
Chapter 16
Multimodal Gesture Recognition
via Multiple Hypotheses Rescoring

Vassilis Pitsikalis, Athanasios Katsamanis, Stavros Theodorakis
and Petros Maragos

Abstract We present a new framework for multimodal gesture recognition that is
based on a multiple hypotheses rescoring fusion scheme. We specifically deal with a
demanding Kinect-based multimodal dataset, introduced in a recent gesture recogni-
tion challenge (CHALEARN 2013), where multiple subjects freely perform multi-
modal gestures. We employ multiple modalities, that is, visual cues, such as skeleton
data, color and depth images, as well as audio, and we extract feature descriptors of
the hands’ movement, handshape, and audio spectral properties. Using a common
hidden Markov model framework we build single-stream gesture models based on
which we can generate multiple single stream-based hypotheses for an unknown ges-
ture sequence. Bymultimodally rescoring these hypotheses via constrained decoding
and a weighted combination scheme, we end up with a multimodally-selected best
hypothesis. This is further refined by means of parallel fusion of the monomodal
gesture models applied at a segmental level. In this setup, accurate gesture model-
ing is proven to be critical and is facilitated by an activity detection system that is
also presented. The overall approach achieves 93.3% gesture recognition accuracy in
the CHALEARN Kinect-based multimodal dataset, significantly outperforming all
recently published approaches on the same challenging multimodal gesture recog-
nition task, providing a relative error rate reduction of at least 47.6%.
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16.1 Introduction

Human communication and interaction takes advantage of multiple sensory inputs in
an impressive way. Despite receiving a significant flow of multimodal signals, espe-
cially in the audio and visual modalities, our cross-modal integration ability enables
us to effectively perceive the world around us. Examples span a great deal of cases.
Cross-modal illusions are indicative of lower perceptual multimodal interaction and
plasticity (Shimojo and Shams 2001): for instance, when watching a video, a sound
is perceived as coming from the speakers lips (the ventriloquism effect) while, in
addition, speech perception may be affected by whether the lips are visible or not
(the McGurk effect).

At a higher level, multimodal integration is also regarded important for language
production and this is how the notion of multimodal gestures can be introduced.
Several authors, as (McNeill 1992), support the position that hand gestures hold a
major role, and together with speech they are considered to have a deep relationship
and to form an integrated system (Bernardis and Gentilucci 2006) by interacting
at multiple linguistic levels. This integration has been recently explored in terms
of communication by means of language comprehension (Kelly et al. 2010). For
instance, speakers pronounce words while executing hand gestures that may have
redundant or complementary nature, and even blind speakers gesture while talking to
blind listeners (Iverson and Goldin-Meadow 1998). From a developmental point of
view, see references in thework of (Bernardis andGentilucci 2006), handmovements
occur in parallel during babbling of 6–8 month children, whereas word comprehen-
sion at the age of 8–10 months goes together with deictic gestures. All the above
suffice to provide indicative evidence from various perspectives that hand gestures
and speech seem to be interwoven.

In the area of human-computer interaction gesture has been gaining increasing
attention (Turk 2014). This is attributed both to recent technological advances, such
as the wide spread of depth sensors, and to groundbreaking research since the famous
“put that there” (Bolt 1980). The natural feeling of gesture interaction can be sig-
nificantly enhanced by the availability of multiple modalities. Static and dynamic
gestures, the form of the hand, as well as speech, all together compose an appealing
set of modalities that offers significant advantages (Oviatt and Cohen 2000).

In this context, we focus on the effective detection and recognition of multi-
modally expressed gestures as performed freely by multiple users. Multimodal ges-
ture recognition (MGR) poses numerous challenging research issues, such as detec-
tion of meaningful information in audio and visual signals, extraction of appropriate
features, building of effective classifiers, and multimodal combination of multiple
information sources (Jaimes and Sebe 2007). The demanding dataset (Escalera et al.
2013b) used in our work has been recently acquired for the needs of the multi-
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modal gesture recognition challenge (Escalera et al. 2013a). It comprises multimodal
cultural-anthropological gestures of everyday life, in spontaneous realizations of both
spoken and hand-gesture articulations by multiple subjects, intermixed with other
random and irrelevant hand, body movements and spoken phrases.

A successful multimodal gesture recognition system is expected to exploit both
speech and computer vision technologies. Speech technologies and automatic speech
recognition (Rabiner and Juang 1993) have a long history of advancements and can be
consideredmaturewhen compared to the research challenges found in corresponding
computer vision tasks. The latter range from low-level tasks that deal with visual
descriptor representations (Li and Allinson 2008), to more difficult ones, such as
recognition of action (Laptev et al. 2008), of facial expressions, handshapes and
gestures, and reach higher-level tasks such as sign language recognition (Agris et al.
2008). However, recently the incorporation of depth enabled sensors has assisted
to partially overcome the burden of detection and tracking, opening the way for
addressing more challenging problems. The study of multiple modalities’ fusion is
one such case, that is linked with subjects discussed above.

Despite the progress seen in either unimodal cases such as the fusion of mul-
tiple speech cues for speech recognition (e.g., Bourlard and Dupont 1997) or the
multimodal case of audio-visual speech (Potamianos et al. 2004; Glotin et al. 2001;
Papandreou et al. 2009), the integration of dissimilar cues in MGR poses several
challenges; even when several cues are excluded such as facial ones, or the eye
gaze. This is due to the complexity of the task that involves several intra-modality
diverse cues, as the 3D hands’ shape and pose. These require different representa-
tions and may occur both sequentially and in parallel, and at different time scales
and/or rates. Most of the existing gesture-based systems have certain limitations,
for instance, either by only allowing a reduced set of symbolic commands based
on simple hand postures or 3D pointing (Jaimes and Sebe 2007), or by consider-
ing single-handed cases in controlled tasks. Such restrictions are indicative of the
task’s difficulty despite already existing work (Sharma et al. 2003) even before the
appearance of depth sensors (Weimer and Ganapathy 1989).

The fusion ofmultiple information sources can be either early, late or intermediate,
that is, either at the data/feature level, or at the stage of decisions after applying
independent unimodal models, or in-between; for further details refer to relative
reviews (Jaimes and Sebe 2007; Maragos et al. 2008). In the case of MGR late
fusion is a typical choice since involvedmodalitiesmay demonstrate synchronization
in several ways (Habets et al. 2011) and possibly at higher linguistic levels. This is
in contrast, for instance, to the case of combining lip movements with speech in
audio-visual speech where early or state-synchronous fusion can be applied, with
synchronization at the phoneme-level.

