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Abstract. In this work we are especially concerned with the “mathemati-
zation” of gravimetric exploration and prospecting. We investigate the ex-
tractable information of the Earth’s gravitational potential and its observ-
ables obtained by gravimetry for gravitational modeling as well as geological
interpretation. More explicitly, local gravimetric data sets are exploited to
visualize multiscale reconstruction and decorrelation features to be found in
geophysically and geologically relevant signature bands.

Keywords. Absolute and relative gravimetry, Newtonian gravitational ap-
proach, multiscale density field modeling.

Introduction

Newton’s famous law about the mutual attraction of two masses formulated in
“De mundi systemate” 1715 tells us that the attractive force, called gravitation,
is directed along the line connecting the two centers of mass of the objects and is
proportional to two masses as well as to the squared inverse of the distance between
the objects. If the Earth had a perfectly spherical shape and if the mass inside the
Earth were distributed homogeneously or rotationally symmetric, the line along
which an apple fell would indeed be a straight line, directed radially and going
exactly through the Earth’s center of mass. The gravitational field obtained in this
way would be perfectly spherically symmetric. In reality, however, the situation is
more complex. The topographic features, mountains and valleys, are very irregular.
The actual gravitational field is influenced by strong irregularities in density within
the Earth. As a result, the gravitational force deviates from one place to the other
from that of a homogeneous sphere. More explicitly, internal density signatures
are reflected in gravitational field signatures, and orthogonal coefficients in terms
of spherical harmonics of gravitational field signatures smooth out exponentially
with increasing distance from the Earth’s body. As a consequence, positioning
systems are ideally located as far as possible from the Earth, whereas gravity field
sensors are ideally located as close as possible to the Earth. Following these basic
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principles, various positioning and gravity field determination techniques have been
designed. Sensors may be sensitive to local or global features of the gravity field.
Considering the spatial location of the data points, we may differentiate between
terrestrial (surface), airborne, and spaceborne methods.

Concerning gravity on a global scale, e.g., for global geoid determination
(that will not be investigated here), it should be pointed out (see, e.g., [6–8]) that
the terrestrial distribution of Earth’s gravity data is far from being homogeneous
with large gaps, in particular over oceans but also over land. In addition, the qual-
ity of the data is very distinct. Thus, global terrestrial gravity data coverage now
and in the foreseeable future is far from being satisfactory. This is the reason why
spaceborne measurements come into play for global gravity determination. Until
now, the relatively poor precision of satellite-only spaceborne gravity measure-
ments has hindered a wider use of this type of measurements for local purposes.
Seen from future exploration aspects, however, it must be remarked that only
coordinated research will provide a breakthrough in modeling and understanding
significant structures and processes in the Earth’s interior. In fact, the authors are
convinced that the way forward, even in global modeling, has to be based on two
requirements:

i) combining data from different sensors and sources,
ii) multiscale modeling, i.e., “zooming-in downward continuation” of the differ-

ent data sources starting from globally available spaceborne data as means
for an appropriate trend solution via more accurate (regional) airborne data
down to (local) high-precision gravimetric data sets.

In this contribution, we are especially concerned with the mathematical study
of gravimetry in exploration, in particular postprocessing of all already available
models. To this end we briefly explain the status quo of gravimetric observation
and standard modeling. On the basis of these results we present new multiscale
methods by means of geoscientifically relevant wavelets for the decorrelation of
signatures inherent in geological information.

1. Gravity, gravitation, and gravimetry

The force of gravity provides a directional structure to the space above the Earth’s
surface. It is tangential to the vertical plumb lines and perpendicular to all (level)
equipotential surfaces. Any water surface at rest is part of a level surface. (Level)
equipotential surfaces are ideal reference surfaces, for example, for heights. The
geoid is defined as that level surface of the gravity field which best fits the mean
sea level.

The direction of the gravity vector can be obtained by astronomical posi-
tioning. Measurements are possible on the Earth’s surface. Observations of the
gravity vector are converted into so-called vertical deflections by subtracting a
corresponding reference direction derived from a simple gravity field model as-
sociated to, e.g., an ellipsoidal surface. Vertical deflections are tangential fields
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of the anomalous potential. Due to the high measurement effort required to ac-
quire these types of data compared to a gravity measurement, the data density of
vertical deflections is much less than that of gravity anomalies. Gravitational field
determination based on the observation of deflections of the vertical and combined
with gravity is feasible in smaller areas with good data coverage.

1.1. Gravitational, centrifugal, and gravity acceleration

The gravity acceleration (gravity) w is the resultant of the gravitation v and the
centrifugal acceleration c such that

w = v + c. (1.1)

The centrifugal force c arises as a result of the rotation of the Earth about
its axis. In this work concerned with local gravity exploration we are allowed to
assume a rotation of constant angular velocity ω. The centrifugal acceleration
acting on a unit mass is directed outward perpendicularly to the spin axis (see
Figure 1.1). Introducing the so-called centrifugal potential C, such that c = ∇C,
the function C turns out to be non-harmonic. The direction of the gravity w is
known as the direction of the plumb line, the quantity |w| is called the gravity
intensity (often also just called gravity and denoted in the geodetic jargon by g).
Altogether, the gravity potential of the Earth can be expressed in the form

W = V + C, (1.2)

and the gravity acceleration w is given by

w = ∇W = ∇V +∇C. (1.3)

Figure 1.1. Gravitation v, centrifugal acceleration c,
gravity acceleration w.

As already pointed out, the surfaces of constant gravity potentials, i.e., W =
const., are designated as equipotential (level, or geopotential) surfaces of gravity
(for more details, the reader is referred to monographs in physical geodesy, e.g.,
[27, 32, 51, 69]).
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The actual Earth’s surface (globally available from modern spaceborne tech-
niques such as DOPPLER, GNSS, LASER, VLBI, etc.) does not coincide with an
equipotential surface (i.e., a level surface). The force of gravity is generally not
perpendicular to the actual Earth’s surface (see Figure 1.2). However, we are con-
fronted with the gravity intensity as an oblique derivative on the Earth’s surface.
The gravity vector is an oblique vector at any point on the Earth’s surface and
generally not the normal vector.

Figure 1.2. Earth’s surface, geoid, ellipsoid (λ = w
|w| oblique unit grav-

ity vector, normal vector to the geoid, but usually not normal to the
Earth’s surface).

The determination of equipotential surfaces of the potential W is strongly
related to the knowledge of the potential V . The gravity vector w given by w =
∇W is normal to the equipotential surface passing through the same point. Thus,
equipotential surfaces such as the geoid intuitively express the notion of tangential
surfaces, as they are normal to the plumb lines given by the direction of the gravity
vector.

1.2. Gravimeter and gravimetry

Essentially, the Earth is a “spheroid”, with a slight flattening (0.35%) at the poles,
a mean radius of 6368km, and a mean mass of 5.98 · 1024kg. At the surface of the
Earth, its mean value of gravity intensity is given by 9.80m

s2 . At the equator, it re-
duces to 9.78m

s2 ; at the poles, it increases to about 9.83m
s2 , reflecting the flattening.

Gravimeters are typically designed to measure very tiny fractional changes of
the Earth’s gravity, caused by nearby geologic structures or the shape of the Earth.
There are two types of gravimeters, viz. relative and absolute gravimeters. Absolute
gravimeters measure the local gravity and are directly based on measuring the
acceleration of free fall (for example, of a test mass in a vacuum tube). Relative
gravimeters compare the value of gravity at one point with another. They must
be calibrated at a location, where the gravity is known accurately and measure
the ratio of the gravity at the two points. Most common relative gravimeters are
spring-based. By determining the amount by which the weight stretches the spring,
gravity becomes available via Hooke’s law (see Figure 1.3). The highest possible
accuracy of relative gravity measurements are conducted at the Earth’s surface.
Measurements on ships and in aircrafts deliver reasonably good data only after the
removal of inertial noise. In addition, when interested in gravimetric exploration,
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Figure 1.3. The principle of gravimetry (with kind permission of
Teubner-publishing taken from [38] in modified form).

it should be noted that a high measurement accuracy of at least 0.1mGals, but
more adequately 0.01mGals (1mGal = 10−5 m

s2 , cf. Table 1) has to be achieved (cf.
Figure 1.4).

SI Units Traditional Units

10−2ms−2 1 Gal
10−5ms−2 1 mGal
10−8ms−2 1 μGal

Table 1. Traditional units for gravimetric measurements and their SI
unit complement.

By gravimetry, we denote the determination of the Earth’s mass density dis-
tribution from data of the gravitational potential or related quantities. Clearly,
for purposes of exploration, it is obvious that the determination of gravity inten-
sities as well as gravity anomalies of dimension very much larger than the gravity
anomalies caused by, e.g., aquifers, oil and gas structures are of less significance.
The fundamental interest in gravimetric methods in exploration is based on the
measurements of small variations.

Gravity prospecting has been first used in the case of strong density con-
trasts in a geological structure, and the usual approach is to measure differences
in gravity from place to place. Today, the interpretation of gravimetric data is done
by comparing the shape and size of gravity disturbances and anomalies to those
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Figure 1.4. Illustration of the components of the gravity acceleration
(ESA medialab, ESA communication production SP–1314).

caused by bodies of various geometrical shapes at different depths and differing
densities.

The observed gravity depends on the following effects to be removed (for
more detailed studies, see, e.g., [53, 59, 64]): attraction of the reference ellipsoid,
elevation above sea level, topography, time dependent variations (tidal), (Eőtvős)
effect of a moving platform, isostatic balance on the lower lithosphere, density
variations inside the upper crust. To isolate the effects of local density variations
from all other contributions, it is necessary to apply a series of reductions: The
attraction of, e.g., the reference ellipsoid or another reference surface has to be
subtracted from the measured values. An elevation correction must be done, i.e.,
the vertical gradient of gravity is multiplied by the elevation of the station and
the result is added. With increasing elevation of the Earth, there is usually an
additional mass between the reference level and the actual level. This additional
mass itself exerts a positive gravitational attraction. Bouguer correction and ter-
rain correction are applied to correct for the attraction of the slab of material
between the observation point and the geoid. A terrain correction accounts for
the effect of nearby masses above or mass deficiencies below the station. Isostatic
correction accounts for the isostatic roots (Moho). Other corrections have to be
applied to the data in order to account for effects not related to the subsurface:
Drift corrections are necessary, since each gravimeter suffers mechanical changes
over time, and so does its output measurement. This change is generally assumed
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to be linear. Tidal corrections have to be imposed, i.e., the attraction of the Sun
and Moon has to be calculated and subtracted from the measurements. In case of
acquisition on a moving platform, the motion relative to the surface of the Earth
implies a change in centrifugal acceleration. The Eőtvős correction depends on the
latitude and velocity vector of the moving platform. It should be observed that
free air anomaly does not correct for the first two effects which could mask the
gravity anomalies related to the Bouguer density contrasts in the crust. Complete
Bouguer correction effectively remove the gravity anomalies due to bathymetry,
but still contain the gravity effect of the Moho. Isostatics contain the gravity effect
of the Moho. For more details the reader is referred to geodetic textbooks such as
[32, 36, 68] and to the literature concerned with prospecting and exploration (see,
e.g., [53, 54, 64] and the references therein).

Gravity prospecting can be done over land or sea areas using different tech-
niques and equipment. Terrestrial gravimetry was first applied to prospect for salt
domes (e.g., in the Gulf of Mexico) (an example of the Eastern part of Germany
is shown in Figure 1.5), and later for looking for anticlines in continental areas
(see, e.g., [53, 54], and the references therein). Nowadays, gravimetry is in use all
over the world in diverse applications:

(1) Gravimetric surveys serve regional geological mapping.
(2) Gravimetry is helpful in different phases of the oil exploration and production

processes.
(3) Gravimetric surveys are employed in mineral exploration, for example, to

detect mineral deposits (see Figure 1.5) of economic interest (such as metals,
salt, coal).

(4) Archaeological and geotechnical studies aim at the mapping of subsurface
voids and overburden variations.

(5) Gravimetric campaigns may be applied for groundwater and environmental
studies. They help to map aquifers to provide formations and/or structural
control.

(6) Gravimetric studies give information about tectonically derived changes and
volcanological phenomena.

(7) Gravimetric studies provide useful information on changes in the level of
water in geothermal reservoirs and therefore on the longevity of a geothermal
resource.

It is surprising that the use of gravimetry is in infancy in the German geother-
mal scene, although it has much to offer. Due to (regional) airborne and (global)
spaceborne gravity information such as satellite-to-satellite tracking (SST) and/or
satellite gravity gradiometry (SGG), new promising components in gravimetri-
cally oriented modeling can be expected in the future, for example, based on
multiscale modeling providing reconstruction and decomposition of geological sig-
natures, where seismic modeling is difficult or impossible because of anthropogenic
activities, e.g., in mining areas.
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Figure 1.5. Top: Gravity effect in [μm · s−1] of the salt dome Werle
(Mecklenburg, Germany); bottom: Geological vertical profile (with kind
permission of Teubner-publishing taken from [38] in modified form).

All in all, nowadays the main applications of gravimetry can be listed as
follows:

(i) definition of geological structural settings,
(ii) faults delineation,
(iii) recovery of salt bodies, metal deposits,
(iii) detection of heap of coal, ore, etc.,
(iv) 2D/3D forward modeling, inversion, and postprocessing to assist seismic mod-

eling,
(v) combination with geomagnetic interpretation,
(vi) 4D monitoring, etc.

