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Foreword

A gesture is a form of non-verbal communication in which actions performed with
the body communicates a particular message. Gestures are a fundamental aspect of
human interaction, both interpersonally and in the context of human computer
interaction. Gesture recognition technology is rapidly gaining popularity due to the
availability of new non-invasive sensors such as Kinect, and the many driving
applications in gaming, computer interaction technology, human robot interaction,
security, commerce, assistive technologies and rehabilitation, sports, sign language
interpreter, and gestures recognition for cars, appliances and the operating rooms
of the future.

I was very pleased to be asked to write the foreword of this book, since I have
been closely following the challenges and workshops on gesture recognition
organized by the editors of this book. Organizing these challenges represents a
significant effort from the editors, but they have created a unique dataset to explore
a variety of interesting problems in machine learning, computer vision and gesture
recognition. In 2011, when the first challenge was organized, there were not
multi-modal and complex public databases available, and many times results were
reported in proprietary dataset with varying size, difficulty and quality of labels. The
organization of these public challenges that provide training/testing protocols, data
and labels is fundamental to be able to analyze and compare in a fair manner gesture
recognition algorithms. The book reviews some of the most promising techniques
from the challenges 2011–2013 and 2014, along with several papers that broaden
other aspects of gesture recognition.

A primary goal of gesture recognition algorithms is to create robust systems with
the ability to identify and respond to different gestures of an individual. From a
machine learning perspective detecting and recognizing a gesture from set of pre-
defined gestures can be framed as a supervised event detection problem. Existing
supervised methods will differ in the use of data, labels, features and models;
however, there are a number of challenges that standard machine learning methods
for time series analysis (e.g., DBN) have to address to build gesture recognition
systems. These challenges include learning from few examples and noisy labels,
dealing with the gesture’s variability (e.g., duration, trajectory, appearance, shape)
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within and between subjects, incorporate geometric invariance (e.g., scale, rota-
tion), learn optimal spatio-temporal representations, on-line temporal segmentation
and real-time inference, robustness, and detecting the gesture with as little latency
as possible. This book provides insight into all these challenges, and describes new
problems and opportunities for gesture recognition, as well as describing
state-of-the-art algorithms.

The first part of the book (Chaps. 1–9) reviews state of the art and covers articles
that address diverse topics in gesture recognition with emphasis in machine learning
methods. Three chapters focus on new machine learning methods for supervised
gesture recognition. Chapter 2 presents a method to model video sequences as
tensors and measure similarity between videos using product manifolds. Chapter 5
proposes a new DBN inspired by recent algorithms in language and text processing
and Chap. 8 describes an appearance based method for affine invariant gesture
recognition and its application to classification of sign language videos. The
remaining of the chapters in the first part addresses different problems in gesture
recognition. Chapter 4 proposes a method to select a set of gestures with low
likelihood of false triggering. Chapter 6 describes original work on representing
facial gestures by linearly combining a set of face spaces. This model is able to
represent compound emotion categories. Chapter 7 presents a probabilistic method
to learn models of recurring signs from multiple sign language video sequences
containing the vocabulary of interest. Chapter 9 addresses the problem of parsing
human poses from static images and recognizes the activities using hierarchical
poselets. An important application of gesture recognition is sign language recog-
nition, and Chap. 3 discusses sign language recognition using linguistic sub-units.
All these articles give a complete picture of different researchers’ efforts for this
important and challenging problem.

The second part of the book consists of articles from authors participating in
different challenges. Chapters 10–13 covers the methods from the participants in the
2011–2012 challenge on single user shot-learning gesture recognition with Kinect.
All these methods propose different spatio-temporal descriptors (STDs) in combi-
nation with new classification schemes. Chapter 10 describes a real-time gesture
recognition that combines a new STD with SVMs for on-line video segmentation
and recognition. Chapter 11 encodes gestures as a Bag of Words from a sparse
representation of a new STD, then it uses Dynamic Time Warping (DTW) to
provide an effective method for temporal matching. Chapter 12 proposes two
variants of STDs and DTW, in combination with a method to remove
un-informative frames. Chapter 13 analyzes a multi-component network with
motion, location, shape context and DTW that are combined for one-shot learning
gesture recognition method. The book also describes some papers related to the
2013 challenge on user-independent task from continuously performed gesture
using audio, skeletal, binary masks, RBG and depth information. Chapter 14 pro-
poses a Bayesian co-boosting framework in combination with HMMs for multi-
modal gesture recognition. Chapter 15 presents a method for transfer learning
which uses decision forests, and apply it to recognize gestures and characters.
Chapter 16 presents a framework for multimodal gesture recognition that is based
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on a multiple hypotheses rescoring fusion scheme, including evaluation on
ChaLearn multi-modal gesture recognition challenge 2013.