In this paper, we present a multimodal gesture recognition system that exploits
the color, depth and audio signals captured by a Kinect sensor. The system first
extracts features for the handshape configuration, the movement of the hands and the
speech signal. Based on the extracted features and statistically trained models, single
modality-based hypotheses are then generated for an unknown gesture sequence.
The underlying single-modality modeling scheme is based on gesture-level hidden
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Markovmodels (HMMs), as described inSect. 16.3.1. These are accurately initialized
by means of a model-based activity detection system for each modality, presented in
Sect. 16.3.3. The generated hypotheses are re-evaluated using a statisticalmultimodal
multiple hypotheses fusion scheme, presented in Sect. 16.3.2. The proposed scheme
builds on previouswork onN-best rescoring:N-best sentence hypotheses scoringwas
introduced for the integration of speech and natural language by Chow and Schwartz
(1989) andhas also been employed for the integration of different recognition systems
based on the same modality, e.g., by Ostendorf et al. (1991), or for audio-visual
speech recognition by Glotin et al. (2001). Given the best multimodally-selected
hypothesis, and the implied gesture temporal boundaries in all information streams,
a final segmental parallel fusion step is applied based on parallel HMMs (Vogler and
Metaxas 2001). We show in Sect. 16.5 that the proposed overall MGR framework
outperforms the approaches that participated in the recent demanding multimodal
challenge (Escalera et al. 2013a), as published in the proceedings of the workshop,
by reaching an accuracy of 93.3 and leading to a relative error rate (as Levenshtein
distance) reduction of 47% over the first-ranked team.

16.2 Related Work

Despite earlier work in multimodal gesture recognition, it is considered an open
field, related to speech recognition, computer vision, gesture recognition and human-
computer interaction. As discussed in Sect. 16.1 it is a multilevel problem posing
challenges on audio and visual processing, on multimodal stream modeling and
fusion. Next, we first consider works related to the recent advances on multimodal
recognition, including indicative works evaluated in the same CHALEARN chal-
lenge and recognition task by sharing the exact training/testing protocol and dataset.
Then, we review issues related to basic components and tasks, such as visual detec-
tion and tracking, visual representations, temporal segmentation, statistical modeling
and fusion.

There are several excellent reviews on multimodal interaction either from the
computer vision or human-computer interaction aspect (Jaimes and Sebe 2007; Turk
2014). Since earlier pioneering works (Bolt 1980; Poddar et al. 1998) there has been
an explosion ofworks in the area; this is also due to the introduction of everyday usage
depth sensors (e.g., Ren et al. 2011). Such works span a variety of applications such
as the recent case of gestures and accompanying speech integration for a problem
in geometry (Miki et al. 2014), the integration of nonverbal auditory features with
gestures for agreement recognition (Bousmalis et al. 2011), or within the aspect
of social signal analysis (Ponce-López et al. 2013; Song et al. 2013) propose a
probabilistic extension of first-order logic, integratingmultimodal speech/visual data
for recognizing complex events such as everyday kitchen activities.
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The CHALEARN task is an indicative case of the effort recently placed in the
field: Published approaches ranked in the first places of this gesture challenge,
employ multimodal signals including audio, color, depth and skeletal information;
for learning and recognition one finds approaches ranging from hiddenMarkovmod-
els (HMMs)/Gaussian mixture models (GMMs) to boosting, random forests, neural
networks and support vector machines among others. Next, we refer to indicative
approaches from therein (Escalera et al. 2013b). In Sect. 16.5 we refer to specific
details for the top-ranked approaches that we compare with. Wu et al. (2013), the
first-ranked team, are driven by the audio modality based on end-point detection, to
detect the multimodal gestures; then they combine classifiers by calculating normal-
ized confidence scores. Bayer and Thierry (2013) are also driven by the audio based
on a hand-tuned detection algorithm, then they estimate class probabilities per gesture
segment and compute their weighted average. Nandakumar et al. (2013) are driven
by both audio HMM segmentation, and skeletal points. They discard segments not
detected in both modalities while employing a temporal overlap coefficient to merge
overlappingmodalites’ segments. Finally, they recognize the gesture with the highest
combined score. Chen and Koskela (2013) employ the extreme learning machine, a
class of single-hidden layer feed-forward neural network and apply both early and
late fusion. In a late stage, they use the geometric mean to fuse the classification
outputs. Finally, Neverova et al. (2013) propose a mutliple-scale learning approach
that is applied on both temporal and spatial dimension while employing a recurrent
neural network. Our contribution in the specific area of multimodal gestures recogni-
tion concerns the employment of a late fusion scheme based on multiple hypothesis
rescoring. The proposed system, also employing multimodal activity detectors, all
in a HMM statistical framework, demonstrates improved performance over the rest
of the approaches that took part in the specific CHALEARN task.

From the visual processing aspect the first issue to be faced is hand detection
and tracking. Regardless of the boost offered after the introduction of depth sensors
there are unhandled cases as in the case of low quality video or resolution, in complex
scene backgroundswithmultiple users, and varying illumination conditions. Features
employed are related to skin color, edge information, shape and motion for hand
detection (Argyros and Lourakis 2004; Yang et al. 2002), and learning algorithms
such as boosting (Ong and Bowden 2004). Tracking is based on blobs (Starner et al.
1998; Tanibata et al. 2002; Argyros and Lourakis 2004), hand appearance (Huang
and Jeng 2001), or hand boundaries (Chen et al. 2003; Cui andWeng 2000), whereas
modeling techiques include Kalman filtering (Binh et al. 2005), the condensation
method (Isard andBlake 1998), or full upper body pose tracking (Shotton et al. 2013).
Others directly employ global image features (Bobick and Davis 2001). Finally,
Alon et al. (2009) employ a unified framework that performs spatial segmentation
simultaneously with higher level tasks. In this work, similarly to other authors, see
works presented by Escalera et al. (2013b), we take advantage of the kinect-provided
skeleton tracking.
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Visual feature extraction aims at the representation of the movement, the posi-
tion and the shape of the hands. Representative measurements include the center-of-
gravity of the hand blob (Bauer and Kraiss 2001), motion features (Yang et al. 2002),
as well as features related with the hand’s shape, such as shape moments (Starner
et al. 1998) or sizes and distances within the hand (Vogler and Metaxas 2001). The
contour of the hand is also used for invariant features, such as Fourier descriptors
(Conseil et al. 2007). Handshape representations are extracted via principal com-
ponent analysis (e.g., Du and Piater 2010), or with variants of active shape and
appearance models (Roussos et al. 2013). Other approaches (e.g. Dalal and Triggs
2005 employ general purpose features as the Histogram of Oriented Gradients
(HOG) (Buehler et al. 2009), or the scale invariant feature transform (Lowe 1999).
Li and Allinson (2008) present a review on local features. In this work, we employ
the 3D points of the articulators as extracted from the depth-based skeleton tracking
and the HOG descriptors for the handshape cue.