Figure 1.6 shows the gravity as well as the vertical/horizontal gradient curves
induced by a simple geological structure in sectional illustration (for similar illus-
trations, the reader is referred to, e.g., [5, 26, 39, 48, 53, 54, 64]). It is remarkable
that the vertical/horizontal gradient curves show significant interactions on density
variations.
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Figure 1.6. Schematic diagram of the horizontal/vertical gradients vs.
the gravity potential (cf. [54]).

The knowledge of horizontal/vertical derivatives of the gravity potential is
therefore a useful addendum to prospecting and exploration. This is the reason
why we are interested in discussing these derivatives in more detail (based on ideas
and concepts developed in [15]).

2. Surface horizontal/vertical derivatives of the gravity potential

The lines that intersect all equipotential surfaces orthogonally are not exactly
straight but slightly curved (cf. Figure 2.1). They are called lines of gravity force
or plumb lines. The gravity vector at any point is tangential to the plumb line.
Hence, “direction of the gravity vector”, “vertical” and “direction of the plumb
line” are synonymous. As the equipotential surfaces are, so to speak, “horizontal”,
i.e., orthogonal to the plumb lines, they play an important part in our daily life
(e.g., in civil engineering for the purpose of height determination). Equipotential
surfaces of the Earth’s gravity potential W allow, in general, no simple mathe-
matical representation. This is the reason why physical geodesy and geophysics
choose a suitable reference surface for modeling the geoid, i.e., the equipotential
surface at sea level. The reference surface is constructed as an equipotential sur-
face of an artificial normal gravity potential U . Its gradient field, i.e., u = ∇U , is
called normal gravity. For reasons of simplicity, physical geodesy usually uses an
ellipsoid of revolution in such a way that a good adaption to the Earth’s surface
is guaranteed. Closed representations of normal gravity potentials, in considera-
tion of the centrifugal force, can be found extensively in the geodetic literature
(cf. [25, 27, 32, 36, 45, 51, 65]), and the references therein). The deviations of the
gravity field of the Earth from the normal field of such an ellipsoid are small. The
remaining parts of the gravity field are gathered in a so-called disturbing gravity
field ∇T corresponding to the disturbing potential T = W − U .
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2.1. Gravity anomalies, gravity disturbances, and vertical deflections

Knowing the gravity potential, all equipotential surfaces (including the geoid) are
given by an equation of the form W (x) = const. By introducing U as the normal
gravity potential corresponding to the ellipsoidal field, the disturbing potential T
is the difference of the gravity potential W and the normal gravity potential U ,
i.e., we are led to a decomposition of the gravity potential in the form W = U +T.
According to the concept developed by Stokes [65], Helmert [33], and Pizzetti
[56, 57] we may assume that

(a) the center of the ellipsoid coincides with the center of gravity of the Earth,
(b) the difference of the mass of the Earth and the mass of the reference body

(ellipsoid) is zero.

Figure 2.1. Level surfaces and plumb lines for a homogeneous ball
(left) and an Earth-like body (right) (from [15]).

A point x of the geoid can be projected onto its associated point y of the
ellipsoid by means of the ellipsoidal normal. The distance N(x) between x and y
is called the geoidal height or geoidal undulation in x (cf. Figure 2.2). The gravity
anomaly vector a(x) at the point x of the geoid is defined as the difference between
the gravity vector w(x) and the normal gravity vector u(y), i.e.,

a(x) = w(x) − u(y). (2.1)

Another possibility is to form the difference between the vectors w and u at
the same point x such that we get the gravity disturbance vector d(x) defined by

d(x) = w(x) − u(x). (2.2)

In geodesy, several basic mathematical relations between the scalar fields |w| and
|u| as well as between the vector fields a and d are known. In the following, we
only describe the fundamental relations heuristically (see also [27, 32]).

The point of departure for our excursion into geodesy is the observation that
the gravity disturbance vector d(x) at the point x on the geoid can be written as
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Figure 2.2. Illustration of the gravity vector w(x), the normal gravity
vector u(x), and the geoidal height N(x). Here, ν and ν′ denote the
normal to the geoid and the reference ellipsoid, respectively (follow-
ing [32]).

follows:

d(x) = w(x) − u(x) = ∇ (W (x) − U(x)) = ∇T (x). (2.3)

According to Taylor’s formula, U(y)+ ∂U
∂ν′ (y)N(x) is the linearization of U(x),

i.e., by expanding the potential U at the point x and truncating the Taylor series
at the linear term, we get

U(x) & U(y) +
∂U

∂ν′
(y)N(x), (2.4)

where

ν′(y) = − u(y)

|u(y)| (2.5)

is the ellipsoidal normal at y and the geoidal undulationN(x) is the aforementioned
distance between x and y (note that the symbol ‘&’ means that the error between
the left- and the right-hand side may be assumed to be insignificantly small). Using
the fact that T (x) = W (x) − U(x) and observing the relations

|u(y)| = −ν′(y) · u(y) = −ν′(y) · ∇U(y) = −∂U

∂ν′
(y), (2.6)

we obtain under the assumption of (2.4) that

N(x) =
U(y)− U(x)

|u(y)| =
T (x)− (W (x)− U(y))

|u(y)| . (2.7)

Finally, considering U(y) = W (x) = const.= W0, we end up with the so-called
Bruns formula (cf. [4])

N(x) =
T (x)

|u(y)| . (2.8)

This formula relates the physical quantity T (x) to the geometric quantity N(x) for
points x on the geoid.
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It is helpful to study the vector field ν(x) in more detail:

ν(x) = − w(x)

|w(x)| . (2.9)

Due to the definition of the normal vector field (2.9), we obtain the following
identity

w(x) = ∇W (x) = − |w(x)| ν(x). (2.10)

In an analogous way we obtain

u(x) = ∇U(x) = − |u(x)| ν′(x). (2.11)

The vertical deflection Θ(x) at the point x on the geoid is understood to be the
angular (i.e., tangential) difference between the directions ν(x) and ν′(x). More
concretely, the vertical deflection is determined by the angle between the plumb
line and the ellipsoidal normal through the same point:

Θ(x) = ν(x)− ν′(x)− ((ν(x) − ν′(x)) · ν(x)) ν(x). (2.12)

According to its construction, the vertical deflection Θ(x) at x is orthogonal to the
normal vector field ν(x), i.e., Θ(x) ·ν(x) = 0. Since the plumb lines are orthogonal
to the equipotential surfaces of the geoid and the ellipsoid, respectively, the ver-
tical deflection gives briefly spoken a measure of the gradient of the equipotential
surfaces (cf. [32]). From (2.10), in connection with (2.12), it follows that

w(x) = −|w(x)| (Θ(x) + ν′(x) + ((ν(x) − ν′(x)) · ν(x)) ν(x)) . (2.13)

Using Eqs. (2.11) and (2.13) we finally obtain for the gravity disturbing vector
d(x) at the point x

d(x) = ∇T (x) = w(x) − u(x) (2.14)

= −|w(x)| (Θ(x) + ν′(x) + ((ν(x) − ν′(x)) · ν(x)) ν(x)) − (−|u(x)|ν′(x))
= −|w(x)| (Θ(x) + ((ν(x) − ν′(x)) · ν(x)) ν(x)) − (|w(x)| − |u(x)|) ν′(x).

The quantity

D(x) = |w(x)| − |u(x)| (2.15)

is called the gravity disturbance, whereas

A(x) = |w(x)| − |u(y)| (2.16)

is called the gravity anomaly.

Splitting the gradient ∇T (x) of the disturbing potential T at x into a normal
part (pointing into the direction of ν(x)) and an angular (tangential) part (using
the representation of the surface gradient ∇∗), we have

∇T (x) = ν(x)
∂T

∂ν
(x) +

1

|x|∇
∗T (x), (2.17)

where ∇∗ is the surface gradient.
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Since the gravity disturbances represent at most a factor 10−4 of the Earth’s
gravitational force (for more details see [32]), the error between ν(x)∂T∂ν (x) and

ν′(x) ∂T
∂ν′ (x) has no (computational) significance. Consequently, we may assume

d(x) & ν′(x)
∂T

∂ν′
(x) +

1

|x|∇
∗T (x). (2.18)

Moreover, the scalar product (ν(x) − ν′(x)) · ν(x) can also be neglected. Thus, in
connection with (2.14), we obtain

d(x) & −|w(x)| Θ(x) −D(x)ν′(x). (2.19)

By comparison of (2.18) and (2.19), we therefore get

D(x) = − ∂T

∂ν′
(x) = −ν′(x) · d(x), (2.20)

|w(x)| Θ(x) = − 1

|x|∇
∗T (x). (2.21)

In other words, the gravity disturbance D(x), beside being the difference in mag-
nitude of the actual and the normal gravity vector, is also the normal component
of the gravity disturbance vector d(x). In addition, we are led to the angular
differential equation (2.21).

Applying Bruns’ formula (2.8) to Eqs. (2.20) and (2.21) we obtain

D(x) = |w(x)| − |u(x)| = −|u(y)| ∂N
∂ν′

(x) (2.22)

for the gravity disturbance and

|w(x)| Θ(x) = − 1

|x| ∇
∗T (x) = − 1

|x| |u(y)| ∇
∗N(x) (2.23)

for the vertical deflections. Note that Θ(x) may be multiplied (without loss of
(computational) precision) either by |w(x)| or by |u(x)| since it is a small quantity.

Turning over to the gravity anomalies A(x), it follows from the identity (2.20)
by linearization that

− ∂T

∂ν′
(x) = D(x) & A(x) − ∂|u(y)|

∂ν′
N(x). (2.24)

Using Bruns’ formula (2.8), we obtain for the gravity anomalies that

A(x) = − ∂T

∂ν′
(x) +

1

|u(y)|
∂|u(y)|
∂ν′

T (x). (2.25)

Summing up our results (2.20) for the gravity disturbance D(x) and (2.25) for
the gravity anomaly A(x), we are led to the so-called fundamental equations of
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physical geodesy:

D(x) = |w(x)| − |u(x)| = − ∂T

∂ν′
(x), (2.26)

A(x) = |w(x)| − |u(y)| = − ∂T

∂ν′
(x) +

1

|u(y)|
∂|u(y)|
∂ν′

T (x). (2.27)

Eqs. (2.26) and (2.27) show the relation between the disturbing potential T and the
gravity disturbance D and the gravity anomaly A, respectively, on the geoid (see,
for example, [27, 32, 45]). They are used as boundary conditions in boundary-value
problems.

Remark 2.1. Following [32], the geoidal heights N , i.e., the deviations of the
equipotential surface on the mean ocean level from the reference ellipsoid, are
extremely small. Their order is of only a factor 10−5 of the Earth’s radius (see
[32] for more details). Even more, the reference ellipsoid only differs from a sphere
ΩR with (mean Earth’s) radius R in the order of the flattening of about 3 · 10−3.
Therefore, since the time of [65], it is common use that, in theory, an ellipsoidal
reference surface should be taken into account. However, in numerical practice,
the reference ellipsoid is treated as a sphere and the Equations (2.22) and (2.23)
are solved in spherical approximation. In doing so, a relative error of the order
of the flattening of the Earth’s body at the poles, i.e., a relative error of 10−3,
is accepted in all equations containing the disturbing potential. Considering ap-
propriately performed reductions in numerical calculations, this error seems to
be quite permissible (cf. [32] and the remarks in [24, 25] for comparison with el-
lipsoidal approaches), and this is certainly the case if local exploration is under
consideration. For local purposes as discussed in this contribution, the problem of
non-ellipticity seems to be obsolete.

Remark 2.2. According to the Pizzetti assumptions (see [56, 57]), it follows that
the first moment integrals of the disturbing potential vanish, i.e.,∫

ΩR

T (y)HR
−n−1,k(y) dω(y) = 0, (2.28)

for n = 0, 1, k = 1, . . . , 2n + 1, where HR
−n−1,k denotes the system of outer

harmonics and dω is the surface element in R3. More concretely, if the Earth’s
center of gravity is the origin, there are no first-degree terms in the spherical
harmonic expansion of T . If the mass of the spherical Earth and the mass of
the normal ellipsoid is equal, there is no zero term. In this way, together with the
indicated processes in gravitational modeling, formulas and structures are obtained
that are rigorously valid for the sphere.

In the well-known spherical nomenclature, involving a sphere ΩR as reference
surface (R being the mean Earth’s radius) with a mass M distributed homoge-
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neously in its interior, we are simply led to (cf. [32])

U(y) =
γM

|y| , u(y) = ∇U(y) = −γM

|y|2
y

|y| , (2.29)

where γ is the gravitational constant (γ = 6.6742 · 10−11m3 kg−1 s−2). Hence, we
obtain

|u(y)| = γM

|y|2 , (2.30)

∂|u(y)|
∂ν′

= − u(y)

|u(y)| · ∇|u(y)| = −2
γM

|y|3 , (2.31)

1

|u(y)|
∂|u(y)|
∂ν′

= − 2

|y| , (2.32)

where x is on the geoid and y is on the reference surface (cf. Fig. 2.2). Furthermore,
in spherical nomenclature, i.e., x ∈ ΩR, we obviously have

− ∂T

∂ν′
(x) = − x

|x| · ∇T (x). (2.33)

Therefore, we end up with the formulation of the fundamental equations of physical
geodesy for the sphere:

D(x) = − x

|x| · ∇T (x), (2.34)

A(x) = − x

|x| · ∇T (x)− 2

|x|T (x). (2.35)

In addition, in a vector spherical context (see also [22]), we obtain for the
differential equation (2.21)

−∇∗T (x) =
γM

R
Θ(x), (2.36)

and, by virtue of Bruns’ formula (2.8), we finally find that

−∇∗N(x) = RΘ(x). (2.37)

Remark 2.3. In physical geodesy (see, e.g., [32, 36]), a componentwise scalar deter-
mination of the vertical deflection is usually used. Our work prefers the vectorial
framework, i.e., the vector equation (2.36). In doing so, we are concerned with an
isotropic vector approach by means of the fundamental solution with respect to
the Beltrami operator (see also [22]) instead of the conventional anisotropic scalar
decomposition into vector components due to [44].

