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Brain-Computer Interface Research:
A State-of-the-Art Summary 5

Christoph Guger, Brendan Allison and Junichi Ushiba

1 What Is a BCI?

Brain-computer interface (BCI) technology was first developed as a tool to provide
basic communication, such as spelling, without movement. By detecting specific
patterns of activity in the brain, BCIs can get a general idea of which messages or
commands a user wants to send. For example, a user might pay attention to a
flickering icon on a monitor with the letter “A” to spell that letter, or imagine left
hand movement to move a cursor, wheelchair, or humanoid robot to the left. BCIs
might detect brain activity through sensors outside the head, such as an electrode
cap that detects the electroencephalogram (EEG) or sensors inside the head, such as
electrocorticography (ECoG) activity that is detected during neurosurgery.

BCIs were initially developed to help patients with very severe motor disabili-
ties, who otherwise could not communicate. The last several years have seen a shift
to new patient groups and applications, such as helping stroke patients regain
movement or helping neurosurgeons map the brain more accurately to perform
surgery more quickly and safely. This book, and the awards from 2015, reflect and
extend these trends, including BCIs to help new patient groups such as persons with
cerebral palsy or severe brain damage.

C. Guger (✉) ⋅ B. Allison
g.tec Guger Technologies OG, 4521 Schiedlberg, Austria
e-mail: guger@gtec.at

B. Allison
e-mail: allison@gtec.at

J. Ushiba
Biosciences and Informatics, Keio University Biosciences and Informatics,
Yokohama, Kazagawa 223-8522, Japan
e-mail: ushiba@bio.keio.ac.jp

© The Author(s) 2017
C. Guger et al. (eds.), Brain-Computer Interface Research,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-57132-4_1

1



2 The Annual BCI Research Award

The Annual BCI Research Award is organized by G.TEC, a leading provider of
BCI research equipment headquartered in Austria, with branches in Spain and the
USA. Because of the growth of BCI research worldwide, G.TEC decided to create
an Annual BCI Research Award to recognize new achievements. The international
competition is open to any group doing BCI research, regardless of region, hard-
ware or software used, prior publications, or other factors. The first Award was
presented in 2010, and followed the same process that has been used in subsequent
years:

• G.TEC selects a Chairperson of the Jury from a well-known BCI research
institute.

• This Chairperson forms a jury of top BCI researchers who can judge the Award
submissions.

• G.TEC publishes information about the BCI Award for that year, including
submission instructions, scoring criteria, and a deadline.

• The jury reviews the submissions and scores each one across several criteria.
The jury then determines ten nominees and one winner.

• The nominees are announced online, and invited to a Gala Award Ceremony
that is attached to a major conference (such as an International BCI Meeting or
Conference).

• At this Gala Award Ceremony, the ten nominees each receive a certificate, and
the winner is announced. The winner earns $3000 USD and the prestigious
trophy. In 2014, we added prizes for the 2nd place winner ($2000 USD) and 3rd
place ($1000 USD).

Each year, the juries have scored the submissions based on several award cri-
teria. Given the intensity of the competition, nominated projects typically score
high on several of these criteria:

• Does the project include a novel application of the BCI?
• Is there any new methodological approach used compared to earlier projects?
• Is there any new benefit for potential users of a BCI?
• Is there any improvement in terms of speed of the system (e.g. bit/min)?
• Is there any improvement in terms of accuracy of the system?
• Does the project include any results obtained from real patients or other

potential users?
• Is the used approach working online/in real-time?
• Is there any improvement in terms of usability?
• Does the project include any novel hardware or software developments?

2 C. Guger et al.



The 2015 jury was:

• Junichi Ushiba (chair of the jury 2015),
• Msayuki Hirata
• Nuri Firat Ince
• Zachary Freudenburg
• José del R. Millán
• Sydney Cash
• Tomasz M. Rutkowski (winner 2014)

Like previous BCI Awards, the jury included the winner from the preceding year
(Dr. Rutkowski). The chair of the jury, Dr. Junichi Ushiba, is a top figure in BCI
research and leads the well-known BCI lab at Keio University, Japan. Dr. Ushiba
said: “I was very fortunate to work with the 2015 jury. All of the jury members that
I approached chose to join the jury, and we had an outstanding team.”

Also like previous BCI Awards, we held the annual Gala Award Ceremony in
tandem with a major conference. In 2015, this was the annual Society for Neuro-
science conference in Chicago, Illinois. The ceremony was held at the Cuvée in
Chicago and was very well attended. Dr. Guger organized the event, with
Dr. Allison acting as moderator. The ceremony began with an introduction of all
projects that were nominated, and the recipients came onstage to receive their
certificates. Next, we announced the first, second, and third place winners and
presented their awards (Figs. 1 and 2).

Fig. 1 This picture shows attendees watching the Award Ceremony in the Cuvée in Chicago

Brain-Computer Interface Research … 3



3 The BCI Book Series

Each year, we ask the nominees to write a chapter for this book series. While these
chapters mainly present the work that they submitted for the BCI Award, authors
are also invited to present newer work, discussion, and related material. The authors
who contributed to this book have all remained active since being nominated, and
thus they all have newer work from as late as fall 2015.

One of our concerns in editing and managing the chapters is accessibility to
non-experts. While chapters present advanced material, we have tried to explain
many terms and develop figures and tables to help illustrate the BCI systems and
the results. Students and newcomers to BCI research should be able to understand
the different BCI advances presented in the chapters and why they matter. Also, like
BCI research in general, the chapters here address a wide variety of disciplines,
including neuroscience, psychology, engineering, mathematics, and medicine.

The chapters from this year’s nominees are consistent with many broader trends
in BCIs. Both invasive and noninvasive systems are presented, with a strong focus
on online, real-world systems for patients. A few chapters aim to help patient
groups that have been prominent in recent BCI research, such as diagnostic BCI
tools for patients with disorders of consciousness (DOC) or BCIs to control pros-
thetic hands. Different chapters present original work that extends BCI technology
to new patient groups, such as persons with chronic pain, cerebral palsy, or cere-
bellar damage. Two chapters show how invasive technology could be used to
control finger movement or decode speech, which could lead to “literal” BCIs that

Fig. 2 Christoph Guger (organizer), Christian Herff (nominee), Kenji Kato (nominee), and
Brendan Allison (moderator)

4 C. Guger et al.



can directly decode imagined words. One chapter even presents BCI-based cock-
roach control. Overall, these chapters both reflect trends in BCI research and
describe several novel directions.

4 Projects Nominated for the BCI Award 2015

In 2015, 60 high quality research projects were submitted from all over the world!
The jury, chaired by Junichi Ushiba, carefully scored 10 nominated projects, and
then selected the winner for the Annual BCI Research Award 2014. The ten
nominees,[4] presented alphabetically by first author, were:

Peter Brunner, Karen Dijkstra, Will Coon, Jürgen Mellinger, Anthony L. Ritaccio,
Gerwin Schalk (Albany Medical College and the National Center for Adaptive
Neurotechnologies, Wadsworth Center, Albany, US).

An ECoG-Based BCI on Auditory Attention to Natural Speech

R. Chavarriaga1, L.A. Gheorghe1,2, H. Zhang1, Z. Khaliliardali1, J. d. R. Millán1

(1Defitech Chair in Brain-Machine Interface, Center for Neuroprosthetics, EPFL,
Lausanne, CH,2 Mobility Services Laboratory, Nissan Research Center, Nissan
Motor Co., JP).

Easy Riders: Brain-Computer Interfaces for Enhancing Driving Experience

Damien Coyle (School of Computing and Intelligent Systems, Ulster University,
UK).

Sensorimotor Modulation Assessment and Brain-Computer Interface Training
with Auditory Feedback in Disorders of Consciousness

Christian Herff1, Dominic Heger2, Adriana de Pesters3, Dominic Telaar2, Peter
Brunner3,4, Gerwin Schalk3,4, Tanja Schultz1 (1Cognitive Systems Lab, Universität
Bremen, Bremen, DE, 2Cognitive Systems Lab, Karlsruhe Institute of Technology,
Karlsruhe, DE, 3National Resource Center for Adaptive Neurotechnologies,
Wadsworth Center, Albany, US, 4Department of Neurology, Albany Medical
College, Albany, US).

Brain-to-Text: Towards Continuous Speech as a Paradigm for BCI

Roni Hogri1,3, Simeon A. Bamford2,4, Aryeh H. Taub1,5 (1Psychobiology Research
Unit, Tel Aviv University, IL,2 Complex Systems Modeling Group, Istituto
Superiore di Sanità, IT, 3Department of Neurophysiology, Medical University of
Vienna, AT,4 Inilabs Gmbh, CH,5 Department of Neurobiology, Wiezmann Insti-
tute of Science, IL).

Brain-Computer Interface Research … 5



DeNovo Experience-BasedLearning inRats Interfacedwith a “Cerebellar Chip”

Guy Hotson1, David P McMullen2, Matthew S. Fifer3, Matthew S. Johannes4,
Kapil D. Katyal4, Matthew P. Para4, Robert Armiger4, William S. Anderson2,
Nitish V. Thakor3, Brock A. Wester4, Nathan E. Crone5 (1Department of Electrical
and Computer Engineering, Johns Hopkins University, US,2 Department of Neu-
rosurgery, Johns Hopkins University, US, 3Department of Biomedical Engineering,
Johns Hopkins University, US,4 Applied Neuroscience, JHU Applied Physics
Laboratory, US, 5Department of Neurology, Johns Hopkins University, US).

Individual Finger Control of the Modular Prosthetic Limb Using High-Density
Electrocorticography in a Human Subject

Kenji Kato, Masahiro Sawada, Tadashi Isa, Yukio Nishimura (National Institute for
Physiological Sciences, Aichi, JP).

Restoration for the Volitional Motor Function via an Artificial Neural
Connection

Guangye Li, Dingguo Zhang (Robotics Institute, School of Mechanical Engineer-
ing, Shanghai Jiao Tong University, CN).

Brain-Computer Interface Controlling Cyborg: A Functional Brain-to-Brain
Interface between Human and Cockroach

N Mrachacz-Kersting1, L Yao2, S Gervasio1, N Jiang3, BD Ebbesen1, TS Palsson1,
TG Nielsen1, R. Xu2, D. Falla2, K Dremstrup1, D Farina2 (1Sensory-Motor Inter-
action, Aalborg University, DK,2 University Medical Center, Göttigen, DE,
3University of Waterloo, CA).

A Brain-Computer-Interface to Combat Musculoskeletal Pain

Sergey D. Stavisky, Jonathan C. Kao, Paul Nuyujukian, Stephen I. Ryu, Krishna V.
Shenoy (Stanford University, US).

Increasing the Useful Lifespan of Intracortical BCIs by Decoding Local Field
Potentials as an Alternative or Compliment to Spikes

5 Summary

The BCI Research Awards have continued to recognize and promote high quality
BCI research worldwide. Our book series have been widely downloaded and have
hopefully helped to teach and inspire a new generation of BCI researchers. The ten
nominees from 2015 have kept the tradition of top-quality submissions alive, and
the chapters that follow present many of the best BCI projects of 2015.

6 C. Guger et al.



An ECoG-Based BCI Based on Auditory
Attention to Natural Speech

Peter Brunner, Karen Dijkstra, William G. Coon, Jürgen Mellinger,
Anthony L. Ritaccio and Gerwin Schalk

Abstract People affected by severe neuro-degenerative diseases (e.g., late-stage

amyotrophic lateral sclerosis (ALS) or locked-in syndrome) eventually lose all mus-

cular control and are no longer able to gesture or speak. For this population, an audi-

tory BCI is one of only a few remaining means of communication. All currently used

auditory BCIs require a relatively artificial mapping between a stimulus and a com-

munication output. This mapping is cumbersome to learn and use. Recent studies

suggest electrocorticographic (ECoG) signals in the gamma band (i.e., 70–170 Hz)

can be used to infer the identity of auditory speech stimuli, effectively removing the

need to learn such an artificial mapping. However, BCI systems that use this phys-

iological mechanism for communication purposes have not yet been described. In

this study, we explore this possibility by implementing a BCI2000-based real-time

system that uses ECoG signals to identify the attended speaker.

1 Introduction

People affected by severe neuro-degenerative diseases (e.g., late-stage amyotrophic

lateral sclerosis (ALS) or locked-in syndrome) eventually lose all muscular control

and are no longer able to gesture or speak. They also cannot use traditional assistive

communication devices that depend on muscle control, nor typical brain-computer-

interfaces (BCIs) that depend on visual stimulation or feedback [1–3]. For this popu-

lation, auditory [4–8] and tactile BCIs [9, 10] are two of only a few remaining means

of communication (see [11] for review).

While visual BCIs typically preserve the identity between the stimulus (e.g., a

highlighted ‘A’) and the symbol the user wants to communicate (e.g., the letter

‘A’), all currently used auditory or tactile BCIs require a relatively artificial map-

ping between a stimulus (e.g., a particular but arbitrary sound) and a communication

P. Brunner ⋅ K. Dijkstra ⋅ W.G. Coon ⋅ J. Mellinger ⋅ A.L. Ritaccio ⋅ G. Schalk (✉)

New York State Department of Health, Center for Adapt Neurotech,

Wadsworth Center, Albany, NY, USA

e-mail: gerwin.schalk@health.ny.gov

© The Author(s) 2017

C. Guger et al. (eds.), Brain-Computer Interface Research,

SpringerBriefs in Electrical and Computer Engineering,

DOI 10.1007/978-3-319-57132-4_2
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output (e.g., a particular letter or word). This mapping is easy to learn when there are

only few possible outputs (e.g., a yes or no command). However, with an increasing

number of possible outputs, such as with a spelling device, this mapping becomes

arbitrary and complex. This makes most current auditory and tactile BCI systems

cumbersome to learn and use.

Two avenues are being investigated to overcome this limitation. The first avenue is

to directly decode expressive silent speech without requiring any external stimuli. In

this approach, linguistic elements at different levels (e.g., phonemes, syllables, words

and phrases) are first decoded from brain signals and then synthesized into speech.

While recent studies have demonstrated this possibility [12–16], even invasive brain

imaging techniques (e.g., ECoG, LFPs, single neuronal recordings) are currently

unable to capture the entire complexity of expressive speech. Consequently, silent

speech BCIs are limited in the vocabulary that can be decoded directly from the brain

signals. The second avenue is to replace unnatural stimuli that require an artificial

mapping with speech stimuli that do not. In such a system, the user would communi-

cate simply by directing attention to the speech stimulus that matches his/her intent.

Previous studies that explored this avenue required the speech stimuli to be designed

(e.g., altered and broken up [17]) such that they elicit a particular and discriminable

evoked response. Such evoked responses can be readily detected in scalp-recorded

electroencephalography (EEG) to identify the attended speech stimulus. However,

such altered speech stimuli are difficult to understand, which makes such a BCI sys-

tem difficult to use. More importantly, this approach does not scale well beyond two

simultaneously presented speech stimuli.

Recent studies suggest that the envelope of attended speech is directly tracked

by electrocorticographic (ECoG) signals in the gamma band (i.e., 70–170 Hz) [15,

18–21], effectively removing the need to ‘alter’ the speech stimuli. Further evidence

shows that this approach can identify auditory attention to one speaker in a mixture

of speakers, i.e., a ‘cocktail-party’ situation [22].

However, BCI systems that use this physiological mechanism for communication

purposes have not been described yet. In this study, we explore this possibility by

implementing a BCI2000-based real-time system that uses ECoG signals to identify

the attended speaker.

2 Methods

2.1 Human Subject

The subject in this study was a 49 year old left handed woman with intractable

epilepsy who underwent temporary placement of subdural electrode arrays (see

Fig. 1a) to localize seizure foci prior to surgical resection. A neuropsychological

evaluation [23] revealed normal cognitive function and hearing (full scale IQ = 97,

verbal IQ = 91, performance IQ = 99) and a pre-operative Wada test [24] determined

left hemispheric language dominance.
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(a) (b)

Fig. 1 Implant. The subject had 72 subdural electrodes (1 grid and 3 strips in different configura-

tions) implanted over left frontal, parietal, and temporal regions. a Photograph of the craniotomy

and the implanted grids in this subject. b Cortical model of the subject’s brain, showing an 8 × 8
grid over frontal/parietal cortex, and two strips

The subject had a total of 72 subdural electrode contacts (one 8 × 8 64-contact

grid with 3 contacts removed, two strips in 1 × 4 configuration, and one strip in

1 × 3 configuration). The grid and strips were placed over the left hemisphere in

frontal, parietal and temporal regions (see Fig. 1b for details). The implants consisted

of flat electrodes with an exposed diameter of 2.3 mm and an inter-electrode distance

of 1 cm, and were implanted for one week. Grid placement and duration of ECoG

monitoring were based solely on the requirements of the clinical evaluation, without

any consideration of this study. The subject provided informed consent, and the study

was approved by the Institutional Review Board of Albany Medical College.

We used post-operative radiographs (anterior-posterior and lateral) and computed

tomography (CT) scans to verify the cortical location of the electrodes. We then used

Curry software (Neuroscan Inc, El Paso, TX) to create subject-specific 3D cortical

brain models from high-resolution pre-operative magnetic resonance imaging (MRI)

scans. We co-registered the MRIs by means of the post-operative CT and extracted

the electrode coordinates according to the Talairach Atlas [25]. These electrode coor-

dinates are depicted on Talairach template brain in Fig. 1b.

2.2 Data Collection

We recorded ECoG from the implanted electrodes using a g.HIamp amplifier/

digitizer system (g.tec, Graz, Austria) and the BCI software platform BCI2000

[26–28], which sampled the data at 1200 Hz. Simultaneous clinical monitoring was

implemented using a connector that split the cables coming from the patient into

one set that was connected to the clinical monitoring system and another set that

was connected to the g.HIamp devices. This ensured that clinical data collection was

not compromised at any time. Two electrocorticographically silent electrodes (i.e.,

locations that were not identified as eloquent cortex by electrocortical stimulation

mapping) served as electrical ground and reference, respectively.
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Fig. 2 Experimental setup

and methods. a Subjects

selectively directed auditory

attention to one of two

simultaneously presented

speakers. b We extracted the

envelope of ECoG signals in

the high gamma band, as

well as the envelopes of the

attended and unattended

speech stimuli (i.e., JFK and

Obama). c The correlation

between the envelopes of the

ECoG gamma band and the

attended speech stimulus,

accumulated over time, is

markedly larger than the

accumulated correlation

between the envelopes of the

ECoG gamma band and the

unattended speech stimulus

(a)

(b)

(c)

2.3 Stimuli and Task

The subject’s task was to selectively attend to one of two simultaneously presented

speakers in a cocktail party situation (see Fig. 2a). The two speakers were John F.

Kennedy and Barack Obama, each delivering his presidential inauguration address.

Both speeches were similar in their linguistic features, but were uncorrelated in

their sound intensities (r = −0.02, p = 0.9). To create a cocktail party situation,

we mixed the two (monaural) speeches into a binaural presentation in which the

stream presented to each ear contained 20% ∶ 80% of the volume of one speaker

and 80% ∶ 20% of the other, respectively. This allowed us to manipulate the aural

location of each speaker throughout the task. For the binaural presentation, we used

in-ear monitoring earphones (AKP IP2, 12–23500 Hz bandwidth) that isolated the

subject from any ambient noise in the room.

To create a trial structure, we broke these combined streams into segments of 15–

25 s in length, which resulted in a total of 10 segments of 187 s combined length.

In the course of the experiment, we presented each segment four times to counter-

balance the aural location (i.e., left and right) and the identity (i.e., JFK and Obama)
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of the attended speaker. Thus, over these four trials, the subjects had to attend to each

of the two speakers at each of the two aural locations. This resulted in a total of 40

trials (i.e., 10 segments, each presented 4 times).

At the beginning of each trial, an auditory cue indicated the aural location (i.e., left

or right) to which the subject should attend. Throughout the trial, a visual stimulus

complemented the initial auditory cue to indicate the identity of the aural location

(e.g., ‘JFK in LEFT ear’). Each trial consisted of a 4 s cue, a 15–25 s stimulus and a

5 s inter-stimulus period. The total length of these 40 trials was 12.5 min. The subject

performed these 40 trials in 5 blocks of 8 trials each, with a 3 min break between each

block.

2.4 Offline Analysis

In the offline analysis, we characterized the relationship between the neural response

(i.e., the ECoG signals) and the attended and unattended speech streams, as shown in

Fig. 2b. In particular, we were interested in two parameters of this neural response.

The first parameter was the delay between the audio stream and resulting cortical

processing, i.e., the time from presentation of the audio stream to the observation of

the cortical change. The second parameter was the cortical location that was most

selective to the attended speech stream. These two parameters are the only two para-

meters that were later needed to configure the online BCI system.

To determine these two parameters, we extracted the high gamma band envelope

at each cortical location and the envelopes of the covertly attended and unattended

speech (i.e., JFK and Obama). We then correlated the high gamma band envelope at

each cortical location, once with the attended and once with the unattended speech

envelope. This resulted in two Spearman’s r-values for each cortical location. An

example of this is shown in Fig. 2c. To determine the delay between the audio stream

and resulting cortical processing, we measured the neural tracking of the sound inten-

sity across different delays from 0 to 250 ms to identify the deal with the highest

r-value.

2.4.1 Signal Processing

We first pre-processed the ECoG signals from the 72 channels to remove external

noise. To do this, we high-pass filtered the signals at 0.5 Hz and re-referenced them

to a common average reference that we composed from only those channels for which

the 60 Hz line noise was within 1.5 standard deviations of the average.

Next, we extracted the signal envelope in the high gamma band using these pre-

processed ECoG signals. For this, we applied an 18th order 70–170 Hz Butter-

worth filter and then extracted the envelope of the filtered signals using the Hilbert

transform. Finally, we low-pass filtered the resulting signal envelope at 6 Hz (anti-

aliasing) and downsampled the result to 120 Hz.
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For each attended and unattended auditory stream, we extracted the time course

of the sound intensity, i.e., the envelope of the signal waveform in the speech band.

To do this, we applied a 80–6000 Hz Butterworth filter to each audio signal, and then

extracted the envelope of the filtered signals using the Hilbert transform. Finally, we

low-pass filtered the speech envelopes at 6 Hz and downsampled them to 120 Hz.

2.4.2 Feature Extraction

We extracted features that reflect the neural tracking of the attended and unattended

speech stream. We defined neural tracking of speech as the correlation between the

gamma envelope (of a given cortical location) and the speech envelope. We cal-

culated this correlation separately for the attended and unattended speech, thereby

obtaining two sets of r-values labeled ‘attended’ and ‘unattended,’ respectively.

2.4.3 Selection of Cortical Delay and Location

We expected a delay between the audio presentation and resulting cortical process-

ing, i.e., the time from presentation of the audio stimuli to the observation of the

cortical change. To account for this delay, we measured the neural tracking of the

attended speech stream across different delays (0–250 ms, see Fig. 3) and across all

channels. Next, we determined the cortical location that was most selective of the

attended speech stream. For this, we selected the cortical location that showed the

largest difference between the ‘attended’ and ‘unattended’ r-values. Based on these

results, we selected a delay of 150 ms and a cortical location over superior temporal

gyrus (STG). We corrected for this delay by shifting the speech envelopes relative

to the ECoG envelopes prior to calculating the correlation values.

Fig. 3 Lag between speech

presentation and neural

response. This figure shows

the correlation between

neural response and the

attended speech (green) for

the most selective cortical

location, across corrected

lags between 0 and 250 ms.

This correlation peaks at 150

ms
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2.4.4 Classification

In our approach, we assumed that the extracted features, i.e., the two r-values of the

selected cortical location, were directly predictive of the ‘attended’ conversation. In

other words, for the selected cortical location, if the ‘attended’ r-value was larger

than the ‘unattended’ r-value, the the trial was classified correctly. To determine the

performance as a function of the length of attention, we applied our feature extraction

and classification procedure to data segments from 0.1 to 15 s in length.

2.5 Real-Time System Verification

In the real-time verification, we evaluated the system performance on the data

recorded during the first stage of this study. We configured this system with parame-

ters (i.e., cortical location and delay) determined in the previously detailed offline

analysis.

2.5.1 Real-Time System Architecture

We used the BCI software platform BCI2000 [26–28] to implement an auditory

attention based BCI. For this, we expanded BCI2000 with the capability to process

auditory signals in real time. In detail, we implemented a signal acquisition for audio

devices (e.g., a microphone) or pre-recorded files that is synchronized with the acqui-

sition from the neural signals. Further, we implemented a signal correlation filter. For

our evaluation, the two (monaural) speeches served as the audio input to the auditory

attention based BCI (see Fig. 4).