Temporal detection or segmentation of meaningfull information concerns another
important aspect of our approach. Often the segmentation problem is seen in terms
of gesture spotting, that is, for the detection of the meaningful gestures, as adapted
from the case of speech (Wilcox and Bush 1992) where all non-interesting pat-
terns are modeled by a single filler model. Specifically, Lee and Kim (1999) employ
in similar way an ergodic model termed as threshold model to set adaptive like-
lihood thresholds. Segmentation may be also seen in combination with recogni-
tion as by Alon et al. (2009) or Li and Allinson (2007) in the latter, start and end
points of gestures are determined by zero crossing of likelihoods’ difference between
gesture/non-gestures. There has also been substantial related work in sign language
tasks: Han et al. (2009) explicitly perform segmentation based onmotion discontinu-
ities, Kong and Ranganath (2010) segment trajectories via rule-based segmentation,
whereas others apply systematic segmentation as part of the modeling of sub-sign
components (sub-units) (Bauer and Kraiss 2001) the latter can be enhanced by an
unsupervised segmentation component (Theodorakis et al. 2014) or by employing
linguistic-phonetic information (Pitsikalis et al. 2011), leading to multiple subunit
types. In our case, regardeless of the availability of ground truth temporal gesture
annotations we employ independent monomodal model-based activity detectors that
share a commonHMM framework. These function independently of the ground truth
annotations, and are next exploited at the statistical modeling stage.

Multimodal gesture recognition concerns multiple dynamically varying streams,
requiring the handling of multiple variable time-duration diverse cues. Such require-
ments are met by approaches such as hidden Markov models that have been found to
efficiently model temporal information. The corresponding framework further pro-
vides efficient algorithms, such asBaumWelch andViterbi (Rabiner and Juang 1993),
for evaluation, learning, and decoding. For instance, Nam and Wohn (1996) apply
HMMs in gesture recognition, Lee andKim (1999) in gesture spotting, whereas para-
metric HMMs (Wilson and Bobick 1999) are employed for gestures with systematic
variation. At the same time parallel HMMs (Vogler andMetaxas 2001) accommodate
multiple cues simultaneously. Extensions include conditional random fields (CRFs)
or generalizations (Wang et al. 2006), while non-parametric methods are also present
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inMGR tasks (Celebi et al. 2013; Hernández-Vela et al. 2013). In this paper we build
word-level HMMs, which fit our overall statistical framework, both for audio and
visual modalities, while also employing parallel HMMs for late fusion.

16.3 Proposed Methodology

To better explain the proposed multimodal gesture recognition framework let us first
describe a use case. Multimodal gestures are commonly used in various settings
and cultures (Morris et al. 1979; Kendon 2004). Examples include the “Ok” gesture
expressed by creating a circle using the thumb and forefinger and holding the other
fingers straight and at the same time uttering “Okay” or “Perfect”. Similarly, the
gesture “Come here” involves the generation of the so-called beckoning sign which
in Northern America is made by sticking out and moving repeatedly the index finger
from the clenched palm, facing the gesturer, and uttering a phrase such as “Come
here” or “Here”. We specifically address automatic detection and recognition of a set
of such spontaneously generatedmultimodal gestures evenwhen these are intermixed
with other irrelevant actions, which could be verbal, nonverbal or both. The gesturer
may, for example, be walking in-between the gestures or talking to somebody else.

In this context, we focus only on gestures that are always multimodal, that is, they
are not expressed only verbally or non-verbally, without implying however strictly
synchronous realizations in all modalities or making any related assumptions apart
from expecting consecutive multimodal gestures to be sufficiently well separated
in time, namely a few milliseconds apart in all information streams. Further, no
linguistic assumptions are made regarding the sequence of gestures, namely any
gesture can follow any other.

Let G = {gi }, i = 1, . . . , |G| be the set of multimodal gestures to be possibly
detected and recognized in a recording and let S = {Oi }, i = 1, . . . , |S| be the set of
information streams that are concurrently observed for that purpose. In our exper-
iments, the latter set comprises three streams, namely audio spectral features, the
gesturer’s skeleton and handshape features. Based on these observations the pro-
posed system will generate a hypothesis for the sequence of gesture appearances in
a specific recording/session, like the following:

h = [bm, g1, sil, g5, . . . , bm, sil, g3].

The symbol sil essentially corresponds to inactivity in all modalities while bm rep-
resents any other activity, mono- or multimodal, that does not constitute any of the
target multimodal gestures. This recognized sequence is generated by exploiting
single stream-based gesture models via the proposed fusion algorithm that is sum-
marized in Fig. 16.1 and described in detail in Sect. 16.3.2. For the sake of clarity, the
single stream modeling framework is first presented in Sect. 16.3.1. Performance of
the overall algorithm is found to depend on how accurately the single stream models
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Fig. 16.1 Overview of the proposed multimodal fusion scheme for gesture recognition based on
multiple hypotheses rescoring. Single-stream models are first used to generate possible hypotheses
for the observed gesture sequence. The hypotheses are then rescored by all streams and the best
one is selected. Finally, the observed sequence is segmented at the temporal boundaries suggested
by the selected hypothesis and parallel fusion is applied to classify the resulting segments. Details
are given in Sect. 16.3.2

represent each gesture. This representation accuracy can be significantly improved by
the application of the multimodal activity detection scheme described in Sect. 16.3.3.

16.3.1 Speech, Skeleton and Handshape Modeling

The underlying single-stream modeling scheme is based on Hidden Markov Models
(HMMs) and builds on the keyword-filler paradigm that was originally introduced for
speech (Wilpon et al. 1990;Rose andPaul 1990) in applications like spokendocument
indexing and retrieval (Foote 1999) or speech surveillance (Rose 1992). The problem
of recognizing a limited number of gestures in an observed sequence comprising
other heterogeneous events as well, is seen as a keyword detection problem. The
gestures to be recognized are the keywords and all the rest is ignored. Then, for every
information stream, each gesture gi ∈ G, or, in practice, its projection on that stream,
is modeled by an HMM and there are two separate filler HMMs to represent either
silence/inactivity (sil) or all other possible events (bm) appearing in that stream.
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All these models are basically left-to-right HMMs with Gaussian mixture models
(GMMs) representing the state-dependent observationprobability distributions. They
are initialized by an iterative procedure which sets the model parameters to the
mean and covariance of the features in state-corresponding segments of the training
instances and refines the segment boundaries via the Viterbi algorithm (Young et al.
2002). Training is performed using the Baum-Welch algorithm (Rabiner and Juang
1993), and mixture components are incrementally refined.

While this is the general training procedure followed, two alternative approaches
are investigated, regarding the exact definition and the supervised training process
of all involved models. These are described in the following. We experiment with
both approaches and we show that increased modeling accuracy at the single-stream
level leads to better results overall.

Training Without Activity Detection

Single-stream models can be initialized and trained based on coarse, multimodal
temporal annotations of the gestures. These annotations are common for all streams
and given that there is no absolute synchronization across modalities they may also
include inactivity or other irrelevant events in the beginning or end of the target ges-
tural expression. In this way the gesturemodels already include, by default, inactivity
segments. As a consequence we do not train any separate inactivity (sil) model. At
the same time, the background model (bm) is trained on all training instances of all
the gestures, capturing in this way only generic gesture properties that are expected
to characterize a non-target gesture. The advantage of this approach is that it may
inherently capture cross-modal synchronicity relationships. For example, the waving
hand motion may start before speech in the waving gesture and so there is probably
some silence (or other events) to be expected before the utterance of a multimodal
gesture (e.g. “Bye bye”) which is modeled implicitly.