The disturbing potential enables us to make the following geophysical in-
terpretations (for more details the reader is referred, e.g., [25, 41, 60, 63], and
the references therein): Gravity disturbances D and gravity anomalies A (Figure
2.3) represent a relation between the real Earth and an ellipsoidal Earth model.
In accordance with Newton’s Law of Gravitation they therefore show the imbal-
ance of forces in the interior of the Earth due to the irregular density distribution
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inside the Earth. Clearly, gravity anomalies and/or gravity disturbances do not
determine uniquely the interior density distribution of the Earth. They may be
interpreted as certain filtered signatures, which give major weight to the density
contrasts close to the surface and simultaneously suppress the influence of deeper
structures inside the Earth.

Geoid undulations provide a measure for the perturbations of the Earth from
a hydrostatic equilibrium. They form the deviations of the equipotential surfaces
at mean sea level from the reference ellipsoid. Geoid undulations show no essential
correlation to the distributions of the continents. They seem to be generated by
density contrasts much deeper inside the Earth.

As already explained, the task of determining the disturbing potential T from
gravity disturbances or gravity anomalies, respectively, leads to boundary-value
problems usually corresponding to a spherical boundary. Numerical realizations
of such boundary-value problems have a long tradition, starting from [65] and
[55]. Nonetheless, our work presents some new aspects in their potential theoretic
treatment by proposing appropriate space-regularization techniques applied to the
resulting integral representations of their solutions. For both boundary-value prob-
lems, viz. the Neumann and the Stokes problem, we are able to present two solution
methods: The disturbing potential may be either solved by a Fourier (orthogonal)
expansion method in terms of spherical harmonics or it can be described by a
singular integral representation over the boundary ΩR.

Remark 2.4. So far, much more data on gravity anomalies A(x) = |w(x)| − |u(y)|
are available than on gravity disturbances D(x) = |w(x)| − |u(x)|. However, by
modern GNSS-technology (see, e.g., [52]), the point x on the geoid is rather deter-
mined than y on the reference ellipsoid. Therefore, in future, it can be expected
that D will become more important than A (as [36] point out in their monograph
on physical geodesy). This is the reason why we continue to work with D. Never-
theless, the results of our (multiscale) approach applied to A are of significance.
Therefore, the key ideas and concepts concerning A can be treated in parallel (see
[9, 15, 73] for explicit details).

In order to formulate some results in the language of potential theory, we

first introduce the potential space Pot(1)
(
R3\BR(0)

)
, where BR(0) is the (open)

ball of radius R around the origin. More concretely, we let Pot(R3\BR(0)) be the

space of all functions F : R3\BR(0) → R satisfying

(i) F |
R3\BR(0) is a member of C(2)(R3\BR(0)),

(ii) F satisfies Laplace’s equation ΔF (x) = 0, x ∈ R3\BR(0).
(iii) F is regular at infinity, i.e., F (x) = O(|x|−1), |x| → ∞.

Pot(1)(R3\BR(0)) is formally understood to be the space

Pot(1)
(
R3\BR(0)

)
= C(1)

(
R3\BR(0)

)
∩ Pot(R3\BR(0)). (2.38)
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Figure 2.3. EIGEN-GL04C derived gravity anomalies and geoidal un-
dulations (reconstructed by use of (spherical) smoothed Haar scaling
functions from [22] based on computations by Mathar [43]).

In the language of potential theory, the exterior Neumann boundary-value problem
corresponding to known gravity disturbances D (compare (2.34)) reads as follows:

(ENPPG) Let D be a continuous function on ΩR = ∂BR(0), i.e., D ∈ C(0)(ΩR)
with ∫

ΩR

D(y)HR
−n−1,k(y) dω(y) = 0, (2.39)
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for n = 0, 1, k = 1, . . . , 2n+1. Find T ∈ Pot(1)
(
R3\BR(0)

)
, such that the bound-

ary condition D = ∂T
∂ν

∣∣
ΩR

holds true and the potential T fulfills the conditions∫
ΩR

T (y)HR
−n−1,k(y) dω(y) = 0 (2.40)

for n = 0, 1, k = 1, . . . , 2n+ 1.

It is known (see, e.g., [15]) that the solution of the boundary-value problem
(ENPPG) can be represented in the form

T (x) =
1

4πR

∫
ΩR

D(y) N(x, y) dω(y), x ∈ R3\BR(0), (2.41)

where the Neumann kernel N(·, ·) in (2.41) possesses the spherical harmonic ex-
pansion

N(x, y) =

∞∑
n=2

(
R2

|x||y|

)n+1
2n+ 1

n+ 1
Pn

(
x

|x| ·
y

|y|

)
. (2.42)

By well-known manipulations, the series in terms of Legendre polynomials can be
expressed as an elementary function leading to the integral representation

T (x) =
1

4πR

∫
ΩR

D(y)

⎛⎝ 2R

|x− y| + ln

⎛⎝ |y|+
∣∣∣y − R2

|x|2x
∣∣∣− R2

|x|

|y|+
∣∣∣y − R2

|x|2x
∣∣∣+ R2

|x|

⎞⎠⎞⎠ dω(y). (2.43)

It is not difficult to see that for x ∈ ΩR, the integral (2.43) is equivalent to

T (x) =
1

4πR

∫
ΩR

D(y)

(
2R

|x− y| + ln

(
|y|+ |x− y| −R

|y|+ |x− y|+R

))
dω(y). (2.44)

Written out in spherical nomenclature x = R x
|x| , y = R y

|y| , x �= y on ΩR, we find

N

(
R

x

|x| , R
y

|y|

)
=

2∣∣∣ x
|x| −

y
|y|

∣∣∣ + ln

⎛⎝ R
∣∣∣ x
|x| −

y
|y|

∣∣∣
2R+R

∣∣∣ x
|x| −

y
|y|

∣∣∣
⎞⎠ . (2.45)

If we use ∣∣∣∣ x|x| − y

|y|

∣∣∣∣ = (
2− 2

x · y
|x| |y|

) 1
2

, (2.46)

then, for x �= y, we are led to the identity

N

(
R

x

|x| , R
y

|y|

)
= N

(
x

|x| ,
y

|y|

)

=

√
2√

1− x
|x| ·

y
|y|

− ln

⎛⎝1 +

√
2√

1− x
|x| ·

y
|y|

⎞⎠ . (2.47)



Gravimetry and Exploration 705

Consequently, for points x ∈ ΩR, we (formally) get the so-calledNeumann formula,
which constitutes an improper integral over ΩR:

T

(
R

x

|x|

)
=

1

4πR

∫
ΩR

D

(
R

y

|y|

)
N

(
x

|x| ,
y

|y|

)
dω(y), (2.48)

where the Neumann kernel constitutes a radial basis function due to (2.47).

Once more, in accordance with the conventional approach of physical geodesy,
the Neumann formula (2.48) is valid under the following constraints (see also
[23, 32, 51]):

(i) the mass within the reference ellipsoid is equal to the mass of the Earth,
(ii) the center of the reference ellipsoid coincides with the center of the Earth,
(iii) the formulation is given in the spherical context to guarantee economical and

efficient numerics.

Note that we are able to set N(Rξ,Rη) = N(ξ, η) = N(ξ · η) in terms of the
unit vectors ξ = x

|x| and η = y
|y| which simplifies our notation: If we define the

single-layer kernel S : [−1, 1) → R by

S(t) =

√
2√

1− t
, t ∈ [−1, 1), (2.49)

the Neumann kernel is the zonal function of the form

N(ξ · η) = S(ξ · η)− ln (1 + S(ξ · η)) , 1− ξ · η > 0. (2.50)

An equivalent formulation of the improper integral (2.48) over the unit sphere
Ω = ∂B1(0) is then given by

T (Rξ) =
R

4π

∫
Ω

D(Rη)N(ξ · η) dω(η). (2.51)

It should be remarked that the exterior Stokes boundary value problem of
determining the disturbing potential from known gravity anomalies can be handled
in a quite analogous way (see [9, 15, 73]), providing the so-called Stokes integral
associated to the radially symmetric Stokes kernel as an improper integral on ΩR.

Next we deal with the vertical deflections Θ (cf. [15, 21]). Suppose that T
fulfills the conditions (2.40). We consider the differential equation (compare Eq.
(2.36))

∇∗
ξT (Rξ) = −γM

R
Θ(Rξ), (2.52)

where T (R·) represents the disturbing potential and Θ(R·) denotes the vertical
deflection. The differential equation (2.52) can be solved in a unique way by means
of the fundamental solution with respect to the Beltrami operator

T (Rξ) =
γM

R

∫
Ω

Θ(Rη) · ∇∗
ηG (Δ∗; ξ · η) dω(η), (2.53)
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where (ξ, η) �→ G (Δ∗; ξ · η), 1 − ξ · η �= 0, is the fundamental solution of the
Beltrami equation on the unit sphere Ω (see, e.g., [11]) given by

G (Δ∗; ξ · η) = 1

4π
ln(1− ξ · η) + 1

4π
(1− ln(2)). (2.54)

The identity (2.53) immediately follows from the Third Green Theorem (cf. [15,
22]) for ∇∗ on Ω in connection with (2.40). By virtue of the identity

∇∗
ηG (Δ∗; ξ · η) = − ξ − (ξ · η)η

4π(1− ξ · η) , ξ �= η, (2.55)

the integral (2.53) can be written in the form

T (Rξ) =
R

4π

∫
Ω

Θ(Rη) · g (Δ∗; ξ, η) dω(η), (2.56)

where the vector kernel g(Δ∗; ξ, η), ξ �= η, is given by

g (Δ∗; ξ, η) = −γM

R2

ξ − (ξ · η)η
1− ξ · η . (2.57)

Again we are confronted with a representation of the disturbing potential T as an
improper integral over the sphere ΩR.

All our settings leading to the disturbing potential on the sphere ΩR turn
out to be improper integrals. As we have shown they have either the singularity
behavior of the single-layer kernel S (cf. Eq. (2.49)) or the characteristic logarith-
mic singularity of the fundamental solution with respect to the Beltrami operator
G(Δ∗; ·, ·) (cf. (2.54)). Indeed, the fundamental solution and the single-layer kernel
are interrelated (see [15]) by the identities

S(ξ · η) =
√
2 e−2πG(Δ∗;ξ·η)+ 1

2 (2.58)

and

G(Δ∗; ξ · η) = − 1

2π
ln(S(ξ · η))− 1

4π
(1− 2 ln(2)). (2.59)

Therefore, we are confronted with the remarkable situation that a (Taylor) reg-
ularization of the single-layer kernel implies a regularization of the fundamental
solution, and vice versa.

2.2. Zooming-in localization of signature bands

Next, we present multiscale representations for the Neumann kernel N (cf. Eq.
(2.50)). Note that all modern multiscale approaches have a conception of wavelets
as constituting multiscale building blocks in common, which provide a fast and
efficient way to decorrelate a given signal data set.

The characterizing properties of the multiscale approach (basis property,
decorrelation, and efficient algorithms) are common features of all wavelets and
these attributes form the key for a variety of applications (see, e.g., [12, 15, 20]),
particularly for signal reconstruction and decomposition, thresholding, data com-
pression, denoising by, e.g., multiscale signal-to-noise ratio, etc. and, in particular,
decorrelation.
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Next, we follow the (taylorized) regularization methods presented in [23] for
linear regularization of the single-layer kernel S and [21] for linear regularization
of the fundamental solution G(Δ∗; ·, ·) of the Beltrami equation. For higher-order
approximations, the reader is referred to the Ph.D.-theses [9] and [73].

The essential idea is to regularize the single-layer kernel function

S(t) =

√
2√

1− t
(2.60)

by replacing it by a Taylor linearization. To this end, we notice that the first
derivative of the kernel S is given by

S′(t) =
1√

2(1 − t)
3
2

, t ∈ [−1, 1). (2.61)

Consequently, we obtain as (Taylor) linearized approximation corresponding to

the expansion point 1− τ2

2R2 , τ ∈ (0, 2R],

S(t) = S

(
1− τ2

2R2

)
+ S′

(
1− τ2

2R2

)(
t−

(
1− τ2

2R2

))
+ · · · . (2.62)

In more detail, the kernel S is replaced by its (Taylor) linearized approximation

Sτ at the point 1− τ2

2R2 , τ ∈ (0, 2R], given by

Sτ (t) =

⎧⎨⎩R
τ

(
3− 2R2

τ2 (1− t)
)
, 0 ≤ 1− t ≤ τ2

2R2 ,√
2√

1−t
, τ2

2R2 < 1− t ≤ 2.
(2.63)

Note that the expansion point 1− τ2/(2R2), τ ∈ (0, 2R], is chosen in consis-
tency with the notation in the initial paper [21] and the subsequent papers [14] and
[23]. A graphical illustration of the original kernel S(t) and a τ -scale dependent
version of its linear space-regularized kernel Sτ (t) is shown in Figure 2.4.