Chapter 17 describes an open-source C++ library for real-time gesture recog-
nition. Chapter 18 discusses two template-based methods to learn from noisy
annotations provided by crowdsourcing methods. This is a very important topic,
since having access to well labeled data (i.e., consistent start/end of the gesture) is a
key factor for the success of any machine learning gesture recognition method.

Finally, Chap. 19 discusses current deep learning methodologies for gesture
recognition, including comparison of different architectures, fusion strategies,
databases and challenges.

There has been depth research in systems for gesture recognition since the last
four decades, and due to the advances in new sensors, computation and machine
learning methods, I believe we are in a new age for gesture recognition. Looking
forward, I can see several strands of emerging machine learning themes that are
relatively unexplored such as early detection, recognition of subtle gestures, mul-
tiple instance learning type of methods to improve the quality of the labels, on-line
temporal segmentation methods, and transfer learning methods for user-invariant
gesture recognition. Last but not least, in the years to come we will see more and
more new deep learning methods that can learn spatio-temporal representations in
combination with dynamical models for temporal segmentation.

This book provides the most comprehensive and up to date review of
vision-based methods for supervised gesture recognition methods that have been
validated by several challenges, and touches on the most diverse topics in gesture
recognition with an emphasis in machine learning methods. While the book dis-
cusses vision-based methods, many of the techniques are applicable to other sensors
such as gloves, leap motion or inertial measurement units. This will surely become
a “must have” book for any practitioner in gesture recognition.

Fernando de la Torre
Carnegie Mellon University, Pittsburgh, USA
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Preface

In order to push research and analyze the gain of multimodal methods for gesture
recognition, in the period 2011–2014, ChaLearn organized a series of challenges
related to gesture recognition. Our first workshop at CVPR from our 2011 challenge
emphasized mostly 2D video data meanwhile our second and third workshops at
CVPR, ICPR, ICMI, ECCV conferences from our 2012, 2013, and 2014 challenges
were focused on affordable 3D sensors for gesture recognition research, also
including audio information. In ECCV 2014 and CVPR 2015 workshops we also
promoted different aspects of looking at people, including pose recovery, activity
recognition, and scene understanding where humans are present. In addition to best
challenge results, many research papers devoted to gesture recognition were pub-
lished and presented in our challenge workshops. Our workshops and competitions
were sponsored mainly by Microsoft Research, Google, Facebook, AMAZON,
NVIDIA, and Disney Research. Updates of our current and upcoming events can be
found at http://gesture.chalearn.org/

In this book we present an up to date set of works related to the automatic
analysis of gestures from still images and multi-modal RGB-Depth image
sequences. It presents the most comprehensive and up to date review of
vision-based methods for supervised gesture recognition methods that have been
validated by several challenges. Several aspects of gesture recognition are
reviewed, including data acquisition from different sources, feature extraction,
learning, and recognition of gestures.

Chapter 1 of the book presents an up to date comprehensive analysis on Gesture
recognition, defining a new taxonomy for the field. Then, the first part of the book
(Chaps. 2–9) mainly focus on supervised machine learning methods for gesture
recognition. The second part of the book (Chaps. 10–16) contains works related to
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the participants of ChaLearn challenges. Chapter 17 presents an open-source C++
library for real-time gesture recognition. Chapter 18 discusses two template-based
methods to learn from noisy annotations provided by crowdsourcing methods.
Finally, Chap. 19 reviews the most recent state of the art research involving deep
learning architectures in order to deal with gesture and action recognition problems.

Barcelona, Spain Sergio Escalera
Berkeley, USA Isabelle Guyon
Arlington, USA Vassilis Athitsos
2014
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Chapter 1
Challenges in Multi-modal Gesture
Recognition

Sergio Escalera , Vassilis Athitsos and Isabelle Guyon

Abstract This paper surveys the state of the art on multimodal gesture recognition
and introduces the JMLR special topic on gesture recognition 2011–2015. We began
right at the start of the KinectTM revolution when inexpensive infrared cameras pro-
viding image depth recordings became available. We published papers using this
technology and other more conventional methods, including regular video cameras,
to record data, thus providing a good overview of uses of machine learning and com-
puter vision using multimodal data in this area of application. Notably, we organized
a series of challenges and made available several datasets we recorded for that pur-
pose, including tens of thousands of videos, which are available to conduct further
research. We also overview recent state of the art works on gesture recognition based
on a proposed taxonomy for gesture recognition, discussing challenges and future
lines of research.

Keywords Gesture recognition · Time series analysis · Multimodal data analy-
sis · Computer vision · Pattern recognition · Wearable sensors · Infrared cameras ·
KinectTM
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1.1 Introduction

Gestures are naturally performed by humans. Gestures are produced as part of delib-
erate actions, signs or signals, or subconsciously revealing intentions or attitude.
They may involve the motion of all parts of the body, but the arms and hands,
which are essential for action and communication, are often the focus of stud-
ies. Facial expressions are also considered gestures and provide important cues in
communication.

