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Abstract. In this paper we continue our efforts to evaluate matrix clustering
algorithms. In our previous study we presented a test environment and results of
preliminary experiments with the “separate” strategy for vertical partitioning.
This strategy assigns a separate vertical partition for every cluster found by the
algorithm, including inter-submatrix attribute group. In this paper we introduce
two other strategies: the “replicate” strategy, which replicates inter-submatrix
attributes to every cluster and the “retain” strategy, which assigns inter-submatrix
attributes to their original clusters. We experimentally evaluate all strategies in a
disk-based environment using the standard TPC-H workload and the PostgreSQL
DBMS. We start with the study of record reconstruction methods in the Post‐
greSQL DBMS. Then, we apply partitioning strategies to three matrix clustering
algorithms and evaluate both query performance and storage overhead of the
resulting partitions. Finally, we compare the resulting partitioning schemes with
the ideal partitioning scenario.

Keywords: Database tuning · Vertical partitioning · Experimentation · Matrix
clustering · Fragmentation · TPC-H · PostgreSQL

1 Introduction

The vertical partitioning problem [4] is one of the oldest problems in the database
domain. There are dozens or even hundreds of studies available on the subject. It is a
subproblem of the general database physical structure selection problem. It can be
described as follows [8]: find a configuration (a set of vertical fragments) which would
satisfy the given constraints and provide the best performance. There are two major
classes of approaches to this problem:

– Cost-based approach [2, 15, 20, 32]. Studies that follow this approach construct a
cost model which is used to predict the performance of a workload for any given
configuration. Next, an algorithm enumerating the configuration space is used.

– Procedural approach [28, 31, 34]. These studies do not use the notion of configuration
cost. Instead, they propose some kind of a procedure which will result in a “good”
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configuration. Usually, these studies provide some intuitive explanation why the
ensuing configuration would be “good”.

The abundance of studies is justified by the following considerations:

– It was proved that the problem of vertical partitioning is an NP-hard problem [3, 28,
36], just like many other physical design problems [5, 21, 36].

– Estimation errors related to both the system parameters and workload parameters.
System parameters (hardware and software) in some cases cannot be measured
precisely. Workload parameters can also be imprecise, e.g. not all queries are known
in advance, or some of the known queries are not run. All these errors can cause the
performance of the solution to deteriorate.

The procedural approach was very popular in the ’80s and ’90s due to the lack of
computational resources. Nowadays, the interest for it has largely declined, and the
majority of contemporary studies follows the cost-based one. This approach produces
more accurate recommendations by incorporating additional information into the selec‐
tion process. However, procedural approach has a number of promising applications:

– Dynamization of vertical partitioning [23, 27, 33, 35]. All of the previous vertical
partitioning studies considered the problem in a static context, i.e. a configuration is
selected once. In case of changes in the workload or the data the algorithm has to be
re-run. In the new formulation the goal is to adapt the partitioning scheme to a
constantly changing workload. The straightforward technique of the repeated re-run
of a cost-based algorithm is not applicable due to its formidable costs of operation.
Otherwise, its application will result in query processing stalls which should be
avoided at all costs in this formulation. However, the procedural approach is not so
computationally demanding as the cost-based one. Thus, low-quality solutions are
acceptable as long as they provide improvement over the previous configuration and
help us avoid query processing stalls.

– Big data applications or any other cases featuring constrained resources.
– Tuning of multistores [26] or any other case when no details or only inaccurate esti‐

mates of physical parameters are known. It was already noted in the ’80s [30] that
the procedural approach is well-suited for such cases. A multistore system is a data‐
base system which consists of several distinct data stores, e.g. a Hadoop HDFS and
an RDBMS. This kind of a system is a modern example of the case where not every
physical parameter of underlying data stores is known.

This paper is an extended version of the paper [17]. In our previous study we
presented a test environment and results of preliminary experiments with “separate”
strategy for vertical partitioning. This strategy assigns a separate vertical partition for
every cluster found by the algorithm, including the inter-submatrix attribute group. The
preliminary results showed little to no performance improvement with this strategy for
all three algorithms for in-memory environment.

