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Abstract. In this work, we consider the coupled systems of a par-
tial differential equations, which arise in the modeling of thermoelas-
ticity processes in heterogeneous domains. Heterogeneity of the proper-
ties requires a high resolution solve that adds many degrees of freedom
that can be computationally costly. For the numerical solution, we use a
Generalized Multiscale Finite Element Method (GMsFEM) that solves
problem on a coarse grid by constructing local multiscale basis functions
[1–3]. We construct multiscale basis functions for the temperature and
for the displacements on the offline stage in each coarse block using local
spectral problems [4–7]. On the online stage we construct coarse scale
system using precalculated multiscale basis functions and solve problem
with any forcing and boundary conditions. The numerical results are
presented for heterogeneous and perforated domains.

1 Problem Formulation and Fine Scale Approximation

We consider linear thermoelasticity problem for temperature, T , and for dis-
placement, u [8–10]

−div σ(u) + β grad T = 0 in Ω,

β div
∂u

∂t
+ c

∂T

∂t
− div (k grad T ) = f in Ω,

(1)

where f is a source term, c is a heat capacity, k is a thermal conductivity and β
is the coupling coefficient.

The stress and strain tensors are given by

σ(u) = 2με(u) + λ div(u) I, ε(u) =
1
2

(
grad u + graduT

)
,

where μ, λ are Lame parameters, I is the identity tensor.
We consider (1) with initial condition T (x, 0) = T0 and boundary conditions

for displacement and for temperature

σn = 0, x ∈ Γu
N , u = u1, x ∈ Γu

D,
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−k
∂T

∂n
= 0, x ∈ ΓT

N , T = T1, x ∈ ΓT
D ,

where n is the unit normal to the boundary.
For numerical solution on fine grid, we use a standard finite element method

and implicit scheme for approximation by time [4,5,8]

au(un+1, v) + b(Tn+1, v) = 0,

b(un+1 − un, q) + m(Tn+1 − Tn, q) + τaT (Tn+1, q) = τ(f, q),
(2)

for (u, T ) ∈ W = (V,Q) and (v, q) ∈ Ŵ = (V̂ , Q̂) where

V = {v ∈ [H1(Ω)]d : v(x) = u1, x ∈ Γ u
D}, Q = {q ∈ H1(Ω) : q(x) = T1, x ∈ Γ T

D},

V̂ = {v ∈ [H1(Ω)]d : v(x) = 0, x ∈ Γ u
D}, Q̂ = {q ∈ H1(Ω) : q(x) = 0, x ∈ Γ T

D}.

Here for bilinear and linear forms we have

au(u, v) =
∫

Ω

(σ(u), ε(v))dx, aT (T, q) =
∫

Ω

(k grad T, grad q) dx,

b(T, u) =
∫

Ω

β(grad T, u)dx, m(T, q) =
∫

Ω

c T q dx, (f, q) =
∫

Ω

f q dx.

where as basis functions on fine grid we use standard linear basis functions for
both temperature and displacement.

2 Coarse-Scale Approximaiton Using GMsFEM

Let T H be a standard conforming partition of the computational domain Ω into
finite elements. We refer to this partition as the coarse-grid and assume that each
coarse element is partitioned into a connected union of fine grid blocks. The fine
grid partition will be denoted by T h. Let {xi}N

i=1 is the vertices of the coarse
mesh T H , where N is the number of coarse nodes. We define the neighborhood
(local) domain of the node xi by

ωi =
⋃

j

{
Kj ∈ T H |xi ∈ Kj

}
,

where Kj to denote a coarse element.
In the GMsFEM algorithm, we have three steps [1–3]:

Step 1: Generate the coarse-grid, T H and local domains ωi, i = 1, 2, . . . , N ;
Step 2: The construction of the multiscale basis functions in local domains, ωi,
i = 1, 2, . . . , N (offline space);
Step 3: Use offline space to find the solution of a coarse-grid problem for any
force term and/or boundary conditions.

