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Abstract. The gravitational and the magnetic field of the Earth represent
some of the most important observables of the geosystem. The inversion of
these fields reveals hidden structures and dynamics at the surface or in the in-
terior of the Earth (or other celestial bodies). However, the inversions of both
fields suffer from a severe non-uniqueness of the solutions. In this paper, we
present a generalized approach which includes the inversion of gravitational
and magnetic field data. Amongst others, uniqueness constraints are proposed
and compared. This includes the surface density ansatz (also known as the
thin layer assumption). We characterize the null space of the considered class
of inverse problems via an appropriate orthonormal basis system. Further,
we expand the reconstructable part of the solution by means of orthonormal
bases and reproducing kernels. One result is that information on the radial
dependence of the solution is lost in the observables. As an illustration of the
non-uniqueness, we show examples of anomalies which cannot be disclosed
from the inversion of gravitational data. This paper is intended to be a theo-
retical reference work on the inversion of gravitational but also magnetic field
data of the Earth.

1. Introduction

Numerous tasks in mathematical geodesy involve the regularization of ill-posed
inverse problems. The reason is obvious: neither the interior of the Earth nor the
Earth’s surface in its entirety are accessible for exploration. However, the demand
for more accurate and more localized models has dramatically increased for the
last decades. As a consequence, numerous large data sets of various observables
have been generated, also by means of satellite missions. These data sets often
provide us with the possibility to derive models for non-observable, but urgently
needed geodetic fields. Examples are the quantification of mass transports due
to climate change or other phenomena (GRACE (Gravity Recovery And Climate
Experiment) data are well appropriate for this purpose, see, e.g., [11, 26, 29, 52, 53])
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and the modeling of those layers of the Earth which contribute to the magnetic
field (this can be done with SWARM data, see, e.g., [37, 43, 50]).

This survey article presents a generalized approach which comprises, in par-
ticular, the inversion of gravitational or magnetic field data. In the former case,
the unknown is the mass density distribution of the Earth’s body or its surface. In
the latter case, the unknown is considered to be the electric current distribution
inside. In this sense, this paper is an extension of the survey article [33] on inverse
gravimetry. One benefit of the generalized approach is that it makes it easier to
transfer theoretical knowledge and numerical methods from one problem to the
other within the considered class of problems. For example, it was shown in [23]
and [33] that such a transfer yields novel achievements. Furthermore, our gen-
eralized approach also enables us to set the surface mass density approach (also
known as the thin layer assumption) into the same concept with the inversion for
volumetric density distribution – two approaches which have often been used par-
allelly and independently (see, e.g., [33, 52]). Since this paper addresses primarily
a geodetic audience, we focus on the relevant facts and their interpretation. For
the detailed mathematical theory including the proofs, we recommend to use the
paper [34] as a supplement.

Note that the considered inversion of magnetic field data is motivated by the
inversion of MEG (magnetoencephalography) data, as it occurs in medical imaging
(see also [23] and the references therein). Thus, it does not represent a typical
inverse problem in geomagnetics, where, for instance, material parameters like the
magnetization or the susceptibility are the unknowns and not the current (see, e.g.,
[46]). However, the inversion of the magnetic field for currents in the interior might
be interesting for investigating the outer core. Nevertheless, there is still an obvious
limitation of our generalized approach with respect to the practical applicability
in geomagnetics. On the other hand, reversing the point of view, the generalized
approach shows a perspective how methods from medical imaging (which exist in
a vast variety) could be transferred to geodetic and geophysical inverse problems.

The content and the outline of the paper are as follows: in Section 2, we
summarize some basic fundamentals, like the definition of the function spaces and
the orthogonal polynomials which we need.

In Section 3, we formulate the generalized class of inverse problems which
represents the central theme of this paper. Then, we discuss two particular cases:
the inversion of the gravitational field (this is known as the inverse gravimetric
problem) and the inversion of the Bio–Savart operator of a magnetic field for get-
ting the current distribution inside (we call this the inverse magnetic problem).
With this in mind, every theoretical result that we present here for the generalized
problem is valid for these two particular applications, and the derived formulae can
be directly used for the precise problem by inserting the associated parameters. In
Subsection 3.2, we derive a spectral relation between the given field and the un-
known field. This relation directly shows the problem of the non-uniqueness which
is linked to the insufficiently identifiable radial parametrization of the solution.
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In Section 4, we introduce a class of orthonormal basis systems on a 3-
dimensional ball. One particular instance of this class yields the well-known system
of harmonic and anharmonic functions which have been used for the inverse gravi-
metric problem. We include some plots of the basis functions and show that the
basis is appropriate for separating the solution into its projections on the null space
of the solution (i.e., the indeterminable part of the solution) and on the orthogonal
complement (the components of the solution which are uniquely constrained by
the given data). We also show graphical illustrations of phantoms which occur,
that is, examples of anomalies inside the Earth which cannot be distinguished if
only gravitational data are available.

In Section 5, we discuss several modeling assumptions which can be used to
obtain a unique solution: a minimum norm constraint, a harmonicity constraint, a
layer density constraint and the surface density (i.e., thin layer) constraint, which
is common for the identification of water mass transports.

2. Preliminaries

In this work, the set of positive integers is denoted by N, where N0 := N ∪ {0}.
Moreover, R represents the set of real numbers. The Euclidean standard R3-scalar
product (dot product) is denoted by · and the cross product by ×. The norm
associated to the Euclidean dot product is represented by |x| :=

√
x · x, x ∈ R3.

Furthermore, the sphere with radius R is denoted by ΩR :=
{
x ∈ R3

∣∣ |x| = R
}

and the corresponding (closed) ball is denoted by B :=
{
x ∈ R3

∣∣ |x| ≤ R
}
. For

R = 1, we often use the abbreviation Ω := Ω1. By S := Ωβ , with β > R, we
denote a particular sphere in the exterior of B. This could, for example, represent
a satellite altitude or the location of airborne data.

A function F : G → R possessing k continuous derivatives on the open set
G ⊂ Rn is of class C(k)(G), for 0 ≤ k ≤ ∞. Furthermore, for a measurable
set G ⊂ Rn, L2(G) stands for the space of all square-integrable functions (more
precisely, some equivalence classes of such functions). L2(G) is a Hilbert space with
the inner product

〈F,G〉L2(G) :=
∫
G
F (x)G(x) dμ(x), F, G ∈ L2(G),

and the norm

‖F‖L2(G) =
(∫

G
F (x)2 dμ(x)

)1/2

, F ∈ L2(G),

where μ is an appropriate measure, like a surface measure ω if G is a surface. For
a mathematically accurate definition of the space, see, for example, [42].

With P
(α,β)
m , we denote the Jacobi polynomials, where α, β > −1. They are

uniquely determined by the conditions that
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1. each P
(α,β)
m is a polynomial of degree m,

2. for all m, n ∈ N0 with m �= n,〈
P (α,β)
m , P (α,β)

n

〉
α,β

:=

∫ 1

−1

(1− x)α(1 + x)βP (α,β)
m (x)P (α,β)

n (x) dx = 0, (1)

3. and for each m ∈ N0, we set P
(α,β)
m (1) =

(
m+α
m

)
.

For α = β = 0, the Jacobi polynomials coincide with the Legendre polynomials.
For further properties and the L2[0, R]-norm of Legendre, or (more generally)
Jacobi polynomials, see [24, 36, 49].

3. Generalization of gravitational and magnetic field inversion

3.1. A class of inverse problems and examples

Within this paper, we consider a class of inverse problems which are given by a
Fredholm integral operator of the first kind T : L2(B) → L2(S)

T : D �→
∫
B
D(x)k(x, ·) dx = V (2)

with an integral kernel k : B × S → R of the form

k(x, y) :=

∞∑
i=0

ci
|x|li

|y|i+1Pi

(
x

|x| ·
y

|y|

)
, (3)

which is defined for all (x, y) ∈ dom(k), where the domain of the kernel k is given
by

dom(k) := {(x, y) ∈ B × S | x �= 0 if there exists i ∈ N0 with li < 0} .

In this setting, the right-hand side V in Equation (2) is given and the function D
is unknown. It is the aim to reconstruct D in B from knowledge of V on S. In order
to have a well-defined integral kernel, which means that the series representation
in (3) converges, k has to fulfil certain assumptions:

Assumption 3.1. teset

1. The sequence (ci)i∈N0 is a real and bounded sequence (i.e., there exists c ∈ R+

such that supi∈N0
|ci| ≤ c).

2. The sequence of real exponents (li)i∈N0 satisfies infi∈N0 li ≥ −1.
3. The sequence (li)i∈N0 fulfils the condition supi∈N0

Rli−i < ∞.

Note, that the third condition implies

Ri−li =
1

Rli−i
≥ 1

supi∈N Rli−i
> 0.

