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Abstract. In this chapter, we propose a model for the Railway Network
Design and Line Planning (RNDLP) problem, integrating the two clas-
sical first stages in the Railway Planning Process. The network design
problem incorporates costs relative to the network construction, propos-
ing a set of candidate lines. The line planning problem is in charge of
determining optimal frequencies and consequently train operations, tak-
ing into account rolling stock, personnel and fleet acquisition costs. Both
problems are intertwined because the line design influences the selection
of frequencies and the corresponding fleet size. We consider the existence
of an alternative transportation mode for each origin-destination pair in
the network. In this way, the rapid railway mode competes against the
alternative mode for a given certain demand, represented by a global
origin-destination matrix. Passengers choose their transportation mode
according to their own utility. Since the problem is computationally
intractable for realistic size scenarios, we develop an Adaptive Large
Neighborhood Search (ALNS) algorithm, which can handle the RNDLP
problem. As illustration, the ALNS performance is demonstrated in an
artificial instance using estimated data from literature.

Keywords: Railway Rapid Transit · Network design · Line planning ·
Adaptive Large Neighborhood Search

1 Introduction

Railway Rapid Transit (RRT) is a high-capacity public transport that usually
operates on an exclusive right-of-way in urban areas. The general aim of a RRT
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system is to improve the mobility of the population in big cities and metropolitan
areas, but other purposes like decreasing private traffic congestion and pollution
has become relevant nowadays. RRT systems are the most effective transporta-
tion mode since in a very short time they can carry considerable more people at
a higher speed than other public transportation modes.

The RRT planning process is a very complex task involving strategic, tacti-
cal, operational and real-time decisions. Among these decisions are the selection
of the location of stations and the connections between them, the itinerary and
the frequency of the lines, the capacity of the trains, the timetable, the schedul-
ing of the trains, the crew and other staff planning, and the management of
delays and disruptions. Several agents are implicated in this process. They can
be grouped into local authorities and transportation agencies, potential travellers
and construction and operating companies. These problems are complex due to
several factors: large-scale, uncertainty in data, different criteria to be taken into
consideration because of the different viewpoints of the involved agents, compe-
tition with other transportation modes and computational complexity of the
optimization counterpart problems. For these reasons a sequential approach was
traditionally proposed for the whole RRT planning process.

Knowing the current mobility patterns and the predictions over a period of
time, the first phase consists in choosing from an underlying network the location
of the access and the egress points to the system, and the links between pairs of
them. The traditional non-optimization methodology is based on the selection of
a set of corridors, combining them, and choosing the best combination according
to several criteria. However, this approach could eliminate in a very early phase
good alignments that do not are considered any more. The second step consists
in selecting the itinerary of the lines and the frequency of them in each period of
time of the day, day of the week and season of the year. An issue closely related
with the frequency is the determination of trains’ capacity. The first idea is that
the higher the capacity is, the lower the required frequency. However, in the
presence of competing modes the relationship between capacity and frequency is
non-linear and, even more, it becomes non-continuous. Based on the knowledge of
the hourly demand the timetable is designed. Then, the last step of the sequential
process consists in the scheduling of rolling stock and personnel.

In this work we integrate the two first steps adding the determination of
the capacity of the trains. Thus, we consider the problem of simultaneously
determining the line network design, the frequency of the lines and the capacity
of the trains, considering also a competing transportation mode.

RRT network design [15,26], can be classified depending on whether a sin-
gle or multiple alignments are to be planned, and whether they are completely
new or extensions of already existing ones. The main criteria used to design
rapid transit alignments are described in [24]. For the problem of locating one
single alignment, a tabu search was proposed in [19] in order to maximize the
population covered, [7] proposed a bicriterion model for the location of a rapid
transit line minimizing construction cost and passenger travel time, [6] devel-
oped a two-phase heuristic for the problem of designing an alignment in a urban
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context maximizing the population coverage, [30] presented a heuristic for the
construction of a rapid transit alignment maximizing trip coverage, and [29]
addressed the problem of locating a metro line in a historical city maintain-
ing a minimum distance between the alignment to be designed and protected
buildings. In [32] the problem of locating the stations, determining the headway
and the fare of a transit line in a linear corridor when maximizing the profit is
addressed using a heuristic algorithm.

Regarding the multiple alignment problem, [28] solved the rapid transit net-
work design problem of maximizing the trip coverage by using simulated anneal-
ing (SA), in [23] the infrastructure railway network design problem as well as
its robust version are solved by using a Greedy Randomized Adaptive Search
Procedure (GRASP), [31,35] used the demand coverage as objective function.
Based on an a priori geometric configuration, in [31] a metro network design is
proposed under the criteria of maximizing population coverage and minimizing
construction cost. With a similar methodology, but considering traffic capture
instead of population coverage, [27] proposes a mixed integer tractable model
formulation. Regarding papers dealing with the extension of existing networks we
highlight [3], that proposed a model and a heuristic for the problem of expanding
the infrastructure of a railway network.

The second phase of the railway planning process is line planning, in which
a set of itineraries or lines is selected from the resulting network after the first
phase or from a line pool. Moreover, the frequency of each line at each period of
time is determined. Usually in this phase the capacity of the trains is supposed to
be known. The line planning problem has been tackled in several papers, among
them [8,13] propose branch-and-cut algorithms to select lines from a previously
generated set of candidate lines (line pool). In [9] linear and non-linear integer
programming models are proposed for the line planning problem with minimum
cost. In [25] lines can have different halting patterns. [21] considers the problem of
designing the frequencies of a regional metro with elastic demand by minimizing
the total cost. For more information on line planning we refer to the recent
reviews by [4,33,38].

