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Abstract. The Model-driven Engineering (MDE) is coming into focus
faster and faster nowadays because it can significantly simplify and accel-
erate the software development and maintenance processes. MDE can
efficiently reduce resource requirements not only in development, but
also in refactoring and maintenance tasks of complex software systems.
There are several tools to support MDE. Although, these tools can deal
with the average size of the currently applied domain models, the grow-
ing software systems can cause challenges in model manipulations. The
growing size of systems can result in such a slow computation which
cannot be accepted anymore. Therefore, more efficient model process-
ing methods are needed. We are working on a complex, high perfor-
mant model-transformation engine for MDE tools. Our solution can take
the advantage of parallel computation available for example in modern
GPUs. The engine is referred to as PaMMTE (Parallel Multiplatform
Model-transformation Engine). In earlier publications, the architecture
and functionality of our engine has been introduced and the functional
correctness has also been proven. In this paper, we introduce a new pat-
tern matching algorithm. The algorithm is truly parallel, it is scalable
and more efficient than the previous version. Moreover, we analyze the
current and the new pattern matching algorithms in general and the
performance gain achieved. The new pattern matching algorithm can
be effectively used not only in PAMMTE, but in any other cases, when
high-performant pattern matching computation is required.

Keywords: PaMMTE - High-performant computation - Model-
transformation - OpenCL framework * Software architecture - C++

1 Introduction

The Model-driven engineering (MDE) can efficiently simplify the software devel-
opment which causes the sudden spreading of its usage in the software industry.
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MDE works with models, which are not only created for presentation purposes
anymore, but transformed, processed and often used directly or indirectly as
the basis of the code generation. Therefore, it is an important and challenging
part of MDE to find and apply efficient model-transformation methods. Several
techniques exist; the graph rewriting-based transformation (referred as a graph
transformation) is one of the most popular among them. Graph transformation
is based on an NP complete problem (subgraph isomorphism) and may need seri-
ous amount of time depending on the size of the input model and the pattern
to search for.

Motivated by the increasing requests for high performant model transfor-
mation engines, we analyzed the capability of existing tools. There are many
studies and surveys (e.g. [1]) that collect and classify the model transforma-
tion tools, like GREAT, IncQuery or MOLA. While all of them are efficient
and flexible to some extent, none of them is capable of using GPU-based par-
allel execution. We have decided to fill up this gap and create a new model-
transformation engine supporting both usual features of model transformation
and efficient GPU-based parallelism. The engine is referred to as PaMMTE (Par-
allel Multiplatform Model-transformation Engine). The core algorithm of a graph
transformation engine lies in the pattern matching, this is the most computa-
tion intensive part. Therefore, currently we are focusing on this part. We have
analyzed the working mechanism of our original matching algorithm and the
architectural structure of GPUs. We have found that our original solution is
not GPU-specific enough, although it has several steps applicable in parallel, we
are still heavily relying on the CPU-based computation, which is the bottleneck
from the performance’s point of view. Therefore, we have created a completely
new algorithm, which fits much more in the GPU-based world. In this paper, we
present this new, truly parallel algorithm. Besides the details of the algorithm,
we also present a short comparison of the original and the new algorithms.

The rest of the paper is organized as follows: In Sect. 2, the base conceptions
are introduced which were assumed during the creation of the engine. In Sect. 3,
for the sake of simplicity, a short overview is given about the base architecture
of PAMMTE focusing on the part which is modified. In Sect. 4, main novelty of
the current paper can be found in details. In Sect. 5, our theoretical conception
is validated by measurements applied in a case study. In Sect. 6, we conclude
and give some directions for the possible future research.

