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Abstract. System of equations describing micropolar elastic thin plates
is written in symmetric hyperbolic form. For the solution of dynamic
problems in the framework of micropolar thin plates the numerical
algorithm is proposed. The algorithm based on the two-cyclic split-
ting method in combination with monotone finite-difference 1D schemes
is proposed. The results of computations of problems on distributed
impulse action loads are shown.
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1 Introduction

Thin-walled structures such as rods, plates and shells are widely used in civil
engineering, aero-space industry, medical and biological fields as basic struc-
tural elements. Structure is one of the most important indicator of the quality
of materials directly influencing on theirs strength characteristics. Depending
on type of the material and the scope of research in practical problems it is
necessary to take into account the sctructure on nano-, micro- or mesolevel. To
describe complex inner structure of a material the construction of new models of
micropolar media is required. In micropolar or Cosserat continuum in addition
to translational motion characterized with the velocity vector independent small
rotations of particles are considered [1,2]. And together with the antisymmetric
stress tensor antisymmetric couple stress tensor is introduced.

In papers [3–6] numerical solution of three-dimensional dynamic problems of
Cosserat continuum was presented. In particular, it is shown that in Cosserat
continuum there is a resonant frequency depending only on the inertial properties
of particles and the elasticity parameters of the material. The present paper gives
the results of numerical modeling of micropolar thin elastic plates.

There are some approaches of constructing two-dimensional mathematical
models of micropoar plates. Within the framework of the direct approach the
plate is modeled as a deformable surface with material points; see for exam-
ple [7–9] and references therein. Another approach is based on the reduction
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of three-dimensional micropolar continuum equations. Various averaging proce-
dures together with the approximation of the displacements and rotations in the
thickness direction are applied; see for example [9–13] and references therein. In
present paper assumptions on linear approximation of translation and rotation
together with the through-the thickness integration procedure are made.

2 Mathematical Model

2.1 Equations of Three-Dimensional Cosserat Continuum

In Cosserat continuum translational motion denoted by u and independent rota-
tions of particles denoted by ϕ are considered. The stress state of the material
is characterized by the antisymmetric stress tensor σ and antisymmetric couple
stress tensor m. The complete system of equations in three-dimensional Cosserat
model consists of the motion equations, the kinematic equations and the gener-
alised law of linear elasticity theory [2]

ρü = ∇ · σ + ρg, jϕ̈ = ∇ · m − 2σx + jq,

Λ = ∇u + ϕ, M = ∇ϕ,

σ = λII · ·ΛS + 2μΛS + 2αΛA,

m = βII · ·MS + 2γMs + 2εMA.

(1)

Here g and q are the mass force and couple vectors, ρ is the material density,
j is the inertial parameter equal to the product of the inertia moment of a par-
ticle about the axis through its center of gravity and the numbers of particles
in unit volume. The formula r =

√
5j/(2ρ) is valid to estimate the linear para-

meter of material microstructure. Constants λ and μ are the Lame parameters,
and α, β, γ, ε are the phenomenological elasticity coefficients for an isotropic
material. Λ and M are the strain and wryness tensors, the superscripts S and A
correspond to the symmetric and antisymmetric tensor components respectively.
The antisymmetric component is identified with its corresponding vector. A dot
above a symbol denotes the derivative with respect to time t.

Boundary conditions have the following form in terms of translations and
rotations

u = u0, ϕ = ϕ0

or stresses

n · σ = p0, n · m = q0,

where u0, ϕ0 are given functions, p0 and q0 are the surfaces forces and surface
couples acting on a part of a boundary of micropolar body.
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2.2 Equations of Two-Dimensional Micropolar Plates

The transition to the two-dimensional equations is based on the linear in x3

approximation of the displacement and rotation with independent integration
of motion equations in (1) through the plate thickness. Let the isotropic plate-
like body occupy the volume V = {(x1, x2, x3) ∈ R3 : (x1, x2) ∈ S ⊂ R2, x3 ∈
[−h, h]}. Here h is a half of the plate thickness, h = const. Let us assume that
the plate thickness 2h is small compared to characteristic sizes of a plate. For
translations and rotations of the plate-like body the following aproximation is
made

ui(t, x1, x2, x3) = x3ψi(t, x1, x2), i = 1, 2
u3(t, x1, x2, x3) = w(t, x1, x2),
ϕi(t, x1, x2, x3) = ωi(t, x1, x2),
ϕ3(t, x1, x2, x3) = ω3(t, x1, x2) + x3θ(t, x1, x2).