This kind of integral equation arises in many areas, for example, in geosciences
and medical imaging. Two examples for this inverse problem are given below.
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For both, Example 3.2 (inverse gravimetric problem) and Example 3.3 (inverse
magnetic problem), the conditions of Assumption 3.1 are fulfilled. In the first
particular case, that is, li = i and ci = γ for all i ∈ N0, the integral kernel is well
known. In this case, we directly obtain k(x, y) = γ

|x−y| for |x| < |y|, due to the

identity

∞∑
i=0

|x|i

|y|i+1Pi

(
x

|x| ·
y

|y|

)
=

1

|x− y| for |x| < |y|. (4)

Example 3.2 (The Inverse Gravimetric Problem). For the inverse gravimetric
problem, the kernel and the integral operator are given by

TG : D �→
∫
B
D(x)kG(x, ·) dx,

kG(x, y) :=
γ

|x− y| = γ
∞∑
i=0

|x|i

|y|i+1
Pi

(
x

|x| ·
y

|y|

)
,

where x ∈ B, y ∈ S, Pi denotes the Legendre polynomial of degree i and γ is
the gravitational constant. TGD is known as the gravitational potential or the
Newton potential. The associated inverse problem TGD = V represents the recon-
struction of a (volumetric) mass density function from the gravitational potential,
which is important, for example, for the detection of particular anomalies or mass
transports. For the latter, time series of potential models have been provided, for
instance, by the GRACE mission, see [10]. Note that the determination of a surface
density can be regarded as a particular modeling in this context.

This problem first occurs in the works of Stokes [47] and has been widely
discussed since then (see also the survey article [33]).

Example 3.3 (The Inverse Magnetic Problem). To compute the magnetic field
B caused by electric sources inside a body, the quasi-static approximation of
Maxwell’s equation is often used, see [39].

E = −∇U on B, ∇ · B = 0 on B,
∇×B = 0 on S, ∇×B = μ0J

T on B,

where E is the electric field, U is the electric potential, JT = JP + σE is the total
current with the primary current JP and the Ohmic current σE, σ is the conduc-
tivity, and μ0 is the permeability. It is common to use the Biot–Savart operator
instead of Maxwell’s equations to describe the relation between the current and
the magnetic field

B(x) =
μ0

4π

∫
B
JT(y)× x− y

|x− y| dy. (5)

In this case, we want to recover a particular component of the electric current
inside B (which could be the Earth (in particular the outer core)). Note that
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this geophysical problem is closely related to a problem in medical imaging, where
neuronal currents are determined from magnetoencephalography (MEG) data, see,
for example, [19]. In some applications, only the reconstruction of the primary
current instead of the total current or the induced current is of interest. After
splitting the current in this sense and assuming a ball-shaped conductor consisting
of spherical shells Ωj with constant conductivities σj , one obtains the Geselowitz’
formula (see [25])

B(x) =
μ0

4π

∫
B
JP(y)× x− y

|x− y|3 dy

− μ0

4π

∑
j

(σj−1 − σj)

∫
Ωj−1

V (y)n(y)× x− y

|x− y|3 dω(y),

where n is the normal vector on the surface Ωj . With the identity in (4) and
after further calculations, see [23], one gets a relation for the magnetic potential
(B = ∇V )

V (y) =
1

4π

∫
B
∇x · (JP(x)×x)

∞∑
i=0

|x|i

|y|i+1
(i+ 1)

Pi

(
x

|x| ·
y

|y|

)
dx.

More precisely, the vectorial current JP inside B can be decomposed via two scalar-
valued (up to an additional constant unique) functions F andG and a scalar-valued
unique function Jr (see, e.g., [23]) as follows:

JP(rξ) =
1

r
∇∗

ξG(rξ) − 1

r
L∗
ξ F (rξ) + Jr(rξ)ξ.

Here, B \{0} � x = rξ with ξ ∈ Ω and r = |x|, ∇∗
ξ is the surface gradient, and

L∗
ξ := ξ ×∇∗

ξ is the surface curl operator on the unit sphere. Due to [45] and the
above decomposition, the relation between the current and the magnetic potential
V in a spherical model can be described by

V (y) =
1

4π

∫
B
Δ∗

x
|x|

F (x)

∞∑
i=0

|x|i−1

|y|i+1
(i + 1)

Pi

(
x

|x| ·
y

|y|

)
dx,

where Δ∗
x
|x|

denotes the Beltrami operator.

Hence, only the function F and, therefore, only one tangential component of
the current can be reconstructed. We use now the abbreviation D(x) := Δ∗

x
|x|

F (x)

such that for the inverse magnetic problem (as we call the problem here), the
kernel and the integral operator are given by

TM : D �→
∫
B
D(x)kM(x, ·) dx, (6)

kM(x, y) :=
1

4π

∞∑
i=0

|x|i−1

|y|i+1
(i + 1)

Pi

(
x

|x| ·
y

|y|

)
, (7)

where x ∈ B \{0}, y ∈ S.
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This particular modeling of the inversion of magnetic data has been used for
data fromMEG, as we indicated above. For two reasons, we consider a discussion to
be useful: The magnetic field of a ball-shaped domain with a current in the interior
is also relevant in geodesy, and there is a close link to the inverse gravimetric
problem as our generalized approach suggests.

We can find further properties of the integral kernel in (3). An estimate shows
that the kernel function k(·, y), for each fixed y ∈ S, is a function in L2(B). Indeed
(with x = rξ, r ∈ [0, R], ξ ∈ Ω) we get, using Assumption 3.1 and the fact that
|Pi(t)| ≤ 1 for all i ∈ N0 and all t ∈ [−1, 1], the estimate

∫
B
(k(x, y))2 dx =

∫
B

( ∞∑
i=0

ci
|x|li

|y|i+1Pi

(
x

|x| ·
y

|y|

))2

dx

≤ c2
∫
B

( ∞∑
i=0

|x|li

|y|i+1

)2

dx = 4πc2
∫ R

0

r2

( ∞∑
i=0

rli

|y|i+1

)2

dr

= 4πc2
∫ R

0

( ∞∑
i=0

rli+1

|y|i+1

)2

dr ≤ 4πRc2
(
sup
n∈N0

Rln−n

)2
( ∞∑

i=0

Ri+1

|y|i+1

)2

< ∞.

The last series is convergent and, hence, finite, since it is a geometric series. With
similar calculations one can prove that the interchanging between the series and
the integration over B was allowed.

Besides the well-definition of the integral kernel, we need the existence of
the integral in (2) to obtain a well-defined problem. We will later see that this
is achieved if some technical conditions are fulfilled. On the other hand, for the
well-posedness of the problem (in the sense of Hadamard), three questions are
important.

• Does, for every right-hand side V in (2), a solution D exist?
• Is there not more than one solution D for a given V ?
• Is the problem stable, that is, does D depend continuously on the data V ?

The question about the non-uniqueness of the solution for the above men-
tioned problems has been discussed comprehensively in literature. One of the first
works is the paper due to Stokes [47] for the inverse gravimetric problem. Further
publications are, for example, [4, 6, 8, 48]. For a survey article on this topic, see
[33]. For the inverse magnetic problem (with a focus on medical imaging), see
[13–15, 19–22, 45].

In the following sections, we want to derive a possibility to characterize the
null space, or in other words we want to describe the part of the solution which is
non-reconstructable. We also want to formulate additional conditions to guarantee
the uniqueness of the solution. For this, we need more knowledge of the forward
problem.
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3.2. Derivation of a spectral relation

In this subsection, it is our aim to derive an equation which connects the spherical
harmonics coefficients of the given function V and the unknown function D. With
this spectral relation, we are able to give answers to the questions concerning the
ill-posedness of the problem. For this purpose, we analyze the forward problem.
The following considerations are motivated by a similar result for the particular
case of the inverse gravimetric problem, see [33]. We assume that we can choose
basis functions for D which are separable into a radial and an angular part such
that D is expandable in an L2(B)-convergent spherical harmonics series

D(x) =

∞∑
n=0

2n+1∑
j=1

Dn,j(|x|)Yn,j

(
x

|x|

)
. (8)

Here, Yn,j denotes the spherical harmonics of degree n and order j, which are
an orthonormal basis for L2(Ω). Furthermore, Dn,j(r), r ∈ [0, R], represents the
spherical harmonics coefficients for the case that D is restricted to the sphere
around the origin with radius r.