2 Related Work

On the market, numerous kinds of GPUs and other hardware elements can be
found which have the ability to apply highly-parallel computation. Using a ven-
dor or model-specific language and framework would need a tremendous effort
and each user would need to provide the proper environment according to the
available hardware. To avoid this, the OpenCL framework has been released in
2009. OpenCL is a platform independent framework which can be applied to
handle the most widely used hardware uniformly (CPU, GPU, FPGA, DSP).
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OpenCL is an interface defined by Khronos Group [10]. Each product vendor
has its own implementation. In addition to move the computation into OpenCL
devices, the computation capacity of the primary hardware (CPU) is less used
producing thus a more balanced system in general.

At the beginning of our research, it was the one of center questions to be
examined whether the usage of the OpenCL framework can be as good as using
any other hardware specific environment. We studied this point carefully and
also searched in the literature for other’s results. In [8], we compared and evalu-
ated several GPGPU-based solutions, OpenCL-based libraries and applications.
Papers, like [6] pointed out that OpenCL framework can be effectively used in
our research too and there are lots of optimization points which are probably
different in case of variant hardware. It indicated us to collect the optimiza-
tion opportunities. There are further examples in [5], which gives details how
important the graph processing components are. [5] also focuses on mapping
algorithms between the host and the GPU devices which is a big challenge in
the effective usage of GPUs. They mapped 12 graph applications into the GPU
device, studied the performance and suggested several approaches to accelerate
the performance of the GPU-based algorithms.

There are further new studies which have influenced our current research: In
[2], the k-Nearest Neighbor algorithm is implemented using OpenCL and CUDA.
There is a big difference between the two implementations, the most emphasized
is that CUDA is strongly hardware-dependent, while the OpenCL framework can
be used on many hardware platforms. There are several measurements and com-
parisons between devices with a single CPU and devices with a CPU and a GPU.
Furthermore, there is also a comparison between OpenCL and CUDA: in some
measurements OpenCL seems to be perform better, but not in all cases. The
thesis [3] compares several hardware and software solutions. One of the main
reasons of the rapid spreading of highly-parallel computation (and the growing
number of the computation units) is the expensive computation requirements
in computer games. [3] gives an overview and compares not only the main com-
petitors of the OpenCL framework (e.g. CUDA), and it also presents a wide
benchmark. It highlights several solutions for parallel computation (e.g.: CUDA,
OpenGL, DirectX, OpenMP). [4] provides the usage of the OpenCL with some
C++ and STL related features (meta-programming) as part of the official Boost
library. This part of the Boost library can also be used as a thin wrapper.

Taking all advantages (e.g. platform independence) and possible disadvan-
tages (e.g. performance loss) into account finally we have decided to build our
engine based on OpenCL. Because of the importance of performance, we use the
OpenCL interface directly (not through a high level wrapper) and fine tune the
performance keeping in mind that our final goal is to create a high-performant
model transformation engine.

3 Architecture of PaMMTE

The architecture and working mechanisms of PAMMTE are complex. In [7], we
elaborated them in details, however, in this paper, we give only a short overview,
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since the focus is on the new matching algorithm. The architecture of PAMMTE
can be divided into three layers (Fig.1):

(i) Model-transformation Logic Layer (MTLogic Layer): The model-
transformation process is split up into three main model-transformation steps,
all of them are implemented in the highest layer. Input model is read, processed
and the output is also evaluated in the this layer. The three main steps of the
model-transformation logic are the followings in the order of the first calls: pat-
tern matching (PatternMatcher package), attribute processing (AttributeProces-
sor package) and finally the rewriting of the graph (ReWriter package). Note
that: between the packages, in the highest layer, the model-transformation data
(MTData) is passed again and again. MTData contains the processed input
domain model, the pattern to be found and the results of the actual steps.

(ii) Model-transformation Library Layer (MTLib Layer): The middle
layer contains the concrete pattern matching, attribute processing and model-
rewriting algorithms which manage the core computations based on the OclAc-
cessing Layer. Pattern-matching algorithm searches only for topological match-
ing by using the symbol of the nodes in the input graph created from the input
domain model. This is later extended and re-checked by the attribute process-
ing step, where we check the attributes of the given nodes as well. The focus
of the current study is the pattern-matching part of the engine. In MTLib, we
introduced a common interface for pattern matching, attribute processing and
model rewriting algorithms, thus each of them can be easily exchanged.