In this system, BCI2000 filters the audio signals between 80 and 6000 Hz and the

ECoG signals between 70 and 170 Hz. Next, a BCI2000 filter extracts the envelopes,

decimates them to a common sampling rate of 200 Hz and adjusts their timing for

the cortical delay. A signal correlation filter then calculates the correlation values,

i.e., the correlation between the two (monaural) speeches and the selected neural

envelope, to determine to which speaker the user directs his/her attention. Finally,

the feedback augmentation filter increases the volume of the attended speaker and

decreases the volume of the unattended speaker to provide feedback to the subject.

This processing steps are updated every 50 ms to provide feedback in real-time.

3 Results

3.1 Neural Correlates of Attended and Unattended Speech

First, we were interested in visualizing the cortical areas that track the ‘attended’

and ‘unattended’ conversations. The results in Fig. 5 show the neural tracking of



14 P. Brunner et al.

Fig. 4 Real-time system design. The auditory attention BCI is based on BCI2000 and simulta-

neously acquires and processes audio and ECoG signals. The audio signals from multiple con-

versations are sampled at 48 kHz and acquired from a low-latency USB audio-amplifier (Tascam

US-122MKII). The ECoG signals from the surface of the brain are sampled at 1200 Hz and acquired

from a 256-channel bio-signal amplifier (g.HIamp, g.tec Austria). In the next step, the signals are

band-pass filtered (80–6000 Hz for audio, 70–170 Hz for ECoG) and their envelope is extracted.

The resulting signal envelopes are decimated to a common sampling rate of 200 Hz and adjusted

for timing differences. One channel of the decimated ECoG signal envelope is then selected and

correlated with each of the decimated audio signal envelopes. As the human subject perceives the

mixture of conversations through ear-phones, the auditory attention BCI then can provide feedback

by modifying the volume of the presented mixture of conversations to enhance the volume of the

attended and attenuate the volume of the unattended conversation

 attended  unattended
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Fig. 5 Neural tracking of attended (left) and unattended (right) speech. The tracking of the attended

speech is both stronger and more widely distributed than the tracking of the unattended speech. In

addition, there is only a marginal difference in spatial distribution between attended and unattended

stimuli



An ECoG-Based BCI Based on Auditory Attention to Natural Speech 15

Fig. 6 Accuracy for

different segment lengths.

The classification accuracy

generally increases with

segment length. The red
horizontal dashed line
indicates chance accuracy
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the ‘attended’ and ‘unattended’ speech in the form of an activation index. For

each cortical location, this activation index expresses the negative logarithm of the

p-value (−log(p)) of the correlation between the high gamma ECoG envelope and

the attended or unattended speech envelope. The neural tracking is focused predom-

inantly on areas on or around superior (STG) and middle temporal gyrus (MTG).

3.2 Relationship Between Segment Length and Classification
Accuracy

Next, we were interested in determining the duration of attention that is needed to

infer the ‘attended’ speech. For this, we examine the relationship between the seg-

ment length and classification accuracy. The results in Fig. 6 show the classifica-

tion accuracies for variable segment lengths (0.1–15 s). In this graph, the accuracy

improvements level off after 5 s, at 80–90% accuracy.

3.3 Interface to the Investigator

Finally, we evaluated the real-time system performance that the determined para-

meters (i.e., the cortical location and delay) yield on the data recorded during the

first stage of this study. The screenshot in Fig. 7 shows interface to the investigator.

The interface presents the decimated and aligned ECoG and audio envelopes, their

correlation with each other, and the inferred attention. The content of this interface

is updated 20 times per second.



16 P. Brunner et al.

Fig. 7 Interface design. The interface to the investigator presents multiple panels. The bottom
left panel presents the decimated and aligned ECoG and audio envelopes. The panels on the right
show the correlation between the ECoG and the attended (top), ECoG and unattended (middle)

and the difference between the two correlation values (bottom). The panel on the top left shows

this correlation difference in form of an analogue instrument where the pointer (i.e., the needle)

indicates the direction of attention. In this experiment, the subject was cued to attend to a particular

speaker annotated by “Attended” in this panel

4 Discussion

We show the first real-time implementation of an auditory attention BCI that uses

ECoG signals and natural speech stimuli. The configuration of this system requires

only two parameters: the cortical location and the delay between the audio presenta-

tion and the cortical processing. Our results can guide the selection of these parame-

ters. For example, our results indicate that the underlying physiological mechanism

is primarily focused on the temporal lobe, specifically the STG and MTG areas. Fur-

ther, the neural tracking of attended speech is stronger and more widely distributed

than that of unattended speech. This confirms results from a previous ECoG study

that investigated auditory attention [22]. Further, our study shows that the cortical

delay between the audio presentation and the cortical processing is in the range of

∼150 ms.



An ECoG-Based BCI Based on Auditory Attention to Natural Speech 17

The presented results indicate that such system could support BCI communica-

tion. While being invasive, it may be justified for those affected by severe neuro-

degenerative diseases (e.g., late-stage ALS, locked-in syndrome) who have lost all

muscular control and therefore cannot use conventional assistive devices or BCIs

that depend on visual stimulation or feedback. Most importantly, the results suggest

that sufficient communication performance (>70%, [29]) could be achieved with a

single electrode placed over STG or MTG. This finding is important, because place-

ment of ECoG grids as used in this study requires a large craniotomy. In contrast,

a single electrode could be placed through a burr hole [30]. Furthermore, the elec-

trodes in this study were placed subdurally (i.e., the electrodes are placed underneath

the dura). Penetration of the dura increases the risk of bacterial infection [31–35].

Epidural electrodes (i.e., electrodes placed on top of the dura) provide signals of

approximately comparable fidelity [36, 37]. A single electrode placed epidurally

could reduce risk, which should make this approach more clinically practical.

In this study, we focused on demonstrating that one cortical location is sufficient

for providing BCI communication. However, it is likely that combining the informa-

tion from multiple cortical locations could substantially improve the communication

performance. Thus, recent advances in clinically practical recordings of ECoG sig-

nals from multiple cortical locations [38, 39] could improve the clinical efficacy of

the presented approach.

In comparison to many other auditory BCIs, the present approach has the unique

advantage of using natural speech without any alteration. This aspect may be partic-

ularly relevant for those who are already at a stage where learning how to use a BCI

has become difficult.

5 Conclusion

In summary, our study demonstrates the function of an auditory attention BCI that

uses ECoG signals and natural speech stimuli. The implementation of this system

within BCI2000 lays the groundwork for future studies that investigate the clinical

efficacy of this system. Once clinically evaluated, such a system could provide com-

munication without depending on other sensory modalities or a mapping between

the stimulus and the communication intent. In the near future, this could substan-

tially benefit people affected by severe motor disabilities that cannot use conven-

tional assistive devices or BCIs that require some residual motor control, including

eye movement.
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Abstract For the last two decades, brain-computer interface (BCI) research has

worked towards practical and useful applications for communication and control.

Yet, many BCI communication approaches suffer from unnatural interaction or time-

consuming user training. As continuous speech provides a very natural communica-

tion approach, it has been a long standing question whether it is possible to develop

BCIs that perform speech recognition from cortical activity. Imagined speech as a

BCI paradigm for locked-in patients would mean a large improvement in communi-

cation speed and usability without the need for cumbersome spelling using individual

letters. We showed for the first time that automatic speech recognition from neural

signals is possible. Here, we evaluate the feasibility of speech recognition from

neural signals using only temporal offsets associated with speech production and

omitting information from speech perception. This analysis provides first insights

into the potential usage of imagined speech processes for speech recognition, for

which no perceptive activity is present.
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1 Introduction

Previous neuroscientific studies provided evidence for neural representations of

speech, such as phones and phonetic features during speech perception [3, 9, 12].

Other studies classified [1, 8, 10] or investigated the production [4, 18] of limited

sets of phones, syllables, and words. A complete set of manually labeled phones was

classified in single word production in [13]. However, it was unclear whether the

brain encodes a complete repertoire of phonetic representations during the produc-

tion of continuous speech that allows the decoding of words and phrases.

In a study with 7 participants [6], we showed for the first time that continuously

spoken speech is represented in the brain as a sequence of phones. These phones can

be decoded from electrocorticographic (ECoG) recordings and allow the composi-

tion of the spoken words, which we call Brain-to-Text. All participants were under-

going surgery for intractable epilepsy and agreed to participate in our experiment.

Electrode locations were determined based solely on clinical needs of the patients.

We used electrode grids (Ad-Tech Medical Corp., Racine, WI; PMT Corporation,

Chanhassen, MN) with inter-electrode distances of 0.6–1 cm. BCI2000 [16] was

used to record ECoG signals from eight 16-channel g.USBamp biosignal amplifiers

(g.tec, Graz, Austria).

In our experiment, we recorded ECoG activity and the acoustic waveform simul-

taneously, while participants read aloud different texts consisting of childrens’ liter-

ature, fan fiction or political speeches. We time-aligned the neural data to a phone

labeling obtained from the acoustic data using our in-house speech recognition

toolkit BioKIT [17]. This allowed us to identify the neural activity corresponding

to the production of each phone. See Fig. 1 for data recording in our experiment and

aligning of ECoG and acoustic data. We segmented the texts into phrases and used

the recorded ECoG data of all but one phrase for feature selection and training, then

Fig. 1 Synchronized data recording of ECoG data and the acoustic stream
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evaluated our approach on the ECoG data of the remaining phrase in a round-robin

manner (leave-one-phrase-out validation). We compared the results from temporal

offsets associated with speech production to productive and perceptive temporal off-

sets to analyze the feasibility of continuous speech recognition from imagined speech

processes, as perceptive activity is only present when participants hear their own

voice.

2 Phone Modeling in ECoG

To model phones in ECoG data, we extracted broadband-gamma (70–170 Hz) activ-

ity in 50 ms windows for each channel. The temporal dynamics of speech production

were captured by including the features of the four neighboring windows before and

after each window in the feature vector, i.e. representing a context of 450 ms length.

We modeled each phone with a multivariate Gaussian distribution representing the

mean broadband-gamma activity and the corresponding variance for all locations

and time lags. We analyzed the discriminability between the different phone models

by employing their Kullback-Leibler divergences (KL-div) for every electrode posi-

tion and time lag. The spatio-temporal distributions of KL-div results give interesting

insights into the spatio-temporal dynamics of cortical activity during continuously

spoken speech. Figure 2 illustrates discriminability between phones for cortical loca-

tions and time offsets on a combined electrode montage of all participants. Phone dis-

criminability can be observed 200 ms prior to phone production in prefrontal areas

associated with speech planning (Broca’s area). 100 ms prior to phone production,

discriminability increases in motor areas and auditory cortex and vanishes in pre-

viously observed regions. At phone onset, discriminability peaks in motor cortex,

while discriminability is largest in auditory cortex 100 ms after phone production.

200 ms after phone production, phone models can be discriminated in auditory cor-

tex. The activations after the actual phone production are presumably triggered by

the participants’ perception of their own voice.

We also use the KL-div values to automatically select the best ECoG features for

our Brain-To-Text system.

To evaluate the feasibility of our system for realistic brain-computer interfaces

based on imagined speech production, we performed an analysis that focuses on

activity prior to phone onset. By only keeping the temporal offsets between −200

and 0 ms (see Fig. 2), no perceptive activity from hearing one’s own voice should

remain in the data. This restriction to productive temporal offsets is a first simulation

of imagined speech, in which no perceptive activity is present, as participants do not

hear their own voice. We refer to these results as Production and compare them to

those obtained with all temporal offsets, refereed to as Production and Perception.

This analysis therefore provides a first insight into the feasibility of our system for

imagined speech.
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-200 ms -150 ms -100 ms

-50 ms 0 ms 50 ms

100 ms 150 ms 200 ms

Fig. 2 Discriminability (Mean Kullback-Leibler Divergences) between phones for electrode posi-

tion of all participants. Color overlays on the rendered average brain show regions of high discrim-

inability (red) to lower discriminability (blue), all overlays are larger than random discriminability.

Early differences can be observed in diverse areas up to 200 ms before phone production. Sen-

sorimotor cortex shows high discriminability 50 ms before production, while discriminability in

auditory regions of the superior temporal gyrus peaks 100 ms after production

3 Automatic Speech Recognition for BCI

We combined the phone-based speech representations of cortical activity with lan-

guage information using automatic speech recognition technology to reconstruct the

words in unseen spoken phrases. Language information is included into the decoding

process through a language model and a pronunciation dictionary. The pronunciation

dictionary contains the mapping of phone sequences to words. The language model

statistically models syntactic and semantic information by predicting the next words

given the preceding words [7].

Our results show that, with a limited set of words in the dictionary, Brain-to-
Text is able to reconstruct full sentences. Figure 3 illustrates the different steps of

decoding continuously spoken phrases from neural data. ECoG signals over time are

recorded at every electrode and divided into 50 ms segments. For each 50 ms interval

of recorded broadband gamma activity, stacked feature vectors are calculated (Signal
processing). For each ECoG phone model calculated on the training data, the likeli-

hood that this model emitted a segment of ECoG features can be calculated, resulting

in phone likelihoods over time. Combining these Gaussian ECoG phone models with
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Fig. 3 Overview of the Brain-to-Text decoding process

language information in the form of a dictionary and an n-gram language model, the

Viterbi algorithm calculates the most likely word sequence and corresponding phone
sequence. To visualize the decoding path, the most likely phone sequence can be

shown in the phone likelihoods over time (red marked areas). The system outputs

the decoded word sequence. Once the ECoG phone models are trained, phrases can

be decoded in real-time.

4 Results

To evaluate the performance of Brain-to-Text, we compared the decoding results of

our approach to randomized models (randomization test by shifting the labels of

the training data by half the session length). The randomized results illustrate the

impact that the language model and dictionary have when no usable neural infor-

mation is present. Figure 4 shows phone classification accuracies for all participants

and sessions. Classification accuracies for combined productive and perceptive areas

(purple bars) are better than accuracies achieved with randomized models (yellow

bars) for all sessions of all participants. To estimate how well a hypothetical device

based on imagined speech production might be, we evaluated our approach only

based on productive areas, by excluding all activations from time offsets after phone

onset. As the participants cannot hear their own voice prior to the onset of the phone,

this ensures that no perceptive activity should be used in this evaluation. Results on

productive areas only (turquoise bars) outperform the randomized models for all ses-

sions, but are usually worse than accuracies achieved when using all neural activity.

As Brain-to-Text outputs word sequences, we evaluated the Word Error Rate

between our predicted word sequence and the reference phrase. One of the major

limitations in our study is the small amount of training data per session, with only a
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Fig. 4 Phone classification accuracies for all participants and sessions. Error bars depict standard

errors. Our system shows significantly better accuracies than random models (yellow bars) when

using all information (purple bars) and when only using productive temporal offsets (turquoise
bars)

few minutes of data. For comparison, speech recognition systems based on acoustic

speech are usually trained on thousands of hours of data. To account for the limited

amount of training data, we restricted the amount of recognizable words in the dic-

tionary to a range of 10–100 words. We were able to achieve Word Error Rates as

low as 25% when using a dictionary of 10 words. Word Error Rates depending on

dictionary size for the best performing participant are shown in Fig. 5. Word Error

Rates are lowest (between 25% and just over 60%) when using perceptive and produc-

tive (purple line) time offsets. Neural activity only resulting from speech production

yields slightly higher Word Error Rates (turquoise line) than perceptive and produc-

tive activity, but still outperforms randomized models (yellow line) for all dictionary

sizes. Using productive activity only, more than 60% of words are recognized cor-

rectly for a dictionary of 10 words.

To ensure that word recognition is not based on the robust recognition of a

small subset of phones, we also analyzed average phone true positive rates. For this

analysis, we obtained the ground truth of phone timings from the audio alignment

described earlier. Bars in Fig. 5 show true positive rates averaged across all phones

on window-level. Again, productive and perceptive time offsets (purple) combined

yield the best results, but using only productive neural activity (turquoise) still yields

high average phone true positive rates above 20%. Both systems using neural activ-

ity outperform random true positive rates (yellow). Average phone true positive rates

remain rather stable even when dictionary sizes increase.
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Fig. 5 Word Error Rates over dictionary size (lines); average true positive rates across phones

depending on dictionary size (bars). Error bars depict standard errors. While the full set of tempo-

ral offsets performs best (purple), information from productive time offsets (turquoise) still outper-

forms random models (yellow) for all dictionary sizes both in Word Error Rates and true positive

rates

Even though detailed results are only shown for the participant which gave the

best recognition results, we found significantly better results than random models in

Word Error Rate and single phone true positive rates for all sessions in this study.

5 Conclusion

In summary, our results support the hypothesis that Brain-to-Text may eventually

allow people to communicate using brain signals associated with continuous spo-

ken language, i.e. without the current limitations of a restricted set of commands or

unnatural selection procedures. We showed that participants’ neural activity could

be used to decode continuously spoken phrases into a textual representation, even

when omitting neural activity associated with the perception of their own voice. This

illustrates the feasibility of speech recognition from neural activity when participants

only imagine to speak. Thus, using continuous speech production for BCIs has the

potential to increase naturalness and information transfer rates and the practical util-

ity of current BCI communication approaches. Ultimately, speech processes for BCIs
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might lead to information transfer rates similar to that of continuous speech while

being more natural to the user.

While the generative models used in this study allow for a good illustration and

fast training of phone models, we have shown that more advanced discriminative

models can improve results [5].

Recent advances in the modeling of imagined phones [2], reconstruction of imag-

ined speech spectra [11] and investigations in silent reading [14, 15], suggest that

covert and overt speech share a neural substrate. Our presented results suggest that

neural activity from productive temporal offsets allows reconstruction of a textual

form, without the need for perceptive information. These findings highlight the

potential of Brain-to-Text to be used on imagined continuous speech in the future.
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Abstract There have been many developments in brain-machine interfaces
(BMI) for controlling upper limb movements such as reaching and grasping. One
way to expand the usefulness of BMIs in replacing motor functions for patients with
spinal cord injuries and neuromuscular disorders would be to improve the dexterity
of upper limb movements performed by including more control of individual finger
movements. Many studies have been focusing on understanding the organization of
movement control in the sensorimotor cortex of the human brain. Finding the
specific mechanisms for neural control of different movements will help focus
signal acquisition and processing so as to improve BMI control of complex actions.
In a recently published study, we demonstrated, for the first time, online BMI
control of individual finger movements using electrocorticography recordings from
the hand area of sensorimotor cortex. This study expands the possibilities for
combined control of arm movements and more dexterous hand and finger
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1 Introduction

Current upper limb brain-machine interface (BMI) research focuses on developing
advanced neurally controlled prosthetics to restore or replace motor function for
patients with upper limb paralysis. These advances come as we develop new
technologies and expand our understanding of how humans control and execute
movements. In order to develop a high performance motor BMI, it is imperative to
understand how signals obtained from neural implants encode both gross and fine
upper limb movements.

Electrocorticography (ECoG) has been widely studied for motor decoding and
BMI control. Compared to other invasive and non-invasive neural recording
modalities, ECoG provides a good compromise between coverage extent, signal
quality, and signal stability. ECoG electrode grids record from a wide area of
cortex, capable of resolving activation corresponding to all five fingers in the hand
area of sensorimotor cortex with a single grid [1–3]. This stands in contrast to
microelectrode arrays (MEAs), which provide high resolution single neuron activity
but only cover a very small patch of cortex, sometimes only spanning two fingers
with a single array [4]. ECoG also provides much higher spatial resolution and
signal fidelity than electroencephalography (EEG) and better time resolution than
functional magnetic resonance imaging (fMRI). Several studies have demonstrated
that ECoG grids are implantable for long durations of about 8–12 months [5–8],
and provide reliable decoding performance over several months without needing
daily calibrations [9]. Furthermore, functional mapping studies provide evidence
that power changes in the high gamma frequencies (>70 Hz) of ECoG signals show
significant correlation to execution of movements, making them useful tools in
mapping motor functions on the cortical surface [10–12]. A paper published
recently by our team was the first to demonstrate online control of individual finger
movements using ECoG recordings [3]. This chapter will highlight the results of
this paper and discuss the impact of the study within the context of the literature on
motor BMI development and control for finger movements.

2 Current Motor BMI Control

Neural activity related to motor function can be used for real-time control of devices
to help patients with spinal cord injuries (SCI) or neuromuscular disorders regain
movement and perform useful actions. ECoG-based control of brain-machine
interfaces by epilepsy patients has been demonstrated for 2-D cursor movements
using real [13, 14] and imagined [15, 16] movements. A later study by Wang et al.
showed that, using similar techniques, a patient with quadriplegia could control 2-D
and 3-D cursor movements using ECoG signals during attempted movements [17].

Many groups have shown that it is possible to classify arm movement trajec-
tories and different hand movements from ECoG recordings over sensorimotor
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cortex [18–20], allowing paralyzed and able-bodied subjects online control of
discrete hand movements with a robotic limb [2, 21]. The somatotopic organization
of arm and hand areas has been leveraged to deliver simultaneous, independent
control of both reaching and grasping with a robotic limb using ECoG recordings
[22]. A tetraplegic patient was able to reach to targets in 3D space with a prosthetic
arm using ECoG signals modulated by attempted elbow, wrist, and hand move-
ments [17]. MEA recordings have also been used for online control of multiple
prosthetic degrees of freedom [23–26], and for controlling neuromuscular electrical
stimulation of forearm muscles in order to restore the ability to produce finger,
wrist, and hand movements in a patient with quadriplegia [27].

3 Finger Movement Decoding

Combined control of hand and finger movements can be useful in performing
activities of daily living (ADL). It is important to be able to control the finer
movements of the hand, because ADLs often require different levels of dexterity,
for example drinking from a cup versus brushing your teeth. Previous studies have
demonstrated above 90% accuracy in decoding of individual finger movements
from single unit activity in the primary motor cortex (M1) of non-human primates
[28–30]. Interestingly, significant information about finger movements can still be
extracted from lower resolution recordings, like EEG. EEG signals have been
shown to correlate with finger kinematics [31, 32], but with large variance from
subject to subject. In contrast to EEG, which is recorded on the scalp, ECoG is
recorded on the cortical surface where each electrode overlays a more localized
group of neurons. The higher spatial resolution provides for more discriminability
of the neural signals corresponding to finger movements. Finger positions during
slow grasping were predicted from the “local motor potential” (LMP), consisting of
the smoothed amplitude in ECoG recordings from motor and sensory areas [33].
The time course of individual finger flexion movements has also been decoded from
LMP and high gamma components of ECoG signals in sensorimotor cortex [1, 34–
36]. In this study, maximum correlation was achieved when movement was pre-
dicted from the neural features preceding the movement by 50–100 ms, suggesting
the ECoG features were primarily related to movement rather than sensory feedback
alone. Chestek et al. demonstrated classification of finger movements and isometric
hand postures, as well as online decoding of grasping movements to control a
prosthetic hand, with ECoG signals from sensorimotor cortex in a trial-based
manner [2]. In Hotson et al. (2016), our team has shown for the first time that online
BMI control of individual finger movements of the Johns Hopkins University
Applied Physics Laboratory (JHU/APL) Modular Prosthetic Limb (MPL) is pos-
sible using high density ECoG (hd-ECoG) recordings from sensorimotor cortex [3].

Brain-Machine Interface Development for Finger Movement Control 33



4 Neural Representation of Finger Movements

Increased power in certain frequency bands of the ECoG signal, specifically in the
high gamma band (70–100 Hz), is known to correspond directly with execution of
movements [10]. Some studies have shown that the high gamma band activity in
sensorimotor cortex peaks at the onset of each movement phase, for example when
the hand begins to move from rest position and when the hand begins to return to
rest position, and attenuates to near baseline as the movement progresses between
movement phases [10, 18]. The population activity recorded through the high
gamma signal has a strong correlation with the speed of movements, and a weaker
correlation with the movement direction [37]. Information about movement kine-
matic parameters can also be extracted from the LMP, in addition to high gamma
power of ECoG signals [33, 38, 39]. Most studies describing movement decoding
have predicted movement types from analyzing these spectral and temporal com-
ponents of neural signals recorded over upper limb areas of sensorimotor cortex.
While a unifying representation of different hand and finger movements in the
motor cortex has not yet been fully agreed upon, various hypotheses have been
proposed for cortical movement encoding.

