ∑
i=1

aNJ

i LNJ

i S, S ∈ VJ(Ωext
σ ),

to the bounded linear functionals L on VJ(Ωext
σ ) defined by

LS = (S, F )V(1/2)
J (Ωext

σ )
= S ∗V(1/2)

J

F, S ∈ VJ(Ωext
σ ), F ∈ VJ(Ωext

σ ),

is given by

aNJ

i =

NJ∑
k=1

wNJ

i,k LL
NJ

k Φ
(2)
J (·, ·), i = 1, . . . , NJ .
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Note that in order to clarify the convolution we use a lower index at the sym-
bol “∗” in the following text if necessary. In accordance with our assumption

F ∈ VJ (Ωext
σ ) and the reproducing property of Φ

(2)
J (·, ·) in V(1/2)

J (Ωext
σ ) we see that

Φ
(2)
J ∗V(1/2)

J

F = F . Thus we find

aNJ

i =

NJ∑
k=1

wNJ

i,k (L
NJ

k Φ
(2)
J (·, ·) ∗V(1/2)

J

F ) =

NJ∑
k=1

wNJ

i,k L
NJ

k F =

NJ∑
k=1

wNJ

i,k v
NJ

k

for i = 1, . . . , NJ . This leads us to the following conclusion.

Lemma 8.21. If F is a member of class VJ(Ωext
σ ), then the identity

S ∗V(1/2)
J

F =

NJ∑
i=1

aNJ

i LNJ

i S

holds for all S ∈ VJ(Ωext
σ ).

Lemma 8.21 immediately enables us to formulate the following lemma.

Lemma 8.22. Let F be a member of class VJ(Ωext
σ ), then the identity

K ∗ F =

NJ∑
i=1

aNJ

i LNJ

i K(·, ·)

holds for all Hσ,σ-kernels K(·, ·) with K∧(n) = 0 for n = 2J ,J +1, . . ..

The next theorem clarifies the remarkable consequences for our wavelet con-
cept.

Theorem 8.23. Under the assumptions of Lemma 8.22 we have

ΦJ ∗ F =

NJ∑
i=1

aNJ

i LNJ

i ΦJ (·, ·), (8.59)

(ΦJ ∗ ΦJ) ∗ F =

NJ∑
i=1

aNJ

i LNJ

i (ΦJ ∗ ΦJ )(·, ·), (8.60)

and

ΨJ−1 ∗ F =

NJ∑
i=1

aNJ

i LNJ

i ΨJ−1(·, ·), (8.61)

(Ψ̃J−1 ∗ΨJ−1) ∗ F =

NJ∑
i=1

aNJ

i LNJ

i (Ψ̃J−1 ∗ΨJ−1)(·, ·). (8.62)

In conclusion, the vector aNJ = (aNJ
1 , . . . , aNJ

NJ
)T ∈ RNJ does not depend on

the special choice of the Φ
(2)
J (·, ·)-kernel in VJ(Ωext

σ ). Wavelet transform, lowpass,
and bandpass filter can be computed by use of the same set of coefficients.
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The Pyramid Step. This step provides an algorithm such that aNJ ∈ RNJ serves
as starting vector for aNj ∈ RNj , j = 0, . . . , J − 1, which fulfill the following
properties:

(i) The vectors aNj satisfy

Φ
(2)
j ∗ F =

Nj∑
i=1

a
Nj

i LNj

i Φ
(2)
j (·, ·),

j = 0, . . . , J .
(ii) The wavelet transforms are given by

Ψj−1 ∗ F =

Nj∑
i=1

a
Nj

i LNj

i Ψj−1(·, ·),

j = 1, . . . , J .
(iii) The vector aNj is obtainable from aNj+1 , j = 0, . . . , J − 1, by recursion.

In the remainder of this section the properties (i), (ii) and (iii) are described
in more detail. The exact approximations JNj , j = 0, . . . , J − 1,

JNjS =

Nj∑
i=1

a
Nj

i LNj

i S, S ∈ Vj(Ωext
σ )

to the bounded linear functional L on Vj(Ωext
σ ) defined by

LS = S ∗V(1/2)
j

(Φ
(2)
j ∗H F ), S ∈ Vj(Ωext

σ ), F ∈ VJ(Ωext
σ ),

(note that Φ
(2)
j ∗H F ∈ Vj(Ωext

σ )) are given by the coefficients

a
Nj

l =

Nj∑
i=1

w
Nj

l,i L
Nj

i Φ
(2)
j (·, ·), l = 1, . . . , Nj .

Consequently it is easily seen that for l = 1, . . . , Nj

a
Nj

l =

Nj∑
i=1

w
Nj

l,i L
Nj

i (Φ
(2)
j (·, ·) ∗ F ).

Thus we obtain the following lemma.

Lemma 8.24. If F is a member of class Vj(Ωext
σ ), then the identity

S ∗V(1/2)
j

(Φ
(2)
j ∗H F ) =

Nj∑
i=1

a
Nj

i LNj

i S

holds for all S ∈ Vj(Ωext
σ ). In particular,

Φ
(2)
j ∗H F =

Nj∑
i=1

a
Nj

i LNj

i Φ
(2)
j (·, ·).



434 W. Freeden and H. Nutz

By the same arguments as given in the last subsection we obtain the following
lemma.

