
Chapter 4
MAGIC Summoning: Towards Automatic
Suggesting and Testing of Gestures with Low
Probability of False Positives During Use

Daniel Kyu Hwa Kohlsdorf and Thad E. Starner

Abstract Gestures for interfaces should be short, pleasing, intuitive, and easily
recognized by a computer. However, it is a challenge for interface designers to create
gestures easily distinguishable from users’ normal movements. Our tool MAGIC
Summoning addresses this problem. Given a specific platform and task, we gather
a large database of unlabeled sensor data captured in the environments in which the
system will be used (an “Everyday Gesture Library” or EGL). The EGL is quantized
and indexed via multi-dimensional Symbolic Aggregate approXimation (SAX) to
enable quick searching. MAGIC exploits the SAX representation of the EGL to sug-
gest gestures with a low likelihood of false triggering. Suggested gestures are ordered
according to brevity and simplicity, freeing the interface designer to focus on the user
experience. Once a gesture is selected, MAGIC can output synthetic examples of the
gesture to train a chosen classifier (for example, with a hidden Markov model).
If the interface designer suggests his own gesture and provides several examples,
MAGIC estimates how accurately that gesture can be recognized and estimates its
false positive rate by comparing it against the natural movements in the EGL. We
demonstrate MAGIC’s effectiveness in gesture selection and helpfulness in creating
accurate gesture recognizers.
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4.1 Introduction

The success of theNintendoWii,Microsoft Kinect, andGoogle’s andApple’smobile
devices demonstrates the popularity of gesture-based interfaces. Gestural interfaces
can be expressive, quick to access, and intuitive (Guimbretière and Winograd 2000;
Pirhonen et al. 2002; Starner et al. 1998;Witt 2007). Yet gesture-based interfacesmay
trigger functionality incorrectly, confusing normal movement with a command. For
example, the Apple iPod’s “shake-to-shuffle” gesture, which is intended to signal
when the user wants to skip a song and randomly select another, tends to trigger
falsely while the user is walking (see Fig. 4.1a). Part of the difficulty is that the
recognizer must constantly monitor an accelerometer to determine if the gesture is
being performed. Some accelerometer or gyro-based interfaces constrain the problem
by requiring the user to segment the gesture by pressing a button. For example, in
Nintendo’s Wii Bowling the player presses the “B” trigger when beginning to swing
his arm and releases the trigger at the end of the swing to release the virtual bowling
ball. Such apush-to-gesture approach is similar to the push-to-talkmethod that speech
recognition researchers use to improve performance. Yet such mechanisms can slow
interactions, confuse users, and limit the utility of gesture interaction. For example,
the fast, easy-to-access nature of the shake-to-shuffle gesture would be impeded if the
user needed to hold a button to perform the gesture. Ideally, such free-space “motion
gestures” (Ashbrook 2009) should be short, pleasing to perform, intuitive, and easily
recognized by a computer against a background of the user’s normal movements.

Touchpad gesture shortcuts, which upon execution can start an affiliated appli-
cation on a laptop or mobile phone (Ouyang and Li 2012), are another example of
command gestures that must be differentiated from everyday motions. Fortunately,
these gestures are naturally isolated in time from each other since most touchpad
hardware does not even provide data to the operating system when no touches are
being sensed. However, an interface designer must still create gesture commands that
are not easily confused with normal click or drag and drop actions (see Fig. 4.1b).

Many “direct manipulation” (Hutchins et al. 1985) gestures such as pointing
gestures and pinch-to-zoom gestures are used in modern interfaces. These gestures
provide the user continuous feedback while the gesture is occurring, which allows
the user to adjust to sensing errors or cancel the interaction quickly. However, rep-
resentational gestures that are intended to trigger a discrete action are less common.
We posit that their relative scarcity relates to the difficulty of discovering appropri-
ate gestures for the task. Our previous studies have shown that designing command
gestures that do not trigger accidentally during normal, everyday use is difficult for
both human computer interaction (HCI) and pattern recognition experts (Ashbrook
and Starner 2010). In addition, the current process to determine the viability of a
gesture is challenging and expensive. Gestures are often found to be inappropriate
only after the system has entered user testing. If a gesture is found to trigger acciden-
tally during testing, the gesture set has to be changed appropriately, and the testing
has to be repeated. Such an iterative design cycle can waste a month or more with
each test. Thus, we posit the need for a tool to help designers quickly judge the
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Fig. 4.1 Top a “shake-to-shuffle” gesture (left) can be confused with normal up-and-down move-
ment while walking (right). Bottom a touchpad shortcut gesture (left) can be confused with normal
cursor movement (right)

suitability of a gesture from a pattern recognition perspective while they focus on
the user experience aspects of the gestural interface.

Several gesture design tools havebeendescribed in theHCI literature (Dannenberg
and Amon 1989; Long 2001; Fails and Olsen 2003; Maynes-Aminzade et al. 2007;
Dey et al. 2004), yet none address the issue of false positives. Similarly, most gesture
recognition toolkits in the pattern recognition and related literature focus on isolated
gestures (Wobbrock et al. 2007; Lyons et al. 2007) or the recognition of strings of
gestures, such as for sign language (Westeyn et al. 2003). Rarely do such tools focus
on gesture spotting (Yang et al. 2009) for which the critical metric is false positives
per hour.

Ashbrook and Starner (2010) introduced the “Multiple Action Gesture Interface
Creation” (MAGIC) Toolkit. AMAGIC user could specify gesture classes by provid-
ing examples of each gesture. MAGIC provided feedback on each example and each
gesture class by visualizing intra- and inter-class distances and estimating the proto-
type recognizer’s accuracy by classifying all provided gesture examples in isolation.
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Unlike the above tools, MAGIC could predict whether a query gesture would tend
to trigger falsely by comparing the gesture to a database of movements recorded in
the everyday lives of users. Primarily designed as an HCI Tool, the system used a
nearest neighbor method with a dynamic time warping (DTW) distance measure (Fu
et al. 2008).

One shortcoming of this work was that the relative false positive rates predicted
in user studies were not compared to the actual false positive rates of a gesture
recognizer running in the field. Another shortcomingwas the long time (up to 20min)
needed to search for potential hits in a database of everyday user movements (an
“Everyday Gesture Library” or EGL) even while using approximations like scaling
with matching (Fu et al. 2008). MAGIC was designed as an interactive tool, yet
due to the delay in feedback, gesture interaction designers waited until all gestures
were designed before testing them against the EGL. Often, when doing an EGL test
in batch, the interface designers discovered that many of their gestures were poor
choices. Designers “learned to fear the EGL.” Faster feedback would allow designers
to compare candidate gestures to theEGLas they perform each example, speeding the
process and allowing more exploration of the space of acceptable gestures. Another
result from previous studies is that users were frustrated by encountering too many
false positives in the Everyday Gesture Library (Ashbrook and Starner 2010). In
other words, many designed gestures are rejected since the number of predicted false
positives is too high.

Here, we focus on the pattern recognition tasks needed to create MAGIC Sum-
moning, a completely new, web-based MAGIC implementation designed to address
the needs discovered from using the original. Section4.2 introduces the basic oper-
ation of the tool. Section4.3 describes an indexing method for the EGL using a
multi-dimensional implementation of indexable Symbolic Aggregate approXima-
tion (iSAX) that speeds EGL comparisons by an order of magnitude over the DTW
implementation. While not as accurate as DTW or other methods such as HMMs,
our system’s speed allows interface designers to receive feedback after every ges-
ture example input instead of waiting to test the gesture set in batch. We compare
the iSAX approach to linear searches of the EGL with HMMs and DTW to show
that our approach, while returning fewer matches, does predict the relative suitabil-
ity of different gestures. Section4.4.4 continues this comparison to show that the
predictions made by MAGIC match observations made when the resulting gesture
recognizers are tested in a real continuous gesture recognition setting. Sections4.5
and 4.6 provide additional details. The first describes a method of using the EGL
to create a null (garbage) class that improves the performance of a HMM classifier
and a DTW classifier when compared to a typical thresholding method. The second
demonstrates the stability of ourmethod by examining its sensitivity to its parameters
and provides a method capable of learning reasonable defaults for those parameters
in an unsupervised manner. These sections expand significantly upon previous work
published in Face and Gesture (Kohlsdorf et al. 2011), while the remaining sections
represent unpublished concepts.