4.1 Somatotopic Representation

Early studies by Penfield and Boldrey suggested that a somatotopic map of different
body parts existed on the precentral and postcentral gyri, which make up the
sensorimotor cortex [40]. In a somatotopic representation, each part of the upper
limb, including each finger, would be represented in a separate area of cortex.
A hand movement, such as a specific grasp type, would therefore be characterized
by activation of areas corresponding to the hand and each finger. Later studies
provide evidence supporting a clear somatotopic organization of the primary
somatosensory cortex (S1) as suggested by Penfield and Boldrey. fMRI studies
have shown that the somatosensory areas activated by stimulating a specific finger
are clearly segregated from areas activated by stimulating other fingers [41, 42]. In
addition, a recent study has shown that microstimulation of hand area in S1 through
a penetrating microelectrode array induced tactile sensations on individual fingers
that a human subject was able to discriminate [4].

In contrast, most research contradicts the idea of an organized somatotopic map
in the primary motor cortex (M1). Intracortical microstimulation studies in monkeys
have shown that stimulation of multiple sites in M1 can evoke a response from the
same muscle, and these sites are distributed and overlapping with sites corre-
sponding to other muscles [43]. Studies with fMRI have also found overlapping and
distributed areas in M1 activated for individual finger and wrist movements in
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humans [41, 44]. Even though there seems to be little or no separation between the
areas representing different parts of the upper limb, fMRI and lesion studies suggest
that the overlapping regions still form a somatotopic gradient from one body part to
another along M1 [41, 45, 46]. In a recent ECoG study, movements of one finger
elicited activation over brain areas corresponding to that particular finger, as well as
over areas corresponding to other fingers, providing more evidence that a strict
somatotopic map does not exist in human motor cortex [2].

4.2 Synergies

In order to control upper limb movements, the motor cortex needs to code for a
large number of degrees of freedom (DOF). One study found that activation of local
ensembles of neurons in M1, recorded from MEAs implanted in the arm and hand
areas in non-human primates, could be used to reconstruct the joint angles of the
arm and hand during reach and grasp movements [47]. However, the study could
not conclude that M1 neurons directly encode joint angles. Some studies have
suggested that, instead of controlling kinematic parameters of movement, neural
populations in the motor cortex may control a lower dimensional representation of
upper limb kinematics. Saleh et al. found that the firing rates of M1 neurons in
non-human primates correlated more with temporally extensive finger and wrist
joint trajectories than with static kinematic parameters of individual joints [48, 49].
Kao et al. found that the predictive power of a BMI was improved when modeling
both the binned spike counts and the kinematics as being generated by a
low-dimensional latent state [50].

One hypothesis is that, rather than using a large number of DOFs, a smaller
number of synergies can be used to characterize upper limb movements. A synergy
is a combination of joint angles or muscle activities that commonly occur during
natural movements of the arm and hand [51]. Each synergy can summarize the
movement in multiple upper limb DOFs. Several studies have found that similar
hand postures or similar reach and grasp actions can be represented by a small
number of kinematic or muscle synergies [52–57]. Overduin et al. showed that
intracortical microstimulation in the motor and premotor cortices in monkeys
evoked muscle activations that could be reduced to linear sums of a few basic
patterns [58, 59]. The reduced representations of evoked movements corresponded
to muscle synergies extracted from EMG recordings of voluntary movements, and
stimulated sites correlating to a particular synergy clustered in a non-uniform
manner in M1. Direct current stimulation through penetrating microelectrodes in
monkeys [60] and surface electrodes in humans [61] has evoked coordinated
hand/mouth muscle movements. However, there is not enough evidence to con-
clude that motor cortex directly encodes synergies. Other studies have found that
single neuron activity in M1 correlated more with joint angles and positions during
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finger and wrist movements than with kinematic synergies extracted from the
movements, suggesting that synergies are not represented more than kinematic
parameters in the motor cortex [62, 63].

5 Online Neural Control of Finger Movements

While the principles of representation for hand and finger movements in motor
cortex are not fully understood, some degree of separability can be found in the
ECoG signals recorded from sensorimotor cortex during individual finger move-
ments. Our recent study extracted these distinguishable ECoG features to perform
classification and online control of individual fingers of the MPL [3].

5.1 Subject Info

A high density 8 × 16 ECoG grid (PMT Corp., Chanhassen, MN; 1 mm diameter,
3 mm center-to-center spacing) was implanted subdurally over sensorimotor areas
of a 20 year old male suffering from intractable epilepsy. The placement of the
electrodes was designed to localize the source of the patient’s seizures, which
routinely began with a sensation in distal right upper limb, and to map sensorimotor
cortex in detail before performing respective surgery. The high density array
straddled the central sulcus of the putative hand sensorimotor areas. Figure 1 shows
a 3D reconstruction of the electrode locations performed using the BioImage Suite
[64]. Not shown are electrode strips over nearby regions and depth electrodes in
frontal and parietal opercula, targeting SII. All recordings were re-referenced using
a common average reference (CAR) filter, in which the mean across electrodes was
subtracted for each sample.

Fig. 1 3D reconstruction
showing the location of
hd-ECoG grid over hand area
of sensorimotor cortex
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5.2 Feature Extraction

During training and testing of the online finger classifier, high gamma power was
extracted using the Hilbert transform with a bandpass of 72–110 Hz. Baseline
activity was estimated using the average of high gamma powers in an 896 ms
period before cue onset in each trial. The activation due to each finger movement
was estimated using the average of high gamma powers in an 896 ms period during
the cued finger movement (see below).

5.3 Preliminary Mapping of Activation

Preliminary mapping of high gamma activation on the hd-ECoG grid was per-
formed using a finger tapping task and passive vibrotactile stimulation. In the motor
task, the patient was visually cued to flex and extend a specific finger 5 times
repeatedly for each trial, while finger movements were recorded using the
Cyberglove II (Cyberglove Systems LLC, San Jose CA). In the sensory task, each
finger was stimulated using a vibrational motor taped to the patient’s unsupported,
isolated fingertips in a pseudorandom order to record cortical activation

Fig. 2 Distribution of motor and sensory activations among the electrode grid. Red electrodes
showed significant activation during the finger tapping task. Blue electrodes showed significant
activation during the vibrotactile stimulation task. Starred electrodes were used for online control
of finger movements. Starred electrodes outlined in gold were found to have the most
discriminability between fingers. Green denotes the central sulcus, and the purple line denotes the
interhemispheric fissure. The red dashed line outlines a previously resected area of the superior
frontal gyrus. (© IOP Publishing. Reproduced with permission. All rights reserved [3])
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corresponding to the sensory response of individual fingers. Figure 2 shows the
distribution of significant motor and sensory activation along the hd-ECoG grid
electrodes.

5.4 Decoder Training

A hierarchical classifier trained using linear discriminant analysis (LDA) was used
to predict what finger was moving from the high gamma power correlates of finger
movements. The decoder was trained using data collected as the patient performed a
finger tapping task. The classifier first made the binary classification of whether or
not a finger was moving. If a finger movement was occurring, there was then a
subsequent 5-way classification of which finger was moving.

When performing online classification, the decoder used a subset of electrodes
that avoided the postcentral gyrus (except for two electrodes), and was limited to
only electrodes which appeared to have significant activation during preliminary
mapping of high gamma activation during the finger tapping task. Some electrodes
were excluded for appearing to be primarily activated by sensory feedback during
preliminary analysis of activation during vibrotactile stimulation task. Figure 2
shows the location of electrodes chosen for online training and classification.

For offline classification, all electrodes were potentially able to be utilized by the
classifier. Ten-fold cross-validation was performed, where 90% of the data was used
for feature selection and model training and 10% of the data was used for testing.
Cross-validated regularization/feature selection [65], using only the training data,
was nested within each fold of cross-validation. To test for linear separability of the
ECoG high gamma features while taking into account their time-varying nature, we
trained and tested different classifiers at fixed time points relative to movement
onset.

5.5 JHU/APL Modular Prosthetic Limb

The JHU/APL Modular Prosthetic Limb (MPL) is an advanced upper-body
extremity prosthetic and human rehabilitation device, developed with support from
the Defense Advanced Research Projects Agency (DARPA) as part of the Revo-
lutionizing Prosthetics Project [66]. The MPL has 17 controllable degrees of free-
dom (DoF) and 26 articulating DoF in total (Fig. 3), including the ability to
independently actuate arm, hand, and finger joints. The MPL is controlled via a
custom software interface (VulcanX) that receives movement commands and
converts them into low-level commands for driving each joint on the limb [67].
VulcanX is able to interpret three fundamental command types: (1) degree of
motion (DOM) commands for driving the position and/or velocity of each joint in
the limb, (2) endpoint control (EC) commands for driving the hand and wrist to
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three-dimensional positions and three-dimensional orientations using Jacobian-
based inverse kinematics, and (3) reduced order control (ROC) for uni-dimensional
control of configurable movements spanning multiple joints (i.e., a movement
“synergy”), predominantly used to control grasps [68, 69].

The MPL has been used in a variety of pilot studies by amputees [70, 71] and
quadriplegic patients [17, 24, 25]. In MPL studies with amputees, individual finger
control has been performed, though it is more common for fingers to be controlled
through configurable multi-joint grasp synergies in ROC mode [71]. Cortical
control over MPL fingers by quadriplegic individuals generally also relies on
one-dimensional grasp ROC commands, although occasionally the user is given
control over multiple dimensions of the grasp configuration itself [26].

5.6 Online Decoding Accuracy

During the online BMI control task, the decoder detected individual finger move-
ment states and rest states. Whenever the decoder determined movement of a
specific finger from the ECoG features, the MPL was instructed to flex the corre-
sponding finger on its hand at a fixed velocity (Fig. 4). When the decoder detected
no movement, the MPL fingers were instructed to extend fingers to the rest position.
Figure 5 shows the classification accuracies in movement detection and finger

Fig. 3 Degrees of freedom of the JHU/APL MPL. Schematics showing the controllable joints
along the MPL arm (right) controllable and passive joints of the MPL hand (left)
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prediction over time relative to movement onset. Finger movement detection
reached 97% accuracy from about 1.6 to 3.1 s after movement onset. Individual
finger classification reached a maximum of 81% accuracy within that same time
period when predicting from all five fingers. However, while the fourth (“ring”) and
fifth (“pinky” or “little”) fingers were cued separately, the patient predictably had
difficulty moving them independently. When combining the classifications of the
ring and little fingers into a single class during post hoc analysis, the classification
accuracy reached a maximum of 94%. At the onset of peak movement detection,
classification accuracy was 76% for five fingers and 88% when the ring and little
fingers were combined. Even though the electrodes selected for training and testing

Fig. 4 Online control of individual finger movements. First a cue was presented on the screen
highlighting the finger to be moved in black (top). The patient then flexed the highlighted finger 5
times. During the movement, the decoder classifies which finger is moving from the ECoG
features and sends a command to the MPL to flex the same finger (bottom)
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the decoder mostly excluded electrodes on the postcentral gyrus, it was found that
four out of the five electrodes that had the most finger discriminability also showed
significant sensory activation (Fig. 2).

5.7 Offline Decoding Accuracy

Electrode selection for the decoder was further optimized during offline analysis in
order to account for the somatosensory feedback seen during finger movements.
Deafferented patients and paralyzed patients would not exhibit cortical activations
corresponding to somatosensory feedback during movements, so it was necessary
to also examine the results when eliminating activations in the somatosensory
cortex. The time course of activations during the finger tapping task and vibrotactile
task were compared to determine the segment of finger movement activation pre-
ceding sensory feedback that could be used for decoding. Figure 6 shows the
spectral activation during the finger movement task and vibrotactile stimulation in
the two electrodes that had the most finger discriminability during online decoding.
It can be seen that significant motor-related activation precedes significant

Fig. 5 Classification accuracies over time for movement detection and finger decoding.
Predictions were aggregated in 250 ms time bins and then averaged across trials. The black
vertical line denotes movement onset. The black dashed trace shows average percentage of
predictions showing movement is occurring within a specific time window. The blue and orange
traces show the average finger classification accuracy within the specific time window among all
fingers and four fingers (ring and little fingers combined), respectively. (© IOP Publishing.
Reproduced with permission. All rights reserved [3])

Brain-Machine Interface Development for Finger Movement Control 41



sensory-related activation, which suggests that there is a window of activation
during finger movements that does not involve sensory feedback.

Figure 7 shows the average finger classification accuracy over time for the motor
and sensory tasks. The features from the motor task were aligned to the onset of
movement recorded from the Cyberglove data, and the features from the sensory
task were aligned to the onset of the motor vibration. All features were extracted in
a causal manner, meaning the classification at time t = 0 only used data samples
recorded prior to movement/vibration onset. Early in the tasks (−32 to 224 ms), the
decoding accuracy during the finger tapping task was higher than the decoding
accuracy during vibrotactile stimulation. Decoding accuracy exceeded chance much
earlier for the motor task than for sensory stimulation, reaching 70.7% accuracy at
the time when decoding during sensory task exceeded chance. This result suggests
that neural activation related only to attempted finger movements could potentially
be used to control BMIs by a patient population with deafferentation of sensori-
motor cortex.

Fig. 6 Spectral activation in two electrodes that contained the most information for BMI control
during offline index finger tapping (top) and vibrotactile stimulation of index finger (bottom). The
solid black line denotes onset of any hand movement measured by CyberGlove for the motor task,
and onset of vibrotactile stimulation for the sensory task. The red trace for the motor task denotes
the average finger movement trace recorded by CyberGlove sensors on the index finger. Spectral
activation significantly exceeded baseline levels 160 and 48 ms before movement onset during the
motor task (top row), and 48 ms after the onset of vibrotactile stimulation (bottom row). (© IOP
Publishing. Reproduced with permission. All rights reserved [3])
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6 Discussion

6.1 Impact of Study

Our study showed for the first time that ECoG signals recorded from the sensori-
motor cortex in humans can be used for online control of individual finger
movements of a dexterous prosthetic arm. When combined with recent studies
showing BMI control of arm and hand movements [2, 17, 21, 22, 72], this study
points to new possibilities for neural control of prosthetic limbs to execute the finer
hand movements used in actions such as ADLs. The decoding model used in this
study did not require a long training period or learning a new mapping to control
finger movements. Instead, it extracted information from the neural signals nor-
mally associated with finger movements, allowing for natural control of the MPL
fingers. By analyzing the decoding accuracy of neural activations that precede the
timescale of sensory feedback, we found it is likely that a BMI could provide
individual finger control even when sensory afferent information is absent, such as
is the case in patients with spinal cord injuries.

Fig. 7 Finger classification accuracy over time using CyberGlove data and ECoG recordings
during the motor and sensory tasks. The solid black line denotes onset of any hand movement
during the motor task, and onset of vibrotactile stimulation during the sensory task. The red, green,
and blue dashed lines mark when decoding accuracies, using motor task high gamma, vibrotactile
stimulation high gamma, and motor task CyberGlove data, exceeded chance levels. Classification
accuracy at time t is based on data collected from a 352 ms window prior to and including time t.
Shading along the solid traces marks the 95% confidence interval of the mean. (© IOP Publishing.
Reproduced with permission. All rights reserved [3])
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6.2 Study Limitations

While the results of this study are very convincing, they have only been demon-
strated in one patient so far. A larger sample size is needed in order to generalize the
conclusion that ECoG signals from the sensorimotor cortex can be used to control
individual finger movements in real-time across many people. However, it is diffi-
cult to obtain more than a few patients with implanted electrodes in the proper area
of the motor cortex, especially since these major surgeries are mostly done as part of
clinical treatment. It is also difficult to say how these results can be generalized to
volitional control by quadriplegics and amputees, who have almost no sensory or
motor responses. One study has provided preliminary evidence that ECoG signals
recorded from postcentral gyrus can be used for real-time BMI control [17]. The
question is whether the neural activations in these patients during attempted
movements can reliably carry enough information to achieve adequate control of
upper limb movements using a prosthetic arm. Szameitat et al. found extensive
fMRI activation in sensorimotor areas of hemiparetic patients attempting wrist
movements [73]. This resembled their cortical activation from imagined move-
ments, and was much more extensive than activation from motor imagery in healthy
subjects, which has been used to control BMI in the past [15]. Studies have shown
that ECoG and MEA recordings from the sensorimotor cortex of a tetraplegic patient
can be used to control 3D movements of a prosthetic arm and hand [17, 21, 23, 24,
26]. However, the overall number of subjects used to demonstrate this remains low.

Analysis in this online finger control study did show significant neural activity in
both precentral and postcentral gyri before movement in the finger tapping task,
which means neural activations during periods of no movement could potentially
include relevant information for motor decoding. While post-movement activity in
postcentral gyrus can be attributed to sensory feedback and proprioceptive infor-
mation, pre-movement activity in this area could arise from an ‘efference copy’
signal sent from premotor and motor cortices during motor planning [74–78]. If
such information is sent to somatosensory cortex before movement onset, it may be
possible to leverage the somatotopic organization in S1 to predict finger movements
before movement onset, or even without movement execution in the case of patients
with deafferentation of S1.

6.3 Future Directions

Further control of complex upper limb movements is necessary for restoring motor
function to patients with upper limb paralysis. Combined control of arm, hand, and
finger movements would allow patients to perform complex actions relevant to
different goals or ADLs. Complete neural control of complex movements would
require long-term implantable electrodes and possibly frequent re-training periods.
Modeling movements of individual parts of the arm and hand, such as individual
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fingers, as components of movement synergies could improve patients’ abilities to
accomplish functional tasks. Furthermore, a more expansive coverage that includes
other cortical areas also involved in motor planning would provide additional
control of goal-directed movements, but the network connections involved in
planning and executing such movements are still being studied. In the meantime, an
alternative may be to develop shared-control BMIs, which use a combination of
neural signals and intelligent robots to increase the functionality and usefulness of
BMIs. One such instantiation of a semi-autonomous BMI incorporated eye tracking
and computer vision with neural signals to initiate reaching and grasping of objects
using the MPL [72]. Another study demonstrated shared offline control of 3D
endpoint trajectories using neural signals and dynamic movement primitive models
of common trajectories [79]. With these systems, neural control would either be
used to initiate or modify machine-calculated movement trajectories without relying
completely on noisy neural signals for movement execution.
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Motor Imagery BCI with Auditory
Feedback as a Mechanism for Assessment
and Communication in Disorders
of Consciousness
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Abbreviations

BCI Brain-computer interface
MCS Minimally conscious state
CRS-R Coma Recovery Scale Revised
VS Vegetative state
EEG Electroencephalography
SMR Sensorimotor rhythms
MI Motor imagery
DoC Disorders of consciousness
WHIM Wessex Head Index Measurement

1 Introduction

Patients with disorders of consciousness (DoC) are difficult to assess both because
of their unpredictable fluctuation of awareness and the current adopted scales,
which have a poor prognostic reliability [1]. Individuals who are in a minimally
conscious state (MCS) or vegetative state (VS), or with unresponsive wakefulness
syndrome (UWS), may be incapable of providing volitional overt motor responses.
This has resulted in a rate of 43% of patients who were diagnosed as having VS
being reclassified as MCS after further assessment [2]. The relatively few patients
with these disorders who can alter their brain activity in response to stimuli or
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commands are potentially capable of providing information about their state and
condition through direct measures of brain activity using a brain-computer interface
(BCI). Such potential may enable adoption of more efficient devices to detect
awareness in these patients and enable them to participate actively in decision
making. These methods can include equipment that may be incorporated in reha-
bilitation programs and daily life.

EEG μ (8–12 Hz) and β (13–30 Hz) bands are altered during sensorimotor
processing. Oscillations in these bands are known as sensorimotor rhythms
(SMR) [3–5]. Event-related desynchronization and synchronization have been
evaluated in cognitive studies and provide distinct EEG pattern differences that
form the basis of left or right hand or foot SMR-based BCIs [3–5]. Brain-computer
interfaces bypass the normal neuromuscular communication pathways, where the
intention of the user is determined from various brain activations measured inva-
sively or noninvasively. Brain responses to external stimuli or voluntary modulation
of brain activity may provide intended communication. Brain-computer interfaces
have been evaluated in gaming, stroke rehabilitation, and by other people who have
limited neuromuscular control because of disease or injury [6–9]. Detection of
awareness based on EEG has followed BCI protocols [9–12]. People who have
DoC may achieve comprehension and follow instructions to perform motor ima-
geries by assessing the event-related desynchronization and synchronization pat-
terns or distinguishing motor imageries using EEG patterns. Sensorimotor rhythm
activations may occur in 19% of subjects who have an MCS or VS, with some
patients capable of sustained attention, response selection, working memory, and
language comprehension [11]. Real-time SMR feedback in an uncommunicative
patient with MCS may affect the awareness detection protocol, as the patient may
become aware that the motor imagery (MI) task being performed can affect the
position of a sound or visual object presented on a screen and this may be
encouraging or provide an impetus to remain attentive [9]. Visual and auditory
feedback may allow users of a BCI to see or hear the effects of their MI and enable
them to modulate or affect something external to their body without movement [13].
Feedback may motivate patients who have spinal cord injury or stroke subjects and
increase performance when learning to control a BCI [14, 15]. Real-time feedback
may encourage, motivate, and inform the user of the technology that they may be
capable of engaging the BCI by intentionally modulating brain activity.

With the present study, we showed for the first time both real-time feedback of
SMR in DoC and the use of auditory SMR feedback. Visual acuity and gaze control
of many DoC suffers may be insufficient for gaze dependent BCIs; therefore, the
presentation of auditory cues and feedback for sensorimotor BCI protocols may be
more appropriate for DoC based BCI applications.

In this chapter, we present a method for auditory feedback of SMR during MI
using a BCI framework. We present an overview of results of four patients who
have DoC, showing the ability of the systems to detect differences in binary MI
related rhythms and how feedback may influence a patient’s ability to modulate
sensorimotor activity over multiple sessions of training with real-time visual and
auditory feedback.
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2 Methods

2.1 Participants

The study included 4 subjects based in Ireland: E, a 27-year-old man who was
12 years after treatment for a juvenile posterior fossa astrocytoma and postoperative
complications that caused severe brain damage and MCS(Coma Recovery Scale
Revised [CRS-R] score, 4); J, a 53-year-old man who was 4 years after anoxic brain
injury that caused MCS (CRS-R score, 3); P, a 30-year-old man who was 4 years
after severe head trauma that caused MCS; and Z, a 31-year-old woman who was
12 months after a subarachnoid haemorrhage and seizure with possible hypoxic
brain injury that caused MCS (Wessex Head Index Measurement [WHIM], 26),
(see Table 1) [16–18]. All subjects required full assistance for all activities of daily
living. All subjects had an initial EEG-based assessment in a single session. Fur-
ther BCI training sessions were performed with participants E (19 sessions), J (10
sessions), and P (7 sessions). Initial assessments were performed in the hospital
(subjects E and Z), care home (subject P), and family home (subject J). Follow up
BCI training was performed in their family homes (subjects E and J) and care home
(subject P). Informed consent was given by the families and medical teams of the
subjects. Ethical approval was granted by the National Rehabilitation Hospital and
the Ulster University Research Ethics Committees. A summary of the patient data is
shown in Table 1.

2.2 Study Design

For awareness detection, initial EEG-based assessment involved imagined hand
versus toe movement and was performed to activate sensorimotor areas and

Table 1 Study participants E, J, P and Z summary including gender/age, injury, diagnosis, and
post injury period

Participant E Participant
J

Participant
P

Participant Z

Gender/Age Male, 27 Male, 53 Male, 30 Female, 31
Injury Juvenile posterior Fossa

Astrocytoma with
complications after
post-operative surgery

Anoxic
brain
injury

Severe
head
trauma

Subarachnoid
haemorrhage and
seizure with possible
hypoxic brain injury

Diagnosis MCS, CRS-R scores 4/23. MCS,
CSR-R
score 3

MCS Unclear, possible
MCS, WHIM score 26
(since injury)

Post injury
period

12 years 4 years 4 years 11 months
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modulate brain rhythms during 90 trials for each subject. Within-subject and
within-group analyses were performed to determine significant activations.

For BCI performance, within-subject analysis was performed in multiple BCI
technology training sessions. The training sessions aimed to improve the capacity
of the user to modulate SMR through visual and auditory feedback and to determine
whether response reliability could be reached to enable the BCI to be used as a
basic communication channel.

2.3 Data Acquisition

The study included an initial assessment and BCI phase 1 and phase 2 training
sessions. In the initial assessment and phase 1 trials, 3 bipolar EEG channels were
recorded using a mobile EEG device (g.MOBIlab, g.tec Medical Engineering,
Schiedlberg, Austria) as previously described [11]. In phase 2, 16 channels over
sensorimotor areas were recorded (g.BSamp, g.tec), digitized (cDAQ 9171,
National Instruments, Austin, TX, USA), oversampled at 2 kHz, and average
subsampled to 125 Hz. Active electrodes were used (g.GAMMAsys, g.tec). Results
from only 3 bipolar channels around electrode positions C3, Cz, and C4 are
reported for the majority of sessions. Participant J’s final two sessions were con-
ducted with a 16 channel g.Nautilus amplifier. The subjects sat in front of a laptop
computer in a wheelchair with the head held upright with a head strap, or sat in the
upright position in a bed with the head resting on a pillow.

