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Ill-Posed Problems: Operator Methodologies
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Abstract. A general framework of regularization and approximation methods
for ill-posed problems is developed. Three levels in the resolution processes
are distinguished and emphasized: philosophy of resolution, regularization-
approximation schema, and regularization algorithms. Dilemmas and method-
ologies of resolution of ill-posed problems and their numerical implementations
are examined with particular reference to the problem of finding numerically
minimum weighted-norm least squares solutions of first kind integral equa-
tions (and more generally of linear operator equations with non-closed range).
An emphasis is placed on the role of constraints, function space methods, the
role of generalized inverses, and reproducing kernels in the regularization and
stable computational resolution of these problems. The thrust of the contri-
bution is devoted to the interdisciplinary character of operator-theoretic and
regularization methods for ill-posed problems, in particular in mathematical
geoscience.
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1. Introduction

This contribution on operator-theoretic approaches to ill-posed problems (IPP’s)
develops a general framework for regularization and approximation methods for
ill-posed problems. Most inverse problems are ill-posed. For example, gravimet-
ric and downward continuation problems of geodesy are ill-posed. Three levels
in the resolution processes are distinguished and analyzed in this expository re-
search paper: philosophy of resolution, regularization-approximation schema, and
regularization algorithms. Our essential objective is to provide an outlook within
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which discretization and other approximation methods can be better motivated,
interpreted, and understood. Our development will be fairly general in scope and
theory, and it is applicable to a wide range of ill-posed problems. Each method for
resolution, whether regularized in the classical sense or non-regularized, involves
a critical “parameter” whose “optimal value” is crucial to the amenability and
numerical implementation of the method. For example, in Tikhonov-type regu-
larization it is the regularization parameter, or more generally the choice of the
regularization operator. In projection and other discrete methods, it is the opti-
mal dimension of the approximating subspaces. In discretization methods it is the
choice of the mesh size beyond which a further refinement will lead to instability.
In multiscale methods it is the scale parameter to determine the scale space in
which multiresolution is realizable relative to the data width. In iterative methods
it is the level at which one should terminate the iteration (i.e., it is the stopping
rule for the iterates). In filteration-truncation methods it is the number of terms to
be included, etc. This paper delineates unifying principles that quantify the choice
of the parameter, the type of estimates, and a priori information that are needed
to arrive at an “optimal” value for this parameter.

Methodologies and dilemmas of the resolution of ill-posed problems and their
numerical implementations are examined with particular reference to the problem
of finding minimum weighted-norm least squares solutions of linear operator equa-
tions with non-closed range. A common problem in all these methods is delineated:
Each method reduces the problem of resolution to a “non-standard” minimiza-
tion problem involving an unknown critical “parameter” whose “optimal” value
is crucial to the numerical realization and amenability of the method. The “non-
standardness” results from the fact that one does not have explicitly, or a priori,
the function to be minimized: It has to built up using additional information,
convergence rate estimates, noise characteristics and robustness conditions, etc.
Several results are discussed that represent and complement advances in regular-
ization of inverse and ill-posed problems. An emphasis is placed on the role of
constraints, function space methods, the role of generalized inverses, and repro-
ducing kernels in the regularization and stable computational resolution of these
problems. The thrust of the work is devoted to the interdisciplinary character of
operator-theoretic methods for ill-posed problems. It is hoped that the viewpoints
and approaches developed in this work for geodetically relevant obligations would
be found useful in connection with other ill-posed problems in diverse areas of
application. In fact, our purpose is to provide an outlook within which technical
results can be better motivated and understood. Within this framework, criteria
can be given relative to which the scope and limitations of the various methods
can be assessed. This is important both in theory and practice since there is no
cure-all method for ill-posed problems; therefore it is imperative to be able to
clarify why a certain method works in some context as well as when not to use
that method. The work discusses at length the intuitive principles that underlie
the various methods and establishes some results within this framework, thereby
omitting technicalities of the proofs.
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Within the framework of the paper we are mainly interested in pointing
out those aspects that are related to generalized inverses in (reproducing kernel)
Hilbert spaces and those which are not. Only standard notation from functional
analysis is used; reference may be made to any introductory book on functional
analysis (e.g., [140, 143]). In a number of ill-posed problems (for example, in math-
ematical geodesy, the gravimetry problem, the gradiometry problem, etc.), the
operator A is an integral operator, and the problem Ax = y is essentially one of
“solving” a Fredholm integral equation of the first kind. If y belongs to the range
of the operator A, we may ask for an exact solution, while in the case in which y
fails to belong to the range of A (the case more typically met in applied problems
of the type described above), we must confront the fundamental issue of deciding
what should be meant by a “solution” and, only then, seek appropriate techniques
for the resolution of the problem.

During the past three decades a substantial amount of machinery from func-
tional analysis, theory of special functions, optimization as well as approximation
theory and numerical analysis has been brought to bear on the resolution and
understanding of IPPs, and the interdisciplinary character of many inverse and ill-
posed problems has emerged very clearly. The interdisciplinary character of IPP’s
in Applied Sciences is also stressed in many survey papers, which also give excel-
lent account of the state of the art for various problems in practice and contain
extensive bibliographies. Three problems are essentially treated in the literature:

(1) the identification problem,
(2) the synthesis (or controllability) problem, and
(3) best approximate synthesis.

These problems are all subsumed in the general problem of studying an operator
equation of the form Ax = y, where A usually is assumed to be an operator with
non-continuous inverse.

The vivid research activity in the field of ill-posed and inverse problems has
led to a vast literature on inverse and ill-posed problems. We list only a selection
of contributions, where the reader is also referred to the literature therein.

textbooks : [14, 22, 60, 63, 105, 106, 124, 132, 137, 142, 148, 169, 170, 173, 177, 178,
248, 250, 254],

conference reports, handbooks : [7, 12, 25, 65, 82, 83, 107, 128, 141, 173, 177, 182,
183, 185, 187–189, 192, 223, 233].

In addition to the books we mention the journals:

Inverse Problems,

Inverse Problems in Science and Engineering,

Inverse Problems and Imaging,

Journal on Inverse and Ill-Posed Problems,

Journal of Mathematical Imaging and Vision,

Mathematical Inverse Problems.
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Many authors contributed results in different areas of ill-posed and inverse
problems (note that he following list is rather incomplete, for more details the
reader is referred to the references in the aforementioned textbooks or the below
listed journal and handbook publications):

generalized inverse and least squares problems : [11, 39, 47, 50, 51, 57, 58, 60, 66,
95, 99, 114, 125, 151, 153, 157, 160, 164–166, 173, 175, 178, 182–186, 194,
197, 208, 209, 219, 220, 226, 240, 261],

truncated singular value, Tikhonov regularization, and discrepancy principles: [24–
28, 38, 52, 53, 60, 64, 68, 69, 92, 93, 105, 107, 118, 126, 146, 147, 152, 154,
155, 168, 176, 178, 179, 181, 184, 201, 202, 210, 216, 218, 225, 235, 243, 247,
249, 250, 256],

inversion in (reproducing kernel) Hilbert spaces: [67, 122, 144, 184, 195, 196, 232,
236, 258],

projection methods, moment problems: [6, 7, 34, 35, 52, 53, 61, 137, 180, 184, 199,
241, 262],

iterative methods, finite element methods, other computational methods: [3, 6, 11,
20, 32, 33, 38, 40, 54, 80, 92, 102, 108, 112, 113, 115–117, 133, 134, 138, 172,
184, 200, 204, 214, 242, 246, 251, 253, 255, 263, 266–268],

mollifier methods: [63, 148, 149],

variational methods, implicit function theorems, ill-posed problems in differential
equations: [1, 5, 9, 10, 14, 36, 42, 43, 48, 50, 56, 61, 62, 145, 189–191, 206,
215, 224, 230, 252, 257],

multiscale methods: [41, 44, 45, 74–77, 81, 91, 94, 141, 150, 152, 156, 161–163].

The GEM–International Journal on Geomathematics is a forum in which
geoscientifically relevant ill-posed problems gain appropriate recognition. Many
further references will be given in due course.

It is also hoped that the viewpoints and approaches developed in this paper
would be found useful in connection with other inverse problems of various (not
necessarily geoscientific) research areas.

2. Solvability of ill-posed operator equations

Schematically, a direct (forward) problem can be formulated as follows:

object −→ data information of the object.

The inverse problem is considered the “inverse” to the forward problem which
relates the object (sub)information to the object:

data information of the object −→ object.

An object may be understood to be the systematic relationship of all data
subinformation, object parameters, and other auxiliary information. It may be
linear or non-linear, deterministic or random, etc.
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In standard functional analytic nomenclature (see, e.g., [120, 135, 229, 245,
265]) we are usually confronted with the following operator equation: Given spaces
X,Y equipped with the settings of norm and inner product, respectively. Consider
a mapping A from X to Y , i.e., (A;X,Y ) with

A : X → Y. (2.1)

The Direct Problem (DP) is as follows: Given x ∈ X , find y = Ax ∈ Y . The
Inverse Problem (IP) is as follows: Given an observed output y, find an input x
that produces it, i.e., Ax = y ∈ Y , or given a desired output z, find an input x
that produces an output y = Ax ∈ Y that is as “close” to z as possible.

A Well-Posed (Properly-Posed) Problem in the sense of Hadamard is as fol-
lows: For each “data” y ∈ Y , the operator equation X � x �→ Ax = y ∈ Y has one
and only one solution, and the solution depends continuously on y. In more detail,
a mathematical problem is well posed in the sense of Hadamard (cf. [109, 110]), if
it satisfies the following properties:

(H1) Existence: For all (suitable) data, there exists a solution of the problem (in
an appropriate sense).

(H2) Uniqueness: For all (suitable) data, the solution is unique.
(H3) Stability: The solution depends continuously on the data.

According to this definition, a problem is ill posed or improperly posed in the sense
of Hadamard if one of these three conditions is violated.

As already mentioned, ill-posed problems arise in many branches of science,
engineering, and mathematics, including computer vision, natural language pro-
cessing, machine learning, statistics, statistical inference, medical imaging, remote
sensing, non-destructive testing, astronomy, geodesy and geophysics, exploration
and prospection, and many other fields. It should be noted that J. Hardamard
(1865–1963) dismissed ill-posed problems as irrelevant to physics or real world ap-
plications, but he was proven wrong four decades after his declaration. In fact, it
turned out that Hadamard’s classification had a tremendous influence on the de-
velopment of mathematics. Some years ago, starting from Hadamard’s properties
a more relevant understanding of ill-posedness was provided by a more detailed
functional analytical background (cf. [185]) that will be explained later on.

2.1. Finite-dimensional matrix equations and generalized inverse

Since any numerical approximation procedure usually leads to finite-dimensional
problems involving a singular functional analytic context, we begin with the re-
capitulation of finite systems of linear equations (see, e.g., [23, 99, 178, 260] and
the list of references therein for more details). After having treated the finite-
dimensional situation, we turn to the analogous theory in infinite-dimensional
operator framework.

Spectral matrix representation. We start with a linear matrix equation of the form

Ax = y, (2.2)
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with A ∈ Kn×n (K = R or K = C) being a Hermitian positive definite matrix
with n rows and n columns. From the spectral theory it is well known that there
exist eigenvalues 0 < λ1 ≤ · · · ≤ λn and a corresponding unitary matrix U =
(u1, . . . , un) of eigenvectors ui ∈ Cn\{0} (i.e., uH

i uj = δi,j) such that A has a
representation of the form

UHAU =

⎛⎜⎜⎜⎜⎝
λ1 0

. . .

. . .

0 λn

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

n×n

= diag(λ1, . . . , λn). (2.3)

The condition number of A is given by the quotient of the largest and smallest
eigenvalue, i.e., κ = λn

λ1
(note that λ1 > 0). For the sake of simplicity and coherence

with the analysis for the infinite-dimensional case below, we shall assume here that
the scaling is such that λn = 1, so that κ = λ−1

1 . The condition number is a measure
for the stable solvability of the problem (2.2).

Ill-conditioned matrix equations. Assume that we have noisy data yε instead of y,
which satisfy

‖yε − y‖ ≤ ε (2.4)

in the Euclidean norm on Kn. Let xε denote the solution with right-hand side yε.
Then it follows from the spectral representation that

xε − x = U diag

(
1

λ1
, . . . ,

1

λn

)
UH (yε − y). (2.5)

Hence, observing the orthogonality of eigenvectors we are led to the estimate

‖xε − x‖2 =
n∑

i=1

λ−2
i |uH

i (yε − y)|2 ≤ λ−2
1 ‖yε − y‖2. (2.6)

In other words, we have

‖xε − x‖ ≤ κ‖yε − y‖ ≤ κ ε. (2.7)

The sharpness of this estimate can be immediately seen for yε−y = εu1. It is clear
that with increasing condition number of the matrix A, the noise amplification
increases in the worst case. For large κ one therefore speaks of an “ill-conditioned
problem” (ICP). But it should be remarked that a finite-dimensional linear problem
is never ill posed (in the sense that the third condition in Hadamard’s classification
is violated), but for κ large one certainly comes close to this case.

We also observe that errors in low frequencies (i.e., corresponding to eigen-
vectors with large eigenvalues) are amplified less. Following our nomenclature we
see that an error in the lowest frequency, i.e., yε − y = ε un is not amplified at
all. In fact, we just obtain ‖xε − x‖ = ε from the spectral representation. This
is a typical effect for inverse problems. It means that not all possible versions of
noise of the same size are equally bad, high-frequency noise corresponding to low
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eigenvalues is always worse than low-frequency noise. However, in practice, we
are able to make any assumption on the noise only in rare exceptions, so that a
regularization method has to deal with arbitrary noise.

Until now, we have assumed that the matrix A is Hermitian positive definite,
i.e., the minimal eigenvalue is positive. If this is not the case, the matrix has a
non-trivial null space. If λr denotes the minimal non-zero eigenvalue, then the
solution formula becomes x =

∑n
i=r λ

−1
i uiu

H
i y, and the problem is solvable if and

only if uH
i y = 0 for i < r. If the data set is noisy, i.e., instead of y we have yε, we

are led to use the projection Pyε onto the range of A. In doing so we obtain for the
corresponding solution xε with data Pyε that xε − x =

∑n
i=r λ

−1
i uiu

H
i (Pyε − y).

Since uH
i Pyε = uH

i yε for i ≥ r we thus can estimate similarly as described above
‖xε − x‖ ≤ λrε. Consequently, there is no error propagation in the null space
components and the noise amplification is actually determined by the minimal
non-zero eigenvalue.

Matricial generalized inverse (pseudoinverse, Moore–Penrose inverse). Let A ∈
Kn×m (K = R or K = C) be a matrix with n rows and m columns, y ∈ Km. Note
that A is not required to be square, no rank assumptions are made at this stage.
Then the linear system

Ax = y, x ∈ Kn, (2.8)

need not have a (unique) solution. If the system (2.8) is unsolvable, a reasonable
generalized notion of a solution is a “least squares solution”, which minimizes the
residual Ax − y in the Euclidean norm (note that ‖ ‖ stands for the Euclidean
norm in this subsection): A vector x ∈ Kn is a

(1) least squares solution of (2.8) if and only if

‖Ax− y‖ = inf{‖Az − y‖ : z ∈ Kn}, (2.9)

(2) best-approximate solution (or minimal norm solution) of (2.8) if and only if
x is a least squares solution and satisfies

‖x‖ = inf{‖z‖ : z is a least squares solution}. (2.10)

The following results are well known from classical linear algebra: A vector
x∗ is a solution of (2.9) if and only if the normal equations

AHAx∗ = AHy (2.11)

are satisfied. The problem (2.9) possesses a unique solution if and only if A has
full rank. If A† ∈ Km×n may be understood as the matrix which assigns to each
y ∈ Kn the best-approximate solution of (2.8), then it is called the generalized
inverse (also designated, Moore–Penrose inverse or pseudoinverse) of A.

In order to construct A† and, hence, best-approximate solutions via the so-
called singular value decomposition (SVD) of A we recall the definition of singular
values of a matrix A:
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Let σ1, . . . , σr > 0 be such that σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r > 0 are the positive

eigenvalues of the matrix AHA (each one written down as often as its multiplicity
is). Then σ1, . . . , σr are denoted the (non-zero) singular values of A.

This setting makes sense, since AHA is positive semidefinite. Obviously, r ≤
min{n,m}, where r is the rank of A. We know that a Hermitian matrix can
be diagonalized, where the diagonal elements are its eigenvalues. The following
theorem generalizes this result to the non-Hermitian case.

Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the singular values of A. Then there exist
unitary matrices U ∈ Km×m and V ∈ Kn×n such that

V HAU =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0
. . .

σr

0
. . .

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

m×n

(2.12)

holds true. The columns of U and V are eigenvectors of AHA and AAH , respec-
tively. The expression (2.12) is the so-called singular value decomposition (SVD)
of A.

The singular value decomposition (SVD) is not unique, since the unitary
matrices U and V are not. Obviously, from (2.12), we obtain

A = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0
. . .

σr

0
. . .

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
UH , (2.13)

since V and U are invertible, the rank ofA is r, the number of non-zero singular val-
ues (counted with multiplicity). Note that with U = (u1, . . . , um), V = (v1, . . . vn),
we have for i ∈ {1, . . . , r}

Aui = σivi (2.14)

and

AHvi = σiui, (2.15)

which follows from the singular value decomposition (2.12) via multiplication by
V and UH , respectively. The system {(σi;ui, vi) : i ∈ {1, . . . , r}} is the so-called
singular system for A. The system {v1, . . . , vr} is an orthonormal basis for the
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range R(A) = {y : Ax = y}, for any x ∈ Kn,

Ax =

r∑
i=1

〈Ax, vi〉vi =
r∑

i=1

〈x,AHvi〉vi, (2.16)

which implies in connection with (2.15) that

Ax =

r∑
i=1

σi〈x, ui〉vi (2.17)

holds true. Analogously, for all y ∈ Km,

AHy =

r∑
i=1

σi〈y, vi〉ui. (2.18)

Note that if A has real entries, so U and V have. The notion of a singular
system and the expansions (2.17) and (2.18) generalize to compact operators on
infinite-dimensional spaces, e.g., integral operators, as we will see later on.

Let A have the SVD (2.12). Then

A† = U

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
σ1

0
. . .

1
σr

0
. . .

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

n×m

V H . (2.19)

This also implies the existence and uniqueness of a best-approximate solution.
Since A†b is the least squares solution of minimal norm, we obtain that A†b is a
solution of the normal equations AHAx = AHb with minimal norm, i.e.,

A†y = (AHA)†AHy. (2.20)

This means that in order to approximate A†b we may as well compute an ap-
proximation to the minimal-norm solution in the normal equations, a fact we will
heavily use in the construction of regularization methods, later on.

Historical remarks. It should be mentioned that during the last century, the con-
cept of a pseudoinverse (generalized inverse) has rated considerable attention in
the mathematical as well as geodetic literature (a bibliography, for example, listing
over 1700 references on the subject is due to [178]). One of the most significant
applications of generalized inverses is to problems of best fit. Therefore one might
seek such evidence in the writings of those who laid the foundations of the method
of least squares. C.F. Gauss developed the method of least squares in 1794, but
he did not publish his results until several years later (see, e.g., [55, 97, 217] for a
review of the subject). Gauss’s interest in the subject may be dated back to his
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considerations of problems in geodesy. One should point out that Gauss [87, 88]
did not formally display A†. However, following [226], the ingredients for the con-
struction of a generalized inverse were essentially available to him, but he did not
use them. Indeed, there appears to be no evidence that he was inclined to proceed
in that direction. On the other hand, his approach to the problem of determining
best estimates is certainly in the spirit of generalized inverses. Early interest in
the first half of the last century in the subject of generalized inverses was initi-
ated by a paper on matrices by R. Penrose [208]. Indeed, basic elements of this
concept had been considered somewhat earlier. For example, E.H. Moore [165] pre-
sented a development of the notion (see also R. Baer [17], A. Bjerhammar [29, 30],
K. Friedrichs [84], F.Helmert [119], E.H. Moore [166], C.R. Rao, S.K. Mitra [220],
C.L. Siegel [238], and H. Wolf [261]). Moreover, in the setting of integral and dif-
ferential operators the concept was considered even earlier by I. Fredholm [70] and
W.A. Hurwitz [127], and by D. Hilbert [121] (see [223] for a discussion of gener-
alized inverses in classical analysis, and see also [23, 31, 178] for brief historical
sketches of the subject).

Truncated singular value regularization. The decomposition (2.19), more con-
cretely, the identity

A†y =

r∑
i=1

〈y, vi〉
σi

ui (2.21)

also shows how errors in y affect the result A†y: Errors in components of y corre-
sponding to small singular values are amplified by the large factor of the singular
value, so that such data errors are dangerous. This explains the numerical insta-
bility of (2.21), if A has small singular values. Although the problem of computing
the best-approximate solution is well posed, it is then numerically unstable. The
first idea to reduce this instability is to replace (2.21) by

xα =

r∑
i=1
σ2
i ≥a

〈y, vi〉
σi

ui (2.22)

with an appropriately chosen value α > 0; this truncation is the first example of a
regularization, where the original problem is replaced by a neighboring one, which
is more stable. However, the choice of the “regularization parameter” α is quite
crucial.

If we use (2.22) with perturbed data yε (with ‖y− yε‖ ≤ ε), we obtain as the
“regularized solution”

xε
α =

r∑
i=1

σ2
i ≥α

〈yε, vi〉
σi

ui. (2.23)
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We estimate the total error between xε
α and the sought-for quantity A†y:

‖xε
α −A†y‖ =

∥∥∥∥∥∥∥∥
r∑

i=1
σ2
i ≥α

〈yε, vi〉
σi

ui −
r∑

i=1

〈y, vi〉
σi

ui

∥∥∥∥∥∥∥∥ (2.24)

=

∥∥∥∥∥∥∥∥
r∑

i=1

〈y, vi〉
σi

ui −
r∑

i=1
σ2
i ≥α

〈y, vi〉
σi

ui

∥∥∥∥∥∥∥∥+
∥∥∥∥∥∥∥∥

r∑
i=1

σ2
i ≥α

〈y, vi〉 − 〈yε, vi〉
σi

ui

∥∥∥∥∥∥∥∥ .

Since the elements ui are orthonormal, we have∥∥∥∥∥∥∥∥
r∑

i=1

〈y, vi〉
σi

ui −
r∑

i=1
σ2
i ≥α

〈y, vi〉
σi

ui

∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
r∑

i=1
σ2
i <α

〈y, vi〉
σi

ui

∥∥∥∥∥∥∥∥
2

=

r∑
i=1

σ2
i <α

|〈y, vi〉|2
σ2
i

→ 0

(2.25)
for α→ 0. Hence, for sufficiently small α, the last sum is empty such that∥∥∥∥∥∥∥∥

r∑
i=1

σ2
i ≥α

〈y, vi〉 − 〈yε, vi〉
σi

ui

∥∥∥∥∥∥∥∥
2

=

r∑
i=1

σ2
i ≥α

|〈y − yε, vi〉|2
σ2
i

≤ 1

α

r∑
i=1

|〈y − yε, vi〉|2 ≤
ε2

α
.

(2.26)
The second error term does not blow up as α → 0, since the sum has always at
most r terms, hence, it can be estimated by ε2 (min{σ2

i : i ∈ {1, . . . , r}})−1. The
sum (2.23) is called truncated singular value expansion. It can be interpreted as
applying a low-pass filter to the data.

Tikhonov regularization. Another way of making (2.21) → (2.22) more stable
would be to replace it by the sum

xε
α =

r∑
i=1

σi

σ2
i + α

〈yε, vi〉ui. (2.27)

This is a classical variant of the famous Tikhonov regularization method for matrix
equations, which we shall consider in more detail in infinite dimensions. It is helpful
to characterize it in a different way: Let xε

α be defined by (2.27). Then, by the
orthonormality of the ui, we have, for all j ∈ {1, . . . , r},

〈xε
α, uj〉 =

σj

σ2
j + α

〈yε, vj〉 (2.28)

and

σ2
j 〈xε

α, uj〉+ α〈xε
α, uj〉 = σj〈yε, vj〉. (2.29)
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Now, because of (2.17) and (2.18), it follows that

r∑
j=1

σj〈yε, vj〉uj =

r∑
j=1

〈yε, Auj〉uj =

r∑
j=1

〈AHyε, uj〉uj = AHyε (2.30)

and

r∑
j=1

(
σ2
j 〈xε

α, uj〉+ α〈xε
α, uj〉

)
uj =

r∑
j=1

(
〈xε

α, A
HAuj〉+ α〈xε

α, uj〉uj

)
= AHAxε

α + αxε
α, (2.31)

note that xε
α is in the linear span of {u1, . . . , ur} which follows from (2.27). Now,

the identity (2.29) implies in vector nomenclature that(
AHA+ αI

)
xε
α = AHyε, (2.32)

which is an alternative characterization of the Tikhonov regularization. From this
“regularized normal equation”, we can obtain still another characterization of xε

α,
namely as the unique minimizer of the so-called Tikhonov functional

x �→ ‖Ax− yε‖2 + α‖x‖2, (2.33)

which can be seen by putting the first derivative of the functional in (2.33) to 0,
resulting exactly in the linear equation (2.32). The minimization of (2.33) can be
seen as a combination of the two minimizations that appear in the definition of a
best-approximate solution. It has also interpretations as a penalty method, e.g.,
via Lagrange multipliers.

The computation explained above can be formally performed for α = 0, too.
In this case it shows that x is the solution of minimal norm of the normal equation
AHAx = AHy which was already attacked by C.F. Gauss [87] (see also the contri-
butions by R.L. Plackett [217] and D.W. Robinson [226], and for a deeper insight
[178]). The monograph [178] also contains a brief historical sketch of this subject.
The book [260] (see also the references therein) presents an overview about numer-
ical methods and procedures. If AHA is invertible (and hence positive definite),
the normal equation AHAx = AHy can be solved by standard Cholesky decom-
position, which leads to an alternative method for computing best-approximation
solutions, for which no SVD is needed.

2.2. Least squares problems and generalized inverses

As usual, the domain, range, and null space (kernel) of any operator A : D(A)→
R(A) are denoted by D(A),R(A), and N (A), respectively.

We start with solvability conditions of an operator equation in Hilbert spaces,
where the concepts of “distance” and “angle” are at the disposal for an applicant.
More concretely, let X and Y be Hilbert spaces and let A : X → Y be a bounded
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linear operator whose range R(A) is not necessarily closed. Then we have the
orthogonal decompositions

X = N (A) ⊕N (A)⊥, (2.34)

Y = R(A) ⊕R(A)⊥, (2.35)

and
N (A∗) = R(A)⊥, (2.36)

where N (A)⊥ is the orthogonal complement of N (A), R(A) is the closure of the
range of A, and A∗ is the adjoint operator of A, i.e., 〈Ax, y〉 = 〈x,A∗y〉 for all
x ∈ X and y ∈ Y .

We consider the operator equation

Ax = y. (2.37)

Four (mutually exclusive) situations arise (cf. [184]):

1) R(A) is dense in Y , (hence, N (A∗) = {0}), and y ∈ R(A);
2) R(A) is dense in Y , and y /∈ R(A);

3) R(A) is a proper subspace of Y , and y ∈ R(A) +R(A)⊥;
4) R(A) �= Y , and y /∈ R(A) +R(A)⊥.

In case 1) one has, of course, a solution in the classical sense; in case 2) and 4) a
classical solution does not exist, while in case 3) a solution need not exist.

We say x is a “least squares solution” of (2.37) if

inf{‖Au− y‖ : u ∈ X} = ‖Ax− y‖. (2.38)

Since
‖Au− y‖2 = ‖Au−Qy‖2 + ‖y −Qy‖2, (2.39)

where Q is the orthogonal projector of Y onto R(A), it is clear that a least squares
solution exists if and only if

y ∈ R(A) +R(A)⊥, (2.40)

where R(A) + R(A)⊥ is a dense set in Y . For such y the set of all least squares
solutions of (2.37), denoted by L(y), is a non-empty closed convex set (indeed
L(y) is the translate of N (A) by a fixed element of N (y)), hence, it has a unique
element of minimal norm, denoted by A†y.

The generalized inverse (or pseudoinverse) A† is the linear operator which
assigns to each y ∈ D(A†) := R(A)+R(A)⊥, the unique element in L(y)∩N (A)⊥,
so that L(y) = A†y + N (A). It is easy to show that A†y is the minimal norm
solution (equivalently the unique solution in N (A)⊥) of the normal equation

A∗Ax = A∗y (2.41)

(the equation obtained by setting the first variation of ‖Ax − y‖2 equal to zero).
It also follows that A† = (A/N (A)⊥)−1Q so that A† can be characterized as the
linear operator with the function-theoretic properties:

D(A†) = R(A) +R(A)⊥, N (A†) = R(A)⊥ = N (A∗) (2.42)
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and

R(A†) = N (A)⊥. (2.43)

The equivalence of these characterizations of A† is established in [173] (see also
[104, 185] for a lucid exposition and [185, 194] for generalization to unbounded
operators).

In case 1) above, A† gives the minimal-norm solution of 3). In case 3), Equa-
tion (2.37) has a least squares solution (which is unique if and only if N (A) = {0}).
In both cases the infimum in (2.38) is attained and is equal to zero and ‖y−Qy‖,
respectively. Case 2) and 4) are pathological and usually are not under discussion
in generalized inverse theory, since in both cases y /∈ D(A†), and the infimum in
(2.38) is not attained.

As canonical evolution of Hadamard’s classification, M.Z. Nashed [178, 184]
called the operator equation (2.37) well posed in the least squares (relative to
X and Y ) if for each y ∈ Y the equation has a unique least squares solution
(of minimal norm), which depends continuously on y; otherwise the problem is ill
posed. The advantage of adopting this notion of well-posedness is that it focuses on
infinite-dimensional problems (e.g., an inconsistent finite system of linear algebraic
equations will not be ill posed in above sense, while it is ill-posed in the sense of
Hadamard). It follows immediately from the open mapping theorem in functional
analysis (see, e.g., [245]) that the following statements are equivalent:

a) the problem (2.37) is well posed;
b) R(A) is closed;
c) A† is bounded.

Summarizing we are led to the following conclusion (see [16, 184, 185]): The
problem (A;X,Y ) is called well posed in the sense of Nashed, if R (A) is closed
in Y . If R (A) is not closed in Y , the problem (A;X,Y ) is called ill posed in the
sense of Nashed.

2.3. Weighted least squares problems

Very often we are interested in weighted minimal-norm least squares solutions. Let
LA(y) be the set of all least squares solutions of Ax = y, where A is a bounded
linear operator from X into Y . Let Z be a Hilbert space and L : DL ⊂ X → Z be
a closed linear operator with dense domain and closed range. For y ∈ D(A†), we
consider the following problem: find w ∈ LA(y) such that

‖Lw‖ ≤ ‖Lu‖ for all u ∈ LA(y). (2.44)

If L(N (A)) is closed and N (A) ∩ N (L) = {0}, then (2.44) has a unique solution

w(y). We denote by A†
L the linear map induced by y → w(y) and call it the

weighted generalized inverse of A We define a new inner product and norm on
D(L) by

[u, v]L := (Au,Av) + (Lu,Lv) (2.45)
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with ‖u‖L :=
√
[u, u]L. We denote the space D(L) with this new inner product by

XL. It is easy to show that A†
Ly is the least squares solution of XL-minimal norm

of Ax = y. Let

M := {x ∈ X : L∗Lx ∈ N (A)⊥}. (2.46)

Then M is the orthogonal complement of N (A) with respect to [·, ·], and

R(A†
L) =M.