Section4.7 may be of the most interest to many readers. This section describes
how MAGIC Summoning suggests novel gestures that are predicted to have a low
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probability of false positives. While the capability may be surprising at first, the
technique follows directly from the iSAX indexing scheme. In Sect. 4.7.2 we show
that the suggested gestures have low false positive rates during a user study in a
real life setting. In our tests, the space of gestures that are not represented in EGLs
tends to be large. Thus, there are many potential gestures from which to choose.
Section4.7.3 describes our attempts at finding metrics that enable ordering of the
suggested gestures with regard to brevity, simplicity, and “quality.”

4.2 MAGIC Summoning Web-Based Toolkit

MAGIC Summoning is a web-based toolkit that helps users design motion-based
gestural commands (as opposed to static poses) that are expected not to trigger falsely
in everyday usage (Kohlsdorf 2011; Kohlsdorf et al. 2011). All MAGIC experiments
described in this paper focus on creating user-independent recognizers. This choice
reflects our interest in creating useful gesture interfaces and is also due to practicality;
collecting large data sets for the EGL from a single user is time consuming and
onerous. To ground the discussionwith a practical problem,we focus on the challenge
of designing gestures performed by moving an Android phone in one’s hand. We
assume a three-axis accelerometer, which is always included in modern Android
phones. The goal is to create gestures (and an appropriate classifier) that, when
recognized, trigger functions like “open mailbox” or “next song.” Without a push-
to-gesture trigger, such gestures are highly susceptible to false positives (Ashbrook
2009), which emphasizes the need for the MAGIC tool.

4.2.1 Creating Gesture Classes and Testing for Confusion
Between Classes

MAGIC Summoning has two software components: a gesture recorder running on
theAndroid device and theMAGICweb application. The first step in gesture creation
is to start a new project in the web service. The interface designer specifies the set of
gestures through collecting training data for each of the gestures using the recorder.
In order to record a training example, the interaction designer opens the recorder
on his smart phone and performs the gesture. The recorder automatically estimates
when the gesture starts and when it ends using the method described by Ashbrook
(2009). Specifically, the recorder tracks the variance of the accelerometer data in a
sliding window. If the variance is above a user-defined threshold, recording starts. If
it falls below the threshold, then recording ends.

After the example is recorded, the designer is asked to associate the example
with an appropriate gesture label, and the recorder uploads the example to the web.
The designer evaluates the gesture in the web application to determine how well it
can be distinguished from other gestures. All gestures and their examples are listed
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Fig. 4.2 Magic Summoning showing the gesture classes, their examples, and the number of EGL
hits (lower numbers are better)

in MAGIC Summoning’s sidebar (see Fig. 4.2). Examples marked with a red cross
are misclassified given the current model, and instances marked with a green circle
indicate correct classification. By default, MAGIC Summoning uses a one near-
est neighbor classifier with dynamic time warping (NN-DTW) to classify gestures,
although other classifiers such as a hidden Markov model (HMM) could be substi-
tuted. By clicking on an instance, the designer can see the raw sensor data plotted
for that example as well as the predicted number of false positives in the EGL (the
method used to calculated this number is explained in Sect. 4.3).

Clicking on a gesture in the sidebar opens a view with statistics about it. One
statistic is the goodness of the gesture. The goodness is defined as the harmonic
mean of precision and recall (Ashbrook 2009):

goodness = 2 ∗ precision ∗ recall

precision + recall
.
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Fig. 4.3 Mean and standard deviation of the distance between each example in a class and of the
class as a whole in relation to other classes

Similar to the original work by Ashbrook (2009), MAGIC Summoning provides
users with information about the inter-class distance and the intra-class distance of
the gesture. Both are visualized using a mean and standard deviation plot. In an intra-
class distance plot we calculate the means and standard deviations of the distances
from all examples in a class to all other examples in that class and visualize the result
as a box plot (see Fig. 4.3). In an inter-class distance plot we calculate the means and
standard deviations from one class to all the others in the training set. The distance
between two classes is the mean distance of all examples of one class to all examples
of another. These statistics and visualizations help designers find inconsistencies in
the examples of a given gesture class as well as unintentional similarities between
classes.
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4.2.2 Android Phone Accelerometer Everyday
Gesture Library

We collected a large EGL (>1.5 million seconds or 19days total) using six partic-
ipants’ Android phones in Bremen, Germany. The age of the participants ranged
from 20 to 30years. We implemented a background process that wrote the three-
axis accelerometer data to the phone’s flash memory. Unfortunately, the sampling
frequency varied as the models of Android phones we used return samples only
when the change in the accelerometer reading exceeds a factory-defined threshold.
The phones used are the Motorola Droid, the Samsung Galaxy, HTC Nexus One,
the HTC Legend, and the HTC Desire. Other EGLs loadable in MAGIC include
movements sensed with a Microsoft Kinect and gestures made on trackpads. We
focus mostly on our EGL created with Android phones, but readers interested in
experiments with other sensors can refer to Kohlsdorf (2011) for more information.

4.2.3 Testing for False Positives with the EGL

The original Macintosh-based MAGIC tool displayed a timeline that showed which
candidate gesture matched the EGL and at which time. However, gesture design-
ers did not care when or why a given gesture showed a given false positive in the
EGL; they just wished to know how many “hits” occurred in the EGL so that they
could accept or reject the gesture (Ashbrook 2009). Thus, we omitted the timeline
for simplicity in the web-based application. In the following section we will describe
our accelerated method for testing a gesture for potential false positives against the
EGL. This method enables rapid iteration on different gesture sets by the interac-
tion designer.

If a user is displeased by the results after testing, he can delete gestures suspected
of high false positive rates or misclassification errors and design new gestures. When
the user is satisfied with the gesture set, MAGIC Summoning can train a classifier
based on hiddenMarkov models (HMMs) or the default NN-DTWmethod. The user
can then download the trained recognizer. Note that we do not suggest using the
iSAX method used to search the EGL as a gesture recognizer as we have tuned the
method for speed, not accuracy.

4.3 False Positive Prediction

When testing a gesture set against the EGL, the original MAGIC calculates the DTW
distance for every example of each candidate gesture, sliding a window through time
across the EGL and allowing the window to grow or shrink to better match the
example when a potential close match is discovered. If the resulting distance is
above a certain user-defined threshold it counts as a false positive “hit.” Ashbrook
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Fig. 4.4 When finding start and stop points of a gesture or finding interesting regions in the EGL,
we run a sliding window over the raw recorded time series and calculate the sample variance in that
window when a new sample is inserted. If the variance is above a certain threshold, the gesture or
interesting region starts. It stops when the variance falls below that threshold

and Starner (2010) assert that the sum of the hits predicts how well the gesture will
perform in everyday life (an assertion supported by our experiments described later).

In optimizing the speed of the EGL comparison, Ashbrook (2009) observed that
not all regions of the EGL need checking. Since we are interested in motion-based
gestures instead of static poses, parts of the EGL with low variance in their signal
need not be examined. Thus, we pre-process the EGL to find “interesting” regions
where the average variance over all dimensions in the sensor data in a region defined
by a sliding window over 10 samples exceeds a given threshold (see Fig. 4.4).1

Eliminating regions from the EGL that can not possibly match candidate gestures
significantly speeds EGL search. Note that a similar technique was described earlier
to segment gestures when the interface designer is creating examples of candidate
gestures. All experiments in this paper will use these techniques.