2.4 Initial Assessment Protocol

The first repetition in the session was similar to a previously described protocol,
with MI to squeeze the right hand or wiggle the toes performed in 6 blocks of 15
trials/block (3 blocks for hand squeezing, alternating with 3 blocks for toe wig-
gling) [10]. Consecutive blocks alternated between hand and toe MI. Each block
began with visual and auditory task instructions, which were, “Every time you hear
a beep and/or see an arrow on the screen, try to imagine that you are squeezing your
right hand into a fist and then relaxing it” or the first part followed “…try to imagine
that you are wiggling your toes and then relaxing. Concentrate on the way your
muscles would feel if you actually were performing this movement. Try to do this
as soon as you hear each beep or see the arrow.” After 5 s, the instructions were
followed by the binaural presentation of 15 beep tones (each tone, 600 Hz for
60 ms; time between tones, 1 to 2 s, time chosen randomly) synchronized with a
cue arrow appearing on the screen (Fig. 1). After 15 trials requesting hand squeeze
or toe wiggle imagery, the block concluded with an instruction to relax. The subject
rested for 1 to 2 min before the start of the next block (Fig. 1). The protocol differed
from the previously reported protocol because instructions and cues currently were
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presented both aurally and visually [10]. Some participants closed the eyes and may
have fallen asleep after the first block. For the remaining rounds a member of the
research team observed the subject and provided verbal instructions “imagine
squeezing the right hand” (or “imagine wiggling the toes”) when the subject
appeared to be disengaged or asleep.

2.5 Real-Time Visual Feedback During Initial Repetition

Feedback is necessary to improve sensorimotor learning to control a BCI that is
based on SMR [14, 15]. Subjects had fluctuating alertness and wakefulness but
frequently closed their eyes. Real-time feedback was provided to gain and maintain
the attention of the participant. Feedback presented in the form of a game was used
in this instance to engage the participant and to add interest to the often tedious task
of MI training.

2.6 Additional Assessment

After the first repetition of 6 rounds, the EEG data were analysed and
subject-specific parameters were selected to enable discrimination of the two MI
tasks (hand and toes) using EEG. Subject E participated in feedback experiments
using a ball-basket model (See Fig. 2). The experiment included 60 trials in which
the subject was asked to direct a ball into 1 of 2 green target baskets that were
positioned on the left or right at the bottom of the screen. The ball fell continuously
for 3 s and could be directed to the left with imagery to wiggle the toes or to the
right with imagery to squeeze the right hand. After a brief rest, another feedback
experiment was performed with a spaceship that moved on the screen to the left or
right using MI to dodge asteroids that fell from the top to bottom of the screen (See
Fig. 2) [19]. Only subjects E and J participated in the spaceship experiment. The
subjects were given verbal instructions about how to control the feedback; during
the initial 4 trials and periodically during each repetition, attentiveness was
encouraged by prompting the subject verbally about the correct MI required.

Fig. 1 Initial assessment sessions for subjects with disorders of consciousness. a Timing of initial
assessment trials. b Structure of blocks in initial assessment
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2.7 Follow-up Training Sessions

In follow-up BCI training sessions, subjects were asked to use left or right hand MI
to activate sensorimotor areas. Stereo auditory feedback was given as broadband
noise (1/frequency or pink noise) or a musical sample. The broadband noise con-
tained cues above and below 1.5 kHz, important in the effective localization of an
auditory event. A musical palette included 10 popular musical genres (blues,
classical, country, electronic, folk, hip-hop, Irish traditional, jazz, reggae, and rock
music). Each genre included an excerpt from a track from each of 3 artists such as
Benny Goodman, Charlie Parker, and Miles Davis for jazz music. Auditory feed-
back was provided with earphones (ER4P, Etymotic Research, Inc., Elk Grove
Village, IL, USA). Targets were presented to subjects as a spoken command (left or
right), heard in the corresponding ear. Feedback was modulated by continually
varying the azimuthal position of the sounds between ±90° using left and right
hand movement imagination. Visual feedback was given (subject E only) with the
ball-basket and spaceship models. For feedback, the subject was given verbal
instruction about how to modulate the feedback signals, and the subject was
prompted verbally periodically during visual feedback with the correct MI to per-
form and ensure awareness of the target during periods of eye shutting or visual
acuity degradation. Trial timing was standardized with a cue at 3 s and feedback
from 4 to 7 s for all feedback types (See Fig. 2).

Fig. 2 Trial timing for training sessions with a brain-computer interface. a Visual cue training
with no feedback. b Visual ball and basket feedback. c Visual spaceship game training. d Auditory
feedback with pink noise. e Auditory feedback with musical samples
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Subject E participated in visual and auditory feedback phases. Subjects J and P
participated in an auditory feedback phase only. For subject E, the feedback visual
phase (visual cues, feedback, and occasional verbal prompts) was performed
6 months after initial assessment. The stereo auditory feedback phase occurred
6 months after the visual feedback phase for subject E, 6 months after initial
assessment for subject J, and 8 months after initial assessment for subject P. There
were ≤ 8 sessions (1–1.5 h with 2–4 repetitions each; 60 trials/repetition;
8 min/repetition), with 1 to 2 sessions per day (morning and/or evening) in each
phase, and each phase was performed during 1 week of intensive sessions.

2.8 Data Analysis

After the initial assessment without feedback, a leave-1-out cross validation was
performed on the 6 rounds on each repetition using a BCI signal processing
framework that involved the automated selection of subject-specific frequency bands
(range, 1–30 Hz) and neural time-series prediction preprocessing using neural net-
works in conjunction with regularized common spatial patterns. Features were
derived from the log-variance of pre-processed or surrogate signals within a sliding
window (2 s) and classified using linear discriminant analysis. The operation of the
classification step can be simplified as being that of a transform of quantitative input
data to qualitative output information [20]. Discriminant analysis and classification
are multivariate techniques concerned with separating distinct sets of objects (fea-
tures or observations) and with allocating new objects (features or observations) to
previously defined groups [19, 21–23]. The mean classification accuracy was cal-
culated across the data folds at every sample in the trial to obtain a time course of
accuracy across the trial, from imagery onset to completion. Baseline (1000 ms
before cue at onset) performance was compared with peak mean classification
accuracy. The discrimination accuracy of two baselines before the cued MI period
also was assessed. There was no distinction expected in the EEG or correlation with
the cue that occurred at 3 s. The two baselines were compared to show that differ-
ences between two points of sensorimotor activity with no event-related activation
were insignificant, as expected when the subject was not performing MI. These
supported the evidence that the observed activations were not obtained by chance.
Nonparametric Wilcoxon signed rank test was used to assess the significance of
activations. Baseline or chance performance was 50 to 60% for the 2 classes (hand
versus toe or left versus right hand movement). During the feedback session, the first
repetition in each session used the BCI classifier from the previous day to provide
feedback or was a calibration repetition with no feedback; the first repetition each
day was used to calibrate a new classifier. In some first repetitions in each session
that were earlier in the training phase (i.e., in the first 2–3 sessions), no feedback was
given; this enabled the user to focus solely on repeating the imagery to aid in
producing a better classifier for the feedback repetitions. In a limited number of
cases, if the results of the newly built classifier each day were poor, as a result of poor
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data quality due to technical problems or subject inattentiveness/engagement in the
task during the first repetition, the classifier from the previous day was used for the
complete session on that day. In the initial assessment, the 6 no-feedback rounds
were used to set up the classifier. Subsequent repetitions included visual feedback or
pink noise followed by musical feedback. Analysis was performed for each repeti-
tion because different repetitions involved different feedback types, and the level of
awareness or engagement was unknown and may have varied for the subjects who
had MCS. Many trials were rejected because the head strap occasionally distorted
the electrode cap, the subject wheezed, or teeth grinding occurred; the number of
trials per repetition after artefact removal by visual inspection was reported. Sta-
tistical significance was defined by P ≤ 0.05.

3 Results

3.1 Initial Assessment

The time course of mean classification accuracy for each subject in the initial
assessment, and a feedback repetition with high mean classification accuracy,
showed an increase from approximately 50% at baseline (<3 s) toward a peak in the
event-related period (Table 2 and Fig. 3). All subjects had significant differences
between baseline mean classification accuracy (2 s) and peak mean classification
accuracy (P ≤ 0.05) in all cases where the differences between peak and baseline
(peak-baseline) range were between 15 and 45%. In contrast, the difference between
2 baseline points (1000 and 500 ms before cue) for all subjects was not significant
in all subjects and repetitions, and the difference between the 2 baseline accuracies
ranged from 1 to 18%. The peak mean classification accuracy for all subjects
exceeded the 70% criterion level normally used to determine whether a subject was
capable of using a 2 class MI BCI [24]. A group analysis comparing baseline and
peak accuracies indicated significant brain activation across all subjects (P
0.001). The time at which peak mean classification accuracy was reached was
beyond the cue time (3 s) for all subjects, indicating that it was not affected by the
cue stimulus during the feedback repetitions. The stimulus response mechanism is
normally present between 0.5 to 1 s immediately after the cue stimulus is presented.
Although the peak for subject Z was at 3.8 s, this initial assessment did not have
different cues for each class of MI (same auditory tone for toe movement and right
hand squeeze), so the stimulus responses mechanism should not influence the
accuracy in the initial assessment with no feedback. The frequency bands selected
to access differences between sensorimotor activation were 8 to 13 Hz (subject E),
8 to 25 Hz (subject J), 12 to 19 Hz (subject P), and 10 to 14 Hz (subject Z), within
the normal ranges for detection of differences in SMR oscillations associated with
the MI tasks.
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3.2 Brain-Computer Interface Training Sessions

Subjects E, J, and P participated in BCI training (multiple sessions). Subject E was
involved in phases of visual and auditory feedback. Subject J and P had partaken
mainly in auditory feedback repetitions because auditory feedback was the most
suitable for subjects with MCS. The peak mean classification accuracy in each
repetition in each session and the baseline mean classification accuracy, number of
trials, and peak-baseline showed that participants E, J and P intentionally activated
sensorimotor areas in responses to commands, producing significant differences
between baseline and peak mean classification accuracy and (in the majority of

Fig. 3 Relation between mean classification accuracy and time for subjects who had disorders of
consciousness and training sessions with the brain-computer interface system. Data shown include
the initial assessment and peak auditory feedback repetition (subject P, feedback in the initial
assessment; subjects E and J, brain-computer interface training; subject Z, no feedback repetition
participation)
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repetitions) producing accuracy above the 70% criterion level for two class BCI
(See Fig. 4). Many trials were affected by artefacts (subject E, 34%; subject J, 10%;
subject P, 2%) and were excluded from the analysis. Labels for the type of feedback
(visual: ball, space game, or auditory: pink noise, musical feedback) were noted
(See Fig. 4). The plots showed there were SMR activations during feedback with
most repetitions showing a statistically significant difference (P ≤ 0.05) between
baseline and peak mean classification accuracy (differences between 2 baselines
before cue were not significant in all repetitions except for 1 repetition for subject P
[data not shown]). For subject E, the visual and auditory feedback modalities
showed similar performance (visual, 80%; auditory, 79% [all repetitions]).

It was important to analyse peak-baseline because of the limited number of
artefact-free trials in each repetition. Visual impairment made it unclear whether
subjects were aware when the trial was ending using visual feedback, especially for
the spaceship game in which the spaceship was on-screen continuously and could
be modulated throughout the repetition. In addition to the lack of perceivable visual
feedback, visual impairment may have caused reduced baseline versus peak
accuracy differences during the visual feedback phase for subject E, but an
improvement in accuracy is evident in the auditory feedback phase. Subject J
showed consistent activations of sensorimotor areas in all sessions. Subject P was
less engaged in the fifth and later than earlier sessions, and a family member noted
that he had been physically sick during that period. The results indicated that peak
accuracy did not change, but baseline accuracy increased (reason unknown) and
caused the detected activation to be insignificant for all repetitions during session 5,
6, and 7 (session 7 was stopped after an initial assessment to determine interest in
participating in the session, but the EEG response suggested there was no attempts
been made to perform MI). Subject E, who had participated the longest in the study,
produced the highest peak performances of all subjects and achieved most
results >80% after session 8, suggesting that the subject was improving in per-
formance and sensorimotor learning occurred.

Figure 5 shows topological plots of event related desynchronization/
synchronization ERD/S in the most discriminative frequency band for initial
assessment (squeeze right hand versus wiggle toes MI) (all subjects) and for a
feedback run (hand versus foot MI) for subject E, J and P. For subject E, there is
clear discrimination in the μ band during initial assessment, however ERS during
right hand MI appears ipsilateral to the movement, which is unusual. In the later
feedback session, there is clear ERD in the μ band in the contralateral hemisphere
for right hand movement with slight ERS in the ipsilateral hemisphere. There is
slight ERD observable in contralateral hemisphere for left hand movement.

Subject J exhibits clear ERS in higher μ and lower β band contralateral to right
hand movement and in central midline for foot movement. ERS in these bands in
indicative of activation in regions of the motor cortex that is consistent with other
able-bodied studies involving these MI types. During a feedback run, subject J
shows clear ERD across μ and lower to central β bands during left hand MI in
contralateral motor areas and ERS in these bands in the ipsilateral hemisphere
during right arm movement. These findings are again consistent with able-bodied

Motor Imagery BCI with Auditory Feedback as a Mechanism … 61



A: Participant E Visual Feedback

B: Participant E Auditory Feedback

C: Participant E Auditory Feedback

D: Participant J

E: Participant P

Fig. 4 Relation between baseline and peak mean classification accuracy, peak-baseline accuracy,
number of trials and repetitions in subjects with disorders of consciousness and training sessions
with the Brain-Computer Interface system. Data include peak, baseline (1000 ms before cue),
baseline-peak mean classification accuracy from leave-1-out cross validation, number of trials in
each repetition after artifact rejection, and type of feedback presented in each repetition
(***P ≤ 0.005; **P ≤ 0.05; *P ≤ 0.1). a Subject E results from visual feedback sessions;
b Subject E results from auditory feedback sessions; c Subject E results from auditory feedback
sessions (last phase); d Subject J all sessions; e Subject P all sessions
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Subject E Subject J

Subject P Subject Z

Fig. 5 Topoplots showing event-related desynchronization and synchronization in the most
discriminative frequency band for initial assessment (squeeze right hand versus wiggle toes motor
imagery) (all subjects) and for a feedback run (hand versus foot motor imagery) for subject E,
J and P
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results and provide clear indication of normal cortical activation in the MCS.
Participant P has midline ERD upper μ/lower β during wiggle toes which is normal,
with ipsilateral ERD and contralateral ERS in these bands during squeeze hand
imagery in the initial assessment which is unusual. However, during later feedback
runs, the subject shows upper μ/lower β ERD in the contralateral hemisphere and
ipsilateral ERS during right hand MI. Participant J shows contralateral ERD and
ERS in the upper μ band in the contralateral hemisphere during initial assessment of
squeeze right hand imagery and midline ERS during wiggle toe, which is consistent
with expected spatial activation and somewhat consistent with anticipated spectral
changes during these MI tasks.

4 Discussion

The evidence obtained from the initial assessment suggests that these subjects who
had MCS were aware of themselves and the environment. BCIs use self-directed
neurophysiological processes such as the activation of the sensorimotor cortex
during MI or attempted motor execution. The results observed in the initial
assessment involving a cue, with instructions presented visually and verbally,
suggest that subjects had the capacity for sustained attention, response selection,
working memory, language comprehension, and visual and/or auditory acuity. The
initial assessment results suggest that EEG-based BCI may complement current
awareness assessment tests to gain a more detailed understanding of the level of
awareness in patients who have a DoC. Attaining information using BCI also may
clarify initial diagnosis by complementing existing assessments that involve overt
motor responses. The present BCI setup required only 3 EEG channels, mobile data
acquisition equipment, and automated analysis and feedback software. Therefore, a
bedside assessment may easily be performed in <1 h by a patient’s medical team.
The EEG recording equipment is decreasing in cost, and medical teams may be
easily trained to perform these assessments. After the initial assessment, subjects
seemed to realize that they could modulate feedback, and they seemed to increase
their attentiveness and level of arousal, which was evident in their demeanour. The
realization of the possibility of affecting a visual object or sound external to the
body without movement, especially after being unable to do so (for 12 years in
subject E), may improve a person’s psychological well-being. The subjects were
more alert during audio than visual feedback, and audio trial cues were clearer with
the musical palette apparently aiding alertness. This was noted anecdotally by
researchers and family members of the subjects. The within-subject and
between-subject differences in performance during the musical and broadband
(pink) noise feedback were insignificant. Therefore, although pink noise is easier to
localize than music that includes multiple instruments and vocals, the variety of
sounds in the musical feedback did not adversely affect performance. However, the
presentation of pink noise may be less appealing than music. The peak perfor-
mances during auditory feedback for subjects E and J were obtained with musical
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feedback, which suggests that musical feedback may help increase performance
with SMR BCI control. The awareness assessment, MCS baseline versus peak
difference, for subjects E and J suggested that their awareness was beyond the MCS
and above the 70% accuracy criterion for the discrimination of 2-class MI BCI. The
present results confirm the feasibility of using musical stereo audio feedback in
SMR BCIs, especially for patients who have visual impairment or DoC, and it may
be possible to use sound spatialisation techniques and 3-dimensional sound to
improve this experience [25].

The study aimed to assess whether BCIs could provide a communication channel
for subjects who have DoC. The results showed that all subjects could be trained to
operate a BCI. However, to ensure reliability of the response, the aim is to continue
the study in an attempt to train subjects to perform consistently at >85% accuracy
prior to introducing a binary (“yes or no”) response question system for MCS
subjects. The consistent activation of motor areas observed suggests that sensori-
motor learning in multiple sessions with auditory feedback may enable commu-
nication for users who have DoC. However, 15 to 30% of BCI users may not
achieve the criterion level of control (70% accuracy) [26]. In addition, mean EEG
amplitude, even in the best trained subjects, may vary over time and between
sessions, and consistent performance may be difficult to attain [27]. Therefore,
expectations about outcomes with BCI training programs may be guarded [28].

Subjects may become disengaged, as was the case with subject P, and not all
repetitions may show significant activations. The experimenter consistently
attempted to maintain dialogue and provide encouragement to all subjects and
engage family members and/or carers in an interactive discussion to ensure main-
tenance of subject willingness to improve at using a BCI. At the end of the sessions,
it was not possible to detect a consistently reliable single-trial response in all
subjects, but it was possible to determine willingness to participate by assessing the
data during the repetition or trials. For example, in session 7 for subject P, after no
clear observation of activations during sessions 5 and 6, it was decided to ask the
subject to perform the MI during the first repetition only, if he wished to continue
with the session; when activation was not observed, the session was terminated.
Patients who have minimally conscious state may have fluctuations in awareness.
The BCI training results may not show activations when subjects are less engaged
or aware, and the BCI session may help assess fluctuations in awareness.

4.1 Study Limitations

Limitations in the present study included the limited number of subjects, and there
are a limited number of studies that have reported SMR and BCI-based assessment
in DoC patients [10, 12]. Family members and care teams for all subjects consented
to participate in further BCI training sessions, and we aim to recruit additional
subjects for future study. It was difficult to use a consistent format for experiments
and obtain useful data because of the new technology available for this study
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population, resources required, challenges in recording EEG from nonresponsive
individuals, and fluctuations in subject awareness. Study subjects were recruited at
different stages of the research during the evolution of the BCI training research
protocol, based on experiences gained in working with subjects who had DoC.
Although the initial assessment was consistent for all 4 subjects, the sequence of
BCI training sessions for subjects E, J, and P had subtle differences. Subject E
participated in a visual feedback phase before the auditory feedback phase began;
subject J and P began BCI training with audio after brief initial visual feedback. In
addition, the variation in the type of audio feedback (pink noise or music) limited
the identification of the best type of audio feedback. A variety of feedback during
training may help attentiveness and interest but may affect the subject’s ability to
learn from the feedback. In another study of able-bodied individuals, there was no
difference in performance when presenting visual and auditory feedback or when
presenting different types of audio [16]. Future study may determine the best
feedback presentation methods and timing to adapt the BCI classifier [29]. The
present study may enable a more consistent approach in future studies that evaluates
the effects of audio feedback on BCI performance in DoC and classifier adaptation
or calibration.

Another study limitation was the small number of sessions for each subject.
Training durations from months to years have been reported for different patient
groups, e.g., a tetraplegic patient learned to control a hand orthosis after 62 sessions
[30]. In comparison, the results produced by subjects in the present study are
promising and consistent with performance of able-bodied subject investigations
with similar protocols and number of sessions [16]. Motor imagery strategy may be
changed to maximize performance, one approach may not be optimal for all sub-
jects, and modulating sensorimotor cortical rhythms may require motor learning,
time, and persistent effort [2]. In the present study, we did not assess the most
appropriate MI for each individual or a larger number of electrodes to assess the
brain areas that were most activated during MI, and this may be addressed in future
studies.

5 Conclusions

In patients who have MCS, the true level of awareness may not be known because
the patient may be unable to provide overt motor responses. The present EEG-based
assessment showed that subjects attempted to activate sensorimotor areas, and this
suggests that these subjects had awareness and cognitive ability. Therefore, diag-
nosis of these patients may be improved with an EEG-based assessment, and
individuals who have DoC may have the capacity to learn how to modulate brain
activity and communicate using BCI. Further research may increase the reliability
of EEG-based BCI and reduce training times to enable a binary response (yes or no)
to questions and enable communication for patients who cannot communicate with
gestures such as an eye gaze or thumb movement.
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Moreover, a number of testimonies from family members suggests that, as the
results of this research provided better evidence of awareness in the patients, this
has had an impact on care and treatment plans. These testimonies also indicate that
there may be therapeutic values and stimulation gained by patients as they attempt
to activate cognitive process during MI and whilst listening or observing feedback
based on their efforts. Subjects therefore might benefit from prolonged use of BCI
for stimulation and brain engagement as well as communication. With the auditory
online real-time feedback setup, evaluated with DoC in research studies preceding
this chapter for the first time [10, 13], MI BCIs are broadened to those with visual
impairments who may not be capable of seeing targets and feedback presented
visually. This is particularly important for DoC based applications of MI BCI, as
visual acuity and gaze control capacity is often unknown as the eyes closed con-
dition is prevalent in DoC.

It is recommended that online real-time feedback be provided in studies which
involve MI paradigms and DoC patients. In future work, we aim to evaluate
SMR BCI in a larger cohort as an assessment tool for use in diagnostic settings and
for establishing communication with unresponsive patients. The therapeutic bene-
fits of prolonged training of intentional control by brain activity through motor
imagery and stimulation provided by the feedback during the process of learning to
modulate SMR will also be investigated.
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Brain-Computer Interface Controlling
Cyborg: A Functional Brain-to-Brain
Interface Between Human and Cockroach

Guangye Li and Dingguo Zhang

Abstract A kind of cyborg was developed by surgically linking a portable
microstimulator with the nerves of antennas of a live cockroach. Through applying
specific micro electrical stimulation, the cyborg could be remotely controlled to
make left and right turns. The motion intention could be retrieved from the human
brain via brain-computer interface (BCI). Steady-state visual evoked potential
(SSVEP) based-electroencephalography (EEG), as a robust BCI, was used to
translate human intention. By merging the technologies of cyborg and BCI, it was
possible to guide a live cockroach with human brain. Experiments with different
paradigms were designed and conducted to verify the performance of the proposed
system. The experimental results showed that the average success rates of both
human BCI and cyborg reactions in a single decision were over 85%. The cyborg
could be steered successfully via the human brain to complete walking along pre-set
tracks with a 20% success rate.

Keywords Brain-computer interface ⋅ Electroencephalography ⋅ Steady-state
visual evoked potential ⋅ Cyborg navigation ⋅ Vockroach

1 Introduction

A cyborg is an organism with both biological and electronic parts. A variety of
cyborgs or biobots were developed in recent years, such as rats, moths, cock-
roaches, and beetles [1–5]. Among these achievements, researchers had already
been able to steer the animals or insects manually with the help of a computer or
remote controller. Unlike previous work, we want to move one step forward by
achieving the target of navigating a cyborg with human intention directly. To build
a system that enables real-time control of a cyborg with human brain, at least two
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parts need to be set up. One part is a subsystem used to realize the functional control
of a cyborg, and the other one is a subsystem used to translate the human brain
signals. Fortunately, it’s possible to realize such two key parts with current
technologies.