As mentioned, we integrate the first two phases of the planning process tak-
ing also into account aspects of capacity and personnel cost. We assume there
is a competing mode of transportation. The number of trips captured by the
railway rapid transit system, which is determined by using a logit modal split
function, depends on the difference between the utilities of both transportation
modes. The utility of each pair of origin-destination demand for the rapid transit
system depends on the fare, waiting time-cost at stations, in-vehicle time-cost
and transfer time-cost between lines. The objective function is the profit, that
is the difference between the revenue and the total cost. The revenue depends
on the number of passengers captured by the railway network (RN). The total
cost includes construction cost, fixed and variable operating costs, crew cost and
the fleet acquisition cost as a function of the rolling-stock required to cover the
demand captured by the RN system.
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A related model was proposed in [11]. However, in this paper the variables
defining the flow of passengers differ from those of [11]. Here, for each origin-
destination pair, we use binary variables for the use of links instead of variables
representing fractions of the demand, as in the former model. As consequence,
the solutions proposed by this model are less favourable to the service provider
but more favourable to the travellers than in the previous one, because in this
situation, passengers follow the best path to reach their destination give rise to
more loaded trains. In [12] we analyse the RNDLP problem in terms of complex-
ity by comparing the exact solution of small instances using commercial solvers
against an ALNS. In that work train capacity is determined by means of inte-
ger variables defined in order to obtain the number of carriages needed in each
line. The modal split considers only the travel time as a key factor to select
the railway or an alternative mode instead of passengers utility. Others aspects
like railway fare do not influence the mode choice. As illustration, the ALNS is
applied to designing a RRT network for the city of Seville.

Since the RNDLP problem is obviously NP-hard, a metaheuristic is needed to
solve medium and large instances. In this paper an adaptive large neighborhood
search (ALNS) metaheuristic is applied.

The remainder of the chapter is structured as follows. The next section intro-
duces a non-linear mixed integer model for the RNDLP problem that simultane-
ously determines the most convenient network topology and the most appropri-
ate set of lines, determining line frequencies and selecting a specific train model
for each one in presence of an alternative transportation mode. Section 3 presents
an ALNS algorithm designed to manage real-size instances of the RNDLP prob-
lem. Section 4 illustrates the computational performance of the ALNS consider-
ing different experiments in a medium-size artificially generated instance of the
RNDLP using estimated values of time data from literature. The last section
provides some conclusions and point out some still open questions.

2 Description of the RNDLP Problem

Consider a set N = {1, . . . , n} of potential nodes for locating stations and
a set of arcs A ⊆ N × N representing potential connections between nodes.
Both sets define a potential graph used as a basis for the building of the rail-
way rapid transit network. We define the edge set E = {{i, j} : i, j ∈ N, i <
j, (i, j) or (j, i) ∈ A}. Thus, the underlying network is topologically described as
a graph GE = G(N,E). The alternative transportation mode network (private
car), competing with the railway rapid transit system, is represented by an undi-
rected graph GE′ = G(N,E′). As is usual in the network design, there exists an
upper bound Cmax on the total construction cost of the railway network RN.

Let W = {w1, . . . , w|W |} ⊆ N × N be the set of ordered origin-destination
OD pairs w = (ow, dw), where ow and dw represents the origin and destination
of pair w, respectively. Without loss of generality, we assume that all trips occur
between nodes belonging to the underlying network, that is, potential stations
acts as demand origins and destinations. The expected number of passengers
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gw associated with each OD pair w ∈ W , as well as the corresponding utility
UALT

w of pair w using the alternative mode are known. Let dij be the length
of edge {i, j}, and λ, the average speed of trains measured in km/h. In order
to obtain applicable results, we work with a discrete set H of headways which
are measured in minutes. Note that if h ∈ H, then the line frequency is equal
to 60/h, measured in number of trains per hour. We consider a parameter γ
representing the maximum number of lines that can circulate on any edge of the
network. This is a topological constraint frequently used in order to not over
saturate some open tracks, which would result in excessively long headways (low
frequencies). We assume known train capacities, according to different models
m ∈ M available in the market with capacities Km

train. We consider all trains of a
line operate at the same capacity, i.e., each line is operated by an specific model.
The transfer time is considered as the sum of two terms: the time spent between
platforms uci, which is supposed to be known, and the average waiting time for
taking the next train of the line to transfer. The last term can be approximated
as the average headway of the line to transfer. For each line, the main variable
to be determined is the headway. As previously mentioned, no a priori line pool
is defined, and since a constructive approach is followed, a lower and an upper
bound, Nmin and Nmax, on the number of stations of each line are considered
[10]. In order to compute the expected utility of pair w, parameters βtt, βtr, βwt,
are used to denote respectively the monetary cost of travel time, transfer time
and waiting time at the initial station (see [21]). The index � ∈ L denotes each
line, being L a set used to describe the possible lines and |L| = Lmax.