By virtue of the weak convergence in Hilbert spaces, we know that∫
B
D(x)F (x) dx =

∫
B

∞∑
n=0

2n+1∑
j=1

Dn,j(|x|)Yn,j

(
x

|x|

)
F (x) dx

=
∞∑
n=0

2n+1∑
j=1

∫
B
Dn,j(|x|)Yn,j

(
x

|x|

)
F (x) dx

for all functions F ∈ L2(B). In particular, this holds true for the integral kernel
k(·, y) ∈ L2(B) for all y ∈ S. Inserting the expansion (8) in (2) and using the
abbreviation y = |y| η, x = rξ with η, ξ ∈ Ω, we get

V (y) =

∞∑
n=0

2n+1∑
j=1

∞∑
i=0

∫ R

0

r2Dn,j(r)
cir

li

|y|i+1 dr

∫
Ω

Pi (ξ · η)Yn,j (ξ) dω(ξ)

=

∞∑
n=0

2n+1∑
j=1

∞∑
i=0

ci

|y|i+1

∫ R

0

rli+2Dn,j(r) dr
4π

2n+ 1
δi,nYn,j (η)

=
∞∑
n=0

2n+1∑
j=1

(∫ R

0

rln+2Dn,j(r) dr

)
4πcn

(2n+ 1) |y|n+1Yn,j (η) . (9)

In the first step the reproducing property of the reproducing kernel for the spherical
harmonics of degree n, given by

Ω2 � (ξ, η) �→ 2n+ 1

4π
Pn(ξ · η),
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is used. More precisely,

2n+ 1

4π

∫
Ω

Pi(ξ · η)Yn,j(ξ) dω(ξ) = Yn,j(η)δi,n (10)

for all η ∈ Ω. We also remark that the existence of the integral in (2) only depends
on the existence of the integral of the radial part and the convergence of the series
in (9). Regarding the latter, we obtain a pointwise convergence of (9) for y ∈ S,
since the following estimate of the summands in (9) (note that maxξ∈Ω |Yn,j(ξ)| ≤√
(2n+ 1)/(4π) for all n ∈ N0) holds true:∣∣∣∣∣

∫ R

0

rln+2Dn,j(r) dr
4πcn
2n+ 1

|y|−n−1Yn,j

(
y

|y|

)∣∣∣∣∣
≤

(
R2ln+3

2ln + 3

∫ R

0

r2 (Dn,j(r))
2
dr

)1/2
4πc

2n+ 1
|y|−n−1

√
2n+ 1

4π

≤ c

(
R2ln+3

R2n+2(2ln + 3)

∫ R

0

r2 (Dn,j(r))
2 dr

4π

2n+ 1

)1/2 (
R

|y|

)n+1

.

The right-hand side is bounded for all n ∈ N0, due to the conditions on (ln)n∈N

(see Assumption 3.1, items 2 and 3) and the convergence of the Parseval identity
of D ∈ L2(B). Hence, the series (9) is dominated by a geometric series for all y ∈ S
(i.e., |y| > R).

We are also able to extend the function V onto ΩR. In addition, for V |ΩR , we
obtain the L2(ΩR)-convergence of the series representation in Equation (9). This
convergence is a direct consequence of the Cauchy–Schwarz inequality and the
Parseval identity (note that { 1

RYn,j(
·
R )}n∈N0,j=1,...,2n+1 is an orthonormal basis

of L2(ΩR)), since

‖V |ΩR‖
2
L2(ΩR) =

∞∑
n=0

2n+1∑
j=1

(∫ R

0

rln+2Dn,j(r) dr

)2 (
4πcn

(2n+ 1)Rn

)2

≤
∞∑
n=0

2n+1∑
j=1

(∫ R

0

r2ln+2

R2n
dr

)(∫ R

0

r2(Dn,j(r))
2 dr

)(
4πc

2n+ 1

)2

≤ 16π2c2
∞∑

n=0

2n+1∑
j=1

R2ln+3−2n

2ln + 3

(∫ R

0

r2(Dn,j(r))
2 dr

)

≤ 16π2c2R3 sup
n∈N0

R2ln−2n

2ln + 3
‖D‖2L2(B) < ∞.

Hence, Equation (9) is valid pointwise on S and in the sense of L2(ΩR) on ΩR.
In order to find a direct relation between the Fourier coefficients of the given

function V and the unknown function D, we consider the Fourier coefficients of V
restricted to the sphere ΩR. This relation can be seen directly from (9).
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Theorem 3.4. Consider the orthonormal basis system on ΩR given by the set of
functions { 1

RYn,j(
·
R )}n∈N0,j=1,...,2n+1. Then, the Fourier coefficients of V defined

by Vn,j :=
〈
V |ΩR ,

1
RYn,j

( ·
R

)〉
L2(ΩR)

satisfy the identity

Vn,j =

(∫ R

0

rln+2Dn,j(r) dr

)
4πcn

(2n+ 1)Rn
.

for all n ∈ N0, j = 1, . . . , 2n+ 1. This yields the equation

(2n+ 1)Rn

4πcn
Vn,j =

∫ R

0

rln+2Dn,j(r) dr, if cn �= 0, (11)

otherwise Vn,j = 0 with j = 1, . . . , 2n+ 1, respectively.

The relation from Theorem 3.4 allows an infinite number of choices for Dn,j

and, hence, the solution D cannot be uniquely determined by the function V |ΩR .
For the inverse gravimetric problem, the last relation is well known, see, for exam-
ple, [35, 38, 41], and for the inverse magnetic problem for R = 1, see for instance
[21]. Analogously, we obtain with (remember that S = Ωβ , β > R) for all n ∈ N0,
j = 1, . . . , 2n+ 1

V S
n,j :=

〈
V |S ,

1

β
Yn,j

(
·
β

)〉
L2(S)

=

(∫ R

0

rln+2Dn,j(r) dr

)
4πcn

(2n+ 1)βn
= Vn,j

(
R

β

)n

(12)

the spherical harmonics coefficients of V with respect to an orthonormal basis
system on S. Hence, we have a direct relation between the singular values of the
Fredholm integral operator T and the spherical harmonic coefficients Vn,j . The

additional factor (Rβ )
n symbolizes the upward continuation from S to ΩR. The

upward continuation does not effect the null space of the operator T at all. Due
to this property and the aim to keep the formulae simple, we analyze Equation
(11) further and keep in mind that we can consequently deduce properties of T
via Equation (12).

Note that (11) shows, in particular, the degree of freedom with respect to
the radial part of D, since Vn,j is some weighted radial mean of Dn,j(r). On the
other hand, one can expect a one-to-one relation for the angular dependence of
V and D.

4. Investigation of the homogeneous problem

In order to obtain a unique solution, an appropriate modeling is required, that is,
the solution space has to be restricted by certain constraints. Before this can be
done (in Section 5), we have to study the null space kerT , that is, the space of all
D with TD = 0. Note that, due to the linearity, all solutions of TD = V are given
by D̃ +D0, with arbitrary D0 ∈ kerT , for a particular solution D̃ of TD = V .
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4.1. Some orthonormal basis functions on the ball

It is our aim to characterize the null space, that is, the so-called kernel of the Fred-
holm integral operator of the first kind, in order to describe the non-reconstructable
parts of the solution. For the separation of L2(B) into the null space and the or-
thogonal complement we need an appropriate basis for L2(B).

For the ball, there are several known basis systems available. For the con-
struction of these systems see, for example, [1, 7, 17, 30, 32, 51]. We analogously use
the idea to combine an orthonormal basis system on the unit sphere with one on
the interval [0, R], to construct a basis system on the ball. The L2(B)-orthonormal
system used here is a generalization of the system which was introduced in [17]
and [7].

For x ∈ B \{0}, it is given by

Gm,n,j(x) := γm,nP
(0,ln+1/2)
m

(
2
|x|2

R2
− 1

)
|x|ln
Rln

Yn,j

(
x

|x|

)
, (13)

with m, n ∈ N0, j = 1, . . . , 2n+1, where {P (α,β)
m }m∈N0 are the Jacobi polynomials

and γm,n are normalization constants with

γm,n :=

√
4m+ 2ln + 3

R3
. (14)

Since α = 0 in Equation (13) and P
(0,ln+1/2)
m (1) = 1 for all m, n ∈ N0, we get

Gm,n,j |ΩR = γm,nYn,j(
·
R ).

The functions in (13) were called GI
m,n,j in [31] and [32] in the case of ln = n

(remember that this setting corresponds to the inverse gravimetric problem).

A continuous expansion of our functions Gm,n,j on the domain B is possible,
if all exponents ln, n ∈ N, are positive. Otherwise we obtain a singularity at the
origin of the functions Gm,n,j for negative values of ln and a discontinuity at the
very same place in the case ln = 0 for n > 0. For the theory stated in this paper,
this is not a problem, since Gm,n,j remains square-integrable for −1 ≤ ln (as we
required).

As we claimed above, the functions Gm,n,j for m, n ∈ N0, j = 1, . . . , 2n+ 1
given in (13) build an orthonormal basis for L2(B). This property can easily be
verified by calculating the inner products and using a formula for a weighted L2-
norm of Jacobi polynomials (see, e.g., [36]). With the L2(Ω)-orthogonality of the

spherical harmonics and the substitution r = R
√
(1 + z)/2, we obtain

〈Gm,n,j, Gμ,ν,ι〉L2(B)

= γm,nγμ,νδν,nδι,j

∫ R

0

r2ln+2

R2ln
P (0,ln+1/2)
m

(
2
r2

R2
− 1

)
P (0,ln+1/2)
μ

(
2
r2

R2
− 1

)
dr

= γm,nγμ,nδν,nδι,j
R3

2ln+5/2

∫ 1

−1

(1 + z)ln+1/2P (0,ln+1/2)
m (z)P (0,ln+1/2)

μ (z) dz
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= γm,nγμ,nδν,nδι,j
R3

2ln+5/2

2ln+3/2

2m+ ln + 3/2
δμ,m

= γ2
m,nδν,nδι,j

R3

4m+ 2ln + 3
δμ,m = δμ,mδν,nδι,j.