(iii) OclAccessing Layer: The lowest layer is a kind of abstraction layer. Other
layers have no information about the type and the number of the currently used
OpenCL devices, all of these are hidden from higher layers. Each OpenCL-based
computation is managed via a general context provided by the OclAccessing
Layer.

The presented architecture has several advantages: (i) The domain-
related logic is implemented only on the highest level separated from the core
algorithms (which are in the middle layer). Adding new model-transformation
steps and changes in the hard coded configuration can be managed safely and
easily. (ii) The core algorithms can be exchanged using a common interface and it
can be replaced at run-time too. (iii) There is no hardware dependency, because
the OclAccessing Layer provides a general context to the computation libraries.
(iv) Implementation of the main interface of the modelPocessing package allows
us to easily use new domain models. To achieve high-performant computation
only C++14 is used in the implementation of PaMMTE and the only 3rd party
dependency is the Boost library. To configure the engine, an XML file must be
used following a predefined schema. The main development environment is the
MS Visual Studio 2015 C++. During the development, we used elements from
the Test-Driven Development (TDD) methodology to prove the correct function-
ality of the engine. In this paper, we focus on the improvement of the pattern-
Matching package in order to create a generally usable truly pattern matching
algorithm. We also compared two pattern matching solutions for OpenCL devices
in [8]. In that research, we used the advantages of run-time information during
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Fig. 1. The base architecture (packages) of PaMMTE.

building the kernel code. Now, the main goal is to achieve a truly parallel pattern
matching to increase the performance of the whole model-transformation.

4 Towards the Truly Parallel Pattern Matching
Algorithm

In [8], we introduced the importance of pattern matching algorithms and pointed
out some open issues in pattern matching to be solved later. Since then, we
managed to create a truly parallel pattern matching computation in our engine
which is the main contribution of this paper. The main steps of both the old
and the new algorithms are listed, as well as, the most important commonalities
and differences.

4.1 Properties and Issues of the Old Algorithm

In the old algorithm, the OpenCL kernel was executed several times when result
buffer overflow has occurred. We defined formulas to calculate the optimal size
of the output result buffer and also designed and implemented a strategy, when
the buffer is rarely used. The number of the threads equals to the number of
the nodes in the input graph to be processed (each thread processes exactly
one node). In case of buffer overflow, only those elements are re-used, which
were not processed before, when the kernel is executed again. Avoiding to avoid
processing one node two times does not significantly saves any time, because
other threads must be waited. Although, in some cases, one node can have only
a few neighbors, which results in a fast computation for those threads, there
can be other threads with lots of neighbors. The kernel computation cannot be
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finished from the viewpoint of the host until each thread has finished the task
assigned to it.

As it can be seen, the old algorithm works with parallel threads, but not in an
efficient way. In some cases, only a few threads work. Another viewpoint is that,
each thread has a complex inner state. The state has to store the parent node,
the currently processed neighbor number, the deepest level, which means how
far the actual node is from the pivot point and so on. In the current paper, we
use the term of candidate multiple times with the following meaning: candidate
1s part of the input graph which is supposed to match to a part of the pattern.
Moreover, if the size of the candidate equals to the size of the pattern and they
are still matching, the candidate is already a matching result. Each thread tries
to create a small candidate at the beginning and checks whether that candidate
is matching or not. If the candidate is matching the thread takes a new neighbor
to extend the size of the actual candidate and checks again the matching state.
This process is applied until then the size of the matching candidate equals to
the size of the pattern. To find results, in the implementation of the first kernel,
there are two nested state machines (the first digs deeper in the graph while the
second finds each neighbors at current level) and two function calls (to validate
the candidate) which are not the best way to achieve optimal performance for
a data oriented computation model such as used in OpenCL. In short, the old
algorithm was executed semi-parallel.