Lemma 8.25. Let F be a function of class Vj(Ωext
σ ), then the identity

K ∗ F =

Nj∑
i=1

a
Nj

i LNj

i K(·, ·)

holds for all Hσ,σ-kernels K(·, ·) with K∧(n) = 0, n = 2j, 2j + 1, . . ..

Finally we get the following results.

Theorem 8.26. Under the assumptions of Lemma 8.25 we have

Φj ∗ F =

Nj∑
i=1

a
Nj

i LNj

i Φj(·, ·),

(Φj ∗ Φj) ∗ F =

Nj∑
i=1

a
Nj

i LNj

i (Φj ∗ Φj)(·, ·),

and

Ψj−1 ∗ F =

Nj∑
i=1

a
Nj

i LNj

i Ψj−1(·, ·),

(Ψ̃j−1 ∗Ψj−1) ∗ F =

Nj∑
i=1

a
Nj

i LNj

i (Ψ̃j−1 ∗Ψj−1)(·, ·).

From Theorem 8.26 we are able to deduce that

Φ
(2)
J−1 ∗ F =

NJ−1∑
i=1

a
NJ−1

i LNJ−1

i Φ
(2)
J−1(·, ·), (8.63)

where

a
NJ−1

l =

NJ−1∑
i=1

w
NJ−1

l,i LNJ−1

i (Φ
(2)
J−1(·, ·) ∗ F ). (8.64)

On the other hand, by virtue of Lemma 8.22, we have

Φ
(2)
J−1 ∗ F =

NJ∑
i=1

aNJ

i LNJ

i Φ
(2)
J−1(·, ·). (8.65)

Combining (8.64) and (8.65) we obtain

a
NJ−1

l =

NJ−1∑
i=1

NJ∑
k=1

w
NJ−1

l,i aNJ

k LNJ−1

i LNJ

k Φ
(2)
J−1(·, ·) (8.66)

for l = 1, . . . , NJ−1. Assuming the sets {LNj

1 , . . . ,LNj

Nj
} to be hierarchical, i.e.,

LNj

i = LNj+1

i , i = 1, . . . , Nj; j = 0, . . . , J − 1, and observing the symmetry of the
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matrix (w
NJ−1

l,i ) we gain a reduction of computational costs as follows:

a
NJ−1

l =

NJ−1∑
i=1

NJ∑
k=1

w
NJ−1

i,l aNJ

k LNJ−1

i LNJ

k Φ
(2)
J−1(·, ·)

=

NJ−1∑
i=1

NJ−1∑
k=1

w
NJ−1

i,l aNJ

k LNJ−1

i LNJ−1

k Φ
(2)
J−1(·, ·)

+

NJ−1∑
i=1

NJ∑
k=NJ−1+1

w
NJ−1

i,l aNJ

k LNJ−1

i LNJ

k Φ
(2)
J−1(·, ·)

= aNJ

l +

NJ−1∑
i=1

NJ∑
k=NJ−1+1

w
NJ−1

i,l aNJ

k LNJ−1

i LNJ

k Φ
(2)
J−1(·, ·).

The recursion relation (8.66) leads us to the following decomposition scheme:

F → aNJ → aNJ−1 → · · · aN0

↓ ↓ ↓
(WT )(F )(J ; ·) (WT )(F )(J − 1; ·) (WT )(F )(0; ·).

The bandpass filter Rj(F ) can be deduced from the formula

Rj(F ) = Ψ̃j ∗ (WT )(F )(j; ·) =
Nj∑
i=1

a
Nj

i LNj

i (Ψ̃j ∗Ψj)(·, ·). (8.67)

This allows the following reconstruction scheme of F :

aN0 aN1 aN2

↓ ↓ ↓
R0(F ) R1(F ) R2(F )

↘ ↘ ↘
P0(F ) −→ + −→ P1(F ) −→ + −→ P2(F ) −→ + −→ · · · .

We have seen that the vectors aNj do not depend on the special choice of the scaling
function {Φj(·, ·)}j∈N0 . In other words, we are able to reconstruct a function with
respect to different wavelets just by the knowledge of the vectors aNj .

Let us finally make some comments concerning the pyramid schemata:

(1) In signal processing a variant of the pyramid scheme is known as subband
coding. This technique was originally studied before wavelet theory. The de-
composition step consists of applying a lowpass and a bandpass filter followed
by downsampling; the reconstruction consists of upsampling followed by fil-
tering.

(2) Any bandlimited potential can be reconstructed exactly via the pyramid
scheme by use of bandlimited wavelets (see also [67]). In this case spline
exact approximation coincides with polynomial (i.e., outer harmonic) exact
approximation. The scale and detail spaces are finite-dimensional so that the
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detail information of a potential is only determined by a finite number of
wavelet coefficients for each scale.

(3) In case of evaluation functionals and (radial) derivatives at certain points on
a sphere Ωr, r ≥ σ, the numerical effort can be drastically reduced by three
integration procedures on the sphere. The first method is to use gridded
pointsystems and then to apply FFT-techniques (cf. the Ph.D.-thesis [74]).
The second technique is to use a suitable Gauss-quadrature rule in north-
south direction. The third method is to apply the idea of fast summation
and panel clustering (cf. [23, 39]). For more details concerning numerical
integration on the sphere the reader is referred to [21, 44].