Clearly, the function Sτ is continuously differentiable on the interval [−1, 1],
and we have

(Sτ )
′
(t) =

{
2R3

τ3 , 0 ≤ 1− t ≤ τ2

2R2 ,
1√

2(1−t)
3
2
, τ2

2R2 < 1− t ≤ 2.
(2.64)

Furthermore, the functions S and Sτ are monotonously increasing on the interval
[−1, 1), such that S(t) ≥ Sτ (t) ≥ S(−1) = Sτ (−1) = 1 holds true on the interval
[−1, 1). Considering the difference between the kernel S and its linearly regularized
version Sτ , we find

S(t)− Sτ (t) =

{ √
2√

1−t
− R

τ

(
3− 2R2

τ2 (1− t)
)
, 0 < 1− t ≤ τ2

2R2 ,

0, τ2

2R2 < 1− t ≤ 2.
(2.65)

By elementary manipulations of one-dimensional analysis we readily obtain∫ 1

−1

|S(t)− Sτ (t)| dt = O(τ). (2.66)
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Figure 2.4. Single-layer kernel S(t) (continuous black line) and its
Taylor linearized regularization Sτ (t), for R = 1 and τ = 1

2 , 1, 2 (dotted
lines).

As a consequence, we have

Lemma 2.5. For F ∈ C(0)(Ω) and Sτ defined by (2.63) the limit relation

lim
τ→0+

sup
ξ∈Ω

∣∣∣∣∫
Ω

S(ξ · η)F (η) dω(η)−
∫
Ω

Sτ (ξ · η)(ξ · η)F (η) dω(η)

∣∣∣∣ = 0 (2.67)

holds true.

In a similar way, by some elementary calculations, one can find the following
relations that are also of importance for the Stokes boundary value problem (see
also the Ph.D.-theses [9, 73]).

Lemma 2.6. Let S be the single-layer kernel given by (2.60) and let Sτ , τ ∈ (0, 2R],
be the corresponding (Taylor) linearized regularized kernel defined by (2.63). Then

lim
τ→0+

∫ 1

−1

|ln (1 + S(t))− ln (1 + Sτ (t))| dt = 0, (2.68)

lim
τ→0+

∫ 1

−1

∣∣∣∣∣ln
(

1

S(t)
+

1

(S(t))2

)
− ln

(
1

Sτ (t)
+

1

(Sτ (t))
2

)∣∣∣∣∣ dt = 0, (2.69)

lim
τ→0+

∫ 1

−1

(
(S(t))

2 − (Sτ (t))
2
)√

1− t2 dt = 0. (2.70)

To study the surface gradient and the surface curl gradient, we let F be of
class C(1)(Ω). Letting tξ ∈ R3×3 be the orthogonal matrix (with det(tξ) = 1)
leaving ε3 fixed such that tξξ = ε3, we get

∇∗
ξ

∫
Ω

S(ξ · η)F (η) dω(η) =

∫
Ω

S(η3)∇∗
ξF (tTξ η) dω(η) (2.71)
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for ξ ∈ Ω and η = (η1, η2, η3)
T . By regularizing the single-layer kernel, we obtain∫

Ω

∇∗
ξS

τ (ξ · η)F (η) dω(η) =

∫
Ω

Sτ (η3)∇∗
ξF (tTξ η) dω(η) (2.72)

for ξ ∈ Ω. The same argumentation holds true for the operator L∗. Therefore,
Lemma 2.5 leads us to the following limit relations (see [22]).

Lemma 2.7. Let F be of class C(1)(Ω). Let Sτ be given by (2.63). Then

lim
τ→0+

sup
ξ∈Ω

∣∣∣∣∫
Ω

∇∗
ξS

τ (ξ · η)F (η)dω(η) −∇∗
ξ

∫
Ω

S(ξ · η)F (η)dω(η)

∣∣∣∣ = 0, (2.73)

lim
τ→0+

sup
ξ∈Ω

∣∣∣∣∫
Ω

L∗
ξS

τ (ξ · η)F (η)dω(η) − L∗
ξ

∫
Ω

S(ξ · η)F (η)dω(η)

∣∣∣∣ = 0. (2.74)

Using the kernel Gτ (Δ∗; ·), given by (see Eq. (2.59))

Gτ (Δ∗; t) = − 1

2π
ln(Sτ (t))− 1

4π
(1− 2 ln(2)), −1 ≤ t ≤ 1, (2.75)

as “single-layer kernel regularization” of the fundamental solution G(Δ∗; ·), we are
led to the following integral relations.

Lemma 2.8. For F ∈ C(0)(Ω) and Gτ (Δ∗; ·) defined by (2.75), we have

lim
τ→0+

sup
ξ∈Ω

∣∣∣∣
∫
Ω

G(Δ∗; ξ · η)F (η) dω(η)−
∫
Ω

Gτ (Δ∗; ξ · η)F (η) dω(η)

∣∣∣∣ = 0, (2.76)

and

lim
τ→0+

sup
ξ∈Ω

∣∣∣∣
∫
Ω

∇∗
ξG

τ (Δ∗; ξ · η)F (η) dω(η)−∇∗
ξ

∫
Ω

G(Δ∗; ξ · η)F (η) dω(η)

∣∣∣∣ = 0, (2.77)

lim
τ→0+

sup
ξ∈Ω

∣∣∣∣
∫
Ω

L∗
ξG

τ (Δ∗; ξ · η)F (η) dω(η)− L∗
ξ

∫
Ω

G(Δ∗; ξ · η)F (η) dω(η)

∣∣∣∣ = 0. (2.78)

Remark 2.9. Numerical implementations and computational aspects of the Taylor
regularization techniques as presented here have been applied (even for subsets
of ΩR) to different fields of physical geodesy (see, e.g., [13–15, 21–23] and the
references therein).

The regularization techniques enable us to formulate multiscale solutions for
the disturbing potential from gravity disturbances or vertical deflections (note
that we need higher-order regularizations whenever gravitational observables con-
taining second or higher-order derivatives come into play; an example is gravity
gradiometry, which will not be discussed here).

As point of departure for our considerations serves the special case study of
the linear regularization of the single-layer kernel in the integral representation of
the solution of the Neumann boundary-value problem (ENPPG).

Disturbing Potential from Gravity Disturbances. As we already know, the solution
of the (Earth’s) disturbing potential T ∈ Pot(1)

(
R3\BR(0)

)
from known vertical
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derivatives, i.e., gravity disturbances D = ∂T
∂ν

∣∣
ΩR

, satisfying the conditions (2.40)

on the sphere ΩR, can be formulated as an improper integral (see Eq. (2.51))

T (Rξ) =
R

4π

∫
Ω

D(Rη) N(ξ · η) dω(η), ξ ∈ Ω, (2.79)

with the Neumann kernelN (cf. (2.50)). Our interest is to formulate regularizations
of the disturbing potential T by use of the (Taylor) linearized approximation of
the singe-layer kernel Sτ : [−1, 1] → R, τ ∈ (0, 2R], introduced in (2.63). As a
result, we obtain the regularized Neumann kernels

N τ (ξ · η) =
{
Sτ (ξ · η)− ln (1 + Sτ (ξ · η)) , 0 ≤ 1− ξ · η ≤ τ2

2R2 ,

S(ξ · η)− ln(1 + S(ξ · η)), τ2

2R2 < 1− ξ · η ≤ 2,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R
τ

(
3− 2R2

τ2 (1− ξ · η)
)
− ln

(
1 + R

τ

(
3− 2R2

τ2 (1− ξ · η)
))

,

0 ≤ 1− ξ · η ≤ τ2

2R2 ,
√
2√

1−ξ·η − ln
(
1 +

√
2√

1−ξ·η

)
, τ2

2R2 < 1− ξ · η ≤ 2.

(2.80)

In doing so, we are immediately led to the regularized representation of the dis-
turbing potential T corresponding to the known gravity disturbances:

T τ (Rξ) =
R

4π

∫
η∈Ω

D(Rη)N τ (ξ · η) dω(η) (2.81)

=
R

4π

∫
η∈Ω;

1−ξ·η> τ2

2R2

D(Rη)N(ξ · η) dω(η) + R

4π

∫
η∈Ω;

1−ξ·η≤ τ2

2R2

D(Rη)N τ (ξ · η) dω(η).

The representation (2.81) is remarkable, since the integrands of T and T τ only
differ on the spherical cap

Γτ2/(2R2)(ξ) =

{
η ∈ Ω : 1− ξ · η ≤ τ2

2R2

}
. (2.82)

By aid of Lemma 2.5 and Lemma 2.6, we obtain

Theorem 2.10. Suppose that T is the solution of the Neumann boundary-value
problem (ENPPG) of the form (2.79). Let T τ , τ ∈ (0, 2R], represent its regular-
ization (2.81). Then

lim
τ→0+

sup
ξ∈Ω

|T (Rξ)− T τ(Rξ)| = 0. (2.83)

For numerical applications, we have to go over to scale-discretized approxima-
tions of the solution to the boundary-value problem (ENPPG). For that purpose,
we choose a monotonously decreasing sequence {τj}j∈N0 , such that

lim
j→∞

τj = 0, τ0 = 2R. (2.84)
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A particularly important example, that we use in our numerical implementations
below, is the dyadic sequence with

τj = 21−jR, j ∈ N0. (2.85)

It is easy to see that 2τj+1 = τj , j ∈ N0, is the relation between two consecutive
elements of the sequence. In correspondence to the sequence {τj}j∈N0 , a sequence
{N τj}j∈N0 of discrete versions of the regularized Neumann kernels (2.80), so-called
Neumann scaling functions, is available. Figure 2.5 (left) shows a graphical illus-
tration of the regularized Neumann kernels for different scales j.
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Figure 2.5. Illustration of the Neumann kernel N(t) (left, continuous
black line) and its Taylor linearized regularization N τj (t), j = 0, 1, 2,
τj = 21−jR and R = 1 (left, dotted lines). The corresponding Taylor
linearized Neumann wavelets WN τj(t) for scales j = 0, 1, 2, are shown
on the right.

The regularized Neumann wavelets, forming the sequence {WNτj}j∈N0 , are
understood to be the difference of two consecutive regularized Neumann scaling
functions, respectively,

WN τj = N τj+1 −N τj , j ∈ N0. (2.86)

The Neumann wavelets are illustrated in Figure 2.5 (right). These wavelets possess
the numerically important property of a local support. More concretely,
η �→ WN τj (ξ·η), η ∈ Ω, vanishes everywhere outside the spherical cap Γτ2

j /(2R
2)(ξ).

Let J ∈ N0 be an arbitrary scale. Suppose that N τJ is the regularized Neu-
mann scaling function at scale J . Furthermore, let WN τj , j = 0, . . . , J, be the
regularized Neumann wavelets as given by (2.86). Then, we obviously have

N τJ = N τ0 +
J−1∑
j=0

WNτj . (2.87)

The local support of the Neumann wavelets within the framework of (2.87) should
be studied in more detail: We start with the globally supported scaling kernel
N τ0 = N2R. Then we add more and more wavelet kernels WN τj , j = 0, . . . , J −1,
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Figure 2.6. Illustration of the regularized Neumann wavelets η �→
WN τj(ξ · η) for scales j = 0, . . . , 9 to visualize the local supports
Γτ2

j /(2R
2)(ξ) for a fixed ξ (cf. [73]) “zooming in” to the hotspot of the

Galapagos islands.

to achieve the scaling kernel N τJ . It is of particular importance that the kernel
functions η �→ WN τj (ξ · η), ξ ∈ Ω fixed, are ξ-zonal functions with local support
(spherical caps). Figure 2.6 illustrates the computationally relevant regions for the
different wavelet scales j (more detailed studies are presented in the Ph.D. the-
ses [9, 73]). For a better understanding, the areas outside the caps are chosen to
be uncolored. Clearly, the support of the wavelets WNτj becomes more localized
for increasing scales j. In conclusion, a calculation of an integral representation
for the disturbing potential T starts with a global trend approximation using the
scaling kernel at scale j = 0 (of course, this requires data on the whole sphere,
but the data can be rather sparsely distributed since they only serve as a trend
approximation). Step by step, we are able to refine this approximation by use of
wavelets of increasing scale. The spatial localization of the wavelets successively
allows a better spatial resolution of the disturbing potential T . Additionally, the
local supports of the wavelets provide a computational advantage since the inte-
gration has to be performed on smaller and smaller spherical caps. In consequence,
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the presented numerical technique becomes capable of handling heterogeneously
distributed data.

All in all, keeping the space-localizing property of the regularized Neumann
scaling and wavelet functions in mind, we are able to establish an approximation
of the solution of the disturbing potential T from gravity disturbances D in form
of a “zooming-in” multiscale method. A low-pass filtered version of the disturbing
potential T at the scale j in an integral representation over the unit sphere Ω is
given by (compare Eq. (2.81))

T τj(Rξ) =
R

4π

∫
Ω

D(Rη) N τj(ξ · η) dω(η), ξ ∈ Ω, (2.88)

while the j-scale band-pass filtered version of T leads to the integral representation
by use of the wavelets

WT τj (Rξ) =
R

4π

∫
Γ
τ2
j
/(2R2)

(ξ)

D(Rη) WNτj (ξ · η) dω(η), ξ ∈ Ω. (2.89)

Theorem 2.11. Let T τJ0 be the regularized version of the disturbing potential at
some arbitrary initial scale J0 as given in (2.88), and let WT τJ0+j , j = 0, 1, . . . ,
be given by (2.89). Then, the following reconstruction formula holds true:

lim
N→∞

sup
ξ∈Ω

∣∣∣∣T (Rξ)−
(
T τJ0 (Rξ) +

∑N

j=0
WT τJ0+j (Rξ)

)∣∣∣∣ = 0.

The multiscale procedure (wavelet reconstruction) as developed here can be
illustrated by the following scheme

WT τJ0 WT τJ0+1

↘ ↘
T τJ0 −→ + −→ T τJ0+1 −→ + −→ T τJ0+2 . . . .

As a consequence, a tree algorithm based on the regularization in the space do-
main has been realized for determining the disturbing potential T from locally
available data sets of gravity disturbances D. An example is shown in Figure 2.7
(following [73]).