Gestures are present in most daily human actions or activities, and participate to
human communication by either complementing speech or substituting themselves to
spoken language in environments requiring silent communication (underwater, noisy
environments, secret communication, etc.) or for peoplewith hearing disabilities. The
importance of gestures in communication is rooted in primal behaviors: the gesture-
first theory, supported by the analysis of mirror neurons in primates (Hewes 1973),
indicated that the first steps of language phylogeneticallywere not speech, nor speech
with gesture, but were gestures alone (McNeil 2012; Hewes 1973). See examples of
primate communication by means of gestures in Fig. 1.1.

Given the indubitable importance of gestures in human activities, there has been
huge interest by the Computer Vision andMachine Learning communities to analyze
human gestures from visual data in order to offer new non-intrusive technological
solutions. For completeness, in this paper we also review some gesture recogni-
tion systems with data acquired from wearable sensors, although the comprehensive
review of papers focus on the analysis of different visual modalities.

Applications are countless, like Human Computer Interaction (HCI), Human
Robot Interaction (HRI) (also named human machine interaction HMI), commu-
nication, entertainment, security, art, semiotics, commerce and sports, while having
an important social impact in assistive technologies for the handicapped and the
elderly. Some examples of applications are illustrated in Fig. 1.2.

In addition to the recent advances in human and gesture recognition from classi-
cal RGB visual data, the automatic analysis of human body from sensor data keeps
making rapid progress with the constant improvement of (i) new published methods
that constantly push the state-of-the-art and (ii) the recent availability of inexpensive

Fig. 1.1 Example of possible bonobo iconic gestures. a Start of swing gesture (or shove); b end
of swing gesture (or shove); c start of iconic swing, other bonobo starts to move; d end of iconic
swing, other moving. Image from McNeil (2012)
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Fig. 1.2 Some applications of gesture recognition. a Gesture recognition for driver assistance, from
Ohn-Bar and Trivedi (2014), b Sign Language Recognition, c action/gesture recognition for content
retrieval and categorization, fromMaet al. (2013),d surveillance, eHuman computer/robot/machine
interaction, and f assistive technology for people with reduced autonomy

3D video sensors such as KinectTM, providing a complementary source of informa-
tion, and thus allowing the computation of new discriminative feature vectors and
improved recognition by means of fusion strategies. In Sect. 1.2 we review the state
of the art in gesture recognition.

In order to push research and analyze the gain of multimodal methods for ges-
ture recognition, in 2011 and 2012, ChaLearn organized a challenge on single user
one-shot-learning gesture recognition with data recorded with KinectTM in which 85
teams competed. Starting from baseline methods making over 50% error (measured
in Leveinshtein distance, a metric counting the number of substitutions, insertions
and deletions, analogous to an error rate), the winners brought the error rate below
10%.While therewas still somemargin of improvement on such tasks to reach human
performance (which is below 2% error), we were encouraged to make the task harder
to push the state of the art in computer vision. In our second ChaLearn challenge on
Multimodal Gesture Recognition in 2013, we proposed a user-independent task with
data recorded with KinectTM, with a larger vocabulary and continuously performed
gestures. Of 60 participating teams, the winner attained an error rate of 10% on this
data set, in terms of Leveinshtein distance. In 2014, we used the same Multimodal
Gesture Recognition dataset with the objective of performing gesture spotting. The
winner of the competition, with a deep learning architecture, obtained an overlap-
ping near 0.9. Lastly, in 2014 and 2015 we ran an action spotting challenge with a
new dataset consisting of RGB sequences of actors performing different isolated and
collaborative actions in outdoor environments. Future challenges we are planning
include the analysis of gestures taking into account face and contextual information,
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involving many modalities in the recognition process. In this paper we also review
other existing international challenges related to gesture recognition.

Our first workshop at CVPR from our 2011 challenge emphasized mostly 2D
video datameanwhile our second and thirdworkshops at CVPR, ICPR, ICMI, ECCV
conferences from our 2012, 2013, and 2014 challenges were focused on affordable
3D sensors for gesture recognition research, also including audio information. In
ECCV 2014 and CVPR 2015 workshops we also promoted different aspects of look-
ing at people, including pose recovery, activity recognition, and scene understanding
where humans are present. In addition to best challenge results, many research papers
devoted to gesture recognition were published and presented in our challenge work-
shops.We also invited keynote speakers in diverse areas of pose and gesture research,
including sign language recognition, body posture analysis, action and activity recog-
nition, and facial expression or emotion recognition.

In this special topic on gesture recognition, extension of best challenge and work-
shop papers from previous events have been published. In addition, new description
and learning strategies papers related to gesture recognition have been published. All
of them will be shortly reviewed in the following sections.

