
Chapter 13
Multi-layered Gesture Recognition
with Kinect

Feng Jiang, Shengping Zhang, Shen Wu, Yang Gao and Debin Zhao

Abstract This paper proposes a novel multi-layered gesture recognition method
with Kinect. We explore the essential linguistic characters of gestures: the com-
ponents concurrent character and the sequential organization character, in a multi-
layered framework, which extracts features from both the segmented semantic units
and the whole gesture sequence and then sequentially classifies the motion, location
and shape components. In the first layer, an improved principle motion is applied to
model the motion component. In the second layer, a particle-based descriptor and a
weighted dynamic time warping are proposed for the location component classifi-
cation. In the last layer, the spatial path warping is further proposed to classify the
shape component represented by unclosed shape context. The proposed method can
obtain relatively high performance for one-shot learning gesture recognition on the
ChaLearn Gesture Dataset comprising more than 50,000 gesture sequences recorded
with Kinect.
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13.1 Introduction

Gestures, an unsaid body language, playvery important roles in daily communication.
They are considered as the most natural means of communication between humans
and computers (Mitra and Acharya 2007). For the purpose of improving humans’
interactionwith computers, considerablework has been undertaken on gesture recog-
nition, which has wide applications including sign language recognition (Vogler
and Metaxas 1999; Cooper et al. 2012), socially assistive robotics (Baklouti et al.
2008), directional indication through pointing (Nickel and Stiefelhagen 2007) and
so on (Wachs et al. 2011).

Based on the devices used to capture gestures, gesture recognition can be roughly
categorized into two groups: wearable sensor-based methods and optical camera-
based methods. The representative device in the first group is the data glove (Fang
et al. 2004), which is capable of exactly capturing the motion parameters of the
user’s hands and therefore can achieve high recognition performance. However, these
devices affect the naturalness of the user interaction. In addition, they are also expen-
sive, which restricts their practical applications (Cooper et al. 2011). Different from
the wearable devices, the second group of devices are optical cameras, which record
a set of images overtime to capture gesture movements in a distance. The gesture
recognition methods based on these devices recognize gestures by analyzing visual
information extracted from the captured images. That is why they are also called
vision-based methods. Although optical cameras are easy to use and also inexpen-
sive, the quality of the captured images is sensitive to lighting conditions and cluttered
backgrounds, thus it is very difficult to detect and track the hands robustly, which
largely affects the gesture recognition performance.

Recently, the Kinect developed by Microsoft was widely used in both industry
and research communities (Shotton et al. 2011). It can capture both RGB and depth
images of gestures. With depth information, it is not difficult to detect and track the
user’s body robustly even in noisy and cluttered backgrounds. Due to the appealing
performance and also reasonable cost, it has been widely used in several vision
tasks such as face tracking (Cai et al. 2010), hand tracking (Oikonomidis et al.
2011), human action recognition (Wang et al. 2012) and gesture recognition (Doliotis
et al. 2011; Ren et al. 2013). For example, one of the earliest methods for gesture
recognition using Kinect is proposed in Doliotis et al. (2011), which first detects the
hands using scene depth information and then employs Dynamic Time Warping for
recognizing gestures. Ren et al. (2013) extracts the static finger shape features from
depth images andmeasures the dissimilarity between shape features for classification.
Although, Kinect facilitates us to detect and track the hands, exact segmentation of
finger shapes is still very challenging since the fingers are very small and form many
complex articulations.

Although postures and gestures are frequently considered as being identical, there
are significant differences (Corradini 2002). A posture is a static pose, such as mak-
ing a palm posture and holding it in a certain position, while a gesture is a dynamic
process consisting of a sequence of the changing postures over a short duration.
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Compared to postures, gestures contain much richer motion information, which is
important for distinguishing different gestures especially those ambiguous ones. The
main challenge of gesture recognition lies in the understanding of the unique char-
acters of gestures. Exploring and utilizing these characters in gesture recognition are
crucial for achieving desired performance. Two crucial linguistic models of gestures
are the phonological model drawn from the component concurrent character (Stokoe
1960) and the movement-hold model drawn from the sequential organization char-
acter (Liddell and Johnson 1989). The component concurrent character indicates
that complementary components, namely motion, location and shape components,
simultaneously characterize a unique gesture. Therefore, an ideal gesture recogni-
tion method should have the ability of capturing, representing and recognizing these
simultaneous components. On the other hand, the movement phases, i.e. the transi-
tion phases, are defined as periods during which some components, such as the shape
component, are in transition; while the holding phases are defined as periods during
which all components are static. The sequential organization character characterizes
a gesture as a sequential arrangement of movement phases and holding phases. Both
the movement phases and the holding phases are defined as semantic units. Instead
of taking the entire gesture sequence as input, the movement-hold model inspires
us to segment a gesture sequence into sequential semantic units and then extract
specific features from them. For example, for the frames in a holding phase, shape
information is more discriminative for classifying different gestures.

It should be noted that the component concurrent character and the sequential
organization character demonstrate the essences of gestures from spatial and tem-
poral aspects, respectively. The former indicates which kinds of features should be
extracted. The later implies that utilizing the cycle of movement and hold phases
in a gesture sequence can accurately represent and model the gesture. Considering
these two complementary characters together provides us a way to improve ges-
ture recognition. Therefore, we developed a multi-layered classification framework
for gesture recognition. The architecture of the proposed framework is shown in
Fig. 13.1, which contains three layers: the motion component classifier, the location
component classifier, and the shape component classifier. Each of the three layers
analyzes its corresponding component. The output of one layer limits the possible
classification in the next layer and these classifiers complement each other for the
final gesture classification. Such a multi-layered architecture assures achieving high
recognition performance while being computationally inexpensive.

The main contributions of this paper are summarized as follows:

• The phonological model (Stokoe 1960) of gestures inspires us to propose a novel
multi-layered gesture recognition framework, which sequentially classifies the
motion, location and shape components and therefore achieves higher recognition
accuracy while having low computational complexity.

• Inspired by the linguistic sequential organization of gestures (Liddell and Johnson
1989), the matching process between two gesture sequences is divided into two
steps: their semantic units arematched first, and then the frames inside the semantic



390 F. Jiang et al.

Fig. 13.1 Multi-layered gesture recognition architecture

units are further registered. A novel particle-based descriptor and a weighted
dynamic time warping are proposed to classify the location component.

• The spatial path warping is proposed to classify the shape component represented
by unclosed shape context, which is improved from the original shape context but
the computation complexity is reduced from O(n3) to O(n2).

