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Abstract. UML models can be extended with time concepts from the Modeling
and Analysis of Real-Time and Embedded Systems (MARTE) profile. In the
Model-Driven Software Development, elements enhanced by stereotypes cor-
responding to time concepts can be transformed into code and assisted by
appropriate library support during an application development and execution.
We discuss several issues of the MARTE time concept interpretation and
realization in an MDSD approach. Selected solutions were implemented in
FXU, a tool for building C# applications based on UML classes and state
machines. Realization of the MARTE support was verified in case studies.
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1 Introduction

The main ideas behind Model-Driven Software Development (MDSD) are preparation
of comprehensive models of a system, their transformation, and forwarding them to
execute [1]. Models can combine structural and behavioral descriptions (e.g. UML
classes, components, state machines [2]), with features of a given application domain.

Among MDSD approaches, we focus on creation of a self-contained program
application. The main steps of an assumed development process are preparation of
models, transformation of models into a code in a general purpose language, and
building of an executable application. The target application is based on an automat-
ically generated code, specialized libraries supporting the modeled notions, and an
additional code. The application can be run in a standard software development
environment. In this paper, we do not discuss direct simulation of models, or executing
of some intermediate forms of model transformations [3].

Design and development of domain models can be supported by UML profiles [2].
A profile includes a set of concepts denoted by stereotypes. Model elements are
extended using stereotypes and their tagged values that define additional properties. In
this way an element meaning can be enhanced while the UML meta-model remain
unchanged (in most cases). The Modeling and Analysis of Real-Time Embedded
Systems (MARTE) profile belongs to profiles published by the OMG consortium [4].
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This profile has been widely used in system modeling, and UML/MARTE models
were transformed into different implementations [5–9]. Some generation tools support
MARTE notions, mainly in the Hardware Description Languages: SystemC, VHDL,
Verilog. Models using MARTE, especially with detailed description of time behavior,
can be applied in different domains. Therefore, we have analyzed transformation of
classes and state machines extended by MARTE into a general purpose language.
However, there is a lack of detailed analysis of such transformations, especially in the
context of state machine models. Moreover, practical realization of an MDSD process
required solving of some interpretation issues, e.g. dealing with semantic variation
points of UML [2, 10, 11] and selecting working semantics of profile stereotypes.

The main contribution of this paper is presentation of interpretation and transfor-
mation of a MARTE subset, namely time concepts specified in MARTE::Time for
classes and state machines. The proposed approaches were realized in an extended
version of FXU (Framework for eXecutable UML) [12, 13] and verified in cases
studies. The FXU tool supports code generation and execution of UML classes and all
notions of state machines into C# code. Behavior of classes specified by state machines
with MARTE refinements is reflected in a target C# application, which can act as a final
implementation or an operational prototype. Thus, we can verify specification ideas,
improve productivity and reduce time-to market.

The paper is organized as follows. In the next Section, we present interpretation and
transformation issues of MARTE time concepts used in an MDSD process. Imple-
mentation of the MARTE support and its verification are briefly described in Sect. 3.
We discuss related work in Sect. 4 and conclude the paper in Sect. 5.

2 Interpretation and Transformation of MARTE Time

Time concepts have been already presented in the standard OMG profile for Schedu-
lability, Performance and Time (SPTP) [14], which was used in early UML versions
(1.x). Simple time notions (Time, TimeExpression, TimeObservation) have been
included in the UML specification since version 2.0 [2]. As the former SPTP profile
was not consistent with new UML versions, a new extended OMG profile was
developed. The Modeling and Analysis of Real-Time Embedded Systems profile
(MARTE) [4, 15] can be used in UML 2.x and SysML models. Detailed concepts of a
time domain are specified in a package of the foundation part, called MARTE::Time.

With the MARTE profile we can access physical and logical time structure using
clocks. They refer directly to a time base on the time model. A clock has a set of units
that can be accepted. A clock is an abstract concept specialized as a logical clock or a
chronometric clock, which is assigned to a physical time. Time of a logical clock is
usually counted in a number of ticks.

In the following subsections, time concepts in the context of an MDSD approach
will be discussed. They correspond to stereotypies from the MARTE::Time profile. For
each stereotype, we give (i) a short description, (ii) various interpretations with hints to
realization of model to code transformation and run-time library, and (iii) a usage
example. Examples refer to a case study of a dish washer controller (Sect. 3).
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2.1 Stereotype TimedDomain

The TimedDomain stereotype can be assigned to a package treated as a container
including definitions of clock types and objects of clocks. Such packages can be nested
one in another. If a clock type or a clock object are placed in a package without this
stereotype, many interpretations are possible. Lack of the TimedDomain stereotype can
be ignored, and definitions of clock types and clock objects are allowed in any package.
In another approach clock types and objects of clocks are disregarded if they are not
located in a package extended with the TimedDomain stereotype.