Neural electrical stimulation was widely used when developing cyborgs based
on the increasing understanding of flight dynamics and the neurophysiology of
animals or insects [6]. We aim at developing a kind of cyborg based on the
cockroach, due to its robust performance and easy implementability. The cockroach
antennas used for navigation during walking are important sensory organs that can
generate multiple sensations (such as tactile, thermal, humidity and olfactory) [7].
When sending specific micro-electrical pulse trains through the antenna nerve,
stimulation information will activate the descending mechanosensory interneurons
(DMIs) (interneurons with the largest caliber axons descending to thoracic levels
from the brain) and subsequently activate the thoracic motor centers, then evasive
behaviors such as turning will be elicited [8–10]. Therefore, a neural interface used
to control the walking direction of a cockroach with a micro electrical stimulator
needed be developed in this work.

Brain-computer interfaces (BCIs) can help people communicate with the
external world through measuring and translating brain activities without involving
muscular movements or peripheral nervous system [11]. In this study, we choose
the steady-state visual evoked potential (SSVEP) based BCI to recognize the human
intention because SSVEP has high signal-to-noise ratio (SNR) and information
transfer rate (ITR) and is currently safe, reliable, versatile and robust in the available
BCIs including invasive and non-invasive BCIs [12–15].

Based on the SSVEP-based BCI and neural stimulation technology, we build up
an all-chain wireless system that enables controlling the walking directions of a
cockroach with human brain directly.

2 Methodology

BCI Implementation. The framework of the developed system is shown in Fig. 1.
A three-state SSVEP-based BCI was used to decode the controller’s control
intention. Three flashing square blocks represented the stimulation source of
SSVEP [15, 16], which were located separately in the upper middle, lower left and
lower right on a PC screen. The flickering frequency of each block was set as 12.5,
8.33, 6.818 Hz, denoting the rest, left-turn and right-turn control commands
respectively. The human subject (controller) sat in front of the LCD screen of PC to
manage direction control, wearing a portable EEG capture device (EPOC, Emotiv
System Inc.) (Fig. 2a). Because the SSVEP mainly appears in the visual cortex,
EEG signals from four channels (locations PO3, PO4, O1, O2 according to the
international extended 10/20 system, with two CMS/DRL reference electrodes
placed on C5/C6) were used for analysis. All electrode impedances were kept
below 10 kΩ, and the sampling frequency was 128 Hz. A notch filter at 50 and
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60 Hz was applied to process the EEG signals and the band pass is set to 0.16–
43 Hz.

Cyborg Implementation. A cyborg cockroach acting as a receiver was devel-
oped after simple surgical process by the experimenters (Fig. 2b). The live
Madagascar hissing cockroaches (Gromphadorhina portentosa) were adopted to
make the cyborgs, since they are strong and large (about 50–80 mm) and have a
slow walking speed. We surgically installed a microstimulator (Roboroach, v1.1b,
Backyard Brains Inc. US) in the cockroach by inserting three tiny silver needles
(left, right, ground electrode, 0.06 mm bare/0.08 mm coated) into the cockroach
antennae (left, right) and the first segment of the thorax separately. The electrical
stimulation pattern for the cyborg was a monopole square pulse with 1.5 V, 50 Hz,
50% duty cycle, and 500-ms pulse width. This configuration could generate a
modest and proper reaction of the cyborgs, and therefore guaranteed the good
online control performance.

Online Communication. Two custom software tools were written for the sys-
tem. One was the SSVEP program, which included data acquisition, online anal-
ysis, and graphic user interface. The other software tool was used to realize the
real-time communication between the SSVEP program and the microstimulator
placed on the back of the cyborg.

Video Capture. We utilized a wireless video capture module in the SSVEP
program to visually obtain the real-time response of the cyborg, and projected it to
the LCD screen for the human subject (Fig. 4). Therefore, a closed-loop control
system was established as shown in Fig. 1.

Experimental Paradigm. Three cyborg cockroaches were made, and three
healthy human subjects were recruited. In each experiment, a cockroach was placed
at a distance of about 1.5 m from the host computer. The human controller took

Fig. 1 System framework. Four modules are included in the system: (1) the EEG acquisition
module is used to obtain the brain signals from the human; (2) the host computer runs the SSVEP
program and acts as an integrated platform; (3) data travels to the cyborg cockroach and its
USB-based adapter; and (4) the wireless video capture module is used to transfer the real-time
images of the cyborg to the LCD screen of PC for the human
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online control of the cyborg to complete walking along the presetting tracks after
the cyborg started to move forward from the start point of the track with a certain
speed range (1.5–5.5 cm/s). Ten online-control trials were conducted for each
subject and cyborg (Fig. 3). Before online control, each subject completed a 120-s
training run first to optimize the classifier of SSVEP. A 120-s rest was given
between two consecutive trials to minimize the effects of fatigue from both the
humans and insects. In addition, experiments for control groups were also con-
ducted in this study. Three cyborgs walked along the designed track freely without
control from any human subject for ten trials separately in control groups. Two
kinds of tracks were designed and tested for the system in the experiments: S-shape
and obstacle-avoidance tracks.

The first track used in the online control experiments was an S-shape track
(135 mm (W) * 750 mm (L)) (Fig. 4a). Completing walking along the S-shape
track without going outside of the boundary was counted as a successful trial in the
online control experiment.

The other one was an obstacle-avoiding track (270 mm (W) * 750 mm (L))
(Fig. 4b). Controllers performed the online control of the cyborg to finish walking
along the track from one side to the other side without crossing obstacles (red dots)

Fig. 2 Experimental setup. a A subject (controller) wearing a portable BCI device performed the
experiment to acquire the SSVEP signals. b A cyborg cockroach (receiver) was made successfully
after surgery

Fig. 3 Experimental paradigm. Controllers manage online control of different cyborgs with two
different tracks (S-shape track and obstacle-avoidance track)
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on the sheet. Walking through the entire obstacle-avoiding track without touching
any obstacles was counted as a successful trial.

Besides the above single-control experiments, we also conducted a double-
control experiment to primarily explore the possibility of applying the designed
system to further entertainment in daily life (Fig. 5). In this experiment, two human
subjects each took control of a cyborg to complete walking along the S-shape track
(the same size as in single-control paradigm) in the form of competition. Two
cyborgs started moving forward in the same time, and between the two controllers,
the one who navigated the cyborg to walk inside the track and reach the finish line
first won the trial. Ten trials in total were completed in this experimental paradigm.

3 Results

During the online control experiments, the cyborgs could produce quick responses
to the applied invasive neural stimulation, and the time measured from sending a
command from SSVEP to the completion of the cyborg’s reaction was about
772 ms in the present system. The cyborgs showed accurate response to the applied
stimulation in most cases as well, and the mean response accuracy to the control
commands reached 89.5 ± 15%. On the human side, average classification accu-
racy of SSVEP across three subjects in training sessions reached 86.0 ± 10.4%,
indicating that both the BCI and neural stimulation subsystems in this study have
the possibility to be used in an online control system.

Fig. 4 Online control
experiment. a One subject
controlled a cyborg to walk
along the S-shape track with
brain signals. b One subject
controlled a cyborg to walk
along the obstacle-avoiding
track with brain signals
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The experimental results showed that all subjects could navigate all cyborgs to
accomplish walking along both the different two tracks. The mean success rate for
the online experiments achieved with this system was 20% for the S-shape track.
Although not especially high, it was significantly higher than the value achieved in
the control groups (0%) (t = 3.464, P = 0.0085). When using the obstacle-avoiding
track, the success rate of online control could reach 40% (Fig. 4b). A demonstration
video of a successful navigation of S-shape track is available through the link
(https://www.youtube.com/watch?v=k5t6WkTkJkA).

An entertainment contest (double-control experiment) was also conducted, in
which two persons competed to control two cockroaches, respectively. In this
interesting paradigm, the success rate of navigation for each subject was the same as
that in the single-control experiment (∼20%). If both subjects were required to
completely and successfully navigate in the same trial, this formidable task was still

Fig. 5 Double-control experiment. In this contest, two human subjects navigated two cyborgs to
walk along the two S-shape tracks, respectively. The competition aimed to show which one was
the first to reach the finish line
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possible, but the average success rate was very low (∼5%). Generally using the
cyborgs that were more sensitive to the micro-stimulation would be more likely to
win the contest.

4 Discussion

We presented a feasible method to navigate a cyborg with human brain in this
study. The human subjects could successfully steer cockroaches to make desired
turns with an SSVEP-based BCI and micro invasive neural stimulation. Using only
4 channels on the scalp of visual cortex with a portable EEG device, the SSVEP
achieved high classification accuracy. However, misclassification appeared fre-
quently in the SSVEP during the shifting period from one intention to another
intention. Therefore, developing a program to detect transitions of the EEG signal
to different frequencies before classification in further studies may help the SSVEP
achieve more accurate classification and can be used in the asynchronous BCIs as
well.

The performance of the online control varied among subjects and cyborgs. The
biological factors of human and cockroaches affected the success rate of the present
system, which actually cannot be easily solved by current technologies. Latif et al.
[17] tried to steer a cockroach manually to walk along an S-shape line and finally
achieved a 10% success rate. However, navigating a cyborg successfully with
human brain signals in this study is much more challenging, which requires con-
tinuously high level of accuracy from both sides of “controller” (human) and “re-
ceiver” (cyborg), and calls for constantly quick response from both human intention
recognition and cyborg reaction as well.

From another point of view, some other factors related to the online control task
may influence the control performance as well, such as constraint level of the tracks
used, BCI skills and experience from the human and so on. The result shows that
the success rate of online navigation increases from 20 to 40% when switching the
S-shape track to the obstacle-avoiding track that allows more freedom of control. It
demonstrates well that the task and experimental paradigm can also affect the
success rate.

All these factors account for the success rate, which is not high enough even
though both the “controller” and the “receiver” have a relatively high accuracy of
information translation for a single decision. The double-control experiment is very
interesting, but this protocol, which requires two human subjects to control two
cyborgs to hit the finish line in sequence, is a rather high standard in current BCI
applications. It is more complicated than the single-control experiments, and we
will go on exploring this issue in future study. To some extent, the performance of
online control with current system is reasonable and instructive.

At present, we are developing a new type of wireless microstimulator with
multiple stimulation channels and modes, which can technically contribute to the
improvement of the control performance as well.
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This work has realized the idea on utilizing the brain signals to steer a cyborg
continuously for the first time. The idea may be used for detection in complex and
dangerous environments in far future. Most importantly, this study also succeeds in
building up an embryonic virtual brain-to-brain interface (BBI) to functionally
transfer information from one brain to another [18–20]. With nogoing efforts from
researchers, we believe that more modalities of both BCI and cyborg technologies
will be developed and used in a variety of ways in the future.
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Recovery of Brain Function
by Neuroprostheses: A Challenge
for Neuroscience and Technology

Roni Hogri, Simeon A. Bamford, Paolo Del Giudice and Matti Mintz

In a series of studies, we demonstrated a brain-computer interface (BCI) system in
which a disabled cerebellar network in rat’s brain was replaced by a biomimetic
synthetic model that reliably recovered the motor learning function of the cerebellar
network [34, 21]. While we proved feasibility by managing some neuroscientific
and methodological challenges, this project was critically suggestive of the grave
challenges expected on the way to reach a level of a clinically relevant neuro-
prosthesis. In this chapter we briefly describe the cerebellar neuroprosthesis and
discuss some of the generic neuroscientific and technological challenges on the way
to developing fully functional neuroprostheses.
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1 The Cerebellar Neuroprosthesis

The cerebellum is well-known for its critical role in the learning and execution of
precisely-timed motor commands, and deficits in cerebellar function may lead to
severe impairments in coordination, balance, and procedural memory, to name a
few [38]. One of the most commonly used tasks for assessing cerebellar learning
and motor control in both humans and animals is the eyeblink conditioning task
[1, 26, 41, 47]. In this task, the subject is presented with 2 consecutive stimuli,
which are separated by a fixed short interval—a benign conditioned stimulus
(CS, e.g., a tone), followed by an unconditioned stimulus (US, e.g., an aversive
airpuff directed at the cornea) which elicits a reflexive blink—the unconditioned
response (UR). Following repeated CS-US pairing, the subject acquires a condi-
tioned response (CR)—a blink elicited by the CS. In the well trained subject, the
timing of CRs is stabilized such that the eyelid is fully closed at the time of
incoming aversive US, thus protecting the organism’s cornea. However, if the CS is
then presented repeatedly without being followed by the US, the CR is eventually
extinguished, and the CS ceases to elicit an eyeblink-CR.

Our goal was to test the feasibility of replacing the cerebellar circuitry necessary
for the acquisition and extinction of eyeblink CRs with a closed-loop neuropros-
thesis that would include the basic components of the anatomy and physiology of
the biological system (Fig. 1). As a test preparation, we chose anesthetized rats in
which motor responses are absent, and cerebellar learning is not normally evident.
Recording electrodes were implanted in the brainstem precerebellar nuclei through
which the CS and US signals are conveyed to the cerebellar cortical Purkinje cells,
via the parallel fibers and climbing fibers, respectively. The raw neurophysiological
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signals recorded from the precerebellar nuclei were then fed into a VLSI chip,
which extracted the relevant sensory CS and US signals and conveyed them to the
artificial cerebellar model (Fig. 1c). Stimulating electrodes, conveying the motor
signal from the output of the cerebellar model, were implanted in the brainstem final
motor output pathway by which the muscles involved in producing eyeblink-CRs
are controlled (Fig. 1a, b).

2 Reduction of the Cerebellar Network
to a Computationally Workable Model

Given the modest aims of a feasibility study, modeling of the cerebellar network
was constrained to include only components that are essential for conditioning and
extinction of eyeblink-CRs. Included were components that control the amount of

◀Fig. 1 Overview of cerebellar neuroprostheses. a–d General system overview. a Brain-
stem-cerebellum input and output pathways underlying eyeblink conditioning: The pontine
nucleus (PN) and inferior olive (IO) relay CS and US to the cerebellum, respectively. CRs are
relayed from the cerebellum, via the red nucleus (RN) to the motor facial nucleus (FN) which
elicits a blink. b Neural circuitry schematics. Arrows and bars represent excitatory and inhibitory
synapses, respectively. GC, granule cells; PU, Purkinje cell; IN, inhibitory interneurons; DN, deep
cerebellar nuclei. Convergence of CS and US signals on a PU causes long term depression
(LTD) at the GC-PU excitatory synapse (dashed rectangle); if only the CS signal arrives at the PU
there is long term potentiation (LTP). PUs regularly inhibit DN neurons, and DN disinhibition
elicits a CR via the FN and also inhibits the IO, thus suppressing the US signal and promoting
LTP. c Brain-machine interface. Electrodes recorded CS- and US-evoked neuronal activity, which
was then relayed to a cerebellar model implemented in software or hardware. When the model
produced an output (representing DN activation), this caused the activation of a stimulating
electrode in the FN, eliciting a blink. d Illustration of the cerebellar model through two example
trials. CS detection (1) triggered a decaying PU response (2), the initial level of which was
proportional to the weight of the synthetic synapse. LTP and LTD were represented as voltage
increase and decrease, respectively. Detected CS events caused LTP, unless a US event was
concomitantly detected (3), in which case LTD occurred. In the second trial (4), the CR preceded
US onset (5); this prevented US detection, resulting in LTP. e–f Results of a series of experiments
in which the cerebellar model was implemented in an autonomous VLSI chip. e Progression of
learning across 3 rats interconnected with the VLSI chip (mean ± SEM) during 3 periods of
acquisition and extinction (each period is 1/3 of the trials in each block). CR rate increased during
acquisition and decreased during extinction, and was negatively correlated with CR onset latency
(r = −0.75, P = 0.01). Points without error bars indicate data from a single brain-chip hybrid, as
other hybrids had no CRs during these periods and were not included in calculating the correlation
of CR rate and latency. f Trial-by-trial data for one hybrid. Vertical blue, red and black lines
indicate CS onset (time 0), US onset (300 ms), and co-termination of both stimuli (400 ms),
respectively. Acquisition (top) and extinction (bottom) blocks are separated by a red horizontal
line. 1 Stimuli detections and produced CRs. Horizontal blue is detected CS; red circles are
concomitant US detections; US detections that did not coincide with CSs (red dots) did not induce
plasticity; green is evoked CRs. 2 The weight (analog voltage) of the synthetic GC-PU synapse
dropped gradually during acquisition, and stabilized from around trial 80 onwards; in the
extinction block, it rose back to its maximum value within 15 trials
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paired CS-US trials required to reach the asymptotic plateau of the learning curve
and those that progressively shorten the delay and finally stabilize the timing of the
eyeblink-CRs to coincide with the incoming US. Defining such minimal func-
tionality of the model was instrumental in setting the inclusion/exclusion criteria for
the many components of the cerebellar network. In practical terms, it helped prune
the vast available data to enable biomimetic bottom-up modeling of cerebellar
anatomy and top-down modeling of cerebellar physiology. The excitatory parallel
fibers-Purkinje synapse was modeled as a site of LTD-plasticity in response to
paired CS-US trials and LTP-plasticity in response to CS-alone trials [23, 29, 36].
Since parallel fiber activation also excites interneurons which inhibit Purkinje cells
[13], the incoming CS signal had both excitatory and inhibitory effects on the
modeled Purkinje cell. Thus, progress of LTD along paired CS-US trials was
translated to progressive shortening of the Purkinje excitatory response to the CS,
followed by a pause in Purkinje cell firing (Fig. 1d). The synaptic connection
between mossy fibers and cerebellar deep nuclei (DN) neurons was excluded from
the model, reasoning that plasticity in these synapses is insufficient for achieving
precisely-timed motor responses—a task that depends on the cerebellar cortex [27].
Since DN activity is controlled by inhibitory drive from Purkinje cells, DN response
to CSs was conceptualized as a mirror-pattern of the Purkinje cell response, i.e.,
paired CS-US trials resulted in progressive shortening of DN inhibitory response
followed by excitation, activating the motor pathways and eliciting an eyeblink-CR
[19, 35, 44]. Therefore, the DN was not explicitly modeled; instead, the weight of
the parallel fiber-Purkinje synapse at the time of CS detection determined the
occurrence and latency of the electrical stimulation of the motor pathway, thus
generating the eyeblink-CR. Communicated through the DN-IO GABAergic
pathway, DN excitation also triggers inhibitory gating of the IO. When the DN
excitation adaptively precedes the US onset, this gating prevents the US signal from
arriving to Purkinje cells through climbing fibers [5, 24, 37]. Since, in this scenario,
the Purkinje cell only receives the CS signal but not the subsequent US signal in a
paired CS-US trial, the parallel fiber-Purkinje synapse undergoes LTP instead of
LTD. To model this phenomenon, the neuronal signals from the precerebellar IO
nucleus were blocked from entering the cerebellar neuroprosthesis during the
electrical stimulation of motor pathways.

The S/N ratio of the CS signal is enhanced by filter-like operation of the cortical
granule cells [2]. This mechanism was excluded from the model, since it would
require recording separate mossy fiber inputs from many single granule cells, which
would be implausible in vivo using current technology. Instead, detection of the CS
was achieved through a detection algorithm applying signal processing engineering
principles. The variety of inhibitory interneurons was not explicitly modeled,
mostly since their contribution to cerebellar learning is currently not well under-
stood. Moreover, available data suggest that their role is auxiliary to the primary
processes already included in our system; for example, if parallel fiber-Purkinje
LTD is compromised, LTP at parallel fiber-interneuron synapses can compensate
for it [13]. Our constrained model demonstrated the learning curve typical of
mammalian subjects and stabilization of eyeblink-CR latency corresponding to the
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timing of the expected US onset, as well as extinction of CRs following repeated
CS-alone presentations (Fig. 1e, f). Reduction of the model to its most essential
components required detailed analysis of the components contribution to the final
function of the entire cerebellar network. The implication is that biomimetic
modeling is only a viable option for brain networks for which a fairly detailed
knowledge of the anatomy and physiology is available.

3 Successive Stages of the Neuroprosthesis Testing

Development of the neuroprosthesis was intimately guided by the applicative aim
of project, which was set as recovering of a lost cerebellar learning function. This
dictated the necessity to test the functionality of the brain-machine hybrid in a
realistic biological context. Development of the neuroprosthesis triggered what we
believe, a generic process of testing of its functionality, which boiled down to
embedding the model in gradually more ecologically realist context. In the fol-
lowing we describe the successive stages of neuroprosthesis testing.

In the 1st stage, a graphical computational cerebellar model was run with digital
signals serving as the CS and US inputs and CR and UR outputs [42]. Learning
along repeated paired CS-US trials was evaluated at the circuit level as progression
of LTD at the CS-conveying parallel fiber-Purkinje synapse, CR acquisition and
adaptive shortening of the CRs delay. Adaptive CR timing was achieved by the DN
output inhibiting the US signal at the IO level, which resulted in LTP—thus
antagonizing the LTD—at the parallel fiber-Purkinje synapse. Tuning the param-
eters of LTD/LTP ratio and delay to IO inhibition produced learning curves
compatible with those of either animals or human subjects.

In the 2nd stage, the cerebellar model was interfaced with a mobile micro-robot
[20]. The CS input was a predefined distance of the robot from a vertically striped
surrounding wall acquired by the robot’s camera, calculated on-line as
spatial-frequency of the strips. The US input was the robot’s collision with the wall,
acquired by the robot’s short-range infra-red sensors. The robot was equipped with
an “innate” (i.e., hard wired) unconditioned US→UR reflex expressed as a U-turn
in response to the US-collision with a wall. Learning along free ‘exploration’ of the
arena was evaluated as gradual acquisition of collision avoidance, i.e., U-turn just
ahead of the wall. Model parameters had to be re-tuned to accommodate for the
delays and variance in CS and US detection and CR execution imposed by the
angle of the robot’s approach to the wall, physical peculiarities of the agent and the
environment, and computational delays. The robustness of the model was
demonstrated by its ability to support learning in spite of the aforementioned
inter-trial variances. The fully tuned model was subsequently embedded in a VLSI
chip, interfaced with the robot. This served to demonstrate that the chip’s limited
computational power could nevertheless support real-time learning and adaptive
behavior by an autonomous agent moving in a realistic environment. Achieving
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these milestones was essential in demonstrating the potential usefulness of the
model as a neuroprosthetic device.

In the 3rd stage, the model was returned to a software state and was interfaced
with the cerebellum of anaesthetized rats [18, 34]. Inputs to the model were signals
of auditory-CS and periorbital-US extracted from recordings in the pre-cerebellar
brainstem nuclei. The output of the model was an electrical train injected into a
post-cerebellar brainstem motor nucleus triggering eyeblink-CR. Learning along
paired CS-US trials was evaluated as acquisition of eyeblink-CRs and the corre-
spondence of CR timing with the onset of periorbital-US in the final acquisition
trials. One of the main challenges in this stage was the algorithmic detection of the
CS and US events to be fed into the cerebellar model. A central dilemma was
determining the type of neuronal signals that should be fed into the neuroprosthesis
in future studies. Some BCI studies have improved detection of sensory events by
simultaneously recording single-unit activity from multiple neurons in brain
structures such as the primate hippocampus [15] or neocortex [14, 22]. Such
recordings have obvious advantages in terms of algorithmic detection of sensory-
related events as compared to multiple-unit recordings without single-unit separa-
tion. However, simultaneous recording of single-unit activity from a large number
of neurons in the brainstem precerebellar nuclei in vivo is technically challenging,
and to the best of our knowledge has never been reported. While it would have been
feasible to record single-unit activity from a small number of neurons in our
preparation, neurons in the precerebellar nuclei are not sensory neurons per se, in
the sense that they show considerable spontaneous activity, thus hindering attempts
of real-time event detection from single neuron firing (Fig. 2). Perhaps more
importantly, single-unit recordings currently suffer from low reliability and yield
over chronic recordings lasting months or years [11], and thus make an unlikely
candidate for clinically-relevant neuroprostheses. Given all of the above, we chose
to avoid single-unit recordings altogether, and utilized multi-unit recordings
instead. While multi-unit recordings hold a promise for better reliability over
chronic recordings, they have so far attracted limited attempts to develop algo-
rithmic tools for real-time signal processing [25]. Therefore, throughout this and
later stages of the project we developed our own algorithms for event detection
from multi-unit recordings. These algorithms required subject-specific optimization,
not unlike the tuning of deep-brain stimulation parameters in human patients [4]. In
particular, the prevalence of type 1 (false alarm) versus type 2 (misdetection)
detection errors varied across subjects and required re-tuning of detection param-
eters as well as the LTD/LTP ratio at the synthetic parallel fiber-Purkinje neuron
synapse.