Thus, the set {Gm,n,j}m,n∈N0,j=1,...,2n+1 is L2(B)-orthonormal. Moreover,
the spherical harmonics are complete in L2(Ω) and the Jacobi polynomials are
complete with respect to the inner product in (1) such that the system

{Gm,n,j}m,n∈N0,j=1,...,2n+1

is complete in L2(B) and constitutes an orthonormal basis.

Some of the functions GI
m,n,j (i.e., in the case of ln = n) are shown in Fig-

ures 1 and 2. For m = 0, the functions GI
0,n,j are inner harmonics, hence they are

harmonic, and attain their maximum and minimum on the boundary. A selection
of the functions corresponding to the inverse magnetic problem, where ln = n− 1,
is shown in Figures 3 and 4. The singularity (for n = 0, i.e., l0 = −1) at the origin
is visible in Figures 3 (A) and (C) and Figure 4 (B).

4.2. Splitting the basis into the null space and its complement

With the orthonormal basis introduced in Subsection 4.1, we are now able to
expand the functions Dn,j in (8) for all n ∈ N0 and j = 1, . . . , 2n + 1 and we
obtain

Dn,j(r) =
rln

Rln

∞∑
m=0

dm,n,jγm,nP
(0,ln+1/2)
m

(
2
r2

R2
− 1

)
, (15)

where dm,n,j := 〈D,Gm,n,j〉L2(B) and γm,n is given in (14).

For further investigations of the forward problem, we use the representation
of (the known function) V in (9), where we have already calculated the integral
over the angular part. For the remaining integral over the radial part, we use
the precise representation of Dn,j in (15) and the orthogonality of the Jacobi

polynomials.With the substitution r = R
√
(1 + z)/2, dr = R

4

(
2

1+z

)1/2

dz, we get∫ R

0

rln+2Dn,j(r) dr =

∫ R

0

r2ln+2

Rln

∞∑
m=0

dm,n,jγm,nP
(0,ln+1/2)
m

(
2
r2

R2
− 1

)
dr

=
R3+ln

2ln+5/2

∞∑
m=0

dm,n,jγm,n

∫ 1

−1

(1 + z)ln+1/2 P (0,ln+1/2)
m (z) dz =

R3+ln

2ln + 3
d0,n,jγ0,n.

Inserting the latter result in (9), we eventually obtain (remember the defini-
tion of γm,n in (14))

V (y) =

∞∑
n=0

2n+1∑
j=1

(∫ R

0

rln+2Dn,j(r) dr

)
4πcn

(2n+ 1) |y|n+1Yn,j

(
y

|y|

)
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(c) GI
m,n,j for m = 1, n = 0, j = 1
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(d) GI
m,n,j for m = 1, n = 1, j = 3

Figure 1. The functions Gm,n,j in the case ln = n (also called GI
m,n,j)

for different parameters m,n, j are plotted at the plane through the
origin with normal vector (1, 1,−1)T. For the particular parameters, see
the respective caption. The maximum is always yellow and the minimum
is blue (see also [32, 34]).

=

∞∑
n=0

2n+1∑
j=1

R3+ln4πcn
(2ln + 3)(2n+ 1)|y|n+1

d0,n,jγ0,nYn,j

(
y

|y|

)

=

∞∑
n=0

2n+1∑
j=1

4πcnR
ln

(2n+ 1) |y|n+1 d0,n,jγ
−1
0,nYn,j

(
y

|y|

)
. (16)
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(c) GI
m,n,j for m = 2, n = 1, j = 3
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(d) GI
m,n,j for m = 2, n = 2, j = 5

Figure 2. The functions Gm,n,j in the case ln = n (also called GI
m,n,j)

for different parameters m,n, j are plotted at the plane through the
origin with normal vector (1, 1,−1)T. For the particular parameters, see
the respective caption. The maximum is always yellow and the minimum
is blue (see also [32, 34]).

Hence, Gm,n,j is in the null space of the operator T with the kernel from (3),
if and only if m > 0 or cn = 0. Examples of functions in the null space are given
in Figures 2 and 4 (for different inverse problems). The function plotted in Figure
5 is not in the null space.

Since L2(B) is the direct sum of the null space kerT and its orthogonal
complement, the obtained result allows a precise characterization of the null space
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(a) Gm,n,j for m = 0, n = 0, j = 1
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(b) Gm,n,j for m = 0, n = 2, j = 5
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(c) Gm,n,j for m = 1, n = 0, j = 1
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(d) Gm,n,j for m = 1, n = 1, j = 3

Figure 3. The functions Gm,n,j in the case ln = n − 1 for different
parameters m,n, j are plotted at the plane through the origin with nor-
mal vector (1, 1,−1)T. For the particular parameters, see the respective
caption. The maximum is always yellow and the minimum is blue (see
also [34]).

of the corresponding Fredholm integral operator as

kerT = span
{
Gm,n,j

∣∣ m ≥ 1, n ∈ N0, j = 1, . . . , 2n+ 1 or cn = 0
}‖·‖L2(B)

. (17)

For the inverse gravimetric problem (ln = n), we can deduce the well-known
fact that the null space can be described as the set of all anharmonic functions,
which are the elements of the orthogonal complement of the set of all harmonic
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(d) Gm,n,j for m = 2, n = 2, j = 5

Figure 4. The functions Gm,n,j in the case ln = n − 1 for different
parameters m,n, j are plotted at the plane through the origin with nor-
mal vector (1, 1,−1)T. For the particular parameters, see the respective
caption. The maximum is always yellow and the minimum is blue (see
also [34]).

functions. That is,

kerTG = span
{
GI

m,n,j

∣∣∣ m ≥ 1
}‖·‖L2(B)

=
{
F ∈ C(2)(B)

∣∣∣ ΔF = 0
}⊥L2(B)

,

where Δ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
represents the Laplace operator. In this case, the

functions GI
0,n,j , n ∈ N0, j = 1, . . . , 2n+1 are the inner harmonics and, therefore,
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Figure 5. The function G0,4,8, which is not in the null space of the
Fredholm integral operator T for ln = n− 1.

form a basis for the set of all harmonic functions on the ball:

GI
0,n,j(x) =

√
2n+ 3

R

|x|n

Rn+1
Yn,j

(
x

|x|

)
, x ∈ B.

For some particular cases of the considered Fredholm integral operators, we are also
able to find a characterization of the null space via an elliptic partial differential
equation.

For this purpose, we consider the particular integral kernel

k(x, y) :=

∞∑
i=0

ci
|x|i+κ

|y|i+1
Pi

(
x

|x| ·
y

|y|

)
, (x, y) ∈ dom(k),

for a fixed κ ∈ [−1,∞) and ci �= 0 for all i ∈ N0. Note that in the case of the
inverse gravimetric problem κ = 0 and in the case of the inverse magnetic problem
κ = −1. We have already proven that the orthogonal complement of the null space
of the corresponding operator T is given by the set

(kerT )⊥L2(B)

= span
{
Gm,n,j

∣∣∣ m = 0, n ∈ N0, j = 1, . . . , 2n+ 1 and cn �= 0
}‖·‖L2(B)

.

Now, we define an elliptic partial differential operator Δ̃ by

Δ̃F (rξ) := Δ
(
r−κF (rξ)

)
=

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
Δ∗

ξ

)(
r−κF (rξ)

)
.
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Using the product rule for the derivative, we get

Δ̃F (rξ) =

(
−κ(−κ− 1)r−κ−2 − 2κr−κ−1 ∂

∂r
+ r−κ ∂2

∂r2
− 2κr−κ−2

+2r−κ−1 ∂

∂r
+ r−κ−2Δ∗

ξ

)
F (rξ)

=

(
r−κ ∂2

∂r2
+ 2(1− κ)r−κ−1 ∂

∂r
+ κ(κ− 1)r−κ−2 + r−κ−2Δ∗

ξ

)
F (rξ).

In the particular case of the inverse gravimetric problem (i.e., κ = 0) this reduces
to

Δ̃F (rξ) =

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
Δ∗

ξ

)
F (rξ) = ΔF (rξ),

and the differential operator corresponding to the inverse magnetic problem (i.e.,
κ = −1) is given by

Δ̃F (rξ) =

(
r
∂2

∂r2
+ 4

∂

∂r
+

2

r
+

1

r
Δ∗

ξ

)
F (rξ).

In order to get a new characterization of the null space, we apply the differential
operator to the basis functions G0,n,j for n ∈ N0, j = 1, . . . , 2n+ 1 and obtain

Δ̃G0,n,j(rξ) = Δ̃

(
γ0,n

( r

R

)n+κ

Yn,j(ξ)

)
= γ0,nΔ

(
r−κ

( r

R

)n+κ

Yn,j(ξ)

)
=

γ0,n
Rn+κ

Δ (rnYn,j(ξ)) = 0,

since the mapping rξ �→ rnYn,j(ξ) is a harmonic function for all n ∈ N0, j =

1, . . . , 2n + 1. In analogy, Δ̃Gm,n,j �≡ 0 for m ≥ 1, n ∈ N0, j = 1, . . . , 2n + 1

follows by similar considerations. This means that Δ̃F is equal to zero if and only
if rξ �→ r−κF (rξ) is a harmonic function, that is, is contained in

span
{
GI

0,n,j

}
n∈N0,j=1...,2n+1

.