2.4. Singular value decomposition for compact operators

Next we discuss a certain set of operators, viz. compact operators, that turn out
to be specific prototypes for generating a large class of ill-posed problems.

Let X,Y be normed spaces. An operator A : X → Y is called compact, if
one of the following equivalent conditions is fulfilled:

(1) Every bounded subset U ⊂ X possesses an image in Y , which is relatively

compact, i.e., A(U) is a compact set.
(2) For every bounded sequence {xn}n ⊂ X the sequence {Axn}n possesses a

subsequence that converges in Y .

By convention, we introduce the following settings:

K (X,Y ) = {A : X → Y : A is linear and compact} (2.47)

and

K (X) = K (X,X) . (2.48)

Let X,Y, Z be normed spaces. Then the following statements hold true:

(1) K (X,Y ) ⊂ L (X,Y ) .
(2) If A ∈ L(X,Y ) with dimR (A) <∞, then A is compact.

(3) If A : X → Y is compact and B : Y → Z is continuous or A : X → Y is
continuous and B : Y → Z is compact, then AB : X → Z is compact.

(4) The identity operator I : X → X is compact if and only if X is finite-
dimensional.

(5) Let Y be a Banach space. ThenK (X,Y ) is closed, i.e., a sequence of compact
operators {An}n ⊂ K (X,Y ) limn→∞ ‖An −A‖X→Y = 0 has a compact
limit, i.e., the limit operator A is compact.

(4) If A is compact and invertible and X is not finite-dimensional, then A−1 is
not continuous.

Example 1. Let G be a regular region in Rq, i.e., a bounded region G dividing Rq

uniquely into the inner space G and the outer space Gc = R3\G, G = G ∪ ∂G, such
that the boundary ∂G is an orientable smooth Lipschitzian manifold of dimension
q − 1, and suppose that K is of class C(0)

(
G × G

)
. We introduce the integral

operator A : C(0)
(
G
)
→ C(0)

(
G
)
by letting

(AF ) (x) =

∫
G
K (x, y)F (y) dy, F ∈ C(0)

(
G
)
. (2.49)
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The proof of the compactness of A can be based on a well-known theorem of
classical analysis, namely the Theorem of Arzelà–Ascoli. This theorem provides
two equivalent properties to the relative compactness of a subset U ⊂ C(0)

(
G
)
:

Let ∅ �= G be regular. A subset U ⊂ C(0)
(
G
)
is relatively compact if and only

if the following two statements are valid:

(1) U is equicontinuous, i.e., for every ε > 0 there exists δ (ε) > 0, such that for
all F ∈ U

|F (x)− F (y)| < ε (2.50)

for all x, y ∈ G with ‖x− y‖ < δ (ε) .
(2) U is bounded, i.e., there exists an M > 0 with ‖F‖C(0)(G) < M for all F ∈ U.

In accordance with the theorem of Arzelà–Ascoli we are now interested in ap-
plying the conditions (1) and (2) to the context of the integral operator introduced
in (2.49):

(1) K is uniformly continuous in G × G. Therefore, AU is equicontinuous.
(2) Suppose that U ⊂ C(0)(G) is bounded. Assume that F is of class U . Then we

have

|AF (x)| =
∣∣∣∣∫G K (x, y)F (y)dy

∣∣∣∣ ≤M sup
x,y∈G

|K (x, y)| ‖G‖ <∞. (2.51)

In other words, AU is bounded.

As a consequence, by virtue of the theorem of Arzelà–Ascoli, we are able to con-
clude that AU is relatively compact, so that the operator A defined by (2.49) is
compact.

Example 2. Let G be a regular region in Rq, and K be of class L2
(
G × G

)
, then

A : L2
(
G
)
→ L2

(
G
)
given by

AF =

∫
G
K (·, y)F (y) dy, F ∈ L2

(
G
)

(2.52)

is compact (the proof can be found in, e.g., [120, 139]).

Example 3. Let G be a regular region in Rq. We introduce the operator A :
L2
(
G
)
→ L2

(
G
)
given by

AF (x) =

∫
G
K (x, y)F (y) dy, F ∈ L2(G). (2.53)

If K is continuous for x �= y and weakly singular, i.e., there exist a value α ∈ (0, q)
and a constant C > 0 such that

|K (x, y)| ≤ C
1

|x− y|q−α
, (2.54)

then A is compact (for the proof see, e.g., [135]). As a consequence, the Newton
volume integral

V (x) = AF (x) =
1

4π

∫
G

1

|x− y| F (y) dy, F ∈ L2(G), (2.55)
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occurring in the so-called inverse gravimetry problem of determining the geologic
density distributions F inside the Earth from the Earth’s gravitational potential
V in Gc ⊂ R3 forms a compact operator A.

Singular value decomposition. Next we are concerned with the introduction of
eigenvalues and eigenfunctions corresponding to an operator A ∈ L(X). Let X be
a normed space. Suppose that A is of class L (X).

(1) λ ∈ C is called a regular value of A if and only if λI−A is continuously invert-
ible. ρ (A) = {λ ∈ C : λI −A continuously invertible} is called the resolvent
set.

(2) σ (A) = C \ ρ (A) is called the spectrum of A.
(3) λ ∈ σ (A) is called an eigenvalue of A if N (λI −A) �= {0}. The elements

of N (λI −A) \ {0} are called eigenvectors of A corresponding to the eigen-
value λ.

The following results are standard for a Banach space X (see, e.g., [120]):

(1) If λ ∈ σ (A), then |λ| ≤ ‖A‖, i.e., the spectrum is bounded.
(2) σ (A) ⊂ C is compact.

Let X be a normed space. Suppose that A is a compact operator on X (i.e.,
A ∈ K (X)).

(1) If λ ∈ σ (A) \ {0} , then λ is an eigenvalue of A.
(2) If λ is an eigenvalue of A, then dimN (λI −A) <∞.
(3) σ (A) is at most countable. Furthermore, 0 ∈ σ (A).
(4) 0 is the only accumulation point of σ (A).

Central in our considerations about compact operator is the following spectral
theorem for compact self-adjoint operators that can be seen in parallel to the finite-
dimensional case of matrix operators:

Let X be a Hilbert space. Assume that A is of class K (X) and that A is
self-adjoint, i.e., A∗ = A. Then there exists an orthonormal system {xi}i∈N

⊂ X
and a sequence {μi}i∈N

⊂ R (finite or countable) with |μ1| ≥ |μ2| ≥ · · · > 0, such
that

Ax =

∞∑
i=1

μi 〈x, xi〉 xi (2.56)

holds true for all x ∈ X .

Suppose that X and Y are Hilbert spaces. Furthermore, let A be of class
K(X,Y ). Then A∗A is also compact and obviously self-adjoint. Due to the spectral
theorem there exist a sequence {λi}i∈N

⊂ R and an orthonormal system {xi}i∈N
⊂

X such that

A∗Ax =
∞∑
i=1

λi 〈x, xi〉xi, x ∈ X. (2.57)
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Suppose that λi ∈ σ (A∗A)\{0} and denote, as usual, by xi its corresponding
eigenvector. It follows that

λi ‖xi‖2 = λi 〈xi, xi〉 = 〈λixi, xi〉X = 〈A∗Axi, xi〉X = 〈Axi, Axi〉Y = ‖Axi‖2Y .
(2.58)

Therefore we are able to conclude that λi > 0.

Singular values. In the sequel, we assume that the eigenvalues are listed in the
chronological order as follows:

λ1 ≥ λ2 ≥ · · · ≥ λi ≥ λi+1 ≥ · · · ≥ 0. (2.59)

Set σj =
√
λj . Moreover, let yi =

1
σi
Axi i.e., Axi = σiyi, i ∈ N, and

A∗yi = A∗
(

1

σi
Axi

)
=

1

σi
A∗Axi =

1

σi
λixi = σixi. (2.60)

It is not hard to see that

〈yi, yk〉Y =
1

σiσk
〈Axi, Axk〉Y =

1

σiσk
〈A∗Axi, xk〉X =

1

σiσk
〈λixi, xk〉X

=
λi

σiσk
〈xi, xk〉X =

σi

σk
δi,k = δi,k.

(2.61)

Thus, {yi}i∈N
⊂ Y forms a complete orthonormal system (ONS) in R(A), so that

the system {xi}i∈N
is a complete ONS in N (A)

⊥
. Now, assume that x is a member

of N (A)
⊥
. Then it follows that

x =

∞∑
i=1

〈x, xi〉X xi (2.62)

and

Ax =

∞∑
i=1

〈x, xi〉X Axi =

∞∑
i=1

σi 〈x, xi〉X yi (2.63)

for all x ∈ N (A)
⊥
.

Let X,Y be Hilbert spaces. The set {σi;xi, yi}i∈N
⊂ (0,∞)×X × Y is called

the singular system of an operator A ∈ K (X,Y ). The values σi are called the sin-
gular values of A. The elements xi, yi are called the singular vectors. Furthermore,
the series

Ax =

∞∑
i=1

σi 〈x, xi〉X yi, x ∈ X (2.64)

is called the singular value decomposition (SVD) of A.

Picard condition. The following condition plays an essential role in the solvability
of inverse problems.

If A : X → Y is compact with singular value decomposition (SVD)

{σi;xi, yi}i∈N
,
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then y ∈ R (A) is an element of R (A) if and only if

∞∑
i=1

|〈y, yi〉|2

σ2
i

(2.65)

is convergent.

Obviously, from the Picard condition, it follows that σ−2
i |〈y, yi〉|2 → 0 if

i→∞ so that information about the decay of the Fourier coefficients of an element
y becomes available.

Let A be a compact operator (i.e., A ∈ K (X,Y )) with SVD {σi;xi, yi}i∈N
.

Then the generalized inverse (or pseudoinverse) of a compact operator is repre-
sentable in the form

A†y =

∞∑
i=1

1

σi
〈y, yi〉xi (2.66)

for all y ∈ D
(
A†) .

If R (A) is finite dimensional (i.e., there exist only finitely many element yi),
then R

(
A†) <∞. Therefore, A† is compact. In particular, A† is continuous.

The representation of the generalized inverse in terms of the singular value
decomposition (2.66) opens the perspective to classify ill-posed problems. Indeed,
the summands σ−1

i 〈y, yi〉xi occurring in the series (2.66) depend closely on the
singular values. If the values σi are small, then the contribution by the series
(2.66) becomes large. The existence of SVD can be guaranteed for all compact
operators. Nevertheless, the concrete knowledge of SVD is critical. Only in rare
exceptions, SVD is explicitly known in practice.

Regularization methods. Obviously, the first two criteria (H1) and (H2) deter-
mining a well-posed problem in the sense of Hadamard, can always be enforced
by considering the generalized inverse A†. A violating of the third criterion, i.e.,
instability arises if the spectrum of the operator A is not bounded away from
zero. Thus, it seems to be natural to construct regularizing approximations via
modifying the smallest singular values. In accordance with the singular value de-
composition of the generalized inverse, it follows that such a modification of small
values and, hence, a construction of regularization operators can be obtained in
the form

xα = Rαy =

∞∑
i=1

σiFα(σ
2
i )〈y, yi〉xi y ∈ Y, (2.67)

with some function Fα : R+ → R+ such that

Fα(λ)→
1

λ
, λ > 0, α→ 0. (2.68)

Such an operator Rα as defined by (2.67) and (2.68) may be understood as a
regularization operator if

λ|Fα(λ)| ≤ CFα <∞, λ > 0. (2.69)
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If (2.69) is satisfied, then we are able to see that

‖Rαy‖2 =

∞∑
i=1

σ2
i (Fα(σi))

2|〈y, yi〉|2 ≤ C2
Fα

∞∑
i=1

|〈y, yi〉|2 ≤ C2
Fα
‖y‖2, (2.70)

where CFα is a bound for the norm of Rα. Note that the pointwise convergence of
Fα immediately implies the pointwise convergence of Rα to A†.

Truncated singular value regularization. Let A be a compact operator (i.e., A ∈
K (X,Y )) with SVD {σi;xi, yi}i∈N

. The main idea of truncated singular value
decomposition is to ignore all singular values below a certain threshold value, which
we can identify with the regularization parameter α, hence, the representation of
the regularized solution is given by

Fα(λ) =

{
1
λ , λ ≥ α
0 , λ < α

(2.71)

i.e.,

xα = Rαy =
∑
σi≥α

1

σi
〈y, yi〉 xi, y ∈ Y, (2.72)

which explains the name truncated singular value decomposition, since all terms
in the sum corresponding to small singular values are truncated. Since 0 is the
only accumulation point of the singular values of a compact operator, the sum in
(2.72) is always finite for α > 0. In particular, only a finite number of singular
values and singular vectors has to be computed in order to realize this method.
On the other hand it should be mentioned that, for α being sufficiently small,
the number of singular values that need to be computed can increase strongly.
Obviously, CFα = α−1.

Lavrentiev regularization. The main idea of this regularization method is to shift
all singular values by α, i.e.,

Fα(λ) =
1√

λ(
√
λ+ α)

, λ > 0, α > 0, (2.73)

so that

xα = Rαy =

∞∑
i=1

1

σi + α
〈y, yi〉 xi, y ∈ Y. (2.74)

In this case, the sum is really infinite and the full singular system is needed in
order to compute the solution. However, if A is a positive semidefinite operator
(and, thus, xi = yi), we obtain

(A+ αI) xα =

∞∑
i=1

〈y, yi〉 xi = y. (2.75)

Hence, the regularized solution can also be obtained in this case without any knowl-
edge of the singular system as the solution of the linear equation (A+αI) xα = y.
Clearly, (σ + α)−1 ≤ α−1, hence, CFα = α−1.
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Tikhonov regularization. The regularized solution is given by

Fα(λ) =
1

λ+ α
, λ > 0, α > 0, (2.76)

so that

xα = Rαy =

∞∑
i=1

σi

σ2
i + α

〈y, yi〉 xi, y ∈ Y. (2.77)

As in the case of Lavrentiev regularization, we can compute xα defined by (2.77)
without any knowledge of the singular system. In fact, it is easy to see that

(A∗A+ αI) xα = A∗y (2.78)

and, hence, we can solve a well-posed linear system to obtain xα. From this rep-
resentation it also follows that Tikhonov regularization is just Lavrentiev regular-
ization applied to the normal equation. It is not hard to see that λ2 + α ≥ 2λ

√
α,

hence, CFα can be chosen as 2α−1/2.

Asymptotic regularization. Asymptotic regularization is usually constructed from
the solution x of the initial value problem

x′(t) = −A∗(Ax(t) − y), t > 0, (2.79)

x(0) = 0, (2.80)

as xα = x( 1
α ·). By representing x in terms of the singular vectors xi in the form

x(t) =

∞∑
i=1

αi(t) xi (2.81)

with αi(0) = 0, we obtain from the singular value decomposition

α′
i(t) = −σ2

i αi(t) + σi 〈yi, y〉. (2.82)

This ordinary differential equation can be solved analytically by

αi(t) =
(
1− exp(−σ2

i t)
) 1

σi
〈 yi, y〉. (2.83)

Hence, the regularized solution is given by

Fα(λ) =

(
1− exp

(
−λ

α

))
1

λ
(2.84)

i.e.,

xα =
∞∑
i=1

(
1− exp

(
−σ2

i

α

))
1

σi
〈y, yi〉 xi, y ∈ Y. (2.85)

Error estimates. For the error between x† and xε
α in the case of noisy data yε, we

are able to write (with xε
α = Rαy

ε)

x† − xε
α = (x† − xα) + (xα − xε

α). (2.86)

The first term x† − xα is the approximation error of the regularization method,
which is independent of the noise. The second term xα − xε

α corresponding to the
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propagation of data noise in the regularized case. By aid of the triangle inequality
it follows that

‖x† − xε
α‖ ≤ ‖x† − xα‖+ ‖xα − xε

α‖. (2.87)

Thus, the estimate of the error between the regularized solution and the exact
solution, can be handled by two error terms separately. It is clear that such an
estimation provides a guideline for the parameter choice, namely by choosing α
such that the terms on the right-hand side are balanced.

Next we deal with an estimate of the approximation error, which is indepen-
dent of the noise level ε:

Let Fα : R+ → R+ be a piecewise continuous function satisfying the assump-
tions

Fα (λ)→ 1

λ
, λ > 0, α→ 0,

|Fα(λ)| ≤Mα <∞, λ > 0,

and
sup
α,λ

(λFα(λ)) ≤ CF <∞ (2.88)

for some constant CF > 0. Moreover, let the regularization operator be defined by
(2.67). Then, for all y ∈ D(A†), we have

Rαy → A†y, α→ 0. (2.89)

The function t �→ Fα(t), t ∈ R+, converges pointwise to the function

F (t) =

{
0 , t > 0
1 , t = 0.

(2.90)

Due to the discontinuity at zero, the convergence of tFα(t)− 1 to zero is becoming
slower and slower as t decreases to zero. Since it is allowed to specify an arbitrarily
small singular value σi and the minimal norm solution x† = xi, the convergence of
regularized solutions is arbitrarily slow. On the other hand, we observe that there
is a possibly faster convergence if the components 〈x†, xi〉 decay sufficiently fast
compared to the eigenvalues. For example, if we have |〈x†, xi〉| ≤ cσμ

i for some
constant c > 0 and μ > 0, then it follows

lim sup
α→0

‖Rαy −A†y‖2 ≤ lim sup
α→0

c2
∞∑
n=1

(σiFα(σi)− 1)2σ2μ
i

≤ c2
∞∑
n=1

lim
α
(σ1+μ

i Fα(σi)− σμ
i )

2. (2.91)

In other words, one has to consider the limit of the function t �→ |t1+μFα(t)−tμ| as
t→∞ instead, which is usually much faster. For example, in case of the truncated
singular value decomposition, we obtain

|t1+μFα(t)− tμ| =
{

0 , t ≥ α
tμ , t < α.

(2.92)
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If the singular values of the operator decay sufficiently fast (which is the typi-
cal case for ill-posed problems), e.g.,

∑∞
n=1 σ

μ
i < ∞, we are confronted with the

situation

‖Rαy −A†y‖2 ≤ c2
∑
σi<α

σ2μ
i ≤ c2αμ

∞∑
i=1

σμ
i (2.93)

so that the term ‖Rαy − A†
y‖ is of order αμ/2. Consequently, we somehow need

smoothness of the solution (in terms of the smoothing properties of the operator)
in order to obtain a convergence rate in terms of α. We shall pursue this idea
by introducing spaces of smoothness involving the absolute value of a compact
operator.

Next we are concerned with the propagation of the data error through the
regularization. Let Fα and CF be as given above, and let xα = Rαy, x

ε
α = Rαy

ε.
From the singular value decomposition it follows directly

‖Axα −Axε
α‖2 ≤

∞∑
i=1

(
σ2
i Fα(σ

2
i )
)2 |〈y − yε, yi〉|2

≤ C2
F

∞∑
n=1

|〈y − yε, yi〉|2 = C2
F ‖y − yε‖2 ≤ (CF ε)

2, (2.94)

so that

‖Axα −Axε
α‖ ≤ CF ε (2.95)

is valid. In the same way we obtain

‖xα − xε
α‖2 ≤

∞∑
i=1

(Fα(σi))
2|〈y − yε, yi〉|2

≤M2
α

∞∑
i=1

|〈y − yε, yi〉|2 = M2
α‖y − yε‖2 ≤ (Mαε)

2, (2.96)

so that

‖xα − xα
α‖ ≤Mαε (2.97)

is implied (note that (2.97) estimates the norm of Rα by CF ).

3. Operator methodologies of resolution

Numerous methods have been proposed for treating and regularizing various types
of ill-posed problems (IPP’s). The rationale in most methods for resolution (ap-
proximate solvability) of IPP is to construct a “solution” that is acceptable phys-
ically as a meaningful approximation and is sufficiently stable from the computa-
tional standpoint, hence, an emphasis is put on the distinction between “solution”
and “resolution”. As already mentioned, the main dilemma of modeling of ill-
posed problems is that the closer the mathematical model describes the IPP, the
worse is the “condition number” of the associated computational problem (i.e.,
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the more sensitive to errors). For ill-posed problems, the difficulty is to bring ad-
ditional information about the desired solution, compromises, or new outlooks as
aids to the resolution of IPP. It is conventional to use the phrase “regularization
of an ill-posed problem” to refer to various approaches to circumvent the lack of
continuous dependence (as well as to bring about existence and uniqueness if nec-
essary). Roughly speaking, this entails an analysis of an IPP via an analysis of
an associated well-posed problems, i.e., a system (usually a sequence or a family)
of well-posed problems, yielding meaningful answers to the IPP. We distinguish
three aspects of regularization:

(a) strategy of resolution and reconstruction,
(b) regularization-approximation schema,
(c) regularization algorithms.

One of the purposes of our work is to dramatize this delineation with reference
to specific methods and results.

The strategy of resolution and reconstruction of ill-posed problems involves
one or more of the following intuitive ideas (cf. [184]):

(α) change the notion of what is meant by a solution (e.g., ε-approximate solu-
tion: ‖Au − y‖ ≤ ε, where ε > 0 is prescribed; quasi-solution: ‖Au − y‖ ≤
‖Ax−y‖ for all x ∈ M, a prescribed subset of the domain of A; least squares
solution of minimal norm, etc.),

(β) modify the operator equation or the problem itself,
(γ) change the spaces and/or topologies,
(δ) specify the type of involved noise (“strong” or “weak” noise).

The philosophy of resolution leads to the use of algebraic methods versus func-
tion space methods, statistical versus deterministic approaches, strong versus weak
noise (see [50, 51, 53], where the concept of weakly bounded noise was first intro-
duced), etc.

By a regularization-approximation scheme we refer to a variety of methods
such as Tikhonov’s regularization, projection methods, multiscale methods, itera-
tive approximation, etc., that can be applied to ill-posed problems. These schemes
turn into algorithms once a resolution strategy can be effectively implemented. Un-
fortunately, this requires a determination of a suitable value of a certain parameter
associated with the scheme (e.g., regularization parameter, mesh size, dimension
of subspace in the projection scheme, specification of the level of a scale space,
classification of noise, etc.). This is not a trivial problem since it involves a trade-off
between accuracy and numerical stability, a situation that does not usually arise
in well-posed problems.

From the standpoint of mathematical and numerical analysis one can roughly
group “regularization methods” into three categories (cf. [184]):

(a) Regularization methods in function spaces is one category. This includes
Tikhonov-type regularization, the method of quasi-reversibility, the use for
certain function spaces such as scale spaces in multi-resolutions, the method
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of generalized inverses (pseudoinverses) in reproducing kernel Hilbert spaces,
and multiscale wavelet regularization.

(b) Resolution of ill-posed problems by “control of dimensionality” is another cat-
egory. This includes projection methods, discretization and moment-discreti-
zation schemes. The success of these methods hinges on the possibility of ob-
taining approximate solutions while keeping the dimensionality of the finite-
dimensional problem within the “range of numerical stability”. It also hinges
on deriving error estimates for the approximate solutions that is crucial to
the control of the dimensionality.

(c) A third category are iterative and filtration methods which can be applied
either to the problem in function spaces or to a discrete version of it. The
crucial ingredient in iterative methods is to stop the iteration before insta-
bility creeps into the process. Thus iterative methods have to be modified
or accelerated so as to provide a desirable accuracy by the time a stopping
rule is applied. Filtration methods refer to procedures where, for example,
singular functions and values producing highly oscillatory solutions are elim-
inated. Various “low pass” filters can, of course, be used. The last sentence
in (b) is also crucial for the determination of a stopping rule.

3.1. Concept of regularization revisited

The concept of a regularizer plays an important role in obtaining an approximate
solution of an IPP in the presence of contamination in the data. We shall explain
show that it is, indeed, a generic concept that can be used to unify some of the
principles occurring in various regularization-approximation schemes (Tikhonov’s
regularization, truncated or filtered singular-value expansions, projection methods,
multiscale techniques, iterative methods, etc).

More explicitly, letX,Y be normed spaces and let A : X → Y be a one-to-one
mapping (not necessarily linear). Note that the assumption that A is one-to-one
is imposed for the convenience of the linear case. In fact, it can be dropped if one
uses generalized inverses, as is done in several papers of Nashed [176, 178]. This
assumption will also be dropped in this contribution after we will have motivated
and explained the auxiliary procedure for the case when A is assumed to be one-
to-one.

A regularizer to the operator equation Ax = y is a one-parameter family of
operators {Rt : t ∈ Γ} where Γ is an index set of real numbers with 0 ∈ Γ (the
closure of Γ) satisfying the following conditions:

(C1) For each t ∈ Γ, Rt is a continuous operator on all of Y into X.
(C2) For each x ∈ X, limt→0 ‖RtAx − x‖ = 0.

Strong noise. Ill-posed problems of mathematical practice are usually regular-
izable in following sense: For y ∈ R(A), let yε be known with “noise level”,
‖yε − y‖ ≤ ε (“strong noise condition”). Consider the operator equation between
normed spaces X,Y

Ax = yε. (3.1)
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The existence of a regularizer enables us to calculate an “approximate solution”
‖xε −A−1y‖ → 0 and ‖Axε − y‖ → 0. We explain this fact in more detail. Let xε

be given by xε := Rty
ε. Then

‖xε −A−1y‖ ≤ ‖Rty −A−1y‖+ ‖Rty
ε −Rty‖, (3.2)

where we assume that both norms on the right side of (3.2) are known. Note that
‖Rty − A−1y‖ gives a rate of convergence of RtAx to x and ‖Rty

ε − Rty‖ is the
modulus of continuity of the operator Rt at y. Observe that ‖Rty

ε −Rty‖ → 0 as
ε→ 0 for any fixed t. For given ε > 0 we choose t = t(ε) to minimize the right side
of (3.2). Then xε = Rt(ε)y

ε has the claimed property since ‖Rt(ε)y
ε −A−1y‖ → 0

as ε→ 0.

At this stage we shall be primarily interested in the case when A will be
assumed to be linear. For simplicity, Rt will be required to be linear, too. We then
have

‖xε −A−1y‖ ≤ ‖Rty −A−1y‖+M(t) ε (3.3)

where ‖Rt‖ ≤ M(t) (note that the operators Rt are not uniformly bounded since
A−1 is unbounded, so M(t)→∞ as t→ 0).

The notion of a regularizer can be easily extended to weighted least squares

problems (see Subsection 2.3): We say that the problem (3.1), or equivalently A†
L, is

regularizable if there exists a one-parameter family of linear operators {Rt : t ∈ Γ}
with R(Rt) ⊂M such that limt→0 ‖RtAx− x‖ = 0 for x ∈ M and for each t > 0,
Rt is bounded. Again, the family {Rt} is not uniformly bounded in t since R(A)
is non-closed. As before, the existence of a regularizer provides us with a family
of approximate solutions determined by a well-posed problem. In the presence of

contamination in y, say ‖yε − y‖ ≤ ε, the error ‖Rty
ε −A†

Ly‖X → 0 as t→ 0 (in
fact, it blows up). The criterion then is to choose t to minimize the error:

‖Rty
ε −A†

Ly‖ ≤ ‖Rty −A†
Ly‖+ ‖Rt(y

ε − y)‖
≤ ‖Rty −A†

Ly‖+ ‖Rt‖ε. (3.4)

The first term (regularization error) tends to zero as t→ 0, while the second term
(magnification of contamination error due to ill-posedness) tends to ∞:

∥∥∥A†
Ly −Rty

∥∥∥ −→ 0

↗
t→ 0

↘
‖Rt (y − yε)‖ ≤ ‖Rt‖ ε −→∞

(3.5)
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∥∥∥A†
Ly −Rty

∥∥∥ −→∞
↗

t→∞
↘

‖Rt (y − yε)‖ ≤ ‖Rt‖ ε −→ 0

(3.6)

If we know an error estimate for the first term and a growth estimate for
Ct, a suitable t can be determined. Such estimates can be obtained for particular

regularizersRt using additional information on the solution A†
Ly, e.g., smoothness,

and some robustness condition on Ct, e.g., one might estimate that Ct ≤ d(t) is

a known function which tends to ∞ as t → 0, and ‖Rty − A†
Ly‖ ≤ b(t), where

b(t) → 0 as t → 0. Then, an optimal t(ε) can be easily calculated, and for this

t(ε), Rt(z)y
ε → A†

Ly, as ε → 0. Concrete realizations of regularizers abound in
regularization methods, projection and iterative methods, etc., as we shall see
in the remaining work. In the case of an iterative scheme, t = 1/n, xn = Rty

represents the nth iterate of a process which converges to A†
L (or A−1) in the

absence of contamination in y. In projection methods t = 1/n, where n is the
dimension of the approximating subspace. In finite differences, t represents the
mesh size h. The preceding results then show how to obtain stable approximate
solutions in the presence of error in y it the needed estimates in (3.4) are available.

Weak noise. Let K : X → Y be a linear compact operator between the Hilbert
spaces X and Y . The inner products and norms of X and Y are denoted by 〈·, ·〉X ,
〈·, ·〉Y and ‖·‖X , ‖·‖Y (note that we do not use subscripts if they are clear from the
context, here and elsewhere). Consider the data y ∈ Y according to the equation

y = Kx0 + η , (3.7)

where η ∈ Y is the unknown noise and x0 ∈ X is an unknown element one wishes
to recover from the data y. The following model is imposed on the noise. Let
A : Y → Y be linear, compact, Hermitian, and positive-definite (i.e., 〈y,Ay〉 > 0
for all y ∈ Y , y �= 0), and let

ε2 := 〈η,Aη〉. (3.8)

We assume that ε is “small” and investigate what happens when ε → 0. The
operator A introduced above is not meant to be arbitrary. In fact, it must be
connected with K in the sense that, for some m ≥ 1 (not necessarily integer), the
range of K is continuously embedded into the range of Am, so that

A−m K : X → Y is continuous . (3.9)

If η satisfies (3.8), (3.9), it is referred to as weakly bounded noise.

Some comments should be made: In a deterministic setting, a reasonable
model for the noise is that it is “high-frequency”, and we would like to investigate
what happens when the frequency tends to ∞, but without the noise tending
to 0 strongly, that is without assuming that ‖η‖Y → 0. Thus, η → 0 weakly
begins capturing the essence of “noise”. Then, for any linear compact operator
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S : Y → Y , we would have ‖Sη‖Y → 0. So, in this sense, there is nothing unusual
about (3.8) and (3.9). Moreover, we would like (3.8) to capture the whole truth,
i.e., the relations

〈η,Apη〉 = o(ε2) and 〈η,Aqη〉 = O(ε2) (3.10)

fail for p > 1 and q < 1 as ε→ 0. This may be a tall order, although examples of
operators A and noises η satisfying (3.8)–(3.10) are easily constructed (for more
details see [50]). At the same time A is supposed to capture the smoothing effect
of K in the sense of (3.9). Ideally, one would like A−mK to be continuous with
a continuous inverse. The natural choice A = (KK∗)1/2m would achieve this, but
would have to be reconciled with (3.8) and possibly (3.10). The condition (3.9) is
not unreasonable.

