
Chapter 4

Microbial Life in Supraglacial Environments

Arwyn Edwards and Karen A. Cameron

Abstract Supraglacial environments occupy 11% of Earth’s surface area and

represent a critical interface between climate and ice. This century has brought a

renewed appreciation that glacier surfaces represent a collective of diverse micro-

bial niches which occur wherever sufficient liquid water is available to support

microbial activity: even at the microscopic scales of ice crystal boundaries within

the crystalline matrices of snow or glacial ice. Within this chapter, we review the

range of microbial habitats associated with snowpacks, the glacial ice photic zone,

and phototrophic microbial biofilms formed by supraglacial algae or by the dark-

ening of microbe–mineral aggregates known as cryoconite. In summary, glacier

surfaces are home to surprisingly biodiverse and active microbial communities

despite their low temperatures and austere conditions. Consequently, microbial

communities and their processes are interposed between climate and ice and

merit urgent consideration in the light of the effects of climate warming on Earth’s
supraglacial environments.
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4.1 Introduction

In the twenty-first century, approximately 198,000 glaciers and 2 ice sheets cover

roughly 11% of Earth’s surface area, sequestering 70% of Earth’s freshwater

(Shiklomanov 1993; Pfeffer et al. 2014). Within the recent geologic past, glacial

ice covered ca. 30% of the Earth’s surface during the last glacial maximum (Boyd

et al. 2010), and the extent of ice is thought to have approached total coverage

during so-called Snowball Earth events during the Cryogenian period 600–700

million years ago (Hoffman et al. 1998). However, within the near future, anthro-

pogenic climate change will contribute to the decimation of Earth’s glacial ice

(Meier et al. 2007; Joughin et al. 2014; Pachauri et al. 2014). In the event of severe

climate warming, the loss of up to 85% of mountain glaciers is predicted within this

century (Pachauri et al. 2014). Moreover, climatic warming spurs the destabiliza-

tion of Greenland’s ice sheet and risks commitment to the loss of Antarctica’s ice
sheet (e.g., Joughin et al. 2014). Consequently, ice melt is set to be a major

contributor to rising sea levels with impacts upon the habitability of coastal areas

(FitzGerald et al. 2008) and the food and water security of densely populated

regions nourished by glacial meltwaters (Edwards et al. 2014a; Hodson 2014).

The importance of glaciers and ice sheets within the Earth system at both geologic

timescales as well as the future of our contemporary society is therefore readily

apparent and merits considerable investment in the study of both the fundamental

properties of glacial systems and predictions of the rates and extents of their

responses to climatic warming.

In contrast, a neglected facet of glacial systems is that they are also microbial

habitats. In volumetric terms, glaciers and ice sheets represent Earth’s largest

freshwater ecosystem (Edwards et al. 2014a). Only in this century has the paradigm

of glaciers and ice sheets as truly inhospitable environments been displaced as a

result of experimental and conceptual advances spawning the field of glacier

ecology, summarized in the seminal review of glacial ecosystems by Andrew

Hodson and his colleagues in 2008 (Hodson et al. 2008). We now recognize that

glacial systems represent both a deep frozen archive of microbial biodiversity

(Bidle et al. 2007) and loci of globally significant biogeochemical processes

mediated by microbes (Anesio et al. 2009; Boyd et al. 2010; Wadham et al. 2012;

Hawkings et al. 2014), despite the unfavorable effects of their prevailing low

temperatures (Rodrigues and Tiedje 2008). Indeed, microbial communities at the

glacier–atmosphere interface constitute a supraglacial ecosystem and assume con-

siderable importance as modulators of both biogeochemical cycling and glacial

system response to melting (Anesio et al. 2009; Lutz et al. 2016b).

Within this chapter, we focus upon the microbial communities within the

supraglacial ecosystem and their interactions within this habitat, addressing the

key concepts, processes, and approaches relevant to the study of microbial life in

supraglacial environments.
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4.2 The Physical Properties of Glacial Systems

An understanding of the fundamental properties of glacial systems is an essential

prerequisite to their consideration as microbial ecosystems. Readers from a

non-glaciological background embarking upon the study of glacial ecosystems

are advised to solicit the guidance offered by popular scholarly texts on the theory

(e.g., Benn and Evans 2014) and practice (e.g., Hubbard and Glasser 2005) of

glaciology to enrich their multidisciplinary endeavors. Within this section, we

provide a synopsis of the properties of glacial systems pertinent to a discussion of

supraglacial ecosystems.

As large persistent masses of ice, glaciers and ice sheets represent major features

of the terrestrial cryosphere. These ice masses form where the prolonged accumu-

lation of ice mass exceeds its loss by ablation, resulting in the metamorphosis of

snow crystals to glacial ice. Glacial ice itself is a non-Newtonian fluid which is

deformed under the pressure created by its own mass, resulting in the gravitational

flow of glacial ice from higher to lower elevations once a critical thickness of

glacial ice cover is achieved. Moreover, thick accumulations of glacial ice can

sufficiently elevate pressures at the glacier bed to incur pressure-induced melting of

glacial ice, resulting in an admixture of ice above its pressure melting point and

influencing the thermal regime of a glacial system.