Since this is equivalent to expanding F (rξ) in terms of rκGI
0,n,j(rξ) and ln = n+κ

here, our definition in (13) leads us to the following result.

Theorem 4.1. If we assume that there exists a fixed parameter κ ≥ −1 such that
ln = n+ κ for all n ∈ N0 and that cn �= 0 for all n ∈ N0, then

kerT = span {Gm,n,j | m > 0, n ∈ N0, j = 1, . . . , 2n+ 1}‖·‖L2(B)

=
{
F : B → R

∣∣∣ (rξ �→ r−κF (rξ)) ∈ C(2)(B) and Δ̃F = 0
}⊥L2(B)

. (18)

After having given two mathematical characterizations of the null space in
Equation (18) for a particular case (i.e., ln = n + κ) and one characterization in
Equation (17) for the general case, we want to demonstrate what kind of functions
D generate the same forward solution V .
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Figure 6. Several functions from the null space of T , that is, they gen-
erate the solution V = 0 (left column), and the sum of these functions
with G0,4,8 �∈ kerT (right column) which generate the same right-hand
side V = TG0,4,8, that is, the same data for the inverse problem.
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(d) Sum of PREM andK(z1, ·)+K(z2, ·)+
K(z3, ·)

Figure 7. The density of the PREM model added to several functions
from the null space of TG. They all generate the same gravitational
potential. Here, zi ∈ B, i = 1, 2, 3 are fixed.

For this purpose, we consider the function G0,4,8 plotted in Figure 5, which
is not in the null space of the operator, that means this function generates the
result TG0,4,8 = V �= 0. Then, we add several functions from the null space (see
Figures 6 (A), (C), and (E)) to G0,4,8. The results are shown in Figures 6 (B), (D),
and (F). Keep in mind that all functions in the left column of Figure 6 generate
the zero potential and all functions in the right column of Figure 6 generate the
same forward solution V = TG0,4,8. Similarly, we proceed in Figure 7, where linear
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combinations of functions K(zi, ·), zi ∈ B \{0}, with

K(zi, x) :=

100∑
n=0

2n+1∑
j=1

(0.95)1+nG1,n,j(x)G1,n,j(zi), x ∈ B \{0},

are added to the density D of the PREM model, see [18]. Again, K(zi, ·) can
be extended onto B, if ln ≥ 0 for all n ∈ N0. Note that K(zi, ·) ∈ kerT for all
zi ∈ B\{0} such that, again, there is no difference between the potentials generated
by PREM (see Figure 7 (A)) and the potentials generated by the perturbed mass
densities in Figures 7 (B), (C), and (D).

Hence, the solution of the inverse problem from Equation (2) is not unique,
since we can always add functions from the null space to it without changing the
function V . In particular, Figure 7 shows that certain kinds of mass anomalies (in
the interior of the Earth) remain completely concealed if gravitational data are
used solely.

Now we can sum up our results and give an answer to the three questions
about the well-posedness of the problem posed in Section 3.

Theorem 4.2. Let the operator T : L2(B) → L2(S) be given by

T : D �→
∫
B
D(x)k(x, ·) dx. (19)

with an integral kernel k : B × S → R of the form

k(x, y) :=

∞∑
i=0

ci
|x|li

|y|i+1Pi

(
x

|x| ·
y

|y|

)
, x ∈ B \{0}, y ∈ S,

satisfying Assumption 3.1. Moreover, let the following three conditions be fulfilled
(by the function V ):

• The restriction V |ΩR of V is an L2(ΩR)-function.
• The spherical harmonics coefficients Vn,j of V fulfil a summability condition

∞∑
n=0
cn �=0

n2(2ln + 3)R2n−2lnc−2
n

2n+1∑
j=1

V 2
n,j < ∞.

• The function V is harmonic in the exterior of B, that is, ΔV (y) = 0 for all
y ∈ R3 \B, and regular at infinity, that is, |V (y)| = O(|y|−1) and |∇V (y)| =
O(|y|−2) for |y| → ∞.

Then both inverse problems, which are, the recovery of D ∈ L2(B) from either
given values of V |ΩR or the upward continued potential V |S are ill posed, since
their solutions are not unique. However, in both cases, the solution exists under
these conditions but is not stable.

The second condition in Theorem 4.2 is also known as the Picard condition.In
several cases, for example, the inverse gravimetric problem (i.e., ln = n, cn = γ
for all n ∈ N0), the Picard condition implies V |ΩR ∈ L2(ΩR). For the inverse
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gravimetric problem the Picard condition is satisfied, since the (empirical) Kaula
rule of thumb holds:

2n+1∑
j=1

〈V |ΩR , Yn,j〉2L2(ΩR) = O(ϑn+1n−3), n → ∞,

for a constant ϑ ∈]0, 1[, see, for example, [28] or [44]. Note that the Picard condition
is necessary for the existence of the solution. Since this condition is not necessarily
satisfied by every V |ΩR ∈ L2(ΩR), also this criterion by Hadamard may be violated.

We want to discuss the instability of the solution in detail using the following
example.

Example 4.3. Let a family of functions be defined by

Vn(y) :=
1

n

βn

|y|n+1
Yn,1

(
y

|y|

)
, y ∈ S, for all n ∈ N0.

Since { 1
βYn,1(

·
β )}n∈N0 is an L2(S)-orthonormal system, we get

‖Vn‖L2(S) =
1

n
→ 0 as n → ∞.

Hence, the norms build a null sequence. Using Equation (16), we see that

Dn(x) :=

√
2n+ 3 (2n+ 1)

4πR3/2n

(
β

R

)n

G0,n,1(x)

yields TDn = Vn in the case of ln = n, cn = 1. In addition, we obtain that the
sequence of norms diverges, since β > R and

‖Dn‖L2(B) =

√
2n+ 3(2n+ 1)

4πR3/2n

(
β

R

)n

‖G0,n,1‖L2(B)

=

√
2n+ 3(2n+ 1)

4πR3/2n

(
β

R

)n

→ ∞ as n → ∞.

Thus, small changes in the potential V yield large changes in the solution D and,
hence, the problem is not stable. Note that this instability is already given for the
case of terrestrial data, which means that it is not (only) caused by the instability
of the downward continuation.

4.3. Expansion of the solution in reproducing kernel based functions

In certain cases, it can be of interest to expand the unknown function D in terms
of appropriate reproducing kernels instead of orthonormal basis functions. Repro-
ducing kernels are localized in contrast to the global orthonormal basis functions
from the previous subsection (see also the paper by Freeden, Michel and Simons
in this handbook). In addition, the problems due to the discontinuity at the origin
can be avoided by using this approach. For a more general introduction into re-
producing kernels and reproducing kernel Hilbert spaces, see, for a general setting,
[2, 3, 5, 16], for reproducing kernel Hilbert spaces on the ball.
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Let H := H((Am,n),B) ⊂ L2(B), with the real sequence (Am,n)m,n∈N0 , be
defined as

H((Am,n),B) :=

⎧⎨⎩F ∈ L2(B)
∣∣∣∣∣

∞∑
m,n=0

2n+1∑
j=1

A2
m,n〈F,Gm,n,j〉2L2(B) < ∞

⎫⎬⎭
‖·‖H

,

with

‖F‖2H :=

∞∑
m,n=0

2n+1∑
j=1

A2
m,n〈F,Gm,n,j〉2L2(B), F ∈ H.

The inner product in H is then given by

〈F,G〉H =

∞∑
m,n=0

2n+1∑
j=1

A2
m,n〈F,Gm,n,j〉L2(B)〈G,Gm,n,j〉L2(B) (20)

for all F , G ∈ H.
If the sequence (Am,n)m,n∈N0 fulfils a certain summability condition, see, for

more details, [34], thenH is a reproducing kernel Hilbert space. Due to the property
of the sequence (Am,n)m,n∈N0 , the evaluation functional in H is continuous. The
reproducing kernel of H is given by K : (B \{0})× (B \{0})→ R with

K(z, x) :=

∞∑
m,n=0;
Am,n �=0

2n+1∑
j=1

A−2
m,nGm,n,j(x)Gm,n,j(z), z, x ∈ B \{0}. (21)

Again, in certain cases of Gm,n,j , the definition of K on B × B is valid.
The kernel K has the reproducing property, that is,

〈F,K(z, ·)〉H = F (z) for all F ∈ H and all z ∈ B \{0}.
In our setting, the first input argument z denotes the (fixed) centre of the kernel,
that is, the position in the ball where the kernel is located. Some examples of
reproducing kernels with the same centre and different sequences (Am,n)m,n∈N0

are plotted in Figure 8. As one can see, the discontinuity at the origin is, at least
visibly, smoothed away.