Eggermont et al. [53] show how the weak noise model leads to simple bounds
on expressions like 〈η, y〉Y for y ∈ Am(Y ), the range of Am. For β > 0, they
introduce the inner product on Am(Y ), by letting

〈y, z〉m,β = 〈y, z〉Y + β2m 〈A−m, y, A−mz〉Y , z ∈ Am(Y ), (3.11)

and denote the associated norm by ‖ · ‖m,β. The following result is of interest in
itself, but it also later on plays a crucial role in the context of Tikhonov regular-
ization with weakly bounded noise:

Suppose that m ≥ 1. Under the assumptions (3.8), (3.9) on the weakly
bounded noise, for all y ∈ Am(Y ) and all β > 0

|〈η, y〉Y | ≤ β−1/2ε ‖y‖m,β (3.12)

(note that the factor β−1/2 stays the same, regardless of m).

3.2. Use of compactness and a priori bounds

The use of a priori bounds (more generally, a priori information) about the so-
lution of an ill-posed problem has long been recognized to play a significant role
in bringing about continuous dependence (i.e., of providing a regularizing effect).
Early in the study of ill-posed problems, a fundamental observation was made by
Tikhonov (cf. [246, 249] for original references) that the restriction to a compact
set insures well-posedness. More precisely, suppose X and Y are metric spaces
and F : X → Y is a continuous injection, and let C ⊂ X be compact. Then
F−1 : F (C) → C is continuous: To show this, let W ⊂ C be open in the rela-
tive topology, then the complement of W relative to C, denoted by W c, is closed
and, hence, compact since C is compact. Continuity of F implies that F (W c) is
compact and, therefore, closed. From this it follows that F (W ) is open, for F is
injective (and hence F (W c) ∩ F (W ) is empty).

Remark. The use of differential operators as smoothing conditions often leads to
a setting in which the restriction of the domain of the operator to a compact
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set automatically prevails. For example, consider the simple situation treated by
Tikhonov (see [250]), where

Jα(f) = ‖Af − g‖2 + α Ω(f), α > 0, (3.13)

with

Ω(f) =

∫ 1

0

{p(x)[f ′(x)]2 + q(x)[f(x)]2} dx, (3.14)

when p and q are positive, q is continuous, and q has a continuous derivative. Then
the set

Cr := {f ∈ L2[0, 1] : Ω(f) ≤ r} (3.15)

is compact in X for each r > 0. The smoothing function Ω(f) can be con-
sidered to be induced by a differential operator L, i.e., Ω(f) = ‖Lf‖2, where
L∗Lf = −(pf ′)′ + qf on [0, 1] with the boundary conditions f ′(0) = f ′(1) = 0.
In particular, taking p = q = 1, it follows that Cr is a ball in the Sobolev space
W 1

2 [0, 1]. Thus by restricting solutions to lie in a ball in W 1
2 [0, 1] the problem is

no longer ill-posed. Similar results can be obtained using more general differential
operators and related spaces that are compactly embedded in X . The success of
the aforementioned approach hinges on the fact that the unit ball of W 1

2 [0, 1] is a
compact set in the topology of L2[0, 1] (note that it is, of course, not compact in the
topology of W 2

1 [0, 1], for more details the reader is referred, e.g., to [2, 184, 185]).

3.3. Tikhonov’s regularization

Let L : D(L) ⊂ X → Z, where Z is a Hilbert space, be a closed linear operator
with dense domain and closed range. We first assume (see also [176, 247, 249, 250])
that N (L) is finite dimensional and that N (L) ∩ N (A) = {0}. We endow D(L)
with the topology induced by the graph norm |u| := (‖u‖2 + ‖Lu‖2)1/2. Then L
becomes a bounded operator on D(L). We define a new inner product on D(L) by

[u, v]L = (Au,Av)Y + (Lu,Lv)Z (3.16)

Then the induced norm ‖u‖L :=
√
[u, u] is equivalent to the graph norm of u. Thus,

both A and L are bounded operators on D(L) equipped with the inner product
(3.16); we denote this Hilbert space by XL. The discussion shows that, under the
hypotheses listed above, without loss of generality we may restrict ourselves to the
case in which A : X → Y and L : X → Z are both bounded. For each y ∈ D(A†),
there is a unique element x ∈ L(y) which minimizes ‖Lu‖. Let A†

Ly := x, and
define

M := {x ∈ X : L∗Lu ∈ N (A)⊥}. (3.17)

Then it is not difficult to show thatM is the orthogonal complement of N (A) with

respect to the inner product (3.16), so that A†
L is the generalized inverse relative

to the decompositions:

X : N (A) ⊕M, Y = R(A) ⊕R(A)⊥. (3.18)
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Under the above assumptions for each α > 0, there exists a unique xα which
minimizes

Jα(x) := ‖Ax− y‖2Y + α‖Lx‖2Z . (3.19)

Furthermore,

xα = (A∗A+ αL∗L)−1A∗y (3.20)

and xα converges to A†
Ly for y ∈ D(A†) as α → 0, and diverges otherwise. Thus

it follows that in the presence of contamination, say y is replaced by yε, where
‖yε − y‖ ≤ ε for some ε > 0, the norm of the corresponding xε

α may well diverge.
It should be noted that (A∗A + αL∗L)−1A∗ does not converge in the uniform
operator topology as α → 0; in fact, ‖(A∗A + αL∗L)−1A∗‖ → ∞. Furthermore,
the equation system (A∗A + αL∗L)x = A∗y is poorly conditioned for small α,
and hence numerically unstable. Thus, both contamination and numerical approx-
imation dictate that a choice for α has to be made which would be a suitable
compromise between accuracy and stability. Several procedures for the choice of
“optimal” α are available, some of which take into consideration various a priori
information. A simple choice that works would be α = ε2.

Strongly bounded noise in Tikhonov’s regularization. We come back to the situ-
ation where K : X → Y is a linear compact operator between the Hilbert spaces
X and Y . Consider the data y ∈ Y according to the equation y = Kx0 + η, where
η ∈ Y is the unknown noise and x0 ∈ X is an unknown element one wishes to re-
cover from the data y. We study Tikhonov’s regularization as a scheme to recover
x0 from the data y in the strong noise model

y = Kx0 + η with ‖η‖Y ≤ ε . (3.21)

The interest is in what happens when ε → 0. It should be noted that, in the
Tikhonov regularization scheme, the unknown x0 is estimated by specifying the
solution x = xα,ε of the problem

minimize ‖Kx− y‖2Y + α‖x‖2X over x ∈ X (3.22)

for some regularization parameter α, α > 0, yet to be specified. This procedure
dates back to [216, 249]. Its minimizer exists and is unique. Moreover, it is well-
known (see, e.g., [106]) that convergence rates on the error ‖xα,δ − x0‖X can be
obtained from a source condition. For simplicity, it is assumed there that there
exists a z0 ∈ X such that the “source condition”

x0 = (K∗K)ν/2z0 for some 0 < ν ≤ 2 (3.23)

holds true. Precise necessary and sufficient conditions are given in [202]. In the
study of convergence rates under the source condition (3.23), it is assumed here
that ν is known and that α is chosen accordingly. Clearly, one wants to obtain
bounds on the error ‖xα,ε − x0‖X . As usual, this is broken up into two parts

‖xα,ε − x0‖X ≤ ‖xα,ε − xα,0‖X + ‖xα,0 − x0‖X , (3.24)
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where xα,ε is the “noiseless” estimator, i.e., the minimizer of ‖Kx− y‖2Y +α‖x‖2X .
Thus, xα,ε−xα,0 is the noise part of the error and xα,0−x0 is the error introduced
by the regularization.

The following results (see, e.g., [50, 106]) are well known:

(1) There exists a constant c such that for all α, 0 < α ≤ 1,

‖xα,ε − xα,0‖X ≤ c α− 1
2 ‖η‖Y . (3.25)

(2) Under the source condition (3.23), there exists a constant such that for all α,
0 < α ≤ 1,

‖xα,ε − x0‖X ≤ c αν/2. (3.26)

As a consequence, the two results (3.25), (3.26) above then provide the fol-
lowing convergence rates:

Assuming the source condition (3.23) and the condition (3.21) on the noise
for α→ 0 we have

‖xα,ε − x0‖X = O
(
α− 1/2 ε+ αν/2

)
. (3.27)

Moreover, if α � ε 2/(ν+1) then

‖xα,ε − x0‖X = O
(
ε ν/(ν+1)

)
. (3.28)

Weak noise in Tikhonov’s regularization. Tikhonov’s regularization may also be
considered (cf. [49, 52, 53]) as the scheme to recover x0 from the data y in the
weak noise model

y = Kx0 + η . (3.29)

Thus, we assume that there is a smoothing operator A such that the noise η and
A satisfy (3.8) and (3.9). In particular, 〈η,Aη〉Y = ε2, and the discussion (cf. [53])
focusses on what happens when ε→ 0. Formally, Tikhonov regularization does not
depend on the noise being strongly or weakly bounded. Thus x0 is estimated by the
solution x = xα,ε of the problem (3.22) for some positive regularization parameter
α yet to be specified. Again we want to obtain bounds on the error ‖xα,ε − x0‖X ,
and it is broken up as ‖xα,ε − x0‖X ≤ ‖xα,ε − xα,0‖X + ‖xα,0 − x0‖X , where
xα,0 is the “noiseless” estimator, i.e., the minimizer of ‖Kx− y‖2Y +α‖x‖2X . Thus,
xα,ε − xα,0 is the noise part of the error and xα,0 − x0 is the error caused by the
regularization. It is useful to introduce a new norm on X by way of

‖x‖2α,X = ‖Kx‖2Y + α ‖x‖2X . (3.30)

Assuming again the source condition (3.23) we see that the noiseless part xα,0−x0

can be covered as before, but the treatment of the noise part is markedly different
from the case of strong noise (see [51]):

(1) Under the conditions (4.216), (3.9) on the noise η, there exists a constant C
depending on A only such that for α→ 0

‖xα,ε − xα,0‖2α,X ≤ C α− 1
4m ε . (3.31)
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This leads to the convergence rates (3.32) and (3.33) specified below, where
it is shown in [50] that they are optimal, following arguments from [201], but
assuming, in addition, that A−mK has a continuous inverse.

(2) Assuming the source condition (3.23) and the conditions (4.216) and (3.9)
on the noise for α→ 0, we have

‖xα,ε − x0‖X = O
(
α− 1

2− 1
4m ε+ αν/2

)
. (3.32)

Moreover, if α � ε4m/(2mν+2m+1) then

‖xα,ε − x0‖X = O
(
ε2mν/(2mν+2m+1)

)
. (3.33)

3.4. Characterization of regularizers

Let A be of class L(X,Y ) with non-closed range. In what follows we introduce con-
cepts of regularizing families for the ill-posed problem Ax = y based on bounded
outer inverses of the operator A:

A linear operator B : Y → X is called an inner inverse of A if ABA = A. A
(nonzero) linear operator B : Y → X is called an outer inverse of A if BAB = B.

In what follows, B is always taken to be a non-zero operator. In the case of
Hilbert spaces, the regularizers will approximate least squares solutions of Ax = y.
In the case of Banach spaces, we assume that A is injective, and R(A) is dense in
Y (otherwise the regularizers would apply to the equation Ax = Qy, where Q is a
continuous projector of Y onto R(A), whose existence has to be assumed).

We will classify ill-posed in Banach spaces according to the type of regular-
izing families that they admit (cf. [185] [186]). In the case of Hilbert spaces this
classification will particularly distinguish the set of all compact operators with
infinite-dimensional range within the set of all bounded operators with non-closed
range.

Many of the operator-theoretic aspects of ill-posed linear equation (including
regularization and stabilization methods) are really problems in operator ranges
and operator factorizations. In particular, ranges of outer inverses play several
roles. First, it should be noted that very often the constructed approximation so-
lution is in the range of some outer inverse (or an approximate outer inverse).
Second, the problem of finding an “optimal” outer inverse with a prescribed rank
can be solved for several classes of operators. Third, outer inverses with a pre-
scribed finite-dimensional range can be easily constructed; this cannot always be
done in case the prescribed range is infinite dimensional and the outer inverse is re-
quired to be bounded. Fourth, outer inverses have desirable “stability/continuous
dependence” properties which inner inverses or the generalized inverse lack.

Our purpose is to introduce notions of regularizers in form of bounded outer
inverses with infinite-dimensional range (within this class, convergent regularizers
can be selected to provide “optimal” resolution), approximate outer inverses and
approximate right inverses in scales of norms.
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Remark. The set of all operators in L(X,Y ) that have bounded outer inverses with
infinite-dimensional range and the set of full-rank m × n matrices share several
common properties: Each of them is both open and dense, and all elements of each
of the sets have outer inverses with the maximal possible rank (namely, the same
as the rank of A). These properties and other results to be analyzed next indicate
that, in Hilbert space, an equation involving a bounded non-compact operator with
non-closed range is “less” ill-posed than an equation with a compact operator with
infinite-dimensional range. In comparison with least squares or generalized inverse
problems for m×n matrices, one may say that for operators with non-closed range,
the case of a non-compact operator corresponds to the full-rank case for matrices,
while the case of a (nondegenerate) compact operator is the infinite-dimensional
analog of the rank-deficient case for matrices.

Outer inverses in “solvability” and “regularization” of ill-posed problems. If X is
of dimension m and Y is of dimension n, it follows from the property ABA = A
that the rank of any inner inverse of A cannot be less than the rank of A. Similarly
it follows from the property BAB = B that the rank of any outer inverse of A
cannot exceed the rank of A. Moreover, if r := rank A, then one can construct
outer inverses of rank s for any s ≤ r and inner inverses of rank t for any r ≤
t ≤ min(m,n) (see, e.g., [178]). Even in the finite-dimensional case the possibility
of approximating the generalized inverse (or the least squares solution of minimal
norm in Hilbert space settings) by an outer inverse of rank s < r is an attractive
feature of outer inverses. A similar approximation by inner inverses is of course
not possible.

The situation is more drastic in the infinite-dimensional case as can be seen
from the following known result: If the range of A ∈ L(X,Y ) is non-closed, then
A has no bounded inner inverse. In fact, if B is any inner inverse of A, then AB
and BA are linear idempotents, with N (BA) = N (A) and R(A) = R(AB). Thus
the following algebraic decompositions hold:

X = N (A)+̇R(BA), (3.34)

Y = R(A)+̇N (AB), (3.35)

where � denotes the algebraic direct sum. Now, suppose B is bounded, then
the projectors BA and AB are continuous (equivalently, the decomposition in
(3.34) and (3.35) are topological) and so R(A) is closed, which contradicts the
assumption. Thus, we are led to the statement:

No regularizer can be an inner inverse.

The non-boundedness of the inner inverse of A in case of a non-closed range
of A ∈ L(X,Y ) is actually a part of the following known statement (see [194]):
Let A ∈ L(X,Y ), where X and Y are Banach spaces. Then A has a bounded
inner inverse B if and only if the decompositions (3.34) and (3.35) are topological.
Equivalently, A has a bounded inner inverse if and only if N (A) and R(A) have
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topological complements in X and Y , respectively, (i.e., the projectors on N (A)
and R(A) are continuous).

If X and Y are Hilbert spaces, then A ∈ L(X,Y ) has a bounded inner inverse
if and only if R(A) is closed. It should be noted in all these cases that it does not
mean that all inner inverses are bounded, unless A is invertible.

Truncated singular value expansions as outer inverses (cf. [185]): Let H1 and H2

be Hilbert spaces and let K : H1 → H2 be a (nonzero) compact linear operator.
Let K∗ denote the adjoint of K. Since K∗K is a non-negative symmetric compact
linear operator on H1 we have in terms of the singular system {σk;xk, yk} for K
the following spectral representation K∗Kx =

∑∞
k=1 σ

2
k〈x, xk〉xk, where {xk} is

an orthonormal set of eigenvectors of K∗K with K∗Kxk = σ2
kxk with σ1 ≥ σ2 ≥

· · · > 0. Set yk := σ−1
k Kxk. Then the yk’s form an orthonormal set in H2, and it

is easy to show that

Kx =

∞∑
k=1

σk〈x, xk〉yk. (3.36)

Obviously, the series (3.36) is the singular value expansion (SVD) of K (note
that, if rank(K) = r, then the number of non-zero singular values is r and the
summation in (3.36) extends from k = 1 to r).

From here on, we assume, unless stated otherwise, that the rangeK is infinite
dimensional. Then we have an infinite number of non-zero singular values with
σn → 0 as n→∞.

Let m be a fixed positive integer and define the operator Bm : H2 → H1 by

Bmy :=

m∑
k=1

σ−1
k 〈y, yk〉xk. (3.37)

It then follows that

KBm y =

m∑
k=1

σ−1
k 〈y, yk〉Kxk =

m∑
k=1

〈y, yk〉yk (3.38)

and

Bm K Bm y =

m∑
k=1

σ−1
k

〈
m∑
i=1

〈y, yi〉yi, yk

〉
xk

=

m∑
k=1

σ−1
k 〈y, yk〉xk

= Bm y. (3.39)

Thus, for each m ∈ N, Bm is an outer inverse of rank m. For each y ∈ D(K†) :=
R(K) +R(K)⊥, ‖Bm y−K†y‖ → 0 as m→∞, where K†y =

∑∞
i=1 σ

−1
i 〈y, yi〉xi,

but the convergence is not uniform and the operators Bm are not uniformly
bounded.
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The SVD is particularly useful because it permits a quantification of the
notion of near rank deficiency. It is well known from linear algebra that for any
m× n real or complex matrix A of rank r and any k < r,

inf {‖A−B‖Frob : rank(B) = k} = ‖A−Ak‖Frob, (3.40)

where Ak is the truncated singular value decomposition (with k terms) of A and
‖ · ‖Frob is the Frobenius norm (see, e.g., [99]). In view of the above observation
that the TSVD is an outer inverse and by use of the well-known relation between
the singular values and singular vectors of A and those of the Moore–Penrose of
A, it follows that

inf
{
‖A† −B‖Frob : BAB = B, rank(B) = k

}
= ‖A† −Bk‖Frob, (3.41)

where

Bk y =
k∑

i=1

σ−1
i 〈y, yi〉xi. (3.42)

The same analysis and properties of outer inverses can be easily extended to
linear inverse problems with discrete data (such as those that arise from moment
discretization of ill-posed linear integral and operator equations in Hilbert space
(see, e.g., [24, 178]) or when projection methods on finite-dimensional subspaces
are used (see, e.g., [105, 181]).

Outer inverses are not “equation solvers” (cf. [185]), i.e., if B is an outer
inverse for A, which is not also an inner inverse, then for y ∈ R(A), x := By
is not a solution to Ax = y, and for y /∈ R(A), x := By is not a least squares
solution (in the case of a Hilbert space). One finds in some books statements like:
“Since almost every application of various generalized inverses involves subsets of
1-inverses (inner inverses), we will mainly consider inner inverses that satisfy addi-
tional conditions. . . ”. For ill-posed problems (see [185]), the situation is precisely
the opposite. We are not interested in a generalized or inner inverse that would be
an “equations solver”, since such an “inverse” will be unbounded. Rather we seek
a bounded operator that has some “inverse-like” properties, and that can serve
simultaneously as an “approximate inverse” and stabilizer to the inverse problem.
Indeed, outer inverses possess these qualities:

(a) If B is an outer inverse of A, then B is also an inner inverse of Ã := A|R(B).

(b) For all y ∈ R(AB), x := By is the unique solution in M = R(B) of the
equation Ax = y.

From these properties (see [185] for more details), it follows that the unique
solution of Ax = y in R(B) is a “regularized” solution and can be constructed in a
stable way. If R(BA) or R(B) is infinite-dimensional, then we have in a sense the
possibility of “infinite resolution”, and the equation with bounded outer inverses
of infinite rank are not as ill posed as those for which an outer inverse with infinite
rank does not exist.
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Approximate outer and approximate right inverses. The concept of a regular-
izer plays an important role in obtaining an approximate solution of an ill-posed
problem. Let A : X → Y be a one-to-one mapping (not necessarily linear). In
the already known definition by Tikhonov (see e.g. [170, 249]) a regularizer is a
bounded “approximate” inverse or “approximate” generalized inverse. Any regu-
larizer must also satisfy the defining equations of an inner as well as outer inverse
approximately, but it cannot satisfy the defining equation of an inner inverse ex-
actly. This motivates considering regularizers (cf. [185]) that satisfy the defining
equation of an outer inverse and, in addition, have “maximum” rank.

A family F of regularizers by outer inverses for the ill-posed problem Ax = y
is said to be of type I if each B ∈ F satisfies the following conditions:

(i) B ∈ L(Y,X)
(ii) BAB = B,
(iii) the range of B is infinite-dimensional.

An ill-posed problem that does not admit a family of regularizers of type I is
said to be of type II.

Any B ∈ F is called a regularizer. Of course, u := By is not necessarily a good
approximation to the “solution” x of Ax = y for each B ∈ F , just like, say, (A∗A+
αI)−1A∗y is not necessarily a good approximation for each α > 0. As already
mentioned, every “regularization method” involves a critical “parameter”, whose
optimal value – or at least a suitable choice of it – is crucial to the approximation
of the solution. Thus criteria or strategies have to be developed for selecting a
suitable or “optimal” outer inverse from our class of regularizers. We will not
address this problem here. Instead we focus only on the operator-theoretic aspects
of outer inverses as a class of regularizers.

As an example, we note that Tikhonov’s regularization provides an approxi-
mate outer inverse, but not an outer inverse. Let

Bα := (K∗K + αI)−1K∗, α > 0. (3.43)

Then

Bα −BαKBα = α(K∗K + αI)−1Bα, α > 0. (3.44)

Note that

Bα −BαKBα → 0, α→ 0. (3.45)

Regularization operators obtained via spectral families (such as those in [19, 59,
104, 179]) are usually not outer inverses. The same is true for the “regularized”
truncated SVD.

Tikhonov’s regularization operator and other regularizers obtained by spec-
tral families are approximate outer inverses in the following sense:

A ∈ L(X,Y ) is approximately outer-invertible if, for each μ ∈ (0, 1), there
exists a Bμ ∈ L(Y,X) with the following properties:

‖(BμABμ −Bμ)y‖ ≤ C(μ)‖Bμy‖ (3.46)
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and

‖Bμy‖ ≤ Γμ‖y‖ for all y ∈ Y. (3.47)

Each such Bμ is called an approximate outer inverse of A. Properties of C(μ), Γμ

and Bμ are to be prescribed for convergence analysis.

For a compact linear operator K : H1 → H2, the filtered truncated SVD

Bry =

r∑
i=1

σi

σ2
i + α

〈y, yi〉 xi, α > 0 (3.48)

is an approximate outer inverse, but not an outer inverse (choose μ = r−1).

It is also useful to introduce a notion of “approximate right-invertibility”,
which abstracts some characteristics of regularization methods:

A ∈ L(X,Y ) is called approximately right-invertible if, for each μ ∈ (0, 1),
there exists a norm ‖ · ‖μ on X and a Bμ : Y → X such that for all y ∈ Y and all
x ∈ X ,

‖ABμy − y‖ ≤ μ ‖y‖ (3.49)

‖Bμy‖μ ≤ Γ(μ) ‖y‖, (3.50)

and

‖x‖μ → ‖x‖ as μ→ 0+. (3.51)

Each such Bμ is called an approximate right inverse of A. Properties of C(μ) and
Γμ and Vμ are to be prescribed for convergence analysis.

Each such Bμ is called an approximate right inverse of A with a bound Γ(μ)
(note that Bμ need not be linear). For regularization one requires Γ(μ) = O(μ−γ)
or a similar behaviour. Again μ ‖y‖ in (3.49) may be replaced by C(μ) ‖y‖.

For regularizers of type I we have bounded outer inverses with infinite-
dimensional range. For ill-posed problems for which such regularizers do not exist,
we may use approximate outer inverses as regularizers. Again, these can only be
approximate inner inverses or approximate right inverses.

Characterizations of ill-posed problems. Next we deal with characterizations of
ill-posed problems of so-called type I and II: Let Out(L) denote that set of all
(nonzero) outer inverses to a (nonzero) linear transformation L : V → W , where
V and W are vector spaces over the same field. The following proposition is im-
mediate:

Let L : V → W be a (nonzero) linear transformation. Then the following
statements are equivalent for any (nonzero) linear transformation M : W → V
(where � again denotes algebraic direct sum):

(a) M ∈ Out(L).
(b) ML is idempotent and V = R(M)�N (ML).
(c) LM is idempotent and W = N(M)�R(LM).
(d) LM is idempotent and R(M) ∩ N (L) = {0}.
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The next proposition establishes the existence of (algebraic) outer inverses
with a prescribed range:

Let V1 be a subspace of V such that V1∩N (L) = {0} and W2 be an algebraic
complement of LV1. Then there exists an outer inverse M to L such that R(M) =
V1 and N (M) = W2. Under these conditions M |LV1 = (L|V1)

−1.

We now consider bounded outer inverses of A ∈ L(X,Y ), A �= 0, and their
connections with certain topological complements. A topological direct sum will
be denoted by ⊕. We are again interested in conditions under which there exists
a bounded outer inverse B with a range and a null space prescribed.

Let A : X → Y be a bounded linear operator with non-closed range. Then the
ill-posed problem Ax = y is of type I if and only if the following two conditions
hold:

(a) R(A) contains a closed infinite-dimensional subspace, say M .
(b) N (A) is (topologically) complemented in the subspace A−1(M), the inverse

image of M under A.

In the case of Hilbert spaces, these characterizing conditions take an explicit
and simple form.

Let A be a bounded linear operator on a Hilbert space H1 into a Hilbert
space H2, and let the range of A be non-closed. Then the following statements are
equivalent:

(i) The ill-posed problem Ax = y is of type I,
(ii) R(A) contains a closed infinite-dimensional subspace,
(iii) A is not compact.

An operator A ∈ L(X,Y ) is strictly singular if the subspaces Z ⊂ X for with
the restriction A|Z has a bounded inverse on AZ, the image of Z under A, are
necessarily finite dimensional (see, e.g., [136]). This notion of a strictly singular
operator is clearly the right generalization of a compact operator in Hilbert space.
It is natural to ask if it is possible to characterize ill-posed problems of type I
in Banach spaces by the condition that “the operator is not strictly singular”.
However, this is not possible (cf. [185, 186]).

Remarks. Finally some comments should be made (following Nashed [185]):

(i) For various aspects of operator factorizations and operator ranges, [184] has
initiated the study of bounded (or densely defined closed) linear operators
which have bounded outer inverses of infinite rank within the framework of
operator factorization and operator ranges.

(ii) The classification of ill-posed linear problems as proposed here provides also
a classification of ill-posed non-linear problems based on properties of outer
inverses of the Fréchet or Hadamard derivative of the non-linear operator (cf.
[174]). Approximate outer inverses have been used by B.D. Craven and M.Z.
Nashed [36] in the context of inverse function theorems when the derivative
does not have a bounded inverse of a bounded generalized inverse.
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(iii) Examples of operator equations with a non-compact bounded linear operator
with non-closed range arise from various integral and convolution operators
on the half-line and for certain generalized Wiener–Hopf operators. They
also arise if zero belongs to the continuous spectrum of a linear, bounded
selfadjoint and non-negative operator on a Hilbert space.

(iv) For various aspects of construction and computation of outer inverses of
a prescribed rank s ≤ r for a matrix of rank r, see [23] and several pa-
pers and the annotated bibliography in [177]. For constructions of outer in-
verses of bounded linear operators in Banach spaces the reader is referred to
[165, 166, 179]. For stability properties for outer inverses, see [184–186]. For
perturbation analysis of outer inverses, see [166, 179, 185, 186]. Convergence
analysis of regularization operators hinges upon perturbation and stability
properties of outer inverses (see [185, 186]).

4. Reconstruction methods and regularizing filters

Assume that A is of class L (X,Y ), X,Y Hilbert spaces. Let {Rt}t>0 be a family
of continuous operators (regularizers) from Y to X with Rt0 = 0. If there exists
a mapping α : (0,∞) × Y → (0,∞), such that, for all elements y ∈ R (A) and
regularization parameter t = α(ε, yε),

sup
{∥∥A†y −Rα(ε,yε)y

ε
∥∥ : yε ∈ Y with ‖y − yε‖ ≤ ε

} ε→0−→ 0, (4.1)

then the pair
(
{Rt}t>0 , α

)
is called a regularization method (or simply a regular-

ization) of A†.

If the sequence {Rt}t>0 is a subset of L (Y,X), then the regularization(
{Rt}t>0 , α

)
is called linear. The mapping α is known as the parameter choice

provided that

sup {α (ε, yε) : yε ∈ Y with ‖y − yε‖ ≤ ε} ε→0−→ 0. (4.2)

If α is only dependent on ε, i.e., α (ε, yε) = α (ε), we speak of an a priori
parameter choice. If α is dependent on ε and yε, i.e., α = α (ε, yε) , it is called an
a posteriori parameter choice.

The limit relation (4.1) can be equivalently written in the form

sup
{∥∥x−Rα(ε,yε)y

ε
∥∥ : yε ∈ Y with ‖Ax − yε‖ ≤ ε

} ε→0−→ 0 (4.3)

for all x ∈ N (A)
⊥
. A direct consequence of a regularization method is that the

limit relation

lim
ε→0

∥∥A†y −Rα(ε,y)y
∥∥ = 0 (4.4)

holds true for all y ∈ R(A) (note that, in Equation (4.4), the regularization is
applied to y instead of yε). It is usual to collect all regularization parameters that
are relevant in the limit relation (4.4) in a set Γ = {α (ε, y) : ε > 0, y ∈ R (A)} .
Because of the fact that limε→0 α (ε, y) = 0 the set Γ possesses an accumulation
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point at 0. Moreover, limΓ�λ→0

∥∥A†y −Rλy
∥∥ = 0 for all y ∈ R (A). All in all, we

are led to the following result:

Assume that A is of class L (X,Y ) . Let
(
{Rt}t>0 , α

)
be a regularization

method of A†. Then, the subfamily {Rλ}λ∈Γ converges pointwise in R (A) to A†

for λ→ 0.

As a direct consequence we obtain the statement (see, e.g., Louis [148], Rieder
[227]):

Assume that A is of class L (X,Y ) . Let
(
{Rt}t>0 , α

)
be a regularization of

A†. If R (A) �= R (A), then {‖Rt‖}t>0 is unbounded.