Searching the EGL parallelizes well, as each processor can be devoted to different
regions of the EGL. However, even on a high-end, eight-coreMacintosh workstation,
searches were too slow for an interactive system. For a small, 5-h EGL with three-
axis accelerometer data sampled at 40Hz, each example required between 5 and 25s
to check. Thus, one gesture with 10 examples could require minutes to search in the
EGL. This slowness causes interface designers to create gestures in batch and then
check them against the EGL. Testing a set of eight gestures with all their examples
could take up to 20min, leading to a relatively long and frustrating development
cycle for the designer (Ashbrook and Starner 2010). In the following sections, we
describe a method to speed the EGL search using iSAX. We start with an overview
of our method and our assumptions. We then provide the specific methods we used
to adapt iSAX to our problem.

4.3.1 Overview of EGL Search Method and Assumptions

InMAGIC Summoning, we first segment the EGL into interesting regions as defined
previously. Each region is divided into four even subregions to form a “word” of

1Word spotting algorithms in speech recognition perform similar checks, rejecting regions of
“silence” before employing more computationally intensive comparisons.



128 D.K.H. Kohlsdorf and T.E. Starner

length four. The region is then encoded into a string of symbols using the standard
SAX quantization method. The string is entered into an iSAX tree representing the
EGL. The iSAX tree is initialized with cardinality two but quickly grows as many
regions hash to the same leaf on the suffix tree and the leaf needs to be split (Shieh
and Keogh 2008). As each region is encoded into the iSAX tree, its location in the
EGL is recorded in the leaf. Once the EGL is completely encoded into an iSAX tree,
we can perform “approximate search” using a gesture example as a query (Shieh
and Keogh 2008). The query is split into four regions and SAX-encoded in much the
same way as the interesting regions of the EGL. An approximate search to determine
the number of matches between the query and the EGL becomes a simple matter
of matching the query string to the appropriate branch of the iSAX suffix tree and
returning the number of strings contained in that branch.

One failing of this approach is that the interesting regions may be significantly
larger or smaller than the candidate gestures. Regions significantly smaller than the
command gestures are not of concern as they will never falsely match a command
gesture in practice. We can eliminate such regions out-of-hand from the comparison.
However, regions of movement that might match the query gesture may be hidden
within longer regions in the EGL.

A key insight, which will be used repeatedly, is that we need not recover every
region of the EGL that might cause a false match with the query.We are not intending
iSAX to be used as a gesture recognizer. Instead, our goal is to allow the designer
to compare the suitability of a gesture relative to other candidates quickly. As long
as the movement occurs repeatedly in the EGL at isolated times as well as in longer
regions, the iSAX method will report a number of “hits,” which will be sufficient to
warn the interaction designer of a problem.

A second insight is that users of gesture interfaces often pause before and after they
perform a command gesture. Gesture recognizers exploit this behavior and use these
pauses to help identify the command gesture. Movements that look like command
gestures embedded in long regions of user motion are unlikely to be matched in
practice by these recognizers. However, short everyday user motions that are similar
to a command gesture are a particular worry for false positives. Thus, the iSAX
encoding scheme of the EGL above seems suitable for our needs. However, if the
goal of the interaction designer is to create gestures that can be chained together to
issue a series of commands quickly, these longer regions in the EGL will need to be
encoded more formally using constraints on how long a section can be encoded in
each symbol. Such constraints can be derived from the length of expected command
gestures (usually between 1 and 4s in our experience), and the length of SAX word
defined by the system.

A final insight is that a more precise comparison against the EGL can be made
at the end of the gesture design process with the gesture recognizer that is output by
MAGIC. During gesture design, all we require of the EGL search method is that it
is fast enough to be interactive and that it provides an early warning when a given
gesture may be susceptible to false triggering. Given the above operational scenario,
we tune our iSAX implementation to provide fast feedback to the user. Details on
the implementation follow below.



4 MAGIC Summoning: Towards Automatic Suggesting and Testing of Gestures … 129

Fig. 4.5 SAX process used to convert a time series to a string. The raw data is segmented into a
user-specified word length, in this case four. Then each segment is replaced by a symbol associated
with that region on the y-axis, based on the average value. The resulting string is represented by the
string of symbols with superscripts indicating the number of symbols used to quantize each region:
b4a4a4a4

4.3.2 SAX Encoding

SAX quantizes time series in both time and value and encodes them into a string of
symbols (Lin et al. 2007). For example, the time series in Fig. 4.5 is divided into four
equal portions (for a “word” length of four) and converted into a string using a four
symbol vocabulary (a “cardinality” of four).

To be more precise, we first normalize the time series to have a zero mean and
standard deviation of one. Assuming the original time series T = t1, . . . , t j , . . . , tn
has n samples, we want to first quantize the time series into a shorter time series
T̄ = t̄1, . . . , t̄i , . . . t̄w of word length w. The i th element of T̄ can be calculated by

t̄i = w

n

n
w i∑

k=( n
w (i−1)+1)

tk .

Given the values in the compressed time series, we next convert them into sym-
bols using a small alphabet of size (cardinality) a. Imagine the y-axis divided into
an arbitrary number of regions bounded by a − 1 breakpoints. Each of these regions
is assigned to a symbol from the alphabet. Since we wish each symbol in the vocab-
ulary to be used approximately the same amount, we place a normal Gaussian curve
centered at 0 on the y-axis and place the breakpoints such that the area under the
Gaussian for each section is equal. By performing the SAX process on the EGL and
each gesture example separately, we are able to compare the changes in the signals
through timewithout concern regarding their offsets from zero or relative amplitudes.

One convenience of the SAX representation is that there exists a distance calcu-
lation between two strings, defined as MINDIST by Lin et al. (2007), that is a lower
bound on the Euclidean distance between the original two time series. Thus, we can
search the EGL for possible false positives with some measure of confidence.
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Another convenience of the representation is that the cardinality of each separate
region can be increased whenever more precision is needed. For example, suppose
we increase the cardinality of the first region in Fig. 4.5 to eight (thus, the vocabulary
would include letters a–h). The string might then be d8a4a4a4, as the region of the
y-axis formerly covered by symbols a and b would now be covered by symbols a, b,
c, and d. We can compare strings with regions of different cardinality by observing
that we know that each time series is normalized before SAX encoding and that the
regions are defined by a normal Gaussian centered at zero with all regions having
an equal area under the Gaussian’s curve. Thus, we still know the minimal distance
possible between each region, and we can still use MINDIST to determine a lower
bound on the Euclidean distance between the original two time series. This capability
will be useful in our upcoming discussion on iSAX and its application to the EGL.

4.3.3 Multi-dimensional iSAX Indexing and EGL Search

iSAX is a tree-based method for time series indexing introduced in Shieh and Keogh
(2008). For encoding the EGL, our goal is create an iSAX tree that can be traversed
quicklywhen searching for amatch to aSAX-encoded example of a gesture. Each leaf
of the tree contains the number of occurrences of that string in the EGL as well as the
position of each occurrence. To begin, assume we are searching an EGL represented
by the simple iSAX tree in Fig. 4.6 with a query represented by a2a2b2b2 (for the
sake of argument, assume we decided to represent the example gesture crudely, with
regions of cardinality two). Immediately, we see that there is no branch of the tree
with an a2 in the first position, and we return no matches in the EGL. Now assume
that we are searching the EGL for a query of b2b2b2b2. We find that there is a node
of the EGL that contains that string, and that node has children (that is, the node
is an “internal node”). Looking at the children in that branch, we see that we need
to re-code the query gesture to have cardinality three in the first region. Re-coding
reveals that the query gesture is better represented by the sequence c3b2b2b2, which
matches one of the terminal leaves in the tree. The number of sequences from the
EGL stored in that leaf is returned as the number of “hits” in the EGL.