In a practical realization, the above approaches can be combined into a hybrid one.
Classes specifying clock types should always be generated, regardless being included
in a TimedDomain package or not. This solution is motivated by a fact, that clock types
can be used for different purposes in a model and their code should always be offered.
A more restricted rule is proposed for clock objects, which have to be placed in an
adequately stereotyped package. Those objects are used only for time measurement,
therefore should always be placed in a package assigned to this domain.

An example of the TimedDomain stereotype associated with a package is shown in
Fig. 1. The package contains a Dishwasher Timer class and an enumeration.

2.2 Stereotype ClockType

The ClockType stereotype can be assigned to any class that specifies a type of a clock.
There are several tagged values used for detailed specification of a clock type. If these
values are fixed, they can be defined directly in a model. Otherwise tags are defined as
attribute values and operations in a class. In this way, tagged values can differ in
dependence on a clock instance. Tags of ClockType have the following meaning:

– isLogical - a clock type: true for a logical clock, false for a physical one (an attribute
to get system time is necessary, e.g. System.DateTime for C#),

– nature - represents the discrete or dense time nature (logical clocks have always
discrete time),

– maxValAttr – after reaching this value, time is counted from the beginning (logical
clock only),

Fig. 1. Examples of the TimeDomain and ClockType stereotypes
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– setTime/getTime – operations for changing/reading time value (logical clock only),
– indexToValue – an operation to map a time index (number of an event) to a real

time value (logical clock only),
– ResolAttr – resolution of an associated clock (defined for discrete time only),
– offsetAttr – offset of the associated clock expressed in the default time units,
– unitType – a set of supported time units.

A class with the ClockType stereotype can be transformed into a code as any other
class in a program. Its tags are implemented using corresponding methods and fields to
store appropriate values. The class is also supplemented with additional data and
methods to control a clock behavior in accordance to the MARTE::Time specification.

Exemplary application of ClockType is shown in Fig. 1. The DishwasherTimer
class is specified as ClockType with a set of tags. Tag names and values are listed in an
additional window. An enumeration defines time units accepted by this clock type.
Each item should be denoted by the Unit stereotype belonging to a package of
Non-functional Properties Modeling MARTE::NFPs.

2.3 Stereotype Clock

An instance of a class stereotyped with ClockType is labelled with the Clock stereotype.
This kind of object should be located in an object diagram defined in a package with
the TimeDomain stereotype. It is used to access time by other elements from the
MARTE::Time, namely TimedProcessing, TimedEvent, and TimedValueSpecification.

There are additional properties of a clock. A reference class with the ClockType
stereotype is defined in the type tag. A default time unit used by the clock is given in
the unit tag. The unit has to belong to a set of units listed in the appropriate clock type.
A chronometric clock has a time standard specified with a tag. It is equal to one of
predefined values from the TimeStandardKind MARTE Library [4–Annex D.3.].

Code generation of the Clock stereotype requires transformation not only of classes
but also of object diagrams. This facility can be restricted to objects that are annotated
with the Clock stereotype and placed in a package with the TimeDomain stereotype. In
a class defining a clock type, a static method can be generated for any clock object. The
method returns an instance of the clock type specified with parameters defined in an
object diagram. Usage of the Clock stereotype is illustrated in Fig. 2. A timer object is
an instance of the DishwasherTimer class (Fig. 1).

Fig. 2. An instance of DishwasherTimer - an example of the Clock stereotype
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2.4 Stereotype TimedProcessing

The TimedProcessing stereotype can be assigned to any element that has behavior
specified by its start and end points, or by a duration time. For example, such a
behavioral element can be a whole state machine, an action (Do, Entry, Exit) in a state,
or an action labelling a transition between states. A stereotyped element is associated
with a clock using tag on. The stereotype can be refined with several tags: duration,
finish, start. There are many possible interpretations of specified time behavior in
dependence of these tags.

1. Start and finish tags are specified and a duration tag is not. In general, events given
in start and finish stand for beginning and ending points of the behavior. Moreover
various interpretation cases are possible:
(a) After encountering of a start event behavior is started and ended with a finish

event. However, behavior can be started and/or ended also in another way.
Several solutions can be chosen if a start event happens during an active
behavior:

– behavior cannot be activated once again as it is already in progress,
– a new behavior instance is launched, e.g. in a separate thread,
– the behavior is reactivated after its end.