Typically, the distribution of ice mass across an elevational gradient incurs

variation in the rates of ice accumulation and ablation as a consequence of altitu-

dinal effects on local temperature from adiabatic cooling. Colder, higher elevations

where the accumulation of ice mass directly from snowfall (or indirectly from

wind-redistributed snow or avalanches) annually exceeds its ablation represent

zones of net accumulation. Meanwhile, warmer lower elevations experience net

ablation since the loss of ice mass (via sublimation, the generation of meltwater, or

the direct loss of ice mass by the formation of icebergs) annually exceeds its

accumulation. This property is known as the mass balance gradient of a glacial

system and pivots upon an elevational contour known as the equilibrium line
altitude where accumulation equals ablation on an annual basis. Glacial systems

well-nourished by precipitation and residing in colder climates will tend towards

the net accumulation of ice mass and consequently will advance as a result of their

positive mass balance while glacial systems experiencing net ablation of ice mass

will exhibit negative mass balance and exhibit recession. As such, glacial systems

can be thought of as climatic thermometers and thermostats, and indeed the

properties of ice within a glacial system can provide a proxy for the reconstruction

of past climate (e.g., Petit et al. 1999).

Glacial systems take a range of forms. Glaciers are entities comprised of flowing

glacial ice constrained by the topography of the landscape in which they reside

while the accumulation of glacial ice present in ice sheets and ice caps override the

underlying topography of their catchments. The division between ice caps and ice

sheets is a function of their scale; ice sheets are defined as possessing surface areas

greater than 50,000 km2 (Benn and Evans 2014; Gokul et al. 2016) and presently
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include the ice sheet on Greenland and the Antarctic Ice Sheet which is divided into

two sections, East and West, by the Transantarctic mountains. At the opposite end

of the size spectrum, some glacial systems exhibit unconventional flow modes or,

indeed, no detectable flow modes at all. These include ice patches, which are small,

localized accumulations of glacial ice typically nourished by the wind-driven

accumulation of snow (Andrews and MacKay 2012) and debris covered or buried

ice masses (Franzetti et al. 2013). The scale of the ice mass and its relationship with

the parent catchment has implications for cognate ecosystems in terms of the

sources, residence time, and dynamics of microbiota.

Finally, glacial systems entrain both water and debris, affording resident

microbes with solvent, nutritional solutes, habitats, and dispersal modes. In terms

of debris accumulation transport, the burden of debris associated with glacial

systems can be considerable, ranging from fine grained aeolian debris (McGee

et al. 2010) to in extremis debris covered glaciers which are extensively covered in

rocks, affording shelter and nutrition to lithotrophic microbial communities

(Franzetti et al. 2013). Glacial melt can be stored and transported within glacial

systems as water percolating in intercrystalline spaces (e.g., in water-saturated

decomposing snowpacks, firn aquifers, the near-surface ice itself, or in saturated

basal sediments); it can be captured by compartmentalized storage systems (e.g., in

supraglacial lakes, englacial chambers, or subglacial lakes) or it can move rapidly

though channelized drainage through surficial, englacial, or subglacial drainage

networks. The interplay between glaciers and melt leading to the evolution of

glacier hydraulic systems is multifaceted since multiple interactions that occur

between mass balance and thermal regime (Irvine-Fynn et al. 2011b) complicate

the evolution, storage, and flux of meltwater. Nevertheless, considering life’s
cardinal requirement is for liquid water, it is safe to conclude the relationship

between melt and microbes is necessarily intimate within glacial systems.

The glacier surface itself represents the interface between the glacier and the

atmosphere. Accordingly, there is a continual exchange of matter and energy, with

the surface energy budget of a glacier being represented by Eq. (1) (Paterson 1994):

QM þ QSW þ QLW þ QS þ QL þ QP þ QC ¼ 0 w m2
� � ð1Þ

where QM is the energy accessible for melting, QSW and QLW represent short-

wave and longwave radiation, respectively, QS and QL are sensible and latent heat,

while QP is energy from precipitation, and QC is energy conducted into the glacial

system. Conditions at the supraglacial environment become most conducive for

microbial life when the influx of energy, predominantly as shortwave radiation, is

sufficient to incur melting. As a consequence, life can thrive at the glacier surface

thanks to the genesis of liquid water and liberation of nutrients within snow and ice

melt concomitant with the onslaught of photosynthetically available radiation

(Anesio and Laybourn-Parry 2012) and elevated ambient temperatures.
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4.3 Snow Habitats

Every glacier starts with a single snowflake. While the recognition of microbial

processes in snow dates to Aristotle (Hell et al. 2013), and Van Leeuwenhoek found

microbes within snowmelt among the first samples he viewed with a microscope

(van Leewenhoeck 1677), the study of microbial life in supraglacial snow is a

recent endeavor (Kol 1942). In spite of the low temperature and limited supply of

nutrients typical of snow, microbial abundances in the range of 2� 102 to 7.2� 105

cells ml�1 of melted snow are reported from supraglacial snow (Carpenter et al.

2000; Amato et al. 2007; Irvine-Fynn et al. 2012). Considering that the 11% of

Earth surface overridden by glacial ice is seasonally or perennially covered by

snow, it is clear that supraglacial snowpacks represent globally extensive reposito-

ries of microbial assemblages, with considerable scope for variation in abundance,

diversity, and activity. The abundance and activity of microbes within snow is

influenced by their origins and the onset of melt (Xiang et al. 2009), so we consider

distinct stages in the interactions between snow and its microbiota.