As already known, for a linear regularization, the reconstruction error
‖A†y −Rty

ε‖ can be split by use of a family {Rt}t>0 in the following way:∥∥A†y −Rty
ε
∥∥ ≤ ∥∥A†y −Rty

∥∥︸ ︷︷ ︸
approximation error

+ ‖Rty −Rty
ε‖︸ ︷︷ ︸

data error

≤ ‖Rt‖ ‖y − yε‖ ≤ ‖Rt‖ · ε. (4.5)

Once again, it should be pointed out, that both parts of the reconstruction
error, i.e., the approximation error and the data error, exhibit an opposed behavior
in limit considerations for t→ 0 and t→∞.

Hence, an essential task is to search for a value topt that balances both er-
rors. In fact, the regularization parameter should be chosen in such a way that
α (ε, yε) ≈ topt.

Classification of regularization methods. The question (cf. [148]) arises how to
classify regularization methods. Since all methods need to converge as ε → 0, an
obvious criterion of specifying their characteristics is the speed of the convergence,
i.e., we make the attempt to introduce a classification with respect to the speed
of convergence of the total error:

sup
{∥∥A†y −Rα(ε,yε)y

ε
∥∥ : y ∈ R(A), yε ∈ Y with ‖y − yε‖ ≤ ε

} ε→0−→ 0. (4.6)

Unfortunately, it turns out that the speed of the convergence is arbitrarily slow
for all regularization methods.

Let A be of class L(X,Y ). Assume that R(A) �= R(A). Let ({Rt}t>0, α) be
a regularization of A†. Then there exists no function h : [0,∞) → [0,∞) with
limε→0 h(ε) = 0 such that

sup
{∥∥A†y −Rα(ε,yε)y

ε
∥∥ : y ∈ R(A), ‖y‖ ≤ 1, yε ∈ Y with ‖y − yε‖ ≤ ε

}
≤ h(ε).

(4.7)

Powers of absolute values and smooth Hilbert spaces. Next our interest is to show
that the concept of smoothness can be used for the classification of regularization
methods. An auxiliary tool is the absolute value |A| of the operator A. In order
to motivate the setting |A| we start with the explanation of a functional calcu-
lus for compact operators which also helps us to introduce filters for purposes of
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regularization in the next subsection. Even better, the functional calculus for com-
pact operators enables us to reduce spectral features to a study in terms of real
functions.

Let A be of class K (X,Y ) with the singular system {σj ;xj , yj}j∈N
. Let

Φ : [0,∞)→ R be a piecewise continuous function defined on the interval
[
0, ‖A‖2

]
.

Then we understand the operator Φ (A∗A) to be given as

Φ (A∗A)x =

∞∑
j=1

Φ
(
σ2
j

)
〈x, xj〉xj +Φ(0)PN (A)x. (4.8)

Note that the series on the right side of (4.8) is convergent on the interval[
0, ‖A‖2

]
.

Let A ∈ K(X,Y ) be a compact operator with the singular system

{σj ;xj , yj}j∈N.

Suppose that Φ : [0,∞)→ R is piecewise continuous. Then the following properties
hold true:

(a) ‖A‖ = σ1, i.e., the norm coincides with the largest singular value of A,

(b) Φ(A∗A)A∗ = A∗Φ(AA∗), (4.9)

(c) ‖Φ(A∗A)‖ = sup
j∈N

|Φ(σ2
j )| ≤ sup

0≤λ≤‖A‖2

|Φ(λ)|, (4.10)

(d) ‖Φ(A∗A)A∗‖ = ‖A∗Φ(AA∗)‖ = sup
j∈N

(
σj |Φ(σ2

j )|
)
≤ sup

0≤λ≤‖A‖2

(√
λ |Φ(λ)|

)
.

(4.11)

Example. If Φ = 1, then it is clear that

Φ (A∗A)x =

∞∑
j=1

〈x, xj〉xj + PN (A)x = PR(A∗)x+ PN (A)x = PXx = x. (4.12)

This explains the occurrence of the term Φ (0)PN (A)x in (4.8).

Example. If Φ (t) = t1/2, t ≥ 0, then

(A∗A)1/2 x =

∞∑
j=1

σj 〈x, xj〉xj +Φ(0)︸︷︷︸
=0

(
PN (A)x

)
=

∞∑
j=1

σj 〈x, xj〉xj , (4.13)

holds true for all x ∈ X .

The operator |A| = (A∗A)1/2 is called the absolute value of A. Analogously,
|A∗| is given by

|A∗| y = (AA∗)1/2 y =

∞∑
j=1

σj 〈y, yj〉 yj, y ∈ Y. (4.14)

It is easy to see that

‖ |A| x‖2 = 〈|A|x, |A|x〉 = 〈A∗Ax, x〉 = 〈Ax,Ax〉 = ‖Ax‖2. (4.15)



242 W. Freeden and M.Z. Nashed

Remark. Our notation (4.13) can be used to introduce fractional powers (A∗A)μ,
μ ≥ 0, of A∗A:

|A|2μx = (A∗A)μx =

∞∑
j=1

σ2μ
j 〈x, xj〉xj . (4.16)

Let X , Y be Hilbert spaces. Suppose that A is of class K(X,Y ). Then

(1) R(A∗) = R(|A|) = R
(
(A∗A)1/2

)
,

(2) R(A) = R(|A∗|) = R
(
(AA∗)1/2

)
.

Next we introduce subspaces of the Hilbert space X involving on the concept
of powers of the absolute value |A| of the operator A: For ν ≥ 0, let Xν be
defined by

Xν = R (|A|ν) =
{
|A|ν x : x ∈ N (A)

⊥}
. (4.17)

Then the following properties can be verified by straightforward arguments:

(1) Xν ⊂ N (A)
⊥ ⊂ X for all ν ≥ 0,

(2) Xν ⊂ Xμ for ν > μ ≥ 0,

(3) X0 = N (A)
⊥
.

In connection with

x = |A|νz =

∞∑
k=1

σν
k 〈z, xk〉xk (4.18)

we are able to impose the following norm on Xν :

‖x‖2ν = ‖z‖2 =

∞∑
k=1

|〈z, xk〉|2

σ2ν
k

σ2ν
k =

∞∑
k=1

|〈x, xk〉|2

σ2ν
k

. (4.19)

Alternatively, the spaces Xν can be characterized by the norms (4.19), i.e.,

Xν =
{
x ∈ N (A)

⊥
: ‖x‖ν <∞

}
. (4.20)

The spaces Xν impose conditions on the smoothness of the elements x ∈ X .

After these preliminaries about powers of absolute values we come back to the
discussion of the speed of the convergence of a regularization method involving the
concept of smoothness, i.e., the solution of an operator equation will be assumed
to be a member of a subspace Xν , ν > 0, of X .

Indeed, in a large number of ill-posed problems (A;X,Y ) the operator A
shows the property that the image Ax is smoother than x. In concrete situations
this leads us to functions xk in the singular system with strongly growing oscilla-
tions for increasing k. Looking at the higher frequency parts of an element x ∈ X ,
i.e., the inner products 〈x, xk〉 for large k, we notice that there is a damping effect
on Ax by the factor σk. Hence, the norm ‖x‖ν can be interpreted in the sense
that 〈x, xk〉/σν

k → 0 for k → ∞ is demanded. In addition, the larger the value of
ν is chosen, the faster 〈x, xk〉 has to converge to 0. Therefore it can be concluded
that the element x does not contain relevant high frequency components. In other
words, x can be regarded as “smooth”.
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Optimality of reconstruction methods. In the following, a stable reconstruction
method for the solution of the operator equation involving A ∈ L(X,Y ) is un-
derstood to be a continuous (not-necessarily linear) mapping T : Y → X with
T 0 = 0. The question is which reconstruction error does occur in the best worst
case, if the data are noisy.

The worst case error of a reconstruction method T for A corresponding to
the noise level ε and the additional information ‖A†y‖ν ≤ ρ is defined as

Eν(ε, ρ, T ) = sup
{
‖Tyε −A†y‖ : y ∈ R(A), yε ∈ Y, ‖y − yε‖ ≤ ε, ‖A†y‖ν ≤ ρ

}
.

(4.21)
Another expression (avoiding the occurrence of the operator A†) can be formu-
lated by

Eν(ε, ρ, T ) = sup {‖Tyε − x‖ : x ∈ Xν , y
ε ∈ Y, ‖Ax− yε‖ ≤ ε, ‖x‖ν ≤ ρ} .

(4.22)
Clearly, the smaller the worst case error, the better the reconstruction method.

The best worst case error for A corresponding to the noise level ε and the
additional restriction ‖A†y‖ν ≤ ρ is understood to be

Eν(ε, ρ) = inf {Eν(ε, ρ, T ) : T : Y → X continuous, T 0 = 0} . (4.23)

Note that the best worst case error, i.e., Eν(ε, ρ), depends on the problem
(i.e., on the operator A), but not on the reconstruction method.

The next result tells us about the quantity of the best worst case error.

Let A be of class L(X,Y ). Then we have

Eν(ε, ρ) = eν(ε, ρ), (4.24)

where

eν(ε, ρ) = sup {‖x‖ : x ∈ Xν , ‖Ax‖ ≤ ε, ‖x‖ν ≤ ρ} . (4.25)

Clearly, our results characterize the best worst case error independently of
the knowledge of a specific reconstruction method.

Let A be of class L(X,Y ). Then, for ν > 0,

eν(ε, ρ) ≤ ρ
1

ν+1 ε
ν

ν+1 . (4.26)

Furthermore, there exists a sequence {εk}k∈N with εk → 0 for k →∞ such that

eν(ε, ρ) = ρ
1

ν+1 ε
ν

ν+1 . (4.27)

In other words, the estimate (4.26) is sharp, i.e., it cannot be improved.

Regularizing filters. If A is an injective operator of class K(X,Y ), then A† can
be expressed in the form (A∗A)−1A∗. The non-continuity is caused by the term
(A∗A)−1, that has to be stabilized. In connection with the functional calculus for
compact operators we are therefore led to filters as appropriate tools for regular-
ization.
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Let {Ft}t>0, Ft :
[
0, ‖A‖2

]
→ R be a family of piecewise continuous functions

satisfying the conditions

(F1) limt→0 Ft (λ) =
1
λ for all λ ∈

(
0, ‖A‖2

]
,

(F2) λ |Ft (λ)| ≤ CF for all λ ∈
[
0, ‖A‖2

]
and t > 0.

Then the family {Ft}t>0 is called a filter relative to A.

By virtue of Condition (F1), Ft (A
∗A) becomes a continuous operator, which

converges in pointwise sense to (A∗A)−1 as t→ 0. This is the reason why we let

Rty = Ft (A
∗A)A∗y, y ∈ Y. (4.28)

As a consequence, {Ft}t>0 filters the influence of small singular values of A on the
operator Rt in (4.28).

In terms of the singular system {σk;xk, yk}k∈N we are able to write

Ft (A
∗A)A∗y =

∞∑
k=1

Ft

(
σ2
k

)
σk 〈y, yk〉xk + Ft (0)PN (A)A

∗y

=

∞∑
k=1

Ft

(
σ2
k

)
σk 〈y, yk〉xk (4.29)

due to fact that PN (A)A
∗y = 0 (note that A∗y ∈ R (A∗) = N (A)

⊥
). Considering

the approximation error we obtain, for y ∈ R(A), that

A†y −Rty = A†y − Ft (A
∗A)A∗y

= A†y − Ft (A
∗A)A∗AA†y

= (I − Ft (A
∗A)A∗A)A†y

= pt (A
∗A)A†y, (4.30)

where the function pt : λ �→ pt (λ) , λ ∈
[
0, ‖A‖2

]
is given by

pt (λ) = 1− λFt (λ) , λ ∈
[
0, ‖A‖2

]
. (4.31)

The identity (4.30) leads us to the formulation of the following result:

Assume that A ∈ K (X,Y ). Let {Ft}t>0 be a filter. Then

lim
t→0

Rty =

{
A†y y ∈ D

(
A†) ,

∞ y /∈ D
(
A†) , (4.32)

where

Rty = Ft (A
∗A)A∗y

for y ∈ Y .

The next result concretizes the stability of Rty
ε under the noise level ε in

more detail:
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Let {Ft}t>0 be a filter so that (F1), (F2) hold true. For y, yε ∈ Y with
‖y − yε‖ ≤ ε, set xt = Rty and xε

t = Rty
ε. Then, for the residual term, we

have
‖Axt −Axε

t‖ ≤ CF ε, (4.33)

while, for the error term, it follows that

‖xt − xε
t‖ ≤ ε

√
CFM (t)

where we have used the abbreviation

M (t) = sup
0≤λ≤‖A‖2

|Ft (λ)| . (4.34)

Let us continue with the estimate of the total error, thereby using x† = A†y,
y ∈ D

(
A†). We base our considerations on the usual splitting into the approxi-

mation error and the data error in the form∥∥A†y −Rty
ε
∥∥ ≤ ∥∥A†y −Rty

∥∥+ ‖Rty −Rty
ε‖

=
∥∥x† − xt

∥∥+ ‖xt − xε
t‖

t→0
≤
∥∥x† − xt

∥∥︸ ︷︷ ︸
→0

+ ε
√
CFM (t). (4.35)

Obviously, the approximation error ‖x† − Rty‖ tends to 0. The discussion of the
data error is much more problematic than the approximation error: From the

limit relation limt→0 Ft (λ) =
1
λ imposed on a filter within the interval [0, ‖A‖2] it

follows that M (t)
t→0−→ ∞. Therefore, for the total error, we are confronted with

a divergent behavior as t→ 0. Nevertheless, convergence properties can be forced
by a suitable coupling of t and ε. In fact, it can be deduced that, under the a
priori parameter choice indicated above, the approximation error as well as the
data error converge to 0, if the noise level ε tends to zero (cf. [227]):

Let {Ft}t>0 be a filter. If we choose α : (0,∞) → (0,∞) , ε �→ α(ε), such

that α (ε)
ε→0−→ 0 as well as ε

√
M (α (ε))

ε→0−→ 0, then
(
{Rt}t>0 , α

)
with Rt =

Ft (A
∗A)A∗ is a regularization of A† (by convention, {Ft}t>0 is called a regular-

izing filter).

Next we mention which additional requirement imposed on filters Rt =
Ft(A

∗A)A∗ will be necessary to guarantee the order optimality.

Let {Ft}t>0 be a regularizing filter for A ∈ L(X,Y ). Assume there are t0 > 0,
μ > 0, and a function ωμ : (0, t0]→ R such that

sup
0≤λ≤‖A‖2

λμ/2|pt(λ)| ≤ ωμ(t) (4.36)

for all t ∈ (0, t0] (with pt(λ) = 1− λFt(λ)). Let y ∈ R(A) and let x† = A†y in Xμ

with ‖x†‖μ ≤ �. Then the following estimates

(a) ‖x† − xt‖X ≤ ωμ(t)�,
(b) ‖Ax† −Axt‖Y ≤ ωμ+1(t)�
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hold true for xt = Rty = Ft(A
∗A)A∗y and 0 < t < t0. Moreover, let

(1) ωμ(t) ≤ Cpt
μ
2 for t→ 0,

(2) M(t) = sup
0≤λ≤‖A‖2

|Ft(λ)| ≤ CM t−1 for t→ 0,

where μ > 0, Cp, CM > 0 are constants. Let the a priori parameter choice α :
(0,∞)→ (0,∞) fulfill

C1

(
ε

ρ

) 2
μ+1

≤ α(ε) ≤ C2

(
ε

ρ

) 2
μ+1

, ε→ 0, (4.37)

where C1, C2 are positive constants. Then, ({Rt}t>0, α), Rt = Ft(A
∗A)A∗, is an

order optimal regularization for A† with respect to Xμ.

Of course, we need to know the values ρ and μ to guarantee the order opti-
mality. Without the availability of ρ but based on the knowledge of μ, we are led

to α(ε) = Cε
2

μ+1 with C being a positive constant to find an order optimal regu-
larization. Without any information of both parameters ρ as well as μ we have to
deal with a posteriori parameter choices.

An asymptotic behavior of ωμ determines the speed of convergence for the
reconstruction error. An important feature is the so-called qualification.

Let {Ft}t≥0 be a regularizing filter for A†, where A ∈ L (X,Y ) satisfying the
asymptotic relation

M (t) ≤ CM

t
, t→ 0. (4.38)

where CM is a positive constant. The maximal value μ0, such that there exists,
for all values μ ∈ (0, μ0] , a constant Cp > 0 satisfying

supλμ/2 |pt (λ)| ≤ Cp tμ/2, t→ 0, (4.39)

is called the qualification of the filter (remember pt(λ) = 1− λFt(λ)).

In other words, the qualification can be regarded as the maximal rate of
decay. If the qualification is finite, there exists a parameter choice α (ε) such that∥∥A†y −Rα(ε)y

ε
∥∥ = O

(
εμ0/(μ0+1)

)
, ε→ 0, (4.40)

holds true for A†y ∈ Xμ0 . If the qualification is infinite, there exists a parame-
ter choice α (ε) for which the error decay comes arbitrarily close to O (ε). As a
consequence, filters with infinite qualification are more advantageous than others.

Order optimality of special regularizing filters. In the following we recover impor-
tant examples of regularization methods constituted by filters, i.e., the truncated
singular value decomposition SVD and the Tikhonov–Phillips regularization.

Truncated singular value decomposition revisited: The SVD of A† is

A†y =

∞∑
k=1

1

σk
〈y, yk〉xk.
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We choose the filter

Ft (λ) =

{
1
λ , λ ≥ t,
0, λ < t.

(4.41)

Then

Rty = Ft (A
∗A)A∗y =

∞∑
k=1

Ft

(
σ2
k

)
σk 〈y, yk〉xk =

∑
σk≥

√
t

1

σk
〈y, yk〉xk (4.42)

is the truncated SVD of A† (with finitely many summands).

Clearly we have

(1) limt→0 Ft (λ) =
1
λ for all λ > 0,

(2) CF = sup0≤λ≤‖A‖2 λ |Ft (λ)| = 1 for all t ≤ ‖A‖2,
(3) M (t) = sup0≤λ≤‖A‖2 |Ft (λ)| = 1

t for all t > 0.

The total error can be described as follows:∥∥A†y − Rty
ε
∥∥ ≤

∥∥A†y −Rty
∥∥+ ‖Rty −Rty

ε‖

=

∥∥∥∥∥∥
∑

σk<
√
t

1

σk
〈y, yk〉xk

∥∥∥∥∥∥+ ε
√
CFM (t)

Parseval
=

⎛⎝ ∑
σk<

√
t

1

σ2
k

|〈y, yk〉|2
⎞⎠ 1/2

+
ε√
t
. (4.43)

Moreover, for all μ > 0 and 0 ≤ t ≤ ‖A‖2 , we have

sup
0≤λ≤‖A‖2

λμ/2 |pt (λ)| = sup
0≤λ≤‖A‖2

λμ/2 |1− λFt (λ)| = sup
0≤λ≤t

λμ/2 = tμ/2.

Together with M(t) = 1
t we find that this filter possesses an infinite qualification,

and it is order optimal for all μ > 0. However, one can show that the TSVD is not
optimal for any μ > 0.

Asymptotic regularization revisited. We choose the following filter

Ft (λ) =

⎧⎨⎩
1−exp(−λ

t )
λ λ > 0

1
t λ = 0.

(4.44)

Then we obtain

Rty =

∞∑
k=1

Ft

(
σ2
k

)
σk 〈y, yk〉xk =

∞∑
k=1

1− exp
(
−σ2

k

t

)
σk

〈y, yk〉 xk.

It is not difficult to prove the following properties:

(1) limt→0 Ft (λ) =
1
λ for λ > 0

(2) λ |Ft (λ)| =
{

1− exp
(
−λ

t

)
, λ > 0

λ
t , λ = 0

}
. ≤ 1 , t > 0,
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(3) sup0≤λ≤‖A‖2 λ |Ft (λ)| = 1 = CF ,

(4) M (t) = sup0≤λ≤‖A‖2 |Ft (λ)| = 1
t , t > 0 (note that Ft (λ) is monotonously

decreasing in λ and limλ→0 Ft (λ) =
1
t ).

The qualification of the filter again is infinite.

Tikhonov’s regularization revisited. Using the filter

Ft (λ) =
1

λ+ t
, t > 0, (4.45)

we find that

Rty = Ft (A
∗A)A∗y =

∞∑
k=1

σk

σ2
k + t

〈y, yk〉xk (4.46)

and

(A∗A+ tI)Rty =

∞∑
k=1

σk

σ2
k + t

〈y, yk〉
(
σ2
k + t

)
xk =

∞∑
k=1

σk 〈y, yk〉xk (4.47)

=

∞∑
k=1

〈y, σkyk〉xk =

∞∑
k=1

〈y,Axk〉xk =

∞∑
k=1

〈A∗y, xk〉xk = A∗y,

i.e., xt = Rty is the unique solution of the equations (A∗A+ tI)xt = A∗y. Such
equations are called regularized normal equations. It can be easily seen that

(1) limt→0 Ft (λ) =
1
λ , λ > 0,

(2) λ |Ft (λ)| = λ
λ+t ≤ 1 = CF for all t > 0,

(3) M (t) = sup0≤λ≤‖A‖2 |Ft (λ)| = sup0≤λ≤‖A‖2
1

λ+t =
1
t , t > 0.

In order to compute the qualification for Tikhonov’s regularization we take a look
at the term

sup
0≤λ≤‖A‖2

λ
μ
2 |pt(λ)| = sup

0≤λ≤‖A‖2

t
μ
2

(
λ
t

)μ
2

λ
t + 1︸ ︷︷ ︸

=hμ(λ,t)

. (4.48)

In fact, we are led to distinguish two cases:

Case 1: For μ > 2: hμ(λ, t) is strictly monotonously increasing in λ.

Case 2: For μ ≤ 2: we find the estimate

sup
0≤λ≤‖A‖2

hμ(λ, t) ≤ t
μ
2 sup

0≤z<∞

z
μ
2

z + 1︸ ︷︷ ︸
=Cp<∞

. (4.49)

Summarizing our considerations we obtain

sup
0≤λ≤‖A‖2

λ
μ
2 |pt(λ)| ≤

{
Cpt

μ
2 , : 0 < μ ≤ 2,

‖A‖μ−2t, : μ > 2.
(4.50)
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In other words, the qualification of the Tikhonov filter is μ0 = 2, i.e., we arrive
at the order optimality and even at the optimality for 0 < μ ≤ 2, if we use the

parameter choice α(ε) = 1
μ

(
ε
ρ

) 2
μ+1

.

Morozov’s discrepancy principle. Let y ∈ D
(
A†) and yε ∈ Y with ‖y − yε‖ < ε

and xε
t = Ft (A

∗A)A∗yε. The idea of the discrepancy principle can be explained
as follows: Choose the parameter α = α (ε, yε) such that

‖Axε
t − yε‖ ≈ ε. (4.51)

In other words, the residual or discrepancy of yε is assumed to have the order of
the data error.

In order to realize the assumption (4.51) we consider the defect function

d : t �→ d(t) = ‖Axε
t − yε‖ . (4.52)

It is not hard to see that

d (t) =
∥∥AFt (A

∗A)A∗yε − yε
∥∥

=
∥∥pt (AA∗) yε

∥∥
=

( ∞∑
k=1

p2t
(
σ2
k

)
|〈yε, yk〉|2 + pt (0)︸ ︷︷ ︸

=1

∥∥PN (A∗)y
ε
∥∥2)1/2

, (4.53)

so that
lim

t→0,t>0
d (t) =

∥∥PN (A∗)y
ε
∥∥ =

∥∥PR(A)⊥y
ε
∥∥. (4.54)

If y /∈ R (A), then
∥∥PR(A)⊥y

ε
∥∥
Y

can be arbitrarily large. However, if y ∈
R (A), then we have∥∥PR(A)⊥y

ε
∥∥ =

∥∥PR(A)⊥ (y − yε)
∥∥ ≤ ‖y − yε‖ ≤ ε (4.55)

and, therefore,
lim

t→0,t>0
d (t) ≤ ε (4.56)

In other words, for all τ > 1 exists a t0 with d (t) < τε for all t ≤ t0.

Let τ > 1 be chosen (fixed) and {tk} be a strictly monotonously decreasing
sequence with limit zero. Determine k∗, such that

d (tk∗) ≤ τε ≤ d (ti) , i = 1, . . . , k∗ − 1 (4.57)

Set α (ε, yε) = tk∗ .
Let A be of class L (X,Y ) . Suppose that {Ft}t>0 is a regularizing filter with

qualification μ0 > 1. Moreover, assume that M(t) ≤ CM

t for t→ 0. Let the param-
eter choice α : (0,∞) × Y → (0,∞) be taken in accordance with the discrepancy
principle, such that the sequence {tk}k satisfies tk = θktk−1, where 0 < ϑ ≤ θk < 1
for all k. Furthermore, suppose that τ > sup{|pt(λ)| : t > 0, 0 ≤ λ ≤ ‖A‖2} ≥
pt(0) = 1.

Then
(
{Rt}t>0 , γ

)
with Rt = Ft (A

∗A)A∗ is an order optimal regularization

of A† with respect to Xμ for all (0, μ0 − 1].
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Note that, for the values μ ∈ (μ0 − 1, μ0] we obtain nothing, whereas, the

Tikhonov case leads to the order of convergence O(ε
1
2 ) instead of O(ε

2
3 ). This is

the reason why the discrepancy principle may produce suboptimal rates of con-
vergence in case of a finite qualification. However, in connection with an infinite
qualification, no such problems arise.

Generalized discrepancy principle: Next we are interested in a generalization of
the discrepancy principle. To this end we make a reformulation: Let {tk} be a
strictly monotonously decreasing sequence with limit zero. Then, tk∗ is chosen as
follows:

tk∗ = sup
{
tk :

∥∥Axε
tk
− yε

∥∥2 ≤ τε2
}

= sup
{
tk :

∥∥ptk (AA∗) yε
∥∥2 ≤ τε2

}
= sup

{
tk :

〈
yε, p2tk (AA

∗) yε
〉
≤ τε2

}
. (4.58)

In doing so we have used the function st = p2t .

For a generalization we allow arbitrary functions st in the following sense:
Let τ > 1 be chosen (fixed) and {tk} as before. Determine k∗ such that

tk∗ = sup
{
tk : 〈yε, stk (AA∗) yε〉 ≤ τε2

}
. (4.59)

Set
α (ε, yε) = tk∗ . (4.60)

We have to look for functions st which yield order optimal methods for the whole
parameter domain (0, μ0]. An answer is given by the example:

st (λ) = p
2+ 2

μ0
t (λ) = p3t (λ) =

(
t

t+ λ

)3

. (4.61)

The generalized discrepancy principle with this family of functions st together
with the Tikhonov regularization is an order optimal method with respect to Xμ

for μ ∈ (0, 2].

In the previous considerations we have studied a number of a posteriori pa-
rameter choice rules which all depend in one way or the other on the computed
approximation – and on the given data error level ε. A perfect example to illus-
trate this general reasoning is the discrepancy principle where reconstructions are
discarded unless their data fit has the order to the noise level ε.

In practical examples such noise level information is not always available
(or reliable). For instance, a given discrete data vector may consist of a finite
number of measurements, for each of which we may or may not know the standard
deviation and/or a worst-case error bound. Typically, the worst-case bound will
be a severe overestimation, while the standard deviation might underestimate the
true error. both estimates may therefore lead to a significant loss of accuracy when
used in these parameter choice rules. Another uncertainty problem arises if we are
going to embed the discrete data into a continuous model by some interpolation
or approximation process. Then we have to estimate the L2-norm of the difference
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between the constructed function and the true data function from the discrete
noise information, and from a priori assumed smoothness properties of the data.

Often it is necessary to consider alternative (a posteriori) parameter choice
rules that avoid knowledge of the noise level, and to determine some realistic reg-
ularization parameter on the basis of the actual performance of the regularization
method under consideration. Such heuristic parameter choice rules will be called
error free. A good reference to these strategies is [63]. It must be emphasized,
however, that error free parameter choice rules cannot provide a convergent regu-
larization method in the strict sense. Still, there are examples where an error free
rule leads to better reconstructions than some sophisticated order-optimal rule,
cf., e.g., [113] for some numerical comparisons.

Another heuristic parameter choice rule which can be interpreted via some
kind of error estimation is the method of generalized cross-validation introduced
by Wahba (cf. [256] for the history of this method and a more detailed exposition).
It applies to problems where A is an operator into a finite-dimensional data space,
e.g., a generalized moment problem.

Another very popular error-free parameter choice rule has been advocated
by Hansen [116]. This method is based on an inspection of the residual norms
of the computed approximations, this time by relating them to the norms of the
approximations themselves (cf. [113]). In spite of its use in several applications,
for example, in satellite to satellite tracking, satellite gravity gradiometry (see,
e.g., [72, 79, 79, 94] [231], there still lacks a sound mathematical foundation of the
L-curve method.

Tikhonov–Phillips regularization. The Tikhonov–Phillips filter is given by

Ft (λ) = 1 /(λ+ t) , t > 0, λ ∈
[
0, ‖A‖2

]
. (4.62)

Let A be of class L (X,Y ) . Without loss of generality, suppose that A is

injective (otherwise we have to replaceX byN (A)
⊥
). Let Z be a Hilbert space and

B ∈ L (X,Z) be continuously invertible, i.e., there exists a value β > 0 such that

β ‖x‖X ≤ ‖Bx‖Z for all x ∈ X. (4.63)

Before we deal with the generalization of the Tikhonov–Phillips regularization we
mention some preparatory results:

(1) Lax–Milgram Lemma Suppose that L ∈ L (X) . Assume there exists a
value λ > 0 such that

〈Lx, x〉 ≥ λ ‖x‖2 (4.64)

holds for all x ∈ X . Then L is continuously invertible and∥∥L−1
∥∥ ≤ 1/λ. (4.65)

(2) The stabilized normal equation

(A∗A+ tB∗B) x = A∗y (4.66)

with y ∈ Y possesses a unique solution for all t > 0 which continuously de-
pends on y.
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Our aim is to show that the solution of (4.66) can be equivalently obtained
by minimizing the argument of the Tikhonov–Phillips functional given by

Jt,y (x) = ‖Ax − y‖2 + t ‖Bx‖2 . (4.67)

Note that the second term on the right-hand side of (4.67) is called the penalty
term of the Tikhonov–Phillips functional:

Let A and B be given as indicated above. Moreover, assume that y ∈ Y and
t > 0. Then the following statements are equivalent:

(1) (A∗A+ tB∗B)xt = A∗y,
(2) xt minimizes the functional

Jt,y (x) = ‖Ax − y‖2 + t ‖Bx‖2 , (4.68)

i.e., xt = argmin {Jt,y (x) : x ∈ X}.

Our purpose is to comment on this result in more detail: For y ∈ Y and the
family of generalized Tikhonov–Phillips regularizations Rt given by

xt = Rty = (A∗A+ tB∗B)−1 A∗y

= argmin {Jt,y (x) : x ∈ X} , (4.69)

the penalty term satisfies the estimate

‖Bxt‖ ≤
1√
t
‖y‖ . (4.70)

In fact, the property (4.70) explains the role of the penalty term. If t is large,
then ‖Bxt‖ is small compared to ‖Axt − y‖Y . If t � 1, then ‖Bxt‖ becomes
large in comparison with the residual term ‖Axt − y‖. All in all, the choice of the
operator influences the character of xt. Some features can be strengthened, where
others can be weakened.