In the 4th stage, the model and the CS and US event detection algorithms were
embedded in a VLSI chip [3], which was interfaced with the brainstem of an
anesthetized rat, as described above [21]. To date, this version served as our final
feasibility test of recovered motor learning in the hybrid. The implementation
involved a dedicated chip that was designed and implemented to support the
multiple real-time tasks of providing a front-end towards the recorded neural sig-
nals, performing the needed signal processing, emulating the relevant synaptic
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plasticity (LTD/LTP at the parallel fibers—Purkinje cell junction), and generating
the trigger signal for motor-neuron stimulation under the appropriate conditions, as
learning proceeds. The chosen design approach was to create a field-programmable
mixed-signal array (FPMA) circuitry, where ‘mixed’ refers to the coexistence of
digital and analog components (Fig. 3). Importantly, the innovative route we fol-
lowed was not based on the simultaneous presence of digital (field-programmable
gate array, FPGA) components and analog ones, with converters managing the

Fig. 2 Peri-stimulus complex spikes recorded from a single cerebellar Purkinje cell, representing
the activity of a single IO neuron. a It is clear from the raster (top) and the peri-stimulus time
histogram (bottom) that, on average, this IO neuron preferably fired 40–60 ms following the onset
of a periorbital airpuff (Time 0). However, it is also clear from the raster that an algorithm blind to
the experimental conditions would not have been able to distinguish between spontaneous and
airpuff-evoked events of this single neuron as they occur in real time. b Raw data showing
complex spikes (marked with asterisks) before and after airpuff onset (marked by arrowhead).
Sensory-evoked complex spikes were indistinguishable from spontaneous firing in amplitude,
frequency, or waveform
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communication between them. Rather it was based on obtaining a controllable and
stable ‘intimate mixing’, by which analog and digital signals share the same routing
and currents are controlled in order to make this possible. Four primitives are
implemented in the FPMA: pulse generators, configurable switched capacitors,

Fig. 3 The layout of the chip (above). The figurative zoom of the field programmable
mixed-signal array (below) shows that there are 4 types of components that can be connected in
any configuration using a surrounding matrix of programmable switches. The low noise amplifiers
were not used in the work reported here
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operational transconductance amplifiers and configurable logic blocks (Fig. 3); the
chip hosts 500 elements of the above kinds. The chip was fabricated using the
process AMS 0.35um with 4 metal layers and it was 3.8 × 4.8 mm in size. After
initial band-pass filtering (300–3000 Hz), the signal processing section of the
reconfigurable array provided a chain composed of: weighted sum of input signals,
full-wave rectification, band-pass filtering (1–10 Hz for PN; 5–40 Hz for IO), and a
hysteretic threshold, to allow for event detection; the outcome of the latter drove the
plasticity model of the cerebellar synapse, hosted in another section of the FPMA.

In summary, construction of functional cerebellar neuroprosthesis was enabled
by its tuning and testing in gradually more realistic developmental environment.
The challenge for the future is to test the neuroprosthesis in a freely moving,
autonomous animal.

4 What Function Is Recovered by the Neuroprostheses?

Multiple brain systems, including the cerebellum, are capable of learning that
includes acquisition and consolidation of new responses and eventually execution
of both new and old responses. The biomimetic cerebellar model enabled the hybrid
to learn and execute new responses; however, it had no means of executing old
responses, learned and subsequently lost by the deactivation of the biological
cerebellum. Others have demonstrated neuroprostheses that could execute previ-
ously learned responses [6]. Their strategy included interfacing with the input and
output of a hippocampal microcircuitry (areas CA3 and CA1, respectively) in intact
naïve rats using extensive electrode arrays, and recording the activity at the two
sites along a behavioral task. This enabled construction of the neuroprosthesis as an
algorithm that translates the pattern of recorded input activity into the appropriate
pattern of electrical stimulation of the output. After deactivation of the biological
hippocampus, the hybrid was able to execute the old learned responses under the
task conditions. This input/output model preserves the old memories but has no
means of learning new responses. It seems that the function of such input/output
model is complementary to the function of our biomimetic model, and neuro-
prostheses combining the two models would be in position to fully substitute a
biological learning network.

Another advantage of the input/output approach is that it can be readily adapted
to other neuronal systems. Indeed, similar algorithms have been used to target the
hippocampus of rodents and the prefrontal cortex of primates [6, 14]. Due to its
biomimetic infrastructure, our prosthesis would not have been suitable for the
replacement of neuronal circuits outside of the cerebellum. However, it is worth
noting that the basic circuitry embedded in our system holds true for all cerebellar
modules [9]. Consequently, similar systems to the one we have developed could be
used to recover other cerebellar functions. For example, cerebellar degeneration has
been reported to cause balance, ataxia and coordination deficits in elderly patients,
and essential tremor is a severe motor dysfunction common to this population
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following cerebellar dysfunction [17]. One can envision that an approach similar to
ours could be used in the treatment of such conditions, in which some of the
cerebellar tissue can no longer be recovered.

Learning networks are extensively studied in the cerebellum, hippocampus,
amygdala and the basal ganglia. The accumulated knowledge seems ripe to support
the construction of biomimetic models aiming at learning of new responses. These
models may in turn be amalgamated with the input/output models responsible for
the preservation of old memories. Such amalgamated architecture is interesting in a
sense that the newly learned responses in the layer of the learning model will have
eventually to migrate to the storage layer of input/output model. The migration
process is reminiscent of migration of memories from the hippocampus to the
neocortex [32], or migration of learned sequences from the basal ganglia to the
cerebellum, or vice versa [12]. In summary, a neuroprosthesis supporting a full
recovery of a learning function will require some generic consideration of strate-
gies to combine the two functionally different types of models, those that preserve
old memories and those that acquire novel memories.

5 How Close to the Damaged Area Can
the Neuroprosthesis Be Interfaced

Some publications aiming at replacement of a damaged brain circuit, including our
own publications, seem to prematurely imply a translational relevance. We alluded
to the possibility of replacing a damaged cerebellar microcircuit by a biomimetic
neuroprosthesis. In practice, the cerebellar microcircuit together with the rest of the
brain was anaesthetized rather than physically damaged [18, 21, 34]. Similarly,
attempts to replace the hippocampus or the prefrontal cortex circuitry involved
injections of drugs such as cocaine and MK-801 rather than organic damage [6, 14].
These acute pharmacological interventions clearly distorted the neuronal activity of
the to-be-replaced brain sites but they imposed no structural effects characteristic of
organic damage. Preservation of the anatomical structure is indeed essential for
interfacing the neuroprosthesis with the inputs and outputs of the to-be-replaced
brain structure. In retrospect, pharmacological preparations seem to miss the
essence of structural damage to the brain in clinical cases. Indeed, localized
structural damage is likely to induce up- and down-stream trans-synaptic plasticity
and degeneration. For example, cerebellar cortical damage depletes Purkinje neu-
rons, leading to retrograde degeneration of the afferent IO neurons and their
climbing fibers [45, 46]. This would exclude the IO as an interface site for detection
of the US signal in the cerebellar model, as practiced by us. Similarly, structural
damage to the hippocampus results in retrograde and anterograde degeneration
would make obsolete the array of recording and stimulating electrodes implanted at
proximal input and output sites of the hippocampus, as suggested by Theodor
Berger’s group. A related concern is that organic damage tends also to affect the
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activity at the upstream structures through distortion of the feedback loops, which
are a pervasive feature of neuronal networks.

Clearly, deciding on the location of the interface requires some generic con-
siderations. First, one may consider avoiding the trans-synaptic effects of the lesion
by distancing the interface up- and down-stream from the damaged brain area. In
the case of our cerebellar neuroprosthesis, instead of recording the input airpuff-US
signal at the IO, which suffers from retrograde degeneration after cortical damage,
one may interface the brainstem trigeminal nucleus (e.g., [21] or even the
somatosensory cerebral cortex. However, brain networks typically have a con-
verging input pattern, and therefore distancing the interface up-stream inevitably
reduces the relevance of the captured information for a reliable functioning of a
biomimetic model, and may increase the computational challenge. Similarly, brain
networks typically have a diverging output pattern, and therefore distancing the
interface down-stream may reproduce only limited components of the composite
response generated by the brain network. A somehow cumbersome solution may
involve interfacing multiple up- and down-stream distant sites. Second, after dis-
tancing the interfaces from the site of damage, one may decide to extend the
biomimetic model to also include the nuclei and pathways that underwent sec-
ondary degeneration after the primary damage. Clearly, these and other prospective
solutions require extensive testing of potential sites of neuroprosthesis interface in
subjects with organic brain damage, and probably a custom-design based on the
condition of each individual patient.

6 Interaction of the Model with the Rest of the Brain

Sites of interface should also be analyzed in the context of inter-network com-
munication. Brain networks typically communicate with several other networks,
and thus participate in multiple functions. The efficiency of a neuroprosthesis
should therefore be judged on the basis of recovery of multiple functions. We
observe that the site of neuroprosthesis interface determines de facto the prospects
of the model’s interaction with other biological networks, thus constraining the
range of recovered functions. In our cerebellar neuroprosthesis, the model’s output
drove motoneurons in the facial nucleus, two synapses downstream from the
cerebellar output DN neurons and one synapse upstream of the eyelid musculature.
Stimulation at this site served to show that the model was successful in acquiring
and executing of correctly-timed discrete motor eyeblink-CRs; a cerebellar learning
function to which many studies have been devoted over several decades. However,
positioning the interface at the final-motor-pathway is functionally equivalent to
peripheral stimulation proximal to the eyes musculature, while excluding the effects
of cerebellar output on multiple brain networks, mostly through the red nucleus
[31]. This implies that distancing the output interface from the site of damage
constrains the range of functions that can be recovered by the model. These con-
siderations suggest that a true integration of the model with brain networks requires
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interfacing the output as close as possible to the damaged network. Since this would
not be typically possible, we reiterate to the alternative strategy as discussed in the
previous section, to interface the output along several of the diverging outputs of
the damaged network.

On the input side, converging information coming from the cerebrum drives the
activity of the precerebellar nuclei. In the PN, convergence of multiple sensory
modalities and non-sensory afferents such as from the limbic system has been
reported by us and others [33, 39]. Similarly, the IO has been shown to receive
afferents from cerebral and brainstem areas involved in sensory, motor and emo-
tional processing [1, 7, 8, 10, 43]. While an obvious feature of normal brain
processing, such convergence on the precerebellar nuclei does increase the bio-
logical “noise”, thus hindering detection of the sensory-evoked events relevant for
correct learning by the model, heavily experienced in our cerebellar neuropros-
theses. In an attempt to improve the detection of sensory events, one is tempted to
move the input interface up-the-stream from the damaged network, for example in
sensory nuclei. While improving the detection, this move will exclude the modu-
latory effects of other networks on the sensory inputs to the cerebellum. For
example, amygdala afferents seem to enhance the auditory signals arriving in the
brainstem PN, in functional terms increasing the signals’ relevance, and conse-
quently enhancing eyeblink conditioning even to weak signals, both in terms of
acceleration of conditioning and the final asymptotic level [39, 40]. In summary,
these considerations imply that a true integration of the model with other networks
requires interfacing the inputs and outputs of the neuroprosthesis close to the
damaged network. Since this would not be always possible, we are again left with
the alternative strategy discussed in the previous section, to interface the inputs and
outputs along several of the converging and diverging nuclei, respectively.

7 Does Development of Neuroprostheses Advance
Neuroscience?

Clearly, the fact that we were able to reproduce a cerebellar function does not
indicate that we have faithfully replicated cerebellar biology. Indeed, the caveats
concerning our attempts at constructing a cerebellar neuroprosthesis have been
thoroughly discussed here and in previous reports [21]. By comparison, the MIMO
systems advanced by Berger and collaborators did not aim at replicating explicit
neuronal elements, but rather relied on non-linear general purpose system identi-
fication techniques [6]. Nevertheless, when approaching such a challenge as con-
structing a functional neuroprosthesis, one must consider the nature of the neural
context in which one must operate, and this invariably leads to questions and
hypotheses about the generic nature of the system to be recovered.

One open generic question considers the rate of motor conditioning. What are
the mechanisms playing a role in the slow acquisition of the motor eyeblink-CRs,
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for example in comparison to the one trial acquisition of the emotional fear-CRs
[30]? And on top of this basic slowness, in our hands the rate of eyeblink-CRs
acquisition greatly varies across the mammalian species (count of trials to a reliable
conditioning varies from hundreds in rats—about one hundred in rabbits and a few
of tens in Psychology students), in spite of the apparently similar architecture of the
cerebellar network. Planning, composing and testing of the cerebellar model gave
us good opportunity to tackle the above questions.

When attempting to decipher the auditory-CS signal from the precerebellar-PN,
several features of the system contributing to slow and variable rate of acquisition
became apparent. First, we faced a challenge in algorithmic detection of the PN
response (measured as a multiple unit activity) to the auditory-CS. We found that
detection was compromised by the response variability, which was largely con-
tributed by the noisy background activity, probably generated by the multiple
sensory and non-sensory inputs converging on single PN neurons. This brought us
to realize that that the noisy PN background likely reflects a similar computational
challenge for the biological cerebellum. Applying the auditory-CS selectively on a
low-amplitude PN background increased the S/N ratio of the PN response to the
auditory-CS and significantly accelerated the acquisition of the eyeblink-CRs [40].
It is conceivable that the species differences in learning rates are also affected by the
level of noise in cerebellar inputs—perhaps humans have a better control of the
“filtration” system than rodents, allowing greater fidelity in signals relayed to the
cerebellum. Here we suggest that learning based on coincidence of events, as is the
case with classical conditioning, is prone to being slowed down by poor detection of
event-related signals passing through input nuclei with noisy background activity.

We also observed that the rate of acquisition in the model could be up- or
down-regulated by changing the weight of the parallel fibers-Purkinje synapse. For
example, acquisition could be accelerated by increasing the LTD step upon
application of paired CS-US trials and by decreasing the LTP step upon the
application of CS-alone trials, and thus increasing the LTP/LTD ratio (data not
shown). Thus, by maneuvering the LTD and LTP parameters we could reproduce
the entire range of acquisition rates from rodents to human subjects. However, we
observed that accelerating the acquisition often came with a price in the form of a
non-adaptive timing of the eyeblink-CRs. Closer inquiry revealed that increasing
the LTD step at the parallel fibers-PU synapse could shorten the delay to the
conditioned-CR too drastically, such that this response emerged—and therefore,
ended—too early ahead of the periorbital-US, thus losing its adaptive value of
protecting the eye from the noxious US. Here we suggest that learning aimed at
acquisition of well-timed responses is prone to be slowed-down by the necessity to
change the synaptic plasticity in small steps, which implies many conditioning
trials. In conclusion, we observe that development of neuroprostheses, which is
largely based on amalgamation and reductive application of known neurophysio-
logical data, can nevertheless lead to comprehensive inquiry into neuroscientific
questions.
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8 A Closing Note

As a closing note we briefly elaborate, in a more general perspective, on the logical
status of model-based neuroprostheses like the one we have described. The neu-
roscientific endeavor can be largely seen as an effort to ‘reverse engineer’ the brain,
by which careful experimental analysis of the nervous system generates hypotheses
on the dynamic and organizational principles underlying observed function. Con-
trary to reverse engineering of man-made artifacts, in the case of the brain, our lack
of prior knowledge about design principles and relevant scales of organization
complicates matters (see the discussion in [28]).

In this perspective, the ‘understanding by building’ approach of neuromorphic
engineering can be of heuristic value. The scope of its inquiry is, in its most general
sense: what does it take for a complex system composed of neuron-like elements to
express perceptual and cognitive abilities in interaction with a natural environment?
However, neuromorphic systems maintain a separation between the artificial system
(its sensors, its ‘cognitive’ network, and its actuators) and the nervous system
whose function it is meant to emulate.

In a way, closed-loop model-based neuro-prostheses may create a bridge
between the outcome of reverse-engineering (a model capturing putative principles
at work) and the neuromorphic approach, to create synthetic equivalents of nervous
systems. In principle, a neuromorphic device acting as an ‘equal partner’ in
real-time with the nervous system would allow to best abstract a meaningful
‘conceptual nervous system’ [16]. The work summarized here is clearly a tiny step
in this direction, but we believe the approach holds great promise.
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BCI-Based Facilitation of Cortical Activity
Associated to Gait Onset After Single
Event Multi-level Surgery in Cerebral
Palsy
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Abstract Motor rehabilitation strategies by means of neuro-modulation paradigms,
taking advantage of the motor predictive characteristics of the electroencephalo-
graphic signal, are currently subject to extensive research. Such rehabilitation
strategies follow a top-down approach in which targeted neurophysiological
changes in the central nervous system are expected to induce functional improve-
ment. However, such approach presents a set of specific limitations and barriers in
cerebral palsy patients, given that they typically do not have a normal gait and have
suffered abnormal brain development. These limitations get even more critical when
Single-Event Multilevel Surgery (SEMLS) is performed. After that procedure,
surgery patients must re-learn the gait patterns according to a new biomechanical
structure. This chapter presents a neuro-modulation paradigm to enhance the ree-
ducation of gait functionality immediately following SEMLS in cerebral palsy
patients. The experiments were developed and tested with real patients.
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1 Introduction

Cerebral palsy (CP) is a disorder of posture and movement due to a defect or lesion
in the immature brain. It is estimated that 17 million people worldwide are affected
[1]. In many cases, the development of secondary musculoskeletal pathology
contributes to loss of function, gait impairments, fatigue, activity limitations, and
participation restriction. In fact, one out of three CP patients is unable to walk. For
those patients, orthopaedic surgery is considered one of the best treatments for
significant musculoskeletal problems, and thereby minimizing the subsequent
impairments and activity limitations. One of the main techniques is multilevel
orthopaedic surgery, which focuses on correcting all deformities and to improve
gait. It is often referred to as Single-Event Multilevel Surgery (SEMLS) when is
performed in a patient without previous surgeries. SEMLS refers to the procedure
encompassing several orthopaedic surgeries in one intervention, affecting two or
more levels of the lower limbs (knee and ankle, for instance). It differs from other
multilevel approaches in that SEMLS is based on the biomechanical principles
previously obtained by 3D gait analysis [2]. Currently, SEMLS is indicated up to
70% of CP children under 14 years old. SEMLS has shown benefits in the treatment
of musculoskeletal problems of children with CP by reducing the effort and the
appearance of walking, improving Gross Motor Function Measure (GMFM) [3],
kinematic parameters, gait speed, and Gillette Gait Index score [4]. After this
procedure, a period up to 2 years is often required to get a functional plateau level,
although there is a lack of published recommendations about the more efficient
post-surgical rehabilitation program. New strategies are needed to help to promote,
maintain, and rehabilitate the functional capacity, and thereby diminish the dedi-
cation and assistance required and the economic demands that this condition rep-
resents for the patient, caregivers and society.

Most therapies for rehabilitation after surgery are peripherally driven and are
based on motor control reorganization triggered by peripheral physical therapy.
However, CP affects primarily brain structures. This suggests that both the
Peripheral Nervous System (PNS) and the Central Nervous System (CNS) should to
be integrated in a physical and cognitive rehabilitation therapy. This is exactly the
approach proposed in this chapter. It is important to highlight the plasticity of the
target patients of this study: young children present increased brain plasticity
compared to an adult, and are more likely to exhibit a change in motor patterns
following an intervention.

Consequently, a BCI system is proposed here in two phases: the first one as
re-education of gait-related cortical activity (post-surgery intervention in bed or
wheelchair); the second one as active control of the rehabilitation therapy on the
robotic platform. Therefore, the first month post-surgery, when the patient is
immobilized, is the most appropriate period to prepare the brain for the new gait
patterns later promoted with the robotic physical rehabilitation process.

100 J. Ignacio Serrano et al.



2 Neuro-Modulation in Cerebral Palsy Patients—BCI
Perspective

One possible application of BCI that has garnered significant research interest
during the last decade is its use to restore motor function by inducing
activity-dependent brain plasticity for brain motor re-learning [5]. According to this
approach, known as top-down [6], BCIs use brain activity to promote central motor
control by operating on the peripheral nervous system in order to recover motor
function for people with severe motor disabilities. The objective of these BCI
therapeutic applications differs from the BCI applications for communication and
device control, since the former application attempts to maximize motor planning
ability damaged by disease or trauma by performing tasks related to motor exe-
cution or motor imagery.

In any case, there is scarce scientific work about the potential use of BCIs by CP
patients independent of the type of application and objective. The complexity
associated with the experimental design, given the great amount of symptoms that
vary from patient to patient as a consequence of the different brain areas affected,
necessitates analysing and meeting individual specific conditions and requirements
to identify brain activity evoked by external stimuli or subject to the patient’s
control. Therefore, the existent works are rather exploratory studies that intend to
lay the foundations for developing potential uses of BCI in CP individuals.

In [7], a case study to train a severe paralyzed CP patient by an EEG-based BCI
for verbal communication is presented. The patient could produce two distinct EEG
patterns by controlling frequency features of sensorimotor rhythms during move-
ment imagery.

The proposal for using ECoG techniques to record brain signals in speech cortex
shows an efficient way, with a good spatial and signal-to-noise resolution, to build
BCIs for spastic CP patients presenting the motor cortex damaged [8]. The resulting
processed signal, representing the intent of the patient, could control different types
of computerized devices, including rehabilitation systems. Both studies belong to
the BCI paradigm for communication or device control.

A well-known work dealing with a larger population of CP patients, to inves-
tigate their ability to gain control of two online BCIs that assist them with their
communication needs, is described in [9]. Fourteen individuals with different types
of CP were engaged in this experiment by using two different electroencephalo-
graphic phenomena, one based on endogenous sensorimotor rhythms (SMR) and
the other one based on potentials evoked by exogenous visual stimuli (SSVEP).
Both BCIs involve different cognitive processes and cortical areas. SSVEP-based
BCI involves attending to oscillatory stimuli that increases in magnitude the activity
recorded in the occipital cortex at the corresponding frequency. SMR-based BCI
implies carrying out different mental tasks as mental arithmetic or motor imagery of
some part of the body. The results of this work show that not all approaches work
for every user, although the SMR-based BCI is better commanded by a larger
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number of users, and that there is no statistical relation between degree of
impairment and the ability to control a BCI.

In healthy people, SMR-based BCIs implicate motor cortex areas that exhibit
rhythms whose amplitudes typically change with the movement, the stimulation or
sensation and also during motor imagery [10]. Since these rhythms are associated
with cortical areas most directly connected to the brain’s normal motor output
channels, they could be a potential tool for BCI neuro-rehabilitation.

However, the possible motor-cortical lesions in CP patients can alter the neural
mechanisms underpinning actual motor execution and motor imagery. In an
EEG-based brain mapping study [11], with four healthy children and four children
with CP, children with CP showed asymmetrical and global topographical maps
regarding SMR rhythms changes when they perform motor imagery tasks compared
to healthy children. Another study [12] also focuses on understanding the neural
processing underlying BCI control using motor imagery in fourteen CP individuals
and twelve healthy individuals, and found significantly lower SMR modulation and
connectivity strengths between cerebral areas in CP patients. Although motor
imagery training seems to be a promising method to improve motor control in CP,
its efficacy needs to be proved by empirical testing.

Summarizing, building a BCI for neuro-rehabilitation purposes in CP patients
requires analysing and determining cortical activity and brain areas with neuro-
plastic potential in a tailored manner, given the congenital damage in their brains.
This damage impairs motor planning ability that affects motor execution and motor
imagery tasks. Another key aspect to assess lies in the nature of the motor imagery
tasks to be proposed, since this population presents impaired sensorimotor inte-
gration leading to decreased body awareness. So, promoting body awareness in CP
patients when they perform motor imagery tasks by a suited experimental design
and paradigm is critical to produce a kinaesthetic image of the motor action and to
obtain viable electrophysiological activity. Other crucial issues to take into account
are the familiarity of the motor tasks and the imagery instructions in order to
encourage the motor imagery capacity in CP.

3 Particular Drawbacks for BCI-Based Motor
Neuro-Rehabilitation in Cerebral Palsy Patients
Following SEMLS

Due to the very early brain damage and functional limitations, CP patients exhibit
abnormal brain development [13]. This causes abnormal brain activity that in turn
hinders the decoding of useful information from that activity. In order for a BCI to
be effective in motor rehabilitation, motor-related activity should be potentiated by
a coherent proprioceptive feedback. Given that BCIs should be non-invasive and
easy to wear for the sake of applicability, the most suitable way of measuring the
brain activity is Electroencephalography (EEG).
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In this sense, there are three main types of disability concerning motor function
in CP patients that also alter EEG motor-related brain activity, thus making BCI
application more complicated:

• Spasticity. It is the most common dysfunction. It arises from motor cortex
damage making muscles appear stiff and tight. Since it implies motor cortex
damage, the brain activity in that area is also abnormal and difficult to use for
BCI. Besides, the constant muscle activation produces proprioceptive feedback,
which is reflexed in activation of somatosensory areas of the cortex that are
really close to motor areas. Moreover, the strength of the muscle contraction
may cause artefacts that introduce noise in the EEG cortical signals.