The rest of the paper is organized as follows: Sect. 1.2 reviews the state of the art
on gesture recognition, defining a taxonomy to describe existing works as well as
available databases for gesture and action recognition. Section1.3 describes the series
of gesture and action recognition challenges organized by ChaLearn, describing the
data, objectives, schedule, and achieved results by the participants. For completeness
we also review other existing gesture challenge organizations. In Sect. 1.4 we review
the published papers in this gesture recognition topic which are related to ChaLearn
competitions. Section1.5 describes special topic published papers related to ges-
ture recognition which are not based on ChaLearn competitions. Finally, Sect. 1.6
discusses main observations about the published papers.

1.2 Related Work in Gesture Recognition

In this section we present a taxonomy for action/gesture recognition, we reviewmost
influentialworks in the field, andfinallywe review existing datasets for action/gesture
recognition together with the performance obtained by state of the art methods.

1.2.1 Taxonomy for Gesture Recognition

Figure1.3 is an attempt to create a taxonomy of the various components involved
in conducting research in action/gesture recognition. We include various aspects
relating to the problem setting, the data acquisition, the tools, the solutions, and the
applications.
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Fig. 1.3 Taxonomy for gesture recognition

First, regarding the problem setting, the interpretation of gestures critically
depends on a number of factors, including the environment in which gestures are
performed, their span in time and space, and the intentional meaning in terms of
symbolic description and/or the subconsciousmeaning revealing affective/emotional
states. The problem setting also involves different actors who may participate in the
execution of gestures and actions: human(s) and/or machine(s) (robot, computer,
etc.), performingwith orwithout tools or interacting or notwith objects.Additionally,
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independently of the considered modality, for some gestures/actions different parts
of the body are involved.Whilemany gesture recognition systems only focus on arms
and hands, full bodymotion/configuration and facial expressions can also play a very
important role. Another aspect of the problem setting involves whether recognized
gestures are static or dynamic. For the first case, just considering features from an
input frame or any other acquisition device describing spatial configuration of body
limbs, a gesture can be recognized. In the second case, the trajectory and pose of
body limbs provide the highest discriminative information for gesture recognition.
In some settings, gestures are defined based not only on the pose and motion of the
human, but also on the surrounding context, and more specifically on the objects
that the human interacts with. For such settings, one approach for achieving context
awareness is scene analysis, where information is extracted from the scene around
the subject (e.g., Pieropan et al. 2014; Shapovalova et al. 2011). Another approach is
to have the subject interact with intelligent objects. Such objects use embedded hard-
ware and software to facilitate object recognition/localization, and in some cases to
also monitor interactions between such objects and their environment (e.g., Czabke
et al. 2010).

Second, the data are, of course, of very central importance, as in every machine
learning application. The data sources may vary: when recognizing gestures, input
data can come fromdifferentmodalities, visual (RGB, 3D, or thermal, among others),
audio, or wearable sensors (magnetic field trackers, instrumented (data) gloves, or
body suits, among others). In the case of gloves, they can be active or passive. Active
ones make use of a variety of sensors on a glove to measure the flexing of joints or
the acceleration and communicates data to the host device using wired or wireless
technology. Passive ones consist only ofmarkers or coloredgloves for finger detection
by an external device such as a camera. Although most gestures are recognized by
means of ambient intelligent systems, looking at the person from outside, some
gesture recognition approaches are based on egocentric computing, using wearable
sensors or wearable cameras that analyze, for instance, hand behaviors. Additionally,
it is well-known that context provides rich information that can be useful to better
infer the meaning of some gestures. Context information can be obtained by means
of computer vision scene analysis, interaction with objects, but also via intelligent
objects in the scene (objects with sensors that emit signals related to proximity and
interaction). Some examples of acquisition devices are shown in Fig. 1.4.

Third, the field of gesture recognition has shaped up thanks to the adoption of
standard methodology. In order to advance in the design of robust action/recognition
approaches, several datasets with different complexity have been published, and
several world challenges helped to push the research in the area. This required the
definition of standard evaluation metrics to render methods comparable. Notably,
when one wants to recognize actions/gestures from data, common steps involve
pre-processing of the acquired data, feature extraction, segmentation of begin-end
of gesture and its final gesture/action label classification. Many datasets include
preprocessed and/or thoroughly annotated data.
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Fig. 1.4 Some examples of acquisition devices for gesture recognition. a Left mobile with GPS
and accelerometer, right inertial sensor with accelerometer and gyroscope, b Google Glasses for
egocentric computing, c thermal imagery for action recognition,d audio-RGB-depth device, e active
glove, and f passive glove

Fourth, gesture recognition has offered many opportunities to algorithm devel-
opers to innovate. The approaches, which essentially can be categorized into
appearance-based and model-based methods, are going to be reviewed in the next
section. We will mention only the most influential works for action/gesture recogni-
tion illustrating various aspects of the problem setting, data acquisition, and method-
ology defined in our taxonomy. Note that although we defined a general taxonomy
for gesture recognition, in this paper, we put special emphasis on computer vision
and machine learning methods for action/gesture recognition.