4.3.1 Depositional Modes

Snowflakes themselves, as the micro-scaled crystalline precipitates of water ice,

represent microbial habitats (Sattler et al. 2001; Temkiv et al. 2011). While a

detailed consideration of snow microbiology while aloft lies within the domain of

atmospheric microbiology (see Chap. 3) and is thus beyond the scope of this

chapter, the windborne redistribution of poorly consolidated supraglacial snow

raises the potential for metabolic activity by microbes in ice precipitation (Temkiv

et al. 2013). Moreover, microbial processes contribute to the nucleation of ice

crystals, including fresh snowfall on glacier surfaces (Christner et al. 2008).

Therefore, snow and ice precipitates both nourish the mass balance of glacial

systems and inoculate glacial systems with microbiota (Harding et al. 2011; Cam-

eron et al. 2014), representing wet modes of microbial deposition (Xiang et al.

2009). In contrast, dry modes of microbial deposition entail the passive sedimen-

tation of airborne microbiota and in particular the co-deposition of microbial

biomass with aeolian particulates (Xiang et al. 2009). Necessarily, the wet or dry

mode of deposition will influence the origins, rates, viability, and composition of

microbial inoculants to the snowpack (Hell et al. 2013; Cameron et al. 2014). Both

locally derived material advected to the glacier surface (Hell et al. 2013) and (co-)

deposition of microbiota following long-range transport from source environments

are possible (Harding et al. 2011; Cameron et al. 2014; Nagatsuka et al. 2014;

Wunderlin et al. 2016). As such, the supraglacial ecosystem can be connected with

distant regions of the global cryosphere via atmospheric transport (Pearce et al.

2009) prompting the inoculation of globally ubiquitous microbial taxa (Darcy et al.

2011) to the supraglacial environment.
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4.3.2 Microbial Life in the Dynamic Snowpack

Snowpacks represent complex habitats at the microbial scale. Although intrinsi-

cally defined by the presence of crystals of water ice, changes in the availability of

water and impurities (including both nutrients and pollutants) are driven by the

consolidation and melting of the snowpack, affecting the fundamental niches

occupied by snow microbiota as the snowpack metamorphoses over time.

While dry, cold (i.e., subzero, non-melting) snowpacks are thought to represent a

low end-member in the spectrum of activity and biomass associated with snow,

they are not necessarily microbiologically inert. Initial evidence for in situ micro-

bial activities in dry snow was offered (Carpenter et al. 2000) following low, but

nonzero, rates of macromolecular synthesis via radioisotope inclusion in incuba-

tions of snow collected at the South Pole and incubated at temperatures representing

in situ conditions. The validity of the inferences drawn from the experimental work

was questioned within the literature (Warren and Hudson 2003) on the grounds of

limited water availability and the eventual entombment of snow at depth, at

temperatures of �50 �C. However, more recent work lends tacit support for the

argument that microbes are active within dry polar snow. Firstly, sophisticated

analyses of CRISPR repeat loci in shotgun metagenomic datasets of surface snow

from the Antarctic plateau (Lopatina et al. 2016) infer a selection process is at play

within the dry snow microbiota. While the stage (i.e., pre- or post-depositional) at

which the selective pressures are manifest is less clear, the recovery of different

community profiles from the sequencing of reverse-transcribed cDNA from 16S

rRNA versus the sequencing of 16S rRNA genes from the same dry Antarctic snow

samples (Lopatina et al. 2013) mitigates for the presence of translational machinery

consistent with microbial activity (Blazewicz et al. 2013) in dry snow leading to

interannual variability in communities within the snow (Lopatina et al. 2013).

Moreover, Amoroso et al. (2009) concluded that microbial activities within dry,

dark snowpacks must be responsible for nitrification occurring under conditions

which do not permit abiotic photolysis of reactive nitrogen species. Considering the

vast scale of dry, cold snowpacks, future work should examine these potential

microbial habitats closely, since the cumulative effect of processes occurring at

marginal rates across expansive habitats is nontrivial.

Seasonal melt transforms the snowpack habitat. Evidently, melt promotes the

availability of liquid water. Furthermore, melt mobilizes of ionic impurities derived

from aerosol deposits (e.g., from sea spray and atmospheric pollution) from the

snowpack as they are rejected from decaying ice crystals (Davies et al. 1987; Kuhn

2001). Conservative, non-nutrient ions are eluted rapidly from the decaying snow-

pack, changing the boundary conditions for microbial life. Meanwhile, nutrient ions

are sequestered within the snowpack, evidencing their biogeochemical transforma-

tions and identifying the melting snowpack as the locus of an active microbial

ecosystem as well as the modulator of snowmelt composition, affecting nutrient

availability in downstream habitats (Hodson et al. 2005).
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The snowpack microbial community interacts closely with these complex

changes in conditions (Larose et al. 2013; Maccario et al. 2014). In the first

instance, the bacterial community of the snowpack has been shown to shift in its

structure rapidly as melt progresses. Hell et al. (2013) examined the snowpack of a

High Arctic glacier; in line with earlier studies, (Amato et al. 2007; Larose et al.