Training with Activity Detection

On the other hand, training of single-stream models can be performed completely
independently using stream-specific temporal boundaries of the target expressions.
In this direction, we applied an activity detection scheme, described in detail in
Sect. 16.3.3. Based on that, it is possible to obtain tighter stream-specific boundaries
for each gesture. Gesture models are now trained using these tighter boundaries,
the sil model is trained on segments of inactivity (different for each modality) and
the bm model is trained on segments of activity but outside the target areas. In this
case, single-stream gesture models can be more accurate but any possible evidence
regarding synchronicity across modalities is lost.
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Algorithm 1Multimodal Scoring and Resorting of Hypotheses
% N-best list rescoring
for all hypotheses do

% Create a constrained grammar
keep the sequence of gestures fixed
allow introduction/deletion of sil and bm occurences between gestures
for all modalities do

by applying the constrained grammar and Viterbi decoding:
1) find the best state sequence given the observations
2) save corresponding score and temporal boundaries

% Late fusion to rescore hypotheses
final hypothesis score is a weighted sum of modality-based scores

the best hypothesis of the 1st-pass is the one with the maximum score

16.3.2 Multimodal Fusion of Speech, Skeleton
and Handshape

Using the single-stream gesture models (see Sect. 16.3.1) and a gesture-loop gram-
mar as shown in Fig. 16.2a we initially generate a list of N-best possible hypotheses
for the unknown gesture sequence for each stream. Specifically, the Viterbi algo-
rithm (Rabiner and Juang 1993) is used to directly estimate the best stream-based
possible hypothesis ĥm for the unknown gesture sequence as follows:

ĥm = argmaxhm∈G log P(Om |hm,λm), m = 1, . . . , |S|

where Om is the observation1 sequence for modality m, λm is the corresponding set
of models and G is the set of alternative hypotheses allowed by the gesture loop
grammar. Instead of keeping just the best scoring sequence we apply essentially a
variation of the Viterbi algorithm, namely the lattice N-best algorithm (Shwartz and
Austin 1991), that apart from storing just the single best gesture at each node it also
records additional best-scoring gestures together with their scores. Based on these
records, a list of N-best hypotheses for the entire recording and for each modality
can finally be estimated.

TheN-best lists are generated independently for each stream and the final superset
of themultimodally generated hypothesesmay containmultiple instances of the same
gesture sequence. By removing possible duplicates we end up with L hypotheses
forming the set H = {h1, . . . ,hL}; hi is a gesture sequence (possibly including sil
and bm occurences as well). Our goal is to sort this set and identify the most likely
hypothesis this time exploiting all modalities together.

1For the case of video data an observation corresponds to a single image frame; for the case of
audio modality it corresponds to a 25 msec window.
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Fig. 16.2 Finite-state-
automaton (FSA)
representations of finite state
grammars: a an example
gesture-loop grammar with 3
gestures plus inactivity and
background labels. The
“eps” transition represents an
ε transition of the FSA, b an
example hypothesis, c a
hypothesis-dependent
grammar allowing varying
sil and bm occurences
between gestures
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(c) hypothesis-dependent grammar

Multimodal Scoring and Resorting of Hypotheses

Algorithm 2 Segmental Parallel Fusion
% Parallel scoring
for all modalities do segment observations based on given temporal boundaries

for all resulting segments do
estimate a score for each gesture given the segment observations
temporally align modality segments
for all aligned segments do

estimate weighted sum of modality-based scores for all gestures
select the best-scoring gesture (sil and bm included)

In this direction, and as summarized in Algorithm 1, we estimate a combined score
for each possible gesture sequence as a weighted sum of modality-based scores:

vi =
∑

m∈S

wmv
s
m,i , i = 1 . . . L , (16.1)

where the weights wm are determined experimentally in a left-out validation set of
multimodal recordings. The validation set is distinct from the final evaluation (test)
set; more details on the selection of weights are provided in Sect. 16.5. The modality-
based scores vs

m,i are standardized versions2 of vm,i which are estimated by means
of Viterbi decoding as follows:

2That is, transformed to have zero mean and a standard deviation of one.
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vm,i = max
h∈Ghi

log P(Om |h,λm), i = 1, . . . , L , m = 1, . . . , |S| (16.2)

whereOm is the observation sequence formodalitym andλm is the corresponding set
of models. This actually solves a constrained recognition problem in which accept-
able gesture sequences need to follow a specific hypothesis-dependent finite state
grammar Ghi . It is required that the search space of possible state sequences only
includes sequences corresponding to the hypothesis hi plus possible variations by
keeping the appearances of target gestures unaltered and only allow sil and bm labels
to be inserted, deleted and substitutedwith eachother.An example of a hypothesis and
the corresponding grammar is shown in Fig. 16.2b, c. In this way, the scoring scheme
accounts for inactivity or non-targetted activity that is not necessarily multimodal,
e.g., the gesturer is standing still but speaking or is walking silently. This is shown to
lead to additional improvements when compared to a simple forced-alignment based
approach.

It should be mentioned that hypothesis scoring via (16.2) can be skipped for the
modalities based on which the particular hypothesis was originally generated. These
scores are already available from the initial N-best list estimation described earlier.

The best hypothesis at this stage is the one with the maximum combined score
as estimated by (16.1). Together with the corresponding temporal boundaries of the
included gesture occurences, which can be different for the involved modalities, this
hypothesized gesture sequence is passed on to the segmental parallel scoring stage.
At this last stage, only local refinements are allowed by exploiting possible benefits
of a segmental classification process.

Segmental Parallel Fusion

The segmental parallel fusion algorithm is summarized in Algorithm 2. Herein we
exploit the modality-specific time boundaries for the most likely gesture sequence
determined in the previous step, to reduce the recognition problem into a segmental
classification one. First, we segment the audio, skeleton and handshape observation
streams employing these boundaries. Given that in-between gestures, i.e., for sil or
bm parts, there may not be one-to-one correspondence between segments of different
observation streams these segments are first alignedwith each other acrossmodalities
by performing an optimal symbolic stringmatch using dynamic programming. Then,
for every aligned segment t and each information stream m we compute the log
probability:

L Lt
m, j = max

q∈Q
log P(Ot

m,q|λm, j ), j = 1, . . . , |G| + 2,

where λm, j are the parameters of the model for the gesture g j ∈ G ∪ {sil, bm} and
the stream m ∈ S; q is a possible state sequence. These segmental scores are linearly
combined accross modalities to get a multimodal gestural score (left hand side) for
each segment:

L Lt
j =

∑

m∈S

w′
m L Lt

m, j , (16.3)
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where w′
m , is the stream-weight for modality m set to optimize recognition per-

formance in a validation dataset.3 Finally, the gesture with the highest score is the
recognized one for each segment t . This final stage is expected to give additional
improvements and correct false alarms by seeking loosely overlapping multimodal
evidence in support of each hypothesized gesture.

