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Abstract For the last two decades, brain-computer interface (BCI) research has
worked towards practical and useful applications for communication and control.
Yet, many BCI communication approaches suffer from unnatural interaction or time-
consuming user training. As continuous speech provides a very natural communica-
tion approach, it has been a long standing question whether it is possible to develop
BClIs that perform speech recognition from cortical activity. Imagined speech as a
BCI paradigm for locked-in patients would mean a large improvement in communi-
cation speed and usability without the need for cumbersome spelling using individual
letters. We showed for the first time that automatic speech recognition from neural
signals is possible. Here, we evaluate the feasibility of speech recognition from
neural signals using only temporal offsets associated with speech production and
omitting information from speech perception. This analysis provides first insights
into the potential usage of imagined speech processes for speech recognition, for
which no perceptive activity is present.
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1 Introduction

Previous neuroscientific studies provided evidence for neural representations of
speech, such as phones and phonetic features during speech perception [3, 9, 12].
Other studies classified [1, 8, 10] or investigated the production [4, 18] of limited
sets of phones, syllables, and words. A complete set of manually labeled phones was
classified in single word production in [13]. However, it was unclear whether the
brain encodes a complete repertoire of phonetic representations during the produc-
tion of continuous speech that allows the decoding of words and phrases.

In a study with 7 participants [6], we showed for the first time that continuously
spoken speech is represented in the brain as a sequence of phones. These phones can
be decoded from electrocorticographic (ECoG) recordings and allow the composi-
tion of the spoken words, which we call Brain-to-Text. All participants were under-
going surgery for intractable epilepsy and agreed to participate in our experiment.
Electrode locations were determined based solely on clinical needs of the patients.
We used electrode grids (Ad-Tech Medical Corp., Racine, WI; PMT Corporation,
Chanhassen, MN) with inter-electrode distances of 0.6—1 cm. BCI2000 [16] was
used to record ECoG signals from eight 16-channel g.USBamp biosignal amplifiers
(g-.tec, Graz, Austria).

In our experiment, we recorded ECoG activity and the acoustic waveform simul-
taneously, while participants read aloud different texts consisting of childrens’ liter-
ature, fan fiction or political speeches. We time-aligned the neural data to a phone
labeling obtained from the acoustic data using our in-house speech recognition
toolkit BioKIT [17]. This allowed us to identify the neural activity corresponding
to the production of each phone. See Fig. 1 for data recording in our experiment and
aligning of ECoG and acoustic data. We segmented the texts into phrases and used
the recorded ECoG data of all but one phrase for feature selection and training, then
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Fig. 1 Synchronized data recording of ECoG data and the acoustic stream
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evaluated our approach on the ECoG data of the remaining phrase in a round-robin
manner (leave-one-phrase-out validation). We compared the results from temporal
offsets associated with speech production to productive and perceptive temporal off-
sets to analyze the feasibility of continuous speech recognition from imagined speech
processes, as perceptive activity is only present when participants hear their own
voice.

2 Phone Modeling in ECoG

To model phones in ECoG data, we extracted broadband-gamma (70-170 Hz) activ-
ity in 50 ms windows for each channel. The temporal dynamics of speech production
were captured by including the features of the four neighboring windows before and
after each window in the feature vector, i.e. representing a context of 450 ms length.
We modeled each phone with a multivariate Gaussian distribution representing the
mean broadband-gamma activity and the corresponding variance for all locations
and time lags. We analyzed the discriminability between the different phone models
by employing their Kullback-Leibler divergences (KL-div) for every electrode posi-
tion and time lag. The spatio-temporal distributions of KL-div results give interesting
insights into the spatio-temporal dynamics of cortical activity during continuously
spoken speech. Figure 2 illustrates discriminability between phones for cortical loca-
tions and time offsets on a combined electrode montage of all participants. Phone dis-
criminability can be observed 200 ms prior to phone production in prefrontal areas
associated with speech planning (Broca’s area). 100 ms prior to phone production,
discriminability increases in motor areas and auditory cortex and vanishes in pre-
viously observed regions. At phone onset, discriminability peaks in motor cortex,
while discriminability is largest in auditory cortex 100 ms after phone production.
200 ms after phone production, phone models can be discriminated in auditory cor-
tex. The activations after the actual phone production are presumably triggered by
the participants’ perception of their own voice.

We also use the KL-div values to automatically select the best ECoG features for
our Brain-To-Text system.

To evaluate the feasibility of our system for realistic brain-computer interfaces
based on imagined speech production, we performed an analysis that focuses on
activity prior to phone onset. By only keeping the temporal offsets between —200
and 0 ms (see Fig.2), no perceptive activity from hearing one’s own voice should
remain in the data. This restriction to productive temporal offsets is a first simulation
of imagined speech, in which no perceptive activity is present, as participants do not
hear their own voice. We refer to these results as Production and compare them to
those obtained with all temporal offsets, refereed to as Production and Perception.
This analysis therefore provides a first insight into the feasibility of our system for
imagined speech.
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Fig.2 Discriminability (Mean Kullback-Leibler Divergences) between phones for electrode posi-
tion of all participants. Color overlays on the rendered average brain show regions of high discrim-
inability (red) to lower discriminability (blue), all overlays are larger than random discriminability.
Early differences can be observed in diverse areas up to 200 ms before phone production. Sen-
sorimotor cortex shows high discriminability 50 ms before production, while discriminability in
auditory regions of the superior temporal gyrus peaks 100 ms after production

3 Automatic Speech Recognition for BCI

We combined the phone-based speech representations of cortical activity with lan-
guage information using automatic speech recognition technology to reconstruct the
words in unseen spoken phrases. Language information is included into the decoding
process through a language model and a pronunciation dictionary. The pronunciation
dictionary contains the mapping of phone sequences to words. The language model
statistically models syntactic and semantic information by predicting the next words
given the preceding words [7].