2010) a diverse bacterial community was identified in the snowpack. Notably,

surface layers of snow harbor discrete communities of bacteria relative to melting

snow and water-saturated snow (slush), indicating the role of post-depositional

changes in community. While the class Betaproteobacteria retained its dominance

of the community over the course of a week, the genus Polaromonas was able to

adapt to the changing conditions. Polaromonas itself is ubiquitous within the global
cryosphere (Darcy et al. 2011; Franzetti et al. 2013) and is characterized as a

metabolically flexible genus, with the ability to degrade complex xenobiotics

(Mattes et al. 2008). More recently, Franzetti et al. (2016) raised the prospect that

supraglacial Polaromonasmay act as anoxygenic phototrophs from the oxidation of

carbon monoxide arising from photolytic degradation of supraglacial organic

matter. While this study focused upon cryoconite environments, which are, at

depth, attenuated in their exposure to high energy UV and possess an abundance

of bioavailable organic carbon sources (Anesio et al. 2009), the potential for

Polaromonas-mediated mixotrophy in the photochemically reactive (Amoroso

et al. 2009) snowpack is unexplored.

Considering that multiple studies indicate the bacterial community is responsive

to melt at week- to seasonal timescales (Hell et al. 2013; Maccario et al. 2014), the

impacts of contemporary climate change on the timing, rate, duration, spatial

extent, and hydrological flowpaths of seasonal snowmelt and the cognate bacterial

community must be considered (Fig. 4.1). Spatially expansive yet transient melting

Fig. 4.1 Liquid water saturating a shallow firn core in the accumulation zone of the Greenland Ice

Sheet (Photo credit: Sara Penrhyn-Jones)
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episodes have been observed already, most notably during August 2012 ca. 97% of

the surface area of the Greenland Ice Sheet (GrIS) exhibited melting, albeit for a

duration of less than a week (Nghiem et al. 2012). While Betaproteobacteria may

respond and influence the cycling of nitrogen pollutants deposited in the snowpack

at such timescales on valley glaciers (Hell et al. 2013), whether the microbiota of

the GrIS snowpack (Cameron et al. 2014) responded to this event is open to

question. Stibal et al. (2015a) identified elevated microbial cell concentrations

present in the refrozen 2012 melt layer relative to un-melted layers of the snowpack

at a site high upon the GrIS, but the limited numbers of samples available precluded

further detailed investigation. Moreover, whether the percolative redistribution of

snowmelt into the perennial, near-surface firn aquifer of the GrIS accumulation

zone (Forster et al. 2013) permits microbial community activities in a potential

habitat four times the size of Wales is entirely unknown. While the empirical

evidence for bacterial activities of biogeochemical significance in melting snow-

packs is clear, it is evident that there are significant lacunae in our understanding of

these processes in the context of rapid changes in the cryosphere.

Beyond the bacterial community, the snowpack is home to other types of

microbiota. The presence of Archaea is variable, notably absent in some studies

(Hell et al. 2013; Lazzaro et al. 2015) but detected independently by others

(Cameron et al. 2014; Lutz et al. 2015). Over 30 Archaeal taxa were identified

(Choudhari et al. 2013) in avalanche debris cone snow, paralleling an average

number of 30 Archaeal taxa per sample across GrIS snow samples (Cameron

et al. 2014). Archaea from the class Nitrosphaerales, associated with ammonia

oxidation, predominate in both GrIS and Icelandic snow samples harboring

Archaea (Cameron et al. 2014; Lutz et al. 2015), implying a potential role for

Archaea in supraglacial nitrification, although further evidence for archaeal contri-

butions to nitrogen cycling in glacial habitats is limited (Boyd et al. 2011).

In contrast to the enigmatic Archaea, the microeukaryotic component of the

snowpack is readily apparent in the form of charismatic snow algae. Typically

described as Chlamydomonas nivalis, snow algae are comprised of several algal

lineages within the Chlorophyceae, in particular the Chlamydomonadaceae genera

Chloromonas, Chlamydomonas, and Raphidonema (Spijkerman et al. 2012; Lutz

et al. 2016a). Characteristic of these algae are the presence of unicellular motile

cells within the isothermal snowpack, which form either green snow or red snow

dependent upon reaching a quiescent phase in which the cells accumulate caroten-

oid pigments such as astaxanthin (Remias et al. 2005) as a means of photoprotection

from high levels of UV penetrating the atrophied snowpack later in the melting

season. Algal communities in red snow are apparent upon glaciers worldwide (Kol

1942; Yoshimura et al. 1997; Lutz et al. 2016b), and the community composition of

red snow is remarkably uniform at the interspecific level across the European and

Greenlandic Arctic (Lutz et al. 2016b). Interestingly, within defined, regional-scale

catchments, patches of red snow appear exclusively dominated by differing single

haplotypes (Brown et al. 2016) consistent with dispersal limitation incurred eco-

logical priority effects. As such, reconciling these contrasts in the biogeography of

glacial colonization by algae remains a challenge. Similarly, blooms of snow algae
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are associated with a diverse community of microbial heterotrophs, including

bacteria, algae, and fungi (Weiss 1983; Lutz et al. 2015, 2016a). While some

bacteria are intimately associated with snow algae (Weiss 1983), whether

co-occurring microbes in general simply share a habitat with the algae or whether

algal colonization facilitates their presence via the transfer of autochthonous carbon

(Brown et al. 2015) is open to question; bacterial communities in algal blooms

appear structured by locally varying lithological factors (Lutz et al. 2016a). If the

translocation of carbon from algal photosynthesis itself is not pivotal to the assem-

bly of snow algae associated communities, it may be that the evolution of meltwater

from algal-mediated albedo depression (Lutz et al. 2016b) promotes the develop-

ment of the cognate assemblage of microbes within snow algal blooms.