A finish event encountered while the behavior is not active. Then, we can
– ignore the finish event,
– save the finish event in a buffer/queue and wait for activation of the

behavior.
Then, the behavior is ended due to the finish event.

(b) A behavior can be started and ended only via start and finish events. Though,
not all start/finish events can launch/end a behavior.

(c) Combination of cases (a) and (b), i.e. each occurrence of a start/finish event
starts/ends a behavior and it is not allowed to activate or deactivate any
behavior in another way.

(d) Start/finish events are generated when a behavior starts or ends. This inter-
pretation is opposite to above ones, where the events acted as triggers.

2. A duration tag is specified and start and finish tags are not. In general, a behavior
should last for time equal to a duration tag value. Time is counted with a clock
specified in an on tag. However, different interpretations can be used:
(a) The exact duration time will be forced. If a behavior is longer than stated by

the duration tag, it is interrupted. Otherwise, if a behavior is due to finish
before elapsing of duration time, it is prolonged to be as long as the duration
value.

(b) A behavior can lasts no longer than specified by duration value. Otherwise it
will be interrupted.

(c) A behavior should last for an interval equal at least to the duration value.
Otherwise an error occurs (e.g. an exception is raised) or the behavior end will
be postponed to the required moment.
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3. All start, finish and duration tags are specified. In this case, we expect a behavior to
start in the same moment as the start event occurrence, and end at the finish event
occurrence. But additionally, passing time is restricted by the duration tag. If we
select the variant when the event finish triggers the behavior end, different inter-
pretations are still possible:
(a) Each finish event is ignored during an interval of the duration time, which is

counted since a start event occurrence.
(b) If a finish event occurred and a time interval counted from the start event

occurrence is shorter than the duration value, an error is generated.

Our recommendations depend of a meta-model element to which the stereotype is
assigned. In case of a state machine, a start event is interpreted as in 1(a), and finish as
1(d). When an action in a state or on a transition is concerned, both start and finish are
handled according to 1(d). The duration tag will be processed as 2(b) in all cases.

Usage of the TimedProcessing stereotype is shown in Fig. 3. The DishWasher
Controller state machine is specified with this stereotype and its tags: start and finish.
The tags have their events specified. The state machine begins is activity after
occurrence of the start event. After the end of the behavior, the finish event will be
launched.

Entry action in the Prewash state is also specified with the TimedProcessing
stereotype. In this case, the duration tag is defined by a literal with the TimedValue
Specification stereotype (Sect. 2.6).

Fig. 3. State machine of DishWasher Controller - examples of the TimedProcessing stereotype
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2.5 Stereotype TimedEvent

Any time event from the CommonBehaviours::SimpleTime package of UML can be
specified by the TimedEvent stereotype. Therefore, additional data of a time event can
be specified, or a cyclic time event is created.

Value of a timed event determines when the event is to be generated for the first
time. When an event flag isRelative is false, its value denotes an absolute time instant
presented by the associated clock. Otherwise the event value defines a time between an
event instance generation and its entering a queue. Then, the every tag denotes a
duration time between event occurrences. The number of occurrences is limited by the
repetition tag. Value of a timed event is defined by a CVS expression (Clocked Value
Specification) [4 – Annex C].

Realization of this stereotype requires handling of time events that are placed into
appropriate event queues of state machines. The same event can be generated many
times, if necessary. Different realizations of time events influence performance of a
target application. Variants of time event handling in MDSD were presented in [16].

Several transitions in the dish washer state machine are labelled with time events
(Fig. 3). These events are extended with TimedEvent stereotypes. An example of a
transition and the properties of its event are shown in Fig. 4. Values of tags every and
repetition are empty, as the event is not repeatable. The event occurs after 10 time units
in accordance to an associated clock (tag on). This time is measured since entering the
Prewash state.

2.6 Stereotype TimedValueSpecification

This stereotype can be assigned to any value in a UML model (Classes::Kernel::
ValueSpecification). TimedValueSpecification denotes that a corresponding value is
interpreted as a time value of a clock referenced by an on tag. Meaning of the
stereotyped value depends on the interpretation tag:

– Duration –value of a time interval passing after an event,
– Instant – value of a time instant in a given clock,
– Any – a duration or instant value in accordance to a TSL (Time Specification

Language) expression.

Fig. 4. A transition of DishWasher Controller (Fig. 3) with the TimedEvent stereotype
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Time expressions are written in TSL, a part of VSL (Value Specification Language)
[4–Annex B], therefore realization of the stereotype requires translation of such
expressions according to the defined grammar.