Our proposed method participated the one-shot learning CHALEARN gesture
challenge and was top ranked (Guyon et al. 2013). The ChaLearn Gesture Dataset
(CGD 2011) (Guyon et al. 2014) is designed for one-shot learning and comprises
more than 50,000 gesture sequences recorded with Kinect. The remainder of the
paper is organized as follows. Related work is reviewed in Sect. 13.2. The detailed
descriptions of the proposed method are presented in Sect. 13.3. Extensive experi-
mental results are reported in Sect. 13.4. Section 13.5 concludes the paper.

13.2 Related Work

Vision based gesture recognition methods encompasses two main categories: three
dimensional (3D) model based methods and appearance based methods. The former
computes a geometrical representation using the joint angles of a 3D articulated
structure recovered from a gesture sequence, which provides a rich description that
permits awide range of gestures. However, computing a 3Dmodel has high computa-
tional complexity (Oikonomidis et al. 2011). In contrast, appearance based methods
extract appearance features from a gesture sequence and then construct a classifier
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to recognize different gestures, which have been widely used in vision based gesture
recognition (Dardas 2012). The proposedmulti-layered gesture recognition falls into
the appearance based methods.

13.2.1 Feature Extraction and Classification

The well known features used for gesture recognition are color (Awad et al. 2006;
Maraqa and Abu-Zaiter 2008), shapes (Ramamoorthy et al. 2003; Ong and Bowden
2004) and motion (Cutler and Turk 1998; Mahbub et al. 2013). In early work, color
information is widely used to segment the hands of a user. To simplify the color based
segmentation, the user is required to wear single or differently colored gloves (Kadir
et al. 2004; Zhang et al. 2004). The skin color models are also used (Stergiopoulou
and Papamarkos 2009; Maung 2009) where a typical restriction is wearing of long
sleeved clothes. When it is difficult to exploit color information to segment the hands
froman image (Wanet al. 2012b),motion information extracted from twoconsecutive
frames is used for gesture recognition. Agrawal and Chaudhuri (2003) explores the
correspondences between patches in adjacent frames and uses 2D motion histogram
to model the motion information. Shao and Ji (2009) computes optical flow from
each frame and then uses different combinations of the magnitude and direction of
optical flow to compute a motion histogram. Zahedi et al. (2005) combines skin
color features and different first- and second-order derivative features to recognize
sign language.Wong et al. (2007) uses PCA onmotion gradient images of a sequence
to obtain features for a Bayesian classifier. To extract motion features, Cooper et al.
(2011) extends haar-like features from spatial domain to spatio-temporal domain and
proposes volumetric Haar-like features.

The features introduced above are usually extracted from RGB images captured
by a traditional optical camera. Due to the nature of optical sensing, the quality of the
captured images is sensitive to lighting conditions and cluttered backgrounds, thus
the extracted features fromRGB images are not robust. In contrast, depth information
from a calibrated camera pair (Rauschert et al. 2002) or direct depth sensors such
as LiDAR (Light Detection and Ranging) is more robust to noises and illumination
changes. More importantly, depth information is useful for discovering the distance
between the hands and body orthogonal to the image plane, which is an important cue
for distinguishing some ambiguous gestures. Because the direct depth sensors are
expensive, inexpensive depth cameras, e.g., Microsoft’s Kinect, have been recently
used in gesture recognition (Ershaed et al. 2011; Wu et al. 2012b). Although the
skeleton information offered by Kinect is more effective in the expression of human
actions than pure depth data, there are some cases that skeleton cannot be extracted
correctly, such as interaction between human body and other objects. Actually, in the
CHALERAN gesture challenge (Guyon et al. 2013), the skeleton information is not
allowed to use. To extract more robust features from Kinect depth images for gesture
recognition, Ren et al. (2013) proposes the part based finger shape features, which
do not depend on the accurate segmentation of the hands. Wan et al. (2013, 2014b)
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extend SIFT to spatio-temporal domain and propose 3DEMoSIFT and 3D SMoSIFT
to extract features from RGB and depth images, which are invariant to scale and
rotation, and havemore compact and richer visual representations.Wan et al. (2014a)
proposes a discriminative dictionary learningmethod on 3DEMoSIFT features based
on mutual information and then uses sparse reconstruction for classification. Based
on 3D Histogram of Flow (3DHOF) and Global Histogram of Oriented Gradient
(GHOG), Fanello et al. (2013) applies adaptive sparse coding to capture high-level
feature patterns. Wu et al. (2012a) utilizes both RGB and depth information from
Kinect and an extended-MHI representation is adopted as the motion descriptors.

The performance of a gesture recognition method is not only related to the used
features but also to the adopted classifiers. Many classifiers can be used for ges-
ture recognition, e.g., dynamic time warping (DTW) (Reyes et al. 2011; Lichtenauer
et al. 2008; Sabinas et al. 2013), linear SVMs (Fanello et al. 2013), neuro-fuzzy
inference system networks (Al-Jarrah and Halawani 2001), hyper rectangular com-
posite NNs (Su 2000), and 3D Hopfield NN (Huang and Huang 1998). Due to the
ability of modeling temporal signals, Hidden Markov Model (HMM) is possibly the
most well known classifier for gesture recognition. Bauer andKraiss (2002) proposes
a 2D motion model and performes gesture recognition with HMM. Vogler (2003)
presentes a parallel HMM algorithm to model gestures, which can recognize con-
tinuous gestures. Fang et al. (2004) proposes a self-organizing feature maps/hidden
Markov model (SOFM/HMM) for gesture recognition in which SOFM is used as an
implicit feature extractor for continuous HMM. Recently, Wan et al. (2012a) pro-
poses ScHMM to deal with the gesture recognition where sparse coding is adopted
to find succinct representations and Lagrange dual is applied to obtain a codebook.

13.2.2 One-Shot Learning Gesture Recognition and Gesture
Characters

Although a large number of work has been done, gesture recognition is still very
challenging and has been attracting increasing interests. One motivation is to over-
come the well-known overfitting problem when training samples are insufficient.
The other one is to further improve gesture recognition by developing novel features
and classifiers.

In the case of training samples being insufficient, most of classification methods
are very likely to overfit. Therefore, developing gesture recognition methods that
use only a small training dataset is necessary. An extreme example is the one-shot
learning that uses only one training sample per class for training. The proposed work
in this paper is also for one-shot learning. In the literature, several previous work has
been focused on one-shot learning. In Lui (2012a), gesture sequences are viewed as
third-order tensors and decomposed to three Stiefel Manifolds and a natural metric is
inherited from the factor manifolds. A geometric framework for least square regres-
sion is further presented and applied to gesture recognition. Mahbub et al. (2013)
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proposes a space-time descriptor and applies Motion History Imaging (MHI) tech-
niques to track the motion flow in consecutive frames. The Euclidean distance based
classifiers is used for gesture recognition. Seo and Milanfar (2011) presents a novel
action recognition method based on space-time locally adaptive regression kernels
and thematrix cosine similaritymeasure.Malgireddy et al. (2012) presents an end-to-
end temporal Bayesian framework for activity classification. A probabilistic dynamic
signature is created for each activity class and activity recognition becomes a prob-
lem of finding the most likely distribution to generate the test video. Escalante et al.
(2013) introduces principal motion components for one-shot learning gesture recog-
nition. 2D maps of motion energy are obtained per each pair of consecutive frames
in a video. Motion maps associated to a video are further processed to obtain a PCA
model, which is used for gesture recognition with a reconstruction-error approach.
More one-shot learning gesture recognition methods are summarized by Guyon et al.
(2013).