(2)

Normal to the midplane displacement u3 and rotations ϕ1, ϕ2 are independent
on coordinate x3. Hence, there are 7 kinematically independent scalar fields:
ψ1, ψ2, w, ϕ1, ϕ2, ϕ3, θ. In static case when ω3 is equal to zero kinematical
assumptions (2) coincide with hypotheses in [12].

On the front planes of the plate x3 = ±h boundary conditions are assumed
to be homogeneous, stress and couple stress tensors are zero.

Stress and couple stress tensor in constitutive Eq. (1) after the integration
through the thickness are written in terms of stress and couple stress resultants

Nij =< σij >, Tij =< x3 σij >, Lij =< mij >, Kij =< x3 mij >,

where < (. . . ) >=
h∫

−h

(. . . ) dx3. Here and below indices i, j = 1, 2, i �= j.

In terms of velocities and angular velocities

Ψi = ψ̇i, W = ẇ, Ωi = ω̇i, Ω3 = ω̇3, Θ = θ̇,

integration of the motion equations in (1) leads to the following motion equa-
tions:

2h3

3
ρΨ̇i = T1i,1 + T2i,2 − N3i, 2hρẆ = N13,1 + N23,2,

2hjΩ̇i = L1i,1 + L2i,2 + (−1)j(Nj3 − N3j),

2hjΩ̇3 = L13,1 + L23,2 + N12 − N21,

2h3

3
jΘ̇ = K13,1 + K23,2 + T12 − T21 − L33.

(3)

The subscripts after a comma denote the partial derivatives with respect to the
corresponding coordinate.
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Elasticity relations after the integration are as follows

Ṫii =
2h3

3
(λ (Ψ1,1 + Ψ2,2) + 2μΨi,i) , Ṫ33 =

2h3

3
λ (Ψ1,1 + Ψ2,2) ,

Ṫij =
2h3

3
(
(μ + α)Ψj,i + (μ − α)Ψi,j + (−1)i · 2αΘ

)
,

Ṅi3 = 2h
(
(μ + α)W,i + (μ − α)Ψi + (−1)j · 2αΩj

)
,

Ṅ3i = 2h
(
(μ − α)W,i + (μ + α)Ψi + (−1)i · 2αΩj

)
,

L̇ii = 2h (β(Ω1,1 + Ω2,2 + Θ) + 2γΩi,i) ,

L̇33 = 2h (β(Ω1,1 + Ω2,2 + Θ) + 2γΘ) ,

L̇ij = 2h ((γ + ε)Ωj,i + (γ − ε)Ωi,j) ,

K̇i3 =
2h3

3
(γ + ε)Θ,i, K̇3i =

2h3

3
(γ − ε)Θ,i,

L̇i3 = 2h(γ + ε)Ω3,i, L̇3i = 2h(γ − ε)Ω3,i,

Ṅij = (−1)i4hαΩ3.

(4)

From the system (3)–(4) two independent systems are derived. One of them
contains equations for Ω3, Nij , Li3, L3i:

2hjΩ̇3 = L13,1 + L23,2 + N12 − N21,

L̇i3 = 2h(γ + ε)Ω3,i, L̇3i = 2h(γ − ε)Ω3,i,

Ṅij = (−1)i4hαΩ3.

(5)

System (5) may be written as two-dimensional Klein-Gordon equation for angu-
lar velocity Ω3:

Ω̈3 =
γ + ε

j
(Ω3,11 + Ω3,22) − 4

α

j
Ω3.

The second independent system from (3)–(4) includes 24 equations for 24
unknowns and can be written in matrix form

A
∂U

∂t
= B1 ∂U

∂x1
+ B2 ∂U

∂x2
+ QU + G, (6)

where U is the vector-function

U = (Ψi,W,Ωi, Θ, Tii, T33, Tij , Ni3, N3i, Lii, L33, Lij ,Ki3,K3i).