Our results show that, with a limited set of words in the dictionary, Brain-to-
Text is able to reconstruct full sentences. Figure 3 illustrates the different steps of
decoding continuously spoken phrases from neural data. ECoG signals over time are
recorded at every electrode and divided into 50 ms segments. For each 50 ms interval
of recorded broadband gamma activity, stacked feature vectors are calculated (Signal
processing). For each ECoG phone model calculated on the training data, the likeli-
hood that this model emitted a segment of ECoG features can be calculated, resulting
in phone likelihoods over time. Combining these Gaussian ECoG phone models with
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Fig.3 Overview of the Brain-to-Text decoding process

language information in the form of a dictionary and an n-gram language model, the
Viterbi algorithm calculates the most likely word sequence and corresponding phone
sequence. To visualize the decoding path, the most likely phone sequence can be
shown in the phone likelihoods over time (red marked areas). The system outputs
the decoded word sequence. Once the ECoG phone models are trained, phrases can
be decoded in real-time.

4 Results

To evaluate the performance of Brain-to-Text, we compared the decoding results of
our approach to randomized models (randomization test by shifting the labels of
the training data by half the session length). The randomized results illustrate the
impact that the language model and dictionary have when no usable neural infor-
mation is present. Figure 4 shows phone classification accuracies for all participants
and sessions. Classification accuracies for combined productive and perceptive areas
(purple bars) are better than accuracies achieved with randomized models (yellow
bars) for all sessions of all participants. To estimate how well a hypothetical device
based on imagined speech production might be, we evaluated our approach only
based on productive areas, by excluding all activations from time offsets after phone
onset. As the participants cannot hear their own voice prior to the onset of the phone,
this ensures that no perceptive activity should be used in this evaluation. Results on
productive areas only (turquoise bars) outperform the randomized models for all ses-
sions, but are usually worse than accuracies achieved when using all neural activity.

As Brain-to-Text outputs word sequences, we evaluated the Word Error Rate
between our predicted word sequence and the reference phrase. One of the major
limitations in our study is the small amount of training data per session, with only a
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Fig. 4 Phone classification accuracies for all participants and sessions. Error bars depict standard
errors. Our system shows significantly better accuracies than random models (yellow bars) when
using all information (purple bars) and when only using productive temporal offsets (turquoise
bars)

few minutes of data. For comparison, speech recognition systems based on acoustic
speech are usually trained on thousands of hours of data. To account for the limited
amount of training data, we restricted the amount of recognizable words in the dic-
tionary to a range of 10-100 words. We were able to achieve Word Error Rates as
low as 25% when using a dictionary of 10 words. Word Error Rates depending on
dictionary size for the best performing participant are shown in Fig. 5. Word Error
Rates are lowest (between 25% and just over 60%) when using perceptive and produc-
tive (purple line) time offsets. Neural activity only resulting from speech production
yields slightly higher Word Error Rates (turquoise line) than perceptive and produc-
tive activity, but still outperforms randomized models (yellow line) for all dictionary
sizes. Using productive activity only, more than 60% of words are recognized cor-
rectly for a dictionary of 10 words.

To ensure that word recognition is not based on the robust recognition of a
small subset of phones, we also analyzed average phone true positive rates. For this
analysis, we obtained the ground truth of phone timings from the audio alignment
described earlier. Bars in Fig. 5 show true positive rates averaged across all phones
on window-level. Again, productive and perceptive time offsets (purple) combined
yield the best results, but using only productive neural activity (turquoise) still yields
high average phone true positive rates above 20%. Both systems using neural activ-
ity outperform random true positive rates (yellow). Average phone true positive rates
remain rather stable even when dictionary sizes increase.
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Fig. 5 Word Error Rates over dictionary size (/lines); average true positive rates across phones
depending on dictionary size (bars). Error bars depict standard errors. While the full set of tempo-
ral offsets performs best (purple), information from productive time offsets (furquoise) still outper-
forms random models (yellow) for all dictionary sizes both in Word Error Rates and true positive
rates

Even though detailed results are only shown for the participant which gave the
best recognition results, we found significantly better results than random models in
Word Error Rate and single phone true positive rates for all sessions in this study.

5 Conclusion

In summary, our results support the hypothesis that Brain-to-Text may eventually
allow people to communicate using brain signals associated with continuous spo-
ken language, i.e. without the current limitations of a restricted set of commands or
unnatural selection procedures. We showed that participants’ neural activity could
be used to decode continuously spoken phrases into a textual representation, even
when omitting neural activity associated with the perception of their own voice. This
illustrates the feasibility of speech recognition from neural activity when participants
only imagine to speak. Thus, using continuous speech production for BCIs has the
potential to increase naturalness and information transfer rates and the practical util-
ity of current BCI communication approaches. Ultimately, speech processes for BCIs
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might lead to information transfer rates similar to that of continuous speech while
being more natural to the user.

While the generative models used in this study allow for a good illustration and
fast training of phone models, we have shown that more advanced discriminative
models can improve results [5].

Recent advances in the modeling of imagined phones [2], reconstruction of imag-
ined speech spectra [11] and investigations in silent reading [14, 15], suggest that
covert and overt speech share a neural substrate. Our presented results suggest that
neural activity from productive temporal offsets allows reconstruction of a textual
form, without the need for perceptive information. These findings highlight the
potential of Brain-to-Text to be used on imagined continuous speech in the future.
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