(4) The pyramid scheme provides a powerful tool in interpreting and constructing
lowpass and bandpass filters. The wavelets localize in space and frequency.
This makes wavelets particularly useful for data compression. Compression
techniques aim at reducing storage requirements and speeding up read or
write operations to or from disks. For the compression scheme we are ready
to accept an error as long as the quality after compression is acceptable.

(5) Another application is, that for the evaluation of a potential or its derivatives
at a point, only wavelet coefficients close to the point have to be taken into
account. This enables us to observe local features of the geopotential in a
global model.

Example. In the foregoing we have seen that bandlimited harmonic wavelets pro-
vide “building blocks” that enable fast decorrelation of geopotential data. Next
we are interested in discussing the concept of multiresolution analysis from practi-
cal point of view. To be more specific, the multiresolution analysis “looks at” the
Earth’s gravitational potential through a microscope, whose resolution gets finer
and finer. Thus it associates to the gravitational potential a sequence of smoothed
versions, labelled by the scale parameter. This aspect is illustrated by the figures
below for the (bandlimited) EGM96 model. The computation has been performed
on the basis of the CP-wavelets following Variant 1.
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-100.0 0.0 100.0 200.0

[100 Gal m]

-200.0 0.0 200.0

[100 Gal m]

P3(F ) R3(F )

-200.0 0.0 200.0 400.0

[100 Gal m]

-100.0 0.0 100.0

[100 Gal m]

P4(F ) R4(F )

-500.0 0.0 500.0

[100 Gal m]

0.0 100.0

[100 Gal m]

P5(F ) R5(F )

Figure 8.1. EGM96 CP-wavelet representation at height 0 km.
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-500.0 0.0 500.0

[100 Gal m]

-50.0 0.0 50.0

[100 Gal m]

P6(F ) R6(F )

-500.0 0.0 500.0

[100 Gal m]

-50.0 0.0 50.0

[100 Gal m]

P7(F ) R7(F )

-500.0 0.0 500.0

[100 Gal m]

P8(F )

Figure 8.2. EGM96 CP-wavelet representation at height 0 km (cont.).
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9. Illustrations of Meissl schemata

In this section we derive Meissl schemata for the SST and SGG operators (cf. [20,
32, 58]). In our contribution we focus on the gravitational potential, but obviously,
the results are also valid for the disturbing potential.

9.1. Meissl schemata based on outer harmonic framework

We start from the scalar Fourier expansion of the gravitational potential V in
terms of outer harmonics

V (x) =
∞∑

n=0

2n+1∑
m=1

V ∧(n,m)Hs
n,m(σ; ·). (9.1)

If the observables are given both at minimum satellites altitude γ and at
minimum Earth’s radius σ (see Figure 3.1), the symbols of the pseudodifferential
operators for the SST and SGG problem can be arranged in a Meissl scheme. The
symbols at the arrows indicate how the Fourier coefficients of degree n change
at the transition form one quantity to another. In order to avoid confusion the
corresponding basis functions are also given. In the case of radial derivatives we
remember that the basis system Hn,m fulfills

Hn,m(σ; ·)|Ωσ = (1/R)Yn,m. (9.2)

Therefore, we get the Meissl scheme for radial derivatives given in Figure 9.1.

Figure 9.1. Meissl scheme for radial derivatives.
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Figure 9.2. Meissl scheme for first-order tangential derivatives and
second-order mixed derivatives.

If vectorial observables are investigated, we need that

o(2)Yn,m = −n

√
n+ 1

2n+ 1
ỹ(1)n,m + (n+ 1)

√
n

2n+ 1
ỹ(2)n,m, (9.3)

which yields the Meissl schemata in Figures 9.2 and 9.3.

Finally, in the case of second-order tangential derivatives (∇∗ ⊗∇∗) we cal-
culate

∇∗⊗∇∗ỹ(1)n,m=ρ(1,1)n

n+1

2n+3
ỹ(1,1)
n,m +ρ(2,1)n

n+2

2n+3
ỹ(2,1)
n,m +ρ(2,2)n

2(n+1)

(2n+1)(2n−1)
ỹ(2,2)
n,m

(9.4)

and

∇∗⊗∇∗ỹ(2)n,m=τ (1,1)n (−1)
2n(n+1)

(2n+1)(2n+3)
ỹ(1,1)
n,m +τ (1,2)n

n−1

(2n−1)(2n+1)
ỹ(1,2)
n,m

+τ (2,1)n

2n(n+2)

(2n+3)(2n+1)
ỹ(2,1)
n,m +τ (2,2)n (−1)

n

(2n−1)(2n+1)
ỹ(2,2)
n,m ,

(9.5)
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Figure 9.3. Meissl scheme for first-order radial derivatives and
second-order mixed derivatives.

where the constants ρ
(i,k)
n and τ

(i,k)
n are given by

ρ(i,k)n =

√
ν
(i,k)
n

(2n+ 1)(n+ 1)
, (9.6)

τ (i,k)n =

√
ν
(i,k)
n

(2n+ 1)n
. (9.7)

In conclusion, we get the Meissl scheme for first- and second-order tangential
derivatives (see Figure 9.4).

9.2. Meissl schemata based on kernel function framework

In order to derive Meissl schemata based on kernel functions we want to recapit-
ulate the convolutions which are used in this section (see Table 4).