4.4 Supraglacial Ice and Meltwater Habitats

Within this section, we focus upon supraglacial ice and meltwater as active

microbial habitats; discrete biofilms found in association with bare ice zones will

be discussed in Sect. 4.5.

4.4.1 Life in Glacial Ice

As the snowline of a glacier recedes to higher elevations in summer, the extent of

bare glacial ice increases in its prominence within the supraglacial environment.

Glacial ice is typically considered as an archive of microbial biomass (Willerslev

et al. 1999; Biddle et al. 2007; Castello and Rogers 2005) which may serve to seed

the re-emergent glacial ice surface and downstream fluvial habitats with its

microbiota. While this source of microbiota may be particularly important for

environments characterized by low dust fluxes and limited surface melting, for

example, blue ice ecosystems within the Antarctic (Hodson et al. 2013), microbial

biomass in supraglacial ice is also sourced from both wet and dry deposition and the

translocation of cells from the supraglacial snowpack itself (Irvine-Fynn et al. 2012;

Hell et al. 2013; Bj€orkman et al. 2014). Furthermore, arguments that englacial ice

itself represents active microbial habitats within intercrystalline vein junctions, ice–

mineral interfaces and even intracrystalline spaces have been advanced (Mader

et al. 2006; Rohde and Price 2007). Therefore, while glacial ice may archive

microbial biomass, the immured assemblage of microbiota is likely subject to

post-depositional changes (Xiang et al. 2009; Liu et al. 2016) occurring over

prolonged residence times (102–104 years).
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4.4.2 Life in the Glacial Photic Zone

Bare ice itself represents an active microbial habitat. The glacial ice extent exposed

by seasonal melting (excepting Antarctica) is estimated at a maximum of 7.5 � 105

km2 (Anesio et al. 2009; Irvine-Fynn and Edwards 2013). The microbial commu-

nities of bare ice vary spatially, likely the result of localized inoculation sources and

the physicochemical conditions presented to them (Edwards et al. 2013c; Cameron

et al. 2014; Stibal et al. 2015a). Similarly, the total abundance of microbiota on

surface ice is spatially variable and has been reported to range from 103 cells ml�1

in the zone of accumulation to 106 cells ml�1 in the ablation zone (Irvine-Fynn et al.

2012; Stibal et al. 2015a).

The physical processes of ice melt make it a viable microbial habitat. Incident

shortwave radiation, which affects glacier surface energy balance (Eq. 1), pene-

trates ablating glacial ice to incur subsurface melt. The depth of subsurface melt is

influenced by the extinction coefficient of the ice matrix, which will vary but can

reach 2–20 m in optically clear ice (Hodson et al. 2013). Dissipation of incident

radiation penetrating the surface ice incurs subsurface melt, decaying ice crystal

structure and expanding interstitial spaces. This genesis of near-surface melt and its

subsequent percolation at very low velocities further perpetuates the evolution of a

highly porous near-surface ice layer, termed the weathering crust which stores

meltwater in a perched aquifer atop nonporous englacial ice (Müller and Keeler

1969). As such, glacial ice surfaces in receipt of solar shortwave radiation represent

a meteorologically controlled, seasonally evolving three-dimensional porous ice

matrix which harbors a trifecta of decaying ice crystals, the percolative interstitial

transfer of melt, and a decay gradient of incident radiation, all occurring to a depth

which is delimited by the transmission of incident radiation and the corresponding

inversely increasing density of ice (Cook et al. 2015b). Irvine-Fynn and Edwards

(2013) recognized that these physical parameters amount to a glacial ice photic

zone in which the liberation of melt commingled with nutrient, cell, and particulate

mobilization and the availability of photosynthetically available radiation distrib-

uted in its intensity across a spectrum of photosynthetic optima promotes biological

activity. Empirical support for a glacial ice photic zone is derived from the flow

cytometric quantification of cell and particulate budgets of the weathering crust of a

Svalbard glacier (Irvine-Fynn et al. 2012). When the rates of microbial biomass

aeolian input, storage within ice, and fluvial release are considered, considerable

microbial biomass is accumulated within the glacial ice photic zone under typical

melting conditions (Irvine-Fynn et al. 2012) and thus the perched aquifer of the

weathering crust modulates the fluvial delivery of cells to proglacial habitats.

The potential for physical redistribution and substantial concentration of cells in

the interstitial spaces of the ice matrix (Mader et al. 2006; Irvine-Fynn et al. 2012) is

coupled with the in situ activities of the microbial community. While the overall

abundance of cells discharged from the weathering crust was consistent, specific

subpopulations (Irvine-Fynn et al. 2012) were seasonally eluted, indicating a

temporal shift in the microbial community’s structure. Moreover, measurements
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of bacterial and abundance carbon production (Rassner et al. 2016) indicate the

potential community doubling time in the weathering crust is considerably briefer

than the hydrological residence time of cells within percolating melt. Finally,

Irvine-Fynn et al. (2012) identified nucleic acid bearing cell populations with a

median size of 0.5 μm as well as smaller nucleic acid-rich particles consistent with

virus-like particles. Rassner et al. (2016) amended meltwater with organic carbon

and nutrients to observe the interactions of supraglacial meltwater bacteria and their

viruses, finding a community dominated by the Betaproteobacteria genus

Janthinobacterium which was resilient to viral predation. Therefore, it appears

likely that the glacial ice photic zone presents a locus of microbial interactions.