We construct multiscale basis functions for temperature and displacements
separately.
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Multiscale Basis Functions for Pressure. To construct the offline space Qoff

for temperature, we solve following the eigenvalue problem in the local domain ω:

AT Ψoff
k = λoff

k ST Ψoff
k ,

AT = [aij ] , aij =

∫
Ω

(k grad φi, grad φj) dx, MT = [sij ] , sij =

∫
Ω

kφiφj dx,

(3)

and choose the eigenvectors ψoff
k that corresponds to the smallest Mω,T

off eigen-
values in Eq. (3) and denote the span of this reduced space as Qω

off.
For construction of the offline space, to ensure the functions we construct

form an conforming basis, we define multiscale partition of unity functions χi

aT (χi, q) = 0 in K, χi = gi on ∂K, (4)

for all K ∈ ω. Here gi is a continuous on K and is linear on each edge of ∂K.
Finally, we multiply the partition of unity functions by the eigenfunctions in

the offline space Qωi

off to construct the resulting basis functions ψi,k = χiψ
ω,off
k ,

for 1 ≤ i ≤ N and ≤ k ≤ Mωi,T
off , where Mωi,T

off denotes the number of offline
eigenvectors that are chosen for each coarse node i.

We define the multiscale space using a single index notation as

Qoff = span{ψi}Moff
T

i=1 , and RT =
[
ψ1, . . . , ψMoff

T

]T

, (5)

where Moff
T =

∑N
i=1 Mωi,T

off denotes the total number of basis functions.

Multiscale Basis Functions for Displacement. For construction of multi-
scale basis functions for displacements we use similar algorithm that we used for
the temperature. We solve the following eigenvalue problem in Vh(ω) [3–5]

AuΦoff
k = λoff

k SuΦoff
k ,

Au = [aij ] , aij =
∫

Ω

(
2με(ϕm) : ε(ϕn) + λ div(ϕm) · div(ϕn)

)
,

Su = [sij ] , sij =
∫

Ω
(λ + 2μ)ϕm · ϕn.

(6)

We then choose the eigenvectors that corresponds to the smallest Mω,u
off eigen-

values from Eq. (6) and denote the span of this reduced space as V ω
off.

For construction of multiscale partition of unity functions for the mechanics
solve, we proceed as before and solve for all K ∈ ω

au(ξi, v) = 0 in K, ξi = gi on ∂K, (7)

where gi is a continuous function on K and is linear on each edge of ∂K. Finally,
we multiply the partition of unity functions by the eigenfunctions in the offline
space V ωi

off to construct the resulting basis functions ϕi,k = ξiϕ
ωi,off
k for 1 ≤ i ≤ N

and 1 ≤ k ≤ Mωi,u
off , where Mωi,u

off denotes the number of offline eigenvectors that
are chosen for each coarse node i.
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Next, we define the multiscale space as

Voff = span{ϕi}Moff
u

i=1 , and Ru =
[
ψ1, . . . , ϕMoff

u

]T
, (8)

where Moff
u =

∑N
i=1 Mωi,u

off denotes the total number of basis functions.

Coarse-Scale System. The variational form in (2) yields the following linear
algebraic system

(
Ac

u (Bc)T

Bc (Mc + τAc
T )

) (
un+1

H

Tn+1
H

)
=

(
0

Qc

)
, (9)

where

Ac
u = RuAuRT

u , Ac
T = RT AT RT

T Bc = RT BRT
u , Mc = RT MRT

T

and Qc = RT τF + McT
n
H + Bcu

n
H . Here uH and TH denotes the coarse-scale

solutions that we can project into the fine-grid un+1
h = RT

u un+1
H and Tn+1

h =
RT

T Tn+1
H .

3 Numerical Examples

In this section, we present numerical examples to demonstrate the performance
of the GMsFEM for computing the solution of the thermoelasticity problem in
heterogeneous and perforated domains where the inclusions can have different
size (see Figs. 1 and 2).

We present results for perforated and heterogeneous domains with random
distribution of the inclusions (Fig. 1). For high-constrast domain, we consider
case with one type of particles (Fig. 2). For numerical simulations we use fol-
lowing thermomechanical coefficients: c1 = 1000, c2 = 100, k1 = 1, k2 = 100,
E1 = 100, E2 = 10, ν = 0.3 and β = 1.0.