16.3.3 Multimodal Activity Detection

To achieve activity detection for each one of visual and audio modalities, we follow
a common model-based framework. This is based on two complementary models of
“activity” and “non-activity”. In practice, thesemodels, have different interpretations
for the different modalities. This is first due to the nature of each modality, and
second due to challenging data acquisition conditions. For the case of speech, the
non-activity model may correspond to noisy conditions, e.g., keyboard typing or fan
noise. For the case of the visual modality, the non-activity model refers to the rest
cases in-between the articulation of gestures. However, these rests are not strictly
defined, since the subject may not always perform a full rest and/or the hands may
not stop moving. All cases of activity, in both the audio and the skeleton streams,
such as out-of-vocabulary multimodal gestures and other spontaneous gestures are
thought to be represented by the activity model. Each modality’s activity detector is
initialized by a modality-specific front-end, as described in the following.

For the case of speech, activity and non-activity models are initialized on activity
and non-activity segments correspondingly. These are determined by taking advan-
tage for initialization of a Voice Activity Detection (VAD) method recently proposed
byTan et al. (2010). Thismethod is based on likelihood ratio tests (LRTs) and by treat-
ing the LRT’s for the voice/unvoiced frames differently it gives improved results than
conventional LRT-based and standard VADs. The activity and non-activity HMM
models are further trained using an iterative procedure employing the Baum-Welch
algorithm, better known as embedded re-estimation (Young et al. 2002). The final
boundaries of the speech activity and non-activity segments are determined by appli-
cation of the Viterbi algorithm.

For the visual modality, the goal is to detect activity concerning the dynamic
gesture movements versus the rest cases. For this purpose, we first initialize our
non-activity models on rest position segments which are determined on a recording
basis. For these segments skeletonmovement is characterized by low velocity and the
skeleton is close to the rest position xr. To identify non-active segments, we need to
estimate (a) the skeleton rest position (b) the hands velocity, and (c) the distance of the
skeleton to that position. Hands’ velocity is computed as V (x) = ‖ẋ‖ where x(t) is
the 3Dhands’ centroid coordinate vector and t is time.The rest position is estimated as

3The w′
m are different from the weights in (16.1). Their selection is similarly based on a separate

validation set that is distinct from the final evaluation set; more details on the selection of weights
are provided in Sect. 16.5.



480 V. Pitsikalis et al.

themedian skeleton position of all the segments for which hands’ velocity V is below
a certain threshold Vtr = 0.2 · V̄ , where V̄ is the average velocity of all segments.
The distance of the skeleton to the rest position is determined as: Dr (x) = ‖x − xr‖.
Initial non-activity segments tna are the ones for which the following two criteria
hold, namely tna = {t : Dr (x) < Dtr and V (x) < Vtr }. Taking as input these tna

segments we train a non-activity HMM model while an activity model is trained on
all remaining segments using the skeleton feature vector as described in Sect. 16.5.1.
Further, similar to the case of speech we re-train the HMMmodels using embedded
re-estimation. The final boundaries of the visual activity and non-activity segments
are determined by application of the Viterbi algorithm.

In Fig. 16.3, we illustrate an example of the activity detection for both audio and
visualmodalities for one utterance. In the first row,we depict the velocity of the hands
(V ), their distance with respect to the rest position (Dr ) and the initial estimation of
gesture non-activity (tna) segments. We observe that in tna segments both V and Dr

Fig. 16.3 Activity detection example for both audio and visual modalities for one utterance. First
row the velocity of the hands (V ), their distance with respect to the rest position (Dr ) and the
resulting initial estimation of gesture non-activity segments (tna). Second row the estimated gesture
activity depicted on the actual video images. Third row: The speech signal accompanied with the
initial VAD, the VAD+HMM and the gesture-level temporal boundaries included in the gesture
dataset (ground truth)
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are lower than the predefined thresholds (Vtr = 0.6, Dtr = 0.006)4 and correspond
to non-activity. In the second row, we illustrate the actual video frames images.
These are marked with the tracking of both hands and accompanied with the final
model-based gesture activity detection. In the bottom, we show the speech signal,
with the initial VAD boundaries, the refined HMM-based ones (VAD+HMM) and
the gesture-level boundaries included in the dataset (ground truth). As observed the
refined detection (VAD+HMM) is tighter and more precise compared to the initial
VAD and the dataset annotations.

To sumup, after applying the activity detectors for both audio andvisualmodalities
we merge the corresponding outputs with the gesture-level dataset annotations in
order to obtain refined stream-specific boundaries that align to the actual activities.
In this way, we compensate for the fact that the dataset annotations may contain
non-activity at the start/end of each gesture.

16.4 Multimodal Gestures’ Dataset

For our experiments we employ the ChaLearn multimodal gesture challenge dataset,
introduced byEscalera et al. (2013b).Other similar datasets are described byRuffieux
et al. (2013, 2014). This dataset focuses onmultiple instance, user independent learn-
ing of gestures frommulti-modal data. It provides via Kinect RGB and depth images
of face andbody, usermasks, skeleton information, joint orientation aswell as concur-
rently recorded audio including the speech utterance accompanying/describing the
gesture (see Fig. 16.4). The vocabulary contains 20 Italian cultural-anthropological
gestures. The dataset contains three separate sets, namely for development, valida-
tion and final evaluation, including 39 users and 13,858 gesture-word instances in
total. All instances have been manually transcribed and loosely end-pointed. The
corresponding temporal boundaries are also provided; these temporal boundaries are
employed during the training phase of our system.

There are several issues that render multimodal gesture recognition in this dataset
quite challenging as described by Escalera et al. (2013b), such as the recording
of continuous sequences, the presence of distracter gestures, the relatively large
number of categories, the length of the gesture sequences, and the variety of users.
Further, there is no single way to perform the included cultural gestures, e.g., “vieni
qui” is performed with repeated movements of the hand towards the user, with a
variable number of repetitions (see Fig. 16.5). Similarly, single-handed gestures may
be performed with either the left or right hand. Finally, variations in background,
lighting and resolution, occluded body parts and spoken dialects have also been
introduced.

4These parameters are set after experimentation in a single video of the validation set, that was
annotated in terms of activity.
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(a) RGB (b) Depth (c) Mask (d) Skeleton

Fig. 16.4 Sample cues of the multimodal gesture challenge 2013 dataset

Fig. 16.5 a, bArm position variation (low, high) for gesture ‘vieni qui’; c, d Left and right handed
instances of ‘vattene’

16.5 Experiments

We first provide information on the multimodal statistical modeling that includes
feature extraction and training. Then, we discuss the involved fusion parameters, the
evaluation procedure, and finally, present results and comparisons.