Finally, our taxonomy would not be complete without the wide array of applica-
tions of gesture/action recognition, already mentioned in the introduction.

1.2.2 Overview of Gesture Recognition Methods

Different surveys have been published so far reviewing gesture recognition sys-
tems (LaViola 1999; Mitra and Acharya 2007; Chaudhary et al. 2011; Ibraheem and
Khan 2012; Avci et al. 2010; Khan and Ibraheem 2012; Kausar and Javed 2011). In
this section, we present an up-to-date review of most influential works in the field.

STATIC AND DYNAMIC



8 S. Escalera et al.

1.2.2.1 Recognizing Static Gestures and Hand Pose

In the case of static gestures, frequently hand shape is the important differentiating
feature (Cui and Weng 2000; Freeman and Roth 1996; Kelly et al. 2010; Ren et al.
2011b; Triesch and von der Malsburg 2002), although the pose of the rest of the
body can also be important, e.g., Yang et al. (2010), Van den Bergh et al. (2009).
For static hand pose classification, some approaches rely on visual markers, such as
a color glove with a specific color for each finger, e.g., Wang and Popović (2009).
Other approaches can recognize the hand pose on unadorned hands. Appearance-
basedmethods, likeMoghaddam and Pentland (1995), Triesch and von derMalsburg
(2002), Freeman andRoth (1996),Wu andHuang (2000), can be used for recognizing
static hand postures observed from specific viewpoints.

Appearance and model based
Model-based methods for hand pose estimation (Oikonomidis et al. 2010, 2011;

de La Gorce et al. 2011; Rehg and Kanade 1995) typically match visual observations
to instances of a predefined hand model. Single frame pose estimation methods try
to solve the hand pose estimation problem without relying on temporal information
(Athitsos and Sclaroff 2003). Most recently, due to the advent of commercially
available depth sensors, there is an increased interest in methods relying on depth
data (Keskin et al. 2012; Mo and Neumann 2006; Oikonomidis et al. 2011; Pugeault
and Bowden 2011; Lopes et al. 2014).

1.2.2.2 From Body Part Detection to Holistic Pattern Detection

Dynamic gestures are characterized by both the pose and the motion of the relevant
body parts. Much effort has traditionally be put into detecting first body parts and
then tracking their motion. In color videos, detecting hands can be quite challenging,
although better performance can be achieved by placing additional constraints on
the scene and the relative position of the subject and the hands with respect to the
camera (Cui and Weng 2000; Isard and Blake 1998; Kolsch and Turk 2004; Ong
and Bowden 2004; Stefanov et al. 2005; Stenger et al. 2003; Sudderth et al. 2004).
Commonly-used visual cues for hand detection such as skin color, edges, motion,
and background subtraction (Chen et al. 2003; Martin et al. 1998) may also fail
to unambiguously locate the hands when the face, or other “hand-like” objects are
moving in the background.

In Li and Kitani (2013) the authors propose a hand segmentation approach from
egocentric RGB data by the combination of color and texture features. In Baraldi
et al. (2014), dense features are extracted around regions selected by a new hand
segmentation technique that integrates superpixel classification, temporal and spatial
coherence. Bag of visual words and linear SVM are used for final representation and
classification.

Depth cameras have become widely available in recent years, and hand detection
(in tandem with complete body pose estimation) using such cameras (and also in
combination with other visual modalities) can be performed sufficiently reliably for
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many applications (Shotton et al. 2011; Hernandez-Vela et al. 2012). The authors
of Ren et al. (2013) propose a part-based hand gesture recognition system using
KinectTM sensor. Finger-EarthMover’s Distance (FEMD) metric is proposed to mea-
sure the dissimilarity between hand shapes. It matches the finger parts while not the
whole hand based on hand segmentation and contour analysis. The method is tested
on their own 10-gesture dataset.

Instead of estimating hand position and/or body pose before recognizing the ges-
ture, an alternative is to customize the recognition module so that it does not require
the exact knowledge of hand positions, but rather accepts as input a list of several can-
didate hand locations (Alon et al. 2009; Sato and Kobayashi 2002; Hernandez-Vela
et al. 2013b).

Another approach is to use global image/video features. Such global features
includemotion energy images (Bobick andDavis 2001), thresholded intensity images
and difference images (Dreuw et al. 2006), 3D shapes extracted by identifying areas
of motion in each video frame (Gorelick et al. 2007) and histograms of pairwise
distances of edge pixels (Nayak et al. 2005). Gestures can also be modelled as
rigid 3D patterns (Ke et al. 2005), from which features can be extracted using 3D
extensions of rectangle filters (Viola and Jones 2001). The work of Kong et al. (2015)
uses pixel-level attributes in a hierarchical architecture of 3D kernel descriptors, and
efficient match kernel is used to recognize gestures from depth data.