The considered objective function objNET maximizes the net profit, expressed
as the difference between the revenue objREV and the total system cost objSC .
In order to calculate the revenue, we consider two parameters: the first one, ξ,
denoting the passenger fare and the second one, η, a public subsidy per trip
[5,17]. The fare is also considered in the modal split model as part of the passen-
gers’ utility. We also consider a parameter tfinal representing the time horizon
employed to finance the construction of the network and to amortize the rolling
stock investment. The number of years spent to build the network is denoted by
tinitial. Obviously, tinitial ≤ tfinal. Furthermore, in order to obtain a realistic
model, we have incorporated a discount rate r. Finally, we denote by hyear the
number of hours during which a train operates in a year.
Therefore, the revenue can be expressed as:

objREV =
tfinal−1∑

k=tinitial

1
erk

[
(ξ + η)

∑

w∈W

gw · pp of pair w using the RN

]
,

where pp represents the proportion of passengers.
The system cost objSC is composed of three main terms as follows (for more

details see [11]).
objSC = objBC + objOC + objFAC .
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The first term objBC corresponds to the cost for building stations and edges.
This term is obtained considering two parameters: cij and ci, corresponding to
the cost of the built stretch on edge {i, j} or the constructed station i, respec-
tively. For the sake of simplicity, we assume that both, edge and station construc-
tion costs, are independent of the number of lines traversing edges or reaching
stations. Concretely, this cost can be computed as:

objBC =
1

tfinal

tfinal−1∑

k=0

1
erk

⎡

⎣
∑

{i,j}∈Eb

cij +
∑

i∈Nb

ci

⎤

⎦ ,

where Eb and Nb are the constructed-edge set and the constructed-station set.
The second term objOC is the operating cost, which includes fixed objFOC

and variable costs objV OC :

objOC = objFOC + objV OC .

The term objFOC is related to maintenance and overheads of rails ORlcij and
stations OStci, measured in monetary units per year

objFOC =
tfinal−1∑

k=tinitial

1
erk

⎡

⎣
∑

{i,j}∈Eb

ORlcij +
∑

i∈Sb

OStci

⎤

⎦ .

The variable cost takes into account the cost of operating trains as well as the
crew cost costcrew per train and year, which is closely related with line headways.
The operating cost costmtrain of a train of model m per unit of length, is given.
Therefore, the variable cost is defined as:

objV OC =
tfinal−1∑

k=tinitial

1
erk

[
(hyear · λ)

∑

�∈L
FS�(

∑

m∈M

costmtrain) − costcrew

∑

�∈L
FS�

]
,

in which FS� is the required fleet of line �, measured as the number of trains
required per hour. This number can be expressed as a function of the headway
(h�) and the length of the line:

FS� = �120/(h�λ)
∑

i,j∈E�

dij�, � ∈ L.

The last term in the system cost expression is the fleet acquisition cost objFAC

which is determined by the investment in trains Invm
train. Note that the size of

the rolling stock and the choice of specific train models will be a consequence
of the passenger demand and the frequency of the lines. A parameter χ is used
in order to include a set of reserve trains that will be needed as consequence of
train maintenance operations. So, this cost can be represented as

objFAC =
tfinal−1∑

k=tinitial

1
erk

[
χ

(tfinal − tinitial)

∑

�∈L
FS�(

∑

m∈M

Invm
train)

]
.
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The line capacity imposes an upper bound on the maximum number of pas-
sengers that each line can carry per hour on each edge:

h�

∑

w∈W

gw · (pp of pair w traversing {i, j} in line �) ≤ 60 · Km
train.

The modal split is described by means of a logit model in order to determine
the volume of passengers captured by the RN, similarly to [34]. The logit function
compares the expected passengers’ utility URN

w with the corresponding utility
UALT

w in the competing mode.

fRN
w =

1
1 + e(α−β(UALT

w −URN
w ))

, w ∈ W.

The expected passengers’ utility has three terms that correspond to the
waiting time at stations (uRN,wt

w ), in-vehicle time (uRN,tt
w ), and transfer times

(uRN,tr
w ).

uRN,tt
w =

60
λ

∑

�∈L
(

∑

{i,j}∈E

(pp of w traversing {i, j}in line �) · dij), w ∈ W,

uRN,tr
w =

∑

�∈L

∑

�′:�′ �=�

∑

i∈N

(pp of w transferring from � to �′in i) · (
h�′

2
+ uci), w ∈ W,

uRN,wt
w =

1
2

∑

�∈L

∑

j:{ow,j}∈E

h� · (pp of w traversing {ow, j} in line �), w ∈ W.

Parameters βtt, βtr and βwt represent the value of ridding, transferring and
waiting time respectively (see [21]).

URN
w = ξ + βtt · uRN,tt

w + βtr · uRN,tr
w + βwt · uRN,tw

w , w ∈ W.

Finally, the Railway Rapid Transit Network Design and Line Planning
(RNDLP) consists of choosing the line to be constructed (Lc, the stations of
each line (N�), the edges of each line (E�), the headway of each line to be con-
structed (h�), and the kind of train to be assigned to each line (M�), such that
the net profit is maximized:

max objNET := (objREV − objSC).

3 An Adaptive Large Neighborhood Search Metaheuristic
for the RNDLP Problem

The RNDLP is an NP-hard non-linear problem. In [12] we formulated and solved
a quite similar Network Design and Line Planning problem. The main differences
with respect to the problem here treated are on the modal split sub-model and
the line capacity constraints. In that paper we demonstrated the inability of
the state-of-the-art commercial solvers to solve real size instances. Moreover,
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we compared an ALNS (very similar to the one considered in this chapter)
with fully linearised versions of the RNDLP for small instances (linear MIP
solvers cannot manage large instances), reporting the superiority of the ALNS
technique. As consequence, in order to tackle real size instances efficiently, for the
current problem, we develop an ALNS metaheuristic which provides a powerful
algorithmic framework capable of simultaneously handling the network design
and line planning problems. The ALNS metaheuristic was introduced by [37] to
solve variants of the vehicle routing problem. Basically, this algorithm tries to
improve iteratively an initial solution using destroy and repair operators. The
ALNS belongs to the category of large scale neighborhood search techniques
defined in [1] but only examines a relatively low number of solutions. The main
difference between the original work of [37] and the proposed by [39] concerns the
probability of selecting an operator. Concretely, in our ALNS implementation,
we consider several destroy and repair operators which are independently applied
as in [14].