Our point of departure is the description of a function F ∈ Hs(Ωext
σ ) in terms

of outer harmonics

F (x) =
∞∑

n=0

2n+1∑
m=1

F∧(n,m)Hs
n,m(σ;x), (9.8)
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Figure 9.4. Meissl scheme for first- and second-order tangential derivatives.

x ∈ Ωext
σ , and we first derive the kernel functions corresponding to the SST and

SGG operators.

Scalar SST and SGG Operators

The SST and SGG operators are given by the convolution equation

ΛF (x) = (KΛ)σ,γ(·, x) ∗ F, x ∈ Ωext
γ , (9.9)

where the symbol of the kernel (KΛ)σ,γ is given by

(KΛ)∧(n) = Λ∧(n) =

⎧⎨⎩
(

σ
γ

)n
n+1
γ , n = 0, 1, . . . for SST,(

σ
γ

)n
(n+1)(n+2)

γ2 , n = 0, 1, . . . for SGG.
(9.10)
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K ∗ F
=

∞∑
n=0

2n+1∑
m=1

K∧(n)F∧(n,m)Hs
n,m(γ; ·) F,K(·, y) ∈ Hs(Ωext

σ )

k(i) ∗ f
=

∞∑
n=0i

2n+1∑
m=1

k(i)∧(n)f (i)∧(n,m)Hs
n,m(γ; ·) f, k(i)(·, y) ∈ h

(i)
s (Ωext

σ )

k � F

=
3∑

i=1

∞∑
n=0i

2n+1∑
m=1

k(i)∧(n)F∧(n,m)h
(i)s
n,m(γ; ·)

F ∈ Hs(Ωext
σ ),

k(·, y) ∈ hs(Ωext
σ )

k(i,k) ∗ f
=

∞∑
n=0̃ik

2n+1∑
m=1

k(i,k)∧(n)f (i,k)∧(n,m)Hs
n,m(γ; ·)

f , k(i,k)(·, y)
∈ h(i,k)

s (Ωext
σ )

k � F

=
3∑

i,k=1

∞∑
n=0̃ik

2n+1∑
m=1

k(i,k)∧(n)F∧(n,m)h(i,k)s
n,m (γ; ·)

F ∈ Hs(Ωext
σ ),

k(·, y) ∈ hs(Ωext
σ )

Table 4. List of the convolutions.

Vectorial SST and SGG Operators

In the vectorial case we have

λF (x) = (kλ)σ,γ(·, x) � F, x ∈ Ωext
γ , (9.11)

with the symbol (kλ)(i)∧(n) given by

(kλ)(1)∧(n) = λ(1)∧(n) =

⎧⎨⎩ −
(

σ
γ

)n
n
γ

√
n+1
2n+1 , n = 1, 2, . . . for SST,

−
(

σ
γ

)n+1
n(n+1)

γ2

√
n+1
2n+1 , n = 1, 2, . . . for SGG,

(9.12)
and

(kλ)(2)∧(n) = λ(2)∧(n) =

⎧⎪⎨⎪⎩
(

σ
γ

)n
n+1
γ

√
n

2n+1 , n = 1, 2, . . . for SST,(
σ
γ

)n+1
(n+1)2

γ2

√
n

2n+1 , n = 1, 2, . . . for SGG,

(9.13)
and (kλ)(3)∧(n) = 0.

Tensorial SGG Operator

This operator is given by

λF (x) = (k λ)σ,γ(·, x) � F, x ∈ Ωext
γ , (9.14)
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where we have the symbol

(k λ)(i,k)∧(n) = λ(i,k)∧(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
σ
γ

)n
1
γ2

n(n+1)
(2n+1)(2n+3)

√
ν
(1,1)
n , (i, k) = (1, 1),(

σ
γ

)n
1
γ2

−(n+1)(n−1)
((2n−1)(2n+1)

√
ν
(1,2)
n , (i, k) = (1, 2),(

σ
γ

)n
1
γ2

−n(n+2)
(2n+3)(2n+1)

√
ν
(2,1)
n , (i, k) = (2, 1),(

σ
γ

)n
1
γ2

n(n+1)(n+2)
(2n−1)(2n+1)

√
ν
(2,2)
n , (i, k) = (2, 2),

0, else.
(9.15)

Upward Continuation Operators

The kernels of the (scalar) upward continuation operators KU , KU ′ , and KU ′′ are
given by

KU (x, y) =

∞∑
n=0

2n+1∑
m=1

(
σ

γ

)n

Hs
n,m(γ;x)Hs

n,m(σ; y), (9.16)

KU ′(x, y) =

∞∑
n=0

2n+1∑
m=1

(
σ

γ

)n+1

Hs
n,m(γ;x)Hs

n,m(σ; y), (9.17)

KU ′′(x, y) =

∞∑
n=0

2n+1∑
m=1

(
σ

γ

)n+2

Hs
n,m(γ;x)Hs

n,m(σ; y). (9.18)

The upward continuation operators for vector and tensor fields can be introduced

in the same way by use of the vectorial and tensorial basis functions h
s(i)
n,m and

h
s(i,k)
n,m , i, k ∈ {1, 2, 3}.