Next we describe how to encode a one-dimensional EGL into an iSAX tree. First,
we find all the “interesting” regions in the EGL using the variance method discussed
earlier. We divide the regions evenly into four sections and encode them using SAX

Fig. 4.6 iSAX tree with
three leaves. On the first level
all symbols’ cardinalities are
equal. The node b2b2b2b2 is
an internal node. For the
children under this node, the
cardinality of the first region
is increased by one
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with cardinality two, allowing for sixteen possible strings. Note that each node in
an iSAX tree holds a hash table mapping child nodes to an iSAX word. Thus, when
inserting a region into the iSAX tree, we compare the region’s SAX string to the hash
table in the root node. If there is no match, we create a child node and enter it into the
hash table using its SAX string. If the SAX string is found, we examine the node to
see if it is a terminal leaf. Each leaf points to a file (called a “bucket”) stored on disk
holding all of the regions that have mapped to it. The leaf also contains the position
of each of the regions in the EGL and a count of the number of regions contained in
the leaf. If the number of regions in the bucket exceeds a user specified size (called
the “bucket size”), it is deleted, and the cardinality of the iSAX word is increased at
one position (picked by round robin). At the deleted node’s position we insert a new
internal node. All the time series of the deleted node are inserted into the new node
but with a higher cardinality. Children of the internal node are created as needed,
effectively splitting the previous leaf into several new leaves. When we encounter a
internal node during the insertion of a region, we search the node’s hash table for
children that match and proceed normally, creating a new leaf node if no matching
child exists.

Note that this method of creating the iSAX tree dynamically adjusts the size
of the vocabulary to better distinguish similar regions in the EGL. Given a bigger
vocabulary, the SAX word will fit more exactly to the region. In other words, this
method of encoding devotes more bits to describing similar movements that are
repeated often in the EGL. Thus, when a query gesture is compared to the EGL iSAX
tree, MAGIC will quickly return with no or few hits (depending on the specified
bucket size) if the query is very distinct from the EGL. If the query is similar to
motions in the EGL, the search process will traverse deeper in the tree, examining
finer and finer distinctions between the query and the regions contained in the EGL.

The above discussion assumed that the data was one-dimensional. For multi-
dimensional data, such as is used in the experiments described below, we create n
iSAX trees, one for each dimension of the recorded data. We index all dimensions
separately and join those n trees under one new root node (see Fig. 4.7).

Fig. 4.7 Amulti-dimensional iSAX tree. Under the root node there is a dimension layer. Each node
in this layer is the root node for a one-dimensional iSAX tree. During search, we search all iSAX
trees, one for each dimension
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Table 4.1 Testing gestures for potential false positives against a database of pre-recorded device
usage

Test preparation :
0) Collect a large data base of user movements in advance .
1) Find interesting regions by applying variance thresholding .
2) Build an n dimensional iSAX tree .

Gesture testing :
0) Find star t and end point of gesture .
1) Search the iSAX tree in al l n dimensions .
2) Return the number of time series in the minimum fi le .

We query the EGL iSAX tree (constructed from the EGL) in all n dimensions. The
result of that search is n files, one for each dimension. The number of hits can then
be calculated by counting the number of places where each hit from each dimension
overlap for all dimensions. Comparing the timestamps can be costly, sowe introduced
an approximation based on the observation that there can never be more overlapping
time series than the number in the dimension with the lowest number of matches.
For example, consider the result of a search in three dimensions (x , y, z) where the
number of hits in the EGL are x = 4, y = 20 and z = 6. There can never be more
then four hits total if we require that hits must overlap in all dimensions. The overall
EGL testing method is summarized in Table4.1.

Upon reflection, the EGL search procedure described above raises several ques-
tions and possibilities. What are reasonable values for the bucket size, word size,
and cardinalities used in encoding the EGL, and how sensitive is MAGIC to these
parameters? This question will be examined in detail in Sect. 4.6. A nice side effect
of EGL search is that we can use the matches found to train a class of gestures that a
recognizer should ignore (a “garbage” or NULL class). Section4.5 will explore this
option. Searching for which SAX strings are not contained in the EGL tree can sug-
gest which gestures are not made during everyday movement. In Sect. 4.7, we exploit
this attribute to recommend gestures to the interaction designer. However, first we
will provide evidence that searching the EGL does indeed predict the number of false
positives during the usage of a gesture interface.

4.4 Experimental Verification

In the following section we describe two experiments that suggest that an iSAX
search of the EGL is a viable means to predict false positives. Our first goal is to
show that false positive prediction using iSAX is correlated with the previousmethod
of searching the EGL linearly using dynamic time warping (Ashbrook 2009). We
will also conduct an experiment in which wewill show that the EGL is able to predict
the relative number of false positives when using a gesture interface in everyday life.
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We describe the data used for the experiments and our experimental method before
presenting our findings.

4.4.1 EGLs and Gestures Used in Evaluations

We use three different data sets to serve as EGL databases. The first is our Android
accelerometer data set as described earlier. Before indexing the recorded data, we
extracted the interesting regions, applying a threshold of th = 0.001 (triggering at
almost any movement) and a window size of N = 10 (0.25 s at 40Hz). The average
duration of the interesting regions is 11,696ms. The second EGL is based on the
Alkan database2 of everyday movements collected with an iPhone (Hattori et al.
2011). The third data set is another collection of everyday movements collected on
Android phones for a different project at Georgia Tech. These two latter EGLs were
processed in the same manner as the first.

We collected a reference data set of gestures for evaluation purposes. We acted as
interaction designers and designed four gestures by performing them while holding
a smart phone. For each gesture we collected 10 examples, resulting in 40 examples
total. The four gestures are: drawing a circle in the air, touching your shoulder,
shaking the phone up and down, and hacking (a motion similar to swinging an ax).
The average duration of the gestures is between 1 and 2s.

4.4.2 Comparison Conditions: NN-DTW and HMMs

When comparing the dynamic time warping EGL search method to a search in
iSAX index space we will use the following procedure. The DTWmethod compares
each interesting region from the EGL to each gesture example (Ashbrook 2009).
We calculate the dynamic time warping distance of a new gesture to all examples
in the EGL and apply a threshold chosen empirically. All regions for which the
distance is below this threshold for any example count as a false positive (in keeping
with MAGIC’s ability to output a one nearest neighbor classifier for live gesture
recognition).

For yet another comparison, we use hidden Markov models to search the EGL for
false positives. For the experiments in this paper, we use a six-state HMM (ignoring
initial and end states) with one skip transition and one Gaussian output probability
per state per dimension (see Fig. 4.8). We collect all the examples for our gesture set
first and then train a HMM for each of the gestures. We classify each region in the
EGL and apply a threshold based on maximum likelihood to determine if a region

2Alkan web site can be found at: http://alkan.jp/.

http://alkan.jp/
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Fig. 4.8 The topology of the left–right, six-state HMM used in our experiments. The first state is
the start state, and the eighth state is the end state. Each internal state transitions to itself and its
successor. We include a skip transition to help recognize shorter gestures

in the EGL is close enough to the gesture to count as a false positive. We chose both
the maximum likelihood threshold as well as the distance threshold so that classifier
accuracy stayed high (93% for NN-DTW and 100% for HMM).

4.4.3 Comparison of iSAX to NN-DTW and HMM
in Searching EGLs

We wish to compare our iSAX EGL search method to the more conventional
NN-DTW and HMM techniques described above. When selecting between two can-
didate gestures, the interaction designerwishes to choose the onewith a lower number
of predicted false positives. Thus, if a first gesture has few hits when NN-DTW or
HMMs are used and a second gesture has many hits, that same trend should be shown
with iSAX. The absolute number of EGL hits does not matter, but there should be a
strong correlation between the relative number of hits returned by iSAX and the other
two techniques when run on the same set of gestures. We use the Pearson correlation
coefficient as a metric to compare the techniques.