3 Support for the MARTE Profile in FXU

Framework for eXecutable UML (FXU) was developed as a first tool that supported
transformation of classes and state machines into C# code [12]. Its main goal was
transforming all notions of state machines into an executable code. Its functionality was
enhanced within consecutive versions [13, 16].

In general, FXU consists two parts: FXU Generator that transforms UML class and
state machine models into corresponding C# code, and FXU Run-Time Library that
implements state machine concepts and is incorporated into a final application. In order
to make the tool more flexible and to combine elements of MARTE profile, the tool
architecture was refactored. It was made extendable by a set of plug-ins. A plug-in
component is responsible for interpretation of elements (stereotypes, tagged values) of
a given profile, insertion of appropriate changes of a model and generation of an
additional code to realize the profile. Appropriate extensions were also integrated with
the Run_Time Library.

Using the new FXU architecture, the tool was facilitated with MARTE code
generation. The extended library supports run-time realization of the profile notions
according to interpretations given in the previous Section.

FXU with MARTE was used in different case studies. One of them was related to a
home alarm system combining features of two models: an intrusion alarm and a fire
alarm [17]. Experiences of the model and application development influenced selecting
among variants of MARTE stereotype realization.

Examples presented in this paper originate from a case study of a dish washer,
mainly its controller. A logical clock is used in the model, therefore an activity time is
independent from a physical time. A whole cycle of a dish washer work lasts for 90
logical time units, e.g. assuming 1 min for a unit it makes 90 min. In the state machine
of the dish washer controller, movements between consecutive states are realized
according to specified time requirements. The washing process starts with the
startWashingUp event and ends with the finishWashingUp event, as stated in the tags
of the TimedProcessing stereotype of the state machine.

Experimental verification of the FXU with MARTE was also carried out on various
models aiming at utilization of all concepts from the MARTE:Time profile, in partic-
ular: extensive usage of time events, managing of time-driven processes, testing of
various clock types, etc. Another case study was based on an example of a 4 stroke
engine [18]. The performed experiments confirmed a proper utilization of time con-
cepts in the model-driven application development.

392 A. Derezinska and M. Szczykulski



4 Related Work

Models with the MARTE profile are widely applied in system modeling and analysis.
Therefore, different transformations, mainly into domain targets, were proposed.

UML/MARTE models were used in HW/SW co-design approaches. In [5] models
were transformed into SystemC executable used in simulation to verify a target VHDL.
Results were applied in an FPGA solution of multimedia embedded systems.

Rapid prototyping of heterogeneous embedded HW/SW systems under consider-
ation of timing and power aspects was presented in [6]. MARTE/UML models were
transformed to IP-XACT and further into SystemC. Executable specification was used
in an estimation and simulative analysis of timing and power properties of a system.

Generation of the System-Level Architecture Model (S-LAM) from a UML model
with the MARTE profile is presented in [7]. Data-parallel applications were designed to
be executed on a massively parallel System-on-Chip. The Gaspard2 tool supports
transformation of MARTE/UML into OpenCL, a standard for parallel computing [8].

It should be noted, that in the papers discussed above, no information about dealing
with state machines and the MARTE interpretation issues are given. State machines
were taken into account in [9] where the MODCO transformation tool was presented.
However, this approach covers only a small subset of UML state diagram constructs,
supporting neither hierarchy nor concurrency.

There are CASE tools that support modeling with UML profiles, including
MARTE, e.g. IBM RSA (since v. 7.0), Papyrus, MagicDraw, etc. but only some of
them deal also with transformation of MARTE models, like Papyrus.

In the contrary to other approaches, our target is not a domain language, but a
general purpose language, namely C#. Moreover, in the code generation and building
an application we focus on state machine transformation. We take into account all
features of state machines, including complex states with orthogonal regions, history,
all pseudostates, etc.

5 Conclusions

Modeling of a system with time notions, its automatic transformation and building of
an application combined with the support of modelled concepts gives an opportunity to
create a well-specified reliable application. Therefore, we discussed transformation
variants of MARTE time concepts that were implemented in an MDSD tool. It
transforms classes and state machines into C# and supports building an application.

A direction which benefits from the discussed approach is rapid prototyping. A fi-
nal application can cover control and time-related parts of a system functionality.
Detailed modeling of other system features can be cumbersome in an MDSD, and
therefore postponed to implementation in a programming language. Taking into
account verification purposes, the application can be treated as a conceptual prototype,
or an operational prototype for further code extension. Moreover, processing of call and
time events specified in state machines can be realized within a target application with a
satisfactory performance [16].
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