The Meissl schemata for the scalar/vectorial/tensorial wavelets can now be
derived as follows:

Scalar Meissl Scheme. From the reconstruction formula in the scalar case (7.9) we
get

F (x) =
∞∑

j=−1

Ψ̃j ∗ (WT )(F )(j;x) =
∞∑

j=−1

(Ψ̃j ∗Ψj ∗ F )(x), (9.19)

x ∈ Ωext
σ , whereas

∂F

∂r
(x) =

∞∑
j=−1

(
Ψ̃j ∗Ψj ∗Kσ

∂
∂r

∗ F
)
(x), (9.20)

where the kernel of the first radial derivative Kσ
∂
∂r

on the sphere Ωσ is given by

Kσ
∂
∂r
(x, y) =

∞∑
n=0

2n+1∑
m=1

(
−n+ 1

σ

)
Hs

n,m(σ;x)Hs
n,m(σ; y). (9.21)
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The same calculation for the second radial derivative ∂2

∂r2 leads to

∂2F

∂r2
(x) =

∞∑
j=−1

(
Ψ̃j ∗Ψj ∗KR

∂2

∂r2

∗ F
)
(x), (9.22)

where Kσ
∂2

∂r2

is given by

Kσ
∂2

∂r2

(x, y) =
∞∑
n=0

2n+1∑
m=1

(n+ 1)(n+ 2)

σ2
Hs

n,m(σ;x)Hs
n,m(σ; y)

=
(
Kσ

∂
∂r

∗ K̃σ
∂
∂r

)
(x, y), (9.23)

and the kernel K̃σ
∂
∂r

is given by

K̃σ
∂
∂r
(x, y) =

∞∑
n=0

2n+1∑
m=1

(
−n+ 2

σ

)
Hs

n,m(σ;x)Hs
n,m(σ; y). (9.24)

Therefore, we get the Meissl scheme shown in Figure 9.5.

Figure 9.5. Meissl scheme for kernel functions (scalar case).

Scalar/Vectorial Meissl Scheme. The extension the the case of vectorial operators
is straightforward:

o(2),σF (x) =

∞∑
j=−1

2∑
i=1

(
Ψ̃

(i)
j �Ψ

(i)
j ∗

(
k
σ,(i)

o(2),σ
� F
))

(x), (9.25)
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where the kernel functions k
σ,(i)

o(2),σ
are given by

k
σ,(1)

o(2),σ
(x, y) =

∞∑
n=0

2n+1∑
m=1

(
−n

σ

)√ n+ 1

2n+ 1
hs(1)
n,m(σ;x)Hs

n,m(σ; y), (9.26)

k
σ,(2)

o(2),σ
(x, y) =

∞∑
n=1

2n+1∑
m=1

n+ 1

σ

√
n

2n+ 1
hs(2)
n,m(σ;x)Hs

n,m(σ; y). (9.27)

In the SGG case we calculate

o(2),σ
∂F

∂r
(x) =

∞∑
j=−1

2∑
i=1

(
Ψ̃

(i)
j �Ψ

(i)
j ∗

(
k
σ,(i)

o(2) ∂
∂r

� F
))

(x), (9.28)

where the kernels k
σ,(i)

o(2),σ ∂
∂r

are given by

k
σ,(1)

o(2),σ ∂
∂r

(x, y) =

∞∑
n=0

2n+1∑
m=1

(
−n+ 1

σ

)
n

σ

√
n+ 1

2n+ 1
hs(1)
n,m(σ;x)Hs

n,m(σ; y)

=
(
k
σ,(1)

o(2),σ
� Kσ

∂
∂r

)
(x, y), (9.29)

k
σ,(2)

o(2),σ ∂
∂r

(x, y) =
∞∑
n=1

2n+1∑
m=1

n+ 1

σ

n+ 1

σ

√
n

2n+ 1
hs(2),σ
n,m (σ;x)Hs

n,m(σ; y)

=
(
k
σ,(2)

o(2)
� Kσ

∂
∂r

)
(x, y). (9.30)

Summing up, we finally get the Meissl schemata given in Figures 9.6 and 9.7 for
the vector approach.

Scalar/Vectorial/Tensorial Meissl Scheme. We get

∇∗,σ ⊗∇∗,σF (x)

=

∞∑
j=−1

∑
(i,k)∈

{(1,1),(1,2),(2,1),(2,2)}

(
Ψ̃

(i,k)
j �Ψ

(i,k)
j ∗

(
k
σ,(i,k)
∇∗,σ⊗∇∗,σ � F

))
(x), (9.31)

where the kernel functions k
σ,(i,k)
∇∗,σ⊗∇∗,σ are given by

k
σ,(1,1)
∇s,σ⊗∇∗,σ(x,y)=

∞∑
n=0

2n+1∑
m=1

√
ν
(1,1)
n

n(n+1)

σ2(2n+1)(2n+3)
hs(1,1)
n,m (σ;x)Hs

n,m(σ;y),

(9.32)

k
σ,(1,2)

∇∗,σ⊗∇∗,R(x,y)=

∞∑
n=1

2n+1∑
m=1

(
−
√
ν
(1,2)
n

)
(n−1)(n+1)

σ2(2n−1)(2n+1)
hs(1,2)
n,m (σ;x)Hs

n,m(σ;y),

(9.33)
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Figure 9.6. Meissl scheme for kernel functions (scalar/vectorial case).

k
σ,(2,1)
∇∗,σ⊗∇∗,σ(x,y)=

∞∑
n=0

2n+1∑
m=1

(
−
√
ν
(2,1)
n

)
n(n+2)

σ2(2n+1)(2n+3)
hs(2,1)
n,m (σ;x)Hs

n,m(σ;y),

(9.34)

k
σ,(2,2)
∇∗,σ⊗∇∗,σ(x,y)=

∞∑
n=2

2n+1∑
m=1

√
ν
(2,2)
n

n(n+1)(n+2)

σ2(2n−1)(2n+1)
hs(2,2)
n,m (σ;x)Hs

n,m(σ;y).