In this paper we continue our study of matrix clustering algorithms. This time we
consider a disk-based environment. Firstly, we try to improve record reconstruction
times via several approaches. Next, we introduce two strategies:
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– A “replicate” strategy, which replicates inter-submatrix attributes to every cluster.
– A “retain” strategy, which assigns inter-submatrix attributes to their original clusters.

We study these strategies and compare them with the “separate” strategy and the
unpartitioned case. We evaluate all strategies in terms of query performance and storage
overhead. Finally, we compare the resulting partitioning schemes with the ideal parti‐
tioning scenario, where each query gets a specially-tuned fragment.

2 Related Work

2.1 Classification

The vertical partitioning problem is one of the oldest problems in the database domain.
There are several dozens of studies on this topic, and most of them concern various
algorithms. Several surveys can be found in [13, 14]. Vertical partitioning algorithms
can be classified into two major groups: cost-based and procedural, where the latter
employs three types of approaches:

– Attribute affinity and matrix clustering approaches [9, 10, 12, 18, 22]. In affinity-
based approaches, closeness between every two attributes is first calculated, and then
it is used to define the borders of the resulting fragments. This closeness is called
attribute affinity. At the first step a workload is used to create an AUM, then an
Attribute Affinity Matrix (AAM) is constructed using a paper-specific transformation
procedure. Finally, a row and column permutation algorithm is applied. Matrix clus‐
tering approaches operate on the AUM and start with the permutation part.

– Graph approaches [11, 16, 28, 31, 38]. Most of the graph approaches treat the AAM
as an adjacency matrix of an undirected weighted graph. In this graph nodes denote
attributes and edges represent a bounds strength. Then a template is sought by various
means, e.g. kruskal-like algorithms or hamiltonian way cut. The resulting templates
are used to construct partitions.

– Data mining approaches [7, 19, 34]. This is a relatively new vertical partitioning
technique that uses association rules to derive vertical fragments. Most of these works
mine a workload (a transaction set) for rules which use sets of attributes as items. In
these studies, existing algorithms for association rule search are used to uncover
relations between attributes. In particular, an adapted Apriori [1] algorithm is a very
popular choice.

Let us review the matrix clustering approach in detail.

2.2 Matrix Clustering Approach

The general scheme of this approach is the following:

– Construct an Attribute Usage Matrix (AUM) from the workload. The matrix is
constructed as follows:
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Mij =

{
1, query i uses attribute j

0, otherwise

– Cluster the AUM by permuting its rows and columns to obtain a block diagonal
matrix.

– Extract these blocks and use them to define the resulting partitions.

Some approaches do not operate on a 0–1 matrix. Instead they modify matrix values
to account for additional information like query frequency, attribute size and so on. Let
us consider an example. Suppose that we have six queries accessing six attributes:

The next step is the creation of an AUM using this workload. The resulting matrix
is shown in Fig. 1a. Having applied a matrix clustering algorithm, we acquire the reor‐
dered AUM (Fig. 1b). The resulting fragments are the following: (a, b), (b, f), (d, e).

Fig. 1. Matrix clustering algorithm

However, not all matrices are fully decomposable. Consider the matrix presented in
Fig. 2. The first column obstructs the perfect decomposition into several clusters. In this
case, the algorithm should produce a decomposition which would minimally harm query
processing and would result in an overall performance improvement. Matrix clustering
algorithms employ different strategies to select such a decomposition.

Fig. 2. Non-decomposable matrix
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2.3 Matrix Clustering Algorithms

The first study to introduce matrix clustering to vertical partitioning was the work of
Hoffer [22]. The idea is to store together (in one file) attributes possessing identical
retrieval patterns. The patterns are expressed through the notion of attribute cohesion,
which shows how attributes in a pair are related to each other. The author proposes a
pairwise attribute similarity measure to capture this cohesion.

The proposed measure relies on three parameters: co-access frequency of a pair of
attributes, attribute length and relative importance of the query. This measure was
designed having the following properties in mind: it is non-decreasing by co-access
frequency, non-decreasing by both attribute lengths (individually) and the function is
non-increasing in the combined length of attributes.