The implications of a glacial ice photic zone for glacial systems and their

biogeochemistry are threefold. Firstly, it appears to be an extensive yet poorly

characterized habitat. Irvine-Fynn and Edwards (2013) extrapolated measurements

of the cellular concentrations within glacial ice photic zones with the potential scale

of the glacial ice photic zone on ablating glacial ice. Excluding Antarctic ice, the

calculations suggest 1 � 1021 to 1 � 1026 cells reside within the global glacial ice

photic zone. This is comparable to the abundance of Archaea and Bacteria within

the global oceanic photic zone (4 � 1025 cells; Whitman et al. 1998) which is both

greater in surface area and volume (reaching 200 m deep) than the glacial ice photic

zone. The pivotal role of marine microbes within the global carbon cycle and

biosphere function is well known (Fuhrman and Steele 2008); what, therefore,

constrains the impact of microbes from the enigmatic glacial ice photic zone? At

present we do not know.

Secondly, the net accumulation of microbes, noncellular, and inorganic partic-

ulates within the glacial ice photic zone is enhanced at high melt rates. Indeed,

Irvine-Fynn et al. (2012) observed an inverse nonlinear relationship between melt

discharge and the accumulation of microbial biomass. As such, this prompts a

positive feedback in which the contact rates between the glacial ice photic zone

microbiota and inorganic particulates are promoted. Moreover, noting the tendency

for Janthinobacterium as a dominant taxon within the glacial ice photic zone

(Rassner et al. 2016) to exude biofilms and extracellular material (Pantanella

et al. 2007), it is likely that cell–mineral aggregates are initiated within the glacial

ice photic zone (e.g., Simon et al. 2009) further accelerating near-surface melt.

Irvine-Fynn et al. (2012) identified this retention of biomass and its confection with

inorganic particulates as a mechanism for the “biological darkening” of ice sur-

faces, accelerating ice melt.

Finally, the evolution of the glacial ice photic zone and its ability to modulate the

flux of melt, biomass, and particulate matter influences the properties of proximal

and downstream ecosystems. Cook et al. (2015b) used cryoconite holes (discussed

below; Sect. 4.5.2) as naturally occurring piezometers dwelling within the

weathering crust to explore the hydrology of the glacial ice photic zone of a second

Svalbard glacier. Diurnal fluctuations in the storage and transmission of meltwater

were identified, corresponding to changes in the porosity of the weathering crust.

While the porosity of the crust is insufficient to permit the mobility of microbe–

mineral aggregates, the crust permits the interconnection of supraglacial microbial
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habitats, buffering against local variations in soluble nutrient availability. More-

over, microbial productivity contributes to the organic carbon budget of glacial

systems (Hood et al. 2015). The porous ice of the glacial ice photic zone permits the

connection of supraglacial loci of productivity with downstream habitats by the

transmission of runoff to supraglacial channels, releasing bioavailable carbon

(Lawson et al. 2014; Feng et al. 2016), nutrients, and microbiota to depauperate

proglacial habitats including proglacial streams, glacial forefields, and coastal

oceans (Hood et al. 2009; Singer et al. 2012; Wilhelm et al. 2013, 2014; Hood

et al. 2015).

4.5 From Bioalbedo to Biocryomorphology: Microbial

Biofilms on the Ice Surface

Each year, as winter turns to summer, snow cover on lower altitude glacial surfaces

melts away as a result of elevated air temperatures and solar irradiation. This event

exposes bare ice surfaces and brings about notable changes in the physical, chem-

ical, and biological properties of supraglacial ecosystems. This area is extensive

(Anesio et al. 2009; Irvine-Fynn and Edwards 2013) and growing in scale. On the

GrIS, the maximum area of snow-free ice that is exposed each year has increased

steadily since passive microwave satellite observations began in 1979 (Fettweis

et al. 2007), one of many indicators that this region is responding to changes in

climate. Bare ice has a higher spectral absorption (Warren et al. 2006) and is denser

than snow, and impurities within the ice help to contribute towards a topographi-

cally uneven surface (Irvine-Fynn et al. 2014). The melting of snow gives rise to a

pulse of nutrient release, including SO4
2�, NH4

+, NO3
�, Ca2+, Cl�, and Na+

(reviewed in Kuhn 2001). Bioavailable nitrogen, in the form of ammonia, may be

sequestered and mineralized within the sediment material of cryoconite holes

(Wynn et al. 2007). However, the remaining nutrients released from melting

snowpacks are likely evacuated from the surface ice environment by supraglacial

meltwater rivers. Therefore, the chemistry of ice is predominantly dependant on the

era and location in which it was laid down as snow, a feature that can be used when

analyzing ice cores to recreate historical records of atmospheric chemistry.

4.5.1 Algal Biofilms

The most visually notable biological feature of bare ice surfaces is that they are

plastered with Zygnematophyceae green algae. In addition to the lutein,

violaxanthin, chlorophyll a and b, and β-carotene primary pigments that these

cells contain, they also carry pigment-filled vacuoles, which are responsible for

coloring the cells into shades of dark brown and purple (Uetake et al. 2010; Remias
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et al. 2012b; Yallop et al. 2012). Populations of these cells are so dense that they

darken glacial surfaces: a “bloom” phenomenon which can be observed both on the

ground with the naked eye (Fig. 4.2) and from space in satellite imagery. Surface

ice algal abundance has been reported in the range of 105 cells ml�1 (Yallop et al.