(9.35)

Note that the kernels k
σ,(i,k)
∇∗,σ⊗∇∗,σ , (i, k) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)} can be split

into k
σ,(i,k)
∇∗,σ⊗∇∗,σ =

∑2
l=1 k

σ,(i,k),(l)
∇∗,σ �k

σ,(l)

o(2),σ
, where the kernels k

σ,(i,k)(l)
∇∗,σ are given by

k
σ,(1,1),(1)
∇∗,σ =

∞∑
n=0

2n+1∑
m=1

n+ 1

σ(2n+ 3)
ρ(1,1)n hs(1,1)

n,m (σ;x)hs(1)
n,m(σ; y), (9.36)

k
σ,(1,1),(2)
∇∗,σ =

∞∑
n=1

2n+1∑
m=1

(
− 2n(n+ 1)

σ(2n+ 1)(2n+ 3)

)
τ (1,1)n hs(1,1)

n,m (σ;x)hs(2)
n,m(σ; y), (9.37)
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Figure 9.7. Meissl scheme for kernel functions (scalar/vectorial case).

k
σ,(1,2),(1)
∇∗,σ = 0, (9.38)

k
σ,(1,2),(2)
∇∗,σ =

∞∑
n=1

2n+1∑
m=1

n− 1

σ(2n− 1)(2n+ 1)
τ (1,2)n hs(1,2)

n,m (σ;x)hs(2)
n,m(σ; y), (9.39)

k
σ,(2,1),(1)
∇∗,σ =

∞∑
n=0

2n+1∑
m=1

n+ 2

σ(2n+ 3)
ρ(2,1)n hs(2,1)

n,m (σ;x)hs(1)
n,m(σ; y), (9.40)

k
σ,(2,1),(2)
∇∗,σ =

∞∑
n=1

2n+1∑
m=1

2n(n+ 2)

σ(2n+ 3)(2n+ 1)
τ (2,1)n hs(2,1)

n,m (σ;x)hs(2)
n,m(σ; y), (9.41)

k
σ,(2,2),(1)
∇∗,σ =

∞∑
n=0

2n+1∑
m=1

2(n+ 2)

σ(2n− 1)(2n+ 1)
ρ(2,2)n hs(2,2)

n,m (σ;x)hs(1)
n,m(σ; y), (9.42)

k
σ,(2,2),(2)
∇∗,σ =

∞∑
n=2

2n+1∑
m=1

(
− n

σ(2n− 1)(2n+ 1)

)
τ (2,2)n hs(2,2)

n,m (σ;x)hs(2)
n,m(σ; y). (9.43)
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The convolution of the kernel kσ,(i,k),(l) =
∑∞

n=0

∑2n+1
m=1 kσ,(i,k),(l)∧(n)hs(i,k)

n,m h
s(l)
n,m

and the vector field f (l) ∈ h(Ωext
σ ) is given by

kσ,(i,k),(l) � f (l) =
∞∑

n=0̃ik

2n+1∑
m=1

kσ , (i, k), (l) ∧ (n)f (l)∧h(n,m)hs(i,k)
n,m (σ; ·). (9.44)

Thus, we get the Meissl scheme given in Figure 9.8.

Figure 9.8. Meissl scheme for kernel functions (scalar/vectorial/ten-
sorial case). (Note that the tensor-2 wavelets could not be written in
bold letter for technical reasons.)
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10. Conclusions

As already pointed out, accurate knowledge of the gravitational potential of the
Earth is required in order to solve, for example, problems in geodesy, navigation,
oceanography, solid Earth physics, and exploration geophysics. In physical geodesy
it is the essential pre-stage of geoid computation. Earlier it was envisaged that the
gravitational potential could be determinable as a solution of a boundary value
problem. The classical problem was the Stokes problem, the boundary values were
the gravity anomalies, for which the hitherto unrealistic assumption of global (ter-
restrial) coverage was required. But today we are confronted with the situation
where also other quantities give information about the Earth’s gravity potential,
for example, gravity disturbance vector or second-order gradients of the distur-
bance potential from air- and spacecraft. In recent years the geometric shape of
the Earth, continents and ocean surface, became measurable with unprecedented
precision, due to the enormous progress of space methods like GNSS, VLBI, SLR,
and satellite altimetry. The mathematical connection between the gravitational
data within a georelevant geometry is the integrated concept. Usually, this con-
cept is formulated in the framework of a reproducing kernel Hilbert space H(Ωext

σ )
consisting of potentials harmonic down to an internal (Runge) sphere Ωσ. Math-
ematically, the gravitational (anomalous) potential of the Earth is assumed to be

an element of such a space H(Ωext
σ ). In the Hilbert space H(Ωext

σ ) any element may
be represented by its expansion with respect to a complete system of kernel ex-
pressions LiKH(Ωext

σ )(·, ·) related to (linear) observables Li on H(Ωext
σ ). Because of

the reproducing kernel structure imposed on H(Ωext
σ ), orthonormalization of a fi-

nite system {LiKH(Ωext
σ )(·, ·)}i=1,...,N is equivalent to the spline problem of finding

the minimum norm interpolant in the associated ‖ · ‖H(Ωext
σ )-metric. When using

minimum norm interpolation (or smoothing), however, the normal equation ma-
trix (LiLkKH(Ωext