Let A and B be given as before. Furthermore, suppose that y ∈ D
(
A†) and

r > 0. Set

δr = inf

{∥∥∥∥ 1

β2
B∗BA†y −A∗y′

∥∥∥∥ : y′ ∈ Y, ‖y′‖ ≤ r

}
. (4.71)

Then the following statements hold true for xt = (A∗A+ tB∗B)−1 A∗y:

(1)
∥∥xt −A†y

∥∥2 ≤ δ2r + tβ2r2, r, t > 0,

(2) limt→0 xt = A†y.

Some additional effort is needed to formulate regularizations under a priori
parameter choice.

Let A,B given as before. If we choose γ : (0,∞)→ (0,∞) such that

lim
ε→0

γ (ε) = 0 and lim
ε→0

ε√
γ (ε)

= 0, (4.72)

then
(
{Rt}t>0 , γ

)
with Rt = (A∗A+ tB∗B)

−1
A∗ is a regularization of A†.
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In order to derive further convergence results we impose further assumptions
on B: If {(σn;xn, yn)} is the singular system of A and if, for B ∈ L (X,Z), we set

B∗Bx =

∞∑
k=1

β2
k 〈x, xk〉xk, βk ∈

[
β, ‖B‖2

]
(4.73)

(this is a particular specialization), then we get

Rty = (A∗A+ tB∗B)
−1

A∗y

=

∞∑
k=1

σk

σ2
k + tβ2

k

〈y, yk〉xk. (4.74)

Note that the classical Tikhonov–Phillips regularization uses B = I, i.e., βk = 1
for all k. By βk we control which singular value gets damped and how strongly it
is regularized.

In general, Rt cannot be written as a filter, i.e., in the form Ft(A
∗A)A∗.

However, the following helpful estimates can be easily verified (see [227]):∥∥F‖B‖2t(A
∗A)A∗y

∥∥ ≤ ∥∥Rty
∥∥ ≤ ∥∥Fβ2t(A

∗A)A∗y
∥∥ for all y ∈ Y, (4.75)

and ∥∥pβ2t(A
∗A)x

∥∥ ≤ ∥∥(I −RtA)x
∥∥ ≤ ∥∥p‖B‖2t(A

∗A)x
∥∥ for all x ∈ X, (4.76)

where pt(λ) = 1 − λFt(λ) =
t

λ+t and Ft(λ) =
1

λ+t (as for the classical Tikhonov

filter).

The family {Rt}t>0 possesses the same asymptotic behavior for t→ 0 as the
classical Tikhonov filter, the behavior for ε→ 0 is independent of B.

Suppose that A ∈ K(X,Y ) and B ∈ L(X,Z). Assume that the representation
(4.73) holds true. Let Rt be given in the form Rt = (A∗A+ tB∗B)−1A∗, t > 0.

(a) If the a priori parameter γ is chosen such that

Cγ

(
ε

ρ

) 2
μ+1

≤ γ(ε) ≤ CΓ

(
ε

ρ

) 2
μ+1

for ε→ 0, (4.77)

(as in (4.37)), where Cγ and CΓ are positive constants, then the method
({Rt}t>0, γ) is an order optimal regularization of A† with respect to Xμ,
μ ∈ (0, 2].

(b) If we choose γ according to the discrepancy principle, then ({Rt}t>0, γ) is an
order optimal regularization of A† with respect to Xμ, μ ∈ (0, 1]. The order

of decay of the error O(ε
1
2 ) is maximal.

(c) If we choose γ in accordance with the generalized discrepancy principle with
t∗k = sup{tk | η(tk) ≤ τε2}, where

η(t) = ‖Axε
t − yε‖2−〈A∗(Axε

t −yε), (A∗A+ tB∗B)−1A∗(Axε
t −yε)〉, (4.78)

with yε ∈ Y and xε
t = Rty

ε, then ({Rt}t>0, γ) is an order optimal regular-
ization of A† with respect to Xμ, μ ∈ (0, 2].
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Once again, it is possible to prove that O(ε
2
3 ) is the maximal order of decay

for the error. In other words, the qualification does not increase based on this
generalization. However, it should be remarked that the reconstructions using B �=
I may lead to strongly different results. In particular, it is possible to adapt βk to
the spectrum of the noise, if this information is known or it can be estimated by
other methods.

4.1. Generalized inverses in reproducing kernel Hilbert spaces

Within the L2-context the range of a compact linear operator K with infinite-
dimensional range is always non-closed. In [195–197] we are confronted with the
question: Can one endow R(K) with a new inner product that would make R(K)
a Hilbert space and that would have additional useful properties?

Reproducing kernel Hilbert space (RKHS) framework. A Hilbert space H of
complex-valued functions on a (bounded) set G (e.g., a regular region) is called a
reproducing kernel Hilbert space (RKHS) if all the evaluation functional H � x �→
x(t) ∈ C are continuous (bounded) for each fixed t ∈ G, i.e., there exists a positive
constant Ct for each t ∈ G such that |x(t)| ≤ Ct ‖x‖H for all x ∈ H . By the Riesz
Representation Theorem, for each t ∈ G, there exists a unique element Qt such
that x(t) = 〈x,Qt〉H for all x ∈ H . The reproducing kernel Q(·, ·) : G × G �→ C of
a RKHS H is defined by Q(s, t) = 〈Qs, Qt〉H , s, t ∈ G.

We list some basic properties of RKHS’s that are particularly relevant in
approximation and estimation theory:

• Q(s, t) = Q(t, s) for all t, s ∈ G.
• Q(s, s) ≥ 0 for all s ∈ G.
• |Q(s, t)| ≤

√
Q(s, s)

√
Q(t, t) for all s, t ∈ G.

• The reproducing kernel Q(s, t) on G ×G is a non-negative definite Hermitian
kernel. Conversely by the Aronszajn–Moore Theorem, every non-negative def-
inite Hermitian function Q(·, ·) on G × G determines a unique Hilbert space
HQ for which Q(·, ·) is a reproducing kernel ([15]) (note that a complex-
valued kernel F on G × G is said to be positive definite if, for any n points
t1, . . . , tn ∈ G, the matrix A = (F (ti, tj))1≤i,j≤n is non-negative definite, i.e.,

uHAu =

n∑
i,j=1

ui F (ti, tj) uj ≥ 0 (4.79)

for all u = (u1, . . . , un) ∈ Cn).

• A closed subspace H̃ of a RKHS H is also a RKHS. Moreover, the orthogonal
projector P of H onto H̃ and the reproducing kernel Q̃(s, t) of the RKHS H̃

are related by Pf(s) = 〈f, Q̃s〉, s ∈ G for all f ∈ H where Q̃k = PQ.
• In a RKHS, the element representing a given bounded linear functional L
can be expressed by means of the reproducing kernel: L(f) = 〈f, h〉H , where
h = L(Q).

Similarly, for a bounded linear operator L on H to H , we have that
Lf(t) = 〈Lf, h〉 = 〈f, L∗h〉.
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• If G is a bounded domain or if G is an unbounded domain but∫
G×G

|Q(t, s)|2dt ds <∞, (4.80)

and Q(s, t) is continuous on G×G, then HQ is a space of continuous functions.
• Every finite-dimensional function space is a RKHSH with reproducing kernel

Q(s, t) =

n∑
i=1

ui(s) ui(t), (4.81)

where {ui}ni=1 is an orthonormal basis forH (notice that the sum in the above
definition of the kernel Q is invariant under the choice of an orthonormal
basis).

• If the integral relation∫
G×G

|Q(s, t)|2 ds dt <∞, (4.82)

holds true, then Q(·, ·) has a countable sequence of eigenvalues and eigen-
functions (Theorem of Mercer).

• Let {ϕn}n∈N be a sequence of complex functions defined on G such that, for
every t ∈ G,

∞∑
n=1

|ϕn(t)|2 <∞. (4.83)

For every sequence {cn}n∈N with
∑∞

n=1 |cn|2 < ∞, the series
∑∞

n=1 cnϕn(t)
is then convergent in C for every t ∈ G. The functions which are the sums
of such series form a linear subspace H , on which we are able to define the
structure of a separable Hilbert space by taking as scalar product, for

f =
∞∑

n=1

cnϕn, g =
∞∑
n=1

dnϕn, (4.84)

the number

〈f, g〉H =

∞∑
n=1

cndn. (4.85)

This space has a reproducing kernel, namely

Q(x, y) =

∞∑
n=1

ϕn(t)ϕn(s), t, s ∈ G × G. (4.86)

• Let H be a separable RKHS, then its reproducing kernel Q(·, ·) has the
expansion

Q(s, t) =

∞∑
n=1

ϕn(t) ϕn(s), (4.87)

where {ϕn}∞n=1 is an orthonormal basis for H (we remark that for a general

separable Hilbert space H ,
∑∞

n=1 ϕn(t) ϕn(s) is not a reproducing kernel
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(note that L2(G) is not an RKHS) and also that φn’s do not generally cor-
respond to sampling expansions. If they do, i.e., if ϕn(t) = Q(tn, t) for some
sequence {tn}, then we have that f(t) =

∑∞
n=1 f(tn) ϕn(t), this constitutes

a sampling theorem.)
• If the reproducing kernel Q(s, t) of a RKHS H is continuous on G×G, then H
is a space of continuous functions (being uniformly continuous on a bounded
G). This follows from

|x(t) − x(s)| = |〈x,Qt −Qs〉H | ≤ ‖x‖H ‖Qt −Qs‖H (4.88)

and
‖Qt −Qs‖2 = Q(t, t)− 2Q(t, s) +Q(s, s) (4.89)

for all s, t ∈ G.
• Strong convergence in a RKHS H implies pointwise convergence and uniform
convergence on compact sets, because of the fact

|x(t)− xn(t)| = |〈x− xn, Qt〉H | ≤
√
Q(t, t) ‖x− xn‖H . (4.90)

• Let HQ denote the RKHS with reproducing kernel Q, and denote the inner
product and norm in HQ by 〈·, ·〉HQ and ‖ · ‖HQ , respectively. Note that
Q(s, s′)(= Qs(s

′)) is a non-negative definite Hermitian kernel on G × G, and
that {Qs, s ∈ G} spans HQ since 〈Qs, x〉HQ = 0, s ∈ G, implies x(s) = 0. For
more properties of reproducing kernel spaces the reader is referred to, e.g.,
[15, 37, 131] and the references therein.

• For every positive definite kernel Q(·, ·) on G × G, there exist a zero mean
Gaussian process with Q(·, ·) as its covariance, giving rise to the relation
between Bayes estimates, Gaussian processes, and optimization processes in
RHKS (for more details the reader is referred to the geodetic literature, see,
e.g., [100, 159, 160, 167], and the monographs [148, 256]).

Interest in reproducing kernel Hilbert spaces have increased in recent years,
as the computer capacity has made solutions of ever larger and more complex
problems practicable. Indeed, new reproducing kernel representations and new ap-
plications (in particular in physical geodesy and geophysics) are being contributed
at a rapid rate. For example, a certain RHKS in terms of outer harmonics al-
lows the adequate determination of the Earth’s gravitational potential (see, e.g.,
[71, 237] for early spline approaches) in consistency with gravitational observables
of heterogeneous type (that are interpretable as (bounded) linear functionals on
the RKHS under consideration).

Hilbert–Schmidt operator theory. An RKHS HQ with RK Q determines a self-
adjoint Hilbert–Schmidt operator (also denoted by Q) on L2(G) to L2(G) by letting

(Qx)(s) =

∫
G
Q(s, s′) x(s′) ds′, x ∈ L2(G). (4.91)

Since Q is assumed to be continuous, then by the Theorem of Mercer (see, e.g.,
[139]), the operatorQ has an L2(G)-complete orthonormal system of eigenfunctions
{φi}∞i=1 and corresponding eigenvalues {λi}∞i=1 with λi ≥ 0 and

∑∞
i=1 λi < ∞.
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Thus Q is a trace-class operator (see, e.g., [46]) so that Q(·, ·) has the uniformly
convergent Fourier expansions

Q(s, s′) =
∞∑
i=1

λi φi(s) φi(s
′) (4.92)

and

Qx =

∞∑
i=1

λi〈x, φi〉L2(G) φi, (4.93)

where 〈·, ·〉L2(G) is the inner product in L2(G). It is well known (see, for example,

[249]) that the space HQ consists of all x ∈ L2(G) satisfying the condition

∞∑
i=1

λi
−1
(
〈x, φi〉L2(G)

)2
<∞, (4.94)

(note that the notational convention 0/0 = 0 is being adopted) with inner product
〈·, ·〉HQ given by

〈x1, x2〉HQ =

∞∑
i=1

λ−1
i 〈x1, φi〉L2(G)〈x2, φi〉L2(G). (4.95)

The operator Q has a well-defined symmetric square root Q1/2 which is a Hilbert–
Schmidt operator (see, e.g., [195–197]):

Q1/2x =
∞∑
i=1

√
λi〈x, φi〉L2(G) φi. (4.96)

Thus, since N (Q) = N (Q1/2), we have

HQ = Q1/2(L2(G)) = Q1/2
(
L2(G)  N (Q)

)
. (4.97)

(Q1/2)† has the representation

(Q1/2)†x =

∞∑
i=1

(
√
λi)

†〈x, φi〉L2(G) φi (4.98)

onHQ⊕H⊥
Q (⊥ in L2(G)), where, for Θ a real number, Θ† = Θ−1 for Θ �= 0;Θ† = 0

for Θ = 0. Similarly, Q† has the representation

Q†x =

∞∑
i=1

λ†
i 〈x, φi〉L2(G) φi. (4.99)

For any operator Q on L2(G), induced by an RK Q(s, s′) as defined in (4.91), we
shall adopt the notational conventions (cf. [195–197])

Q−1 := Q†, (4.100)

Q−1/2 := (Q1/2)†. (4.101)
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This leads to the relations

‖x‖HQ = inf
{
‖p‖L2(G) : p ∈ L2(G), x = Q1/2p

}
, x ∈ HQ. (4.102)

and

〈x1, x2〉HQ = 〈Q1/2x1, Q
1/2x2〉L2(G), x1, x2 ∈ HQ, (4.103)

and, if x1 ∈ HQ and x2 ∈ HQ with x2 = Qρ for some ρ ∈ L2(G), then
〈x1, x2〉HQ = 〈x1, ρ〉L2(G) . (4.104)

Relationship between generalized inverses and L2-topology. We are now ready to
explore properties of the generalized inverse of a linear operator between two RK
spaces (cf. [195–197]). To this end we let X = L2(G) and Y = L2(H) denote the
Hilbert spaces of square-integrable real-valued functions on the closed, bounded
domains G and H, respectively. Let A be a linear operator from X into Y . Let ⊂
denote point set inclusion only, and suppose that A has the following properties:

HQ ⊂ D(A) ⊂ X, (4.105)

where HQ is an RKHS with continuous RK on G × G;
A(HQ) = HR ⊂ HR ⊂ Y, (4.106)

where HR and HR are RKHS’s with continuous RK’s on H×H; so that

N (A) in HQ is closed in HQ. (4.107)

We emphasize, in particular, that the space HR is not necessarily closed in the
topology of HR.

Let A†
(X,Y ) denote the generalized inverse of A, when A is considered as a

mapping from X into Y , and let A†
(Q,R) denote the generalized inverse of A when

A is considered as a mapping from HQ into HR. Now, the topologies in (X,Y ) are

not the same as the topologies in (HQ, HR). Thus, the generalized inverses A†
(X,Y )

and A†
(Q,R) show distinct continuity properties, in general. We shall develop the

relation between A†
(Q,R) and certain (X,Y ) and (Y, Y ) generalized inverses. In the

sequel, the operators R : Y → Y and R1/2 : Y → Y are defined from the RK of
HR analogous to Q and Q1/2 (see (4.93) and (4.96)). We continue the notational

convention of (4.100), i.e., R−1 = R† = R†
(Y,Y ) and R−1/2 = (R1/2)†(Y,Y ).

From [195–197] we are able to deduce the following result: Under assumptions

(4.105)–(4.107), let y ∈ D(A†
(Q,R)), i.e., y ∈ HR ⊕H⊥

R
(⊥ in HR). Then

y ∈ D(Q1/2(R−1/2AQ1/2)†(X,Y )R
−1/2) (4.108)

and

A†
(Q,R)y = Q1/2(R−1/2AQ1/2)†(X,Y )R

−1/2 y. (4.109)

Moreover, it follows that A†
(Q,R) is bounded, provided that A(HQ) = HR.
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It should be noted that an operator A may satisfy the assumption A(HQ) =
HR while failing to have a closed range in the space Y . This is, for example,
the case if A is a Hilbert–Schmidt linear integral operator (with non-degenerate
kernel) on X . It is this observation which makes RKHS useful in the context of
regularization and approximation of ill-posed linear operator equations.

Explicit representation of minimal norm solutions. We assume that HQ is chosen
so that the linear functionals {Et : t ∈ H} defined by

Etx = (Ax)(t) (4.110)

are continuous in HQ. Then, by the Riesz representation theorem, there exists
{ηt, t ∈ H} ∈ HQ such that

(Ax)(t) = 〈ηt, x〉HQ , t ∈ H, x ∈ HQ, (4.111)

where ηt is explicitly given by

ηt(s) = 〈yr, Qs〉HQ = (AQs)(t) (4.112)

(ηt(s) is readily obtained in a more explicit form from (4.112) if A is a differential
or integral operator).

Let R(t, t′) be the non-negative definite kernel on H×H given by

R(t, t′) = 〈ηt, ηi〉HQ , t, t′ ∈ H. (4.113)

Assume that HR is the RKHS with RK R given by (4.113). Let Rt be the element
of HR defined by Rt(t

′) = R(t, t′), and let 〈·, ·〉HR be the inner product in HR.
Suppose that V is the closure of the span of {ηt, t ∈ H} in HQ. Now, {Rt, t ∈ H}
spans HR, and by the properties of RKHS, we have

〈ηt, ηt′〉HQ = R(t, t′) = 〈Rt, Rt′〉HR . (4.114)

Thus there is an isometric isomorphism between the subspace V andHR, generated
by the correspondence

ηt ∈ V ∼ Rt ∈ HR. (4.115)

Then, x ∈ V ∼ y ∈ HR if and only if 〈ηt, x〉HQ = y(t) = 〈Rt, g〉HR , t ∈ H, i.e., if
and only if y(t) = (Ax)(t), t ∈ H. Thus, A(HQ) = A(V ) = HR. The null space of
A in HQ is {x : x ∈ HQ, ‖Ax‖HR = 0}. Since

〈ηt, x〉HQ = 0, t ∈ H and x ∈ HQ ⇒ x ∈ V ⊥, (4.116)

and x ∈ V implies ‖x‖Q = ‖Ax‖V , it follows that the null space of A in HQ is V ⊥

( ⊥ in HQ). Hence, (4.110) entails that the null space of A : HQ → HR in HQ is
always closed, irrespective of the topological properties of A : X → Y .
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We list the following table of corresponding sets and elements, under the
correspondence “∼” of (4.115), where the entries on the left are in HQ:

V ∼ HR, (4.117)

x ∼ y, (4.118)

ηt ∼ Rt, (4.119)

PV Qs ∼ η∗s . (4.120)

Here, PV is the projector from HQ onto the (closed) subspace V , y(t) = 〈ηt, x〉HQ ,
t ∈ H, and η∗s = AQs = A(PV Qs), i.e.,

η∗s (t) = 〈ηi, PV Qs〉HQ = ηt(s). (4.121)

This leads to the following result (the proof is given in [196, 197]):

Let A and HQ satisfy (4.110), and let R be given by (4.114), where ηi is
defined by (4.111). Let η∗s = AQs. Then, for y ∈ HR,

(A†
(Q,R)y)(x) = 〈η

∗
s , y〉HR , s ∈ G. (4.122)

We also obtain another operator representation of A†
(Q,R):

Under the assumptions

(i) D(A∗) is dense in Y , where A∗ is the adjoint of A considered as an operator
from X to Y ,

(ii) A and HQ satisfy (4.111),
(iii) HQ and HR = A(HQ) possess continuous reproducing kernels,

we have, for y ∈ HR,

(A†
(Q,R)y)(s) = (QA∗(AQA∗)†(Y,Y )y)(s), s ∈ G. (4.123)

Poorly conditioned operator equations. For A : X → Y , the pseudocondition
number of A (relative to the norms of X and Y ) is given by

γ(A;X,Y ) = sup
x 	=0

x∈D(A)

‖Ax‖Y
‖x‖X

sup
y 	=0

y∈D(A†)

‖A†y‖X
‖y‖Y

. (4.124)

The equation Ax = y is said to be poorly conditioned in the spaces X,Y if the
number γ(A;X,Y ) is much greater than 1 (note that 1 ≤ γ(A;X,Y ); for ill-posed
problems, γ is not finite).

Suppose HQ is an RKHS with HQ ⊂ D(A), and A and HQ satisfy (4.110)
with A(HQ) = HR, R given by (4.114). Then γ(A;HQ, HR) = 1. To see this, write
x ∈ HQ in the form x = x1 + x2, where x2 ∈ V ⊥. Then Ax = Ax1 = y1 and
‖y1‖HR = ‖x1‖HQ . Thus

γ(A;HQ, HR) = sup
x 	=0

‖y1‖HR

‖x‖HQ

sup
y1 	=0

‖x1‖HQ

‖y1‖HR

= 1. (4.125)
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On the other hand, the number γ(A;X,Y ) may be large. Thus, the casting of the
operator equation Ax = y in the reproducing kernel spaces HQ, HR always leads
to a well-conditioned (indeed, optimally-conditioned) problem.

Regularization of pseudosolutions in reproducing kernel spaces. We study proper-
ties of regularized pseudosolutions (in RKHS) xα of the operator equation Ax = y,
where y is not necessarily in the range of the operatorA. By a regularized pseudoso-
lution we mean a solution to the variational problem: Find xα in HQ to minimize

Jy(x) = ‖y −Ax‖2HP
+ α‖x‖2HQ

, α > 0, (4.126)

where HQ is an RKHS in the domain of A, ‖ · ‖HP denotes the norm in an RKHS
HP with RK P , HP ⊂ Y , Jy ⊂ Y , φy(x) is assigned the value +∞ if y−Ax /∈ HP ,
and α > 0. We suppose A and HQ satisfy (4.110), hence, A(HQ) = HR possesses
an RK. As before, A may be unbounded, invertible, or compact considered as an
operator from X(= L2(G)) to Y (= L2(H)). It is assumed that y possesses a (not
necessarily unique) representation y = y0 + ξ, for some y0 ∈ A(HQ) and ξ ∈ HP ,
where ξ may be thought of as a “disturbance”.

For α > 0, let HαP be the RKHS with RK αP (t, t′), where P (t, t′) is the RK
on H×H associated with HP . We have HP = HαP and

‖ · ‖2HP
= α‖ · ‖2HαP

. (4.127)

Let R(α) = R + αP , and let HR(α) be the RKHS with RK R(α) = R(α, t, t′).
According to [15], HR(α) is the Hilbert space of functions of the form

y = y0 + ξ, (4.128)

where y0 ∈ HR and ξ ∈ HP . Following [15], we note that this decomposition is not
unique unless HR and HP have no element in common except the zero element.
The norm in HR(α) is given by

‖y‖2R(α) = min{‖y0‖2HR
+ ‖ξ‖2HαR

: y0 ∈ HR, ξ ∈ HP , y0 + ξ = y}, (4.129)

where, however, the y0 and ξ attaining the minimum in (4.129) are easily shown
to be unique by the strict convexity of the norm.

Consider the problem of finding xα ∈ HQ to minimize Jy(x) in (4.126) for
y ∈ HR(α). Then y − Axα must be in HP and it is obvious that xα ∈ V , the
orthogonal complement of the null space of A in HQ. For any x ∈ V , ‖x‖HQ =
‖Ax‖HR by the isometric isomorphism between V and HR, and (4.126) may be
written in the equivalent form: Find xα ∈ V to minimize

α‖Ax‖2HR
+ ‖y −Ax‖2HP

. (4.130)

Comparing (4.129) and (4.130) with the aid of (4.127), we see that y0 and ξ
attaining the minimum on the right-hand side of (4.129) are related to the solution
xα of the minimization problem (4.130), by

y0 = Axα and ξ = y −Axα. (4.131)

A representation of the solution xα is given (see [195, 196]) as follows:
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Suppose D(A∗) is dense in Y,HQ ⊂ D(A) and A and HQ satisfy (4.110).
Suppose HQ, HR(= A(HQ)) and HP ⊂ Y all have continuous RK’s. Then, for
y ∈ HR(α), the unique minimizing element xα ∈ HQ of the functional Jy(x) is
given by

〈η∗s , y〉R(α) = xα(s) = (QA∗(AQA∗ + αP )†(Y,Y )y)(s) s ∈ G, (4.132)

where η∗s = AQs. We call the (linear) mapping which assigns to each y ∈ HR(α) the
unique minimizing element xα the regularization operator of the equation Ax = y.

The most useful situations occur, of course, when HR is strictly contained
in HR(α). For example, HR may be a dense subset of Y in the Y -topology and

HR(α) a bigger dense subset. We deal with this situation later. If H⊥
R (in Y ) is

not empty, then P may be chosen so that the closure of HP in the Y -topology
equals H⊥

R in Y . Then HP ∩ HR = {0}, HαP and HR are orthogonal subspaces
of HR(α) (see, e.g., [15]), and the decomposition (4.128) is unique. In this case
we have the following theorem which shows that the regularization operator is
indeed a generalized inverse in an appropriate RKHS: If HP ∩HR = {0}, then the
minimizing element xα of (4.126) is the solution to the problem: Find x ∈ L(y)
to minimize

‖x‖HQ , (4.133)

where

L(y) = {x : x ∈ HQ, ‖y −Ax‖HR(α)
= inf

z∈HQ

‖y −Az‖HR(α)
}. (4.134)

It should be remarked that, in our approach, we have

A(HQ) = HR ⊂ HR(α) ⊂ Y. (4.135)

Replacing HR and HR in (4.106) by HR and HR(α), respectively, we get from
(4.109)

A†
(Q,R(α))y = Q1/2[(R + αP )−1/2AQ1/2]†(X,Y )(R + αP )−1/2y (4.136)

for y ∈ D(A†
(Q,R(α))) .

It is helpful to remember that the topology on HR is not, in general, the
restriction of the topology of HR(α), with the notable exception of the case HR ∩
HP = {0}. In [129] a concrete example is provided arising in the approximate
solution of boundary value problems, where HR is not a closed subspace of HR(α).
If HR ∩HP = {0}, then HR is a closed subspace of HR(α), and we have

A†
(Q,R(α)) = QA∗(R+ αP )−1. (4.137)

Note that in this case, the generalized inverse and the regularization operator
coincide. If HR = A(HQ) is not closed in HR(α), then the regularization operator
and the generalized inverse are different. Also, the right-hand side of (4.136) and
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(4.137) are not the same: (4.137) has maximal domain HR(α), while (4.136) has

maximal domain HR ⊕H⊥
R (⊥ in HR(α)).

Rates of convergence to the generalized inverse. We note some properties of xα

as α → 0 when HR ⊂ HP . If y ∈ HR = A(HQ), then we have xα → A†
(Q,R)y

as α → 0; here we may say something about the rate of convergence if certain
additional conditions are satisfied (compare also with [129]). However, y may not

be in the domain of A†
(Q,R). This situation can occur if, for example,HR is dense in

HR(1). In this case, limα→0 ‖xα‖Q =∞: Assume that y = Ax0+ ξ0, where x0 ∈ V ,
ξ0 ∈ HP and suppose that HR ⊂ HP . Then the following properties hold true:

(i) B = P−1/2R1/2 is a bounded operator on Y = L2(H).
(ii) If ξ0 = 0 and ‖(B∗B)−1R−1/2(Ax0)‖L2(H) <∞, then

‖A†
(Q,R)y − xα‖2HQ

= O(α2). (4.138)

(iii) If ξ0 = 0 and ‖(B∗B)−1/2R−1/2(Ax0)‖L2(H) <∞, then

‖A†
(Q,R)y − xα‖2HQ

= O(α). (4.139)

(iv) If ξ0 /∈ HR, then limα→0 ‖xα‖HQ =∞.

Here inverses indicated by “– ” are the generalized inverses in the topology
of L2-spaces.

4.2. Projection methods

First, we recall the definition of a projection operator known from functional anal-
ysis: Let X be a normed space over the field K (K is equal to R or C). Let U ⊂ X
be a closed subspace. A linear bounded operator P : X → X is called a projection
operator on U if Px ∈ U for all x ∈ X and Px = x for all x ∈ U . Every non-trivial
projection operator satisfies P 2 = P and ‖P‖ ≥ 1.

The following two examples provide some important projection operators:

(a) (Orthogonal Projection.) Let X be a pre-Hilbert space. Suppose that U ⊂ X
is a complete subspace. Let Px ∈ U be the best approximation to x in U , i.e.,
Px satisfies the relation

‖Px− x‖ ≤ ‖u− x‖ for all u ∈ U. (4.140)

P : X → U is linear and Px ∈ U is characterized by 〈x − Px, u〉 = 0 for all
u ∈ U , i.e., x− Px ∈ U⊥. Therefore,

‖x‖2 = ‖Px+ (x− Px)‖2

= ‖Px‖2 + ‖x− Px‖2 + 2Re〈x− Px, Px〉︸ ︷︷ ︸
=0

≥ ‖Px‖2,

i.e., ‖P‖ = 1.
(b) (Interpolation Operator.) Let X = C(0)([a, b]) be the space of real-valued con-

tinuous functions on [a, b] supplied with the supremum norm ‖·‖C(0)[a,b]. Then
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X is a normed space over R. Let U = span{u1, . . . , un} be an n-dimensional
subspace and t1, . . . , tn ∈ [a, b] such that the interpolation problem in U is
uniquely solvable, i.e., det(uj(tk)) �= 0. We define Px ∈ U by the interpolant

of x ∈ C(0)([a, b]) in U , i.e., u = Px ∈ U satisfies u(ti) = x(ti) for all
i = 1, . . . , n. Then P : X → U is a projection operator.

Examples for U in (b) are spaces of algebraic or trigonometric polynomials.
As a drawback of these choices, we note that from the results of Faber (see, for
example, [198]) the interpolating polynomials of continuous functions x do not, in
general, converge to x as the degree of the polynomials tends to infinity. Nonethe-
less, trigonometric interpolation at equidistant points converges with optimal order
of convergence.