The intrinsic difference between gesture recognition and other recognition prob-
lems is that gesture communication is highly complex and owns its unique characters.
Therefore, it is crucial to develop specified features and classifiers for gesture recog-
nition by exploring the unique characters of gestures as explained in Sect. 13.1. There
are some efforts toward this direction and some work has modeled the component
concurrent or sequential organization and achieved significant progress. To capture
meaningful linguistic components of gestures, Vogler and Metaxas (1999) proposes
PaHMMs which models the movement and shape of user’s hands in independent
channels and then put them together at the recognition stage. Chen and Koskela
(2013) uses multiple Extreme Learning Machines (ELMs) (Huang et al. 2012) as
classifiers for simultaneous components. The outputs from the multiple ELMs are
then fused and aggregated to provide the final classification results. Chen andKoskela
(2013) proposes a novel representation of human gestures and actions based on com-
ponent concurrent character. They learn the parameters of a statistical distribution
that describes the location, shape, and motion flow. Inspired by the sequential orga-
nization character of gestures, Wang et al. (2002) uses the segmented subsequences
instead of the whole gesture sequence as the basic units that convey the specific
semantic expression for the gesture and encode the gesture based on these units. It
is successfully applied in large vocabulary sign gestures recognition.

To our best knowledge, there is no work in the literature modeling both the com-
ponent concurrent character and the sequential organization character in gesture
recognition, especially for one-shot learning gesture recognition. It should be noted
that these two characters demonstrate the essences of gestures from spatial and tem-
poral aspects, respectively. Therefore, the proposed method that exploits both these
characters in a multi-layered framework is desirable to improve gesture recognition.
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13.3 Multi-layered Gesture Recognition

The proposed multi-layered classification framework for one-shot learning gesture
recognition contains three layers as shown in Fig. 13.1. In the first layer, an improved
principle motion is applied to model the motion component. In the second layer,
a particle based descriptor is proposed to extract dynamic gesture information and
then a weighted dynamic time warping is proposed for the location component clas-
sification. In the last layer, we extract unclosed shape contour from the key frame of
a gesture sequence. Spatial path warping is further proposed to recognize the shape
component. Once the motion component classification at the first layer is accom-
plished, the original gesture candidates are divided into possible gesture candidates
and impossible gesture candidates. The possible gesture candidates are then fed to
the second layer which performs the location component classification. Compared
with the original gesture candidates, classifying the possible gesture candidates is
expected to reduce the computational complexity of the second layer distinctly. The
possible gesture candidates are further reduced by the second layer. In the reduced
possible gesture candidates, if the first two best matched candidates are difficult to
be discriminated, i.e. the absolute difference of their matching scores is lower than a
predefined threshold, then the reduced gesture candidates are forwarded to the third
layer; otherwise the best matched gesture is output as the final recognition result.

In the remaining of this section, the illuminating cues are first observed in
Sect. 13.3.1. Inter-gesture segmentation is then introduced in Sect. 13.3.2. The
motion, location and shape component classifiers in each layer are finally introduced
in Sects. 13.3.3, 13.3.4 and 13.3.5, respectively.

13.3.1 Gesture Meaning Expressions and Illuminating Cues

Although from the point of view of gesture linguistics, the basic components and
how gestures convey meaning are given (Stokoe 1960), there is no reference to the
importance and complementarity of the components in gesture communication. This
section wants to draw some illuminating cues from observations. For this purpose,
10 undergraduate volunteers are invited to take part in the observations.

Five batches of data are randomly selected from the development data of CGD
2011. The pre-defined identification strategies are shown in Table 13.1. In each test,
all the volunteers are asked to follow these identification strategies. For example,
in Test 2, they are required to only use the motion cue and draw simple lines to
record the motion direction of each gesture in the training set. Then the test gestures
are shown to the volunteers to be identified using these drawn lines. The results are
briefly summarized in Table 13.1.

From the observations above, the following illuminating cues can be drawn:

• During gesture recognition, gesture components in the order of importance are
motion, location and shape.
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Table 13.1 Observations on CGD 2011

Test Avg. Acc. (%) Identification strategy Description

1 75.0 None Memorizing all the training
gestures, and identifying test
gesture by recollection

2 90.3 Motion Drawing lines to record motion
direction of each training gesture

3 83.5 Shape Drawing sketches to describe the
hand shape of each training
gesture

4 87.6 Location Drawing sketches to describe the
location of each training gesture

5 95.3 Motion and shape Strategy 2 and 3

6 100.0 Motion and location and shape Strategy 2, 3 and 4

• Understanding a gesture requires the observation of all these gesture components.
None of these components can convey the complete gesture meanings indepen-
dently. These gesture components complement each other.

13.3.2 Inter-gesture Segmentation Based on Movement
Quantity

The inter-gesture segmentation is used to segment a multi-gesture sequence into sev-
eral gesture sequences.1 To perform the inter-gesture segmentation, we first measure
the quantity ofmovement for each frame in amulti-gesture sequence and then thresh-
old the quantity of movement to get candidate boundaries. Then, a sliding window
is adopted to refine the candidate boundaries to produce the final boundaries of the
segmented gesture sequences in a multi-gesture sequence.

13.3.2.1 Quantity of Movement

In amulti-gesture sequence, each frame has the relevant movement with respect to its
adjacent frame and the first frame. These movements and their statistical information

1In this paper, we use the term “gesture sequence” to mean an image sequence that contains only
one complete gesture and “multi-gesture sequence” to mean an image sequence which may contain
one or multiple gesture sequences.
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are useful for inter-gesture segmentation. For a multi-gesture depth sequence I , the
Quantity of Movement (QOM) for frame t is defined as a two-dimensional vector

QOM(I, t) = [QOMLocal(I, t),QOMGlobal(I, t)] , (13.1)

where QOMLocal(I, t) and QOMGlobal(I, t) measure the relative movement of frame
t respective to its adjacent frame and the first frame, respectively. They can be com-
puted as

QOMLocal(I, t) =
∑

m,n

σ(It(m, n), It−1(m, n)) , (13.2)

QOMGlobal(I, t) =
∑

m,n

σ(It(m, n), I1(m, n)) , (13.3)

where (m, n) is the pixel location and the indicator function σ(x, y) is defined as

σ(x, y) =
{
1 if |x − y| ≥ ThresholdQOM
0 otherwise

, (13.4)

where ThresholdQOM is a predefined threshold, which is set to 60 empirically in this
paper.