Regardless of the search method used, we store the number of hits in a vector.
Each entry of that vector corresponds to the overall number of false positives for
a given gesture. For iSAX and NN-DTW, the overall number of false positives for
a gesture is calculated by searching the EGL for each example of that gesture and
summing the resulting numbers of hits. For HMM models, thresholding on the log
likelihood probability is used. For our set of four test gestures, testing returns three
vectors (one for each method) of four elements (one for each gesture). We calculate
the Pearson correlation coefficient between the iSAXvector and theNN-DTWvector
and between the iSAX vector and the HMM vector.

To reassure ourselves that this technique produces a meaningful metric, we per-
formed Monte Carlo simulation experiments. Indeed, the correlation of random vec-
tors with four elements show low r values.
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Fig. 4.9 Left the hits per hour in the EGL based on iSAX search. Right a comparison of the number
of hits per hour returned by iSAX, NN-DTW, and HMMs from the EGL

First, we compare the search methods on the EGL from Bremen. We chose the
iSAX parameters empirically:

word length: 4
base cardinality: 2
bucket: 6000.
Figure4.9 compares the number of hits per hour returned by each method. The

hits per hour metric reflects the number of matches found in the EGL divided by
the original time required to record the EGL. One can see that our iSAX search
approximation returns many fewer hits than NN-DTW or HMMs. However, the
magnitude of the iSAX values correlate strongly with the NN-DTW (r = 0.96) and
HMM (r = 0.97) results. Thus, a high number of hits returned by iSAX on the EGL
(high compared to other gestures tested with iSAX) is a good indicator for when a
gesture should be discarded. The remaining gestures are suitable candidates for user
testing.

We also measured the time needed to complete the search for each method on a
2.0GHz Intel Core Duo T2500 Macbook with 2GB of RAM. The NN-DTW and
HMM methods require more then 10min to complete the search on all 40 gesture
examples whereas iSAX search required 22 s, a 27X increase in speed. With such
speed, each of the gesture examples could have been checked as it was entered by
the interaction designer. In fact, the EGL search would require less than a second for
each gesture example, which is less than the amount of time required to check a new
example for confusion against all the other gesture examples with NN-DTW when
creating a eight gesture interface (Ashbrook 2009). Thus, we have obtained our goal
of maintaining interactivity during gesture design.
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We were curious as to how much EGL data is needed to predict poor command
gestures.We generated three random subsets of the EGL by picking 100, 200 and 500
interesting regions at random from the data set and comparing the correlation coef-
ficient between iSAX and NN-DTW. The correlation between the results remained
surprisingly high, even with an EGL containing only 100 regions:

• n = 100: r = 0.89
• n = 200: r = 0.93
• n = 500: r = 0.93.

As later experiments show,more data is better, but even a relatively small EGL can
help the interaction designer avoid choosing troublesome gestures.We also compared
iSAX versus NN-DTW in the Alkan and Georgia Tech EGLs, with similar results to
the original Bremen EGL:

• Alkan: r = 0.94
• Georgia Tech: r = 0.99.

Our results suggest that the results of an iSAX search on the EGL correlate highly
with those of the slower EGL search methods. Even though the absolute number
of hits found by the iSAX method are significantly fewer than the other methods,
the relative number of hits can be used to compare the desirability of one candidate
gesture versus another.

4.4.4 Comparison of iSAX Predictions to HMM and
NN-DTW Gesture Recognizer Use in Practice

Next, we examine whether our iSAX EGL search method is able to predict false
positives in everyday life. In fact, this experiment is the first to verify that any EGL
search is able to predict false positive rates of a gesture recognizer in practice.

We exported NN-DTW and HMM recognizers fromMAGIC Summoning for the
four gestures trained during the process described in the previous experiment. We
integrated the HMM classifier into an interactive system. Next, we recruited four
Android phone users who had not contributed to the EGLs nor the training of the
gestures.

In order to understand how difficult it was to perform the gestures correctly,
we asked the users to perform each gesture 10 times without feedback. The HMM
classifier performed at 60% accuracy, which is not surprising given the gestures and
testing procedure. Next we allowed the users to train with the HMM recognizer
to become more familiar with how to perform the gestures so that they could be
more easily recognized. This way of learning can be found in commercial systems
like the Nintendo Wii, which uses avatars to help users learn control gestures. Not
surprisingly, the four users’ average accuracy with the HMM recognizer improved
to 95% after training.
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Fig. 4.10 The EGL hits per hour found during deployment. Left the EGL hits for NN-DTW search
per gesture. Right the EGL hits for HMM search per gesture. The EGL hits for a gesture are the
average hits over all four users. The bars correspond to one standard deviation

After the users completed their training, we installed a software application on
their phones that notified the users when to perform one randomly selected gesture,
once every hour. Otherwise, the users performed their normal activities, and the
application records all the users’ movements. We searched the recorded data for the
intended gestures. The HMM classifier found 50–70% of the intentional gestures
whereas NN-DTW search found all of them. However, the NN-DTW classifier had
lower precision than the HMMs. Given that we specifically allowed gestures that
were known to be poor (from EGL testing) and that the system did not provide
feedback to the users, such poor performance is to be expected (and desired from the
point of the experiment).

Figure4.10 shows the false positive rates for each gesture and recognizer. We
observed a high correlation (r = 0.84) between the relative false positive rates pre-
dicted by the iSAX search on the original EGL and the actual, tested NN-DTW
performance on the users’ data. The correlation was even higher (r = 0.97) for the
HMM classifier. These results support our hypothesis that MAGIC Summoning can
be used to predict gestures at risk of having many false positives when deployed in
gesture recognizers in practice.

4.5 Improving Recognition Through a NULL Class
Created from EGL Search

In the experiments in the previous section, we needed to specify a threshold to avoid
false positives when distinguishing the four gestures from our four users’ everyday
motions. For NN-DTW, the threshold was a distance, while with HMMs it was
a probability. Setting this threshold requires more pattern recognition experience
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than an interaction designer may possess, and often gestures are not separable from
everyday movements with a simple threshold. Another option is to create a NULL
(garbage) class, which attempts to capture all the motion not matching the gestures
of interest. With this technique, the recognizer runs continually but does not return
a result when the sensor data matches the NULL class.

Here, we use EGL data to train a NULL class automatically so that a user-defined
threshold is not needed. Multi-dimensional iSAX search of the EGL returns time
series similar to a query gesture. Thus, it is a simple matter to collect the EGL hits
from all examples of all gestures in the gesture interface to train a NULL gesture
(using either technique).

The following experiment is based on the data collected while our four users
performed the four requested gestures during their daily activities. We adjusted the
thresholds upward for the HMM and NN-DTW recognizers to avoid misclassifica-
tions in theEGLwhile still detecting the gestures from the training set.Wealso trained
NULL classes for both recognizers. Figure4.11 shows the results of all four recog-
nizers running on the user study data. Using the EGL NULL class method resulted
in a statistically significant improvement of both the NN-DTW (p << 0.0001) and
HMM (p < 0.05) recognizers. Both avoided more false positives using the NULL
class instead of a threshold. Gesture recognition accuracy and correlation to the iSAX
EGLhits remained consistent with the experiment in the previous section. The results
suggest that training a NULL class based on EGL hits can be a successful way to
improve performance and reduce complexity for the interaction designer. Note that
many variations of this technique are possible and might further improve results. For
example, a different NULL class could be trained for each gesture.

Fig. 4.11 Left the false positives per hour avoided using a NULL class for each gesture based on
EGL hits versus the simple threshold. Right the false positives per hour avoided for HMMs using
the NULL class versus the simple threshold
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4.6 iSAX Parameter Sensitivity Experiments

In Sect. 4.4.4, iSAX was able to predict the relative performance of a gesture during
continuous recognition. However, the process required setting several parameters:
word length, bucket size, and initial cardinality. In addition, we compared the false
positive predictions to that of the NN-DTWmethod, which itself required a distance
threshold (when a NULL class is not used). How sensitive is our method to these
parameters? We use the same four test gestures (circle, shake, shoulder, hack) and
EGL as in our user study to explore this issue.