Let the set {y1, . . . , y�} ⊂ S, � ∈ N, contain our measuring positions. We
define linear functionals by FνF := (TF )(yν) for ν = 1, . . . , �. In other words,
the functionals Fν are the evaluations of our operator T applied to an (unknown)
function F at the measuring positions yν , ν = 1, . . . , �. The data collected at the
sensor positions are given by vν = V (yν). The functionals Fν are linear, since they
are the composition of the linear operator T and the linear evaluation functional.

If the function F is an element of the Sobolev space H((Am,n),B) with a
sequence (Am,n)m,n∈N0 fulfilling the summability condition

∞∑
n=0

A−2
0,n

1

(2n+ 1)(2ln + 3)
< ∞,
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Figure 8. Reproducing kernel K(z1, ·) for several (Am,n)m,n∈N0 with

A−2
m,n = (Cn+1)h2(m+n)δm,0 at a fixed centre z1 ∈ B\{0}, a sufficiently

large constant C, and the functions Gm,n,j in the case ln = n− 1.

then the functionals Fν are also continuous (with yν = rνξν) for ν = 1, . . . , �, since

|FνF |2 = |(TF )(yν)|2 =

∣∣∣∣(T( ∞∑
m=0

∞∑
n=0

2n+1∑
j=1

〈F,Gm,n,j〉L2(B)Gm,n,j

))
(yν)

∣∣∣∣2
= (4π)2

∣∣∣∣ ∞∑
n=0

2n+1∑
j=1

〈F,G0,n,j〉L2(B)
cnR

ln

(2n+ 1)|rν |n+1
γ−1
0,nYn,j(ξν)

A0,n

A0,n

∣∣∣∣2
≤(4π)2

( ∞∑
n=0

2n+1∑
j=1

〈F,G0,n,j〉2L2(B)A
2
0,n

)∞∑
n=0

2n+1∑
j=1

(
cnR

ln

A0,n(2n+ 1)|rν |n+1
γ−1
0,nYn,j(ξν)

)2
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≤(4πc)2‖F‖2H
(

sup
n∈N0

Rln−n

)2 ∞∑
n=0

R

A2
0,n(2n+ 1)2(2ln + 3)

2n+ 1

4π

≤4πc2R‖F‖2H
(

sup
n∈N0

Rln−n

)2 ∞∑
n=0

1

A2
0,n(2n+ 1)(2ln + 3)

< ∞,

due to (16), the Cauchy–Schwarz inequality, the definition of the inner product in
H in (20), and Assumption 3.1.

We can apply these functionals to the kernel with respect to z and obtain
the following result by using Equation (16) and the addition theorem for spherical
harmonics. The interchanging of limits (in the series) and the integral, which is
needed in this calculation, is allowed due to the previous estimates. Hence,

Fν
zK(z, x) =

[∫
B
K(z, x)

∞∑
i=0

ci
|z|li
|y|i+1

Pi

(
z

|z| ·
y

|y|

)
dz

]
y=yν

=
∞∑

m,n=0;
Am,n �=0

2n+1∑
j=1

A−2
m,nGm,n,j(x)Fν

z Gm,n,j(z)

=

∞∑
n=0

2n+1∑
j=1

A−2
0,nγ0,n

|x|ln
Rln

Yn,j

(
x

|x|

)
γ−1
0,n

4πcnR
ln

(2n+ 1)|yν |n+1
Yn,j

(
yν
|yν |

)
=

∞∑
n=0

A−2
0,ncn

|x|ln
|yν |n+1

Pn

(
x

|x| ·
yν
|yν |

)
.

It is known that we can construct an expansion for the solution, see [3, 23] by

D(x) =

�∑
ν=1

aνFν
z K(z, x). (22)

Our aim is to determine the corresponding coefficients aν , ν = 1, . . . , �. Applying
the functional on both sides, we obtain for ι = 1, . . . , �

F ι
xD(x) = vι =

�∑
ν=1

aνF ι
xFν

zK(z, x)

=
�∑

ν=1

aν

∞∑
n=0

A−2
0,nγ

−2
0,n

4πc2n
2n+ 1

R2ln

|yι|n+1|yν |n+1
Pn

(
yι
|yι|

· yν
|yν |

)
.

This linear system is uniquely solvable, which means that the expansion in (22)
is unique, if the linear and continuous functionals Fν , ν = 1, . . . , � are linearly
independent, see [2]. Among all solutions D ∈ H with FνD = vν for ν = 1, . . . , �,
the solution in (22) uniquely minimizes the norm ‖ · ‖H induced by the inner
product in (20). These are basically the ideas of a spline interpolation method (for
further details, see [2] and [9]).
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5. Constraints for the uniqueness of the solution

In the previous section, we have shown that we cannot expect a unique solution of
the Fredholm integral equation of the first kind stated in (2). Hence, in practice,
additional conditions are necessary to impose uniqueness. Some possible unique-
ness constraints are now discussed. The most approaches are generalizations of
the results in [33]. More precisely, we present the minimum norm condition, a
generalization of the harmonicity constraint, and the layer density constraint. In
addition, we discuss the surface density approach.

5.1. Minimum norm constraint

As we have seen, we are not able to obtain a uniquely determined solution without
additional assumptions or information. A widespread approach to force uniqueness
is the minimum norm condition (see, e.g., [40]). The following result is a gener-
alization of the theorem concerning the minimum norm solution of the inverse
gravimetric problem, see [33] and the references therein. Throughout this subsec-
tion, we assume that the conditions in Theorem 4.2 are fulfilled and, hence, a
solution of the inverse problem exists.

Recall Equation (11), which is repeated below for convenience:

(2n+ 1)Rn

4πcn
Vn,j =

∫ R

0

rln+2Dn,j(r) dr, if cn �= 0,

Vn,j = 0 for all j = 1, . . . , 2n + 1 otherwise. Dn,j is originated by the (in L2(B)
convergent) series

D(x) =

∞∑
n=0

2n+1∑
j=1

Dn,j(|x|)Yn,j

(
x

|x|

)
.

The minimum norm conditionis fulfilled, if among all D ∈ L2(B) with V =∫
B D(x)k(x, ·) dx, we choose the one with the minimum (squared) norm

‖D‖2L2(B) =

∫
B
(D(x))2 dx =

∞∑
n=0

2n+1∑
j=1

∫ R

0

r2(Dn,j(r))
2 dr.

If we minimize this expression, we obtain the following minimization problem for
each n ∈ N0 and j = 1, . . . , 2n+ 1:

minimize

∫ R

0

r2(Dn,j(r))
2 dr,

subject to

∫ R

0

rln+2Dn,j(r) dr =
2n+ 1

4πcn
RnVn,j , if cn �= 0.

Note that the side condition drops out in the case cn = 0 such that the uncon-
strained minimizer Dn,j ≡ 0 occurs. With the substitution Fn,j(r) := rDn,j(r),
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the problem above is equivalent to

minimize

∫ R

0

(Fn,j(r))
2 dr,

subject to

∫ R

0

rln+1Fn,j(r) dr =
2n+ 1

4πcn
RnVn,j , if cn �= 0.

We now apply an orthogonal decomposition in L2[0, R] to Fn,j in the sense that

Fn,j(r) = αn,jr
ln+1 + Hn,j(r), where

∫ R

0
rln+1Hn,j(r) dr = 0. With this ansatz,

our minimization problem reads

minimize α2
n,j

∫ R

0

r2ln+2 dr + ‖Hn,j‖2L2[0,R],

subject to αn,j

∫ R

0

r2ln+2 dr =
2n+ 1

4πcn
RnVn,j , if cn �= 0.

Since the side condition is independent of Hn,j , we see that Hn,j ≡ 0 yields the
unique minimum, for which we have

αn,j = (2ln + 3)
2n+ 1

4πcn

Rn

R2ln+3
Vn,j , if cn �= 0

and αn,j = 0 for all j = 1, . . . , 2n+ 1, if cn = 0. We summarize our results in the
following theorem.

Theorem 5.1. Let the conditions on V from Theorem 4.2 be fulfilled. Then, among
all D ∈ L2(B) with V =

∫
B D(x)k(x, ·) dx, the L2(B)-convergent series,

D(x) =
∞∑
n=0
cn �=0

2n+1∑
j=1

(2ln + 3)
2n+ 1

4πcn
Rn−ln−3Vn,j

|x|ln
Rln

Yn,j

(
x

|x|

)

=

∞∑
n=0
cn �=0

2n+1∑
j=1

√
2ln + 3

R3

2n+ 1

4πcn
Rn−lnVn,jG0,n,j(x), (23)

is the unique minimizer of the functional

F(D) :=

∫
B
(D(x))2 dx.

In the particular case of ln = n and cn = γ for all n ∈ N0, it can be proven
that the harmonic solution is equivalent to the minimum norm solution, see [33].
This particular solution of the inverse gravimetric problem is then given by

D(x) =
1

γ

∞∑
n=0

2n+1∑
j=1

√
2n+ 3

R3

2n+ 1

4π
Vn,jG

I
0,n,j(x), x ∈ B.
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The convergence of the series in (23) can be proven using the orthonormality
of the Gm,n,j functions, since the Parseval identity yields

‖D‖2L2(B) =
∞∑
n=0
cn �=0

2n+1∑
j=1

2ln + 3

R3

(
2n+ 1

4πcn

)2

R2n−2lnV 2
n,j .