In order to get a fully discretized solution of the Neumann boundary-value
problem (ENPPG), approximate integration by use of appropriate cubature formu-
las is necessary (see, e.g., [16, 35] for more details about approximate integration
on the (unit) sphere). The fully discretized multiscale approximations have the
following representations

T τj(Rξ) & R

4π

Nj∑
k=1

w
Nj

k D
(
Rη

Nj

k

)
N τj

(
ξ · ηNj

k

)
, ξ ∈ Ω, (2.90)

WT τj (Rξ) & R

4π

Nj∑
k=1

w
Nj

k D
(
Rη

Nj

k

)
WNτj

(
ξ · ηNj

k

)
, ξ ∈ Ω, (2.91)

where η
Nj

k are the Nj integration knots and w
Nj

k the integration weights.
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𝑇 𝜏1

→
𝑇 𝜏2

→
𝑇 𝜏3

→
+ ↗ + ↗ + ↗

𝑊𝑇 𝜏1 𝑊𝑇 𝜏2 𝑊𝑇 𝜏3

𝑇 𝜏4

→
𝑇 𝜏5

→
𝑇 𝜏6

⋅ ⋅ ⋅+ ↗ + ↗ +

𝑊𝑇 𝜏4 𝑊𝑇 𝜏5 𝑊𝑇 𝜏6

Figure 2.7. Illustration of a (global) multiscale approximation of the

Earth’s disturbing potential T in [m
2

s2 ] from gravity disturbances D,
i.e., low-pass filtered versions T τj and detail information (band-pass
filtered versions) WT τj for scales j = 1, . . . , 6, by use of the linear
Neumann scaling functions and wavelets computed from 4 000 000 data
points distributed over the whole sphere ΩR (from the Ph.D.-thesis [73],
Geomathematics Group, University of Kaiserslautern).

Whereas the sum in (2.90) has to be calculated on the whole sphere Ω, the
summation in (2.91) has to be computed only for the local supports of the wavelets
(note that the symbol & means that the error between the right-hand and the left-
hand side can be neglected).

Figures 2.8 to 2.10 present a decomposition of the Earth’s disturbing potential
T in low-pass and band-pass filtered parts for data sets of increasing data density.
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(a) Low pass part T τ4 calculated from 490 000 data points distributed over the whole
sphere ΩR

(b) Details WT τ4 at scale 4 from 281 428
data points distributed within the black
bordered region in Figure 2.8(a)

(c) Details WT τ5 at scale 5 from 226 800
data points distributed within the gray
bordered region in Figure 2.8(a)

Figure 2.8. Low-pass filtered version T τ4 of the disturbing potential

T in [m
2

s2 ] and the corresponding band-pass filtered versions WT τj for
scales j = 4, 5 of the magenta bordered region in subfigure 2.8(a) calcu-
lated from different numbers of data points (from the Ph.D.-thesis [73],
Geomathematics Group, University of Kaiserslautern).

Seen from the geodetic reality, the figures are remarkable in the following sense:
For getting a better accuracy in numerical integration procedures providing the
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(a) Low pass part T τ6 of the magenta bordered
region in Figure 2.8(a) computed by the sum of
T τ4 (Figure 2.8(a)), WT τ4 (Figure 2.8(b)), and
WT τ5 (Figure 2.8(c)) in this region

(b) Details WT τ6 at scale 6 from 71 253
data points distributed within the black
bordered region in Figure 2.9(a)

(c) Details WT τ7 at scale 7 from 63 190
data points distributed within the gray
bordered region in Figure 2.9(a)

Figure 2.9. Low-pass filtered version T τ6 of the disturbing potential

T in [m
2

s2 ] of the magenta bordered region in subfigure 2.8(a) and the
corresponding band-pass filtered versionsWT τj for scales j = 6, 7 (from
the Ph.D.-thesis [73], Geomathematics Group, University of Kaisers-
lautern).
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(a) Low pass part T τ8 of the magenta bordered
region in Figure 2.9(a) computed by the sum of
T τ6 (Figure 2.9(a)), WT τ6 (Figure 2.9(b)), and
WT τ7 (Figure 2.9(c)) in this region

(b) Details WT τ8 at scale 8 from
71 253 data points distributed with-
in the black bordered region in Fig-
ure 2.10(a)

(c) Details WT τ9 at scale 9 from
63 190 data points distributed with-
in the gray bordered region in Figure
2.10(a)

Figure 2.10. Low-pass filtered version T τ8 of the disturbing potential

T in [m
2

s2 ] of the magenta bordered region in subfigure 2.9(a) and the
corresponding band-pass filtered versionsWT τj for scales j = 8, 9 (from
the Ph.D.-thesis [73], Geomathematics Group, University of Kaisers-
lautern).
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(global) solution of the boundary-value problem (ENPPG) as illustrated in Figure
2.8 (a), we need denser, globally over the whole sphere ΩR equidistributed data
sets (most notably, in the sense of Weyl’s Law of Equidistribution). However,
in today’s reality of gravitational field observation, we are confronted with the
problem that terrestrial gravitational data (such as gravity disturbances, gravity
anomalies) of sufficient width and quality are only available for certain parts of
the Earth’s surface (for more details concerning the observational aspects see, e.g.,
[6–8, 61, 62]). As a matter of fact, there are large gaps, particularly at sea, where
no data sets of sufficient quality are available at all. This is the reason why the
observational situation implies the need for specific geodetically oriented modeling
techniques taking the heterogeneous data situation and the local availability of the
data (usually related to latitude-longitude data grids) into consideration. In this
respect, the “zooming-in” realization based on single-layer space-regularization is
a suitable efficient and economic mathematical answer.

Disturbing Potential from Vertical Deflections. As already known from (2.56), the
solution of the surface differential equation (see Eq. (2.36))

∇∗
ξT (Rξ) = −γM

R
Θ(Rξ), ξ ∈ Ω, (2.92)

determining the disturbing potential T from prescribed vertical deflections Θ under
the conditions (2.40) is given by

T (Rξ) =
R

4π

∫
Ω

Θ(Rη) · g (Δ∗; ξ, η) dω(η), (2.93)

where the vector kernel g (Δ∗; ξ, η) , 1− ξ · η > 0, reads as follows (see Eq. (2.57))

g (Δ∗; ξ, η) = −1

2

γM

R2

2

1− ξ · η (ξ − (ξ · η)η)

= −1

2

γM

R2
(S(ξ · η))2(ξ − (ξ · η)η). (2.94)

Analogously to the calculation of the disturbing potential T from known
gravity disturbances D (i.e., the Neumann problem (ENPPG)), the numerical
calamities of the improper integral in (2.93) can be circumvented by replacing
the zonal kernel S(ξ · η) by the regularized kernel Sτ (ξ · η). This process leads to
space-regularized representations T τ of the disturbing potential T calculated from
vertical deflections Θ within a multiscale “zooming-in” procedure analogous to the
approach for gravity disturbances as input data. To be more concrete, the kernel
function g(Δ∗; ·, ·) is replaced by the space-regularized function using Eq. (2.63)

gτ (Δ∗; ξ, η) = − γM

2R2
(Sτ (ξ · η))2 (ξ − (ξ · η)η), (2.95)

=

⎧⎨
⎩
− γM

2R2

(
9R2

τ2 − 12R4

τ4 (1− ξ · η) + 4R6

τ6 (1− ξ · η)2
)
(ξ − (ξ · η)η), 0 ≤ 1− ξ · η ≤ τ2

2R2 ,

− γM
2R2

2
1−ξ·η (ξ − (ξ · η)η), τ2

2R2 < 1− ξ · η ≤ 2,
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for τ ∈ (0, 2R]. This leads to the following approximative representation of the
disturbing potential T :

T τ (Rξ) =
R

4π

∫
Ω

Θ(Rη) · gτ (Δ∗; ξ, η) dω(η), (2.96)

with gτ (Δ∗; ·, ·) given by (2.95). Using Eq. (2.70) from Lemma 2.6 we obtain

Theorem 2.12. Suppose that T is the solution (2.93) of the differential equation
(2.92), with Θ being a member of the class of continuous vector-valued functions
c(0)(ΩR). Let T

τ , τ ∈ (0, 2R], represent its regularized solution of the form (2.96).
Then

lim
τ→0+

sup
ξ∈Ω

|T (Rξ)− T τ(Rξ)| = 0. (2.97)

By restricting {gτ (Δ∗; ·, ·)}τ∈(0,2R] to the sequence {gτj (Δ∗; ·, ·)}j∈N0 , cor-
responding to a set of scaling parameters {τj}j∈N0 satisfying τj ∈ (0, 2R] and
limj→∞ τj = 0, we are canonically led to regularized vector scaling functions such
that a scale-discrete solution method for the differential equation (2.92) can be
formulated. The vector scaling function gτj+1(Δ∗; ·, ·) at scale j + 1 is constituted
by the sum of the vector scaling function gτj (Δ∗; ·, ·) and the corresponding dis-
cretized vector wavelet wgτj (Δ∗; ·, ·), given by

wgτj (Δ∗; ξ, η) = gτj+1 (Δ∗; ξ, η)− gτj (Δ∗; ξ, η) . (2.98)

Note that (cf. [15])

WT τj(Rξ) =

∫
Ω

Θ(Rη) · wgτj (Δ∗; ξ, η)dω(η).

Application: Gravitational signatures of mantle plumes

Galapagos: “The Galapagos hotspot (Figures 2.8–2.10) is a volcanic hotspot in the
East Pacific Ocean responsible for the creation of the Galapagos Islands as well as
three major aseismic ridge systems, Carnegie, Cocos and Malpelso which are on
two tectonic plates. The hotspot is located near the Equator on the Nazca Plate
not far from the divergent plate boundary with the Cocos Plate. The tectonic
setting of the hotspot is complicated by the Galapagos Triple Junction of the
Nazca and Cocos plates with the Pacific Plate. The movement of the plates over
the hotspot is determined not solely by the spreading along the ridge but also by
the relative motion between the Pacific Plate and the Cocos and Nazca Plates.

The hotspot is believed to be over 20 million years old and in that time, there
has been interaction between the hotspot, both of these plates, and the divergent
plate boundary, at the Galapagos Spreading Center. Lavas from the hotspot do
not exhibit the homogeneous nature of many hotspots; instead there is evidence
of four major reservoirs feeding the hotspot. These mix to varying degrees at
different locations on the archipelago and also within the Galapagos Spreading
Center.” (from [71]) (for more details the reader is referred, e.g., to [31] and the
references therein).
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Hawaii: [58] believe that a stationary mantle plume located beneath the Hawaiian
Islands created the Hawaii-Emperor seamount chain while the oceanic lithosphere
continuously passed over it. The Hawaii-Emperor chain consists of about 100 vol-
canic islands, atolls, and seamounts that spread nearly 6000km from the active
volcanic island of Hawaii to the 75–80 million year old Emperor seamounts nearby
the Aleutian trench. With moving further south east along the island chain, the
geological age decreases. The interesting area is the relatively young southeastern
part of the chain, situated on the Hawaiian swell, a 1200km broad anomalously
shallow region of the ocean floor, extending from the island of Hawaii to the Mid-
way atoll. Here, a distinct gravity disturbance and geoid anomaly occurs that has
its maximum around the youngest island that coincides with the maximum to-
pography and both decrease in northwestern direction. The progressive decrease
in terms of the geological age is believed to result from the continuous motion of
the underlying plate (cf. [50, 72]).

With seismic tomography, several features of the Hawaiian mantle plume are
gained (cf. [58] and the references therein). They result in a Low Velocity Zone
(LVZ) beneath the lithosphere, starting at a depth of about 130–140km beneath
the central part of the island of Hawaii. So far, plumes have just been identified as
low seismic velocity anomalies in the upper mantle and the transition zone, which
is a fairly new achievement. As plumes are relatively thin with respect to their di-
ameter, they are hard to detect in global tomography models. Hence, despite novel
advances, there is still no general agreement on the fundamental questions con-
cerning mantle plumes, like their depth of origin, their morphology, their longevity,
and even their existence is still discussed controversial. This is due to the fact that
many geophysical as well as geochemical observations can be explained by different
plume models and even by models that do not include plumes at all (e.g., [10]).
With our space-localized multiscale method of deriving gravitational signatures
(more concretely, the disturbing potential) from the vertical deflections, we add a
new component in specifying essential features of plumes. The vertical deflections
of the plume in the region of Hawaii are visualized in Figure 2.11.

From the band-pass filtered detail approximation of the vertical deflections
(Figure 2.12) and the corresponding disturbing potential (Figure 2.13), we are
able to conclude that the Hawaii plume has an oblique layer structure. As can be
seen in the lower scale (for which numerical evidence suggests that they reflect the
higher depths), the strongest signal is located in the ocean in a westward direction
of Hawaii. With increasing scale, i.e., lower depths, it moves more and more to the
Big Island of Hawaii, i.e., in eastward direction.

Iceland: The plume beneath Iceland is a typical example of a ridge-centered mantle
plume. An interaction between the North Atlantic ridge and the mantle plume is
believed to be the reason for the existence of Iceland, resulting in melt produc-
tion and crust generation since the continental break-up in the late Palaeocene
and early Eocene. Nevertheless, there is still no agreement on the location of the
plume before rifting started in the East. Controversial discussions, whether it was
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Figure 2.11. Illustration of the vertical deflections Θ in the region of
Hawaii (from the Ph.D.-thesis [9], Geomathematics Group, University
of Kaiserslautern).

located under central or eastern Greenland about 62-64 million years ago are still
in progress (cf. [63] and the references therein).