Observe that the cardinality of the sequences is automatically adjusted during the
creation of the EGL iSAX tree, quickly changing from its initial minimal setting of
two. Effectively, this parameter is not set by the user, and we can remove it from the
following experiments on parameter sensitivity by holding it at a reasonable value.
We choose a base cardinality of four (card = 4), given that this level of complexity
was judged sufficient from observations in the original iSAX experiments (Shieh
2010; Shieh and Keogh 2008) and in our own work (Kohlsdorf et al. 2011).

In the experiments below, we compare the iSAX results, while varying the bucket
size andword length, to theNN-DTWmethod using the correlationmethod described
above. We also tried comparing the iSAX method to NN-DTW with different rea-
sonable distance thresholds (3.3, 5, 10), but we found little change in the results.
For example, the bottom of Fig. 4.12 shows graphs comparing iSAX word length
to correlation with NN-DTW at each of the distance thresholds. The graphs are
very similar, indicating that the comparison with NN-DTW is relatively stable with
respect to the distance threshold used. Thus, we turn our attention to word length
and bucket size.

In the first part of the experiment we test the correlation of the EGL searches
using NN-DTW and iSAX trees constructed with different iSAX word lengths (4,
5, 6, …, 13) and bucket sizes (1000, 2000, …, 10000). Figure4.12 plots the results.
Changes in bucket size cause minor variations in correlation; however, word length
has significant effects.

Since the performance of our method seems mostly dependent on one parameter,
we propose an automatic parameter tuning method that does not require any data
except a pre-recorded EGL. The central concept is to choose random regions from
the EGL to serve as a gesture training set and to tune the iSAX parameters to that set
using hill climbing.

We require the user to specify the number of gestures in the data set (N ), howmany
examples we want to collect for each gesture (M), and a threshold on the dynamic
time warping distance over which two time series are distinct. We pick N regions
of motion (“interesting” regions) at random from the EGL to serve as “reference
gestures.” For those N reference gestures we extract M examples from the EGL
where the DTW distance to the reference gesture is smaller than a threshold. Then
we compute the false positives for this gesture set using the NN-DTW method. In
order to find the appropriate word length we use hill climbing in the iSAX parameter
space. At each step, we perform false positive prediction using iSAX and compare
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Fig. 4.12 Top correlation to NN-DTW versus iSAX word length versus iSAX bucket size.
Bottom iSAX word length versus correlation to NN-DTW for distance thresholds of 3.3, 5, and 10,
respectively

the results to the NN-DTW results using the Pearson correlation coefficient as an
objective function.

We ran an experiment to test this hill-climbing technique, allowing the procedure
to set the word length automatically and comparing the results to NN-DTW. We
started the word length at 4 and increased it to 13. If the observed correlation at a
given word length is followed by a smaller one when the next word length is tried,
the algorithm stops and returns the last word length. As one can see in Fig. 4.12,
after 3 iterations iSAX finds a local maximum. However, this sequential method is
not optimal. For example, if the word length which maximizes the correlation is 9
and the local maximum at the word length 6 is smaller, we would stop too early.
However, this problem can be solved by including simulated annealing or stochastic
gradient descent in the future.
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In this chapter, we showed that the iSAX EGL search relies on several parameters
but that the parameters can be tuned automatically. Word length seems the primary
parameter that needs to be tuned.

4.7 MAGIC Summoning: Suggesting Gestures with Low
Probability of False Positives During Use

To this point, we have focused on efficient gesture testing. However, when using
MAGIC to design gestures in previous studies, our participants wished to have
MAGIC suggest potential gestures instead of creating their own. Often the gestures
designed by the participants showed high false positive rates when tested against the
EGL, leading to frustration. MAGIC users said they would rather select from a set
of gestures that were “known good” than experiment blindly with constraints they
did not understand (Ashbrook 2009).

In the next section, we describe a method for suggesting gestures based on a
pre-recorded EGL. We then perform an experiment where we test suggested ges-
tures for false positives during normal device usage by naive subjects. Finally, we
examine different possible metrics to order the suggestions for easier selection by the
designer. While we have mostly used accelerometers in our experiments to date, here
we concentrate on capacitive trackpads, specifically those used on Apple’s laptops.
Data from inertial sensors are hard to visualize for an interaction designer without a
inverse kinematic system tomap the sensor readings into limbmovement.While such
systems are now feasible with adequate accuracy, we wished to avoid the additional
complexity for these first experiments. Trackpads provide two dimensional data that
are easy to visualize for an interaction designer, and trackpads are commonly used
in everyday office work. In addition, industry has begun to include more complex
command gestures in their trackpad-based products (Li 2010).

4.7.1 Synthesizing and Visualizing Gestures

We introduce a method for proposing gestures that do not collide with every day
movements using four steps, briefly outlined here. First, we collect an EGL that is
representative of the usage of the device or sensor. Next, we build an iSAX tree based
on the EGL. We systematically enumerate the possible SAX strings and check for
those which are NOT contained in the tree. Finally, we visualize these gestures and
present them to the interaction designer. Once the designer selects a set of gestures
for his interface, MAGIC Summoning can train a recognizer for the gestures using
synthesized data.
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4.7.1.1 Collecting an EGL

Collecting a representativeEGL is often time-consuming and is best doneby someone
familiar both with the specific sensor involved and pattern recognition in general.
Fortunately, the process is only necessary once for the device of interest and then can
be used for different interface designers and tasks. Mostly, the EGL will be collected
across multiple people to ensure that the resulting gestures can be user independent.
Ideally, the EGL should be collected across every situation and physical context
where the device might be used (for example, sitting at a desk or driving) to make
sure that incidental motions are well represented. If the resulting gesture recognizer
is intended to work across different devices (for example, across multiple version of
Android phones), the EGL should be collected from a representative sample of those
devices.

4.7.1.2 Representing the EGL and Generating Gestures

Next, we convert the EGL into a simplified iSAX tree structure. Unlike the work
above, here we only care that a given string occurred in the EGL instead of how
many times it occurred. Thus, we can use a simpler indexing method that will allow
easier gesture building later. We convert interesting regions from the EGL to SAX
words and build the set of all strings observed in the EGL. Since the sensor input is
multivariate, we build the SAX word in each dimension and concatenate the words.
Thus, for n dimensions and a word length of w, the indexing key grows to n ∗ w.
Given the cardinalities in the word, discovering gestures that are not represented in
the EGL is a simple matter of combinatorics. We generate all possible gestures and
store the gesture as a viable candidate if it is not contained in the EGL.

4.7.1.3 Visualizing Candidate Gestures and Training Gesture
Recognizers

In order for the interface designer to select between the different candidate gestures,
wemust visualize them. Specifically, we need to convert the candidate gesture from a
SAX string into a real valued time series. For each SAX symbol, we know that valid
values are somewhere between the upper and lower breakpoint of the area assigned to
the symbol. We choose a random point between these breakpoints for each symbol.
We then use spline interpolation or re-sampling to fit a curve through the resulting
values from each SAX symbol. We used an exponential moving average to smooth
the resulting curve. The overall process is shown in Fig. 4.13. Note that by repeating
this process we can generate a synthetic set of time series that could have generated
the SAX word. This synthetic data is used to visualize acceptable versions of the
trackpad gesture to the interaction designer. We will also use this synthetic data to
train a recognizer for the gesture if it is selected (see below).
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Fig. 4.13 Converting a SAX word to example gestures

Fig. 4.14 The MAGIC Summoning gesture suggestion interface

Figure4.14 shows MAGIC Summoning’s user interface for gesture suggestion.
In the center of the window we display a synthesized gesture. The color of the lines
indicates the time course of the gesture as it is performed on the trackpad (from
dark to light). Many synthetic examples of a given SAX word are drawn to give the
interaction designer a sense of the possible shapes of the gesture. New suggestions
are displayed periodically, effectively creating a movie of potential gestures. In our
first implementation, gesture suggestions were selected randomly, keeping a list of
previously viewed gestures so as to avoid repetition. If the interaction designer sees
a desirable gesture, he stops the presentation with a key press.