16.5.1 Parameters, Evaluation, Structure

Herein, we describe first the employed feature representations, and training para-
meters for each modality, such as number of states and mixture components: as
discussed in Sect. 16.3.1 we statistically train separate gesture HMMs per each infor-
mation stream: skeleton, handshape and audio. Next, we describe the stream weight
selection procedure, note the best stream weights, and present indicative results of
the procedure. After presenting the evaluationmetrics, we finally describe the overall
rational of the experimental structure.
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Multimodal Features, HMM and Fusion Parameters

The features employed for the skeleton cue include: the hands’ and elbows’ 3D
position, the hands 3D velocity, the 3D direction of the hands’ movement, and the 3D
distance of hands’ centroids. For the handshape’s representationwe employ theHOG
feature descriptors. These are extracted on both hands’ segmented images for both
RGB and depth cues. We segment the hands by performing a threshold-based depth
segmentation employing the hand’s tracking information. For the audio modality we
intend to efficiently capture the spectral properties of speech signals by estimating the
Mel Frequency Cepstral Coefficients (MFCCs). Our frontend generates 39 acoustic
features every 10 msec. Each feature vector comprises 13 MFCCs along with their
first and second derivatives. All the above feature descriptors are well known in the
related literature. The specific selections should not affect the conclusions as related
to the main fusion contributions, since these build on the level of the likelihoods.
Such an example would be the employment of other descriptors as for instance in the
case of visual (e.g., Li andAllinson 2008) or speech related features (e.g., Hermansky
1990).

For all modalities, we train separate gesture, sil and bm models as described in
Sect. 16.3.1. These models are trained either using the dataset annotations or based
on the input provided by the activity detectors. The number of states, gaussian com-
ponents per state, stream weights and the word insertion penalty in all modalities are
determined experimentally based on the recognition performance on the validation
set.5 For skeleton, we train left-right HMMs with 12 states and 2 Gaussians per state.
For handshape, the models correspondingly have 8 states and 3 Gaussians per state
while speech gesture models have 22 states and 10 Gaussians per state.

The training time is on average 1min per skeleton and handshape model and
90min per audio model. The decoding time is on average 4xRT (RT refers to real-
time).6 A significant part of the decoding time is due to the generation of the N-best
lists of hypotheses. In our experiments N is chosen to be equal to 200. We further
observed that the audio-based hypotheses were always ranked higher than those from
the other single-stream models. This motivated us to include only these hypotheses
in the set we considered for rescoring.

Stream Weight Configuration

Herein, we describe the experimental procedure for the selection of the stream
weights wm, w

′
m,m ∈ S of (16.1) and (16.3), for the components of multimodal

hypothesis rescoring (MHS) and segmental parallel fusion (SPF). The final weight
value selection is based on the optimization of recognition performance in the vali-
dation dataset which is completely distinct from the final evaluation (test) dataset.

Specifically, the wm’s are first selected from a set of alternative combinations to
optimize gesture accuracy at the output of the MHS component. The SPF weights

5Parameter ranges in the experiments for each modality are as follows. Audio: States 10–28, Gaus-
sians: 2–32; Skeleton/Handshape: States 7–15, Gaussians: 2–10.
6For the measurements we employed an AMD Opteron(tm) Processor 6386 at 2.80 GHz with 32
GB RAM.
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Fig. 16.6 Gesture recognition accuracy of the Multiple hypothesis rescoring component for var-
ious weight-pair combinations. From left to right, the handshape-audio, skeleton-audio, skeleton-
handshape weight pairs are varied. The remaining weight is set to its optimal value, namely 63.6
for skeleton, 9.1 for handshape and 27.3 for audio

w′
m’s are subsequently set to optimize the performance of the overall framework.

The best weight combination for the multimodal hypothesis rescoring component
is found to be w∗

SK ,H S,AU = [63.6, 9.1, 27.3], where SK, HS and AU correspond to
skeleton, handshape and audio respectively.7 This leads to the best possible accuracy
ofMHS in the validation set, namely 95.84%. Correspondingly, the best combination
of weights for the segmental fusion component is [0.6, 0.6, 98.8]. Overall, the best
achieved gesture recognition accuracy is 96.76% in the validation set.

In Figs. 16.6a–c we show the recognition accuracy of the MHS component for
the various combinations of the wm’s. For visualization purposes we show accuracy
when the weights vary in pairs and the remaining weight is set to its optimal value.
For example, Fig. 16.6a shows recognition accuracy for various combinations of
handshape and audio weights when the skeleton weight is equal to 63.6. Overall, we
should comment that the skeleton’s contribution appears to be the most significant in
the rescoring phase. This is of course a first interpretation, since the list of original
hypotheses is already audio-based only, and the audio contribution cannot be directly
inferred. As a consequence these results should be seen under this viewpoint. In any
case, given that audio-based recognition leads to 94.1% recognition accuracy (in the
validation set) it appears that both skeleton and handshape contribute in properly
reranking the hypotheses and improve performance (which is again confirmed by
the results in the test set presented in the following sections).

Evaluation

The presented evaluation metrics include the Levensthein distance (LD)8 which is
employed in the CHALEARN publications (Escalera et al. 2013b) and the gesture
recognition accuracy. The Levenshtein distance L D(R, T ), also known as “edit dis-
tance”, is the minimum number of edit operations that one has to perform to go
from symbol sequence R to T , or vice versa; edit operations include substitutions

7The weights take values in [0, 1] while their sum across the modalities adds to one; these values
are then scaled by 100 for the sake of numerical presentation. For thew stream weights we sampled
the [0, 1] with 12 samples for each modality, resulting to 1728 combinations. For the w′ case, we
sampled the [0, 1] space by employing 5, 5 and 21 samples for the gesture, handshape and speech
modalities respectively, resulting on 525 combinations.
8Note that the Levensthein distance takes values in [0, 1] and is equivalent to the word error rate.
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Table 16.1 Single modalities recognition accuracy %, including Audio (Aud.), Skeleton (Skel.),
and Handshape (HS). AD refers to activity detection

AD Single Modalities
Aud. Skel. HS

✗ 78.4 47.6 13.3

� 87.2 49.1 20.2

(S), insertions (I), or deletions (D). The overall score is the sum of the Levenshtein
distances for all instances compared to the corresponding ground truth instances,
divided by the total number of gestures. At the same time we report the standard
word recognition accuracy Acc = 1 − L D = N−S−D−I

N , where N is the total num-
ber of instances of words.

Finally, we emphasize that all reported results have been generated by strictly
following the original CHALEARN challenge protocol which means that they are
directly comparable with the results reported by the challenge organizers and other
participating teams (Escalera et al. 2013b; Wu et al. 2013; Bayer and Thierry 2013).

Structure of Experiments

For the evaluation of the proposed approach we examine the following experimental
aspects:

1. First, we present results on the performance of the single modality results; for
these the only parameter that we switch on/off is the activity detection, which
can be applied on each separate modality; see Sect. 16.5.2 and Table16.1.

2. Second, we examine the performance in the multimodal cases. This main axis of
experiments has as its main reference Table16.2 and concerns several aspects, as
follows:

(a) Focus on the basic components of the proposed approach.
(b) Focus on two streammodality combinations; this serves for both the analysis

of our approach, but also provides a more focused comparison with other
methods that employ the specific pairs of modalities.

(c) Finally, we provide several fusion based variation experiments, as compet-
itive approaches.

3. Third, we show an indicative example from the actual data, together with its
decoding results after applying the proposed approach, compared to the applica-
tion of a couple of subcomponents.