13.3.2.2 Inter-gesture Segmentation

We assume that there is a home pose between a gesture and another one in a multi-
gesture sequence. The inter-gesture segmentation is facilitated by the statistical char-
acteristics ofQOMGlobal of the beginning and ending phases of the gesture sequences
in the training data. One advantage of using QOMGlobal is that it does not need to
segment the user from the background.

Firstly the average frame number L of all gestures in the training set is obtained.
The mean and standard deviation of QOMGlobal of the first and last �L/8� frames of
each gesture sequence are computed. After that, a threshold Thresholdinter is obtained
as the sum of the mean and the doubled standard deviation. For a test multi-gesture
sequence T which has ts frames, the inter-gesture boundary candidate set is defined
as

Bca
inter = {i|QOMGlobal(T , i) ≤ Thresholdinter, i ∈ {1, . . . , ts}} . (13.5)

The boundary candidates are further refined through a sliding window of size
�L/2�, defined as {j + 1, j + 2, . . . , j + �L/2�} where j starts from 0 to ts − �L/2�.
In each sliding window, only the candidate with the minimal QOMGlobal is retained
and other candidates are eliminated from Bca

inter . After the sliding window stops,
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Fig. 13.2 An example of illustrating the inter-gesture segmentation results

the inter-gesture boundaries are obtained, which are exemplified as the blue dots in
Fig. 13.2. The segmented gesture sequences will be used for motion, location, and
shape component analysis and classification.

13.3.3 Motion Component Analysis and Classification

Owing to the relatively high importance of the motion component, it is analyzed
and classified in the first layer. The principal motion (Escalante and Guyon 2012) is
improved by using the overlapping block partitioning to reduce the errors of motion
pattern mismatchings. Furthermore, our improved principal motion uses both the
RGB and depth images. The gesture candidates outputted by the first layer is then
fed to the second layer.

13.3.3.1 Principal Motion

Escalante andGuyon (2012) uses a set of histograms ofmotion energy information to
represent a gesture sequence and implements a reconstruction based gesture recogni-
tion method based on principal components analysis (PCA). For a gesture sequence,
motion energy images are calculated by subtracting consecutive frames. Thus, the
gesture sequence with N frames is associated to N − 1 motion energy images. Next,
a grid of equally spaced blocks is defined over each motion energy image as shown
in Fig. 13.3c. For each motion energy image, the average motion energy in each of
the patches of the grid is computed by averaging values of pixels within each patch.
Then a 2D motion map for each motion energy image is obtained and each element
of the map accounts for the average motion energy of the block centered on the
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Fig. 13.3 An example of a gesture with large movements. a, b Two frames from a gesture.
c The motion energy image of a. The grid of equally spaced bins adopted by the Principle
Motion (Escalante and Guyon 2012). d The motion energy image of b. The overlapped grid used by
our method where the overlapping neighborhood includes all 3 × 3 equally spaced neighbor bins

corresponding 2D location. The 2D map is then vectorized into an Nb-dimensional
vector. Hence, anN frame gesture sequence is associated to a matrix Y of dimensions
(N − 1) × Nb. All gestures in the reference set with size V can be represented with
matrices Yv, v ∈ {1, . . . ,V} and PCA is applied to each Yv. Then the eigenvectors
corresponding to the top c eigenvalues form a set Wv, v = {1, . . . ,V}.

In the recognition stage, each test gesture is processed as like training gestures and
represented by a matrix S. Then, S is projected back to each of the V spaces induced
by Wv, v ∈ {1, . . . ,V}. The V reconstructions of S are denoted by R1, . . . ,RV . The
reconstruction error of each Rv is computed by

ε(v) = 1

n

n∑

i=1

√√√√
m∑

j=1

(Rv(i, j) − S(i, j))2 , (13.6)

where n and m are the number of rows and columns of S. Finally, the test gesture is
recognized as the gesture with label obtained by argminv ε(v).

13.3.3.2 Improved Principle Motion

Gestureswith largemovements are usually performedwith significant deformation as
shown inFig. 13.3. InEscalante andGuyon (2012),motion information is represented
by a histogram whose bins are related to spatial positions. Each bin is analyzed
independently and the space interdependency among the neighboring bins is not
further considered. The interdependency can be explored to improve the robustness
of representing the gesture motion component, especially for the gestures with larger
movement. To this end, an overlapping neighborhood partition is proposed. For
example, if the size of bins is 20 × 20, the overlapping neighborhood contains 3 × 3
equally spaced neighboring bins in a 60 × 60 square region. The averaged motion
energy in the square region is taken as the current bin’s value as shown in Fig. 13.3.

The improved principle motion is applied to both the RGB and depth data. The
RGB images are transformed into gray images before computing their motion energy
images. For each reference gesture, the final V reconstruction errors are obtained by



13 Multi-layered Gesture Recognition with Kinect 399

multiplying the reconstruction errors of the depth data and the gray data. These V
reconstruction errors are further clustered byK-means to get two centers. The gesture
labels associated to those reconstruction errors belonging to the center with smaller
value are treated as the possible gesture candidates. The remaining gesture labels are
treated as the impossible gesture candidates. Then the possible candidates are fed to
the second layer.

We compare the performance of our improved principal motion model with the
original principal motion model (Escalante and Guyon 2012) on the first 20 develop-
ment batches of CGD 2011. Using the provided code (Guyon et al. 2014; Escalante
and Guyon 2012) as baseline, the average Levenshtein distances (Levenshtein 1966)
are 44.92 and 38.66% for the principal motion and the improved principal motion,
respectively.

13.3.4 Location Component Analysis and Classification

Gesture location component refers to the positions of the arms and hands relative
to the body. In the second layer, the sequential organization character of gestures is
utilized in the gesture sequence alignment. According to the movement-hold model,
each gesture sequence is segmented into semantic units, which convey the specific
semantic meanings of the gesture. Accordingly, when aligning a reference gesture
and a test gesture, the semantic units are aligned first, then the frames in each semantic
unit are registered. A particle-based representation for the gesture location compo-
nent is proposed to describe the location component of the aligned frames and a
Weighted Dynamic TimeWarping (WDTW) is proposed for the location component
classification.