If other gestures have already been selected by the user, the similarity of the
currently displayed gesture to the already selected gestures is shown in a bar plot in
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a window at the bottom left. Based on these similarity scores, the user can retain the
gesture or continue searching other suggestions. In this case, we decided to use the
$1 Recognizer (Wobbrock et al. 2007) both for generating similarity scores and for
gesture recognition. To train the gesture recognizer, we simply used the synthetic
examples generated during the visualization process.

4.7.1.4 $1 Recognizer

Since the $1 Recognizer is widely used in HCI research (Belatar and Coldefy 2010;
Dang and André 2010) but is not necessarily known to machine learning researchers,
we give a quick overview here. The recognizer is optimized for single stroke ges-
tures and can be considered instance-based learning. Each instance or template is
re-sampled to be of equal length with all others and then rotated, scaled, and trans-
lated to a canonical form before being used. During recognition the query gesture is
compared to all the stored templates using an angular distance metric. In continuous
recognition we can apply a threshold on that distance, and the rest of the recog-
nition process is similar to the dynamic time warping approach described earlier.
The authors report recognition accuracies of 99%, which is comparable to DTW
implementations on the same data sets. The method is simple, fast to compute, and
understandable by pattern recognition novices. Thus, the algorithm is well-suited
for experimentation by interface designers. With MAGIC Summoning, interaction
designers do not need to collect any training data for the recognizer. The training
data is produced synthetically from the EGL as described above. Note that we can
use the $1 Recognizer as a distance measure for EGL search (albeit slowly compared
to iSAX), which will be useful for comparison experiments below.

4.7.2 Testing Suggested Gestures and Recognizers in Practice

We collected an EGL consisting of ten participants using their personal Mac laptops
for one week. Figure4.15 visualizes the EGL. While indexing the EGL, we set the
SAX word length to four. For a two dimensional touchpad, the length doubles to
eight. Setting the cardinality to four leads to a total number of 65,536 (48) possible
strings.

We observed 1222 unique strings in the collected EGL. The space is surprisingly
sparse; there are 64,314 strings not found in the EGL, suggesting that there are a
large number of gestures that could be made with a low probability of false positives.

We performed an experiment to evaluate if the proposed suggestion and selection
process described in the previous section can produce gestures that show a low false
positive rate in everyday life. In addition, we were concerned as to whether synthetic
data would be sufficient to train a high accuracy recognizer for this domain. We
acted as an interaction designer and selected six gestures using the visualization
tool above (see Fig. 4.16). We preferred gestures that were simple and memorable.
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Fig. 4.15 Bottom the touch pad EGL. Top an excerpt from the EGL showing five false positives
during testing of a gesture, indicated as colored bubbles

Fig. 4.16 The six gestures used in the study. Gestures are drawn from dark to light
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Fig. 4.17 Seventy generated gestures with potential low false positive rates. Gestures ordered from
left-to-right and from top-to-bottom with increasing entropy

Figure4.17 demonstrates 70 other gestures suggested by the system that were not
used.We trained a $1 Recognizer for each of the six gestures selected using synthetic
data generated by MAGIC.

We designed a six user study with users who did not contribute to the EGL. As in
the false positive prediction experiments from the previous section, we asked users
to practice with the recognition system so that they could perform the gestures with
confidence. Users were able to improve their performance from ≈46% to ≈90%
quickly. Afterward, the users worked on their computers for 4h while all touchpad
movements were recorded. Every 10min we sent a notification to the users asking
them to perform one of the six gestures, resulting in four examples of each gesture
for each participant. Thus, we collected 24h of data and 144 gesture examples.

The gesture recognizerwas able to recognize 98%of the performed gestures. Even
though synthetic data was use to train the recognizer, these findings are similar to
those of Wobbrock et al. (2007), who reported a 99% accuracy in their experiments.
The false positive rates of the gestures are low except for one gesture (see Fig. 4.18).
Thus, the experiment supports the hypothesis that MAGIC Summoning can suggest
gestures and aid the interaction designer in creating a gesture system that results in
low false positives. However, several questions remain. Can we order the suggestions
so as to present the “best” gestures first? Also, the experiment as described has no
control condition.What would have been the result if we had tried suggesting random
gestures from the 64,314 available?
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Fig. 4.18 Results of the trackpad gesture user study in false positives per hour. All but one of the
gestures suggested by MAGIC Summoning show a low false positive rate

4.7.3 Ordering Gesture Suggestions

In this section we will explore possible ways of ordering gestures such that users can
quickly find desirable gestures from the large number of possibilities. Our intuition
is that users prefer simple gestures since they can be accessed quickly and are easy
to memorize.

Our first approach is defining the complexity of a gesture as the entropy of its
SAX word (Mitchell 1997):

H(word) = −
card∑

i=0

p(symboli ) ∗ log(symboli ).

However, if we want to prefer simpler gestures, we should check to determine if
false positive rates in real usage are correlated with simplicity. Otherwise, proposing
simpler gestures first could be counterproductive. Intuitively, one would think that
simpler gestures would trigger more often in everyday life. To investigate this ques-
tion we trained the $1 Recognizer with 100 randomly chosen gestures and searched
the EGL with it. For each gesture we calculated the entropy and compared the false
positive rate to the entropy and found no correlation (r2 ≈ 0.04). Thus, there seems
to be little additional risk to suggesting lower entropy gestures first.

The above heuristic seems logical for ordering suggestions. Low entropy gestures
would seem to be simpler and easier to perform. To confirm this intuition we ran a
small user study. We generated 100 gestures and sorted them using the above score.
We examined the 20 best-ranked gestures and rejected ones that required significant
overlap of the strokes (see Fig. 4.19) as the static visualization of the strokes could
confuse subjects. For each of the 10 remaining gestures we asked six users to perform
the gesture in the air, on the table or on their touchpad and asked them to assign a
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Fig. 4.19 MAGIC
Summoning gestures with
significant overlap of the
strokes were rejected to
avoid user confusion

score of performability between 1 and 10.All participants received the same gestures.
Interestingly, wewere not able to find a correlation between the entropy of a gesture’s
SAX word and the users’ ratings (r2 = 0.09).

Given the above result, we desire gestures not in the EGL but that are known to be
performable. With a trackpad, all suggested gestures should be physically possible,
but in future work with inertial sensors the suggestions could become impossible
without constraining the system in some manner.

We decided to prefer gesture suggestions where the substrings of the SAX word
representing the candidate gesture are represented in the EGL, but the gesture string
itself was not present. We will assume one dimension for ease of illustration. If a
gestureACBD is not in the EGL, but the subcomponentsAC,CB, andBDorACBand
CBDwerewell represented in the EGL,wemight conclude that ACBD is possible for
the user to perform. In other words, we will prefer gestures where the most n-grams
from the EGL are included in the suggested gesture’s string. Intuitively, though,
such a heuristic causes concern that such gestures might have a higher chance of
false triggering.