2012); however, as these cells coat the exposed solid ice crystals of this crusty

surface, expressing abundance as a liquid concentration is an experimentally and

conceptually challenging task. Three ice algae species have been found to dominate

polar and alpine glaciers: Cylindrocystis brébissonii, Mesotaenium berggrenii, and
Ancylonema nordenski€oldii (Remias et al. 2009, 2012a, b; Remias 2012; Yallop

et al. 2012). Analysis of vacuole pigments from Alpine M. berggrenii reveals the

Fig. 4.2 The ablation zone of the Greenland Ice Sheet. Surface ice is darkened by

Zygnematophyceae green algae, in contrast to englacial ice, as highlighted by the crevasse opening

(Photo credit: Sara Penrhyn-Jones)
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presence of a phenolic compound called purpurogallin carboxylic acid-6-O-β-D-
glucopyranoside. This compound likely functions as an ultraviolet and visible

radiation photoprotectant, due to its broad spectral absorbance capacity. In addition,

it has been suggested that these vacuoles may act as chemical deterrents against

grazers or as energy sinks when temperature or nutrient availability limits cell

function (Remias et al. 2012b). While little is known about the specific ecological

activities of these communities, their darkening of glacial surfaces, and therefore

their ability to reduce solar reflectance and consequently enhance surface melt

through bioalbedo reduction (Yallop et al. 2012; Lutz et al. 2014), has become a

key consideration for glacial surface mass balance studies in recent years (Tedesco

et al. 2016).

4.5.2 Cryoconite Ecosystems

While algal populations may bloom on bare ice, the ice surface is also home to more

stable microbial habitats. Key among these are cryoconite ecosystems, formed as

microbial communities biofilm aeolian dusts and organic matter (e.g., wind-blown

material from proximal habitats or surficial algal necromass) (see the recent review

by Cook et al. (2016a) and references therein). The ensuing microbial–mineral

aggregate is termed cryoconite, which darkens the ice surface through localized

reduction of the albedo through the accumulation of dark humic substances

(Takeuchi et al. 2001a, b; Takeuchi 2002). This contributes to the evolution and

storage of surface meltwater and the formation of quasi-circular holes within the ice

surface (Wharton et al. 1985). The thermodynamic evolution of so-called

cryoconite holes occurs in three dimensions. Firstly, depth evolution proceeds

until an equilibrium depth is maintained, at which the melting rate of ice in contact

with the dark cryoconite debris is equivalent to the melting rate of the adjacent bare

ice (Gribbon 1979). Secondly, lateral re-equilibration of cryoconite debris and

hence cryoconite hole morphology can occur as sediment loads shift as the result

of coalescence or evacuation of cryoconite holes as the ablation season proceeds. In

this case, thick layers of cryoconite are redistributed to laterally widen the

cryoconite hole (Cook et al. 2016b). In milder climates typical of Arctic and

mountain glacial surfaces, cryoconite holes are typically open (or at least tran-

siently lidded by a thin layer of ice on a diurnal cycle) to the atmosphere and reside

within the porous ice of the glacial ice photic zone (Cook et al. 2015b) which likely

permits hydraulic connectivity of cryoconite ecosystems within the same

supraglacial catchments (Edwards et al. 2011). However, in the colder climate of

Antarctica, attainment of equilibrium depth may mean the cryoconite hole is

sufficiently deep to permit re-freezing of its surface, isolating the cryoconite hole

from the exchange of biomass, gases and nutrients for extended periods, up to a

decade (Tranter et al. 2004). In the most extreme conditions of Antarctica, where

strong winds scour bare ice clean to form areas of blue ice, it is thought that the

entombed cryoconite holes can only be colonized by microbes liberated from the
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melt-out of ancient ice and entrapped dusts (Hodson et al. 2013). As such

cryoconite ecosystems occupy glacial ice surfaces across the world and endure

conditions over an extended gradient of climatic and geochemical conditions. It is

thought cryoconite ecosystems may have contributed to the demise (Abbot and

Pierrehumbert 2010) of the pervasive Neoproterozoic glaciation (“Snowball

Earth”; Hoffman et al. 1998) and the survival of microbial eukaryotes despite

(near-)global ice cover (Hoffman 2016).

Indeed, cryoconite holes (Fig. 4.3) are considered “ice-cold hot spots” of micro-

bial activity and diversity on contemporary ice surfaces (Edwards et al. 2013b,

2014b). It appears the principal agent in the formation of cryoconite is the action of

filamentous microbial phototrophs, typically cyanobacteria such as Phormidesmis
pristleyi (Edwards et al. 2011; Chrismas et al. 2015, 2016; Gokul et al. 2016) which

exude photosynthetic carbon as extracellular polymeric substances which aggregate

biomass and particulate matter (Hodson et al. 2010; Langford et al. 2010, 2014).