Finally, having an attribute affinity matrix, an existing clustering algorithm (Bond
Energy Algorithm, BEA) [29] is used. It permutes rows and columns to maximize
nearest neighbor bond strengths. The author was motivated in his choice by the
following: this algorithm is insensitive to the order in which items are presented; it has
a low computation time, etc. However, this algorithm has a disadvantage: it requires
human attention for cluster selection.

BEA is not the only existing matrix clustering algorithm. Another permutation algo‐
rithm was proposed in the reference [37]. Similarly to BEA, it permutes rows and
columns, but tries to minimize the spanning path of the graph represented by the original
matrix. The improvement of these two algorithms is presented in the reference [6]. This
algorithm is called the matching algorithm and it uses Hamming distance to produce
clusters. According to [9], the study [24] presents the Rank Order algorithm. Its idea is
to sort rows and columns of the original matrix in descending order of their binary
weight. The Cluster Identification (CI) algorithm by Kusiak and Chow [25] is an algo‐
rithm for clustering 0–1 matrices. The proposed approach is to detect clusters one by
one using a special procedure. This procedure resembles the search of a transitive closure
for rows and columns. It is an optimal algorithm that can solve the problem when the
matrix is perfectly separable, e.g. when clusters do not intersect (there is no attribute
sharing).

All of the aforementioned algorithms (except BEA) are generic matrix clustering
algorithms. They do not address the vertical partitioning problem and do not even bear
any database specifics. The next studies by Chun-Hung Cheng [9, 10, 12] attempt to
apply matrix clustering approach to the database domain. Several new vertical parti‐
tioning algorithms were developed in his works. Let us consider them.

Chun-Hung Cheng criticizes existing matrix clustering algorithms [9, 10]:

– They do not always produce a solution matrix in a diagonal submatrix structure. Thus,
these algorithms may require additional computation to extract them;

– These algorithms may require decision of database administrator to identify inter‐
submatrix attributes [9].

The first study [9] extends the original CI [25] algorithm to non-decomposable
matrices. The proposed approach is to remove columns obstructing the decomposition
(inter-submatrix attributes).
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The author considered the following problem formulation P1 [9]: remove columns
to decompose a matrix into separable submatrices with the maximum number of “1”
entries retained in submatrices subject to the following constraints:

– C1: A submatrix must contain at least one row;
– C2: The number of rows in a submatrix cannot exceed upper limit, b;
– C3: A submatrix must contain at least one column.

To solve the problem, the branch and bound approach was used. This approach uses
an objective function which maximizes the number of “1” entries in the resulting sub-
matrices. During the tree traversal, upper and lower bounds are calculated and used to
guide the enumeration process.

However, the basic approach required traversal of too many nodes, so the author
augmented it with the following heuristic. A so-called blocking measure is calculated
for each column. It estimates the likelihood of a column being an obstacle to the further
decomposition of the matrix. Basically, it is the number of columns that would be
involved in all queries which use the given attribute. Next, the columns are ordered by
their respective values and the ones with the highest values are checked.

The study [10] also extends the original CI algorithm. The author adopts the same
branch and bound approach as in his previous paper [9]. However, instead of the
blocking measure a new void measure is developed. It has the same purpose, which
is the estimation of the likelihood of a column being an inter-submatrix column. Essen‐
tially, this measure is the calculated “free space” to the left and to the right of the candi‐
date cluster.

The next study of the author [12] addresses several shortcomings of his previous
works:

– The problem of the parameter b. While this parameter helps prevent the formation
of the huge clusters, it does not guarantee any quality of the resulting clusters. Also,
the problem will have to be reformulated if several clusters of different sizes are
needed.

– The dangling transaction problem. Applying the previous algorithm [10] a transaction
not belonging to any cluster may be acquired: all of its attributes would be removed.
Two examples are presented in the original paper.

– The previous work did not include such an important parameter as the access
frequency of the transactions.

Thus, a new formulation P3 is proposed [12]: remove a minimal number of “1”
entries to decompose a transaction-attribute access matrix into separable submatrices
subject to the following constraints:

– C7: Transactions with all “0” entries in a submatrix are not allowed.
– C8: Attributes with all “0” entries in a submatrix are not allowed.
– C9: The cohesion measure of a submatrix is more than or equal to a threshold, δ.