3.1 The ALNS Metaheuristic

As mentioned, the ALNS starts with an initial solution which is modified at each
iteration by means of operators. This initial solution is formed by one line or
a set of connected lines randomly defined but holding the problem constraints.
We remark that a line is characterized by two different terminal stations, the
intermediate stops or itinerary, the headway and the capacity of each train. In
this situation, when the initial solution is defined, we can compute the amount
of people travelling on the current network, the corresponding construction and
operation costs and, consequently, the associated profit, which represents the
quality of the solution. This calculation is done using a heuristic local search
algorithm (for more details see [18]). Given a network configuration, the local
search solves the problem of maximizing the net profit of a line plan by selecting
the headway and the train model of each line, assuming that all passengers
interested to travel in the RN can be transported.

At each iteration, one or two lines are randomly modified by means of an
operator. An operator is a heuristic method which modifies a solution, keep-
ing feasibility conditions. We consider six operators: two destroy operators, two
repair operators and two operators combining destroy and repair operations.
The repair operators insert new lines or extend existing ones. The destroy oper-
ators remove part of a line or a full line. Concerning the combined operators,
the first one eliminates an existing line and then, inserts a new one. The second
one removes part of a line and extends a randomly selected line.

In order to apply these operators, the lines are randomly selected and the
operators are chosen with a certain probability which depends on their perfor-
mance in the past iterations. As in other random algorithms, the acceptance of
new solutions is controlled by means of a SA technique, diversifying the search
in this way. The procedure ends when a certain stopping criterion is satisfied.
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3.2 Outline of ALNS

In order to define the ALNS algorithm, we include the following elements:

• A set of heuristic methods (operators). The ALNS considers two kinds of
operators, namely, repair and destroy operators. The repair operators build a
new solution from a given solution while maintaining the feasibility whereas
the destroy operators remove part of the solution.

• A set of variables in order to keep information about the best solution, the
solution accepted by the SA and the current solution.

• A set of parameters whose values define the algorithm behaviour.
• A procedure to compute the quality of each solution.
• An initialization phase in which an initial solution and a set of initial values

of the parameters are set in order to start the algorithm.

The key ideas of the ALNS can be described as follows:

Step 1: Initialization phase Construct a feasible solution and set the initial
value of the parameters;

All operators have the same probability of being selected;
The stopping and the acceptance criteria are defined;
Step 2: Select an operator according to the roulette wheel mechanism;
Generate a new feasible solution and compute its profit;
Step 3: Compare the new profit against the stored profits. Apply the SA
acceptance mechanism;

Keep information on the operator performance;
If a determined number of iterations are performed, update the probability of
selecting each operator according to the SA results;

Step 4: Inspect the stopping criteria;
If the stop criteria is not met, go to Step 2, otherwise, the ALNS is finished.

Algorithm 1. Steps in the ALNS implementation.

3.3 The ALNS Components

The main components of our ALNS implementation are the following:

1. Neighborhood size
Two networks GRN and G′

RN are considered as neighbors if they have at most
two different lines. Hence, the number of nodes and edges in the underlying
network determines the size of the neighborhood.

2. Adaptive selection of operators
The selection of a specific operator is made through a roulette wheel mecha-
nism. Concretely, we associate a weight pj with each operator j. This weight
measures how well the operator has performed in the past iterations. Assum-
ing h operators, the probability of selecting the operator m is pm/

∑h
j=1 pj .
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3. Adaptive weight adjustment
The weights pj are updated at each iteration according to the quality of
solutions. At the beginning of the ALNS execution, all weights are fixed to
one and as a consequence, all operators have the same probability. At each
iteration, once an operator j has been selected and applied, its score σj may
be increased using three parameters θ1, θ2 or θ3 with the next meanings:
θ1 : the new solution GRN is better than the best global solution Gbest;
θ2 : the new solution GRN is better than the incumbent solution Gcurr;
θ3 : GRN is worse than the incumbent solution but it is still accepted.
Obviously, the better the solution is, the higher the score is, i.e., θ1 ≥ θ2 ≥ θ3.

After each block of s iterations, the performance of each operator j is observed
and its weight is updated using the expression

pj :=
{

pj if oj = 0
(1 − ε)pj + εσj/νjoj if oj �= 0,

where ε ∈ [0, 1] is a parameter called the reaction factor which allows control-
ling how quickly the weight adjustment algorithm reacts to changes in the
scores. The parameter oj is used for controlling the number of times opera-
tor j is used in the incumbent s iterations. The factor νj ≥ 1 represents the
computational effort required by the operator.

Finally, once all weights have been updated, all scores are reset to zero in
order to store the performance information for the next block of iterations.