Comparing this with Theorem 4.2, we achieve that the series in (23) converges if
and only if V fulfils the Picard condition, that is,

∞∑
n=0
cn �=0

n2(2ln + 3)

c2nR
2(ln−n)

2n+1∑
j=1

V 2
n,j < ∞. (24)

5.2. A generalization of the harmonicity constraint

In [33], the quasi-harmonic solution, which had already been discussed in the
literature, was seized on. In this case, functions of the kind x �→ |x|n+pYn,j(

x
|x|),

x ∈ B, for a fixed p ∈ R+
0 are used as basis functions. We consider here the

generalized case of a basis {Bn,j}n∈N0,j=1,...,2n+1 given by

Bn,j(x) :=
|x|kn

Rkn+1
Yn,j

(
x

|x|

)
, n ∈ N0, j = 1, . . . , 2n+ 1

with a preliminarily chosen sequence (kn)n∈N0 ⊂ R and the additional condition
that 2kn + 3 > 0 for all n ∈ N0. This condition guarantees that these functions
have a finite L2(B)-norm. The orthogonality is a direct consequence of the L2(Ω)-
orthogonality of the spherical harmonics Yn,j , since

〈Bn,j, Bν,ι〉L2(B) =

∫
B

|x|kn

Rkn+1
Yn,j

(
x

|x|

)
|x|kν

Rkν+1
Yν,ι

(
x

|x|

)
dx

=

∫ R

0

r2kn+2

R2kn+2
dr δn,νδj,ι

=
R2kn+3

(2kn + 3)R2kn+2
δn,νδj,ι

=
R

2kn + 3
δn,νδj,ι.

In the case kn = n, the subspace spanned by this basis is the set of all harmonic
functions and in the case kn = n+ p we get the quasi-harmonic setting.

In contrast to the previous subsection, we have to assume slightly different
properties of V . However, note that Assumption 3.1 is still valid.

Assumption 5.2. We suppose that

• the restriction V |ΩR of V is an L2(ΩR)-function,
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• the summability condition

∞∑
n=0
cn �=0

R2n−2ln
n2(ln + kn + 3)2

c2n(2kn + 3)

2n+1∑
j=1

V 2
n,j < ∞

is fulfilled,
• V is harmonic in the outer space, that is, ΔV (y) = 0 for all y ∈ R3 \B,
• V is regular at infinity.

With the orthogonal basis {Bn,j}n∈N0,j=1,...,2n+1, the density D can be rep-
resented by the expansion

D(x) =

∞∑
n=0

2n+1∑
j=1

dn,j

√
2kn + 3

R
Bn,j(x), x ∈ B \{0}, (25)

in the sense of L2(B). In accordance with the notations above, we have

Dn,j(r) = dn,j

√
2kn + 3

R

rkn

Rkn+1
, r ∈ [0, R].

Thus, the relation between the Fourier coefficients of V and Dn,j in (11) becomes
for all j = 1, . . . , 2n+ 1

(2n+ 1)Rn

4πcn
Vn,j =

∫ R

0

dn,j

√
2kn + 3

R

rln+kn+2

Rkn+1
dr

= dn,j

√
2kn + 3

R

Rln+kn+3

(ln + kn + 3)Rkn+1

= dn,j

√
2kn + 3

R

Rln+2

(ln + kn + 3)
, if cn �= 0, (26)

and Vn,j = 0, if cn = 0. Solving (26) for dn,j and inserting the result in (25), we
obtain

D(x) =

∞∑
n=0

2n+1∑
j=1

dn,j

√
2kn + 3

R

|x|kn

Rkn+1
Yn,j

(
x

|x|

)

=

∞∑
n=0
cn �=0

2n+ 1

4πcn
(ln + kn + 3)Rn−ln−2 |x|kn

Rkn+1

2n+1∑
j=1

Vn,jYn,j

(
x

|x|

)
+ D̃

=

∞∑
n=0
cn �=0

2n+ 1

4πcn
(ln + kn + 3)Rn−ln−2

2n+1∑
j=1

Vn,jBn,j(x) + D̃,

where D̃ ∈ span{Bn,j | n ∈ N0 with cn = 0, j = 1, . . . , 2n+ 1}‖·‖L2(B) is arbitrary.
The convergence of the series is guaranteed by the summability conditions on V .
Summarizing these results, we get the next theorem.
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Theorem 5.3. Let cn �= 0 for all n ∈ N0, and let Assumptions 3.1 and 5.2 be
fulfilled. Then the unique solution D ∈ U , where the L2(B)-subspace U has the
basis {Bn,j}n∈N0,j=1,...,2n+1, of the inverse problem∫

B
D(x)k(x, y) dx = V (y) in R3 \B,

with (x, y) ∈ dom(k) is given by

D(x) =
∞∑

n=0

2n+ 1

4πcn
(ln + kn + 3)Rn−ln

|x|kn

Rkn+3

2n+1∑
j=1

Vn,jYn,j

(
x

|x|

)
,

in the sense of L2(B).

In [33], the biharmonic solution was also considered. In this case, the needed
radial basis is given by the sum of two radial parts. An approach for a general-
ization of this ansatz is given by the sum of K ∈ N different radial parts, that

is, {(
∑K

i=1 | · |ki,n)Yn,j(
·
|·|)}n∈N0,j=1,...,2n+1. However, without any additional in-

formation, a unique solution cannot be obtained in this case (see also the result
for the biharmonic solution in [33]).

5.3. Layer density constraint

As we have seen above, the non-uniqueness is primarily a matter of the radial
parametrization of the solution D. For this reason and in view of the fact that,
for example, lithospheric heterogeneities are particularly interesting with respect
to their lateral structure, we consider here the (thin) spherical shell

Ω[τ,τ+ε] :=
{
x ∈ R3 : 0 < τ ≤ |x| ≤ τ + ε ≤ R

}
,

for τ > 0 and ε > 0. We are interested in finding a solution D which consists
of purely laterally inhomogeneous anomalies in Ω[τ,τ+ε]. This kind of uniqueness
constraint was, for example, used in [23] for the inverse magnetic problem.

For the layer density constraint, we assume that the density D ∈ L2(B) has
(again) the form

D(x) =

∞∑
n=0

2n+1∑
j=1

Dn,j(|x|)Yn,j

(
x

|x|

)
, x ∈ B, (27)

where now

Dn,j(r) := κdn,jχ[τ,τ+ε](r), r ∈ [0, R], (28)

for all n ∈ N0, j = 1, . . . , 2n+1, and χ is the characteristic function (i.e., χA(x) = 0
if x �∈ A and χA(x) = 1 if x ∈ A). The normalization constant κ is chosen as

κ :=

√
3

(τ + ε)3 − τ3
.

Assumption 5.4. For the function V , we now assume that

• the restriction V |ΩR of V is an L2(ΩR)-function,
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• the summability condition

∞∑
n=0
cn �=0

n2l2nR
2n

((τ + ε)ln+3 − τ ln)2c2n

2n+1∑
j=1

V 2
n,j < ∞

is fulfilled,
• V is harmonic in the outer space, that is, ΔV (y) = 0 for all y ∈ R3 \B,
• V is regular at infinity.

Using (11) and the desired representation of D, we have

(2n+ 1)Rn

4πcn
Vn,j =

∫ R

0

rln+2Dn,j(r) dr

= κ

∫ R

0

rln+2dn,jχ[τ,τ+ε](r) dr

= κdn,j
(τ + ε)ln+3 − τ ln+3

ln + 3
.

This yields, for all j = 1, . . . , 2n+ 1,

κdn,j =
(2n+ 1)Rn

4πcn
Vn,j

ln + 3

(τ + ε)ln+3 − τ ln+3
, if cn �= 0,

and Vn,j = 0, if cn = 0. We insert this in Equations (27) and (28) and directly
obtain, for all x ∈ B,

D(x) =
∞∑
n=0

2n+1∑
j=1

dn,jκχ[τ,τ+ε](|x|)Yn,j

(
x

|x|

)

=

∞∑
n=0
cn �=0

2n+1∑
j=1

(2n+ 1)(ln + 3)

4πcn

Rn

(τ + ε)ln+3 − τ ln+3
Vn,jχ[τ,τ+ε](|x|)Yn,j

(
x

|x|

)
+ D̃,

where

D̃ ∈ span

{
Dn,j(| · |)Yn,j

(
·

| · |

) ∣∣∣∣ n ∈ N0 with cn = 0, j = 1, . . . , 2n+ 1

}‖·‖L2(B)

can be chosen arbitrarily.