Iceland itself represents the top of a nearly circular rise topography, with
a maximum of about 2.8km above the surrounding seafloor in the south of the
glacier “Vatnajökull”. Beneath this glacier, several active volcanoes are located,
which are supposed to be fed by a mantle plume. The surrounding oceanic crust
consists of three different types involving a crust thickness that is more than three
times as thick as average oceanic crusts. Seismic tomography provides evidence of
the existence of a mantle plume beneath Iceland, resulting in low velocity zones
in the upper mantle and the transition zone, but also hints for anomalies in the
deeper mantle seem to exist. The low velocity anomalies have been detected in
depths ranging from at least 400km up to about 150km. Above 150km, ambiguous
seismic-velocity structures were obtained involving regions of low velocities covered
by regions of high seismic velocities. For a deeper access into the theory of the
Iceland plume, the interested reader is referred to [58] and the references therein.

From Figures 2.14 to 2.16, it can be seen that the mantle plume in lower
scales, i.e., in higher depths, starts in the North of Iceland and with increasing
scale, i.e., lower depths, it moves to the South. It is remarkable that from scale 13
on, the plume seems to divide into two sectors. Since it is known that the disturbing
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+

low-pass filtering

(scale j = 6)

+

band-pass filtering

(scale j = 6)

+

band-pass filtering

(scale j = 7)

+

band-pass filtering

(scale j = 8)

+

band-pass filtering

(scale j = 9)

+

band-pass filtering

(scale j = 10)

+

band-pass filtering

(scale j = 11)

=

low-pass filtering

(scale j = 12)

Figure 2.12. Approximation of the vector-valued vertical deflections Θ
in [ms−2] of the region of Hawaii (compare Fig. 2.11). A rough low-pass
filtering at scale 6 is improved by several band-pass filters of scale j =
6, . . . , 11, the last picture shows the multiscale approximation at scale
j = 12, (from the Ph.D.-thesis [9], Geomathematics Group, University
of Kaiserslautern).
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+

T τ6

+

WT τ6

+

WT τ7

+

WT τ8

+

WT τ9

+

WT τ10

+

WT τ11

=

T τ12

Figure 2.13. Multiscale reconstruction of the disturbing potential T in
[m2s−2] from vertical deflections Θ for the Hawaiian (plume) area using
the scaling function gτ (a rough low-pass filtering T τ6 at scale j = 6
is improved by several band-pass filters WT τj at scales j = 6, . . . , 11,
the last illustration shows the approximation T τ12 of the disturbing
potential T at scale j = 12, (from the Ph.D.-thesis [9], Geomathematics
Group, University of Kaiserslautern).
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Figure 2.14. Illustration of the vertical deflections Θ in the region of
Iceland (see [15]).

potential of the Earth is influenced by its topography, a look at a topographic map
shows that the sector located more Eastern is (probably) caused by the Vatnajökull
glacier (being the biggest glacier in Europe).

All in all, from our multiscale reconstruction, it can be derived that the deeper
parts of the mantle plume are located in the northern part of Iceland (compare
the lower scales in Figure 2.15) while shallower parts are located further south
(compare the higher scales in Figure 2.15). As the North American plate moves
westward and the Eurasian plate eastward, new crust is generated on both sides
of the Mid-Atlantic Ridge. In the case of Iceland, which lies on the Mid-Atlantic
Ridge, the neovolcanic zones are readily seen in Figure 2.16.

In Iceland, electrical production from geothermal power plants has been de-
veloped rapidly. Reflecting the geological situation, Iceland is a unique country
with regard to utilization of geothermal energy, with more than 50% of its primary
energy consumption coming from geothermal power plants. As shown in Figure
2.17, today’s location of power plants in Iceland fits perfectly with the gravimetric
investigations based on horizontal/vertical derivatives of the Earth’s disturbing
potential. As a matter of fact, only from these results it becomes obvious where
future power plants should be placed for geothermal purposes.
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WT τ10 WT τ11

WT τ12 WT τ13

WT τ14 WT τ15

Figure 2.15. Band-pass filtered details WT τj of the disturbing poten-
tial T in [m2s−2] from vertical deflections Θ in the region of Iceland
with respect to the scales j = 10, . . . , 15, (from [15]).

WT τ14 WT τ15

Figure 2.16. Band-pass filtered details WT τj of the disturbing poten-
tial T in

[
m2s−2

]
from vertical deflections Θ in the region of Iceland

for j = 14, 15 including the Mid-Atlantic Ridge (gray).
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Figure 2.17. Geothermal power plants in Iceland [1, 37].

All in all, by the space-based multiscale techniques initiated by Freeden and
Schreiner [21, 22] in gravitation we are able to come to interpretable results involv-
ing geological obligations in relation to hotspots/mantle plumes based on “surface
interpretations” and just by looking at the anomalous behavior in terms of surface
integrals without using the framework of Newton’s volume integrals.

3. Interior gravitational potential and density distribution

3.1. Newton integral and Poisson equation

Seen from a mathematical point of view, the Earth’s gravitational field v is a
gradient field v = ∇V, where the gravitational potential V is an infinitely often
differentiable harmonic scalar field in the exterior of the Earth. As a consequence,
the Earth’s gravitational field v is an infinitely often differentiable vector field in
the exterior of the Earth satisfying ∇ · v = 0, ∇ ∧ v = 0.

According to the classical Newton Law of Gravitation (1687), knowing the
density distribution of a region G such as the Earth, the gravitational potential
(Newton potential) can be computed everywhere in R3. More explicitly, the grav-
itational potential V of the Earth’s exterior Gc = R3\G is given by

V (x) = γ

∫
G
F (y)G(Δ; |x− y|) dV (y), x ∈ R3\G, (3.1)
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with the so-called fundamental solution G(Δ; ·) of the Laplace equation given by

G(Δ; |x− y|) = − 1

4π

1

|x− y| , (3.2)

and the gravitational constant γ, where F is the density function. Since γ is a
constant, it has no effect on any of the following considerations. Hence, from now
on, for the sake of simplicity, we neglect the gravitational constant γ in all equa-
tions, but it will be observed in numerical computations. The properties of the
gravitational potential V in the Earth’s exterior are easily described as follows:

(i) V is harmonic in R3\G, i.e., ΔxV (x) = 0, x ∈ R3\G.
(ii) V is regular at infinity, i.e., |V (x)| = O

(
|x|−1

)
, |x| → ∞.

Let G ⊂ R3 be a regular region, i.e., a bounded region G ⊂ R3 dividing R3

uniquely into the inner space G and the outer space Gc = R3\G, G = G ∪ ∂G, such
that the boundary ∂G is an orientable smooth Lipschitzian manifold of dimension
2 (for example, ball, ellipsoid, geoid, Earth or appropriate cuboidal parts of it).
It is already known, that the Newton (volume) integral over a regular region G,
corresponding to a mass density distribution F satisfies the Laplace equation in
the outer space Gc = R3\G. Clearly, this property is an immediate consequence
of the harmonicity of the fundamental solution for the Laplace equation (see, e.g.,
[40]).

Theorem 3.1. Let F : G → R be an integrable, bounded function. Then

V (x) =

∫
G
F (y) G(Δ; |x − y|) dV (y), x ∈ Gc, (3.3)

satisfies

ΔxV (x) = Δx

∫
G
F (y) G(Δ; |x− y|) dV (y) = 0, x ∈ Gc, (3.4)

i.e., V is harmonic in Gc.

Next, we are interested in showing that the Newton integral in the inner
space satisfies the Poisson equation at least under some canonical conditions on
the density function (see, e.g., [15]).

Theorem 3.2. Let F : G → R be of class C(0)(G). Then V as defined by (3.3) is of
class C(1)(G). Furthermore, we have

∇xV (x) =

∫
G
F (y) ∇xG(Δ; |x − y|) dV (y), x ∈ G. (3.5)

Proof. The fundamental solution

G(Δ; |x− y|) = − 1

4π

1

|x− y| , |x− y| �= 0, (3.6)
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admits a “regularization” (mollification) of the form

Gτ
0(Δ; |x− y|) =

⎧⎪⎪⎨⎪⎪⎩
−3τ2 − |x− y|2

8πτ3
, |x− y| ≤ τ,

− 1

4π|x− y| , τ < |x− y|.
(3.7)

For brevity, we set

V τ
0 (x) =

∫
G
F (y) Gτ

0(Δ; |x− y|) dV (y), x ∈ G. (3.8)

The integrands of V and V τ
0 only differ in the ball Bτ (x) around the point x with

radius τ . Moreover, the function F : G → R is supposed to be continuous on G.
Hence, it is uniformly bounded on G and we derive

sup
x∈G

|V (x)− V τ
0 (x)| = O

(∫
Bτ (x)

|G(Δ; |x − y|)−Gτ
0(Δ; |x− y|)| dV (y)

)
= O(τ2). (3.9)

Therefore, V is of class C(0)(G) as the limit of a uniformly convergent sequence of
continuous functions on G. We let

v(x) =

∫
G
F (y) ∇xG(Δ; |x− y|) dV (y), x ∈ G, (3.10)

and

vτ0 (x) =

∫
G
F (y) ∇xG

τ
0(Δ; |x − y|) dV (y), x ∈ G. (3.11)

As |∇xG(Δ; |x− y|)| = O(|x− y|−2), the integrals v and vτ0 exist for all x ∈ G. It
is not hard to see that

sup
x∈G

|v(x) − vτ0 (x)| = sup
x∈G

|v(x)−∇xV
τ
0 (x)| = O(τ). (3.12)

Consequently, v is a continuous vector field on G. Moreover, as the relation (3.12)
holds uniformly on G, we obtain

v(x) = ∇xV (x) =

∫
G
F (y) ∇xG(Δ; |x − y|) dV (y). (3.13)

This is the desired result. �

Remark 3.3. The proof is standard (see, e.g., [22]). Its explicit formulation, how-
ever, is helpful to understand the feature extraction method.

Next, we come to the Poisson equation under the assumption of Hölder con-
tinuity for the function F on G.
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Theorem 3.4. If F is of class C(0,μ)(G), μ ∈ (0, 1], then the Poisson differential
equation

Δx

∫
G
F (y) G(Δ; |x− y|) dV (y) = F (x) (3.14)

holds true for all x ∈ G.

The proof can be found in any textbook on potential theory, e.g., [15]. It is
also part of Chapter 5 of this handbook.

The fundamental solution Gτ
0(Δ; ·) as well as the (ordinary) Haar function

given by

Hτ
0 (|x − y|) = ΔxG

τ
0(Δ; |x− y|) =

{
3

4πτ3 , |x− y| ≤ τ,

0, |x− y| > τ,
(3.15)

are depicted in Figure 3.1 for different values of τ .

Figure 3.1. Sectional profile of the functions Gτ
0(Δ; ·) (left) and Hτ

0

(right) for the values τ = 2−j, j = 0, 1, 2. The black line in the left figure
indicates the profile of the fundamental solution G(Δ; ·).

The critical point that will be expected in numerics of feature extraction by
means of regularized potentials V τ

0 is the discontinuity of the Laplace derivative
of Gτ

0(Δ; ·), i.e., the (ordinary) Haar function Hτ
0 . This is the reason why we are

interested in higher-order Taylor expansions of the fundamental solution leading
to a polynomial of degree n+ 2 given by r �→ Gτ

n(Δ; r), r ∈ [0,∞, ) with

Gτ
n(Δ; r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− 1
4πr , τ ≤ r,

1
8πτn+3

n+1∑
l=0

(
(−1)l(n+ 1)

(
n+2
l

))
τn+2−lrl

+ 1
8πτn+3

n+1∑
l=0

(
2(−1)l+1

(
n+2
l+1

))
τn+2−lrl

+(−1)n+2 n+1
8πτn+3 rn+2, 0 ≤ r < τ

(3.16)
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instead of

Gτ
0(Δ; r) =

{
− 1

4πr , τ ≤ r,

− 3τ2−r2

8πτ3 , 0 ≤ r < τ,
(3.17)

so that

Hτ
n(r) = ΔxG

τ
n(Δ; r) =

{
0, τ < r,

(n+1)(n+2)(n+3)
8π

(τ−r)n

τn+3 , 0 ≤ r ≤ τ.
(3.18)

It is easy to see that r �→ Gτ
n(Δ; r), r ∈ [0,∞), is (n + 1)-times continuously

differentiable and r �→ Hτ
n(r), r ∈ [0,∞), is (n−1)-times continuously differentiable

(where, by convention in case of Hτ
0 , (−1)-times continuously differentiable means

piecewise continuous). Moreover, we notice that Hτ
0 for n = 0 is the ordinary

(spherically symmetric) τ -Haar function in R3.

As a consequence of our preparatory considerations we obtain the following
statement that serves as strategic basis for our forthcoming approach to geological
feature extraction.

Theorem 3.5. For n ∈ N0, the “τ-potential functions” of order n

V τ
n (x) =

∫
G
Gτ

n(Δ; |x− y|)F (y) dV (y) (3.19)

and the “τ-contrast functions” of order n

F τ
n (x) =

∫
G
Hτ

n(|x − y|)F (y) dV (y), (3.20)

satisfy the limit relations

lim
τ→0

|V (x)− V τ
n (x)| = 0, x ∈ G (3.21)

and

lim
τ→0

|F (x)− F τ
n (x)| = 0, x ∈ G, (3.22)

provided that F is (C(0,μ)-Hölder) continuous in the neighborhood of x ∈ G.