The matrix coefficients A, B1, B2 containing elasticity parameters of a mate-
rial are symmetric, and Q is antisymmetric. G is the given vector of mass forces
and couples. The matrix A is positive definite if its diagonal blocks are pos-
itive definite. According to the Sylvester criterion this condition restricts the
admissible values of the material parameters:

3λ + 2μ > 0, μ, α > 0, 3β + 2γ > 0, γ, ε > 0. (7)



694 M. Varygina

If inequalities (7) are fulfilled system (6) is hyperbolic in the sense of Friedrichs.
The potential energy of elastic deformation is a positive-definite quadratic form
and conservation law is fulfilled:

∂(UAU)
∂t

=
∂(UB1U)

∂x1
+

∂(UB2U)
∂x2

.

The characteristic properties of this system are described by the equation

det(cA + n1B1 + n2B2) = 0, n2
1 + n2

2 = 1.

Its positive roots are the velocities of longitudinal waves cp, transverse waves cs,
torsional waves cm, and rotational waves cω. These roots are

cp =

√
λ + 2μ

ρ
, cs =

√
μ + α

ρ
, cm =

√
β + 2γ

j
, cω =

√
γ + ε

j
.

For hyperbolic system (6) the boundary-value problem with initial conditions
U(0, x) = U0(x) and dissipative boundary conditions is well-posed. In particular
among the dissipative conditions there are the conditions in terms of velocities

Ψi = Ψ0
i , W = w0, Ωi = Ω0

i , Ω3 = Ω0
3 , Θ = Θ0,

or stresses

n1T1i + n2T2i = pi, n1N13 + n2N23 = p3,

n1L1i + n2L2i = qi, n1L13 + n2L23 = q3, n1K13 + n2K23 = k,

where Ψ0
i , W 0, Ω0

i , Ω0
3 and Θ0 are given functions, pi, p3, qi, q3, k are given

surface forces and couples acting on part of the boundary of micropolar body.

3 Numerical Modeling

3.1 Numerical Algorithm

The algorithm of numerical solution of linear system (6) is based on two-cyclic
splitting method with respect to spatial variables and time. On time interval
(t, t + �t) the method consists of five stages: the solution of a one-dimensional
problem in the x1 direction on time interval (t, t+�t/2); similar stage in the x2

direction; the stage of solution of a system of linear ordinary differential equations
with matrix Q with full time-step; and two stages of repeated recalculations of a
problem in the x2 and x1 directions respectively on time interval (t + �t/2, t +
�t). As applied to system (6) the splitting method has the following form:

AU̇1 = B1U1
,1 + G1, U1(t, x) = U(t, x),

AU̇2 = B2U2
,2 + G2, U2(t, x) = U1(t + �t/2, x),

AU̇3 = QU3, U3(t, x) = U2(t + �t/2, x),

AU̇4 = B2U4
,2 + G2, U4(t + �t/2, x) = U3(t + �t, x),

AU̇5 = B1U5
,1 + G1, U5(t + �t/2, x) = U4(t + �t, x).



Numerical Modeling of Micropolar Thin Elastic Plates 695

Vector-function U1 is taken from the prevous time step. At t = 0 it is taken
from the initial conditions. The unknown value U(t + �t, x) is U5(t + �t, x),
G1 + G2 = G.

At the third stage Crank-Nickolson finite-difference scheme with full time
step is used. Each of four remaining one-dimensional problems are solved with
the help of explicit monotone ENO-scheme of “predictor-corrector” type. This
scheme is a generalization of Godunov collapse of the gap scheme.

The two-cyclic splitting method ensures the stability of a numerical solution
provided Courant-Friedrichs-Levy stability condition for one-dimensional sys-
tems is fulfilled. It has second order of accuracy if second-order schemes at its
stages are used.

The verification of the algorithm is performed by comparig the results of
numerical computations with the exact solution describing wave propagation in
micropolar plate.

3.2 Numerical Results

The results of numerical computations of the elastic waves propagation in a
rectangular thin plate are presented in Figs. 1 and 2. Top and bottom sides of
the plate are nonreflecting boundaries. The right side of the plate is fixed. On
the left side distributed periodic load of Λ-impulses of T11 is given. The area
of action load is one third of a side in the central part. As a result of impulse
load a sequence of loading and unloading waves propagates over the material.
Waves are generated at the points of the boundary of the area of action load on
the left side of the plate. In the first case (Fig. 1) a single wave induced by the
loading impulse is observed, in the second case (Fig. 2) three waves caused by
three impulses propagate.