4.2 The New Pattern Matching Algorithm

Overview of the New Pattern Matching. To evaluate the matching algo-
rithm truly in parallel and avoid buffer size estimation, we created a new kernel
source code. There are some lower (hardware) level assumptions which are con-
sidered in order to achieve the truly parallel functionality and increase perfor-
mance: (i) Compare two numbers is fast on hardware level (in general, hardware
computation units use gates instead of bit evaluation one-by-one to compare
two numbers). (ii) The memory allocation is fast both on the host and on
the OpenCL side. However, on host side, handling of memory fragmentation
is required because of the big amount of data processed. The new approach is
illustrated in Fig. 2. To find all results, the kernel is executed several times (two
executions in this particular case). We use four buffers, but only these buffers
are changed during the computation. Others, graph or pattern related buffers do
not change during matching. The four buffers are the followings: (i) FH1 - first
helper buffer, (ii) FB1 - first result candidate buffer, (iii) SB2 - second candidate
buffer, (iv) SH2 - second helper buffer. The role of the buffers is explained later.

Behaviour of the New Pattern Matching. Since in the general case, the
kernel is executed several times, let us suppose that the current loop number is
N (kernel is already executed N-1 times successfully). Now, the following steps
evaluated:
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Fig. 2. Buffers in the new algorithm.

(i) Determine the size of the FH1 and FB1 buffers: We store the data
of M candidates here. The length of the candidates is N, the size of the first-
CandidateBuffer (FB1) is N*M. The values of the elements of FirstHelperBuffer
(FH1) denote how many new neighbor each candidate can have. Since, we need
only one value for each candidate, the size of FH1 is M.

(ii) Determine the size of the SB2 and SH2 buffers: As far as FH1 is
cumulated on the host, let C refer to the last value of the last element of the
cumulated helper buffer (FH1). In this case, the size of the secondCandidate-
Buffer (SB2) is C*(N +1). The meaning of secondHelperBuffer (SH2) is similar
to that in the previous case: it shows how many new neighbors the candidates
have. The size of SH2 is C size is C.

(iii) Copy candidates from the FB1 to the SB2: Each thread is responsible
for exactly one candidate. The thread copies that candidate and adds the new
neighbor. The thread checks whether the filled up candidate matches. If yes, it
computes the number of the possible new neighbors and stores the number of
neighbors in SH2.

(iv) Change the pointers on the host side: On the host side, the pointers of
the FB1 and the SB2 are exchanged. Similarly, the SH2 is replaced with the FH1.
(v) Prepare the new result buffers: The first helper buffer is read from the
global memory of the OpenCL device and cumulated on the host side. Based
on the accumulation, we re-calculate the sizes of SB2 and SH2, moreover, the
number of the threads received from the result of the cumulating are also recal-
culated. The SB2 and the SH2 are freed and new arrays are allocated with empty
content.

Details About the New Pattern Matching. The kernel binary always works
on the four buffers, it reads FH1 and FB1 and writes SH2 and SB2. The host
manages two important steps before calling the kernel. Firstly, it cumulates the
numbers in the first helper buffer, then it swaps the pointers of the first and
second buffers. The kernel always works from the first buffers and saves the
result to the second buffers: (i) The kernel copies the candidates from the first
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Table 1. Average time values of several measurements are collected (only for the
pattern matching).