Cohesion measure of a submatrix is the ratio of “1” elements to “0” elements. This
new measure is used to ensure the quality of a cluster.
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The problem is also solved with the branch and bound approach, again, the void
measure is used to guide the order of node traversal.

Furthermore, in this work the author shows why dangling transactions should be
avoided: an example is provided showing a case where it is possible to lose information
regarding a cluster. Finally, the author extended his CI framework to consider query
frequencies. This P4 formulation is the same as P3, but features a weighted sum of

accesses [12]: minimize the loss of total accesses 
(∑

i

∑
j

aij ∗ freqi

)
 due to the removal

of aij for decomposing a transaction-attribute matrix into separable submatrices subject
to the same constraints C7–C9. In this paper we study the approaches described in the
references [9, 10, 12].

3 System Architecture

We have developed a program for experimental evaluation of the considered algorithms.
Its architecture is presented on Fig. 3. It consists of the following modules:

– The parser reads the workload from a file. It extracts the queries and passes them to
the executor, so that their execution times can be measured. It also constructs the
AUM, which serves as input for the selected algorithm.

– The algorithm identifies clusters and passes that information to the partitioner to
create corresponding temporary tables.

– The query rewriter also receives this information. It replaces the name of the original
table with the ones that were generated by the partitioner. It can handle subqueries;
view support is not implemented yet.

– The partitioner generates new names and sends partitioning commands to the data‐
base. The exact commands are SELECT INTO and ALTER TABLE. The latter lets
it transfer primary keys.

– The executor accepts queries and sends them to PostgreSQL to measure the time of
execution.

Fig. 3. The architecture of our approach
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4 Experiments

4.1 A Brief Summary of Previous Findings

In our previous paper [17] we have implemented three recent matrix clustering algorithms
[9, 10, 12] (A94, A95, A09) and used PostgreSQL DBMS to evaluate them. Our experi‐
ments were conducted using the standard benchmark—TPC-H with scale factor 1. The
database was placed in the main memory of the machine. To accomplish this, the Post‐
greSQL data directory was put on a tmpfs partition, created with standard GNU/Linux util‐
ities. We have employed a “separate” strategy for vertical partitioning. This strategy assigns
a separate vertical partition for every cluster found by the algorithm, including inter-subma‐
trix attribute group.

Experiments showed that all of the considered algorithms perform poorly in this
environment, often yielding partitioning schemes worse than the original one.

4.2 Experimental Plan

In this paper we try to analyze the reasons for this outcome. The plan of this study is the
following:

1. First of all, we changed the environment from the main memory to the disk-based
one. It is used for all of the experiments described in this paper.

2. Then, we performed the evaluation of record reconstruction methods of PostgreSQL.
We try different methods to speed-up or to completely avoid record reconstruction
expenses. Eventually, we select the best record reconstruction method and use it
throughout the rest of the paper.

3. Next, we introduce two new partition generation strategies called “replicate” and
“retain”. We compare them with each other, with the original non-partitioned con-
figuration and the “separate” strategy employed in our previous work.

4. Finally, we compare our strategies with the ideal partitioning scenario, where each
query gets a specially-tuned fragment.

4.3 Data and Query Setup

We decided to stick to the original data setup to support the reproducibility of results.
However, we were unable to keep the original data, because we have changed the scale
factor from 1 to 10.

Like in our previous work we have chosen the LINEITEM and PART tables for the
evaluation. Based on these tables we have formulated the following query setups:

– Query Setup 1 (QS1): Q1, Q6, Q14, Q19;
– Query Setup 2 (QS2): Q6, Q14, Q19;
– Query Setup 3 (QS3): Q6, Q14.
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It is important to note that only queries Q14 and Q19 involve join of the LINEITEM
and PART tables. Queries Q1 and Q6 contain only filtering predicates and aggregate
functions on the LINEITEM table.