σ )(·, ·))i,k=1,...,N is in general a full matrix, reflecting the certain

status of decorrelation guaranteed by the reproducing kernel (covariance function)
under consideration. This problem causes numerical difficulties which may to a
certain extend be overcome by several techniques (for example, fast summation,
panel clustering, etc.). But the numerical obstacles are the main reasons why ap-
proximation methods of the Earth’s gravitational field determination based on
spline procedures could not keep pace with the increasing flow of observational
information. In other words, the serious drawback of spline approximation is that
there is no efficient transition from global to local modeling by only using one
kernel (covariance) function with (fixed) space/momentum localization property.

The power of harmonic wavelets lies in the fact that kernel functions with
variable space/momentum localization come into use according to a suitable dila-
tion process. By using a sequence of more and more kernels reflecting the various
levels of space/momentum localization the reference Sobolev space H(Ωext

σ ) is de-
composed into a nested sequence of approximating subspaces

· · · Vj(Ωext
σ ) ⊂ Vj+1(Ωext

σ ) ⊂ · · ·
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reflecting the different stages of decorrelation. In doing so, harmonic wavelets may
be used as mathematical means for breaking up a complicated function (such as
the Earth’s gravitational potential) into many simple pieces at different scales and
positions. This allows multiresolution analysis and compression of data. The par-
ticular efficiency of wavelets is caused by the property that only a few wavelet
coefficients in the wavelet table are needed in areas where the gravitational poten-
tial is “smooth”, whereas stronger resolution of a complicated pattern is settled by
a zooming-in capability. Wavelets offer canonical tools for combined terrestrial, air-
borne, and spaceborne data management under realistic assumptions imposed on
the geometry of the Earth’s surface and the “orbital configuration”. Fast computa-
tion becomes available in form of tree algorithms. This enables gravitational poten-
tial determination with millions of data. Thus harmonic (regularization) wavelets
are particularly important for inverse multiscale modeling of spaceborne data. In
a subsequent step geoid computation can be based on a highly accurate gravi-
tational potential derived from a homogeneous set of spaceborne data combined
with terrestrial and/or airborne data.

For inverse multiscale modeling of spaceborne data two different ways of
wavelet regularization are available, namely bandlimited truncated singular value
decomposition and non-bandlimited regularization using, e.g., Tikhonov, rational,
exponential, and “locally supported” kernels. In accordance with the uncertainty
principle the different constituting elements of regularization may be explained
as follows: Non-bandlimited regularization wavelets tend to be extremely space
localizing. Thus huge data sets of irregular distribution can be handled since only
data in a small neighborhood, whose size is determined by the particular choice of
the wavelet type, is needed for the purpose of evaluating the wavelet coefficients.
On the other hand, a large number of wavelet coefficients depending on the choice
of the wavelet for the regularization is needed, since the wavelet coefficients only
give local information of a small neighborhood. It appears that non-bandlimited
regularization is an appropriate tool of local gravity surveys for oil and mineral
exploration. However, little practical work has been done yet in this application
area for non-synthetic data sets, although the use of linear functionals allows a very
promising combination of terrestrial and/or airborne data within a unified setup
in terms of wavelets. Moreover, fast summation techniques and panel clustering is
adequately applicable in pyramid schemata.

Bandlimited regularization wavelets show more moderate phenomena of space
localization so that one can work with smaller data sets in numerical evaluation.
In consequence, the number of wavelet coefficients can be reduced, since they
contain information of a more extended area. Moreover, a certain spectral band can
be expressed exactly in terms of wavelets because of their bandlimited character
even when the airborne data are combined with terrestrial information. Pyramid
schemata can be based on exact (outer harmonic) approximation. In conclusion,
dependent on the space/momentum character of the bandlimited wavelets inverse
multiscale gravity modeling of spaceborne data can be handled successfully by
multiresolution analysis.
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Finally, it should be pointed out that our approach is given within a spher-
ical context. Geodesists sometimes believe that ellipsoidal reference surfaces in
combination with ellipsoidal harmonics might be the better choice. No doubt,
an ellipsoidally reflected multiscale formulation is mathematically interesting and
geodetically relevant. However, its numerical realization is by far more compli-
cated than the spherical oriented variant chosen for our study here. As a matter of
fact, Meissl schemata are involved with gravitational quantities not including the
centrifugal influence. In this case, however, Runge–Walsh methods corresponding
to Runge–Walsh (Bjerhammar) spheres form an adequate alternative which, in
the opinion of the authors, is superior when numerical purposes come into play
because of the much more efficient and economical structure inherent in spherical
framework. Even better, Runge–Walsh procedures are not only applicable for ellip-
soidal reference surfaces, but also for geometrically complicated reference surfaces
such as telluroid, or (co)geoid.

Acknowledgment. The authors thank the “Federal Ministry for Economic Affairs
and Energy, Berlin” and the “Project Management Jülich” for funding the project
“SPE” (funding reference number 0324016).

11. Appendix A: List of basic gravity field quantities

The list of this appendix essentially follows [ESA1]. It provides an introductory col-
lection of quantities used in classical geodesy that could not be explained through-
out the paper:

Definition Observation method

Gravity potential, W:
Sum of the gravitational and the
centrifugal potential.