Along similar lines, Ali and Shah (2010) propose a set of kinematic features that
are derived from the optical flow for human action recognition in videos: divergence,
vorticity, symmetric and antisymmetric flow fields, second and third principal invari-
ants of flow gradient and rate of strain tensor, and third principal invariant of rate of
rotation tensor, which define spatiotemporal patterns. These kinematic features are
computed by Principal Component Analysis (PCA). Then multiple instance learning
(MIL) is applied for recognition in which each action video is represented by a bag
of kinematic modes. The proposal is evaluated on the RGB Weizmann and KTH
action data sets, showing comparable result to state of the art performances.

Much effort has also been put into spatiotemporal invariant features. In Yuan
et al. (2011) the authors propose a RGB action recognition system based on a
pattern matching approach, named naive Bayes mutual information maximization
(NBMIM). Each action is characterized by a collection of spatiotemporal invariant
features which are matched with an action class by measuring the mutual informa-
tion between them. Based on this matching criterion, action detection is to localize a
subvolume in the volumetric video space that has the maximum mutual information
toward a specific action class. A novel spatiotemporal branch-and-bound (STBB)
search algorithm is designed to efficiently find the optimal solution. Results show
high recognition results on KTH, CMU, and MSR data sets, showing speed up infer-
ence in comparison with standard 3D branch-and-bound.

Another example is the paper of Derpanis et al. (2013) in which a compact
local descriptor of video dynamics is proposed for action recognition in RGB data
sequences. The descriptor is based on visual spacetime oriented energy measure-
ments. An associated similaritymeasure is introduced that admits efficient exhaustive
search for an action template, derived from a single exemplar video, across candidate
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video sequences. The method is speeded up by means of a GPU implementation.
Method is evaluated on UCF and KTH data sets, showing comparable results to state
of the art methods.

The work of Yang and Tian (2014b) presents a coding scheme to aggregate low-
level descriptors into the super descriptor vector (SDV). In order to incorporate the
spatio-temporal information, the super location vector (SLV) models the space-time
locations of local interest points in a compact way. SDV and SLV are combined as the
super sparse coding vector (SSCV) which jointly models the motion, appearance,
and location cues. The approach is tested on HMDB51 and Youtube with higher
performance in comparison to state of the art approaches.

1.2.2.3 Segmentation of Gestures and Gesture Spotting

Dynamic gesture recognition methods can be further categorized based on whether
they make the assumption that gestures have already been segmented, so that the
start frame and end frame of each gesture is known. Gesture spotting is the task of
recognizing gestures in unsegmented video streams, that may contain an unknown
number of gestures, as well as intervals were no gesture is being performed. Gesture
spotting methods can be broadly classified into two general approaches: the direct
approach,where temporal segmentationprecedes recognitionof the gesture class, and
the indirect approach, where temporal segmentation is intertwined with recognition:

• Direct methods (also called heuristic segmentation) first compute low-level
motion parameters such as velocity, acceleration, and trajectory curvature (Kang
et al. 2004) or mid-level motion parameters such as human body activity (Kahol
et al. 2004), and then look for abrupt changes (e.g., zero-crossings) in those para-
meters to identify candidate gesture boundaries.

• Indirect methods (also called recognition-based segmentation) detect gesture
boundaries by finding, in the input sequence, intervals that give good recognition
scores whenmatched with one of the gesture classes. Most indirect methods (Alon
et al. 2009; Lee andKim1999;Oka 1998) are based on extensions ofDynamic Pro-
gramming (DP) e.g., Dynamic TimeWarping (DTW) (Darrell et al. 1996; Kruskal
and Liberman 1983), Continuous Dynamic Programming (CDP) (Oka 1998), vari-
ous forms ofHiddenMarkovModels (HMMs) (Brand et al. 1997; Chen et al. 2003;
Stefanov et al. 2005; Lee and Kim 1999; Starner and Pentland 1998; Vogler and
Metaxas 1999; Wilson and Bobick 1999), and most recently, Conditional Random
Fields (Lafferty et al. 2001; Quattoni et al. 2007). Also hybrid probabilistic and
dynamic programming approaches have been recently published (Hernandez-Vela
et al. 2013a). In those methods, the gesture endpoint is detected by comparing the
recognition likelihood score to a threshold. The threshold can be fixed or adap-
tively computed by a non-gesture garbage model (Lee and Kim 1999; Yang et al.
2009), equivalent to silence models in speech.