The kernels Gτ
n(Δ; ·) and Hτ

n are called “τ-fundamental scaling function of
order n” and “τ-Haar scaling function of order n”, respectively. It should be re-
marked that Gτ

n(Δ; ·) is constructed in such a way that the normalization condition∫
R3

ΔxG
τ
n(Δ; |x|) dV (x) =

∫
R3

Hτ
n(|x|) dV (x) = 1 (3.23)

holds true for all τ > 0 and all n ∈ N0.
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Unfortunately, τ -potential functions V τ
n do not generally show a faster con-

vergence to V than τ -potential functions V τ
0 ; more concretely, we have

sup
x∈G

|V (x) − V τ
n (x)| = O

(∫
Bτ (x)

|G(Δ; |x − y|)−Gτ
n(Δ; |x− y|)| dV (y)

)
= O(τ2) (3.24)

for n ∈ N0. Finally it should be alluded that

lim
τ→0

sup
x∈G

|α(x)F (x) − F τ
n (x)| = 0, (3.25)

where α(x) is the solid angle subtended at x ∈ G by the boundary surface ∂G.

Remark 3.6. The solid angle α(x) in Equation (3.25) is necessary due to the fact
that the support of Hτ

n(| · −x|) is cut of at the boundary ∂G for all τ > 0 with
x ∈ ∂G.

3.2. Multiscale postprocessing of signature decorrelation

Next we deal with new mathematical mechanisms for a deeper interpretation and a
better understanding of gravimetrically available pre-information inside a regular
region G. In order to make the decorrelation mechanisms transparent, our con-
siderations start from the unrealistic assumption that the potential V is known
everywhere in G. Our purpose is to demonstrate how the multiscale procedure for
the potential canonically transfers to the density by use of “Poisson derivatives”.
All in all, the context of this section is meant as conceptual preparation of the
Haar-type inversion process (see also [3]) discussed later on.

Suppose that {τj}j∈N0 is a positive, monotonously decreasing sequence with
limj→∞ τj = 0. For j ∈ N0, we consider the differences

Ψ
G

τj
n
(Δ; |x− y|) = Gτj+1

n (Δ; |x− y|)−Gτj
n (Δ; |x− y|) (3.26)

and

Ψ
H

τj
n
(|x− y|) = Hτj+1

n (|x− y|)−Hτj
n (|x − y|). (3.27)

Ψ
G

τj
n
(Δ; ·) and Ψ

H
τj
n

are called “τj-fundamental wavelet function of order n” and

“τj-Haar wavelet function of order n”, respectively (see Figure 3.2).
The associated “τj-potential wavelet functions” of order n and the “τj-con-

trast wavelet functions” of order n are given by

(WV )τjn (x) =

∫
G
Ψ

G
τj
n
(Δ; |x− y|)F (y) dV (y) (3.28)

and

(WF )τjn (x) =

∫
G
Ψ

H
τj
n
(|x− y|)F (y) dV (y). (3.29)

The τj-potential wavelet functions of order n and the τj-contrast wavelet functions
of order n, respectively, characterize the successive detail information contained in
V

τj+1
n − V

τj
n and F

τj+1
n − F

τj
n , j ∈ N0. In other words, we are able to recover the
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Figure 3.2. Sectional profile of the wavelet functions Ψ
G

τj
n
(Δ; ·) (left)

and Ψ
H

τj
n
(·) (right) for n = 0 and τj = 2−j , j = 0, 1, 2.

potential V and the contrast function, i.e., the “density signature” F , respectively,
in form of “band structures”

(WV )τjn = V τj+1
n − V τj

n , (3.30)

and

(WF )τjn = F τj+1
n − F τj

n . (3.31)

As a consequence, the essential problem to be solved in multiscale extraction of
geological features is to identify those detail information, i.e., band structures
in (3.30), which contain specific geological (density) characteristics in (3.31), for
example, aquifers, salt domes, etc.

Seen from a numerical point of view, it is remarkable that both wavelet
functions y �→ Ψ

G
τj
n
(Δ; |x − y|) and y �→ Ψ

H
τj
n
(|x − y|) vanish outside a ball

around the center x due to their construction, i.e., these functions are spacelimited
showing a ball as local support. Furthermore, the support becomes smaller and
smaller with increasing scale parameter j, so that more and more high frequency
phenomena can be highlighted without changing the features outside the balls.
Explicitly written out in our nomenclature we obtain for x ∈ G

(WV )τjn (x) =

∫
Bτj

(x)∩G
Ψ

G
τj
n
(Δ; |x− y|)F (y) dV (y), (3.32)

and

(WF )τjn (x) =

∫
Bτj

(x)∩G
Ψ

H
τj
n
(|x− y|)F (y) dV (y). (3.33)

Forming the sums

J−1∑
j=0

(WV )τjn (x) =

J−1∑
j=0

(V τj+1
n (x)− V τj

n (x)) , (3.34)
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and
J−1∑
j=0

(WF )τjn (x) =
J−1∑
j=0

(F τj+1
n (x)− F τj

n (x)) , (3.35)

we are easily led to

V τJ
n (x) = V τ0

n (x) +

J−1∑
j=0

(WV )τjn (x) (3.36)

and

F τJ
n (x) = F τ0

n (x) +

J−1∑
j=0

(WF )τjn (x). (3.37)

Thus, we finally end up with the following multiscale relations

V (x) = lim
J→∞

V τJ
n (x) = V τ0

n (x) +

∞∑
j=0

(WV )τjn (x) (3.38)

and

α(x)F (x) = lim
J→∞

F τJ
n (x) = F τ0

n (x) +

∞∑
j=0

(WF )τjn (x) = lim
J→∞

ΔxV
τJ
n (x), (3.39)

i.e.,

α(x)F (x) = ΔxV
τ0
n (x) +

∞∑
j=0

Δx(WV )τjn (x). (3.40)

Altogether, the potential V as well as the contrast function, i.e., the “density
signature” F can be expressed in additive way as a low-pass filtered signal V τ0

n and
F τ0
n and successive band-pass filtered signals (WV )

τj
n and (WF )

τj
n , j = 0, 1, . . . ,

respectively.

It should be mentioned that our multiscale approach is constructed such that,
within the spectrum of all wavebands (cf. (3.30), (3.31)), certain rock formations
or aquifers, respectively, may be associated to a specific waveband characterizing
typical features within the multiscale reconstruction (see Figure 3.3). Each scale
parameter in the decorrelation is assigned to a data function which corresponds to
the associated waveband and, thus, leads to a low-pass approximation of the data
at a particular resolution.

Finally it should be noted that the key ideas of multiscale approximation as
presented here lead back to evaluation methods proposed by Freeden and Schreiner
[21], Freeden and Blick [13], and particularly Freeden and Gerhards [15]. For the
sake of simplicity, the adaptation of this approach to the requirements of gravita-
tional potential as well as density distribution is explained only in scale discrete
form, a scale continuous formulation as presented in [21] is canonical. A variety
of numerical tests and case studies of our approach are found in the Ph.D.-theses
[2, 49].
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Figure 3.3. Schematic visualization of the multiscale decorrelation
mechanism (see [3]).
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3.3. Decorrelation of the Marmousi test model

Next we deal with the decorrelation of the geological signatures of a test area,
namely the well-known Marmousi potential and density model (we use the canon-
ically constructed 3D-version of the Marmousi model as proposed in the Ph.D.-
thesis [2], see Figures 3.4, 3.5). In accordance with this standard test model (see
also [42, 67]), the contrast function F is available as a fully interpreted 3D Mar-
mousi density model extension (see Figure 3.6).

In order to validate the decorrelation abilities of our multiscale approach pre-
sented in the last section, we first perform a decomposition of the potential based
on Eq. (3.38) (see Figure 3.7). Obviously, the low-pass filtered data, i.e., the τj-
potential functions V

τj
n (see Eq. (3.19)) provide no essential structural information

(see Figure 3.7, left column). However, for smaller scale values τj , by going over to
finer detail information involving τj-wavelet potential functions, we already notice
essential trends of the geological situation of the original density model (see Figure
3.7, right column).

Keeping the properties of the Newton volume integral in mind, we are not
very surprised that, following the construction principles as proposed in our mul-
tiscale approach, the decomposition of the 3D Marmousi density model F based
on Eq. (3.39) (Figure 3.8, left), in fact, shows a significant correlation to the
decomposition of the τj -wavelet potential functions. Nevertheless, the τj -wavelet
contrast functions (Figure 3.8, right) yield additional information, for example,
the separation of all density transitions can be clearly detected at scale j = 9.
This observation is of great significance in geothermal research, where the fracture
transitions play a particular role for detecting areas of internal water flow.

Next we modify the original potential function V by adding three pertur-
bations in form of mass points, i.e., fundamental solutions, at different locations
obtaining the potential Vmod. Our purpose is to determine the locations of these
three disturbances for the depth detection of geological formations. It should be
noted that a decorrelation of the data with low-frequency wavelets (i.e., low val-
ues j) basically means focusing the multiscale approach on low-frequency signal
components. Wavelets to higher values j allow to focus on the high-frequency
interference.

As a consequence, our multiscale decorrelation mechanism shows that the
low-pass filtered signals of V and Vmod are structurally identical (see Figures 3.7
and 3.9). However, at scale j = 9 (see Figure 3.10), we can identify the exact
location of the centers of the introduced fundamental solutions (i.e., buried mass
points) in the band-pass filtered data.

3.4. Gravimetry and Haar-type inversion

The inversion of Newton’s Law of Gravitation (3.1), i.e., the determination of
the internal “density function” from information of the gravitational potential is
known as the gravimetry problem: To be more concrete, the gravimetry problem
amounts to the problem of determining the “density function” F from (discrete)
information of the gravitational potential V in R3 in accordance with the integral
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Figure 3.4. Artificially constructed 3D Marmousi density model.

Figure 3.5. Cross-section of the 3D Marmousi density model (cf. [67]).

Figure 3.6. Marmousi density model and its geological interpretation
(cf. [42]).
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Figure 3.7. Decomposition of the 3D Marmousi potential in low-pass
(V

τj
n , left) and band-pass filtered parts ((WV )

τj
n , right) for the sequence

τj = 9200m · 2−j and n = 0 in [kg/m]. The choice of the sequence is
adapted to the length of the density model (from the Ph.D.-thesis [2],
Geomathematics Group, University of Kaiserslautern).
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Figure 3.8. Decomposition of the 3D Marmousi density model into
low-pass (F

τj
n , left) and band-pass filtered parts ((WF )

τj
n , right) for

the sequence τj = 9200m · 2−j in
[
kg/m3

]
and n = 0. The choice of

the sequence is adapted to the length of the density model (from the
Ph.D.-thesis [2], Geomathematics Group, University of Kaiserslautern).
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Figure 3.9. Decomposition of the modified 3D Marmousi poten-
tial Vmod in low-pass ((Vmod)

τj
n , left) and band-pass filtered parts

((WVmod)
τj
n , right) for the sequence τj = 9200m · 2−j and n = 0 in[

kg
m

]
. The choice of the sequence is adapted to the length of the density

model.

Figure 3.10. Illustration of the band-pass filtered signal (WVmod)
τ9
n

at scale j = 9 showing the locations of the three disturbing mass points,
i.e., fundamental solutions and, consequently, the depth of the geological
formations.
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equation

V (x) = I[F ](x) =

∫
G

G(Δ; |x − y|)F (y) dV (y), x ∈ R3 (3.41)

(note that we omit the gravitational constant γ).
In accordance with the mathematical classification due to Hadamard, the

(classical) gravimetry problem of determining F from potential data on ∂G, i.e.,
terrestrial gravitational data, violates all criteria, viz. existence, uniqueness and
stability:

(i) (Existence) The potential V is harmonic outside G. In accordance with the so-
called Picard condition (see, e.g., [70]), a solution only exists if V belongs to
(an appropriate subset in) the space of harmonic functions. However, it should
be pointed out that this observation does not cause a numerical problem since,
in practice, the information of V is only finite-dimensional. In particular, an
approximation by an appropriate harmonic function is a natural ingredient
of any practical method.

Figure 3.11. Equivalent gravity effect of different “sources” to gener-
ate the same gravitational potential on the Earth’s surface (with kind
permission of Teubner-publishing taken from [38] in modified form).

(ii) (Uniqueness) The most serious problem is the non-uniqueness of the solution
(cf. Figure 3.11): The associated Fredholm integral operator I is of the first
kind and has a kernel (null space) which is known (cf. [15, 20]) to coincide
with the L2(G)-orthogonal space of the closed linear subspace of all harmonic
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functions on G. Unfortunately, this orthogonal complement, i.e., the class of
so-called anharmonic functions, is infinite-dimensional.

(iii) (Stability) Restricting the operator to harmonic densities leads to an injective
mapping which has a discontinuous inverse implying an unstable solution.

Concerning the historical background, the question of the non-uniqueness
for the classical gravimetry problem has been discussed extensively in literature,
starting with a paper by Stokes [66] (for more details see, e.g., [15, 46, 47]). This
calamity can be bypassed by imposing some reasonable additional condition on
the density. A questionable condition, suggested by the mathematical structure of
the Newton potential operator I, is to require that the density is harmonic. The
approximate calculation of the harmonic density has already been implemented
in several papers, whereas the problem of determining the anharmonic part seems
to be still a great challenge. Due to the lack of an appropriate physical interpre-
tation of the harmonic part of the density, various alternative variants have been
discussed in the literature. In general, gravitational data yield significant informa-
tion only about the uppermost part of the Earth’s interior, which is not laterally
homogeneous.

Seen from a mathematical point of view in constructive approximation, lo-
cally supported functions are not new, having been discussed already by Haar
(1910). The importance of spacelimited (or in mathematical jargon locally sup-
ported) Haar kernels in view of a multiscale procedure is the “birth” to an entire
“basis family” (scaling functions) by means of two operations, viz. dilations and
translations.