Next we are concerned with a certain class of projection methods in Banach
spaces, essentially following the monograph of A. Kirsch [137]: Let X and Y be
Banach spaces and A : X → Y be bounded and one-to-one. Furthermore, let
Xn ⊂ X and Yn ⊂ Y be finite-dimensional subspaces of dimension n and Qn :
Y → Yn be a projection operator. For y ∈ Y , the projection method for solving
the equations Ax = y is to solve the equations

QnAxn = Qny for xn ∈ Xn. (4.141)

Assume that {x̂1, . . . , x̂n} and {ŷ1, . . . , ŷn} are bases of Xn and Yn, respectively.
Then Qny and every QnAx̂j , j = 1, . . . , n, are representable in the forms

Qny =
n∑

i=1

βiŷi and QnAx̂j =
n∑

i=1

Bij ŷi, j = 1, . . . , n, (4.142)

with βi, Bij ∈ K. The linear combination xn =
∑n

j=1 αj x̂j solves (4.141) if and

only if α = (α1, . . . , αn)
T ∈ Kn solves the finite system of linear equations

n∑
i=1

Bijαj = βi, i = 1, . . . , n. (4.143)

We are led to the following important classes of projection methods for A :
X → Y being a bounded and one-to-one operator.

Let X and Y be pre-Hilbert spaces and Xn ⊂ X and Yn ⊂ Y be finite-
dimensional subspaces with dimXn = dimYn = n. Let Qn : Y → Yn be the
orthogonal projection. Then the projected equation QnAxn = Qny is equivalent to

〈Axn, zn〉 = 〈y, zn〉 for all zn ∈ Yn. (4.144)

We let Xn = span{x̂1, . . . , x̂n} and Yn = span{ŷ1, . . . , ŷn}. Looking for a solution
of (4.144) in the form of a linear combination xn =

∑n
j=1 αj x̂j we arrive at

n∑
j=1

αj〈Ax̂j , ŷi〉 = 〈y, ŷi〉 for i = 1, . . . , n, (4.145)

or in matrix-vector Aα = β, where Aij = 〈Ax̂j , ŷi〉 and βi = 〈ŷ, ŷi〉, i = 1, . . . , n.
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A priori assumption. For the remaining part of this subsection about projection
methods, it is helpful to make the following a priori assumption (APA):

(i) Let A : X → Y be a linear, bounded, and injective operator between Banach
spaces, Xn ⊂ X and Yn ⊂ Y be finite-dimensional subspaces of dimension
n and Qn : Y → Yn be a projection operator. We assume that

⋃
n∈N

Xn is
dense in X and the QnA|Xn : Xn → Yn is one-to-one and, thus, invertible.

(ii) Let x ∈ X be the solution of

Ax = y. (4.146)

By xn ∈ Xn, we understand the unique solutions of the equations

QnAxn = Qny, n ∈ N. (4.147)

As a consequence of (APA) we are allowed to represent the solutions xn of
(4.147) in the form xn = Rny, where Rn : Y → Xn ⊂ X is defined by

Rn := (QnA|Xn)
−1Qn : Y → Xn ⊂ X. (4.148)

Suppose that (APA) is valid throughout this section. The projection method
is called convergent if the approximate solutions xn ∈ Xn of (4.147) converge to
the exact solution x ∈ X of (4.146) for every y ∈ A(X), i.e., if the limit relation

RnAx = (QnA|Xn)
−1QnAx→ x, n→∞, (4.149)

holds true for every x ∈ X .

Obviously, this definition of convergence coincides with the definition of a
regularization strategy for the equation Ax = y. Therefore, the projection method
converges if and only if Rn is a regularization strategy for the equation Ax = y.

Convergence can only be expected if we require that
⋃

n∈N
Xn is dense in X

and Qny → y for all y ∈ A(X). For a compact operator A, however, this property
is not sufficient for the convergence. In fact we have to assume an additional
boundedness condition:

The solution xn = Rny ∈ Xn of (4.147) converges to x for every y = Ax if
and only if there exists c > 0 such that

‖RnA‖ ≤ c for all n ∈ N. (4.150)

If (4.150) is satisfied, the following error estimate can be shown to be valid

‖xn − x‖ ≤ (1 + c) min
zn∈Xn

‖zn − x‖ (4.151)

with the same constant c as in (4.150).

The estimates (4.150) and (4.151) can be verified in straightforward way.

Suppose that ‖RnA‖ is bounded. The operator RnA is a projection operator
onto Xn since for zn ∈ Xn we have RnAzn = (QnA|Xn)

−1QnAzn = zn. Thus we
are able to deduce that

xn − x = (RnA− I)x = (RnA− I)(x − zn) for all zn ∈ Xn. (4.152)
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It follows that

‖xn − x‖ ≤ (c+ 1)‖x− zn‖ for all zn ∈ Xn (4.153)

such that (4.151) is valid. Convergence xn → x follows from the fact that
⋃

n∈N
Xn

is dense in X.

Thus far, we were concerned with the case, where the right-hand side y is
exactly known. Next we consider the case where the right-hand side is known only
approximately, i.e., we start from an element yε ∈ Y with ‖yε − y‖ ≤ ε. To this
end we understand the operator Rn from (4.148) as a regularization operator in
the usual sense so that we are led to distinguish two kinds of errors for the right-
hand side. A straightforward application of the triangle inequality yields with
xε
n := Rny

ε the inequality

‖xε
n − x‖ ≤ ‖xε

n −Rny‖+ ‖Rny − x‖
≤ ‖Rn‖ ‖yε − y‖+ ‖RnAx− x‖. (4.154)

As usual, we are confronted with the dilemma of IP: The error ε of the right-hand
side is multiplied by the norm of Rn. The second term describes the discretization
error against the exact data.

In practice one solves the discrete system (4.143) where the vector β is re-
placed by a perturbed vector βε ∈ Kn with

|βε − β|2 =

n∑
j=1

|βε
j − βj |2 ≤ ε2. (4.155)

We will call this fact the discrete perturbation of the right-hand side. Instead of
(4.143) one solves Bαε = β and defines xε

n ∈ Xn by xε
n =

∑n
j=1 α

ε
j x̂j . Note that

the choice of the basis functions x̂j ∈ Xn and ŷj ∈ Yn are essential rather than the
norm of Y . Unfortunately, it turns out, that the condition number of B reflects
the ill-conditioning of the equation Ax = y. In this respect it should be mentioned
that it suffices to study the question of convergence for the “principal part” of the
operator A under discussion. More concretely, if the projection method converges
for an operator A, then convergence and error estimates also hold true for A+C,
where C is compact relative to A (i.e., A−1C is compact).

The proof of the following result is, e.g., given in the monograph [137]:

Let C : X → Y be a linear operator with C(X) ⊂ A(X) such that A + C is
one-to-one and A−1C is compact in X. Assume, furthermore, that the projection
method converges for A, i.,e., that RnAx→ x, n→∞, for every x ∈ X, where

Rn = (QnA|Xn)
−1Qn.

Then it also converges for A+ C i.e.,

(Qn(A+ C)|Xn)
−1Qn(A+ C)x→ x, n→∞, for all x ∈ X.
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Let x ∈ X be the solution of (A + C)x = y and xε ∈ Xn be the solution of the
corresponding projected equation Qn(A+C)xε

n = yεn for some yεn ∈ Yn. Then there
exists a constant c > 0 such that

‖x− xε
n‖ ≤ c

[
‖A−1Cx −RnCx‖ + ‖A−1y −Rny

ε
n‖
]

(4.156)

for all sufficiently large n and ε > 0.

It should be mentioned that the first term on the right-hand side of (4.156)
is just the error of the projection methods for the equations Ax = Cx without
perturbation of the right-hand side. This allows to assure the estimate

‖A−1Cx −RnCx‖ ≤ (1 + c) min
zn∈XN

‖A−1Cx− zn‖.

The second term on the right-hand side of (4.156) is the error for the equationAx =
y. Hence, our results include both the continuous and the discrete perturbations
of the right-hand side. For the continuous case we set yεn := Qny

ε, while in the
discrete case, we set yεn =

∑n
i=1 β

ε
i yi.

All in all, a framework for reduction of inverse and identification problems
to finite-dimensional problems exists within the concept of projection methods
(cf. [184]). Projection methods (e.g., spline or finite-element functions) can be
either applied directly to IPP or to the regularized problem, i.e., to the problem
of minimizing a Tikhonov type functional (see, e.g., [158, 199, 241]). The moment-
discretization (or semidiscretization) method for integral equations of the first
kind and for IPP in reproducing kernel Hilbert spaces (see [178, 195]), viewed
as a projection method, is both quasi-optimal and robust. It is also particularly
suited when values of the data function y(s) are known only at a finite number
of points. These properties, together with the convergence and commutativity
properties established in [178] may account for the favorable behavior of computer
implementations of this method [16], which the authors [16] call Nashed’s method.

Galerkin methods. We deal with the situation that X and Y are (real or complex)
Hilbert spaces. Moreover, A : X → Y is assumed to be linear, bounded, and one-
to-one; Xn ⊂ X and Yn ⊂ Y are assumed to be finite-dimensional subspaces with
dimXn = dimYn = n; and Qn : Y → Yn is the orthogonal projection operator
onto Yn. Then, QnAxn = Qny reduces to the so-called Galerkin equations

〈Axn, zn〉 = 〈y, zn〉 for all zn ∈ Yn. (4.157)

Choosing bases {x̂1, . . . , x̂n} and {ŷ1, . . . , ŷn} of Xn and Yn, respectively, we are
led to a finite system in the coefficients of xn =

∑n
j=1 αj x̂j (see (4.145)):

n∑
i=1

Bijαj = βi, i = 1, . . . , n, (4.158)

where we have used the abbreviations Bij = 〈Ax̂j , ŷi〉Y and βi = 〈y, ŷi〉Y . We
observe that Bij and βi coincide with the settings in (4.142) only if the set {ŷj :
j = 1, . . . , n} forms an orthonormal basis of Yn.
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It should be remarked that the Galerkin method is also known as the Petrov–
Galerkin method (see [215]) since Petrov was the first to consider the general
situation of (4.157). The special case X = Y and Xn = Yn was studied by Bubnov
in 1914 and later by Galerkin in 1915 (see [86]). For this reason, this special case
is also known as the Bubnov–Galerkin method. In the case when the operator A
is self-adjoint and positive definite, we will see that the Bubnow–Galerkin method
coincides with the Rayleigh–Ritz method (see [221, 228]).

Error estimates. The following error estimates for the Galerkin method of
the form (4.154) (see, e.g., [137]) differ only in the first term, which corresponds
to the perturbation of the right-hand side. The second term bounds the error for
the exact right-hand side and tends to zero, provided the boundedness assumption
(4.150) is satisfied.

Assume that the Galerkin equations (4.157) are uniquely solvable for every
right-hand side of the equation Ax = y.

(a) Let yε ∈ Y with ‖y − yε‖ ≤ ε be given and xε
n ∈ Xn be the solution of

〈Axε
n, zn〉 = 〈yε, zn〉 for all zn ∈ Yn. (4.159)

Then the following error estimate holds true:

‖xε
n − x‖ ≤ ε‖Rn‖+ ‖RnAx− x‖. (4.160)

(b) Let B and β be given by (4.158) and βε ∈ Kn with |β − βε| ≤ ε, where | · |
denotes the Euclidean norm in Kn. Let αε ∈ Kn be the solution of Bαε := βε. Set
xε
n :=

∑n
j=1 α

ε
j x̂j ∈ Xn. Then the following error estimate holds true:

‖xε
n − x‖ ≤ an

λn
ε+ ‖RnAx− x‖, (4.161)

‖xε
n − x‖ ≤ bn‖Rn‖ε+ ‖RnAx − x‖, (4.162)

where

an = max

⎧⎨⎩
∥∥∥∥∥∥

n∑
j=1

ρj x̂j

∥∥∥∥∥∥
X

:

n∑
j=1

|ρj |2 = 1

⎫⎬⎭ , (4.163)

bn = max

⎧⎨⎩
√√√√ n∑

j=1

|ρj |2 :

∥∥∥∥∥∥
n∑

j=1

ρj ŷj

∥∥∥∥∥∥ = 1

⎫⎬⎭ , (4.164)

and λn > 0 denotes the smallest singular value of the matrix B.

Next we are interested in deriving error estimates for three particularly in-
teresting choices for the finite-dimensional subspaces Xn and Yn (see, e.g., [137]).
The cases, where Xn and Yn are coupled by Yn = A(Xn) or Xn = A∗(Yn) will
lead to the least squares method or the dual least squares method, respectively.
In addition we will study the Bubnov–Galerkin method for the case where A ad-
ditionally satisfies the so-called Garding inequality. In all cases, we formulate the
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Galerkin equations for the perturbed cases first without using particular bases and
then with respect to given bases in Xn and Yn.

Least squares method. For a finite-dimensional subspace Xn ⊂ X , determine
xn ∈ Xn such that

‖Axn − y‖ ≤ ‖Azn − y‖ for all zn ∈ Xn. (4.165)

Clearly, existence and uniqueness of xn ∈ Xn can be guaranteed easily since Xn

is finite-dimensional and A is assumed to be one-to-one. The solution xn ∈ Xn of
the least squares problem is characterized by

〈Axn, Azn〉 = 〈y,Azn〉 for all zn ∈ Xn. (4.166)

We notice that this method is a special case of the Galerkin method, where we
have Yn = A(Xn). Choosing a basis {x̂j, j = 1, . . . , n} of Xn leads to the finite
linear system

n∑
j=1

αj〈Ax̂j , Axi〉 = βi = 〈y,Ax̂i〉 for all i = 1, . . . , n, (4.167)

i.e., in matrix-vector nomenclature Bα = β. The corresponding matrix B ∈ Kn×n

with Bij = 〈Ax̂j , Ax̂j〉Y is Hermitian and positive definite, since A is assumed to
be one-to-one.

Of practical interest is the case where the right-hand side is perturbed by an
error. Let xε

n ∈ XN solve the equations

〈Axε
n, Azn〉 = 〈yε, Azn〉 for all zn ∈ Xn, (4.168)

where yε ∈ Y is the perturbed right-hand side satisfying ‖yε − y‖Y ≤ ε. For
the discrete perturbation, we assume that β ∈ Kn is replaced by βε ∈ Kn with
|βε−β| ≤ ε, where |·| denotes the Euclidean norm in Kn. This leads to the following
finite system of equations in the unknown coefficients of xε

n =
∑n

j=1 a
ε
j x̂j :

n∑
j=1

αε
j〈Ax̂j , Ax̂i〉 = βε

i for all i = 1, . . . , n. (4.169)

The system (4.169) is uniquely solvable, since the matrix B is positive definite.

Obviously, for least squares methods, the boundedness condition (4.150) is
not satisfied without imposing additional assumptions (for more details we refer,
e.g., to [139, 234]):

Let A : X → Y be a linear, bounded, and injective operator between Hilbert
spaces. Suppose that Xn ⊂ X form finite-dimensional subspaces such that

⋃
n∈N

Xn

is dense in X. Let x ∈ X be the solution of Ax = y and xε
n ∈ Xn be the least

squares solution from (4.168) or (4.169). Denote by σn the quantity

σn = max {‖zn‖ : zn ∈ Xn, ‖Azn‖ = 1} . (4.170)
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Suppose that there exists c > 0 independent of n, such that

min
zn∈Xn

{‖x− zn‖+ σn‖A(x− zn)‖} ≤ c‖x‖ for all x ∈ X. (4.171)

Then, the least squares method is convergent, and we have ‖Rn‖ ≤ σn. Moreover,
we have the error estimate

‖x− xε
n‖ ≤ rnσn ε+ c min {‖x− zn‖ : zn ∈ Xn} (4.172)

for some c > 0. Here, rn = 1, if xε
n ∈ Xn solves (4.168), i.e., ε measures the

continuous perturbation ‖yε− y‖Y . If ε measures the discrete error |βε− β| in the
Euclidean norm and xε

n =
∑n

j=1 α
ε
j x̂j ∈ Xn, where the vector αε = (αε

1, . . . , α
ε
n)

T

solves (4.169), then rn is given by

rn = max

⎧⎨⎩
√√√√ n∑

j=1

|ρj |2 :

∥∥∥∥∥∥A
⎛⎝ n∑

j=1

ρj x̂j

⎞⎠∥∥∥∥∥∥ = 1

⎫⎬⎭ . (4.173)

For further numerical aspects of least squares method, we refer, e.g., to [57,
58, 134, 157, 173, 178].

Dual least squares method. As another variant of the Galerkin method, we come to
the dual least squares method. In this case the boundedness condition (4.150) is in-
deed always satisfied: Given some finite-dimensional subspaces Yn ⊂ Y , determine
un ∈ Yn such that

〈A∗un, zn〉 = 〈y, zn〉 for all zn ∈ Yn, (4.174)

where, as always, A∗ : Y → X denotes the adjoint of A. Then xn = A∗zn is called
the dual least squares solution. It is a special case of the Galerkin method, where
Xn = A∗(Yn). Writing (4.174) for y = Ax in the form

〈A∗un, A
∗zn〉 = 〈x,A∗zn〉 for all zn ∈ Yn, (4.175)

we see that the dual least squares method is just the least squares method for the
equation A∗u = x. This explains the standard terminology in the literature.

Suppose now that the right-hand side is perturbed. Let yε ∈ Y be given
such that ‖yε − y‖ ≤ ε. Instead of the linear equation (4.174), we determine
xε
n := A∗uε

n ∈ Xn via

〈A∗uε
n, A

∗zn〉 = 〈yε, zn〉 for all zn ∈ Yn. (4.176)

For discrete perturbations, we specify a basis {ŷj , j = 1, . . . , n} of Yn and assume
that the right-hand side βi = 〈y, ŷi〉Y , i = 1, . . . , n, of the resulting linear equations
are perturbed by a vector βε ∈ Kn with |βε−β| ≤ ε, where |·| denotes the Euclidean
norm in Kn. Instead of (4.174) we are then led to

xε
n = A∗uε

n =

n∑
j=1

αε
jA

∗ŷj , (4.177)
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where αε ∈ Kn solves the linear equation
n∑

j=1

αε
j〈A∗ŷj , A∗ŷi〉 = βε

i , i = 1, . . . , n. (4.178)

Results on convergence and error estimates are listed, e.g., in the textbook [137].

Let X and Y be Hilbert spaces. Suppose that A : X → Y is linear, bounded,
an one-to-one such that the range A(X) is dense in Y . Let Yn ⊂ Y form finite-
dimensional subspaces such that

⋃
n∈N

Yn is dense in Y . Assume that x ∈ X is the
solution of Ax = y. Then the linear equations (4.176) and (4.178) are uniquely
solvable for every right-hand side and every n ∈ N. Furthermore, the dual least
squares method is convergent, and we have

‖Rn‖ ≤ σn = max{‖zn‖ : zn ∈ Yn, ‖A∗zn‖ = 1}. (4.179)

Moreover, we have the error estimate

‖x− xε
n‖ ≤ rnσn ε+ c min{‖x− zn‖ : zn ∈ A∗(Yn)} (4.180)

for some c > 0. Here, rn = 1 if rεn ∈ Xn solves (4.176), i.e., ε measures the norm
‖yε − y‖ in Y . If ε measures the discrete error |βε − β| and xδ

n =
∑n

j=1 α
ε
jA

∗ŷj ∈
Xn, where αε solves (4.178), then rn is given by

rn = max

⎧⎨⎩
√√√√ n∑

j=1

|ρj |2 :

∥∥∥∥∥∥
n∑

j=1

ρj ŷj

∥∥∥∥∥∥ = 1

⎫⎬⎭ (4.181)

(note that rn = 1 if {ŷj, j = 1, . . . , n} constitutes an orthonormal system in Y ).

Bubnov–Galerkin method. We assume that A : X → X is a linear and bounded
operator and Xn, n ∈ N, are finite-dimensional subspaces. The Galerkin method
amounts to the problem of determining xn ∈ Xn such that

〈Axn, zn〉 = 〈y, zn〉 for all zn ∈ Xn. (4.182)

This special case is called the Bubnov–Galerkin method. Again, we consider the
perturbation of the right-hand side. If yε ∈ Y is chosen such that ‖yε − y‖ ≤
ε represents a perturbed right-hand side, then instead of (4.182) we study the
equation system

〈Axε
n, zn〉 = 〈yε, zn〉 for all zn ∈ Xn. (4.183)

An alternative is to choose a basis {x̂j , j = 1, . . . , n} of Xn. We assume
that the right-hand side βi = (y, ŷi), i = 1, . . . , n of the Galerkin equations are
perturbed by a vector βε ∈ Kn with |βε − β| ≤ ε, where | · | denotes again the
Euclidean norm in Kn. In this case, instead of (4.182), we have to solve

n∑
j=1

aεj〈Ax̂j , x̂i〉 = βε
i for i = 1, . . . , n. (4.184)

For αε ∈ Kn we set xε
n =

∑n
j=1 α

ε
j x̂j .
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Next we show that the Rayleigh–Ritz method, in fact, is a special case of the
Bubnov–Galerkin method.

Rayleigh–Ritz method. Let A : X → X be also self-adjoint and positive
definite, so that 〈Ax, y〉X = 〈x,Ay〉X and 〈Ax, x〉X > 0 for all x, y ∈ X with
x �= 0. We introduce the functional

J(z) = 〈Az, z〉 − 2Re〈y, z〉 for z ∈ X. (4.185)

The identity

J(z)− J(x) = 2Re〈Ax− y, z − x〉+ 〈A(z − x), z − x〉 (4.186)

and the positivity of A tells us that x ∈ X is the unique minimum of J if and
only if x solves Ax = y. The Rayleigh–Ritz method is to minimize J over the
finite-dimensional subspace Xn. From (4.186), we see that if xn ∈ Xn minimizes
J on Xn, then , for zn = xn ± εun with un ∈ Xn and ε > 0, it follows that

0 ≤ J(zn)− J(xn) = ±ε 2Re〈Axn − y, un〉+ ε2〈Aun, un〉
for all un ∈ Xn. By dividing ε > 0 and afterwards letting ε → 0 we find that
xn ∈ Xn satisfies the equation system (4.182). If, on the other hand, xn ∈ Xn

solves (4.182), then we get from (4.186),

J(zn)− J(xn) = 〈A(zn − xn), zn − xn〉 ≥ 0

for all zn ∈ Xn. Therefore, the Rayleigh–Ritz method coincides with the Bubnov–
Galerkin method.

Finally we are interested in the Bubnov–Galerkin method for the important
class of coercive operators. As preparatory material we briefly recapitulate some
settings (see, e.g., [137]):

(i) A Gelfand triple (V,X, V ∗) consists of a reflexive Banach space V , an Hilbert
space X , and the dual space V ∗ of V such that
(a) V is a dense subspace of X ,
(b) the imbedding J : V → X is bounded.
It is conventional to write (see, e.g., [137]) V ⊂ X ⊂ V ∗ since we can identify
X with a dense subspace of V ∗. This identifications given by the dual operator
J∗ : X → V ∗ of J , where we identify the dual of the Hilbert space X by
itself. From (x, y) = 〈J∗x, y〉, for all x ∈ X and y ∈ V we see that with this
identification the dual pairing 〈·, ·〉 in (V ∗, V ) is an extension of the inner
product (·, ·) in X , i.e., we write

〈x, y〉 = (x, y) for all x ∈ Y and y ∈ V.

Furthermore, we have the estimates

|〈x, y〉| ≤ ‖x‖V ∗‖y‖V for all x ∈ V ∗, y ∈ V,
thus,

|〈x, y〉| ≤ ‖x‖V ∗‖y‖V for all x ∈ X, y ∈ V.

It is well known that J∗ is one-to-one and has a dense range.
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(ii) Let V be a reflexive Banach space with dual space V ∗. We denote the norms
in V and V ∗ by ‖ · ‖V and ‖ · ‖V ∗ , respectively. A linear bounded operator
A : V ∗ → V is called coercive if there exists γ > 0 with

Re〈x,Ax〉 ≥ γ ‖x‖2V for all x ∈ V ∗, (4.187)

where 〈·, ·〉 denotes the dual pairing in (V ∗, V ).
(iii) The operator A satisfies Garding’s inequality if there exists a linear compact

operator C : V ∗ → V such that A+ C is coercive, i.e.,

Re(x,Ax) ≥ γ ‖x‖2V ∗ −Re〈x,Cx〉 for all x ∈ V ∗.

Note that, by the same argument as in the Lax–Milgram theorem, it can
be shown that every coercive operator is an isomorphism from V ∗ onto V .
Coercive operators play an important role in the study of partial differential
equations and integral equations by variational methods. In the conventional
definition, the roles of V and V ∗ are interchanged. For integral operators that
are “smoothing”, our definition seems to be more appropriate. However, both
definitions are equivalent in the sense that the inverse operatorA−1 : V → V ∗

is coercive in the usual sense with γ replaced by γ/‖A‖2.

Convergence of the Bubnov–Galerkin method. After these preparations we are in
the position to formulate convergence of the Bubnov–Galerkin method for coercive
operators (see [137]).

Let (V,X, V ∗) be a Gelfand triple, and Xn ⊂ V be finite-dimensional sub-
spaces such that

⋃
n∈N

Xn is dense in X. Let K : V ∗ → V be coercive with constant
γ > 0. Let x ∈ X be the solution of Ax = y. Then we have the following results:

(a) There exist unique solutions of the Galerkin equations (4.182)–(4.184), and
the Bubnov–Galerkin method converges in V ∗ with

‖x− xn‖V ∗ ≤ c min{‖x− zn‖V ∗ : zn ∈ Xn} (4.188)

for some c > 0.
(b) Define the quantity ρn > 0 by

ρn = max{‖u‖ : u ∈ Xn, ‖u‖V ∗ = 1} (4.189)

and the orthogonal projection operator Pn from X onto Xn. The Bubnov–
Galerkin method converges in X if there exists c > 0 with

‖u− Pnu‖V ∗ ≤ c

ρn
‖u‖ for all u ∈ X. (4.190)

In this case, we have the estimates

‖Rn‖ ≤
1

γ
ρ2n (4.191)

and

‖x− xε
n‖ ≤ c[rnρ

2
n +min{‖x− zn‖ : zn ∈ Xn}] (4.192)
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for some c > 0. Here rn = 1 if xε
n ∈ Xn solves (4.183), i.e., ε measures the norm

‖yε− y‖ in X. If ε measures the discrete error |βε−β| in the Euclidean norm and
xε
n =

∑n
j=1 α

ε
j x̂j ∈ Xn, where αε solves (4.184), then rn is given by

rn = max

⎧⎨⎩
√√√√ n∑

j=1

|ρj |2 : ‖
n∑

j=1

ρj x̂j‖ = 1

⎫⎬⎭ . (4.193)

Again, we note that rn = 1 if {x̂j , j = 1, . . . , n} forms an orthonormal system in
X . For further details, we refer to [200] and the monographs [22, 137, 139, 148].

4.3. Multiscale methods as regularization schemes

Next a compact operator equation is dealt within regularization methods, based
on filtering techniques by means of wavelets. In a general setup a singular integral
approach to regularization is established, decomposition/reconstruction regulariza-
tion wavelets are introduced in the frequency space which allow the regularization
in form of a multiresolution analysis. Two different types of regularization wavelets
are discussed in more detail, namely (non-locally supported) Tikhonov–Phillips
regularization wavelets and (bandlimited) truncated singular value decomposition
wavelets. Our considerations closely follow Freeden, Schneider [77] about regular-
ization and multiresolution.

Let (X, 〈·, ·〉) and (Y, 〈·, ·〉) be separable real functional Hilbert spaces over
domains GX and GY , respectively, i.e., X , respectively, Y consists of functions
x : GX → R, respectively, y : GY → R. We consider a linear, compact operator
A : X → Y satisfying N (A) = {0}, R(A) � Y , R(A) = Y, so that A∗A : X → X
is self-adjoint.

In the sequel, we denote by {xn}n=0,1,... a complete orthonormal system in
(X, 〈·, ·〉X) and by {yn}n=0,1,... a complete orthonormal system in (Y, 〈·, ·〉Y ) such
that the singular values {σn}n=0,1,... of A satisfy Axn = σnyn, A

∗yn = σnxn, n ∈
N0. Since A is supposed to be injective it follows that σn > 0 for all n ∈ N0.
Any p ∈ P , P ∈ {X,Y }, can be represented in terms of an orthonormal (Fourier)
expansion with respect to {pn}n=0,1,...

p =

∞∑
n=0

p∧P (n)pn (4.194)

with
p∧P (n) = 〈p, pn〉P , (4.195)

where the equality in (4.194) is understood in the ‖ · ‖P -sense. In conclusion, any
element of R(A) admits an expansion of the form

Ax =

∞∑
n=0

σnx
∧
X(n)yn. (4.196)

As is well known, the Picard condition tells us that the problem

Ax = y, x ∈ X, y ∈ Y (4.197)
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has a solution if and only if y ∈ Y satisfies
∞∑
n=0

(σ−1
n y∧Y (n))

2 <∞. (4.198)

In this case it is known that the solution of (4.197) is representable in the form

x =

∞∑
n=0

σ−1
n y∧Y (n)xn = A†y. (4.199)

Since the right-hand side y is error affected (due to the inaccuracy of the
measuring instrument) in any practical application, the series (4.199) will not
converge in general. For that purpose we are interested in regularized solutions.

The idea (cf. [77]) we follow is to represent the J-level regularization of the
problem

Ax = y, x ∈ X, y ∈ Y (4.200)

by means of a wavelet analysis. The overall advantage of such a method is that
we obtain a J + 1-level regularization by starting with the J-level regulariza-
tion and adding so-called detail information. It becomes clear that any classical
regularization method based on a filtered singular value decomposition can be re-
formulated in terms of our wavelet method. Thus, any known parameter choice
strategy depending on the special method is also applicable and, moreover, any of
the corresponding error estimates holds true, too. For that reason we omit these
discussions here.

As is well known, a family {RJ}J∈Z of linear operators RJ : Y → X , J ∈ Z,
is a regularization of A† if it satisfies the following properties:

(i) RJ is bounded on Y for all J ∈ Z,
(ii) for any member y ∈ R(A), the limit relation limJ→∞ RJy = A†y holds in

the ‖ · ‖X -sense.

The kernel xJ = RJy is called the J-level regularization of the problem (4.197).

Product kernels. A function ΓP,Q〈·, ·〉 : GP × GQ → R, P,Q ∈ {X,Y }, of the
form

ΓP,Q(x, y) =
∞∑
n=0

Γ∧(n) pn(x) qn(y), x ∈ GP , y ∈ GQ, Γ∧(n) ∈ R, n ∈ N0,

(4.201)
is called a (P,Q)-(product) kernel. Note that the indices P and Q in ΓP,Q are
associated to the variables x and y, respectively, such that ΓP,Q(x, y) = ΓQ,P (y, x).
The sequence {Γ∧(n)}n=0,1,... is called the symbol of the (P,Q)-kernel. For brevity,
a (P, P )-kernel is simply said to be a P -kernel.

An important question for our investigations is as follows: Fix one variable
of a product kernel, what are the conditions for the product kernel (as a function
of the remaining variable) to be of class P ∈ {X,Y }? The answer is provided by
the concept of symbol admissibility.
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A symbol {Γ∧(n)}n=0,1,... is called P -admissible, P ∈ {X,Y }, if it satisfies
the following conditions:

(Ai)

∞∑
n=0

(Γ∧(n))2 <∞, (4.202)

(Aii) sup
x∈GP

( ∞∑
n=0

(Γ∧(n)pn(x))2
)

<∞. (4.203)

A symbol {Γ∧(n)}n=0,1,... is called ((P,Q)-admissible, P,Q ∈ {X,Y }, or simply)
admissible, if it is P -admissible as well as Q-admissible.