4. Acceptance and stopping criteria
Our acceptance criterion is based on SA. We consider a standard exponential
function to describe the SA, which uses two parameters: the current tempera-
ture Tstart > 0 and the cooling rate 0 < φ < 1. At the beginning of the ALNS
implementation, the temperature starts with Tstart and after certain number
of iterations, it is decreased (cooled) using the cooling rate φ (T = Tstart ·φ).
The parameter Tstart may be computed by inspecting the initial solution. In
[37] Tstart is defined in the way that a solution 5% worse than the initial
solution has 50% probability of being accepted. Let GRN be the current solu-
tion and objNET (GRN ) be the corresponding objective value, then, a new
neighbor solution G′

RN is accepted if objNET (G′
RN ) > objNET (GRN ) and

is accepted with probability e(objNET (G′
RN )−objNET (GRN ))/T otherwise. In our

case, if the difference between objNET (G′
RN )− objNET (GRN ) is less than �%

of objNET (GRN ), the acceptance probability is 0.5, i.e.,

e(objNET (G′
RN )−objNET (GRN ))/Tstart = 0.5

or, equivalently,

Tstart = (objNET (G′
RN ) − objNET (GRN ))/ ln(0.5).

The parameter � is selected by the user.
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With respect to the stopping criteria, we distinguish three different methods
to control the end of the execution: the maximum number of iterations ϕ is
reached, the final temperature Tfinal is reached or the running time exceeds
a user-controlled threshold.

3.4 The ALNS Operators

The proposed ALNS considers six operators, defined as follows:

• Inserting-line operator. This operator aims at inserting a new line in the
RN. To this end, two nodes representing the terminal stations, are randomly
selected from the underlying network. Then, a shortest path connecting these
stations in the underlying network is computed. This path configures the
itinerary of the new line if the lower and upper bounds on the number of
nodes of a line is fulfilled. Otherwise, a different couple of nodes are selected
and the procedure above described is repeated. Once the itinerary have been
set, the construction cost as well as the fixed operating cost can be computed.
Since each operator has to ensure feasibility, a line is not inserted if

– there exists an edge in the itinerary exceeding the upper bound imposed
on the number of possible lines connecting each pair of adjacent nodes,

– the itinerary is part of other existing line in the current RN solution,
– the itinerary contains an existing line,
– it is not connected with the existing lines in the RN.

If finally the line is inserted, the corresponding profit is computed by means
of a local search heuristic (see [18]).

• Extending-line operator. This heuristic randomly extends an existing line.
First, the operator randomly choose a line and then, randomly selects the
position (at the beginning or at the end in the itinerary) in order to extend
the selected line. Once the line and the terminal station have been selected, a
node (not belonging to the selected line) of the underlying network is randomly
selected. A shortest path between this node and the terminal station of the line
is computed. The itinerary of � is extended according to the resulting path. A
line is not extended if it reaches the maximum number of permitted nodes or
there exists an edge in the itinerary exceeding the upper bound imposed on
the number of possible lines connecting each pair of adjacent nodes. Finally,
if the line � is extended, its profit is computed using the local search heuristic.

• Delete-line operator. The delete-line operator randomly removes a line from
the current RN provided the network is connected.

• Delete-part-line operator. This operator randomly selects a line � to be par-
tially removed. To do this, an intermediate node of the itinerary of � and a
terminal station of � are randomly selected. The sub-path between both nodes
is removed from �. The lower bound on the number of nodes of � is inspected.
If the line is contained in an existing line or the network becomes unconnected
after eliminating the sub-path, the removal is not considered.
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• Delete-part-line and Extending-line operator. This method applies a delete-
part-line and an extending-line operators in the same iteration. In case that
the delete-part-line can be applied, the extending-line is later used. As can be
observed, both operators work independently and, therefore, the selected line
can be different for each one.

• Delete-line and Inserting-line operator. The idea of this operator consist on
removing a line by means of the delete-line operator and then, if possible, apply
the insert-line operator with the aim of adding a new line. As the reader can
note, this method replaces a line with another line.

4 Computational Experiments

In this section, in order to show the performance of the proposed ALNS algo-
rithm, we conduct a set of computational experiments on a medium-sized arti-
ficially generated network. The network contains 100 nodes (potential stations)
and 275 links (edges). The node set was randomly selected from a 15×15 square
grid with 225 nodes covering a surface of 142 km2. The coordinates of each
node were randomly chosen by considering a uniform distribution U(−0.5, 0.5)
around each coordinate (x,y) of the selected nodes in the grid, that is, by using
the intervals (x − 0.5, x + 0.5) and (y − 0.5, y + 0.5). The edge set was then
defined by using the Voronoi diagram, linking adjacent nodes and avoiding edge
crossings (see Fig. 1). The length of each edge was computed as the Euclidean
distance between its adjacent nodes. In order carry out the bed of experiments,
an arbitrary initial solution was defined as depicted in Fig. 1.

(a) Artificial generated network (b) Initial solution

Fig. 1. Experimental scenario and initial solution

With respect to the passengers’ demand, for each one of the 9900 OD pairs
(100 × 99) among the different potential stations, the expected number of trips
was obtained following a discrete uniform distribution U(0, 43), given rise to an
hourly OD demand matrix with a total of 107, 269 trips.
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As explained previously, the modal split is described through a logit function.
To this end, we need to introduce the utility associated to the competing mode
(private car) as well as the associated to the railway system. Basically, the utility
URN

w of using the RN, is compared pair by pair with the utility of the private
car, UALT

w . As the reader may note in the following expression, URN
w is expressed

in terms of monetary costs:

URN
w = τ + βtt · uRN,tt

w + βtr · uRN,tr
w + βwt · uRN,wt

w , w ∈ W.