Consequently, cyanobacteria are thought of as “ecosystem engineers” of the

cryoconite ecosystem (Edwards et al. 2014b). As a result of such activity,

cryoconite is a locus of carbon and macronutrient biogeochemical cycling on

glacial ice the world over (Smith et al. 2016) exhibiting surprisingly high rates of

net carbon fixation during the melt season (Anesio et al. 2009), as well as the

cycling of nitrogen (Cameron et al. 2012a) through fixation (Telling et al. 2011,

2012b) and both nitrification and denitrification (Segawa et al. 2014). Where

Fig. 4.3 Cryoconite and cryoconite holes: Top panel: A cryoconite hole in plan view (left), with
close up on granular cryoconite typical of Arctic cryoconite sediments (right). Lower panel:
Epifluorescence microscopy of individual cryoconite granules reveals the abundance of microbial

life stained for nucleic acid with SYBR Gold (left) and chlorophyll red autofluorescence (right).
Scale bars ¼ 200 μm (Top panel photo credit: Nozomu Takeuchi; Lower panel photo credit:

Arwyn Edwards)
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cryoconite ecosystems are hydraulically connected to proximal habitats or open to

the atmosphere the impacts of these supraglacial “bioreactors” can be disseminated

further, fertilizing downstream environments (Feng et al. 2016).

The biogeochemical activities of cryoconite are the concerted activity of a

diverse, microbially dominated biotic community which ranges from viruses to

meiofauna. Along with the cyanobacterial ecosystem engineers, other microbial

phototrophs include green algae and diatoms (Stibal et al. 2006; Yallop and Anesio

2010; Stanish et al. 2013; Vonnahme et al. 2015). Conglomeration of cryoconite

and moss can result in the development of moss-dominated surface aggregates

(Uetake et al. 2014). Notable cryoconite heterotrophs include bacteria, protozoal

grazers, fungi and meiofauna such as tardigrades and rotifers (Desmet and

Vanrompus 1994; Säwstr€om et al. 2002; Edwards et al. 2013a); Archaea appear

to be a minor and variable component of the cryoconite community, but more

prevalent within Antarctic and some alpine cryoconite (Cameron et al. 2012b;

Hamilton et al. 2013). Perhaps most is known of the bacterial community of

cryoconite, which is typically dominated by Proteobacteria, with an apparent divide

between Alphaproteobacteria in the Arctic and Betaproteobacteria within alpine

cryoconite (Edwards et al. 2014b). Other notable groups include the Actinobacteria,

in the form of taxa associated with soil humus (Gokul et al. 2016), Bacteroidetes

(Edwards et al. 2013b) and Fibrobacteres (Ransom-Jones et al. 2014) associated

with the cycling of complex carbohydrates. The composition of the cryoconite

bacterial community is regionally variable at a range of scales from the local (Gokul

et al. 2016), to ice sheet (Stibal et al. 2015b) and between global regions (Cameron

et al. 2012b; Edwards et al. 2014b). While lithological and hydrologic factors are

relevant (Edwards et al. 2011; Lutz et al. 2016a) the ability of the cryoconite

community to sequester organic matter (Edwards et al. 2011, 2014b) is closely

coupled to the structure and function of the bacterial community.

Accordingly, cryoconite ecosystems represent microbial habitats where the

range and rate of microbial processes and the taxa present interact closely within

the habitable confines of the cryoconite holes. The receipt and transfer of solar

energy as both photosynthetically available radiation and heat for melting is

pivotal. The equilibrium depth of seasonally open cryoconite holes coincides with

the photosynthetic maxima of phototrophs resident within the cryoconite; as such

the flux of photosynthetically available radiation is maintained at optimal levels

(Cook et al. 2010, 2012, 2016b). As noted above, the thickening of cryoconite

sediments as the consequence of the overloading of cryoconite holes incurs the

lateral redistribution of sediments towards single-granule layers and expansion of

the cryoconite hole’s profile. Since thicker sediment layers of cryoconite tend

towards net heterotrophy through the self-shading of cryoconite granules (Cook

et al. 2010; Telling et al. 2012a) this restores net autotrophy (Cook et al. 2016a).

Disturbing this process artificially incurs a profound metabolomic stress response

and impact upon carbon cycling (Cook et al. 2016b). As such the floors of

cryoconite holes are sensitively adjusted in three dimensions to provide optimal

conditions for the accumulation of organic matter within cryoconite, which in turn

enhances the melting of ice and the shaping of the cryoconite hole. Cook et al.
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(2015a) defined this multi-lateral network of interactions between cryoconite biota

and the ice surface as “biocryomorphology.” Considering the ubiquity and mobility

of cryoconite holes (Irvine-Fynn et al. 2011a), the potential for microbial processes

to shape the ice surface topography by modulating micro- to meso-scale roughness

and further influence surface melt rates is raised (Cook et al. 2015a). Understanding

how the concerted actions of microbial players within the varied range of biofilms

on ice surfaces—from algal blooms to cryoconite holes—influence glacier pro-

cesses from bioalbedo to biocryomorphology therefore presents a vital research

priority.

4.6 Conclusions

Glacier surfaces are a tripwire for climate change since their response to climatic

warming is to form meltwater which contributes to sea level rise. They also

represent a spatially expansive collective of microbial habitats where life finds

niches in the voids between ice crystals or forms biofilms which promote the

melting of the ice. As always, the abundance and activity of life is closely

intertwined with liquid water, and glacier surfaces are no exception in this regard.

In turn glacial microbial processes accelerate melting and are exported in meltwa-

ter. Given the contemporary trends for climate warming and consequent wastage of

glacial ice, the interactions between life and the surfaces of Earth’s glacier ice will
continue to merit close study by scientists at the interface of microbiology and

glaciology.
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