From the definition of admissibility we immediately obtain the result:

Let {Γ∧(n)}n=0,1,... be the symbol of an (P,Q)-kernel, P,Q ∈ {X,Y }.

(α) If {Γ∧(n)}n=0,1,... is P -admissible, then ΓP,Q(x, ·) ∈ Q for every (fixed)
x ∈ GP ,

(β) If {Γ∧(n)}n=0,1,... is Q-admissible, then ΓP,Q(·, y) ∈ P for every (fixed)
y ∈ GQ.

Convolutions. A fundamental tool for our wavelet theory is the concept of
a convolution we introduce below: Let ΓX,X be an X-kernel with X-admissible
symbol. Suppose that F is of class X . Then we understand the convolution of
ΓX,X and F to be the function given by

(ΓX,X ∗ x)(t) =
〈
ΓX,X(t, ·), x

〉
X

=

∞∑
n=0

Γ∧(n)x∧
X(n)xn(x), x ∈ GX . (4.204)

We immediately see that (ΓX,X ∗ x)∧X(n) = Γ∧(n)x∧
X(n) and ΓX,X ∗ x ∈ X . In

analogous way we define the convolution of an (X,Y )-kernel ΓX,Y having an X-
admissible symbol with a function y ∈ Y to be the expression

(ΓX,Y ∗ y)(t) =
〈
ΓX,Y (t, ·), y

〉
Y
=

∞∑
n=0

Γ∧(n)y∧Y (n)xn(t), t ∈ GX , (4.205)

and it follows that ΓX,Y ∗ y ∈ X . Lastly, the convolution of an (X,Y )-kernel ΓX,Y

having an Y -admissible symbol with a function F ∈ X is given by

(ΓX,Y ∗ x)(s) =
〈
ΓX,Y (·, s), x

〉
X

=
∞∑
n=0

Γ∧(n)x∧
X(n)yn(s), s ∈ GY , (4.206)

and we have ΓX,Y ∗ x ∈ Y . Next we proceed with the convolution of two product
kernels leading to the following result: Let ΓX,X be an X-kernel with X-admissible
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symbol and let ΥX,Y be an (X,Y )-kernel with Y -admissible symbol. Then

(Γ ∗Υ)X,Y (t, s) = (ΓX,X ∗ΥX,Y (·, s))(t)
=
〈
ΓX,X(t, ·),ΥX,Y (·, s)

〉
X

=
∞∑
n=0

Γ∧(n)Υ∧(n)xn(t)yn(s), t ∈ GX , s ∈ GY (4.207)

represents an (X,Y )-kernel with admissible symbol

((Γ ∗Υ)X,Y )(n) = Γ∧(n)Υ∧(n). (4.208)

Dilation and shifting. In order to prepare the fundamentals of the forthcoming

wavelet theory we are now interested in countable families {ΓP,Q
J }, J ∈ Z, of

product kernels ΓP,Q
J , P,Q ∈ {X,Y }. Observing our notations we are able to

define a dilation operator acting on these families in the following way: let ΓP,Q
J

be a member of the family of product kernels.

Then the dilation operator DK , K ∈ Z is defined by DKΓP,Q
J = ΓP,Q

J+K .

Especially, we obtain ΓP,Q
J = DJΓ

P,Q
0 , J ∈ Z. Thus we refer ΓP,Q

0 to as a “mother
kernel”.

Moreover, we define a shifting operator SP
t , t ∈ GP , P ∈ {X,Y }, by SP

t ΓP,Q
J =

ΓP,Q
J (t, ·), t ∈ GP , J ∈ Z, resp. SQ

s ΓP,Q
J = ΓP,Q

J (·, s), s ∈ GQ, J ∈ Z. In doing

so we consequently get ΓP,Q
J (t, ·) = SP

t DJΓ
P,Q
0 , t ∈ GP , J ∈ Z, resp. ΓP,Q

J (·, s) =
SQ
s DJΓ

P,Q
0 , s ∈ GQ, J ∈ Z.

Regularization scaling functions. Next we are concerned with a wavelet based
regularization technique of problem (4.200): Let {(ΦJ)

∧(n)}n=0,1,..., J ∈ Z, be an
(X,Y )-admissible symbol of a family of product kernels which additionally satisfies
the following properties:

i) limJ→∞ σn((ΦJ )
∧(n))2 = 1, n ∈ N,

ii) ((ΦJ+1)
∧(n))2 ≥ ((ΦJ )

∧(n))2, J ∈ Z, n ∈ N,
iii) limJ→−∞((ΦJ )

∧(n))2 = 0, n ∈ N,
iv) σ0((ΦJ )

∧(0))2 = 1, J ∈ Z.

Then {(ΦJ)
∧(n)}n=0,1,... is said to be the generating symbol of a regularization

scaling function (with respect to (4.197)). The (X,Y )-kernel

dΦX,Y
J =

∞∑
n=0

(ΦJ )
∧(n)xnyn (4.209)

is called a decomposition regularization scaling function, the (X,X)-kernel

rΦX,X
J =

∞∑
n=0

(ΦJ )
∧(n)xnxn (4.210)

is called a reconstruction regularization scaling function.
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From the results of the previous subsection it is clear that dΦX,Y
J (t, ·) ∈ Y, t ∈

GX , J ∈ Z, rΦX,X
J (t, ·) ∈ X , t ∈ GX , J ∈ Z, and (rΦJ ∗ dΦJ )

X,Y is an (X,Y )-kernel
with (X,Y )-admissible symbol {((ΦJ)

∧(n))2}n=0,1,.... Observing these properties
we are able to verify the following result which is central for our considerations:

Let {(ΦJ)
∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of a regularization

scaling function. Then, for any y ∈ Y ,

xJ = rΦX,X
J ∗ (dΦX,Y

J ∗ y) (4.211)

represents the J-level regularization of problem (4.200). If, in addition, y ∈ R(A),
then

lim
J→∞

‖xJ −A†y‖ = 0. (4.212)

For RJ : Y → X defined by

RJ =
(
rΦJ ∗dΦJ

)X,Y ∗ y, y ∈ Y

we have (see [77])

RJy =
∞∑

n=0

((ΦJ)
∧(n))2 y∧Y (n) xn

and

‖RJ‖2 ≤
∞∑

n=0

((ΦJ )
∧(n))4, J ∈ Z. (4.213)

As an immediate consequence of our results we obtain the result: Let y be a
member of R(A). Suppose that yε ∈ Y denotes the right-hand side of problem
(4.200) with noise level ‖y − yε‖ ≤ ε. Moreover, assume that {(ΦJ)

∧(n)}n=0,1,...,
J ∈ Z, is the generating symbol of a regularization scaling function, where the
parameter J = J(ε) is assumed to satisfy

(1) limε→0 J(ε) =∞,
(2) limε→0 ε((ΦJ )

∧(n))2 = 0.

Then we have

lim
ε→0

‖(rΦJ ∗ dΦJ)
X,Y ∗ yε −A†y‖ = 0. (4.214)

Condition iii) seems to be unnecessary for the proof of (4.214) and, in fact, it
is. Nevertheless, in what follows we need this assumption for our multiresolution
analysis and the (spectral) introduction of wavelets.

Multiresolution analysis. For any y ∈ R(A) each (rΦJ ∗ dΦJ )
X,Y ∗ y provides a

regularization of the solutionA†y at scale J by ”smoothing” the Fourier coefficients
of A†y with the symbol {((ΦJ)

∧(n))2}n=0,1,.... In terms of filtering, (rΦJ ∗dΦJ)
X,Y

may be interpreted as a low-pass filter. Accordingly we understand the scale spaces
VJ to be the image of R(A) under the operator RJ :

VJ = RJ(R(A)) = {(rΦJ ∗ dΦJ )
X,Y ∗ y : y ∈ R(A)}. (4.215)

This leads us to the properties formulated in the following statement:
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The scale spaces satisfy the following properties:

i) {X0} ⊂ VJ ⊂ VJ′ ⊂ X , J ≤ J ′, i.e., for any right-hand side y ∈ R(A)
of problem (4.200), all J-level regularizations with fixed parameter J are
sampled in a scale space VJ with the above property,

ii)
⋂∞

J=−∞ VJ = {x0},
iii)

⋃∞
J=−∞ VJ

‖·‖X

= X,
iv) if xJ ∈ VJ , then D−1xJ ∈ VJ−1, J ∈ Z.

If a collection of subspaces of X satisfies the above conditions we call them
a regularization multiresolution analysis (RMRA).

Regularization wavelet functions. The definition of the regularization scaling func-
tion allows us to introduce regularization wavelets. An essential point is the def-
inition of a decomposition and a reconstruction regularization wavelet associated
to regularization mother wavelets. This definition, of course, has to be formulated
in close relation to a prescribed regularization scaling function.

Let {(Φj)
∧(n)}n=0,1,..., j ∈ Z, be the generating symbol of a regularization

scaling function. Then the (X,Y )-admissible generating symbol {(Ψj)
∧(n)}n=0,1,...,

j ∈ Z, and the (X,X)-admissible generating symbol {(Ψ̃j)
∧(n)}n=0,1,..., j ∈ Z, re-

spectively, are defined by the “scaling equation”

(Ψ̃j)
∧(n)(Ψj)

∧(n) = ((Φj+1)
∧(n))2 − ((Φj)

∧(n))2. (4.216)

Correspondingly, the (X,Y )-kernel

dΨX,Y
J =

∞∑
n=0

(ΨJ)
∧(n) xn yn (4.217)

is called the decomposition regularization wavelet, while the (X,X)-kernel

rΨ̃X,X
J =

∞∑
n=0

(Ψ̃J)
∧(n) xn xn (4.218)

is called the reconstruction regularization wavelet. The corresponding regulariza-

tion mother wavelets are denoted by dΨX,Y
0 and rΨ̃X,X

0 , respectively.

Using this notation, any decomposition regularization wavelet, respectively,
any reconstruction regularization wavelet can be interpreted as a dilated and
shifted copy of the corresponding mother wavelet.

dΨX,Y
J (t, ·) = SX

t DJ
dΨX,Y

0 , (4.219)

rΨJΨ̃
X,X
J (t, ·) = SX

t DJ
rΨX,X

0 . (4.220)

At this stage it becomes obvious why we required Condition iv). A conclusion of
(4.216) is a vanishing 0th moment of the regularization wavelets. Moreover, from
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(4.216) it can be readily deduced that

((Φ0)
∧(n+ 1))

2
=

J∑
j=−∞

(Ψ̃j)
∧(n)(Ψj)

∧(n) = ((Φ0)
∧(n))2 +

J∑
j=0

(Ψ̃j)
∧(n)(Ψj)

∧(n).

(4.221)

Thus, we easily see in connection with 4.216 that(
rΦ̃J+1 ∗dΦJ+1

)X,Y

=
J∑

j=−∞
(rΨ̃j ∗ dΨj)

X,Y = (rΦ0 ∗ dΦ0)
X,Y +

J∑
j=0

(rΨ̃j ∗ rΨj)
X,Y .

(4.222)

In analogy to the definition of the operator RJ we consider now convolution op-
erators SJ : Y → X , J ∈ Z, defined by

SJ y = (rΨ̃J ∗ dΨJ)
X,Y ∗ y. (4.223)

It describes the “detail information” of the right-hand side y at scale J . From
Equation (4.222) it follows that the operator RJ+1 can be decomposed in the
following way:

RJ+1 = R0 +

J∑
j=0

Sj . (4.224)

But this gives rise to introduce the detail spaces as follows:

WJ = SJ(R(A)) = {(rΨ̃J ∗ dΨJ)
X,Y ∗ y : y ∈ R(A)}. (4.225)

The spaceWJ contains the “detail information” needed to go from a regularization
at level J to a regularization at level J + 1. Note that

VJ = VJ−1 +WJ−1, (4.226)

J∑
j=−∞

Wj = V0 +
J∑

j=0

Wj = VJ+1. (4.227)

It is worth mentioning that, in general, the sum decomposition is neither direct
nor orthogonal. Two examples leading to orthogonal and non-orthogonal multires-
olution are introduced in the next subsection.

Any right-hand side y ∈ Y can now be decomposed as follows. Starting with
R0y we find

RJ+1y = R0y +

J∑
j=0

Sjy (4.228)

for any J ∈ Z. In other words, the partial reconstruction RJy is nothing else than
the “difference of two smoothings” at two consecutive scales,

SJy = RJ+1y −RJy. (4.229)

For what follows we define the regularization wavelet transform at scale J ∈ Z
and position t ∈ GX by letting

RWT (y)(J ; t) = 〈dΨX,Y
J (t, ·), y〉Y , y ∈ Y. (4.230)
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From (4.222) it is not hard to verify the main result in this context:
Let {(ΦJ)

∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of a regularization
scaling function. Suppose that

{(Ψj)
∧(n)}n=0,1,..., {(Ψ̃j)

∧(n)}n=0,1,..., j ∈ Z

are the generating symbols of the corresponding regularization wavelets. Further-
more, let y be of class Y . Then,

xJ = (rΦ0 ∗ dΦ0)
X,Y ∗ y +

J∑
j=0

rΨ̃j ∗RWT (y)(j; ·) (4.231)

denotes the J-level regularization of the problem (4.200) satisfying

lim
J→∞

‖xJ −A†y‖ = 0 (4.232)

provided that y ∈ R(A).

Equation (4.231) shows the essential characteristic of regularization wavelets.
By adding the so-called detail information of level J as the difference of two
smoothings of two consecutive scales J + 1 and J , we change the regularized
solution from xJ to xJ+1 thereby satisfying limJ→∞ xJ = A†y in the case that
y ∈ R(A). Of course, this can be understood as a kind of a permanence principle.

Table: The multiscale method as presented here can be illustrated by the scheme
shown in Figure 4.1.

R0(y) R1(y) R2(y) . . . −→
j→∞

A
†
y

V0 ⊂ V1 ⊂ V2 . . . = A
†
X

V0+ W0 + W1 + W2 . . . = A
†
X

R0(y)+ S0(y) + S1(y) + S2(y)+ . . . = A
†
y

Figure 4.1. Multiresolution regularization scheme.

Some generating symbols. The singular values {σn}n=0,1,... of A satisfy Axn =
σnyn, A∗yn = σnxn, n ∈ N0. Keeping these facts in mind we are led to introduce
the following examples of generating symbols of a regularization scaling function:

i) Truncated singular value decomposition (bandlimited regularization).

a) orthogonal:

(ΦJ )
∧(n) =

{
σ
−1/2
n for n = 0, . . . , NJ

0 for n ≥ NJ + 1
, (4.233)

NJ =

{
0 for J ∈ Z, J < 0
2J − 1 for J ∈ Z, J ≥ 0

, (4.234)



282 W. Freeden and M.Z. Nashed

b) non-orthogonal:

(ΦJ )
∧(n) =

⎧⎪⎨⎪⎩
σ
−1/2
n for n = 0, . . . ,MJ

σ
−1/2
n (τJ (n))

1/2 for n = MJ + 1, . . . , NJ

0 for n ≥ NJ + 1

, (4.235)

NJ =

{
0 for J ∈ Z, J < 0
2J+1 − 1 for J ∈ Z, J ≥ 0

,

(4.236)

MJ =

{
0 for J ∈ Z, J < 0
2J − 1 for J ∈ Z, J ≥ 0

and

τJ (n) = 2− 2−J(n+ 1), n ∈ [2J − 1, 2J+1 − 1], J ∈ N0. (4.237)

It is easy to see that case a) leads to an orthogonal RMRA, i.e., the detail
and the scale spaces satisfy the orthogonality conditions

VJ+1 = VJ ⊕WJ , WJ ⊥ WK , K �= J, K, J ≥ 0. (4.238)

In case b) the scale and detail spaces are still finite dimensional, but the
detail spaces are no longer orthogonal.

ii) Tikhonov’s regularization (non-bandlimited regularization).
a) classical

(ΦJ )
∧(n) =

(
σn

σ2
n + γ2

J

) 1
2

, n ∈ N, J ∈ Z, (4.239)

b) Tikhonov–Phillips

(ΦJ)
∧(n) =

(
σn

σ2
n + γ2

J(n+ 1
4 )

4

) 1
2

, n ∈ N, J ∈ Z (4.240)

with {γJ}, J ∈ Z, being a sequence of real numbers satisfying limJ→∞ γJ = 0
and limJ→−∞ γJ = ∞. Case a) leads to the minimization of the Tikhonov
functional, where the penalty term is given by the norm of the regularized so-
lution of problem (4.200). Case b) leads to the minimization of the Tikhonov–
Phillips functional, where the penalty term is given by the linearized spherical
bending energy of the regularized solution of problem (4.200). Both cases lead
to infinite-dimensional scale and detail spaces and, furthermore, the RMRA
is neither direct nor orthogonal.

4.4. Iterative methods as regularization schemes

From linear algebra we borrow the idea to use iterative solvers of the equation
Ax = y, y ∈ Y , in the following way: Suppose that the matrix A ∈ Kn×n is
written in the form A = B − C with an invertible B. Then we are able to write
Ax = y, in equivalent form

Ax = y ⇔ (B − C) x = y ⇔ Bx = Cx+ y ⇔ x = B−1Cx+B−1y. (4.241)
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Let us base the determination of a (uniquely determined) fixed point on the fol-
lowing iteration:

x(0) ∈ Kn, arbitrary,

Bx(n+1) = Cx(n) + y, n ∈ N0.

Clearly, if
{
x(n)

}
converges to x∗ ∈ Rn, then it follows that Ax∗ = y.

In numerical linear algebra the following procedures are convenient which
should be recapitulated here: Let A ∈ Rn×n be given. Let us decompose the
matrix A in the form A = L+D + U such that

L =

⎛⎜⎝ 0 0
. . .

∗ 0

⎞⎟⎠ D =

⎛⎜⎝ a11 0
. . .

0 ann

⎞⎟⎠ U =

⎛⎜⎝ 0 ∗
. . .

0 0

⎞⎟⎠ (4.242)

We distinguish the following concepts:

(1) (Jakobi Method) We let

B = D, C = −L− U. (4.243)

Then we are led to

x(n+1) = D−1 (L+ U)x(n) +D−1y, n ∈ N. (4.244)

(2) (Gauss–Seidel Method) We choose

B = D + L, C = −U. (4.245)

Then we are led to

x(n+1) = (D + L)
−1

Ux(n) + (D + L)
−1

y, n ∈ N. (4.246)

(3) (Richardson Method) For ω > 0, let

B =
1

ω
I, C =

1

ω
I −A. (4.247)

Then we are led to the recursion

x(n+1) =

(
1

ω
I

)−1(
1

ω
I −A

)
x(n) +

(
1

ω
I

)−1

y

= ω

(
1

ω
I −A

)
x(n) + ωy

= (I − ωA) x(n) + ωy, n ∈ N. (4.248)

Since iteration methods known from linear algebra that use the upper or
lower triangular part of a matrix cannot be adequately transferred to operator
equations, we are not able to use the first two of the aforementioned iteration
procedures. However, the third method (i.e., Richardson method or successive
relaxation method) can be applied leading to a variant called Landweber iteration.

Landweber iteration. In order to solve the normal equation

A∗Ax = A∗y, y ∈ Y, x ∈ X, (4.249)
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the Landweber iteration starting from the initial value x(0) ∈ X is defined by

x(m+1) = (I − ωA∗A) x(m) + ωA∗y

= x(m) + ωA∗
(
y −Ax(m)

)
, m = 0, 1, . . . (4.250)

For simplicity, we introduce the family of operators {Rm}m∈N
⊂ L (Y,X) by

Rmy = x(m) :

Let 0 < ω < 2
‖A‖2 and A ∈ L (X,Y ). Then, for x(0) ∈ X , we have

lim
m→∞Rmy =

{
A†y + PN (A)x

(0) y ∈ D
(
A†)

∞ y /∈ D
(
A†) (4.251)

The Landweber iteration is characterized by

x(m) = Rmy = Fm (A∗A)A∗y + (I − ωA∗A)m x(0), (4.252)

where

Fm(λ) = ω

m−1∑
j=0

(1− ωλ)j =
1− (1− ωλ)m

λ
. (4.253)

Thus, the Landweber iteration represents a regularization with a filter that cannot
be used as such if we do not know the singular values of our problem.

The polynomial λ �→ pm (λ) = 1 − λFm (λ) = (1− ωλ)
m

is called residual
polynomial.

• For x(0) = 0 it follows that A†y is the solution of the normal equation

A∗Ax = A∗y (4.254)

showing minimal norm (as usual). This result is also obtained for x(0) ∈
N (A)⊥, since then PN (A)x

(0) = 0.

• For x(0) �= 0 we see that A†y + PN (A)x
(0) is the solution of the normal

equation

A∗Ax = A∗y (4.255)

with minimal distance to x(0), i.e., the x(0)-minimum norm solution.∥∥∥A†y + PN (A)x
(0) − x(0)

∥∥∥ = min
{∥∥∥x− x(0)

∥∥∥ : A∗Ax = A∗y
}

(4.256)

Obviously, the choice of the initial value of the Landweber iteration for inverse
problems is of great importance for the solution (see, e.g., [227]). We investigate
the same choice for a noiseless and noisy right-hand side.

Let A ∈ L (X,Y ), y, yε ∈ Y with ‖y − yε‖Y < ε. Let
{
x(m)

}
and

{
x(m),ε

}
be the Landweber iteration sequences with respect to y and yε corresponding to the

same initial value x(0) = x(0),ε ∈ X and the same parameter ω ∈
(
0, 2

‖A‖2

)
. Then∥∥∥x(m) − x(m),ε

∥∥∥ ≤ ε

{ √
2ω , m = 1√
mω , m ≥ 2.

(4.257)
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The estimate (4.257) suggests that the parameter ω should be chosen as small
as possible. However, we have seen that the convergence of the approximation
error depends on the estimate |1 − ωλ| < 1. As a consequence, for small ω the
approximation error converges very slowly.

In more details, we separate the total error in the usual way∥∥A†y −Rmyε
∥∥ =

∥∥A†y −Rmy
∥∥︸ ︷︷ ︸

approximation
error

+ ‖Rmy −Rmyε‖︸ ︷︷ ︸
data
error

(4.258)

with
∥∥A†y −Rmy

∥∥ m→∞−→ 0 if x(0) = 0 and ‖Rmy −Rmyε‖ ≤
√
mω ε, i.e., the

Landweber iteration is a regularization with a suitably chosen m. Our aim now is
to find a stopping rule for m.

In fact, we obtain for the residual term

Ax(m),ε − yε = A
(
(I − ωA∗A)x(m−1),ε + ωA∗yε

)
− yε

= Ax(m−1),ε − ωAA∗Ax(m−1),ε + ωAA∗yε − yε

= (I − ωAA∗)Ax(m−1),ε − (I − ωAA∗) yε

= (I − ωAA∗)
(
Ax(m−1),ε − yε

)
. (4.259)

Under the choice 0 < ω < 2
‖A‖2 we have∥∥∥Ax(m),ε − yε
∥∥∥ ≤ ‖I − ωAA∗‖ ·

∥∥∥Ax(m−1),ε − yε
∥∥∥

≤
∥∥∥Ax(m−1),ε − yε

∥∥∥ , (4.260)

i.e., the norms of the residuals are monotonously decreasing in m. Furthermore,
if yε /∈ D

(
A†), it follows that Ax(m−1),ε − yε /∈ N (A∗) (due to the fact that

yε ∈ D(A†)).

If 0 < ω < 2
‖A‖2 and y /∈ N (A∗), then

‖(I − ωAA∗) y‖ < ‖y‖ . (4.261)

If yε /∈ D
(
A†), then ∥∥Ax(m),ε − yε

∥∥ <
∥∥Ax(m−1),ε − yε

∥∥, i.e., the residual
is strictly monotonously decreasing. Hence, we are confronted with the typical
dilemma of ill-posed problems that a small residual terms does not imply a small
error. The monotonicity of the residual term suggests to use a discrepancy principle
as a kind of “stopping rule”. This observation goes back to [38]. In more detail,
let τ > 1 be fixed. We are interested in determining m∗ ∈ N0, such that∥∥Ax(m∗),ε − yε

∥∥ ≤ τε <
∥∥Ax(m),ε − yε

∥∥ m = 0, 1, . . . ,m∗ − 1. (4.262)

The discrepancy principle (4.262) seems to be particularly suitable for Land-
weber iteration, since a residual term larger than 2ε implies the monotonicity of
the error:
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Suppose that A ∈ L (X,Y ), y ∈ R (A) and yε ∈ Y with ‖y − yε‖ < ε. If∥∥Ax(m),ε − yε
∥∥ > 2ε and 0 < ω < 1

‖A‖2 , then∥∥A†y − x(m+1),ε
∥∥ <

∥∥A†y − x(m),ε
∥∥, m ∈ N0, (4.263)

i.e., the error is also strictly monotonously decreasing.

In other words, as already announced the error decreases monotonously just
like the residual as long as the residual stays larger than 2ε.

An upper bound for the number of iterations when using the discrepancy
principle is as follows (cf. [227]):

Assume that A ∈ L (X,Y ), y ∈ R (A), and yε ∈ Y with ‖y − yε‖ < ε.
Suppose that 0 < ω < 1

‖A‖2 . The discrepancy principle (4.262) with τ > 1 yields

the stopping index m∗ = m∗(ε, yε) ≤ CLε
−2 with the constant CL > 0 for the

Landweber iteration.

Note that this result does not require any assumptions on the smoothness of
the solution. With such information the discrepancy principle enables us to stop
the iteration much earlier.

Suppose that A ∈ L(X,Y ), 0 < ω < 2/ ‖A‖2, y ∈ R(A), y ∈ Y with
‖y − yε‖ < ε and x(0) = 0. Then the Landweber iteration together with the discrep-
ancy principle (4.262) is an order optimal regularization of A†, i.e., the Landweber
iteration possesses infinite qualification. The stopping index can be estimated as
follows

m∗ = m∗(ε, yε) ≤ Cμε
−2
μ+1 (4.264)

with Cμ > 0.

If we choose as an initial value 0 �= x(0) with x(0) ∈ N (A)⊥, it suffices to
study the convergence of the sequence {x̃(m),ε} with x̃(0),ε = 0 which results from
the Landweber method applied to the equation Ax = yε − Ax(0). The minimum
norm solution of this equation is A†y−x(0) and if A†y ∈ Xμ, we also need to have

that x(0) ∈ Xμ to obtain the optimal order of decay for the error, i.e., O(εμ/(μ+1)).

Unfortunately, for unknown μ we have to choose 0 as starting value.

The disadvantage of the Landweber iteration is that its convergence is rather
slow, i.e., the stopping indexm∗ is often large. This is the reason why semi-iterative
methods (see, e.g., [227] and the references therein) come into play to accelerate
the convergence.

Semi-iterative methods. The characteristics of Landweber iteration are as follows;

x(0) = 0 (4.265)

and

x(m) = Fm (A∗A)A∗y (4.266)
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with Fm(λ) given by (4.253), i.e.,

Fm (λ) = ω

m−1∑
j=0

(1− ωλ)j =
1− (1− ωλ)m

λ
. (4.267)

For λ ∈ [0, ‖A‖2] we have

Fm(λ) → 1

λ
, m → ∞. (4.268)

Moreover, we are able to show that

sup
λ∈[0,‖A‖2]

λ|Fm(λ)| = sup
λ∈[0,‖A‖2]

|1− (1 − ωλ)m| ≤ 2, (4.269)

so that {Fm}m∈N is a regularizing filter. The residual polynomials corresponding
to the filter polynomials are of degree m:

pm (λ) = 1− λFm (λ) = (1− ωλ)
m
. (4.270)

All in all, the Landweber iteration procedure is as follows:

y −Ax(m) = pm (AA∗) y. (4.271)

In order to accelerate the Landweber iteration we are led to the idea (see, e.g., the
monograph [227]), to replace the polynomial filter by another filter family, that
shows a faster convergence to 1/λ.

To this end we consider an alternative polynomial Fm of degree m − 1, so
that its residual polynomial λ �→ pm(λ) = 1 − λFm(λ) is of degree m. Letting
x(m) := Fm (A∗A)A∗y we obtain as residuum y − Ax(m) = pm (AA∗) y. Now,
if {Fm}m∈N is a regularizing filter, the corresponding family {pm}m∈N has the
following properties:

If {Fm} is a regularizing filter, the residual polynomials {pm} satisfy the
following properties:

(i) lim
m→∞ pm (λ) = 0 for λ ∈ [0, ‖A‖2] .

(ii) {pm} is uniformly bounded on the interval
[
0, ‖A‖2

]
(by 1 + CF ).

(iii) pm (0) = 1 for all m.

Conversely, if {pm} is a family of polynomials satisfying the properties (i),
(ii) (iii), then

Fm (λ) =
1− pm (λ)

λ
, m ∈ N0 (4.272)

constitutes a regularizing filter.

From the theory on special functions of mathematical physics” (see, e.g., [73])
we borrow the following result:

Let the family {pm} fulfill the following conditions:
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1. pm is a polynomial of degree m on the interval
[
0, ‖A‖2

]
.

2.
‖A‖2∫
0

pm (λ) pn (λ)w (λ) dλ = 0 if n �= m, where w (λ) > 0 for λ ∈
[
0, ‖A‖2

]
and w is piecewise continuous.

3. pm (0) = 1, m ∈ N0.

Then there exist Am, Bm ∈ R satisfying

pm (λ) = pm−1 (λ) +Am (pm−1 (λ)− pm−2 (λ))−Bmλpm−1 (λ) . (4.273)

The polynomials {pm} are orthogonal polynomials on the interval
[
0, ‖A‖2

]
with respect to the weight function w (λ). Note that w (λ) induces a measure on[
0, ‖A‖2

]
. In transition to iteration we are led to

x(0) = 0, (4.274)

x(1) = F1 (A
∗A)A∗y with F1 (λ) =

1− p1 (λ)

λ
, (4.275)

x(m) = x(m−1) +Am

(
x(m−1) − x(m−2)

)
+BmA∗(y −Ax(m−1)

)
for m ≥ 2.

(4.276)

This is the reason why methods of type (4.274), (4.275), (4.276) are called semi-
iterative (note that, for each iteration step, two previous iteration values are re-
quired).

For simplicity, assume now that ‖A‖ ≤ 1 which can be achieved by scaling
the operator. As a consequence, we only need to consider polynomials on the
interval [0, 1]. Then the following results are known for semi-iterative methods
(see, e.g., [227]):

(1) Let {pm} be a sequence of residual polynomials, so that it is uniformly
bounded on [0, 1], normalized by pm(0) = 1, and it converges pointwise to 0 on
(0, 1]. If {Fm} is the corresponding sequence of filters, then for A ∈ L(X,Y ) and
x(0) ∈ X it follows that

lim
m→∞x(m) = lim

m→∞

(
x(0) + Fm(A∗A)A∗(y −Ax(0))

)
=

{
A†y + PN (A)x

(0) : y ∈ D(A†),
∞ : y /∈ D(A†).