All parts of the trip (access, waiting, riding, transfer) were estimated in terms
of time assuming a commercial speed of 40 km/h, and converted into monetary
values using parameters βtt, βtr and βwt. As a consequence, URN

w is a function
of the fare and the set of edges and lines selected to perform the trip as well as
the line frequencies. In this illustration, the values of time are taken from the
work of [21], as shown in Table 1.

The utility of the alternative mode, UALT
w for each pair w ∈ W is described

as follows:

UALT
w = fc + d′

ow,dw · vc + d′
ow,dw · 60

v
· tvc + Pt · tvp + pc, w ∈ W.

where:

– fc, denotes the fixed cost per trip corresponding to the private car mode.
– v, represents the average speed.
– vc, defines the variable cost per km.
– tvc, denotes the unitary value of travel time.
– Pt, corresponds to the average time needed to park at destination.
– tvp, is the unitary value of parking time.
– pc, is the average cost of parking per trip.
– d′

ow,dw , corresponds to the modified Euclidean distance between the origin
and destination of pair w.

In particular, each Euclidean OD distance has been multiplied by a factor
1.2, representing the impossibility of follow straight lines connecting the origin
and destination of the pair. The specific values used in our experiments are
included in Table 1. We want to remark that the goal of these experiments is
to show the performance of the ALNS rather than the proper estimation of all
these scenario-dependent parameters. Interested readers in modelling private car
and public transport preferences can consult the books [20,40] and the work of
[2,16,21,36,41]. [41] shows a general analysis of the value of time and [16,21]
present the specific case of modelling the value of time in railway systems.

Costs concerning operation and rolling stock acquisition are taken from [22],
considering the family of trains “Civia”, recently used by the National Spanish
Railways Service Operator (RENFE) for commuter/regional railway passengers
transportation in Spain. Concretely, we have considered three different models:
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Civia-463, Civia-464 and Civia-465, with 607, 832 and 997 passenger capacities
(seating and standing) respectively. The remaining model parameters are shown
in Table 1.

Concerning the ALNS execution, in order to select the most appropriate val-
ues for the algorithm parameters, we run consecutively the same instance three
times until the coefficient of variation (the sample average divided by the sam-
ple standard deviation) reached a value of 0.1, which indicates a strong stability

Table 1. Input parameters for the computational experiments.

Parameters

Name Description Value

tfinal Years to recover the purchase 20

hyear Number of operative hours per year 6935

tinitial Number of years spent to build the network 10

m Model of train 463, 464, 465

costmtrain Costs for operating one train model m per
kilometer [e/km]

3, 3.1, 3.2

costcrew Per crew and year for each train [e/ year] 75 · 103

Invm
train Purchase cost of one train Civia in e 4.4 · 106, 5.2 · 106, 5.9 · 106

Km
train Capacity of each type of train [Passengers] 607, 832, 997

H Possible headways [min] {3, 4, 5, 6, 10, 12, 15, 20}
Nmin Minimum number of stations for each line 5

Nmax Maximum number of stations for each line 16

βtr Perceived value of time spent transferring in
e/min

0.25

βwt Perceived value of time for waiting at the
origin station in [e/min]

0.25

βtt Perceived value of time for riding in train in
[e/min]

0.083

fc Fixed cost per trip corresponding to the
private car mode [e]

1.75

v Average speed of the private car mode [Km/h] 60.0

vc Variable cost per km corresponding to the
alternative mode [e/km]

0.12

tvc Unitary value of time travelling in the
alternative mode [e/min]

0.05

Pt Average time needed to park at destination
[min]

10.0

tvp Unitary value of time corresponding to the
parking time [e/min]

0.25

Lmax The maximum number allowed in the network 6

pc Average cost of parking per trip [e] Table 2
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of the algorithm. Then, using the tuned ALNS, a set of 24 experiments were
generated by varying fare, subsidy and the ticket price for the alternative mode,
as described in Table 2. The first twelve experiments (first block) correspond
to a constant value of the sum fare + subsidy equal to 3. For the last twelve
experiments (second block) fare + subsidy = 2.

Table 2. Definition of computational experiments.

Summary of experiments

Exp. number Fare+subsidy Fare subsidy pc

1 3 0.5 2.5 0.5

2 3 0.75 2.25 0.5

3 3 1 2 0.5

4 3 1.5 1.5 0.5

5 3 0.5 2.5 0.75

6 3 0.75 2.25 0.75

7 3 1 2 0.75

8 3 1.5 1.5 0.75

9 3 0.5 2.5 1

10 3 0.75 2.25 1

11 3 1 2 1

12 3 1.5 1.5 1

13 2 0.5 1.5 0.5

14 2 0.75 1.25 0.5

15 2 1 1 0.5

16 2 1.5 0.5 0.5

17 2 0.5 1.5 0.75

18 2 0.75 1.25 0.75

19 2 1 1 0.75

20 2 1.5 0.5 0.75

21 2 0.5 1.5 1

22 2 0.75 1.25 1

23 2 1 1 1

24 2 1.5 0.5 1

The ALNS has been coded using Java and run in a computer with 8 Gb of
RAM memory and a 2.8 Ghz CPU. In all cases a value of γ = 3 (line multiplicity)
was considered. The cooling factor was fixed to 0.9997 and the reaction factor
to 0.7. The final temperature Tfinal was set to 0.01. The score parameters θ1,
θ2 and θ3 were set to 10, 5 and 2, respectively. The acceptance neighborhood
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parameter � was set to 33%, as in [14]. The rest of model parameters are set as
in [11]. In all cases, the time limit (3600s) acts as stopping criterion.