• Ataxia. It arises from cerebellar damage. It implies the loss of muscle control,
producing shaky movements. It affects balance and sense positioning in space.
Although the damage focuses on the cerebellum, the projections to the motor
cortex areas also alter the normal cortical activity. Besides, shaky movements
and random motor unit discharges represent a complex artefact for EEG-based
BCIs.

• Dyskinesia. It arises from basal ganglia damage. It is characterized by invol-
untary movements. Like in ataxia, damage to the basal ganglia induces abnor-
mal cortical activity through the cortical-striatum loops. The involuntary
movements introduce both external and internal artefacts into the EEG
motor-related activity.

Apart from the problems introduced by the above mentioned dysfunctions, there
are other concerns coming from abnormal development. In terms of the affected
limbs, motor pathologies affecting CP patients can be divided into four groups:

• Monoplegia. One limb, either upper or lower, is affected by a motor
dysfunction.

• Hemiplegia. This is the most common type, together with diplegia. It affects one
side of the body (arm and leg).

• Diplegia. Both legs are affected. The upper limbs may be affected to a lesser
extent.

• Quadriplegia. Both upper and lower limbs are affected. The muscles of the
trunk, face and mouth are often also affected.

For BCI applicability purposes, monoplegia is the least affecting condition, since
the function of the damaged cortical areas is usually assumed by surrounding areas
in the motor cortex. However, hemiplegia often implies a cortical reorganization
into the contralesional hemisphere [14]. That is, the function of both sides of the
body is assumed by the same hemisphere. This makes the decoding of the target
side and limb from EEG activity especially hard. This same effect is dramatically
augmented in diplegia and quadriplegia, where the reorganization of motor control
is unpredictably carried out in other non-motor areas. Consequently, motor function
shares cortical areas with a variety of cognitive functions, which in turn makes EEG
decoding and neuro-modulation extremely complex.
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In addition, CP patients following SEMLS present a particular problem. They
have to re-learn walking (either normal or aided), since their structural biome-
chanics has changed. Given that those patients have never walked before or have
not walked normally, their learned brain motor patterns are unusual. Therefore, they
are difficult to detect in order to be promoted and guided later on by
neuro-modulation to adapt to their new physical capacities.

The difficulty of CP patients for kinaesthetic motor imagery, given their brain
damage, abnormal development and poor embodiment, is the ultimate drawback for
BCI-based neuro-rehabilitaton. This problem makes the BCI training paradigm hard
to accomplish.

4 BCI-Based Gait Rehabilitation for CP Patients
Following SEMLS. A Top-Down Approach

The rehabilitation is a therapeutic process that aims to develop the maximum
physical, psychological and social potential of the patient [15]. Although 70% of CP
patients will manage to partially recover the gait function during development [13],
most patients will improve their gait function by SEMLS.

Although the origin of neurologic disabilities is located centrally, conventional
therapies have traditionally focused on providing sensory feedback and performing
real movements in the affected limbs of the patients. In this sense, they have been
based in a bottom-up approach, i.e. the rehabilitation focuses on the peripheral
function, which is in turn expected to induce central neurophysiological changes.
Nevertheless, the principal mechanisms implicated in the motor recovery of CP
patients involve enhanced activity of the motor areas (wherever they were placed)
induced by active motor training [16]. While peripheral stimulation has not proven
to be a locally specific way of promoting plastic changes, an induced coherent
activation of sensory feedback circuits and structures in the primary motor cortex is
expected to reinforce cortico-muscular connections according to Hebbian learning
principles, and thus support functional recovery [17]. Taking into account that the
connection between the sensorimotor cortex and peripheral muscles in CP patients
has been altered, such rehabilitation strategy appears to be a logical step to reinforce
the cortico-muscular descending pathways to regain gait control.

This implies switching to a top-down rehabilitation strategy, in which the
mechanisms that are targeted for modification through rehabilitation are the new
central structures of the nervous system in charge of the movement generation.
According to this concept, the peripheral rehabilitation is carried out in synchrony
with the activity of the functionally associated structures of the brain, or rather
triggered by it. The coupling promotes a cause-effect action from intention to
execution of movement, thus increasing the associative facilitation of efferent
pathways. Indeed, experimental paradigms using Paired Associative Stimulation
(PAS, i.e. the application of timely associated electrical stimuli in cortical and
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muscular regions) have proven to be an effective way to strengthen the
cortico-muscular connections [18].

The sensory feedback may induce plasticity underlying the restoration of normal
motor control. The basis of these approaches is that activity-dependent CNS
plasticity can induce changes at synaptic, neuronal and circuits levels in cortical and
subcortical structures of the brain and so produce a more normal motor control [19].

As said before, most CP patients would benefit from SEMLS. However, the
ultimate improvement is reached around 36 months after surgery, following an
intensive rehabilitation program [20]. Moreover, the improvement is monotonous
during that post-surgery period, except the time range between 12 and 18 months
after surgery, where there is a monotonous decrease of the Gait Deviation Index
(GDI). After that, the improvement resumes [21]. In this sense, the rehabilitation
suggests two points for improvement: Increasing the maximum level of functional
recovery and reducing the time to reach that maximum by avoiding the recession
period in between. For this purpose, the inclusion of the neuro-rehabilitation of
motor activity points to a plausible solution. Since CP patients following SEMLS
are in bed during the first 3–4 weeks, the neuro-rehabilitation should begin right
after surgery to start modulating brain activity before physical gait rehabilitation.
Thus, the brain preparation for the novel upcoming biomechanical feelings of
patients is hypothesized as a catalyst for a more efficient and effective
physiotherapy.

5 A Virtual Reality-Based BCI Intervention
for the Neuro-Rehabilitation of Cortical Motor Patterns
Related to Gait in CP Patients Following SEMLS

Three CP children, 11, 13 and 15 years old, respectively, were recruited for the
study of this novel intervention. They all had a SEMLS operation. All patients
presented no cognitive deficit. The children started the first session of the
post-surgery BCI intervention few days after surgery. During the all sessions
throughout the intervention, the patients were comfortably seated on a reclining
pallet with an inclination of 50° (patients were still unable to control their neck
muscles). They wore an EEG scalp and virtual reality glasses (Oculus Rift) as
shown in Fig. 1.

EEG signals were recorded from AFz, F3, F1, Fz, F2, F4, FC5, FC3, FC1, FCz,
FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6,
P3, P1, Pz and P2 (according to the international 10–20 system) using active
Ag/AgCl electrodes (Acticap, Brain Products GmbH, Germany). The FCz channel
was used as a reference. AFz was used as ground. The signal was amplified
(BrainVision actiCHamp, Brain Products GmbH, Germany) and sampled at
250 Hz. The power values (Power Spectral Density, PSD) were estimated in
overlapping segments of 1.5 s and for frequencies between 2–30 Hz in steps of
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1 Hz. Welch’s method was used to this end (Hamming windows of 1 s, 50%
overlapping).

The virtual reality glasses were used to show the patients the experimental
environment in first person view. These glasses cover the total of the human vision
range, providing an absolutely immersive feeling and, therefore enabling realistic
visual feedback able elicit coherent brain activity. This way, the problem of lack of
body awareness or difficulty was reduced. The virtual environment consisted of a
fantasy world designed with Unreal Development Kit (UDK), an open-source 3D
graphic and game engine. It is projected in stereoscopic mode to the glasses for a
more realistic experience. Each session corresponds to a walk (in first person)
through a defined path around the world. Along the path, there are different
obstacles (gates, stones, trees …). Each time the patient gets close to an obstacle,
the walk stops. Then the obstacle disappears and the walk slowly resumes. Each
obstacle then constitutes a trial. There are 22 different obstacles along each path. In
the first two sessions, the walk is automatic, i.e. it is not controlled by the BCI,
although the patients are not informed about this issue (sham condition). Patients
always though that they were controlling the walk. This is done because the BCI
will not likely perform acceptably in the first two sessions, which might disappoint
and discourage the children. Therefore, the automatic walks were used as training
trials for further BCI control. In the automatic walk, a trial was designed as depicted
in Fig. 2.

Patients were instructed to relax when they faced an obstacle and the walk
stopped, if they wanted to make it disappear. After that, they were instructed to
kinaesthetically imagine they started walking if they wanted to resume the walk.
From these automatic sessions, the pair (channel, 1 Hz—frequency band) with the
most pronounced and longest average desynchronization (PSD decay) during the

Fig. 1 BCI-based sessions setup during post-surgery immobilization
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“obstacle disappearing” and “start walking” periods, with respect to the resting
periods, was selected. Each session was performed two weeks after the preceding
session. Online BCI recording and processing was implemented using BCI2000.
A driver was developed to connect BCI2000 and UDK engine.

After the two initial automatic sessions, the best average pairs channel/frequency
was extracted for each participant. Given the average time-frequency matrix for
each channel, the pair channel/frequency bin with the minimum median value
during the 3 s of the obstacle disappearing period, and the first 3 s of the start
walking period, was selected. Results for each patient are shown in Fig. 3.

Stop walking Obstacle disappears Start walking3s 3s 

Fig. 2 Description of a trial along the virtual reality automatic sessions

Hz 

-- Rest --|-- Obstacle --|-- Resume ---    -- Rest-- |-- Obstacle --|-- Resume ---    -- Rest--|-- Obstacle  --|-- Resume ---     

Fig. 3 Average time-frequency graphs showing the most desynchronized pair
channel/frequency-bin (pink box) during automatic sessions for the three CP patients (p < 0.05,
with respect to “rest” period; blue lower PSD; red higher PSD)
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The frequency bins selected for gait onset are in the range of alpha band or mu
rhythms (7–12 Hz), the typical frequency of motor preparation. However, the
selected channels are diverse and arranges by relevance according to the cortical
reorganization described above. Patient 3, with the lowest level of disability, shows
a wide desynchronization of mu rhythms over the legs area (according to the
somatotopic cortical map) of premotor cortex (FCz). However, the two other
patients show cortical reorganization of gait onset preparation into other parts of the
brain, with a more specialized frequency band.

The patients performed two BCI-controlled sessions along paths different from
the automatic sessions. In the BCI-controlled sessions, an obstacle does not dis-
appear until the selected pair (channel, frequency band) reaches the learned power
associated with rest and maintains this level for one second (not consecutive) in
windows of 2 s. Analogously, once the obstacle disappears, the walk is not
re-started until the power value reaches the learned desynchronization for 1 s. The
three patients were able to overcome all obstacles and complete the paths.

6 Current State and Future Perspectives

A BCI-based training of cortical activity related to gait has been proposed as a
post-SEMLS intervention of CP patients. This intervention prepares the brain
during the immobilization period for further physical rehabilitation, thus actively
involving the patient in it. The intervention also potentiates the associative facili-
tation of efferent pathways from cortex to muscles, which in turn benefits the
physical rehabilitation. The BCI-guided therapy also boosts the cause-effect feeling
of the motor control of the patients, and consequently contributes to increase their
sense of agency, in motion terms. Despite the brain damage and heterogeneity, CP
patients were able to control the BCI with atypical cortical areas reassigned for gait
execution.

Immersive virtual reality has proven to be an effective tool to overcome the
problems affecting EEG-based BCI, caused by brain damage, abnormal develop-
ment, cortical reorganization, new biomechanical structure, impossibility of
kinaesthetic imaging of gait and cognitive deficit.

So far, BCI-based neuro-modulation strategies for CP rehabilitation have been
able to prove a number of relevant questions in the field. The possibility of
developing BCI technology that can be controlled by the cortical waves of patients
with cortical lesions has been demonstrated. In addition, recent studies have
advanced in the ways to achieve reliable estimations of motor-related cortical states
with time precision, which further boosts these neuro-modulation applications.
Taken together, these advances represent a strong background for subsequent
studies in the near future, in which larger CP populations will need to be recruited
in clinical validation studies to further understand the interplay between the BCI
reached performance in each person, the attainable neurophysiological changes
induced (especially those associated with cortico-muscular facilitation) and the
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functional improvement of the patients as a result of different rehabilitation inten-
sities with these technologies. To achieve these goals, further developments in EEG
acquisition systems and processing algorithms will need to be carried out so that the
technology can be easily transferred to the clinical practice. Additionally, further
improvement of placebo-controlled conditions must be achieved to fully quantify
the relevance of BCI technology in CP rehabilitation.

Finally, the feasibility of using BCI based on residual or new cortical motor
rhythms in CP patients opens the door to the application of neuro-robots for gait
rehabilitation or re-education [22], which turns out a promising approach [23].
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Estimation of Intracranial P300 Speller
Sites with Magnetoencephalography
(MEG)—Perspectives for Non-invasive
Navigation of Subdural Grid Implantation

M. Korostenskaja, C. Kapeller, P.C. Chen, R. Prueckl, R. Ortner,
K.H. Lee, T. Kleineschay, C. Guger, J. Baumgartner and E. Castillo

Abstract Brain-Computer Interfaces (BCIs) are powerful tools for enabling
communication between people and the surrounding world by directly utilizing
brain activity and avoiding motor pathways. Before moving into invasive
implantation of BCIs, a key issue must be resolved—localization of the areas for
implantation, which might vary depending on the chosen BCI type as well as on the
individual person’s characteristics. In this study, we aimed to evaluate the possi-
bility of non-invasive navigation of subdural electrode implantation for P300 speller
BCI by using magnetoencephalogaphy (MEG). The accuracy of subdural P300
speller performance based on the sites identified with MEG was comparable with
the performance based on the sites identified from subdural electrode grids—80%
and 90% averaged accuracy, respectively. Our study demonstrates the feasibility of
using MEG as a non-invasive tool for navigating electrode implantation required
for high accuracy invasive P300 speller control.
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1 Introduction

Brain-Computer Interfaces (BCIs) have a strong potential to significantly contribute
towards improving quality of life in people with motor system-related disabilities.
Indeed, BCIs may provide these people with the much needed possibility of
communication by utilizing activity from the central nervous system and bypassing
compromised motor pathways. There is evidence to suggest that, for severely
disabled patients (such as those with advanced stages of amyotrophic lateral scle-
rosis—ALS, locked-in syndrome, tetraplegia or severe impairments after stroke),
the surgically-implanted intracranial BCIs might be more efficient than scalp-based
BCIs [1, 2]. However, before the chronic BCI implantation can be considered as a
viable option for these patients, an important issue needs to be addressed—local-
ization of intracranial electrode implantation sites, which might vary depending on
the BCI approach used, as well as on each individual person’s characteristics.

In our previous studies [2, 3], we have concluded that specific approaches must
be developed to identify and extract the data of interest that is necessary to achieve
desired performance of chronically implanted BCIs. Among several suggested
approaches, the most promising approach for future work with BCIs has been the
use of non-invasive technology, such as magnetoencephalography (MEG) [3].
The MEG allows recording of neuromagnetic brain activity with precise temporal
resolution. Moreover, when combined with the structural information about the
brain, derived from magnetic resonance imaging (MRI), the MEG also provides
excellent spatial resolution. It is routinely used for mapping of functionally sig-
nificant cortical brain areas, such as motor, auditory, visual, and language during
pre-surgical evaluation of patients with pharmacoresistant epilepsy [4]. Therefore, it
can potentially be utilized for identifying the cortex involved in generation of
signals for targeted BCI use.

The aim of our current study was to evaluate feasibility of non-invasive navi-
gation for subdural electrode selection with MEG needed for high accuracy per-
formance of P300 speller.

2 Methods

The study was performed in a 17-year-old right-handed female patient with
intractable epilepsy, undergoing evaluation for epilepsy surgery. Two main
approaches were utilized to select channels to test invasive P300 speller perfor-
mance: (1) Protocol #1 (MEG-based) used MEG source localization to navigate the
choice of P300 speller sites; and (2) A comparison Protocol #2 (ECoG-based)
utilized statistical ECoG signal analysis.
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2.1 MEG-Based Approach

2.1.1 Non-invasive Localization of P300 Generators with MEG

During this test, visual evoked fields were recorded in response to two letter stimuli
(O and X) that were presented in an “odd-ball” paradigm manner, with 76% of
NON-TARGET (letter “O”) and 24% of TARGET stimuli (letter “X”) (Fig. 1a).
Altogether, 76 frequent and 24 deviant stimuli were presented. Both target and
non-target stimuli had durations of 100 ms. The inter-trial interval (ITI) was ran-
domized between 2000 and 3000 ms. The patient was instructed to keep her eyes
on the fixation point in the middle of the screen and count all infrequent stimuli that
appeared. The MEG signal was subjected to SPSS filtering and averaging off-line.
The sources of P300 speller was localized by using equivalent current dipole
(ECD) approach. Main sources responsible for P300 generation have been localized
in the right central and parieto-occipital areas, as well as left frontal areas.

2.1.2 Merging Information from Subdural Electrode Location
and MEG Results

After the patient was implanted with subdural electrodes, the 3-D-rendered map of
the patient’s cortical surface was created, co-registered and overlaid on subdural
electrodes. The localized P300 ECDs were overlaid with the 3-D-rendered cortical
and grid map (Fig. 2). Eight electrodes in close proximity with localized P300
sources were selected for on-line P300 speller testing protocol. The P300 responses
recorded from sites selected with the MEG-based approach and ECoG electrodes
during P300 speller performance are presented in Fig. 3a.

Fig. 1 Stimuli used in the study. a Example of TARGET (‘O’) and NON-TARGET (‘X’) stimuli
presented in odd-ball paradigm for localization of P300 response with MEG; b Example of the
letter and symbol matrix for the P300 speller used for screening and P300 on-line experiment

Estimation of Intracranial P300 Speller Sites … 113



2.2 ECoG-Based Approach

2.2.1 Screening of All Grid Electrodes

P300 responses were recorded from 158 electrodes implanted for the purpose of
evaluation for epilepsy surgery during presentation of a P300 speller grid with
flashing letters of the alphabet and symbols (Fig. 1b). The patient was instructed to
concentrate on 5 consecutively presented letters comprising the word. Two words
were presented. Each letter was highlighted in 15 columns and 15 rows. Neural
activity from the subdural grids was recorded with a g.USBamp, g.tec, Austria
(sampling frequency 256 Hz).

2.2.2 Selection of the Best 8 Responses Among All 158 Electrodes
by Using EcoG-Based Approach

P300 responses were analyzed in a following manner: A Butterworth filter (4th
order, 0.1–30 Hz) was applied and data was triggered into TARGET and

Fig. 2 3D-rendered cortical surface of patient’s brain with overlaid subdural grids, P300 dipoles
localized with MEG, as well as locations of 8 electrodes selected by using MEG and 8 electrodes
selected based on ECoG data. Note that the asymmetric bilateral electrode placement is based
entirely on the clinical decision required for successful completion of the pre-surgical patient’s
evaluation. During the non-invasive phase of pre-surgical evaluation for epilepsy surgery, the
patient exhibited ictal activities originating from left hemisphere. However, possible right
hemisphere involvement was not completely ruled out. Therefore, the overall completeness of the
evaluation could have been biased without adding any additional right hemisphere grids during the
second (invasive) phase of pre-surgical evaluation
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NON-TARGET trials. Trials with artifacts were visually identified and removed.
A Kruskal-Wallis test was used to test if TARGET and NON-TARGET samples
originated from the same distribution, and led to a p-value for each sample and

Fig. 3 Significance plots for P300 speller electrode locations for P300 speller BCI selected by:
a MEG-based source localization approach; and b ECoG-based subdural electrodes selection
approach. The response to the TARGET stimuli is presented in blue, and the response to
NON-TARGET stimuli is presented in green. The figures contain the significance values of
TARGET versus NON-TARGET (p < 0.05): The yellow plots indicate a significant negative
difference; green plots indicate a significant positive difference. The variation of the color
represents the level of significance (light green and light yellow: p < 0.05; dark green and dark
yellow: p < 0.01)
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channel. The best channels were selected according to the longest period of sig-
nificant difference (p < 0.05) between TARGET and NON-TARGET trials. The
eight most significant differences were found in channels 59, 82, 94, 118, 120, 60,
61, 92 (channels 1–8 respectively on Fig. 3b). These channels were located in left
frontal, front-central, central and temporo-parietal regions.

3 On-Line Testing

For online classification of the P300 speller results obtained from 8 grid electrodes
selected by using MEG-based approach (Fig. 3a) and 8 grid electrodes by using
ECoG-based approach (Fig. 3b), a linear classifier was computed based on a
temporal feature vector from each of eight selected channels within a linear dis-
criminant analysis (LDA). The features were extracted from the raw data, which
was acquired with a sampling rate of 256 Hz. In the first pre-processing step, the
raw data was 58–62 Hz notch filtered and 0.1–30 Hz band-pass filtered. After
triggering the data into 800 ms trials and down-sampling by factor 12, the baseline
corrected trials of all channels were combined to one feature vector containing 120
samples.

4 Results

The accuracy of the subdural P300 speller was compared for 8 electrodes identified
with MEG (Protocol #1) and for 8 electrodes identified with ECoG data analysis
(Protocol #2) after creating a classifier with 10 letter phrases. The accuracy of the

Fig. 4 The accuracy of the 8 selected channels after the ECoG screening using a classifier
computed from 150 TARGET and 150 NONTARGET trials, and then tested on 5 characters
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subdural P300 speller for MEG-identified sites was 80%, whereas for
ECoG-identified sites, accuracy reached 90%. Figure 4 demonstrates the accuracy
of the 8 selected channels after the ECoG screening using a classifier computed
from 150 TARGET and 150 NONTARGET trials, and then tested on 5 characters.
Our data suggest that MEG has a potential to serve as a non-invasive tool for
navigating electrode implantation of P300 speller-based BCI.

5 Discussion and Future Perspectives

BCI technology enables communication between its users and the surrounding
world by bypassing any muscle activity and utilizing direct brain signal instead (for
review, see [5]). The surgically-implanted invasive BCIs (based on the ECoG signal
recording) can be more advantageous when compared to non-invasive ones (based
on the recordings of EEG signals) [6]. The implantable BCIs might be particularly
beneficial for severely disabled patients, such as those with advanced stages of
neuromuscular disorders, for example, ALS [7], locked-in syndrome [8], tetraplegia
[1] and others. Patients with these severe disabilities report increased willingness to
use chronically implanted BCIs [9, 10]. For instance, a telephone survey of people
with ALS conveyed by Huggins and colleagues [9] has demonstrated that 72% of
survey participants were willing to obtain a BCI by undergoing outpatient surgery
and 41% by undergoing surgery with a short hospital stay.

Some of the reasons for patients’ interest in obtaining an implantable BCI is a
function of convenience and the possibility of uninterrupted access to this tech-
nology. For instance, there is no need to reapply electrodes if chronically implanted
BCIs are used. Current technological advancements in the development of
implantable devices, such as their flexibility due to silicon nanoribbon material [11,
12], their wireless power supply transmitted by using radiofrequencies [13], and a
number of other innovative features, make it possible to forecast that implantable
BCIs may become a part of people’s life in the not too distant future. Importantly,
the feasibility of small surgical implantations with microelectrodes has been
recently demonstrated [14–16], showing promise for minimally-invasive BCI
surgeries [17]. Importantly, such chronic in vivo BCI implantation would allow
uninterrupted 24/7 connection between the brain and the external environment for
people in need.

Recent reports show that the quality of the signal, as well as ability of pattern
recognition and classification in home-based non-invasive BCIs systems with
patient-users, both suffer significantly when compared to the same systems used in a
controlled laboratory environment [18]. Utilization of invasive BCIs at patients’
homes would contribute to the improvement of the recorded brain signal quality
and, as a consequence, would lead to better BCI performance in home-based set-
tings. Notably, invasive recordings, such as ECoG, offer higher signal-to-noise ratio
than EEG [for review, see 19]. For example, Ball, Kern [20] has demonstrated that
the ECoG signal recorded from subdural electrodes had a signal quality twenty to
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one hundred times higher than that of EEG signal recorded with scalp electrodes. In
addition, the ECoG signal offers vastly superior spatial resolution and is much less
susceptible to artifacts [for more information, see review by 21]. Spatial resolution
of ECoG recording can be further improved by using microelectrodes. For example,
high resolution ECoG (HR-ECoG) recorded with the help of microelectrodes can
have 400 times higher resolution than the conventional ECoG [22]. This is of
particular importance when aiming at identification of language-related brain
areas/classification of spoken words [23, 24], representing a potential use for future
language-related BCI systems.