4.4 Hardware and Software Setups, Measurements

In our experiments we have used the following setup (almost the same as in our previous
study):

– PostgreSQL 9.6.1,
– Funtoo Linux (kernel 4.8.4),
– Intel Core i7-3630QM (4 physical cores, hyper-threading enabled),
– 8 GB (DDR3) RAM,
– GCC 4.9.3.

All numbers presented in this paper are averages over five runs. During evaluation
we noticed hot cache effects: the difference between the first and the fifth run may be
about 3–5 times. Thus, to negate these effects we restarted PostgreSQL and dropped OS
caches for each query. This way we obtained stable, almost equal to each other results
for each value in a series of measurements.

4.5 Disk-Based Setup Re-run

All six scenarios from our previous study were re-run in the disk-based environment. It
is important to note that we benchmarked the same partitioning schemes, because the
algorithm does not depend on the environment-related (physical) parameters.

The benchmarking results were essentially the same, the partitioned scheme was
worse than the non-partitioned one in terms of query performance. The overall perform‐
ance of a query batch degraded 2–3 times, depending on the scenario. Due to the space
constraints we will not present all of the scenarios. However, we will closely study
scenario 1 in the “New Fragmentation Strategies” section.

4.6 Record Reconstruction Study

During the re-run we found out that the major performance hit was the join cost. Thus,
we tried to improve the efficiency of record reconstruction. We have considered the
following techniques:

1. Default, where we just rewrite queries with joins.
2. Sequential scan, where we forced sequential scan for reading table data.
3. Index scan, where we made PostgreSQL use the index on join attributes for query

processing.

For our experiments we used only query Q1, because it does not have any joins with the
PART table in its execution plan. This way we will study the effects of just the reconstruc‐
tion joins. The results of our experiments are presented in Fig. 10. Here you can see that
default and sequential scan techniques are indistinguishable from each other. On the other
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hand, index scan performance is significantly worse than both of them. We examined the
query plan and noticed that the performance deterioration presents in both scan operators
and in the join operator. We also tried to use a clustered index, but performance was worse
than with an index scan. Thus, we decided to stick to sequential scan reconstruction tech‐
nique throughout the paper. Also, note the consistent behavior of these techniques for the
“replicate” strategy (we will describe it in the next subsection).

4.7 New Fragmentation Strategies

In our previous paper we studied the “separate” strategy, which assigns a separate
vertical partition for every cluster found by the algorithm, including inter-submatrix
attribute group. The author of these matrix clustering algorithms indicated several other
possible strategies to form vertical partitions. In this paper we are interested in the
following:

– A “replicate” strategy, which replicates inter-submatrix attributes to every cluster.
This strategy should eliminate all joins by introducing storage overhead. It should
also degrade the performance of insert and update queries, because of the need to
keep data synchronized.

– A “retain” strategy, which assigns inter-submatrix attributes to their original clusters.
This strategy is inherent only to algorithm A09, which removes accesses in the matrix.
The columns, access to which has been removed, are considered intersubmatrix and
must be handled appropriately. However, the clustering algorithm itself already
returns them as parts of some clusters. The point of this strategy is to keep them in
place.

In Fig. 4 you can see the performance of the A09 algorithm in the disk-based envi‐
ronment using strategies “separate”, “replicate” and “retain” for scenario 1. These
graphs are given along with the “original” (unpartitioned) variant. The corresponding
partitioning schemes can be found in our previous study.

The general conclusions for this experiment are the following: the configuration
generated by the “retain” strategy shows the worst performance, the configuration
generated by the “separate” strategy is still worse than the unpartitioned data. On the
other hand, the “replicate” strategy’s configuration performs significantly better than the
unpartitioned one. This behavior is explained by the record reconstruction expenses
which have to be performed using a relational join operation. These expenses signifi‐
cantly outweigh the benefits of the vertical partitioning.

However, the “replicate” strategy does not come without a price. Replication of
attributes increases the amount of data that needs to be stored. Thus, we decided to assess
storage overhead. Figure 5 presents the respective table sizes for all strategies, alongside
with the non-partitioned configuration for comparison. Each section of a bar column
marks the size of the LINEITEM table partition. Thus, “separate” strategy partitions
data into three pieces, while “retain” partitions into two. From this experiment we can
see that the “retain” and “replicate” strategies produce very little overhead, while “sepa‐
rate” strategy requires almost 1.5 times more space than the original scheme. Such
difference can be justified by the need to copy primary key to every partition (2 vs 3)
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and the fact that in LINEORDER the table primary key is a multi-attribute entity, which
is rather big. Probably, we could reduce the amount of required space by introducing
our own (smaller) primary key, solely for reconstruction.