4. Fourth, we specifically focus on comparisons within the gesture challenge com-
petition. From the list of 17 teams/methods that submitted their results (54 teams
participated in total) we review the top-ranked ones, and list their results for
comparison. Moreover, we describe the components that each of the top-ranked
participants employ, providing also focused comparisons to both our complete
approach, and specific cases that match the employed modalities of the other
methods. Some cases of our competitive variations can be seen as resembling
cases of the other teams’ approaches.
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16.5.2 Recognition Results: Single Modalities

In Table16.1 we show the recognition results for each independent modality with and
without the employment of activity detection (AD). Note that AD is employed for
model training, as described in Sects. 16.3.1, 16.3.3, for each modality. In both cases
the audio appears to be the dominant modality in terms of recognition performance.
For all modalities, the model-based integration of the activity detectors during train-
ing appears to be crucial: they lead to refined temporal boundaries that better align
to the actual single-stream activity. In this way we compensate for the fact that the
dataset annotations may contain non-activity at the start/end of a gesture. By tighten-
ing these boundaries we achieve to model in more detail gesture articulation leading
to more robustly trained HMMs. This is also projected on the recognition experi-
ments: In all modalities the recognition performance increases, by 8.8%, 1.5% and
6.9% in absolute for the audio, the skeleton and the handshape streams respectively.

16.5.3 Recognition Results: Multimodal Fusion

For the evaluation of the proposed fusion scheme we focus on several of its basic
components. For these we refer to the experiments with codes D1-3,9 and E1-3 as
shown in Table16.2. These experiments correspond to the employment of all three
modalities, while altering a single component each time, wherever this makes sense.

Main Components and Comparisons

First comes theMHS component (seeD1-3), which rescores themultimodal hypothe-
ses list employing all three information streams and linearly combining their scores.
Comparing with Table16.1 the MHS component results in improved performance
compared to the monomodal cases, by leading to 38% relative Levenshtein distance
reduction (LDR)10 on average. This improvement is statistically significant, when
employing the McNemar’s test (Gillick and Cox 1989), with p < 0.001.11

Further, the employment of the activity detectors for eachmodality during training
also affects the recognition performance after employing the MHS component, lead-
ing to a relative LDR of 38% which is statistically significant (p < 0.001); compare
D1-D2, E1-E2.

For theN-bestmultimodal hypothesis rescoringwe can either enforce eachmodal-
ity to rescore the exact hypothesis (forced alignment), or allow certain degrees of
freedom by employing a specific grammar (GRAM) which allows insertions or
deletions of either bm or sil models: By use of the aforementioned grammar during

9D1-3 notation refers to D1, D2 and D3 cases.
10All relative percentages, unless stated otherwise, refer to relative LD reduction (LDR). LDR is
equivalent to the known relative word error rate reduction.
11Statistical significance tests are computed on the raw recognition values and not on the relative
improvement scores.
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Fig. 16.7 A gesture sequence decoding example. The audio signal is plotted in the top row the
and visual modalities (second row) are illustrated via a sequence of images for a gesture sequence.
Ground truth transcriptions are denoted by “REF”. Decoding results are given for the single-audio
modality (AUDIO) and the proposed fusion scheme employing or not the activity detection (AD) or
the grammar (GRAM). In nAD-nGRAMwedo not employ neitherADnorGRAMduring rescoring,
in AD-nGRAM we only employ AD but not GRAM and in AD-GRAM both AD and GRAM are
employed. Errors are highlighted as: deletions, in blue color, and insertions in green. A background
model (bm) models the out-of-vocabulary (OOV) gestures

rescoring (see D2–D3, E2–E3) we get an additional 14% of relative Levenshtein
distance reduction, which is statistically significant (p < 0.001). This is due to the
fact that the specific grammar accounts for activity or non-activity that does not
necessarily occur simultaneously across all different modalities.

In addition, by employing the SPF component (E1-3) we further refine the gesture
sequence hypothesis by fusing the single-stream models at the segmental level. By
comparing corresponding pairs: D1-E1,D2-E2 andD3-E3,we observe that the appli-
cation of the SPF component increases the recognition performance only slightly;
this increase was not found to be statistically significant. The best recognition per-
formance, that is, 93.33%, is obtained after employing the SPF component on top of
MHS, together with AD and GRAM (see E3).

On the side, we additionally provide results that account for pairs of modalities;
see s2-B1 (AU+SK) and s2-B2 (AU+HS), and for the case of the MHS component.
These two stream pair results, are comparable with the corresponding 3-stream case
of D1 (plus D2-3 for additional components). The rest of the results and pairs are
discussed in Sect. 16.5.4, where comparisons with other approaches are presented.

Example from the Results

A decoding example is shown in Fig. 16.7. Herein we illustrate both audio and visual
modalities for a word sequence accompanied with the ground truth gesture-level
transcriptions (row: “REF”). In addition we show the decoding output employing
the single-audio modality (AUDIO) and the proposed fusion scheme employing or
not two of its basic components: activity detection (AD) and the above mentioned
grammar (GRAM). In the row denoted by nAD-nGRAM we do not employ either
AD or GRAM during rescoring, in the row AD-nGRAM we only employ AD but
not G and in AD-GRAM both AD and grammar are used. As we observe there are
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several cases where the subject articulates an out-of-vocabulary (OOV) gesture. This
indicates the difficulty of the task as these cases should be ignored. By focusing on
the recognized word sequence that employs the single-audio modality we notice two
insertions (‘PREDERE’ and ‘FAME’). When employing either the nAD-nGRAM
or AD-nGRAM the above word insertions are corrected as the visual modality is
integrated and helps identifying that these segments correspond to OOV gestures.
Finally, both nAD-nGRAM and AD-nGRAM lead to errors which our final pro-
posed approach manages to deal with: nAD-nGRAM causes insertion of “OK”,
AD-nGRAM of a word deletion “BM”. On the contrary, the proposed approach
recognizes the whole sentence correctly.

16.5.4 Comparisons

Next, we first briefly describe the main components of the top-ranked approaches in
CHALEARN. This description aims at allowing for focused and fair comparisons
between (1) the first-ranked approaches, and (2) variations of our approach.

CHALEARN First-Ranked Approaches

The first-ranked team (IV AMM) (Wu et al. 2013; Escalera et al. 2013b) uses a
feature vector based on audio and skeletal information. A simple time-domain end-
point detection algorithm based on joint coordinates is applied to segment contin-
uous data sequences into candidate gesture intervals. A HMM is trained with 39-
dimensionMFCC features and generates confidence scores for each gesture category.
ADynamic TimeWarping based skeletal feature classifier is applied to provide com-
plementary information. The confidence scores generated by the two classifiers are
firstly normalized and then combined to produce a weighted sum for late fusion. A
single threshold approach is employed to classify meaningful gesture intervals from
meaningless intervals caused by false detection of speech intervals.