In what follows, we recapitulate the already discussed “Haar philosophy” to
realize an approximate determination of the mass density distribution inside G
from discrete gravitational information. The essential tool is the regularization
procedure of the Newton potential enabling to replace the integral equation (3.41)
by the Fredholm integral equation of first kind

V τ
n (x) =

∫
G

Gτ
n(Δ; |x− y|)F (y) dV (y), x ∈ R3, (3.42)

for a sufficiently large scale number J , so that the serious problem of non-unique-
ness caused by the occurrence of anharmonic functions is not existent anymore for
terrestrial potential data, however, at the price of non-harmonicity of the “regu-
larizer” y �→ GτJ

n (Δ; |x− y|) in a neighborhood outside x ∈ ∂G.
In choosing a sufficiently large J we are aware of the fact (cf. Theorem 3.4)

that

V (x) & V τJ
n (x) =

∫
G

GτJ
n (Δ; |x − y|)F (y) dV (y), x ∈ R3, (3.43)

i.e., V τJ
n provides an approximation of the Newton integral (3.3) with negligible

error. We remember

Δx GτJ
n (Δ; |x − z|) = HτJ

n (|x − z|) (3.44)
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for all x, z ∈ R3. From (3.44) it therefore follows that

Δx

∫
G

GτJ
n (Δ; |x − z|)F (z) dV (z) = F τJ

n (x) & F (x), x ∈ G. (3.45)

In order to realize a fully discrete approximation of F , we have to apply
approximate integration formulas over BτJ (x) ∩ G leading to

V (x) & V τJ
n (x) &

NJ∑
i=1

GτJ
n (Δ; |x− yNJ

i |) wNJ

i F (yNJ

i ), (3.46)

where wNJ

i , yNJ

i ∈ BτJ (x) ∩ G, i = 1, . . . , NJ , are known weights and knots,
respectively.

For the determination of the mass density we are confronted with the situ-
ation that all coefficients aNJ

i = wNJ

i F (yNJ

i ), i = 1, . . . , NJ , are unknown. This,
however, means that we have to solve a linear system, namely

V (xMJ

k ) =

NJ∑
i=1

GτJ
n (Δ; |xMJ

k − yNJ

i |)aNJ

i , k = 1, . . . ,MJ , (3.47)

in order to determine the coefficients aNJ

i , i = 1, . . . , NJ , from known gravitational

values V (xMJ

k ) at knots xMJ

k ∈ R3, k = 1, . . . ,MJ .

Once all density values F (yNJ

i ), i = 1, . . . , NJ , are available (note that the in-

tegration weights wNJ

i , i = 1, . . . , NJ , are known from the approximate integration
rule), the density distribution F can be obtained from the formula

F (x) & F τJ
n (x) =

NJ∑
i=1

HτJ
n (|x− yNJ

i |) wNJ

i F (yNJ

i ), x ∈ G. (3.48)

Even more, fully discrete Haar filtered versions of F at lower scales, i.e., feature
extraction, can be derived in accordance with the approximate integration rules

F τj
n (x) =

∫
G
Hτj

n (|x− y|)F (y) dV (y) &
Nj∑
i=1

Hτj
n (|x− y

Nj

i |)wNj

i F (y
Nj

i ) (3.49)

for j = J0, . . . , J , where w
Nj

i , y
Nj

i , i = 1, . . . , Nj, are known weights and knots,

respectively, such that we can take adventage of the fact that {yNj

1 , . . . , y
Nj

Nj
} ⊂

{yNJ
1 , . . . , yNJ

NJ
} ⊂ G, i.e., the sequence of knots {yNj

1 , . . . , y
Nj

Nj
} ⊂ G shows a hier-

archical positioning.

Altogether, our approach yields Haar filtered versions (3.49) establishing a
fully discrete (space-based) multiscale decomposition F τJ

n , . . . , F
τJ0
n of the density

distribution F , such that an entire set of approximations is available from a single
locally supported “mother function”, i.e., the Haar kernel function, and this set
provides useful “building block functions”, which enable suitable storage and fast
decorrelation of density data in consistency with geological formations.
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It should be remarked that by discretizing the convolution integral by approx-
imate integration in form of a suitable cubature formula, we arrive at a system
of linear equations, which is sparse, since the utilized wavelet has a local support.
The local support enables us to limit the multiscale technique to a local region,
e.g., only to a relevant borehole area of interest, and guarantees that there is no
change in the signature outside the support of the wavelets. All in all, our approach
is given in such a way that the inversion of the equation system turns out to be
numerically efficient and economical.

Remark 3.7. The linear systems occurring in this section can be handled by, e.g.,
use of domain decomposition techniques (see, e.g., [17, 19, 28–30, 34] and the
references therein).

Remark 3.8. For simplicity, the input data of this subsection are potential data.
In the same way, a linear system can be established by taking, e.g., free air gravity
anomalies on the Earth’s surface. In this case, however, we need Haar functions
(3.18) of positive degrees n, since free air gravity anomalies are generated by a
first-order derivative applied to the disturbing potential.

3.5. Improvement of in-borehole density signatures

Since both the actual potential V and the actual contrast function F, in general,
cannot be measured directly inside the boundary surface ∂G and outside a neigh-
borhood around the already existing boreholes without additional drilling, the a
priori available potential and density information differ from the actual values and
thus form only an approximation to the reality. If one associates a certain scale
value τj within the multiscale process to the available potential data, we are given

V τj
n (x) =

∫
G
Gτj

n (Δ; |x − y|)F (y) dV (y). (3.50)

Often, in practice during borehole drilling, additional data are gathered by in-
hole gravimetric measurements, so that we may assign a scale value τj+1 to the
improved potential data. If we now take the difference, we arrive at

V τj+1
n (x)− V τj

n (x) =

Nj∑
i=1

Ψ
G

τj
n

(
Δ;

∣∣∣x− y
Nj

i

∣∣∣)w
Nj

i F
(
y
Nj

i

)
, (3.51)

and

F τj+1
n (x)− F τj

n (x) =

Nj∑
i=1

Ψ
H

τj
n

(∣∣∣x− y
Nj

i

∣∣∣)w
Nj

i F
(
y
Nj

i

)
, (3.52)

respectively. Once again, it should be emphasized that the linear system (3.51)
can be evaluated efficiently and economically (note that the kernels H

τj
n as well

as Ψ
G

τj
n

and Ψ
H

τj
n

have local support due to their construction and, hence, the

systems of Equations (3.51) and (3.52) are sparse).
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The improvement by additional data observation is shown using the example
of the equation system (3.52). The input data for the inversion process are gen-
erated by smoothing of a cutout of the 3D Marmousi density model (see Figure
3.12, left for F

τj+1
n ). As a result of the inversion (see Figure 3.12, right), we ob-

tain a sharper density model provided that the wavelet used in the inversion is
sufficiently smooth, i.e., n ≥ 2.

Figure 3.12. Illustration of the “best” data before the inversion F
τj+1
n

(left) and the inversion result (right) for n = 3 and j = 5. The colors
show the densities in [kg/m3] (from the Ph.D.-thesis [2]).

An extensive parameter study in the Ph.D.-thesis [2] demonstrates that the
inversion is numerically stable and efficient for smooth Haar-type kernels. Since
the resulting relative error in the inversion depends continuously on the scale,
there exists a reference interval, such that for each scale value inside this reference
interval, an improvement of the data is achieved. This allows a certain tolerance
in the choice of parameters.

Conclusions

Local knowledge of the gravity potential and its equipotential (level) surfaces giv-
ing information about mass distribution have become an important issue for ex-
ploration and prospecting. Indeed, the gravity field is a key component of future
investigation. Seen from a numerical point of view, however, the way forward has
to focus on two challenges:

(i) In reality, the distribution of geopotential data is far from being homoge-
neous with large gaps even in all European areas. In addition, the quality
of the geopotential data under consideration is very distinct. A terrestrial
data coverage now and in the foreseeable future is far from being satisfac-
tory. For data supplementation and numerical stabilization, airborne and/or
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spaceborne data are indispensable. This unfortunate situation causes partic-
ular mathematical attention for homogenization and unification to suppress
undesired oscillation phenomena within the modeling process of the data.

(ii) Nowadays, the knowledge of geopotentials such as the Earth’s gravitational
potential and their anomalies have become an important and cost-effective
issue in exploration technologies. However, it is commonly known that highly
accurate sensors, when operating in an isolated manner, have their short-
comings. Combining globally available satellite data with regional airborne
and/or local terrestrial observations within a physically founded and math-
ematically consistent multiscale process is therefore an essential step for-
ward. In this respect, a “zooming-in” detection of specific geophysical at-
tributes is an outstanding field of interest for validating the multiresolution
method based on heterogeneous datasets and geophysically oriented multi-
scale “downward continuation” modeling of the different data sources starting
from spaceborne data as trend solution via more accurate airborne data down
to high-precision local data sets.

Geophysically relevant signatures are usually decomposed into single fre-
quencies. Geomathematically, these techniques are well suited to resolve low and
medium frequency phenomena, while their application to obtain high resolution
models (such as descriptions of local orebodies, salt deposits, aquifers, etc.) is
critical. Due to the quality of the data, i.e., the intrinsic scale amount of signifi-
cant wave packages within the signal, spaceborne (i.e., satellite) data – continued
downward to the Earth’s surface – are the canonical point of departure for mul-
tiscale approximations of lower scale frequency phenomena, while the quality of
airborne and/or terrestrial data can be associated to medium and/or high(er) scale
frequency bands. So, the whole spectrum of spaceborne/airborne/ground data sys-
tems covers all verifiable wave packages. Actually, the advantage of satellite lower
frequency band data at the ground is their availability everywhere, while (airborne)
medium and (terrestrial) high(er) frequency bands usually are at the disposal for
regional and local occurrence, respectively. In this respect, a helpful tool for de-
termining the depth and size is the introduction of known artificial disturbances
such as monopoles in gravitation which superpose the original wave bands of the
data in an easily predictable and calculable way.

Summarizing our results, we are led to the following conclusion: The multi-
scale approach which is presented in this contribution breaks up a complicated sig-
nal (like the gravitational field, the geomagnetic field) into “wave band signatures”
at different scales, i.e., a certain resolution. To each scale parameter, a scaling func-
tion is defined leading to an approximation of the data at that certain resolution.
The difference between two successive scaling functions, i.e., the wavelets, repre-
sents the corresponding wave bands and, thus, yields the desired geological detail
information. With increasing scale, the approximation is getting finer and finer
starting form a low pass approximation and adding more and more wave bands.
The multiscale approach guarantees that the information contained on a certain
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(coarse) level is also contained in the approximations of higher scales. It is advanta-
geous that we are able to analyze the wave bands separately (decorrelation). Thus,
this multiscale concept helps to find adaptive methods to the particular structure
of the data. Additionally, the resolution of the model can be adapted to the spa-
tial structures, i.e., for areas with coarse spatial structures, the resolution of the
model can be chosen to be rather low and for areas with complicated structures
the resolution can be increased accordingly. Consequently, since most data show
correlation both in space as in frequency, the multiscale technique is an appro-
priate method for a simultaneous space and frequency localization. As far as the
numerical realization is concerned, fast wavelet methods (FWT) are applicable.

Considering especially the disturbing potential field approximation in gravi-
tation, we observe – from computational point of view – two main requirements:
First, the field characteristics of geological features are usually of local character
such that the use of local wavelets is evident. Second, in view of physical relevance
of the multiscale approach, we need wavelets which have a certain relation to the
corresponding partial differential equation (here: Laplace equation). Moreover, we
have to be concerned with wavelet types which are manageable from mathematical
point of view and, additionally, show a close relation to the physical model. Indeed,
the developed multiscale method by means of regularizing wavelets using physically
motivated fundamental solutions has its origins in works of the Geomathematics
Group of the University of Kaiserslautern (see, e.g., [12, 15, 18, 20–22] and the list
of references therein). The main results and characteristics of our studies presented
here can be summarized as follows:

• Physically based behavior and appropriate interpretability of the developed
wavelets.

• Numerical efficiency and economy of the wavelets by adaptive choice of the
local support and resulting fast algorithms.

• Scale dependent correlation of wavebands and geological structures in a sys-
tematic “zooming-in / zooming out” decorrelation process.

• Specific transparency of certain geological structures for an appropriate choice
of parameters.

• Depth determination and localization of geological formations by artificial
point source disturbances.

Furthermore seen from the point of mathematical methodology, our multiscale
(postprocessing) approach is not only restricted to potential methods involving the
Laplace operator. Similar approaches can be formulated, e.g., for the Helmholtz
and d’Alembert operators (cf. [2]).

Regarding the signature decorrelation and Haar-Type inversion, we deal with
a construction of physically relevant wavelets based on the regularization of the
fundamental solution for the decomposition of gravimetric data, and analyze dif-
ferent examples occurring in exploration. The decomposition of the 3D Marmousi
density model shows a breakdown of the signals into their constituent components.
Our numerical tests have further shown that the inversion technique described for
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the local improvement of records is numerically stable. In particular, the method
can be restricted to the specified local region of interest without changing the re-
maining area due to the local support of the wavelets. The resulting linear equation
systems are sparse, hence, they can thus be solved efficiently and economically.

The particular advantage of the decorrelation method proposed here is the
simultaneous calculation of the potential and the contrast function (density func-
tion) without any requirement of additional mathematical and numerical effort
and this while closely ensuring physical relevance and numerically acceptable ef-
fort. It is therefore expected that the method presented here, in fact, will contribute
substantially to minimizing the exploration risk, for example, in geothermal obli-
gations by providing deeper and more secure geological information.
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