13.3.4.1 Intra-gesture Segmentation and Alignment

To measure the distance between location components of a reference gesture
sequence R = {R1,R2 . . . ,RLR} and a test gesture sequence T = {T1,T2 . . . ,TLT },
an alignment � = {(ik, jk)|k = 1, . . . ,K, ik ∈ {1, . . . ,LR}, jk ∈ {1, . . . ,LT }} can be
determined by the best path in the Dynamic Time Warping (DTW) grid and K is the
path length. Then the dissimilarity between two gesture sequences can be obtained
as the sum of the distances between the aligned frames.

The above alignment does not consider the sequential organization character of
gestures. Themovement-holdmodel proposed by Liddell and Johnson (1989) reveals
sequential organization of gestures,which should be explored in the analysis and clas-
sification of gesture location component.QOMLocal(I, t), described in Sect. 13.3.2.1,
measures the movement between two consecutive frames. A large QOMLocal(I, t)
indicates that the t-th frame is in a movement phase, while a small QOMLocal(I, t)
indicates that the frame is in a hold phase. Among all the frames in a hold phase, the
one with the minimal QOMLocal(I, t) is the most representative frame and is marked
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Fig. 13.4 Intra-gesture segmentation and the alignment between test and reference sequences

as an anchor frame. Considering the sequential organization character of gestures,
the following requirement should be satisfied to compute �: each anchor frame in a
test sequence must be aligned with one anchor frame in the reference sequence.

As shown in Fig. 13.4, the alignment between the test and reference sequences
has two stages. In the first stage, DTW is applied to align the reference and test
sequences. Each anchor frame is represented by “1” and the remaining frames are
represented by “0”. Then the associated best path �̂ = {(îk, ĵk)|k = 1, . . . , K̂} in the
DTW grid can be obtained. For each (îk, ĵk), if both îk and ĵk are anchor frames, then
îk and ĵk are the boundaries of the semantic units. According to the boundaries, the
alignment between semantic units of the reference and test sequences is obtained. In
the second stage, as shown in Fig. 13.4, each frame in a semantic unit is represented
by [QOMLocal,QOMGlobal] and DTW is applied to align the semantic unit pairs
separately. Then the final alignment � is obtained by concatenating the alignments
of the semantic unit pairs.

13.3.4.2 Location Component Segmentation and Its Particle
Representation

After the frames of the test and reference sequences are aligned, the next problem is
how to represent the location information in a frame. Dynamic regions in each frame
contain the most meaningful location information, which are illustrated in Fig. 13.5i.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 13.5 Dynamic region segmentation

A simple thresholding-based foreground-background segmentation method is
used to segment the user in a frame. The output of the segmentation is a mask
frame that indicates which pixels are occupied by the user as shown in Fig. 13.5b.
The mask frame is then denoised by a median filter to get a denoised frame as shown
in Fig. 13.5c. The denoised frame is first binarized and then dilated with a flat disk-
shaped structuring element with radius 10 as shown in Fig. 13.5d. The swing frame
as shown in Fig. 13.5h is obtained by subtracting the binarized denoised frame from
the dilated frame.The swing region (those white pixels in the swing frame) covers
the slight swing of user’s trunk and can be used to eliminate the influence of body
swing. From frame t, define set � as

{(m, n)|F1(m, n) − Ft(m, n) ≥ ThresholdQOM} , (13.7)

where F1 and Ft are the user masks of the first frame and frame t, respectively.
ThresholdQOM is the same as in Sect. 13.3.2.1. For each connected region in �, only
if the number of pixels in this region exceeds Np and the proportion overlapped with
swing region is less than r, it is regarded as a dynamic region. Here Np = 500 is a
threshold used to remove the meaningless connected regions in the difference frame
as shown in Fig. 13.5g. If a connected region has less than Np pixels, we think this
region should not be a good dynamic region for extracting location features, e.g., the
small bright region on the right hand of the user in Fig. 13.5g. This parameter can be
set intuitively. The parameter r = 50% is also a threshold used to complement with
Np to remove the meaningless connected regions in the difference frame. After using
Np to remove some connected regions, there may be a retained connected region
which has more than Np pixels but it may still not be a meaningful dynamic region
for extracting position features if the connected region is caused by the body swing.
Obviously we can exploit the swing region to remove such a region. To do this, we
first compute the overlap rate between this region and the swing region. If the overlap
rate is larger than r, it is reasonable to think this region is mainly produced by the
body swing. Therefore, it should be further removed. As like Np, this parameter is
also very intuitive to set and is not very sensitive to the performance.
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Fig. 13.6 Four examples of particle representation of the location component (the black dots are
the particles projected onto X-Y plane)

To represent the dynamic region of frame t, a particle-based description is pro-
posed to reduce the matching complexity. The dynamic region of frame t can
be represented by a 3D distribution: Pt(x, y, z) where x and y are coordinates
of a pixel and z = It(x, y) is the depth value of the pixel. In the form of non-
parametric representation, Pt(x, y, z) can be represented by a set of N̂ particles,
PLocation(It) = {(xn, yn, zn)|N̂n=1}. We use K-means to cluster all pixels inside the
dynamic region into N̂ clusters. Note that for a pixel, both its spatial coordinates
and depth value are used. Then the centers of clusters are used as the representative
particles. In this paper, 20 representative particles are used for each frame, as shown
in Fig. 13.6.

13.3.4.3 Location Component Classification

Assume the location component of two aligned frames can be represented as two par-
ticle sets, P = {P1,P2 . . .PN̂ } andQ = {Q1,Q2 . . .QN̂ }. The matching cost between
particle Pi and Qj, denoted by C(Pi,Qj), is computed as their Euclidean distance.
The distance of the location component between these two aligned gesture frames is
defined by the minimal distance between P and Q. Computing the minimal distance
between two particle sets is indeed to find an assignment � to minimize the cost
summtion of all particle pairs

� = argmin
�

N̂∑

i=1

C(Pi,Q�(i)) . (13.8)

This is a special case of the weighted bipartite graph matching and can be solved
by the Edmonds method (Edmonds 1965). Edmonds method which finds an optimal
assignment for a given cost matrix is an improved Hungarian method (Kuhn 1955)
with time complexity O(n3) where n is the number of particles. Finally, the distance
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of the location component between two aligned gesture frames is obtained

dis(P,Q) =
N̂∑

i=1

C(Pi,Q�(i)) . (13.9)

The distance between the reference sequence R and the test sequence T can be
computed as the sum of all distance between the location components of the aligned
frames in �

DISLocation(R,T |�) =
K∑

k=1

dis(PLocation(Rik ),PLocation(Tjk )) . (13.10)

This measurement implicitly gives all the frames the same weights. However, in
many cases gestures are distinguished by only a few frames. Therefore, rather than
directly computing Eq. 13.10, we propose the Weighted DTW (WDTW) to compute
the distance of location component between R and T as

WDISLocation(R,T |�) =
K∑

k=1

WR
ik × dis(PLocation(Rik ),PLocation(Tjk )) , (13.11)

whereWR = {WR
ik
|ik ∈ {1, . . . ,LR}} is the weight vector. Different from the method

of evaluating the phase difference between the test and reference sequences (Jeong
et al. 2011) and the method of assigning different weights to features (Reyes et al.
2011), we assign different weights to the frames of the reference gesture sequence.
For each reference gesture sequence, firstly we use the regular DTW to calculate
and record the alignment � between the current reference gesture sequence and all
the other reference gesture sequences. Secondly for each frame in the current refer-
ence gesture sequence, we accumulate its corresponding distances with the matched
frames in the best path in the DTW. Then, the current frame is weighted by the aver-
age distance between itself and all the corresponding frames in the best path. The
detailed procedure of computing the weight vector are summarized in Algorithm 1.