However, the question about the areas of implantation for chronic BCI devices
still remains open. Minimal invasiveness dictates precise a priori knowledge of
implantation sites and targeted areas of implantation during the surgery. These areas
may vary dependent on the targeted BCI type, as well as on each person’s indi-
vidual anatomical and physiological brain characteristics. Indeed, Speier, Fried [6]
demonstrated that the location of evoked responses may affect BCI performance,
specifically P300 speller bit rate. In our previous study [2], we concluded that
specific approaches must be developed to identify and extract the data of interest
from ECoG signal recordings in order to achieve desired BCI performance. Among
several proposed approaches, the most promising for future work with BCIs, in our
opinion, the use of MEG [25, 26]. Although it is feasible to use MEG for BCI
purposes [27], it cannot be applied for BCI control directly in everyday settings,
because of its current need for a massive shielding from the external electromag-
netic activity. However, it can be extremely helpful in estimating the sources of
evoked responses used for BCI control. As a consequence, the MEG represents an
excellent candidate for guiding desired electrode implantation intended for chronic
BCI use.

The “P300 speller” paradigm is the most frequently utilized approach that allows
subjects to spell words or phrases by direct brain-controlled selection from material
presented on a computer screen [28]. In our current study, we have demonstrated
that it is feasible to use MEG for non-invasive determination of intracranial P300
speller recoding sites. We have achieved, on average, 80% P300 speller perfor-
mance accuracy with MEG-identified electrode sites. Further studies should aim at
improving MEG-navigated selection sites to achieve greater BCI performance
accuracy. This can be accomplished by tuning various aspects of P300 response
localization, including the selection of the P300 response range, it components (P3a
and P3b), as well as the selection of P300 response source localization algorithm
(e.g., distributed model versus single equivalent current dipole model).

Interestingly, in our current study, the P300 generation sites derived with MEG
differed from those derived from ECoG electrodes. For example, whereas
MEG-derived P300 sources were localized in both right and left hemispheres
(specifically, right central and parieto-occipital areas as well as left frontal areas),
the main ECoG-derived P300 response generation sites were found in the left
hemisphere only (specifically, in the left frontal, fronto-central, central and
temporo-parietal regions). Moreover, while both approaches have identified con-
cordant regions generating P300 responses within the left frontal lobe, the
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ECoG-based approach has demonstrated additional P300 responses in the left
temporo-parietal region that have not been identified with MEG. The diversity of
P300 generation sites identified in our study is not surprising. Indeed, multiple
studies have demonstrated P300 generation in widespread areas of the frontal [29,
30], temporal [31, 32] and parietal [33] cortices, including temporo-parietal junction
[34], as well as parieto-occipital cortex [35]. Therefore, all P300 generation sites
identified with both MEG and ECoG in our study are consistent with previously
described sites of P300 generation. The reason for only partial overlap between
MEG- and ECoG-identified P300 sites in our study can be explained by different
approaches utilized for P300 source/response detection, respectively. Future studies
should address the issue of differences in these approaches. Finally, the approaches
leading to localization of the P300 generation sites that provide with the highest
P300 speller performance accuracy need to be isolated and utilized.

In summary, in our current study, the MEG proved to be a reliable navigation
tool for selection of ECoG-based P300 speller sites. Several locations from different
brain regions responsible for P300 generation have been selected with MEG to
drive ECoG-based P300 speller BCI with reliable performance accuracy. In order to
achieve future goal of using minimally invasive chronic BCIs, it is important to
identify single P300 generation sites that provide the maximum BCI performance
accuracy. An improvement of P300 response source localization approaches with
MEG is required to achieve higher ECoG-based P300 speller accuracy. Future
studies aiming at attaining these goals are underway.
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A Brain-Computer-Interface to Combat
Musculoskeletal Pain

N. Mrachacz-Kersting, L. Yao, S. Gervasio, N. Jiang,
T.S. Palsson, T.G. Nielsen, D. Falla, K. Dremstrup and D. Farina

Abstract Over the past several years, our group has conceived a completely new
technological approach toward BCIs aimed at reversing the maladaptive plasticity
induced by musculoskeletal pain. The EEG activity patterns of participants with
chronic pain (tennis elbow) were differentiated from those of healthy, age and sex
matched controls during real-time movement performance. Our results showed a
dominance of power in the alpha frequency range only that was significantly cor-
related with the intensity of pain (visual analogue scale scale—VAS). Based on this
novel finding, a neurofeedback system was developed allowing real-time moni-
toring of alpha power during idle time and movement execution (wrist extensions).
Two bars were shown to the patient on a feedback screen—one containing con-
tinuous alpha power, the other only alpha power during the preparation phase of
movement execution. The goal of the participant was to maintain the alpha power
below the initial baseline value during movement execution. Three patients were
tested using this system and their pain intensities were monitored. All participants
were successful in decreasing their alpha power across days. This was accompanied
by a reduction in their perceived pain VAS scores. In summary, we have developed
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a neurofeedback system for musculoskeletal pain that is capable of providing rapid,
accurate and reliable neurofeedback in dynamic conditions, allowing the users to
train their brain to reduce the pain.

Keywords Brain computer interface ⋅ Musculoskeletal pain ⋅ EEG

1 Introduction

Since the initial proposition by Daly and colleagues [1], Brain Computer Interfaces
(BCIs) have increasingly been developed for the restoration of lost motor function
by inducing neuromodulation (for a recent review see [2]). Typically, the partici-
pants have suffered from a central nervous system lesion, leading to abnormal
movement control. Depending on lesion type, approximately 8–80% of these
patients will also present with central neuropathic pain accompanied with a specific
EEG signature [3, 4] that is positively correlated with the degree of somatosensory
reorganization [5, 6]. Such patients require a different approach to rehabilitation
through a BCI, since e.g. spinal cord injured patients present with reduced event-
related desynchronization during motor imagery and a decreased power in the
resting state [3], ultimately leading to a decreased classification accuracy. We have
also shown that the peak negative amplitude of the movement related cortical
potential (MRCP) is enhanced in this patient group; however, classification remains
around 65%, likely due to its greater variability specifically in the rebound phase [4].

Similar to neuropathic pain conditions, musculoskeletal pain originating at the
periphery has a significant central component [7–9] leading to reorganization within
the cerebral cortex [10]. Using non-invasive transcranial magnetic stimulation
(TMS) to map the motor cortical (M1) representation of two wrist extensor muscles
(extensor carpi radialis brevis (ECRB) and extensor digitorum), patients with
chronic elbow pain (lateral epicondylalgia) presented with an increased overall
excitability and a closer proximity to their respective centers of gravity. These
alterations were significantly correlated with the severity of pain, indicating that they
are maladaptive [10]. Human experimental pain models, which mimic chronic pain
states, reveal that significant maladaptive plasticity (i.e. negative alterations in the
connections within the brain) occurs in the chronic musculoskeletal pain state that
may lead to unfavorable alterations in the way the central nervous system controls
the musculoskeletal system [11–13]. In an attempt to further understand the central
changes in the chronic condition, we have quantified this reorganization during the
transition from acute to sustained (chronic) pain using a novel model capable of
inducing progressive muscle soreness, mechanical hyperalgesia, and temporal
summation of pressure pain that can last up to 14 days [14, 15]. Nerve growth factor
(NGF) was administered as a bolus injection of 5 μg (0.2 mL) into the right ECRB
on Days 0 and 2. Corticomotor excitability and maps were assessed on Day 0, 2, 4
and 14. We demonstrated that the cortex commences its adaptation process already
at day 4 of the induced pain and more importantly, at day 14 when the pain has
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subsided, some of these changes persisted [16]. The above studies underline that
even though musculoskeletal pain may appear as a localized event, central nervous
system structures play a key role in its development and experience [17].

A recent review has highlighted several non-pharmacological treatments
designed to restore normal brain function concomitantly with a reduction of chronic
musculoskeletal pain [18]. These include repetitive transcranial magnetic stimula-
tion (rTMS), transcranial direct current stimulation (tDCS) and neurofeedback. The
central idea behind restoring brain activity patterns rather than relying on phar-
macological treatments that reduce the pain symptom, is to avoid maladaptive
alterations that may lead to secondary problems (i.e. altered movement patterns
when performing a task that will induce pain in other areas thus adding to the
problem rather than relieving it). In order to retrain the brain, and induce a
relearning of the correct movement patterns and thereby reverse the maladaptive
cortical reorganization, the mechanisms behind learning need to be satisfied. The
current belief is that appropriate induction of plasticity requires the correlated
activation of the relevant neural structures (“neurons that fire together, wire toge-
ther”) [19]. Treatments targeting the final output stage of the brain that activates the
muscles that produce the movement (e.g. the motor cortex), need to satisfy this
principle. In neurofeedback approaches, the user imagines performing a specific
task (also called motor imagery (MI)) that normally produces pain (e.g. reaching
movement in patients with tennis elbow) while the EEG activity is continuously
monitored. The EEG signals associated with the pain are extracted in real time
using mathematical algorithms, and provide continuous visual feedback to the user.
In this way, the user learns to modify the brain waves to reduce the painful sen-
sation, and an association is formed between the experience of pain and the
neurofeedback.

For the user to learn to associate negative brain activity with the painful sen-
sation and its opposite, the positive brain activity with a state of no pain, it is
imperative to extract relevant signals affected during chronic musculoskeletal pain.
To date, there is no clear consensus on this topic. Several studies have investigated
EEG oscillations in central neuropathic pain [3, 20] and musculoskeletal pain [21],
although these have been restricted to either resting state or motor imagery (MI).
While both types of pain exhibit a frequency specific signature in their EEG patters,
when a person is performing a motor task, the effect on the EEG waves may be
different. Current neurofeedback for pain treatment seeks to reduce beta (13–35 Hz)
oscillations while increasing alpha (8–12 Hz) or theta (4–7.5 Hz) oscillations [22].
However, this is heuristically determined based on previous experience rather than
known mechanisms [3]. A further complication with current neurofeedback is that
MI enhances pain and thus may not be as useful when treating patients with chronic
pain such as tennis elbow. Performing the movement may, in these cases, be more
appropriate specifically when using neurofeedback as a treatment modality.

Currently, little is known on the EEG signatures of musculoskeletal pain. Past
studies have investigated alterations in the power of various frequency bands fol-
lowing the artificial induction of this pain using hypertonic saline injections [21].
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These have been restricted to the resting state. However, it is well known that pain
interacts with movement, and thus the patterns are likely different than in the resting
state.

As a next step, we therefore sought to obtain a deeper understanding of this type
of pain during movement performance. Since the enormous indirect socioeconomic
costs due to chronic musculoskeletal pain far exceed those estimated for heart
disease, cancer and diabetes [23] and new non-pharmacological treatment
approaches [18] are highly desirable, our proposed neurofeedback system has the
potential to be one of the new exciting approaches for BCIs in the future.

2 EEG Signatures of Musculoskeletal Pain

Several preliminary studies have been completed that characterize the alterations in
EEG parameters induced by pain either in patients (n = 10, 38 ± 11 years) or in
healthy participants (n = 19, 26 ± 4 years) prior to (HnP) and following
(HwP) injections of hypertonic saline. During the experimental session, participants
were seated in a chair in an upright position with the elbow joint extended at
170 ± 10°, the upper arm and shoulder fixated with Velcro tape and the forearm
fully pronated. Following assessments of pressure pain thresholds (PPT) and the
visual analog scale (VAS) for pain, participants had to complete four movement
tasks with at least a 5-min rest interval between them, as follows: 1. Three maxi-
mum isometric voluntary contraction (MIVC) of the wrist extensors with a 1 min
rest period between trials; 2. 30 index finger extensions; 3. 30 palmar grips and 4.
30 dynamic wrist extensions. Participants were asked to perform the tasks at a self-
selected pace, but at a minimum frequency of 0.8 Hz and the order of tasks 2–4 was
randomized. PPTs and VAS measures were repeated following each movement
task. For healthy participants, all measures and tasks were performed either without
pain or following a bolus injection of 5.7% hypertonic saline into the ECR of the
dominant arm.

Monopolar EEG signals were recorded using an active EEG electrode system (g.
GAMMAcap2, Austria) and g. USBamp amplifier (gTec, GmbH, Austria) from
FP1, F3, Fz, F4, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6,
P3, Pz and P4 according to the standard international 10–20 system. The channel
selection was based on the large Laplacian with C3 or C4 (depending on the
affected side) as the central channel [24]. The reference electrode was placed on Fz
and the ground on the left earlobe. A single channel surface electromyography
(EMG) was recorded from the extensor carpi radialis (ECR) muscle to control for
the subject’s movement. All signals were sampled at a frequency of 256 Hz (16 bits
accuracy) and hardware filtered from 0 to 100 Hz. Power was calculated using 1 s
Hamming windows with 1 sample increment within the alpha, beta, theta and
gamma band from continuous EEG (256 Hz) at all electrode locations.
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Figure 1 shows Alpha power from electrode location C3 across all subjects.
Alpha power was significantly increased in the pain patients compared to HnP
(p < 0.05), while induced pain (HwP) showed a similar trend (Fig. 1). This was
correlated with the participants’ perceived pain (VAS).

3 The Neurofeedback System

Figure 2 outlines our proposed approach for a neurofeedback system to reduce
musculoskeletal pain, as well as the preliminary results from n = 1 pain patient. For
the first 20 trials, participants were asked to perform wrist extensions with a light
weight held in their hand. The power within the alpha frequency was subsequently
calculated and served as the baseline value in the following trials, during which the
alpha band power was continuously displayed to the participant in the left panel of
the feedback screen. A green bar indicated a decrease in power (a desynchoniza-
tion) while a red bar referred to an increase in power (a synchronization). Partici-
pants were asked to try to keep the bars green. Upon movement performance, the
system fed back to the participant the power within the same band, but only for the
preparation phase of the movement (right bar of the feedback screen, Fig. 2).
A successful trial meant that this bar was green, and thus that power was maintained
below the baseline value.

The first of three blocks of 50 trials were performed, and the percentage dis-
played on the screen indicated to the participant how many successful trials were
completed. During the second block, the baseline values were adjusted based on
those obtained for the previous block. For the third block, the baseline values were
adjusted based on the second block. In this way, the task difficulty increased for
each block, ensuring the participants were trained appropriately. To date, three
patients have been exposed to this neurofeedback system. Results from one patient
are shown in the two right hand graphs of Fig. 2. The change in
sensory-motor-rhythm (SMR) during the movement execution was evident. The
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alpha power was decreased within a session but also across the three sessions
(performed on separate days). More importantly, these decreases in power were
accompanied by decreases in the VAS scale (from 5.6 after session one to 0 at the
end of session three), indicating that the patient felt less pain by session number
three.

4 Discussion and Long-Term Perspectives

The field of BCI has been expanding rapidly over the past decade, with researchers
seeking to widen the application to a larger patient population. BCI systems
designed for neuromodulation in patients suffering from a central nervous system
lesion provide a prime example of such an endeavor. Here, we propose an appli-
cation with even wider and deeper impact, since musculoskeletal pain affects
between 13.5 and 47% of the general population. Our recent evidence has shown
that this condition is accompanied by significant reorganization in cortical plasticity
that even outlasts the experience of pain. The future challenge is to reverse this
maladaptive process, and a BCI approach is ideally suited to meet these demands.

Acknowledgements We wish to acknowledge our participants and all of the students from the
laboratory, both past and present.
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Recent Advances in Brain-Computer
Interface Research—A Summary
of the BCI Award 2015 and BCI Research
Trends

Christoph Guger, Brendan Allison and Junichi Ushiba

1 The 2015 Winners

The preceding chapters presented work from projects nominated for the 2015 BCI
Research Award. Being nominated is a significant achievement, and thus the
nominees and the audience were excited to learn who won first, second, and third
place during the Gala Awards Ceremony.

The BCI Award 2015 Winner Is

Guy Hotson1, David P McMullen2, Matthew S. Fifer3, Matthew S. Johannes4,
Kapil D. Katyal4, Matthew P. Para4, Robert Armiger4, William S. Anderson2,
Nitish V. Thakor3, Brock A. Wester4, Nathan E. Crone5 (1Department of Electrical
and Computer Engineering, Johns Hopkins University, US, 2Department of Neu-
rosurgery, Johns Hopkins University, US, 3Department of Biomedical Engineering,
Johns Hopkins University, US, 4Applied Neuroscience, JHU Applied Physics
Laboratory, US, 5Department of Neurology, Johns Hopkins University, US).
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Individual Finger Control of the Modular Prosthetic Limb using High-Density
Electrocorticography in a Human Subject

Junichi Ushiba, chair of the 2015 jury, called the winning idea “A creative
and well-executed project that could lead to improved prosthetic control for
patients” (Figs. 1 and 2).

The BCI Award 2015 2nd Place Winner Is

Roni Hogri1,3, Simeon A. Bamford2,4, Aryeh H. Taub1,5 (1Psychobiology Research
Unit, Tel Aviv University, IL, 2Complex Systems Modeling Group, Istituto

Fig. 1 Christoph Guger (left, organizer), Guy Hotson (Winner of 2015), Kenji Kato (3rd place),
Ron Hogri (2nd place), Brendan Allison (right, moderator)

Fig. 2 The flyer for the 2016 BCI Research Award
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Superiore di Sanità, IT, 3Department of Neurophysiology, Medical University of
Vienna, AT, 4Inilabs Gmbh, CH, 5Department of Neurobiology, Wiezmann Insti-
tute of Science, IL).

De novo experience-based learning in rats interfaced with a “cerebellar chip”

The 3rd Place Winner Is

Kenji Kato, Masahiro Sawada, Tadashi Isa, Yukio Nishimura (National Institute for
Physiological Sciences, Aichi, JP).

Restoration for the volitional motor function via an artificial neural
connection

At the Gala Award Ceremony, Dr. Guger also thanked the experts in the 2015 jury:

Junichi Ushiba (chair of the jury 2015)

Masayuki Hirata

Nuri Firat Ince

Zachary Freudenburg

José del R. Millán

Sydney Cash

Tomasz M. Rutkowski.

2 Directions and Trends Reflected in the Awards

The four components of a BCI presented in the introduction have provided a solid
framework for categorizing the BCI Research Award submissions to analyze trends
in BCI research. This year’s 63 submissions are grouped across four tables
according to these four components: sensors; signal processing algorithms; outputs;
and interaction environments. We also summarize submissions from prior years.
These four tables thus provide some data to explore how the four BCI components
have evolved over the years. In the top row of each table, N shows the total number
of submissions that year. The numbers in the cells below equal the percentage of
submissions with that property.

Sensors: Table 1 explores the different types of input signals used in the submitted
projects. As with previous years, the 2015 submissions focused primarily on
EEG-based systems, similar to most BCI articles. 76.1% of all submissions used
EEG, which is slightly higher than previous years but still close to the average of
72.1%. The submissions also reflected other non-invasive sensor systems, such as
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fMRI, and invasive methods like ECoG and neural spikes. Other signals included
MEG.

Signal processing: In 2015, almost all submissions presented a real-time BCI
system, and only two of 63 submissions (neither of which were nominated) pre-
sented off-line work. This result indicates that real-world applications are
approaching (Table 2).

Output/application: The third essential component of any BCI is the output.
Table 3 shows the applications that the 2015 submissions controlled. Most of the
submissions improved the technology by developing new hardware and software,
developed new platforms, or developed control interfaces for wheelchairs, robots or
prosthetic devices including exoskeletons. Many BCI systems were used for control
or spelling applications. Interestingly, only 4.8% presented stroke or neural plas-
ticity applications, which received more attention in previous years. These sub-
missions did relatively well with the jury.

Environment/interaction: Table 4 shows the type of neural activity used for con-
trol. The most prevalent approach involves motor imagery. Over the past six years,
motor imagery BCIs have consistently accounted for about a third of all submis-
sions. P300 and N200 components are mostly used for spelling applications, and
the P300 and other ERPs can be used to assess patients. In addition to these types of
signals that BCIs read from the brain, some submissions over the years have
presented work with brain stimulation or used broad band activity.

Table 1 Type of input signal for the BCI system

Property 2015%
(N = 63)

2014%
(N = 69)

2013%
(N = 169)

2012%
(N = 68)

2011%
(N = 64)

2010%
(N = 57)

EEG 76, 1 72, 5 68, 0 70, 6 70, 3 75, 4
fMRI 4, 8 2, 9 4, 1 1, 5 3, 1 3, 5
ECoG 9, 5 13, 0 9, 4 13, 3 4, 7 3, 5
NIRS – 1, 4 3, 0 1, 5 4, 7 1, 8
Spikes 4, 8 8, 7 7, 1 10, 3 12, 5 –

Other
signals

4, 8 4, 3 13, 0 2, 9 1, 6 –

Electrodes – – 6, 5 1, 5 1, 6 –

Table 2 Real-time BCIs and off-line algorithms in projects submitted to the BCI Awards

Property 2015%
(N = 63)

2014%
(N = 69)

2013%
(N = 169)

2012%
(N = 68)

2011%
(N = 64)

2010%
(N = 57)

Real-time
BCI

96, 8 87, 0 92, 3 94, 1 95, 3 65, 2

Off-line
algorithms

3, 2 8, 7 5, 3 4, 4 3, 1 17, 5
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Table 3 Type of output system and application

Property 2015%
(N = 63)

2014%
(N = 69)

2013%
(N = 169)

2012%
(N = 68)

2011%
(N = 64)

2010%
(N = 57)

Control 11, 1 17, 4 20, 1 20, 6 34, 4 17, 5
Platform
technology

15, 9 13, 0 16, 6 16, 2 9, 4 12, 3

Stroke neural
plasticity

4, 8 13, 0 13, 7 26, 5 12, 5 7

Wheelchair robot
prosthetics

15, 9 13, 0 11, 8 8, 8 6, 2 7

Spelling 12, 7 8, 7 8, 3 25 12, 5 19, 3
Internet or VR
game

4, 8 2, 9 5, 9 2, 9 3, 1 8, 8

Learning 1, 6 5, 8 5, 3 1, 5 3, 1 –

Monitoring, DOC 4, 8 1, 4 4, 7 4, 4 1, 6 –

Stimulation 1, 6 1, 4 3, 6 1, 5
Authentication
speech assessment

4, 8 13, 0 3 – 9, 4 –

Connectivity – – 2, 4 1,5 – –

Music, Art 1, 6 1, 4 1, 8 - –

Sensation – 1, 2 – 1, 6 –

Vision 3, 2 1, 4 1, 2 1, 5
Epilepsy,
Parkinson,
Tourette‘s

3, 2 2, 9 1, 2 - – –

Depression,
Fatigue, ADHD,
pain

4, 8 1, 4 – 1, 5 – –

Neuromarketing,
emotion

– 1, 4 – 1, 5 – –

Ethics – 1, 4 – – – –

Mechanical
ventilation

– – – – 1, 6 –

Table 4 Type of signal used to control BCI

Property 2015%
(N = 63)

2014%
(N = 69)

2013%
(N = 169)

2012%
(N = 68)

2011%
(N = 64)

2010%
(N = 57)

P300/N200/ERP 28, 6 11, 6 11, 8 30, 9 25 29, 8
SSVEP/SSSEP/cVEP 14, 3 11, 6 14,2 16, 2 12, 5 8, 9
Motor imagery 36, 5 37, 7 25, 4 30, 9 29, 7 40, 4
ASSR – – 1, 8 – 1, 6 –
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3 Conclusion and Future Directions

The Annual BCI-Research Awards have been successful in recognizing and
encouraging high quality BCI research innovations. We are proud to announce the
jury for 2016:

Mikhail A. Lebedev (chair of the jury 2016),
Alexander Kaplan,
Klaus-Robert Müller,
Ayse Gündüz,
Kyousuke Kamada,
Guy Hotson (winner 2015).

As with prior years, the first place winner from the preceding year is included
among the top-notch jury. The jury again includes a strong international focus, led
by a chair from a top BCI institute. Dr. Lebedev has been a Professor at Duke
University for many years, with a strong emphasis on implantable BCIs. Our 2016
flyer presents more information about the 2016 BCI Research Award.

This year’s deadline was March 1, 2016, and the nominees for 2016 have been
announced. We have already begun planning next year’s book with the new
nominees. We are pleased to announce that our editorial staff for the book reviewing
the 2016 BCI-Research Award will again include the CEO of G.TEC (Dr. Guger),
Dr. Allison, and the chair of the jury, Dr. Lebedev. We hope you have enjoyed this
book, and look forward to developing the book for the 2016 Award.
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