Fig. 4. Strategies comparison, scenario 1 Fig. 5. Disk requirements, scenario 1

Fig. 6. Strategies comparison, scenario 6 Fig. 7. Disk requirements, scenario 6

Fig. 8. Ideal Performance Fig. 9. Ideal disk usage

Figure 6 contains the performance of the A95 algorithm in a disk-based environment
using strategies “separate” and “replicate” for scenario 6 (the strategy “ideal” is
discussed in the next section). These graphs are given alongside with the original variant,
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for the ease of comparison. Here we can also see that the “separate” strategy performs
worse than the unpartitioned variant, like in the in-memory case. The “replicate” strategy
is the winner in this scenario as well. The “retain” strategy is inapplicable to the A95
algorithm, so it is absent in this graph. Disk space requirements for this scenario are
presented in Fig. 7. Similarly to scenario 1, the “replicate” strategy requires less space
than the “separate” strategy, but still more than the unpartitioned setup.

We do not describe other scenarios because they do not illustrate anything new
compared to the ones considered in this subsection.

4.8 Comparison with Ideal Partitioning Scheme

The next questions of our study were “How good is the ‘replicate’ scheme? Can we do
better?”. To answer them we have introduced an ideal partitioning scenario, where each
query gets a fragment containing the minimum number of attributes.

We had re-run scenario 1 (algorithm A09) and compared the “replicate” strategy
with the ideal partitioning scenario. The results are presented in Figs. 8 and 9. As you
can see, the ideal scheme is about 10% better than the “replicate” strategy while
consuming almost twice as much space. This improvement comes from the costs of Q14.
Thus, “replicate” strategy is quite efficient.

There is a similar picture with scenario 6 (algorithm A95) presented in Figs. 6 and 7.
This time the ideal scheme is 24% better than the “replicate” strategy with the same storage
overhead. The major sources of improvement are queries Q6 (almost two times) and Q14
(about 1.5 times).

Fig. 10. Record reconstruction

4.9 Conclusions

This is the continuation of our previous study [17] of the matrix clustering algorithms.
In this paper we analyze the reasons for the negative outcome of our previous work and
explore alternative vertical partition generation strategies. To achieve better under‐
standing of the subject we switched to disk-based configuration, as opposed to in-
memory one used in our previous work.
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Our experiments showed that PostgreSQL encounters performance problems while
reconstructing vertically partitioned records. We had to use relational join operation and
we were unable to speed-up it by using regular and clustered indexes.

Next, we found out that the “separate” strategy, which was the only one strategy
used in our previous study and which produced partitions that were consistently worse
than the unpartitioned schema, behaved the same way in the disk-based environment.
Moreover, we demonstrated that in terms of disk space required for the partitioning, this
strategy is also very expensive.

On the other hand, the performance of the schemes generated by the new strategy
“replicate” were significantly (20%–50% depending on a case) better than the unparti‐
tioned schema. Storage overhead was about 20% that of the unpartitioned case. The other
strategy – “retain” generated schemes which performed worse than generated by the
“separate” strategy (thus being the worst strategy), while requiring only 10% more
storage than in unpartitioned case.

We also compared the “replicate” strategy with the ideal partitioning scheme, where
each query receives a specially-tailored minimal partition. To our surprise, the quality
of “replicate” strategy schemes was quite close to the ideal one. Meanwhile, the storage
overhead of the ideal scheme was almost 2.5 times that of the unpartitioned one and the
one generated by “replicate” was only 1.2.

We can conclude with the following:

– The “replicate” strategy generates near ideal schemes, but with the reasonable storage
overhead. These schemes provide significant improvement over unpartitioned case
for read-only workloads.

– Implementing vertical partitioning one should avoid record reconstruction or should
try to implement it without using costly relational join operation.
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