In the second layer, we first use K-means to cluster the input possible gesture
candidates into two cluster centers according to the matching scores between the test
gesture sequence and the possible gesture candidates. The candidates in the cluster
with smallermatching score are discarded. In the remaining candidates, if the first two
best matched candidates are difficult to be distinguished, i.e. the absolute difference
of their normalized location component distances is lower than a predefined threshold
ε, then these candidates are forwarded to the third layer; otherwise the best matched
candidate is output as the final recognition result. Two factors influence the choice
of the parameter ε. The first one is the number of the gesture candidates and the other
one is the type of gestures. When the number of the gesture candidates is large or
most of the gesture candidates are the shape dominant gestures, a high threshold is
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Algorithm 1: Computing weight vector WR for a reference R

Input: all the O reference gesture depth sequences: I1, I2, . . . , IO

Output: weight vector for R,WR = {WR
m|m ∈ {1, . . . ,LR}}

1: for each m ∈ [1,LR] do
2: WR

m = 0
3: NR

m = 0
4: end for
5: for each n ∈ [1,O] do
6: Compute the alignment � = {(ik, jk)} between R and In

7: for each m ∈ [1,LR] do
8: WR

m = WR
m + ∑

(ik=m,jk )∈� dis(PLocation(Rik ),PLocation(Injk ))

9: NR
m = NR

m + ∑
(ik ,jk )∈� δ(ik = m)

10: if n = O then
11: WR

m = WR
m�NR

m
12: end if
13: end for
14: end for

preferred. In our experiments, we empirically set its value with 0.05 by observing
the matching scores between the test sample and each gesture candidates (Fig. 13.7).

Fig. 13.7 Weighted dynamic time warping framework
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13.3.5 Shape Component Analysis and Classification

The shape in a hold phase is more discriminative than the one in a movement phase.
The key frame in a gesture sequence is defined as the frame which has the minimiza-
tion QOMLocal. Shape component classifier classifies the shape features extracted
from the key frame of a gesture sequence using the proposed Spatial Path Warping
(SPW), which first extracts unclosed shape context (USC) features and then cal-
culates the distance between the USCs of the key frames in the reference and the
test gesture sequences. The test gesture sequence is classified as the gesture whose
reference sequence has the smallest distance with the test gesture sequence.

13.3.5.1 Unclosed Shape Segmentation

The dynamic regions of a frame have been obtained in Sect. 13.3.4.2. In a key frame,
the largest dynamic region D is used for shape segmentation. Although shapes are
complex and do not have robust texture and structured appearance, in most cases
shapes can be distinguished by their contours. The contour points of D are extracted
by the Canny algorithm. The obtained contour point set is denoted by C1 as shown
in Fig. 13.8a. K-means is adopted to cluster the points in D into two clusters based
on the image coordinates and depth of each point. If a user faces to the camera, the
cluster with smaller average depth contains most of information for identifying the
shape component. Canny algorithm is used again to extract contour points of the
cluster with smaller average depth. The obtained closed contour point set is denoted
by C2 as shown in Fig. 13.8b. Furthermore, an unclosed contour point set can be
obtained by C3 = C2

⋂
C1 as shown in Fig. 13.8c, which will be used to reduce the

computational complexity of matching shapes.

13.3.5.2 Shape Representation and Classification

The contour of a shape consists of a 2-D point setP = {p1, p2, . . . , pN }. Their relative
positions are important for the shape recognition. From the statistical point of view,

Fig. 13.8 Unclosed shape segmentation and context representation. a Is an example of point set
C1, b is an example of point set C2 and c is an example of obtained point set C3; d Is the log-polar
space used to decide the ranges of K bins
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Belongie et al. (2002) develops a strong shape contour descriptor, namely Shape
Context (SC). For each point pi in the contour, a histogram hpi is obtained as the
shape context of the point whose k-th bin is calculated by

hpi(k) = �{(pj − pi) ∈ bin(k)|pj ∈ P, i �= j, k ∈ {1, . . . ,K}} , (13.12)

where bin(k) defines the quantification range of the k-th bin. The log-polar space for
bins is illustrated in Fig. 13.8d.

Assume P and Q are the point sets for the shape contours of two key frames, the
matching cost 	(pi, qj) between two points pi ∈ P and qj ∈ Q is defined as

	(pi, qj) = 1

2

K∑

k=1

[hpi(k) − hqj (k)]2
hpi(k) + hqj (k)

. (13.13)

Given the set of matching costs between all pairs of points pi ∈ P and qj ∈ Q,
computing the minimal distance between P and Q is to find a permutation 
 to
minimize the following sum


 = argmin



∑

i

	(pi, q
(i)) , (13.14)

which can also be solved by the Edmonds algorithm as like solving Eq. 13.8.
An unclosed contour contains valuable spatial information. Thus, a Spatial Path

Warping algorithm (SPW) is proposed to compute the minimal distance between two
unclosed contours. Compared with the Edmonds algorithm, the time complexity of
the proposed SPW is reduced from O(n3) to O(n2) where n is the size of the point
set of an unclosed shape contour. As shown in Fig. 13.8c, the points on an unclosed
contour can be represented as a clockwise contour point sequence. SPW is used to
obtain the optimal match between two given unclosed contour point sequences. For
two unclosed contour point sequences {p′

1, . . . , p
′
n}, {q′

1, . . . , q
′
m}, a dynamic window

is set to constrain the points that one point canmatch,whichmakes thematchingmore
robust to local shape variation. We set the window size wwith max(Ls, abs(n − m)).
In most cases, the window size is the absolute difference between the lengths of the
two point sequences. In extreme cases, if two sequences have very close lengths,
i.e., their absolute difference is less then Ls, we set the the window size with Ls. The
details of proposed SPW are summarized in Algorithm 2.
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Algorithm 2: Computing distance between two unclosed contour point sequences