We consider three test cases:

Case 1a. Perforated domain with homogeneous backround with source term f =
100 and zero Dirichlet boundary conditions for temperature and displacement
on perforations;
Case 1b. Perforated domain with heterogeneous backround with source term f =
100 and zero Dirichlet boundary conditions for temperature and displacement
on perforations;
Case 2. Heterogeneous domain with circle particles with zero source term f =
0 and boundary conditions: a fixed temperature T = 1.0 on cavity, a fixed
displacements ux = 0 for left boundary and uy = 0 on top boundary.

For numerical comparison, we calculate a weighted relative errors using L2

norm and H1 semi-norm for temperature

||εT ||L2 =
(∫

Ω

kε2T dx

)1/2

, |εT |H1 =
(∫

Ω

(k grad εT , grad εT ) dx

)1/2

,
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Fig. 1. Coarse and fine computational grids (left) and heterogeneous backround (right).
Blue color is the subdomain 2 and red is the subdomain 1. Fine grid contains 12426
vertices and 24124 cells. Coarse grid have 110 vertices and 180 cells. (Color figure
online)

and for displacement

||εu||L2 =
(∫

Ω

(λ + 2μ)(εu, εu)dx

)1/2

, |εu|H1 =
(∫

Ω

(σ(εu), ε(εu)) dx

)1/2

,

where εT = Tf − Tms, εu = uf − ums. Here (uf , Tf ) and (ums, Tms) are fine-
scale and coarse-scale (multiscale) solutions, respectively for displacement and
temperature.

Fig. 2. Coarse and fine computational grids (left) for domain with circle particles.
Orange color is the subdomain 2 and blue is the subdomain 1. Fine grid contains
18378 vertices and 36254 cells. Coarse grid have 152 vertices and 252 cells. (Color
figure online)
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Table 1. Relative L2 and H1 errors for temperature and displacement in percentage

Moff
T = Moff

u dim(W off ) Temperature errors, εT Displacement errors, εu

εT
L2 εT

H1 εu
L2 εu

H1

Perforated domain, Case 1a

2 660 7.08 27.07 18.55 45.05

4 1320 2.48 15.22 6.63 27.32

8 2640 0.72 7.60 1.94 14.53

16 5280 0.20 3.65 0.43 6.01

Perforated domain with heterogeneous backround, Case 1b

2 660 47.03 71.60 61.57 70.29

4 1320 17.74 45.50 26.16 43.28

8 2640 1.42 16.73 5.07 22.19

16 5280 0.20 6.37 0.98 10.14

20 6600 0.13 4.76 0.61 7.83

Heterogeneous domain with circle particles, Case 2

2 912 6.085 43.48 11.33 32.25

4 1824 4.81 19.05 7.17 25.76

8 3648 3.06 12.55 1.23 14.86

16 7296 1.47 7.41 0.43 9.05

20 9120 1.15 6.53 0.82 7.53

Fig. 3. Fine-scale solution (top) and coarse-scale solution using 8 basis functions for
temperature and 8 for displacement (bottom) for the Case 1a. Left: temperature. Mid-
dle: displacement ux. Right: displacement uy.
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In Fig. 3, we show the fine-scale and coarse-scale solutions for the Case 1a
and in Fig. 4 for the Case 1b. For multiscale solution we used 8 multiscale basis
functions for temperature and 8 multiscale basis functions for displacement.
Comparing the fine-scale and coarse-scale solutions in Figs. 3 and 4, we can

Fig. 4. Fine-scale solution (top) and coarse-scale solution using 8 basis functions for
temperature and 8 for displacement (bottom) for the Case 1b. Left: temperature. Mid-
dle: displacement ux. Right: displacement uy.

Fig. 5. Fine-scale solution (top) and coarse-scale solution using 8 basis functions for
temperature and 8 for displacement (bottom) for the Case 2. Left: temperature. Middle:
displacement ux. Right: displacement uy.
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observe a good accuracy of the proposed multiscale method for both homoge-
neous and heterogeneous backround coefficients for perforated domain. In Fig. 5
we show solutions for the Case 2 for heterogeneous domain with circle particles.
In Table 1 we present relative errors for the coarse-scale solutions with different
number of the multiscale basis functions. We observe a good accuracy for all
cases for multiscale solution using only ≈ 0.2% of fine-scale system size.
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