Platform Intel (time) | Nvidia (time)
New OpenCL Kernel 112 132

Old OpenCL Kernel 15761 15788

Host version of the old one | 1264

buffer to the second buffer and adds to the new neighbor using the helper buffer
and the thread id (each thread uses the same formula to find the place of the
old and the new neighbor candidate). The number of the threads equals to the
number of new candidates. Each new thread knows its base candidate and copies
the candidate from the first buffer to the second buffer (each thread copies the
same number of elements). (ii) The thread knows which neighbor must be taken
from the input graph to the new empty place. (iii) The thread verifies whether
the new candidate is matching according to the pattern. In case of mismatching,
the thread sets that the number of possible new neighbors to zero. If the new
candidate is matching, the thread adds how many new neighbors must be checked
in the next loop. Finally, the new candidate buffer is created.

5 Case Study

To test and evaluate the performance gain of the new algorithm, we measured
the computation time in a case study. We selected the Internet Movie DataBase
(IMDD) [9] as the target domain. IMDDb is the largest film and TV show related
database which is publicly available. It has approximately 3.3 million titles and
6.5 million personalities (actors, directors, etc.). IMDB contains information on
several domain concepts, like movies (subtitle, creation time, and rate), actors
(with movies they played in) and producers (with their movies). A simple exam-
ple for a pattern to be searched is: “Three actors playing in the same movie.
The movie has an attribute showing that the mowvie is made in the USA. Fur-
thermore, the first name of the director is Jack and at least one actress (besides
the three actors) must play in the same movie.”. As far as the first logical step of
the model-transformation works only with the symbols of the nodes, the other
part of the rewriting rules are not considered now. Similarly, only the pattern
matching part is measured in the current case study.

The test environment used in the case study is a simple notebook with the
following configuration: Intel Core i7 HD Graphic 5500 and Nvidia Geforce GTX
950M with a Windows 10. In Table 1, the results are collected. Note that the
results are the average of ten measurements. In this case study, we measured and
compared three pattern matching algorithms: (i) the old algorithm, (ii) the old
version executed on the host (CPU) and (iii) the new algorithm. Although, we do
not intend to compare two different kinds of architectures/technologies, it also
can be seen that even a relatively week GPU can result in faster computation
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Fig. 3. Time results in case of different input models.

that a strong CPU. Among the algorithms, the first one uses the smallest input
data and the simplest pattern. The last one uses the biggest input data and the
most complex pattern.

In Fig. 3 the time of the execution is compared for the old and the new algo-
rithms in case of different input domain models (the pattern to be searched is
not changed). In case of the old algorithm, the computation time is directly pro-
portional to the size of the input domain model. Bigger and more complex input
graphs require more time to find each matching, because of the complex inner
state machines and growing complexity. In contrast, the new algorithm is com-
pleted almost in the same time at each measurement. The reason of the almost
constant time is the truly parallel behaviour of the new algorithm. However, it is
suspicious that a remarkable portion of the time is caused by the constant time
required by preprocessing steps (e.g. memory copy) and thus the real calculation
needs increasing amount of time. We need a series of measurements in order to
examine this question in detail. Note that this behavior does not change the fact
that the new algorithm is several orders of magnitude faster than the old one.

6 Conclusion

The MDE approach is gaining more and more interest nowadays as we have to
deal with bigger and bigger software systems. There are several tools to sup-
port model-based development however, existing tools does not support par-
allel execution natively. Our aim is to solve this issue. We have created an
engine for model-transformation which is based on a new approach to achieve
high-performant multiplatform computation. The base and the novelty of our
engine is the usage of the OpenCL framework to significantly accelerate model-
transformation. Pattern matching is one of the most important parts of a model-
transformation engine. In the current research, we improved the pattern match-
ing part of PAaMMTE. The solution is presented, analyzed and validated by
measurements using a case study. Other model-transformation steps like the
attribute processing and the model rewriting are not changed in this paper.
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By changing the pattern-matching algorithm, we could achieve a truly parallel
model-transformation engine, which is deployed in PaMMTE, but it can also be
used in any other similar cases. In the future, we are going to search for further
case studies and to test the solution with other platforms to ensure that our
solution works well with most of the OpenCL devices. Furthermore, we must
study the advantages and the disadvantages of the algorithms.
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