Input: two unclosed contour point sequences {p′
1, . . . , p

′
n}, {q′

1, . . . , q
′
m}

Output: distance between these two point sequences SPW[n,m].
1: Set w = max(Ls, abs(n − m))

2: for each i ∈ [0, n] do
3: for each j ∈ [0,m] do
4: SPW[i, j] = ∞
5: end for
6: end for
7: SPW[0, 0] = 0
8: for each i ∈ [1, n] do
9: for each j ∈ [max(1, i − w),min(m, i + w)] do
10: SPW[i, j]=	(p′

i, q
′
j) + min(SPW[i − 1, j], SPW[i, j − 1], SPW[i − 1, j − 1])

11: end for
12: end for

13.4 Experiments

In this section, extensive experiment results are presented to evaluate the proposed
multi-layered gesture recognition method. All the experiments are performed in
Matlab 7.12.0 on a Dell PC with Duo CPU E8400. The ChaLearn Gesture Dataset
(CGD2011) (Guyon et al. 2014) is used in all experiments, which is designed for one-
shot learning. The CGD 2011 consists of 50,000 gestures (grouped in 500 batches,
each batch including 47 sequences and each sequence containing 1–5 gestures drawn
from one of 30 small gesture vocabularies of 8–15 gestures), with frame size 240 ×
320, 10 frames/second, recorded by 20 different users.

The parameters used in the proposed method are listed in Table 13.2. Noted that
the parameters c and Nb are set with the default values used in the sample code of
the principal model.2 The threshold for foreground and background segmentation is
adaptively set to the maximal depth minus 100 for each batch data. For example,
the maximal depth of the devel01 batch is 1964. Then the threshold for this batch
is 1864. The number 100 is in fact a small bias from the maximal depth, which is
empirically set in our experiments. We observed that slightly changing this number
does not significantly affect the segmentation. Considering the tradeoff between the
time complexity and recognition accuracy, in our experiments, we empirically set N̂
to 20, which achieves the desired recognition performance.

In our experiments, Levenshtein distance is used to evaluate the gesture recogni-
tion performance, which is also used in the CHALERAN gesture challenge. It is the
minimum number of edit operations (substitution, insertion, or deletion) that have to
be performed from one sequence to another (or vice versa). It is also known as “edit
distance”.

2Available at http://gesture.chalearn.org/data/sample-code.

http://gesture.chalearn.org/data/sample-code.
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Table 13.2 The parameters used in the proposed multi-layered gesture recognition and their
descriptions

Parameter and description Applied to Value From prior
or not

Sensitive to
perfor-
mance

Training
data used or
not

Np: Minimal number of pixels
in a connected region

D 500 Y N Y

r: Maximal overlap rate
between a connected region
and the swing region

D 50% N N N

ε: Threshold for the difference
between the first two largest
matches

D, E 0.05 Y N Y

Ls: Minimal length of the
sliding window

E 5 N N N

ThresholdQOM A, D, E 60 Y Y N

Thresholdinter A Adaptive N Y Y

c: number of eigenvalues for
each gesture

C 10 Y N N

Nb: number of bins for each
motion energy image

C 192 Y N N

N̂ : number of particles D 20 Y N N

Threshold for foreground and
background segmentation

D, E Max
depth—100

Y N Y

A Inter-gesture segmentation; B intra-gesture segmentation; C Motion component analysis and

classification

D Location component analysis and classification; E Shape component analysis and classification;

Training data CGD 2011

13.4.1 Performance of Our Method with Different layers

We evaluate the performance of the proposed method with different layers on the
development (devel01–devel480) batches of CGD 2011 and Table 13.3 reports the
results. If only the first layer is used for classification, the average Levenhstein
distance is 37.53% with running time 0.54 s per gesture. If only the second layer is
used for recognition, the average Levenhstein distance is 29.32% with running time
6.03 s per gesture. If only the third layer is used, the average Levenhstein distance is
39.12% with the running time 6.64 s per gesture. If the first two layers are used, the
average Levenhstein distance is 24.36% with running time 2.79 s per gesture. If all
three layers are used, the average normalized Levenhstein distance is 19.45% with
running time 3.75 s per gesture.

From these comparison results, we can see that the proposed method achieves
high recognition accuracy while having low computational complexity. The first
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Table 13.3 Performance of using the first layer, the second layer, the third layer, first two layers
and three layers on Chalearn gesture data set (devel01–devel480)

Methods First layer for
recognition

Second layer
for recognition

Third layer for
recognition

First two
layers for
recognition

Three layers
for recognition

TeLev (%) 37.53 29.32 39.12 24.36 19.45

Recognition
time per
gesture (s)

0.54 6.03 6.64 2.79 3.75

layer can identify the gesture candidates at the speed of 80 fps (frames per second).
The second layer has relatively high computational complexity. If we only use the
second layer for classification, the average computing time is roughly 11 times of
the first layer. Despite with relatively high computational cost, the second layer
has stronger classification ability. Compared with using only the second layer, the
computational complexity of using the first two layers in the proposed method is
distinctly reduced and can achieve 16 fps. The reason is that although the second
layer is relatively complex, the gesture candidates forwarded to it are significantly
reduced by the first layer. When all three layers are used, the proposed method still
achieve about 12 fps, which is faster than the video recording speed (10 fps) of CGD
2011.

13.4.2 Comparison with Recent Representative Methods

We compare the proposed method with other recent representative methods on the
first 20 development data batches. Table 13.4 reports the performance of the proposed
method on each batch and also the average performance on all 20 batches. The
average performance of the proposed method and the compared methods are shown
in Table 13.5.

For the comparison on each batch, the proposed method is compared with a
manifold and nonlinear regression based method (Manifold LSR) (Lui 2012b), an
extendedmotion-history-image and correlation coefficient basedmethod (Extended-
MHI) (Wu et al. 2012a), and a motion silhouettes based method (Motion His-
tory) (Mahbub et al. 2013). The comparison results are shown in Fig. 13.9.