Differences between values in two
points observed by levelling.

Equipotential surface:
Surface where the gravity potential is
equal to a constant.

Points on one surface determined
regionally by tide-gauges, which define
the regional mean sea level.

Height datum:
The equipotential surface best
agreeing with local mean sea level.

Mean sea-level calculated from
tide-gauges for a specific time period.

Geoid:
The equipotential surface which agrees
with global mean sea level.

The equipotential surface which agrees
with a global set of tide-gauges and
leveling bench-marks.



Geodetic Observables and Their Mathematical Treatment 453

Gravity:
Magnitude of gradient of the gravity
potential at Earth’s surface and of the
gravitational potential in the outer
space.

Observed by absolute (e.g., free fall
experiment) or relative (as a
difference) spring gravimeter.

Gravity gradient:
Derivatives of the gravity vector, i.e.,
second-order derivatives of W .

Certain linear combinations
measured by torsion-balance at
Earth’s surface, by difference between
accelerometers in space (gradiometry).

Mean Earth Ellipsoid:
Ellipse rotated around the ε3-axis,
with center at the Earth’s gravity
center.

Surface which gives best fit to mean
sea-level, and which has centrum in
the gravity centre.

Height above ellipsoid:
Height above mean Earth ellipsoid
measured along the normal to
ellipsoid.

Observed indirectly by GPS from
cartesian coordinates.

Geoid height:
Height of a point on the geoid above
the reference ellipsoid.

Observed by GPS at tide-gauge or at
leveling point.

Orthometric height:
Height from geoid measured along a
plumb-line (often height above mean
sea-level).

Observed by leveling and converted to
metric units by dividing with gravity.

GNSS:
A satellite navigation system with
global coverage.

GNSS: GPS, GLONASS, Galileo or
Beidou.

Gravity anomaly:
A model gravity potential with a
reference ellipsoid as an equipotential
surface is used to calculate normal
gravity (needed is latitude and
orthometric height).

It is a value derived by subtracting
measured and normal gravity. The
normal gravity is calculated in a point
with the ellipsoidal height put equal to
the orthometric height.
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12. Appendix B: List of basic units in gravitational field theory

Units and orders in gravity field theory are the following: The gravity is expressed
in m/s2 or in milligal (1 mgal= 10−5 m/s2); the mean Earth gravity is about
981 000 mgal, and varies from 978 100 mgal to 983 200 mgal from equator to
pole due to the Earth’s flattening and rotation. Deviations due to density inho-
mogenities, mountain ridges, etc. range from tens to hundreds of milligals. On the
other hand, the excursions of the geoid, measured from the mean Earth ellipsoid,
amount to about −105 and +90 meters. Gravity gradients are expressed in Eőtvős
(1E = 10−9 s2). The largest component is the vertical gravity gradient, being
on Earth’s surface of about 3000E (gravity changes by 3 ·10−6 m/s2 per meter
of elevation). The horizontal components are approximately half this size, mixed
gradients are below 100E for the normal field. Gravity gradient anomalies can be
much larger and reach about 1000E in mountainous areas (for more details see,
for example, [R4]).

SI units traditional

gravity

10−2ms−2 1 Gal

10−5ms−2 1 mGal

10−8ms−2 1μ Gal

gravity potential

10m2s−2 1 kGal ·m

gravity gradients

10−9s−2 1E
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[73] Weyl, H. (1916) Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77,
313–352.
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MPI-Gebäude, Paul-Ehrlich-Str. 26
D-67663 Kaiserslautern, Germany


	Geodetic Observables and Their Mathematical Treatment in Multiscale Framework
	1. Introduction
	2. Current state of gravity field determination
	2.1. Important geodetic observables
	2.2. Satellite concepts and airborne data
	2.3. Gravity field applications
	2.4. Principles of multiscale approximation

	3. Geodetically relevant Sobolev spaces
	3.1. Scalar outer harmonic and Sobolev theory
	3.2. Vectorial outer harmonic and Sobolev theory
	3.3. Tensorial outer harmonic and Sobolev theory

	4. Pseudodifferential operators and geodetic nomenclature
	4.1. Scalar theory
	4.2. Vectorial theory
	4.3. Tensorial theory

	5. Reproducing kernel structure and observational functionals
	5.1. Reproducing Hilbert spaces
	5.2. Bandlimited kernel functions
	5.3. Non-bandlimited kernel functions

	6. Ill-posedness of the satellite problems
	6.1. Scalar SST and SGG problem
	6.2. Vectorial SST and SGG problem
	6.3. Tensorial SGG problem

	7. Geodetically oriented wavelet approximation
	7.1. Scalar wavelet theory
	7.2. Vectorial wavelet theory
	7.3. Tensorial wavelet theory
	7.4. Combined outer harmonic and wavelet concept

	8. Bandlimited Runge–Walsh multiscale approximation
	8.1. Runge–Walsh wavelet approximation of classical boundary value problems corresponding to regular surfaces
	8.2. Pyramid schemata based on outer harmonic exact approximation

	9. Illustrations of Meissl schemata
	9.1. Meissl schemata based on outer harmonic framework
	9.2. Meissl schemata based on kernel function framework

	10. Conclusions
	11. Appendix A: List of basic gravity field quantities
	12. Appendix B: List of basic units in gravitational field theory
	References