When attempting to recognize unsegmented gestures, a frequently encountered prob-
lem is the subgesture problem: false detection of gestures that are similar to parts of
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other longer gestures. Lee and Kim (1999) address this issue using heuristics to infer
the user’s completion intentions, such as moving the hand out of camera range or
freezing the hand for a while. An alternative is proposed inAlon et al. (2009), where a
learning algorithm explicitly identifies subgesture/supergesture relationships among
gesture classes, from training data.

Another common approach for gesture spotting is to first extract features from
each frame of the observed video, and then to provide a sliding window of those
features to a recognition module, which performs the classification of the gesture
(Corradini 2001; Cutler and Turk 1998; Darrell et al. 1996; Oka et al. 2002; Starner
and Pentland 1998; Yang et al. 2002). Oftentimes, the extracted features describe
the position and appearance of the gesturing hand or hands (Cutler and Turk 1998;
Darrell et al. 1996; Starner and Pentland 1998; Yang et al. 2002). This approach can
be integrated with recognition-based segmentation methods.

1.2.2.4 Action and Activity Recognition

The work of Li et al. (2010) presents an action graph to model explicitly the dynam-
ics of 3D actions and a bag of 3D points to characterize a set of salient postures
that correspond to the nodes in the action graph. The authors propose a projection
based sampling scheme to sample the bag of 3D points from the depth maps. In
Sminchisescu et al. (2006) it is proposed the first conditional/discriminative chain
model for action recognition.

The work of Zanfir et al. (2013) propose the non-parametric Moving Pose (MP)
framework for low-latency human action and activity recognition. The moving pose
descriptor considers both pose information as well as differential quantities (speed
and acceleration) of the human body joints within a short time window around the
current frame. The descriptor is used with a modified kNN classifier that considers
both the temporal location of a particular frame within the action sequence as well
as the discrimination power of its moving pose descriptor compared to other frames
in the training set. The method shows comparable results to state of the art methods
on MSR-Action3D and MSR-DailyActivities3D data sets.

In Oreifej and Liu (2013), it is proposed a new descriptor for activity recognition
from videos acquired by a depth sensor. The depth sequence is described using
a histogram capturing the distribution of the surface normal orientation in the 4D
space of time, depth, and spatial coordinates. To build the histogram, 4D projectors
are created, which quantize the 4D space and represent the possible directions for
the 4D normal. Projectors are initialized using the vertices of a regular polychoron.
Projectors are refined using a discriminative density measure, such that additional
projectors are induced in the directions where the 4D normals are more dense and
discriminative. The proposed descriptor is tested onMSRActions 3D, MSRGesture
3D, and MSR Daily Activity 3D, slightly improving state of the art results.

In Wang et al. (2014), the authors propose to characterize the human actions with
an “actionlet” ensemblemodel, which represents the interaction of a subset of human
joints. Authors train an ensemble of SVM classifiers related to actionlet patterns,



12 S. Escalera et al.

which includes 3D joint features, Local Occupancy Patterns, and Fourier Temporal
Pyramid. Results onCMUMoCap,MSR-Action3D,MSR-DailyActivity3D, Cornell
Activity, and Multiview 3D data sets show comparable and better performance than
state of the art approaches.

The work of Yang and Tian (2014a) presents an approach for activity recognition
in depth video sequences. Authors cluster hypersurface normals in a depth sequence
to form the polynormal which is used to jointly characterize the local motion and
shape information. In order to globally capture the spatial and temporal orders, an
adaptive spatio-temporal pyramid is introduced to subdivide a depth video into a
set of space-time grids. It is then proposed a scheme of aggregating the low-level
polynormals into the super normal vector (SNV) which can be seen as a simplified
version of the Fisher kernel representation. Authors validate the proposed approach
onMSRAction3D,MSRDailyActivity3D,MSRGesture3D, andMSRActionPairs3D
data sets slightly improving in all cases state of the art performances.

In Yu et al. (2014) the authors propose the orderlets to capture discriminative
information for gesture recognition fromdepthmaps.Orderlet features are discovered
looking for frequent sets of skeleton joints that provide discriminative information.
Adaboost is used for orderlets selection. Results on the ORGBD data set shows a
recognition rate of 71.4% mean class average accuracy, improving by near 5% state
of the art results on this data set, and near 20% improvement regarding frame level
classification. However the results showed on theMSR-DailyActivity3D data set are
inferior to the ones reported in Luo et al. (2014).

The work of Liang et al. (2014) presents a depth-based method for hand detection
and pose recognition by segmentation of different hand parts. Authors based on RF
for initial multipart hand segmentation. Then, a Superpixel-Markov Random Field
(SMRF) parsing scheme is used to enforce the spatial smoothness and the label
co-occurrence prior to remove the misclassified regions.