In batches 13, 14, 17, 18, 19, the proposed method does not achieve the best
performance. However, the proposed method achieves the best performance in the
remaining 15 batches. In batches 3, 10 and 11, most of gestures consist of static
shapes, which can be efficiently identified by the shape classifier in the third layer.
Batches 1, 4, 7 and 8 consist of motion dominated gestures, which can be classi-
fied by the motion and location component classifiers in the first and second layers.
In batches 18 and 19, the proposed method has relatively poor performance. As in
batch 18, most of gestures have small motion, similar locations, and non-stationary
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Table 13.4 Recognition performance of using the second layer, first two layers and three layers on
first 20 development batches of CGD 2011 (TeLev is the average Levenshtein distance)

Batch Second layer for recognition First two layers for recognition Three layers for recognition

—— TeLev (%) Recognize time

per gesture (s)

TeLev (%) Recognize time

per gesture (s)

TeLev (%) Recognize time

per gesture (s)

1 7.24 6.78 0.11 3.40 1.11 3.59

2 41.21 11.38 44.21 7.10 34.35 10.00

3 62.98 8.86 69.20 2.99 39.95 5.61

4 4.51 5.98 3.93 2.10 6.93 2.30

5 11.68 10.96 2.62 3.05 4.77 3.31

6 44.64 5.59 39.94 2.69 23.51 3.42

7 12.44 3.59 8.51 1.70 8.51 1.79

8 5.56 4.94 0.00 2.14 5.71 2.94

9 10.56 5.10 6.44 2.50 6.44 3.01

10 44.21 5.88 29.13 3.24 16.52 3.95

11 42.75 6.46 36.36 3.98 28.93 6.31

12 8.56 5.16 1.06 2.00 7.06 2.34

13 16.24 3.68 12.93 1.20 12.93 1.99

14 44.69 2.50 40.13 0.90 27.98 2.35

15 15.78 4.61 4.21 1.09 6.21 2.19

16 36.54 8.35 36.27 4.21 23.41 6.94

17 36.25 9.10 29.55 5.10 26.32 5.39

18 62.4 1.99 69.21 0.81 53.55 1.60

19 54.31 5.07 51.32 2.84 47.61 3.02

20 17.74 2.58 10.61 1.40 10.61 2.01

Average 29.02 5.93 24.79 2.73 19.62 3.69

Table 13.5 Performance comparison on the 20 development data batches (TeLen is the average
error made on the number of gestures)

Methods Extend-
MHI
Wu et al.
(2012a)

Manifold
LSR
Lui
(2012a)

Sparse
coding

Fanello
et al.
(2013)

Temporal
Bayesian

Malgireddy
et al. (2012)

Motion
history

Mahbub
et al.
(2013)

CSMMI+3D
EMoSIFT
Wan et al.
(2014a)

Proposed

TeLev
(%)

26.00 28.73 25.11 24.09 31.25 18.76 19.62

TeLen # 6.24 5.02 # 18.01 # 5.91
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Fig. 13.9 Performance comparison on the 20 development batches in CGD 2011

hand shapes. These gestures may be difficult to be identified by the proposedmethod.
In batch 19, the gestures have similar locations and hands coalescence, which is diffi-
cult to be identified by the second layer and the third layer classifiers in our method.
Overall, the proposed method significantly outperforms other recent competitive
methods.

Theproposedmethod is further comparedwithDTW,continuousHMM(CHMM),
semi-continuous HMM (SCHMM) and SOFM/HMM (Fang et al. 2004) on the
development (devel01∼devel480) batches of CGD 2011. All compared methods use
one of three feature descriptors including dynamic region grid representation (DP),
dynamic region particle representation (DG) andDynamicAligned ShapeDescriptor
(DS) (Fornés et al. 2010).

• Dynamic region grid representation. For the dynamic region of the current frame
obtained in Sect. 13.3.4.2, a grid of equally spaced cells is defined and the default
size of grid is 12 × 16. For each cell, the average value of depth in the square
region is taken as the value of current bin. So a 12 × 16 matrix is generated, which
is vectorized into the feature vector of the current frame.

• Dynamic region particle representation. The particles for the current frame
obtained in Sect. 13.3.4.2 cannot directly be used as an input feature vector and
they have to be reorganized. The 20 particles {(xn, yn, zn)|20n=1} are sorted according
to ‖(xn, yn)‖2 and then the sorted particles are concatenated in order to get a 60-
dimensional feature vector to represent the current frame.

• Dynamic region D-Shape descriptor (Fornés et al. 2010) Firstly, the location of
some concentric circles is defined, and for each one, the locations of the equidistant
voting points are computed. Secondly, these voting points will receive votes from
the pixels of the shape of the dynamic region, depending on their distance to each
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Table 13.6 Performance of different sequence matching methods on 480 development batches of
CGD 2011

Method Number of
mixtures for each
state

TeLev (%) Recognition time per gesture (s)

DP DG DS DP DG DS

DTW # 38.23 41.19 33.16 2.67 2.51 2.60

CHMM 5 31.41 33.29 31.13 6.91 6.83 6.89

SCHMM 30 31.01 32.92 29.35 6.82 6.75 6.79

SOFM/HMM 5 28.27 30.31 27.20 6.77 6.71 6.74

DP dynamic region particle representation, DG dynamic region grid representation, DS dynamic
region D-Shape descriptor

voting point. By locating isotropic equidistant points, the inner and external part
of the shape could be described using the same number of voting points. In our
experiment, we used 11 circles for the D-Shape descriptor. Once we have the
voting points, the descriptor vector is computed.

Here, each type of HMM is a 3-state left-to-right model allowing possible skips.
For CHMM and SCHMM, the covariance matrix is a diagonal matrix with all diag-
onal elements being 0.2. The comparison results are reported in Table 13.6.

Compared with these methods, the proposed method achieves the best perfor-
mance. Noted that in all compared methods, SOFM/HMM classifier with the DS
descriptor achieves the second best performance. As explained in Sect. 13.1, sequen-
tiallymodelingmotion, position and shape components is very important for improv-
ing the performance of gesture recognition. Except the proposed method, other
compared methods do not utilize these components. On the other hand, statisti-
cal models like CHMM, SCHMM and SOFM/HMM need more training samples
to estimate model parameters, which also affect their performance in the one-shot
learning gesture recognition.

13.5 Conclusion

The challenges of gesture recognition lie in the understandingof the unique characters
and cues of gestures. This paper proposed a novel multi-layered gesture recognition
with Kinect, which is linguistically and perceptually inspired by the phonological
model and the movement-hold model. Together with the illuminating cues drawn
from observations, the component concurrent character and the sequential organiza-
tion character of gestures are all utilized in the proposed method. In the first layer,
an improved principle motion is applied to model the gesture motion component. In
the second layer, a particle based descriptor is proposed to extract dynamic gesture
information and then a weighted dynamic time warping is proposed to classify the
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location component. In the last layer, the spatial path warping is further proposed
to classify the shape component represented by unclosed shape context, which is
improved from the original shape context but needs lower matching time. The pro-
posed method can obtain relatively high performance for one-shot learning gesture
recognition. Our work indicates that the performance of gesture recognition can be
significantly improved by exploring and utilizing the unique characters of gestures,
which will inspire other researcher in this field to develop learning methods for
gesture recognition along this direction.
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