Fig. 1. The action of Λ-shaped impulse of T11: level curves of the couple stress resultant
T11 (a), velocity W (b), angular velocities Ω1 (c) and Ω2 (d)
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Fig. 2. The action of Λ-shaped impulses of T11: level curves of the couple stress resul-
tant T11 (a), velocity W (b), angular velocities Ω1 (c) and Ω2 (d)

The level curves of the couple stress resultant T11, velocity W , angular veloc-
ities Ω1 and Ω2 are shown in Figs. 1 and 2 for the time moment t = 18 μs. The
calculations are performed on a rectangular plate of sides 0.05 × 0.1 m for syn-
thetic polyurethane. Material parameters are taken from [14]. Velocities of elastic
waves are cp = 2687, cs = 1394, cω = 893 m/s. The plate thickness 2h = 5 mm.
Characteristic scale of the microstructure of a material is r = 0.15 mm. The
uniform difference grid used in computations consists of 1000×1000 cells with a
mesh size of 0.1 mm less than r. On coarser grids calculations with satisfactory
accur acy may not be performed.

4 Conclusions

In this paper basic equations of micropolar elasticity theory of thin plates are
considered. These relations are constructed with assumptions on linear approxi-
mation of translation and rotation together with the through-the thickness inte-
gration procedure. The potential energy of elastic deformation is a positive-
definite quadratic form and conservation law is fulfilled. System of the equations
is written in symmetric hyperbolic form that is convenient for numerical com-
putations. Numerical algorithm based on two-cyclic splitting method in combi-
nation with monotone finite-difference scheme can be used for the solution of
dynamic problems of shock, impulse and concentrated action loads. The results
of numerical computations of dynamic problem on disrtibuted periodic impulse
load show the oscillatory nature of the solution.

Acknowledgements. This work was supported by the Russian Foundation for Basic
Research (project no. 16-31-00078).



Numerical Modeling of Micropolar Thin Elastic Plates 697

References

1. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Librairie Scientifique
A. Hermann et Fils, Paris (1909)

2. Palmov, V.A.: Governing equations of the of nonsymmetrical elasticity theory.
Prikl. Mat. Mekh. 28(3), 401–408 (1964). (in Russian)

3. Varygina, M.P., Kireev, I.V., Sadovskaya, O.V., Sadovskii, V.M.: Software for
analysis of wave motions in Cosserat media on multiprocessor computer systems.
Vest. SibSAU 2(23), 104–108 (2009). (in Russian)

4. Varygina, M.P., Sadovskaya, O.V., Sadovskii, V.M.: Resonant properties of
moment Cosserat continuum. J. Appl. Mech. Tech. Phys. 51(3), 405–413 (2010)

5. Sadovskii, V., Sadovskaya, O., Varygina, M.: Numerical solution of dynamic prob-
lems in couple-stressed continuum on multiprocessor computer systems. Int. J.
Numer. Anal. Modeling, Ser. B 2(2–3), 215–230 (2011)

6. Sadovskaya, O., Sadovskii, V.: Mathematical Modeling in Mechanics of Granular
Materials. Advanced Structured Materials, vol. 21. Springer, Heidelberg (2012)

7. Zhilin, P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12,
635–648 (1976)

8. Altenbach, J., Altenbach, H., Eremeyev, V.: On generalized Cosserat-type theories
of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1),
73–92 (2010)

9. Altenbach, H., Eremeyev, V.: On the linear theory of micropolar plates. ZAMM.
89(4), 242–256 (2009)

10. Eringen, A.C.: Theory of micropolar plates. ZAMP. 18(1), 12–30 (1967)
11. Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer,

Heidelberg (1999)
12. Sarkisyan, S.O.: Mathematical model of micropolar elastic thin plates and their

strength and stiffness characteristics. J. Appl. Mech. Tech. Phys. 53(2), 275–282
(2012)

13. Sargsyan, S.O.: The theory of micropolar thin elastic shells. J. Appl. Math. Mech.
76, 235–249 (2012)

14. Lakes, R.: Experimental methods for study of Cosserat elastic solids and other
generalized elastic continua. In: Continuum Models for Materials with Micro-
Structure, pp. 1–22 (1995). (Chap. 1)


	Numerical Modeling of Micropolar Thin Elastic Plates
	1 Introduction
	2 Mathematical Model
	2.1 Equations of Three-Dimensional Cosserat Continuum
	2.2 Equations of Two-Dimensional Micropolar Plates

	3 Numerical Modeling
	3.1 Numerical Algorithm
	3.2 Numerical Results

	4 Conclusions
	References