To investigate this possibility, we extracted bi-grams and tri-grams from the EGL,
created candidate gestures from them, and tried to find a correlation between the
false positives in the EGL and the number of n-grams in the gesture’s string. Note
that this method of composition creates gestures with a variety of properties: ones
common in the EGL, rare in the EGL, and not present in the EGL. A correlation
would indicate an increased risk with this method of ordering the suggestions, but
we did not find one, giving a modicum of assurance in the method:
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Bi-grams r2 = 0.000676
Tri-grams r2 = 0.000256.
Beside low false positives, another criteria for a good gesture system is that there

should be a low chance of confusion between gestures. If the user is creating a
control system with six gestures and has already selected five of them, we should
prefer suggestions that are distinct from the five gestures already chosen.Wemeasure
the distinguishably of a gesture using the Hamming distance (Hamming 1950) of the
gesture’s SAX word. Thus, when ordering gestures, we sort using a score defined as

score(word) = dist (word)

(1 + entropy(word))

where the distance of the word is the average Hamming distance to all other gestures
in the gesture set. This metric provides a high distance to the other gestures and a
low entropy. Note that we use (1 + entropy(word)) to avoid unreasonably high or
infinite scores when the entropy value is near 0.

Given the results of the above experiments, we are now tuningMAGIC Summon-
ing to generate gestures composed from parts of the EGL and to suggest gestures
that are most dissimilar to each other. We intend to test this ordering system in our
future work with suggesting gestures for use with inertial sensors.

4.7.4 How Selective are MAGIC Summoning’s Suggestions?

In the above user study, we selected six gestures by hand fromMAGIC Summoning’s
suggestions and tested the $1 Recognizer that MAGIC output for both accuracy and
false triggering. However, there were many possible gestures that the system could
have output instead. In this last section we will investigate if suggesting gestures
based on our method is better generated ones by chance.

As we have seen previously, using iSAX results in fewer hits being identified
in an EGL than those found by typical gesture recognizers (HMM, NN-DTW, $1
Recognizer, etc.). The sole reason to use iSAX is that it quickly returns whether or
not a candidate gesture is worthwhile to investigate further. However, we do not need
to generate gesture suggestions in real time. In fact, as soon as an EGL is collected,
the same “overnight” process that generates the EGL’s iSAX tree representation for
prediction could track the gestures not represented in the EGL. Once these gestures
are known, the recognizer of choice could be trained with synthetic data of the
gesture, and the recognizer could be run on the EGL for a more precise estimate
of the expected hits. The number of false positives returned should allow a finer
discrimination between candidate gestures. In the following experiment, we use this
new procedure to generate suggested gestures and test ones with the lowest number
of false positives on the test data collected from subjects not represented in the EGL.

In this experiment, we generated 2000 random gestures from SAX strings not
in the EGL. For each of the gestures we synthesized 40 examples and trained a $1



150 D.K.H. Kohlsdorf and T.E. Starner

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

Fig. 4.20 Number of false positives identified in the EGL using the $1 Recognizer for each of 2000
gestures synthesized from SAX strings not represented in the EGL. Gestures with more than 2 hits
per hour are not graphed to preserve scale

recognizer with them. We used this recognizer to test search the EGL in the classic
way, that is testing each interesting region using the trained recognizer. We used a
typical threshold (th = 0.85) for the $1 score. All results above that threshold count
as a hit with the EGL. Figure4.20 orders the gestures by least to most number of
hits per hour in the EGL. Clearly the $1 Recognizer identifies many potential false
positives, yet most of the gestures still have low rates.

Figure4.21, top, shows another view of this data. Note that over 35% of the 2000
gestures have 0–0.0001 false positives/hour. Compare this rate to that of Fig. 4.21,
bottom. This graph was generated using all the SAX strings represented in the EGL.
Less than 12% of these gestures have such low false positive rates. Clearly, the SAX
representation does have considerable predictive power on which suggested gestures
are least likely to trigger falsely using the $1 Recognizer in the EGL. In fact, better
than one in three of the gestures suggested by choosing SAX strings not in the EGL
will be candidates for very low false positive rates with the synthetically trained $1
Recognizer.

The above observation suggests a relatively efficient method for creating gesture
candidates for the interaction designer. First, randomly choose a unrepresented SAX
string in the EGL. Train the desired recognizer using synthetic data. Run the recog-
nizer on the EGL. If the rate of false positives per hour is less than 0.0001, keep the
gesture. Otherwise, discard it. Generate as many gesture suggestions as is possible
given time constraints. (Approximately 25min is required to generate 100 gesture
suggestions using a modern laptop, but such a process is highly parallelizable and
can be run in batch before the interaction designer approaches the system.) Order
the suggestions as described above and present them to the interaction designer for
selection.

We conducted an experiment evaluating this algorithm. We split the collected
EGL for touchpad gestures into two subsets. Each subset contains randomly chosen,
distinct time series from the original EGL. The intersection between the subsets is
empty. We used the first subset to generate 100 randomly chosen, distinct gestures
candidates that show less then0.0001 false positives per hour using the$1Recognizer.
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Fig. 4.21 Histogram demonstrating the percentages of the number of false positives per hour for
gestures with SAX representations not in the EGL (top) and all gestures with SAX representations
in the EGL (bottom)

We used these recognizers to then search the data in the second subset. On average
we found the gestures to trigger 0.0022 times per hour, with a standard deviation of
0.003. These rates correspond to an average time between false triggerings of 455h,
or approximately onemonth assuming usage 16h/day. Thus, this method of choosing
gestures to suggest to an interaction designer seems desirable as well as practical.

4.8 Future Work

To date, the task for most gesture recognition systems has been to optimize accuracy
given a set of gestures to be recognized. In this paper, we have reversed the problem,
seeking to discover which gestures might be most suitable for recognition.
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However, improved suggestion ordering is an area for improvement. Performa-
bility might be improved by modeling how gestures are produced (Cao and Zhai
2007) and prioritizing those gestures with least perceived effort. For domains where
the coupling between sensor data and limb movement are not as apparent, such as
accelerometer-basedmotion gestures, inverse kinematicmodels and 3D avatars seem
appropriate both for prioritizing suggestions and for visualizing the gesture for the
interaction designer. For situations with many degrees of freedom, such as whole
body movement as tracked by the Microsoft Kinect©, the space of potential ges-
tures may be extremely large. Physical and behavioral constraints might be applied
to reduce the search space for the interaction designer. While MAGIC and MAGIC
Summoning have been applied tomultiple domains, we have only applied the gesture
suggestion functions to trackpads.We are eager to investigateMAGIC Summoning’s
usefulness and usability in other domains.

4.9 Conclusion

We have described two pattern recognition tasks that can be used to help interaction
designers create gesture interfaces: testing a user-defined gesture (and its classifier)
against a previously captured database of typical usage sensor data to determine its
tendency to trigger falsely and suggesting gestures automatically to the designer. We
have shown that iSAX can be used to provide near immediate feedback to the user as
to whether a gesture is inappropriate. While this method is approximate and recovers
only a fraction of the total false positives in the EGL, MAGIC Summoning’s results
correlate strongly with those of HMMs, DTW, and the $1 Recognizer and can thus
be used to provide guidance during training. We showed that MAGIC Summoning
and the EGL could be used to create a null class of close false matches that increase
the performance of the chosen classifier.

To suggest gestures to the interaction designer that may have low chance of trig-
gering falsely, we exploited the SAX representation used to index the EGL. MAGIC
Summoning generates all the strings not in the EGL, converts the SAX strings
back into a gesture visualization, and suggests appropriate gestures to the designer.
MAGIC Summoning also outputs classifiers for the gesture, trained on synthetic
data generated from the SAX string. Using the task of finding command gestures
for Mac trackpads, we showed that the gestures generated by MAGIC Summoning
have generally low false positive rates when deployed and that the classifiers output
by the system were adequate to the task of spotting the gesture.

Even if iSAX search of an EGL is not a perfect predictor for the false positives
of a gesture in every day usage, we find that the approximations are sufficient to
speed interface design significantly. MAGIC’s methods are not intended to replace
user testing with the final device. However, we believe that the tool will decrease the
number of iterations needed to build a fast and stable gesture recognition interface.
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