Detailed information on these solutions are collected in Tables 3 and 4. In
Table 3 column “Exp. number” refers to the tested experiment. The second col-
umn shows the number of captured passengers; the third one represents the
number of lines; the fourth column reports (in order) the headway correspond-
ing to each line and the last column contains the model of train selected for
each line. As in Table 3, the first column of Table 4 shows the experiment num-
ber. Afterwards, column by column, we report the computation time needed to
obtain the best solution, the net profit, the network revenue, the operating cost,
the building cost (including the fixed operating cost), the crew cost and finally
the fleet acquisition cost.

Table 3. Computational results for the ALNS metaheuristic.

Exp.
number

Demand No. of
lines

Headway Train models

1 39493 6 [10, 10, 10, 10, 10, 10] [463, 465, 463, 464, 464, 464]

2 36377 6 [5, 5, 5, 5, 5, 5] [463, 465, 465, 465, 465, 465]

3 44682 6 [6, 6, 6, 6, 6, 6] [463, 463, 463, 463, 463, 463]

4 28812 6 [15, 15, 15, 15, 15, 15] [465, 464, 463, 463, 464, 463]

5 29547 6 [6, 10, 10, 10, 10, 10] [464, 464, 463, 465, 464, 464]

6 28185 6 [10, 10, 10, 10, 10, 10] [465, 463, 463, 463, 463, 464]

7 41726 6 [5, 5, 5, 5, 5, 5] [465, 464, 463, 463, 463, 463]

8 30851 6 [12, 12, 12, 12, 12, 12] [465, 465, 463, 464, 463, 465]

9 30851 6 [10, 10, 10, 10, 10, 10] [464, 464, 463, 465, 463, 463]

10 31208 6 [10, 10, 10, 10, 10, 10] [464, 465, 463, 463, 464, 464]

11 34047 6 [10, 10, 10, 10, 10, 10] [465, 463, 463, 463, 464, 463]

12 36690 6 [10, 10, 10, 10, 10, 10] [464, 464, 465, 465, 464, 464]

13 37201 6 [10, 10, 10, 10, 10, 10] [465, 464, 464, 464, 464, 463]

14 37373 6 [6, 6, 6, 6, 6, 6] [464, 463, 463, 463, 463, 463]

15 32668 6 [12, 12, 12, 12, 12, 12] [465, 464, 464, 463, 464, 465]

16 31603 6 [12, 12, 12, 12, 12, 12] [465, 463, 463, 464, 463, 464]

17 36520 6 [10, 10, 10, 10, 10, 10] [465, 465, 464, 464, 463, 463]

18 40219 6 [10, 10, 10, 10, 10, 10] [464, 463, 465, 463, 464, 463]

19 39949 6 [10, 10, 10, 10, 10, 10] [465, 464, 463, 463, 465, 464]

20 30408 6 [12, 12, 12, 12, 12, 12] [465, 465, 464, 463, 463, 464]

21 43361 6 [6, 6, 6, 6, 6, 6] [463, 463, 463, 463, 464, 463]

22 28108 6 [10, 10, 10, 10, 10, 10] [463, 463, 464, 465, 463, 463]

23 27698 6 [15, 15, 15, 15, 15, 15] [464, 463, 464, 463, 464, 465]

24 36070 6 [6, 6, 6, 6, 6, 6] [464, 464, 463, 463, 463, 463]
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Table 4. Computational results for the ALNS metaheuristic.