(2) Suppose that A is of class L(X,Y ). Let {x(m)}, {x(m),ε} be the iterates
of a semi-iterative method with respect to y ∈ R(A) and yε ∈ Y using the same
initial value. Let the residual polynomials of the semi-iterative method be uniformly
bounded by Cp > 0. Then, for the data error, we have∥∥x(m) − x(m),ε

∥∥ ≤ 2Cpmε. (4.277)

Together with a stopping rule that fulfills

m∗(ε) → ∞ , εm∗(ε) → 0 for ε → 0 (4.278)

the semi-iterative method is a regularization of A†.
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In order to determine the speed of convergence we investigate

ωμ(m) = sup
0≤λ≤1

λμ/2|pm(λ)| (4.279)

(3) Each sequence of polynomials {pm}m∈N0 , pm(0) = 1, which satisfies the
best asymptotic behavior

ωμ(m) = O(m−μ) for m → ∞ (4.280)

for some μ > 0, is uniformly bounded on [0, 1] and converges pointwise to 0 on
(0, 1]. In other words {pm}m∈N0 given in such a way is a sequence of residual
polynomials, for which, in addition, ωα(m) = O(m−α) for 0 < α ≤ μ.

The discrepancy principle (cf. (4.262)) can also be used as stopping rule.

(4) Let A ∈ L(X,Y ) and y ∈ R(A). Let the normalized polynomials
{pm}m∈N0 , pm(0) = 1, satisfy (4.280) for some μ > 1. Then the corresponding
semi-iterative method with starting value x(0) = 0 is an order optimal regulariza-
tion of A† with respect to Xα for 0 < α ≤ μ−1 if it is combined with the discrepancy
principle (4.262) as stopping rule with τ > sup{‖pm‖C[0,1] |m ∈ N0} ≥ 1.

The stopping index satisfies

m∗ = m∗(ε, yε) = O
(
ε−1/(α+1)

)
(4.281)

for ε → 0.

Normalized polynomials that fulfill (4.280) automatically lead to semi-iter-
ative order optimal regularization methods. The reason for this is that (4.280)
implies the uniform boundedness of the polynomials on [0, 1] as well as

sup{|Fm(λ)| : λ ∈ [0, 1]} ≤ 2τm2

for the corresponding filters.

In the general case that pt(λ) = 1 − λFt(λ) we are confronted with the
situation (see, e.g., [227]) that

ωμ(t) ≤ Cpt
μ/2 for t → 0 (4.282)

which is the analogue of (4.280). However, this neither implies the uniform bound-
edness of {pt}t>0 nor an estimate like |Ft(λ)| ≤ CF t

−α.

Gradient method. The method of successive approximation gradient, and related
iterative methods can be used for finding approximate solutions of ill-posed prob-
lems (see, e.g., [108, 133, 134, 172, 179] and the references therein for more details).

We let X and Y be two Hilbert spaces, both over K, and let A be a bounded
linear operator on X into Y . As already known, the linear equation

Ax = y, y ∈ Y (4.283)

may or may not have a solution depending on whether or not y is in R(A), the
range of A, and even if y ∈ R(A) the solution of (4.283) need not be unique. For
any bounded linear operator A : X → Y,R(A) and R(A∗) are closed subspaces of
X and Y , respectively, hence, X = R(A)⊕R(A)⊥ and Y = R(A∗)⊕R(A∗)⊥. The
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relations R(A) = R(A∗)⊥ , R(A∗) = R(A)⊥ , R(A)⊥ = R(A∗),R(A) = R(AA∗)
are also valid (see, for instance, [265]). Let P denote the orthogonal projection of

X onto R(A∗) and let Q denote the orthogonal projection of A on R(A). Then
Ax = APx for all x ∈ X,A∗y = A∗Qy for each y ∈ Y , and the restriction of A to
R(A)⊥ has an inverse, which is not necessary.

In either case, i.e., y ∈ R(A) unique or non-unique solution of (4.283), one can
seek a best approximate solution, i.e., a solution which minimizes the quadratic
function J(x) = ‖Ax − y‖2. Such a solution always exist for all y ∈ Y if R(A)
is closed. If R(A) is arbitrary, a best approximation does not exist for all y ∈ Y ,
however, it does exist for all y ∈ R(A)⊥.

We consider the conjugate gradient (CG) method (cf. [133, 134]) that min-
imizes J(x) = ‖Ax − y‖2 at each step. That is, choose an initial vector x0 ∈ X ,
then compute r0 = p0 = A∗(Ax0 − y), where A∗ is the adjoint of A. If p0 �= 0,
compute x1 = x0 − α0p0, where α0 = ‖r0‖2/‖Ap0‖2. For i = 1, 2, . . ., compute

ri = A∗(Axi − y) = ri−1 − αi−1A
∗Api−1, (4.284)

where

αi−1 =
〈ri−1, pi−1〉
‖Api−1‖2

, (4.285)

and if ri �= 0, then compute

pi = ri + βi−1pi−1, (4.286)

where

βi−1 = −〈ri, A∗Api−1〉
‖Api−1‖2

. (4.287)

Set

xi+1 = xi − αipi. (4.288)

We examine some properties of the CG algorithm, for the case of an arbitrary
bounded linear operator. To be more concrete, the domain of the generalized in-
verse of A is D(A†) = R(A)+R(A)†. If y ∈ D(A†), then Qy = ȳ is in the range of
T and v = A†y = A†ȳ and y = Qy = Av = AA†y. Since Q is an orthogonal projec-
tion, the functional J can be written as J(x) = ‖Ax−y‖2 = ‖Ax− ȳ‖2+‖ȳ−y‖2.
Thus, minimizing J is equivalent to minimizing the functional ‖Ax − ȳ‖2 which
we denote by g(x). Setting

u = v + (I − P )x0 = A†y + (I − P )x0 (4.289)

one can define the error vector e = x − u and the vector r = A∗(Ax − y) =
A∗(Ax − ȳ). Then

(A∗A)e = r (4.290)

and

〈r, e〉 = ‖Ax− ȳ‖2 = g(x). (4.291)

The sequence of iterates {xi} generated by the CG method (4.284)–(4.288) is
contained in the flat x0 +R(A∗) with both ri and pi, for i = 0, 1, 2, . . ., in R(A∗).



Ill-Posed Problems: Operator Methodologies of Resolution 291

Moreover, p0, p1, . . . , pi−1 form an A∗A-orthogonal set of vectors and their span is
an i-dimensional subspace of R(A∗). If at the ith step, ri = 0, then both Axi − y

and Axi − ȳ are vectors in R(A∗) = R(A)⊥. However, Axi and ȳ are also in

R(A), and therefore txi = ȳ, implying that g(xi) = 0. In this case, the iteration
terminates at the ith step and we have

xi = x0 −
i−1∑
k=0

αkpk = u, (4.292)

as well as

A†y = Px0 −
i−1∑
k=0

αipk. (4.293)

Therefore, unless explicitly mentioned otherwise, we shall assume that the
CG method does not terminate in a finite number of steps, that is ri �= 0 for
i = 0, 1, . . . . We list some known identities for the CG method.

For indices satisfying k = 0, 1, 2, . . ., i and i = 0, 1, 2, . . ., we have

〈ri, rk〉 = 〈pi, rk〉, (4.294)

‖Api‖ � ‖Ari‖, (4.295)

βi =
‖ri+1‖2
‖ri‖2

, (4.296)

〈pi, pk〉 =
‖ri‖2‖pk‖2

‖rk‖2
, (4.297)

pi = ‖ri‖2
i∑

j=0

rj
‖rj‖2

(4.298)

and

‖ri‖2 � ‖pi‖. (4.299)

Setting g(xi) = 〈ri, ei〉 = ‖Axi − ȳ‖2, where ei = xi − u, one finds that

g(xi)− g(xi+1) = αi‖ri‖2. (4.300)

Finally, xi minimizes the functionals J(x) and y(x) on the i-dimensional flat

x0 + span{p0, p1, . . . , pi−1}. (4.301)

It is worth mentioning the following three properties (see [134]):

(i) For k = 0, 1, 2, . . . , i

g(xi) = 〈ei, rk〉 = 〈ri, ek〉. (4.302)

For i = 0, 1, 2, . . .,

〈pi, ei〉‖ri‖2 = g(xi)‖pi‖2. (4.303)
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(ii) The inequality

‖ei+1‖2 � ‖ei‖2 − αig(xi) (4.304)

holds for i = 0, 1, 2, . . ..
(iii) For any non-negative integers i and j, both 〈pi, ei〉 and 〈ei, ej〉 are non-

negative numbers.

The main result on the CG method for bounded linear operators with closed
range depends heavily upon the following observation:

Let X and Y be two Hilbert spaces over the same field and let A be a bounded
linear transformation mapping X into Y . If R(A) is closed, then S = A|R(A∗),
the restriction of A to R(A∗), has a bounded inverse and U = A∗A|R(A∗) is a
positive definite operator onto R(A∗).

Let μ(x) := 〈Ux, x〉/〈x, x〉, x �= 0, be the Rayleigh quotient of U . Since U is a
bounded symmetric positive definite linear operator on the Hilbert space R(A∗),
the spectral bounds

m = inf{μ(x) : x ∈ R(A∗)} (4.305)

and

M = sup{μ(x) : x ∈ R(A∗)} (4.306)

are positive and finite.

Let X and Y be two Hilbert spaces over the real field and let A be a bounded
linear transformation mapping X into Y . If the range of A is closed then the
conjugate gradient method (4.284)–(4.288) converges monotonously to the least
squares solution u = A†y + (I − P )x0 of Ax = y. Moreover, if m and M are the
spectral bounds of U = {A∗A|R(A∗)}, then

‖xi − u‖2 � g(x0)

m

(
M −m

M +m

)2i

, i = 0, 1, 2, . . . . (4.307)

Altogether, let X and Y be two Hilbert space over the same field. If A is a
linear transformation mapping X into Y of rank r, then the conjugate gradient
method associated with the system Ax = y converges in at most r steps to the
least squares solution u = A†y + (I − P )x0.

When R(A∗) is not closed, then the operator U = A|R(A∗) need not be
positive definite, and therefore the generalization of an inequality cannot longer
be utilized. However, it is still possible to establish convergence of the CG method
under mild restrictions.

Let X and Y be two Hilbert spaces over the real field, and let A be a bounded
linear operator mapping X to Y . If Qy ∈ R(AA∗A), then the conjugate gradient
method (4.284)–(4.288), with initial value x0 ∈ R(A∗A), converges monotonously
to the least squares solution of minimal norm u = A†y. In fact,

‖xi − u‖2 � ‖A‖2‖x0 −A†y‖2‖A∗†x0 − (AA∗)†‖2
‖A‖2‖A∗†x0 − (AA∗)†y‖2 + i‖x0 − (AA∗)†y‖2 , i = 1, 2, . . . .

(4.308)
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4.5. Stochastic regularization methods

Let X be a Hilbert space. Our statistical approach starts from an equation of type
(see, e.g., [101, 148])

Ax = y + η (4.309)

where x, y, η are considered as values of jointly distributed random variables.

Random variables. On the probability space Ω equipped with the probability mea-
sure P we understand ξ : Ω → X as Hilbert space-valued random variable. If X is
a function space, then we denote by ξ a stochastic process. For x ∈ X we obtain by
ξx = 〈x, ξ〉 a real-valued random variable. Hence, for a complete orthogonal system
{xi} in X, we are able to introduce by ξ(i) = ξxi = 〈xi, ξ〉 an infinite number of
jointly distributed random variables.

In what follows we suppose that ξ has a vanishing expectation value, i.e., we
have

E[〈x, ξ〉] = 0 (4.310)

for all x ∈ X (note that (4.310) does not mean any restriction, if (4.310) is violated

we are allowed to go over to the random variable ξ̃ = ξ − E[ξ]). Furthermore, we
assume that the random variable has a finite second moment, so that

(i) E[|〈x, ξ〉|2] < ∞ for all x ∈ X ,

(ii) the expectation value is continuous at x.

Then it follows that E[〈x, ξ〉〈ξ, z〉] is a continuous, symmetric, non-negative bilin-
ear form on X , hence, there exists a linear, continuous, selfadjoint, non-negative
operator Rξξ : X → X satisfying

〈Rξξx, z〉 = Cov(x, z) = E[〈x, ξ〉〈ξ, z〉], (4.311)

Rξξ is called covariance operator.

Example. Let G be a regular region. Assume that X = L2(G) and ξ(α) is defined
for α ∈ G. Then we are able to identify the covariance operator with the covariance
function resulting in the autocovariance function given by

Rξξ(α, β) = Cov(ξ(α), ξ(β)) = E[ξ(α) · ξ(β)]. (4.312)

Application to an L2(G)-function x yields the identity

Rξ,ξx(α) =

∫
G
Rξξ(α, β)x(β) dβ. (4.313)

As white noise we denote the Gaussian process characterized by

Rξξ(α, β) = η2 δ(α− β), (4.314)

i.e.,
Rξξ = η2I. (4.315)

Let ξ, η be jointly distributed random variables with ξ : Ω → X, ζ : Ω → Y .
Then we define the cross-covariance operator by Rξζ : Y → X as follows:

〈Rξζy, x〉 = E [〈y, ζ〉Y 〈x, ξ〉X ] . (4.316)
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Best linear estimator and Tikhonov–Phillips regularization. Next we have a look
at the equation

Aξ = β + ζ, ξ : Ω → X, β, ζ : Ω → Y. (4.317)

We assume that the inverse A−1 exists. The problem is to estimate ξ under the
knowledge of β and ζ. To this end, we suppose that E[ξ] = E[β] = 0 such that
Rξζ = 0 (i.e., ξ and ζ are uncorrelated) and R−1

ζζ exists. It is not difficult to show

that (see, e.g., [101, 148])

Rββ = ARξξA
∗ +Rζζ , (4.318)

Rξβ = RξξA
∗. (4.319)

In order to realize a least squares estimation we have to consider a linear estimator
of ξ, i.e., a random variable ξL = Lβ, where L : Y → X is a linear and continuous
operator such that xL = Ly is a solution of the operator equation. Central in our
considerations is the following statement, that is standard in statistical geodesy
(see, e.g., [101] and the references therein):

If Rζζ is assumed to have a continuous inverse, then

L = RξβR
−1
ββ = RξξA

∗(ARξξA
∗ +Rζζ)

−1 (4.320)

minimizes the functional E
[
|〈x, ξ − Lβ〉|2

]
for all x.

Under the simplifying assumptions

Rξξ = I, Rζζ = η2I

we obtain for (4.320)

L = A∗(AA∗ + η2I)−1 = (A∗A+ η2I)−1A∗. (4.321)

In other words, in similarity to the Tikhonov–Philipps regularization, we are led
to normal equations in order to determine the best linear estimator.

For arbitrary covariance operators we obtain x = Ly by minimizing

〈R−1
ζζ (Ax− y), Ax− y〉+ 〈R−1

ξξ x, x〉 = |||Ax− y|||2 + ||x|| (4.322)

with

|||y||| = 〈R−1
ζζ y, y〉 (4.323)

and

‖x‖ = 〈R−1
ξξ x, x〉 . (4.324)

Observing these facts we are finally able to come to the following conclusion:

The best linear estimator is a special Tikhonov–Phillips regularization method,
or, the Tikhonov–Phillips regularization method is a special linear estimator.

The stochastic approach also allows an interpretation of Bayes estimation as
Tikhonov–Phillips regularization (for more details the reader is referred, e.g., to
[101, 148] and the references therein).
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4.6. Mollifier methods

The original idea of the mollifier method can be characterized as follows: We are
interested in the solution x† of Ax = y, but we realize that the problem is “too
ill-posed” for being able to determine x† accurately. Thus, we compromise by
changing the problem into a more well-posed one, namely that of trying to deter-
mine a mollified version Eρx

† of the solution, where Eρ is a suitable “mollification
operator” depending on a parameter ρ. The heuristic motivation is that the trou-
ble usually comes from high frequency components of the data and of the solution,
which are damped out by mollification (which, in fact, defines mollification).

In abstract nomenclature, early mollifier methods for ill-posed problems were
studied in [148]. Our approach is based on [63]. First we recapitulate the essential
ingredients. Again we start from the operator equation

Ax = y, x ∈ X, y ∈ Y (4.325)

with X,Y Hilbert spaces and R(A) non-closed. Our aim is to introduce operators
Eρ : X → X such that

Eρx → x, x ∈ X, ρ → 0. (4.326)

IF X is a suitable function space, we are able to represent Eρ by a mollifier eρ via
the equation

Eρ(x)(s) = 〈eρ(s, ·), x〉X . (4.327)

Instead of x† we now look for Eρx
† for some ρ > 0, thereby assuming that eρ has

a representation

A∗vρs = eρ(s, ·) (4.328)

with vρs ∈ Y . Then, if Ax† = y, we can compute Eρx
† as follows:

(Eρx
†)(x) = 〈eρ(s, ·), x†〉X = 〈A∗vρs , x

†〉X = 〈vρs , Ax†〉Y = 〈vρs , y〉Y , (4.329)

i.e.,

(Eρx
†)(s) = 〈vρs , y〉Y . (4.330)

Hence, the problem of solving (4.325) reduces to that of solving (4.328), which is
also ill posed as soon as (4.325) is. However, the right-hand side of (4.328) (which
is actually a family of equations depending on the parameter s) is usually given
analytically, since the mollifier eρ is chosen. Hence, there is no (or much less) error
in the data of (4.328), and these equations can be solved (by regularization) much
better than (4.325). As soon as an approximation for vρs has been computed, it
can be used to solve (4.325) for any right-hand side y via (4.330). If we define the
operator Sρ : Y → X via the estimate

(Sρy)(s) = 〈vρs , y〉, (4.331)

then, by (4.330), this operator maps the right-hand side of (4.325) to mollified
solutions. This motivates the term approximate inverse of A used for Sρ, also for
the more general case that (4.328) is not solvable. In this case, (4.328) is replaced by

‖A∗vρs − eρ(s, ·)‖X → min, (4.332)
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which, is equivalent to

AA∗vρs = Aeρ(s, ·). (4.333)

Note that one needs the requirement that (4.333) is solvable. The function vρs
is called reconstruction kernel ; uniqueness can be enforced by solving (4.333) in
the best-approximate sense, i.e., by selecting the solution of (4.333) with minimal
norm: vρs = (A∗)†eρ(s, ·). Assume, for simplicity, that R(A) is dense in Y , so that
(AA∗)−1 exist. Then we have with vγs defined by (4.332):

Sρy = 〈(AA∗)−1Aeρ(s, ·), y〉Y = 〈eρ(s, ·), A∗(AA∗)−1y〉X
= 〈eρ(s, ·), (A∗A)†A∗y〉X = (Eρx

†)(s), (4.334)

i.e., Sρy is the mollified version of the best-approximate solution of (4.330). This
justifies (4.332).

Let A be compact with singular system (σn;xn, yn). Let a regularization
method realized in standard way, i.e.,

xα =

∞∑
n=1

σnFα(σ
2
n)〈y, yn〉Y yn. (4.335)

If we assume that X and Y are suitable function spaces, then (4.335) can be
written as

xα(s) = 〈vρs , y〉Y (4.336)

with

vρs (t) =

∞∑
n=1

σnFα(σ
2
n)yn(t)yn(s). (4.337)

Now, vρs can be written in the form (4.333) with

eρ(s, t) =

∞∑
n=1

σ2
nFα(σ

2
n)yn(s)yn(t). (4.338)

Hence, xα can be considered as a mollified solution Eρx
† with Eρ given (in the

sense of (4.326)) by the mollifier (4.338), so that linear regularization methods can
also be viewed as mollifier methods.

The underlying “suitable function space” have to be such that point evalu-
ation is continuous wherever used. The choice of the mollifier, of course, depends
on what one wants to achieve; frequently used choices are singular integral kernels
(such as Haar kernel, sinc kernel, etc.). Note again that each of these mollifiers
can be applied only to equations, so that (4.333) admits a solution.

4.7. Backus–Gilbert method

The Backus–Gilbert method (cf. [18]) treats moment problems of the type

〈x, ki〉X = βi, i ∈ {1, . . . , n}, (4.339)
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with given elements ki ∈ X , for example X = L2(G), G regular region, so that
(4.339) takes the form∫

G
ki(t)x(t) dt = βi, i ∈ {1, . . . , n}, (4.340)

which can be thought of as resulting from discretizing an integral equation of the
first kind ∫

G
k(s, t)x(t) dt = β(s) (4.341)

by collocating at points s1, . . . , sn, so that ki(t) = k(si, t), βi = β(si).

With Ax = (〈x, k1〉X , . . . , 〈x, kn〉X)T , β = (β1, . . . , βn), (4.339) can be writ-
ten in the form Ax = β with X = L2(G), Y = Rn. In the Backus–Gilbert method,
one looks for an approximate inverse S : Rn → L2(G) for A by defining

Sy =

n∑
i=1

yivi, (4.342)

with functions vi ∈ L2(G) to be determined as follows: since

SAx =

n∑
i=1

〈x, ki〉Xvi =

〈
x,

n∑
i=1

kivi

〉
, (4.343)

i.e., for the concrete case (4.340)

(SAx)(s) =

∫
G
x(t)

[
n∑

i=1

ki(t)vi(s)

]
dt, (4.344)

one should aim at determining the functions vi such that
n∑

i=1

ki(t)vi(s) ∼ δ(|s− t|). (4.345)

The question is how to formalize the requirement (4.345). In the classical approach
to the Backus–Gilbert method [18], this is done by minimizing, for any fixed s ∈ G
and some chosen τ , the functional

(v1, . . . , vn) �→
∫
G
|s− t|2τ

∣∣∣∣∣
n∑

k=1

ki(t)vi

∣∣∣∣∣
2

dt. (4.346)

Under the normalization constraint∫
G

n∑
i=1

ki(t)vi dt = 1, (4.347)

we then take vi(s) :=vi. The constraint (4.347) just says that for x≡1, (SAx)(s) =
x(s) holds. The parameter τ (in [18] τ = 1) determines the concrete method.

The common feature between mollification and the Backus–Gilbert method
is the following: In both cases, an approximate inverse (determined by vρs or by
the vi(s)) is determined independently from the right-hand side of the equation,
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which can then be used to explicitly represent an approximate solution via (4.336)
or via (4.342). By use of Lagrange multipliers, the Backus–Gilbert basis functions
v1, . . . , vn can be determined pointwise from the linear system(

G(s) w

wT 0

)(
v
λ

)
=

(
0
1

)
, s ∈ Ω, (4.348)

with

G(s)ij =

∫
G
|s− t|2τki(t)kj(t) dt, i, j ∈ {1, . . . , n}, (4.349)

wi =

∫
G
ki(t) dt, i ∈ {1, . . . , n}. (4.350)

Note that the matrix of this system depends on s while in the corresponding system
(4.333) for mollifier methods, s enters only in the right-hand side.

4.8. Numerical dilemmas and methodologies

The numerical analysis of all ill-posed problem ultimately involves solutions of
finite-dimensional problems in order to obtain numerical approximations. This
often entails a two-stage regularization. One first may “regularize” the problem in
function spaces and then apply numerical methods to approximate the solution
of a well-posed problem (or a family of such problems). On the other hand, one
may “discretize” or approximate the IPP by finite-dimensional problems and then
resolve numerical instability of these problems by methods of numerical linear
algebra that are suitable for discrete ill-posed problems (see, e.g., [177, 184, 253]).

Two alternate routes are represented by the following diagram:

P
c r→ Pt

p ↙ ↘ p ↘ p

Fn → Pn
d r→ Pn,t Pt,n

Here, P is a given ill-posed problem and Pt is a “regularized” version of
P by use of a certain regularization scheme in a certain function space. Fn is
a problem in a finite-dimensional function space and Pn is a finite-dimensional
algebraic problem, both obtained by approximation of P ; whereas Pn,t denotes a
“regularization” of the (numerically unstable) problem Pn and Pt,n is the numerical
approximation of the problem Pt, which is numerically stable for t not too small. In
the diagram “c r” denotes continuous regularization, “d r” discrete regularization
and “p” denotes a generic “projection” (discretization, projection method, etc.).

At this stage, after having some knowledge of most of the regularization
methods, we mention some procedures which provide concrete realizations of these
schemes (cf. [184]):

P → Pt Tikhonov’s regularization, (multiscale) regularizer operators in func-
tion spaces, quasi-reversibility methods, replacement of the IPP by
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a stable minimization problem depending on a parameter, iterative
methods in function spaces;

P → Fn truncated singular value decompositions (TSVD), truncated series
expansion, moment discretization, projection methods;

P → Pn finite difference method with collocation, reduction of Fn to algebraic
equations;

Pn → Pn,t decomposition methods or regularization for linear algebraic equa-
tions, TSVD for matrices;

Pγ → Pt,n various numerical methods for solving well-posed problems, e.g., dis-
cretization, projection methods, multiscale procedures, etc.

Returning to the general scheme, we let x, xt, xn, xt,n, xn,t denote, respec-
tively, the “solution” (classical or least square of minimal norm) of the problems
P, Pt, Pn, Pt,n, Pn,t in the absence of contamination in the data, and let xε, xε

t , etc.,
denote the corresponding solution when the data are contaminated (y is replaced
by yε, where ‖yε−y‖ ≤ ε for some ε > 0). If we assume that the various regularizer
schemes are convergent (e.g., xt → x as t → 0, xn,t → xn as t → 0 for each fixed
n, xn → x as n → ∞, etc.) in the absence of error, then estimates similar to (3.3)
and (3.4) can be used to calculate an “approximate solution” xε as before. For
example,

‖xε
t,n − x‖ ≤ ‖xε

t,n − xε
t‖+ ‖xε

t − xt‖+ ‖xt − x‖. (4.351)

Here, ‖xε
t,n − xε

t‖X is an approximation error estimate that provides a rate of
convergence of the approximation scheme for the well-posed problem Pt for a fixed
t. ‖xε

t − xt‖ is an estimate for the contamination error which can be estimated if
the robustness of Pt is known and ‖xt − x‖ is a regularization error. Similarly,

‖xε
n,t − x‖ ≤ ‖xε

n,t − xt
n‖+ ‖xε

n − xn‖+ ‖xn − x‖. (4.352)

Note, however, that now ‖xε
n,t−xt

n‖ is an error in the regularization of the problem
Pn, ‖xε

n−xn‖ is an error due to the propagation of contamination into the discrete
system, etc.

The dilemmas and methodologies of mathematical and numerical analysis of
IPP involve the following facts and observations:

(i) For most regularization and approximation schemes

lim
t→0

xt = x (4.353)

and

lim
n→∞ xn = x (4.354)

in the absence of contamination. For some approximation (projection)
schemes, non-convergence can take place even without contamination.

(ii) Neither the double limit

lim
t→0,
n→∞

xε
t,n, (4.355)
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nor the iterated limits [limn→∞ limt→0 and limt→0 limn→∞] of xε
t,n and xε

n,t

exist. In fact, ‖xε
t,n‖X and ‖xε

n,t‖X blow up as n → ∞ and t → 0. It should be
emphasized that this blow-up is intrinsically inherent in all IPP regardless of
any regularization-approximation scheme. Thus, the best one can achieve for
a numerical resolution of IPP is to minimize the error: ‖x−xε

t,n‖ or ‖x−xε
n,t‖,

and to find “paths” along which xt,n and xn,t converge to x as ε → 0.
(iii) The alternative routes diagram is non-commutative, in general. It is not al-

ways clear which path along the diagram is more effective. One has to com-
pare the minimum errors of ‖x − xε

t,n‖X and ‖x − xε
n,t‖X and to take into

consideration the computational complexity of the two paths. For some sim-
ple schemes, the diagram is commutative (e.g., Tikhonov regularization and
TSVD for a compact operator commute).

(iv) Sharp resolutions of an ill-posed problem (i.e., an optimal compromise be-
tween accuracy and numerical stability) hung upon “optimal parameter choice
criteria” (for t and n). Analytic criteria for this choice are often not avail-
able due to the lack of sharp rates of convergence in the preceding estimates,
except for Tikhonov regularization or related methods based on simple vari-
ational principles. Often the parameter is chosen by an interactive computa-
tional scheme, based on rough analytic estimates.
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Akademie-Verlag, Berlin, 1964.

[136] Kato, T.: Perturbation Theory for Nullity Deficiency and Other Quantities of Linear
Operators. J. Analyse Math., 6:271–322, 1958.

[137] Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. 2nd
ed., Springer, Heidelberg, 1996.

[138] Kowar, R., Scherzer, O.: Convergence analysis of a Landweber–Kaczmarz method
for solving nonlinear ill-posed problems, in: S. Romanov, S.I. Kabanikhin, Y.E.
Anikonov, A.L. Bukhgeim, (Eds.), Ill-Posed and Inverse Problems, VSP Publishers,
Zeist, 2002.

[139] Kress, R.: Linear Integral Equations. 2nd ed., Springer, Berlin, 1989.

[140] Kreyszig, E.: Introductory Functional Analysis with Applications. John Wiley and
Sons, New York, 1978.

[141] Larson, D., Massopust, P., Nashed, M.Z., Nguyen, M.C., Papadakis, M.,
Zayed, A., (Eds.): Frames and Operator Theory in Analysis and Signal Processing.
Contemporary Mathematics. Vol. 451, American Mathematical Society. Providence,
RI, 2008.

[142] Lavrentiev, M.M.: Some Improperly Posed Problems of Mathematical Physics, Iz-
dat. Sibirsk. Otdel, Akad. Nauk. SSSR, Novosibirsk, 1962, English Transl., Springer
Tracts in Natural Philosophy, Vol. 11, Springer-Verlag, Berlin, 1967.

[143] Lieusternik, L.A., Sobolev, V.J.: Elements of Functional Analysis. New York: Un-
gar, 1961.

[144] Lin, Y., Brown, L.D.: Statistical Properties of the Method of Regularization with
Periodic Gaussian Reproducing Kernel. Ann. Statist., 32(4):1723–1743, 2004.

[145] Liskovets, O.A.: Regularization of Variational Inequalities with Pseudo-Monotone
Operators on Approximately Given Sets, Differ. Equations, 11:1970–1977, 1989.



308 W. Freeden and M.Z. Nashed

[146] Liu, F.; Nashed, M.Z.: Tikhonov Regularization of Nonlinear Ill-Posed Problems
with Closed Operators in Hilbert Scales. J. Inverse Ill-Posed Problems, 5:363–376,
1997.

[147] Locker J., Prenter, P.M.: Regularization with Differential Operators. J. Math. Anal.
Appl., 74:504–529, 1980.

[148] Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart, 1989.

[149] Louis, A.K., Maass, P.: A Mollifier Method for Linear Equations of the First Kind.
Inverse Problems, 6:427–440, 1989.

[150] Louis, A.K., Maass, P., Rieder, A.: Wavelets: Theorie und Anwendungen. B.G.
Teubner Studienbücher, 1998.
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