The second-ranked team (WWEIGHT) (Escalera et al. 2013b) combines audio and
skeletal information, using both joint spatial distribution and joint orientation. They
first search for regions of time with high audio-energy to define time windows that
potentially contained a gesture. Feature vectors are defined using a log-spaced audio
spectrogram and the joint positions and orientations above the hips. At each time
sample the method subtracts the average 3D position of the left and right shoulders
from each 3D joint position. Data is down-sampled onto a 5Hz grid. There were
1593 features total (9 time samples × 177 features per time sample). Since some of
the detected windows contain distracter gestures, an extra 21st label is introduced,
defining the “not in the dictionary” gesture category. For the training of the models
they employed an ensemble of randomized decision trees, referred to as random
forests (RF), (Escalera et al. 2013b), and a k-nearest neighbor (KNN) model. The
posteriors from these models are averaged with equal weight. Finally, a heuristic is
used (12 gestures maximum, no repeats) to convert posteriors to a prediction for the
sequence of gestures.
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Table 16.3 Our approach in comparison with the first 5 places of the Challenge. We include
recognition accuracy (Acc.) %, Levenshtein distance (Lev. Dist., see also text) and relative Leven-
shtein distance reduction (LDR) (equivalent to the known relative error reduction) compared to the
proposed approach (Our)

Rank Approach Lev. Dist. Acc.% LDR

– Our 0.0667 93.33 –

1 iva.mm (Wu
et al., 2013)

0.12756 87.244 +47.6

2 wweight 0.15387 84.613 +56.6

3 E.T. (Bayer and
Thierry, 2013)

0.17105 82.895 +60.9

4 MmM 0.17215 82.785 +61.2

5 pptk 0.17325 82.675 +61.4

The third-ranked team (ET) (Bayer and Thierry 2013; Escalera et al. 2013b)
combine the output decisions of two approaches. The features considered are based
on the skeleton information and the audio signal. First, they look for gesture intervals
(unsupervised) using the audio and extract features from these intervals (MFCC).
Using these features, they train a randomforest (RF) and agradient boosting classifier.
The second approach uses simple statistics (median, var, min, max) on the first 40
frames for each gesture to build the training samples. The prediction phase uses a
sliding window. The authors late fuse the two models by creating a weighted average
of the outputs.

Comparisons with Other Approaches and Variations

Herein we compare the recognition results of our proposed multimodal recognition
and multiple hypotheses fusion framework with other approaches (Escalera et al.
2013b) which have been evaluated in the exact recognition task.12

First, let us briefly present an overview of the results (Table16.3): Among the
numerous groups and approaches that participated we list the first four ones as well
as the one we submitted during the challenge, that is “pptk”. As shown in Table16.3
the proposed approach leads to superior performance with relative LD reduction of
at least 47.6%. We note that our updated approach compared to the one submitted
during the challenge leads to an improvement of 61.4%,measured in terms of relative
LD reduction (LDR). Compared to the approach we submitted during the challenge,
the currently proposed scheme: (1) employs activity detection to train single-stream
models, (2) applies the SPF on top of the MHS step, (3) introduces the grammar-
constrained decoding during hypothesis rescoring and further (4) incorporates both
validation and training data for the final estimation of the model parameters.

12In all results presented we follow the same blind testing rules that hold in the challenge, in which
we have participated (pptk team). In Table16.3 we include for common reference the Levenshtein
distance (LD) which was also used in the challenge results (Escalera et al. 2013b).
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Now let us zoom into the details of the comparisons by viewing once again
Table16.2. In the first three rows, with side label “Others” (O1-3), we summarize the
main components of each of the top-ranked approaches. These employ only the two
modalities (SK+AU). The experiments with pairs of modalities s2-A1, s2-B1 can be
directly comparedwithO1-3, since they all take advantage of the SK+AUmodalities.
Their differential concerns (1) the segmentation component, which is explicit for the
O1-3; note that the segmentation of s2-A1 is implicit, as a by-product of the HMM
recognition. (2) The modeling and recognition/classification component. (3) The
fusion component. At the same time, s2-A1/s2-B1 refer to the employment of the
proposed components, that is, either SPForMHS.Specifically, s2-A1and s2-B1 leads
to at least 5 and 43.5% relative LD reduction respectively. Of course our complete
system (see rest of variations) leads to even higher improvements.

Other comparisons to our proposed approach and variations are provided after
comparing with the SPF-only case, by taking out the contribution of the rescoring
component. In the case of allmodalities, 3 streamcase, (seeC1) this is compared to the
corresponding matching experiment E2; this (E2) only adds the MHS resulting to an
improvement of 32.9% LDR. The GRAM component offers an improvement of 42%
LDR (C1 vs. E3). Reduced versions compared to C1, with two-stream combinations
can be found by comparing C1 with s2-A1 or s2-A2.

16.6 Conclusions

We have presented a complete framework for multimodal gesture recognition based
on multiple hypotheses fusion, with application in automatic recognition of multi-
modal gestures. In this we exploit multiple cues in the visual and audio modalities,
namelymovement, hands’ shape and speech.After employing state-of-the-art feature
respresentations, each modality is treated under a common statistical HMM frame-
work: this includes model-based multimodal activity detection, HMM training of
gesture-words, and information fusion. Fusion is performed by generating multiple
unimodal hypotheses, which after constrained rescoring and weighted combination
result in the multimodally best hypothesis. Then, segmental parallel fusion across all
modalities refines the final result. On the way, we employ gesture/speech background
(bm) and silence (sil)models, which are initialized during the activity detection stage.
This procedure allows us to train our HMMs more accurately by getting tighter tem-
poral segmentation boundaries.

The recognition task we dealt with contains parallel gestures and spoken words,
articulated freely, containing multiple sources of multimodal variability, and with on
purpose false alarms. The overall framework is evaluated in a demandingmultimodal
dataset (Escalera et al. 2013b) achieving 93.3% word accuracy. The results are com-
pared with several approaches that participated in the related challenge (Escalera
et al. 2013a), under the same blind testing conditions, leading to at least 47.6% rela-
tive Levenshtein distance reduction (equivalent to relative word error rate reduction)
compared to the first-ranked team (Wu et al. 2013).
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The power of the proposed fusion scheme stems from both its uniform across
modalities probabilistic nature and its late character together with themultiple passes
of monomodal decoding, fusion of the hypotheses, and then parallel fusion. Apart
from the experimental evidence, these features render it appealing for extensions and
exploitation in multiple directions: First, the method itself can be advanced by gener-
alizing the approach towards an iterative fusion scheme, that gives feedback back to
the training/refinement stage of the statistical models. Moreover in the current gen-
erative framework, we ignore statistical dependencies across cues/modalities. These
could further be examined. Second, it can be advanced by incorporating in the com-
putational modeling specific gesture theories, e.g., from linguistics, for the gesture
per se or in its multimodal version; taxonomies of gestures, e.g., that describe deictic,
motor, iconic and metaphoric cases. Such varieties of cases can be systematically
studied with respect to their role. This could be achieved via automatic processing of
multitudes of existing datasets, which elaboratemore complex speech-gesture issues,
leading to valuable analysis results. Then, apart from the linguistic role of gesture, its
relation to other aspects, such as, psychological, behavioral socio-cultural, or com-
municative, to name but a few, could further be exploited. To conclude, given the
potential of the proposed approach, the acute interdisciplinary interest in multimodal
gesture calls for further exploration and advancements.
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