Exp.
number

Time Profit Revenue Operating
cost

Building
cost

Crew cost Acquisition
cost

1 3192.90 3.70E9 7.11E9 2.91E8 2.86E9 7.65E7 1.82E8

2 3437.87 3.29E9 6.55E9 4.71E8 2.38E9 1.26E8 2.75E8

3 3481.97 3.85E9 8.04E9 5.08E8 3.26E9 1.37E8 2.82E8

4 3206.59 2.74E9 5.19E9 1.54E8 2.16E9 4.05E7 9.51E7

5 3600.82 2.34E9 5.32E9 2.82E8 2.44E9 7.36E7 1.79E8

6 2017.74 2.48E9 5.07E9 2.05E8 2.20E9 5.44E7 1.25E8

7 3561.55 3.70E9 7.51E9 5.13E8 2.85E9 1.36E8 3.09E8

8 3212.30 3.49E9 6.26E9 1.92E9 2.39E9 4.98E7 1.24E8

9 3543.65 2.69E9 5.55E9 2.32E8 2.43E9 6.10E7 1.43E8

10 2342.42 2.88E9 5.62E9 2.23E8 2.31E9 5.87E7 1.37E8

11 2428.17 3.25E9 6.13E9 2.28E8 2.45E9 6.07E7 1.35E8

12 3519.16 3.57E9 6.61E9 2.49E8 2.56E9 6.43E7 1.64E8

13 2091.95 1.27E9 4.46E9 2.80E8 2.66E9 7.32E7 1.79E8

14 3529.52 1.09E9 4.49E9 3.92E8 2.67E9 1.05E8 2.24E8

15 3167.72 1.09E9 3.92E9 2.02E8 2.44E9 5.24E7 1.33E8

16 3467.02 1.19E9 3.79E9 1.78E8 2.27E9 4.69E7 1.11E8

17 2713.09 1.19E9 4.38E9 2.49E8 2.72E9 6.50E7 1.60E8

18 3227.82 1.75E9 4.83E9 2.48E8 2.60E9 6.55E7 1.52E8

19 3484.67 1.74E9 4.80E9 2.50E8 2.58E9 6.55E7 1.59E8

20 964.50 7.67E8 3.65E9 1.98E8 2.51E9 5.21E7 1.25E8

21 3651.22 1.81E9 5.20E9 4.19E8 2.62E9 1.13E8 2.39E8

22 3552.36 8.59E8 3.37E9 2.08E8 2.13E9 5.50E7 1.25E8

23 2571.30 9.21E8 3.32E9 1.32E8 2.15E9 3.46E7 8.19E7

24 3631.94 1.32E9 4.33E9 3.73E8 2.32E9 9.98E7 2.17E8

Figure 2 resumes the different terms concerning the objective function for all
the experiments. As expected, incomes are bigger for the first twelve instances.
Experiments number 3 and 21 produce the best results in terms of profit for the
two different blocks of experiments respectively. The structure of costs depicted
in the figure denotes the complexity of the RNDLP problem. Specifically, it could
be expected a higher captured demand for experiment 1 in comparison with
experiment 3 as consequence of a minor fare (the RN becomes more attractive
for passengers). However, as revenue is lower, a lower income gives rise to a
less extensive network, given service to a minor number of O-D pairs, which
translates in a minor captured demand (see Fig. 3). Moreover, the best solution
(experiment 3) also corresponds to the higher construction costs and to one of
the experiments with high operation costs (with exception of experiment 7).
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Fig. 2. Representation of costs for the set of experiments.

In order to obtain a deeper insight in the best solutions, experiments 3 and
21, Fig. 4, representing Network Profit versus time, illustrate the convergence
process of the ALNS in both cases. As the reader may note, the algorithm attain
a 70% of the best profit in approximately 1000 s for the experiment 3 and a 50%
in 2400 s for the experiment 21. In general, the convergence in the second block
of experiments (with lower sum of fare + subsidy) is slower than in the first
one. Figure 5 shows the topology of both solutions.

Figure 6 presents a comparison between the topology of both networks, giving
an idea about the coverage of the two solutions. This picture also illustrates the
complexity of making the most appropriate design. As depicted, Experiment 3
covers a greater number of nodes which translates in a higher number of served
O-D pairs.

Fig. 3. Captured demand for the set of experiments.
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(a) Profit evolution for Exp. n. 3 (b) Profit evolution for Exp. n. 21

Fig. 4. Improvement of the ALNS with time

(a) Network of Exp. n. 3 (b) Network of Exp. n. 3

Fig. 5. The RN solutions

Fig. 6. Comparison of coverage Exp. 1 and 23.
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5 Conclusions

In this chapter, we have presented a MINLP formulation for the integrated
Railway Rapid Transit Network Design and Line Planning (RNDLP) problem,
considering simultaneously the two first stages of the railway planning process.
The model incorporates all relevant costs, including the network building, fleet
acquisition, train operation, rolling stock and crew costs, taking into account
the temporal nature of the network deployment. The proposed model reflects
both, the service provider and the user points of view. The line planning phase
includes line frequency and train model selection decisions, determining the final
level of service for each line. The proposed formulation considers the existence
of an alternative mode (private car) providing service to all origin-destination
pairs. Users select the railway or the alternative mode by comparing its respec-
tive utilities by means of a logit probabilistic sub-model that include RN fare
as a decision parameter. In order to solve realistic size instances of the RNDLP
problem, an Adaptive Large Neighborhood Search (ALNS) metaheuristic is pro-
posed. The ALNS performance was assessed by means of a parametric analysis
in a medium-size artificial generated network. As reported in Sect. 4, the abil-
ity of the ALNS in obtaining good solutions within short computation times
is demonstrated. Computational experiments provide yield useful insights into
the different interactions among all the aspects related to this long-term and
complex decision problem.

Nowadays, the integration of different stages of the railway planning process
continues being a challenge and further research is needed in order to model
and solve real and big instances. Although several attempts have been made
to solve rolling stock and scheduling problems jointly, there still exists a gap in
integrating strategic and tactical problems. This chapter contributes to this end.
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1. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discret. Appl. Math. 123(1), 75–102 (2002)

2. Beirão, G., Sarsfield-Cabral, J.A.: Understanding attitudes towards public trans-
port and private car: a qualitative study. Transp. Policy 14(6), 478–489 (2007)

3. Blanco, V., Puerto, J., Ramos, A.: Expanding the Spanish high-speed railway net-
work. Omega 39(2), 138–150 (2011)

4. Borndörfer, R., Grötschel, M., Pfetsch, M.E.: Models for line planning in pub-
lic transport. In: Hickman, M., Mirchandani, P., Voß, S. (eds.) Computer-Aided
Systems in Public Transport. LNE, vol. 600, pp. 363–378. Springer, Heidelberg
(2008)

5. Brueckner, J.K.: Transport subsidies, system choice and urban sprawl. Reg. Sci.
Urban Econ. 35(6), 715–733 (2005)



218 D. Canca et al.

6. Bruno, G., Gendreau, M., Laporte, G.: A heuristic for the location of a rapid transit
line. Comput. Oper. Res. 29, 1–12 (2002)

7. Bruno, G., Ghiani, G., Improta, G.: A multi-modal approach to the location of a
rapid transit line. Eur. J. Oper. Res. 104(2), 321–332 (1998)

8. Bussieck, M., Kreuzer, P., Zimmermann, U.: Optimal lines for railway systems.
Eur. J. Oper. Res. 96, 54–63 (1997)
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