Theorem 5.5. Let cn �= 0 for all n ∈ N0 and let Assumptions 3.1 and 5.4 be
fulfilled. Then the unique solution under the layer density constraint is given by

D(x) =

∞∑
n=0

2n+1∑
j=1

Rn

4πcn

(2n+ 1)(ln + 3)

(τ + ε)ln+3 − τ ln+3
Vn,j χ[τ,τ+ε](|x|)Yn,j

(
x

|x|

)
(29)

in the sense of L2(B).
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Moreover, under the conditions in Assumption 5.4, the corresponding poten-
tial V possesses the following outer harmonics expansion

V (y) = κ

∞∑
n=0

4πcn
(2n+ 1)(ln + 3)

(
(τ + ε)ln+3 − τ ln+3

)
|y|−n−1

2n+1∑
j=1

dn,jYn,j

(
y

|y|

)
.

This series fulfils the condition of Assumption 5.4, that is, V |ΩR ∈ L2(ΩR):

‖V |ΩR‖
2
L2(ΩR) = κ2

∞∑
n=0

(
4πcn

(2n+ 1)(ln + 3)

(
(τ + ε)ln+3 − τ ln+3

))2

R−2n
2n+1∑
j=1

d2n,j

≤ 16π2c2κ2
∞∑

n=0

(
Rln+3 +Rln+3

)2
(2n+ 1)2(ln + 3)3R2n

2n+1∑
j=1

d2n,j

≤ 64π2c2κ2 sup
n∈N0

(
R2ln+6−2n

(2n+ 1)2(ln + 3)2

) ∞∑
n=0

2n+1∑
j=1

d2n,j < ∞.

For this estimate, we used the boundedness of the sequence (cn)n∈N0 (given by
Assumption 3.1, item 1), the boundedness of the supremum in the latter estimate
(given by Assumption 3.1, items 2 and 3), and the square-integrability of D.

5.4. Surface density

In inverse gravimetry, in particular, it is reasonable to consider a surface density
instead of a density on the entire ball B. In a time-variable gravity field (with
relatively short time scales) most of the changes occur on the (Earth’s) surface or
at least on layers very close to it. So, if one is interested in anomalies as devia-
tions from a reference model, which could be an annual mean, for instance, these
anomalies can be typically found on the surface of the underlying body.

So far, in our general setup, we have

V (y) = (TD)(y) =

∫
B
D(x)k(x, y) dx. (30)

Since the operator T is linear and continuous, we can also read the equation above
in distributional sense. For the mathematical theory of distributions and, in this
context, the definition of test functions, the reader is referred to [27]. In other
words, we can look at Equation (30) as an application of a regular distribution D
applied to the kernel k, that is

V (y) = (TD)(y) = 〈D, k(·, y)〉. (31)

Actually, we have a regular distribution D with

Dϕ := 〈D,ϕ〉
for all test functions1 ϕ, which is uniquely determined by the function D and
vice versa (at least almost everywhere). Thus, the distribution can be, in fact,

1Actually, the function k(·, y) is not a test function, but the domain of D can be extended such
that Dk(·, y) makes sense and equals (TD)(y).
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represented by the function D itself and the distinction is commonly omitted.
Now, one can think of replacing the regular distribution and also allow singular
distributions. For our purposes, a very useful singular distribution is FδΩR , which
is a variation of the well known delta distribution and is given by

〈FδΩR , ϕ〉 :=
∫
ΩR

F (x)ϕ(x) dω(x),

for an arbitrary, over ΩR square-integrable, function F and for every test function
ϕ. In that case, we have (cf. Equation (31))

Ṽ (y) := 〈DδΩR , k(·, y)〉 =
∫
ΩR

D(x)k(x, y) dω(x).

Conclusively, with our previous considerations, we get

Ṽ (y) =

∞∑
n=0

cn
Rln

|y|n+1

∫
ΩR

D(x)Pn

(
x

|x| ·
y

|y|

)
dω(x)

=

∞∑
n=0

cn
Rln

|y|n+1

∫
Ω

D(Rξ)Pn

(
ξ · y

|y|

)
R2 dω(ξ).

With the addition theorem for spherical harmonics and the ansatz (8), it follows
that

Ṽ (y) =

∞∑
n=0

2n+1∑
j=1

4πcn
2n+ 1

Rln+2

|y|n+1
Yn,j

(
y

|y|

)∫
Ω

D(Rξ)Yn,j(ξ) dω(ξ)

=

∞∑
n=0

2n+1∑
j=1

4πcn
2n+ 1

Rln−n+2Dn,j(R)

(
R

|y|

)n
1

|y|Yn,j

(
y

|y|

)
.

Consequently, we find the Fourier coefficients

Ṽn,j =
4πcn
2n+ 1

Rln−n+2Dn,j(R)

which in other words means that, for cn �= 0,

(2n+ 1)Rn

4πcn
Ṽn,j = Rln+2Dn,j(R). (32)

As we see, this problem is again uniquely solvable (if cn �= 0 for all n ∈ N0) and
in the particular case of the inverse gravimetric problem, the coefficients read

2n+ 1

4πγ
Ṽn,j = R2Dn,j(R). (33)

Theorem 5.6. Let Dn,j be given according to (32) and cn �= 0 for all n ∈ N0.

Further, let Ṽ be a harmonic function in the exterior of ΩR which is regular at
infinity with Ṽ |ΩR ∈ L2(ΩR) and

∞∑
n=0

2n+1∑
j=1

n2R2n−2ln

c2n
Ṽ 2
n,j < ∞.
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Then a distributional solution of the Fredholm integral equation of the first kind in
(2) is given by

DδΩR =

( ∞∑
n=0

2n+1∑
j=1

(2n+ 1)Rn−ln

4πR2cn
Ṽn,jYn,j

( ·
R

))
δΩR .

In the inverse gravimetric problem, as the typical application of the surface
density approach, we have the following setting. Let ρ̄ : B → R be a density given
by an arbitrary reference model of the Earth, for example, the Preliminary Refer-
ence Earth Model (PREM), see [18]. The corresponding gravitational potential is
given by

V̄ = γ

∫
B

ρ̄(x)

|x− ·| dx

and describes a part of the potential that does not change in the associated time
span. The entire measured potential is given by V = V̄ + Ṽ , where Ṽ are the
relevant occurring changes in the gravitational potential. That is, we are here
looking for a surface density σ : ΩR → R with

Ṽ = V − V̄ = γR2

∫
ΩR

σ(x)

|x− ·| dω(x),

which causes these changes of the potential. By virtue of Equation (33), we know
that the Fourier coefficients of the surface density are given by

σn,j =
(2n+ 1)

4πγR2
Ṽn,j (34)

for all n ∈ N0 and all j = 1, . . . , 2n+1. Chao [12] also proved that this problem is
uniquely solvable. The obtained formula (34) coincides with the formulae which are
commonly used in geodesy for a surface density ansatz or thin layer assumption,
respectively, as originally proposed in [52].

6. Conclusions

We observed similarities between the inverse gravimetric and the inverse magnetic
problem by considering both as particular cases of a kind of a master inverse prob-
lem. With this approach, a larger class of data inversion problems can be analyzed
and solved all at once. A particular focus of the paper was the complete analysis of
the non-uniqueness of the solution of all inverse problems of the investigated type.
This analysis was based on something like a fundamental equation for the Fourier
coefficients of the given data and the solution. The construction of a particular
and appropriate orthonormal system on the ball enabled us to further understand
the relation of the solution and the data. With this basis system and an adequate
expansion in the data space, we characterized the null space of the Fredholm in-
tegral operator of the first kind in detail and calculated the singular system. Such
a knowledge is an essential prerequisite for a series of regularization methods for
inverse problems.
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Furthermore, using the derived singular value decomposition, we also proved
that this kind of inverse problem is unstable, that is, the inverse operator is un-
bounded. It also turned out that all considered problems have in common that most
of the radial information gets lost. The ill-posedness of the considered problems
is severely aggravated by the fact that the null space of the operator is infinite-
dimensional, and, hence, the solution of the inverse problem is not unique. For
this reason, we discussed four different additional conditions in order to obtain a
unique solution: the minimum norm condition, a generalization of the harmonicity
constraint, the layer density condition, and the surface density approach. In the
particular case of the inverse gravimetric problem, our results coincide with the
corresponding well-known results and in the case of the inverse magnetic problem,
we found new results.
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Birkhäuser, Basel

[25] Geselowitz, D.B. (1970) On the magnetic field generated outside an inhomogeneous
volume conductor by internal current sources. IEEE Trans. Magn. 6:346–347

[26] Han, S., Shum, C., Bevis, M., Ji, C., Kuo, C. (2006) Crustal dilatation observed by
GRACE after the 2004 Sumatra-Andaman earthquake. Science 313:658–662
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[33] Michel, V., Fokas, A.S. (2008) A unified approach to various techniques for the non-
uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse
Probl. 24:045019

[34] Michel, V., Orzlowski, S. (2016) On the null space of a class of Fredholm integral
equations of the first kind. J Inverse Ill-Posed Probl 24:687–710



Non-uniqueness of Gravitational and Magnetic Field Data 919

[35] Moritz, H. (1990) The Figure of the Earth. Theoretical Geodesy of the Earth’s
Interior. Wichmann Verlag, Karlsruhe

[36] Nikiforov, A.F., Uvarov, V.B. (1988) Special Functions of Mathematical Physics. A
Unified Introduction with Applications. Birkhäuser, Basel
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