1.2.2.5 Approaches Using Non-video Modalities and Multimodal
Approaches

In terms of multimodal approaches for gesture recognition, Luo et al. (2014) propose
a sparse coding-based temporal pyramid matching approach (ScTPM) for feature
representation using depth maps. The authors also propose the Center-Symmetric
Motion Local Ternary Pattern (CS-Mltp) descriptor to capture spatial-temporal fea-
tures from RGB videos. By fusing both RGB and Depth descriptors, the authors
improve state of the art results on MSR-Action3D and MSR-DailyActivity3D data
sets, with a 6 and 7% of improvement, respectively.

In Ionescu et al. (2014), it is presented the Human 3.6M data set, consisting of
3.6 Million accurate 3D Human poses, acquired by recording the performance of 5
female and 6male subjects, under 4 different viewpoints, for training realistic human
sensing systems and for evaluating the next generation of human pose estimation
models and algorithms. Authors also provide a set of large scale statistical models
and evaluation baselines for the dataset illustrating its diversity.



1 Challenges in Multi-modal Gesture Recognition 13

In Xiao et al. (2014) a wearable Immersion CyberGlove II is used to capture
the hand posture and the vision-based Microsoft KinectTM takes charge of capturing
the head and arm posture. An effective and real-time human gesture recognition
algorithm is also proposed.

In Liang et al. (2013) it is proposed to detect and segment different body parts
using RGB and Depth data sequences. The method uses both temporal constraints
and spatial features, and performs hand parsing and 3D fingertip localization for
hand pose estimation. The hand parsing algorithm incorporates a spatial-temporal
feature into a Bayesian inference framework to assign the correct label to each image
pixel. The 3D fingertip localization algorithm adapts is based on geodesic extrema
extraction to fingertip detection. The detected 3D fingertip locations are finally used
for hand pose estimation with an inverse kinematics solver. The work of Joshi et al.
(2015) use random forest for both segmenting and classifying gesture categories
from data coming from different sensors.

Although many works base only on inertial data (Benbasat and Paradiso 2001;
Berlemont et al. 2015), multimodal approaches are often considered in order to
combine trajectory information will pose analysis based on visual data. The works
of Liu et al. (2014) and Pardo et al. (2013) present approaches for gesture recognition
based on the combination of depth and inertial data. In Liu et al. (2014) skeleton
obtained from depth data and data from inertial sensors are train within HMM in
order to perform hand gesture recognition. A similar approach is presented in Pardo
et al. (2013), but also recognizing objects present in the scene and using DTW for
recognition with the objective of performing ambient intelligent analysis to support
people with reduced autonomy. In Gowing et al. (2014), it is presented a comparison
of WIMU aWireless/Wearable Inertial Measurement Unit and KinectTM. However,
comparison is performed independently, without considering a fusion strategy.

The work of Appenrodt et al. (2009) is one of the few that compare the per-
formance of different segmentation approaches for gesture recognition comparing
RGB, depth, and thermal modalities. They propose a simple segmentation approach
of faces and one hand for recognizing letters and numbers for HCI. They obtained
higher performance by the use of depth maps. Unfortunately no mutimodal fusion
approaches are tested in order to analyze when each modality can complement the
information provided by the rest of modalities.

The work of Escalera et al. (2013b) summarizes a 2013 challenge on multimodal
gesture recognition, where in addition to RGB and depth data, audio can be used to
identify the performed gestures.

Few works considered context information in order to improve gesture/action
recognition systems. In Wilhelm (2012) it is proposed to adapt gesture recognition
based on a dialogue manager as a partially observable Markov decision process
(POMDP). In Caon et al. (2011) two KinectTM devices and smart objects are used to
estimate proximity and adapt the recognition prior of some gestures.

The recent emergence of deep learning systems in computer vision have also been
applied to action/gesture recognition systems. In Neverova et al. (2014a), it is pre-
sented a deep learning based approach for hand pose estimation, targeting gesture
recognition. The method integrates local and global structural information into the
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training objective. In Nagi et al. (2011), deep neural network (NN) combining con-
volution and max-pooling (MPCNN) is proposed for supervised feature learning and
classification of RGB hand gestures given by humans to mobile robots using colored
gloves. The hand contour is retrieved by color segmentation, then smoothed by mor-
phological image processing which eliminates noisy edges. The system classifies 6
gesture classes with 96% accuracy, improving performance of several state of the
art methods. The work of Duffner et al. (2014) presents an approach that classifies
3D gestures using jointly accelerometer and gyroscope signals from a mobile device
using convolutional neural network with a specific structure involving a combination
of 1D convolution. In Molchanov et al. (2015) convolutional deep neural networks
are used to fuse data from multiple sensors (short-range radar, a color camera, and a
depth camera) and to classify the gestures in a driver assistance scenario.

1.2.3 Sign Language Recognition

An important application of gesture recognition is sign language recognition. Amer-
ican Sign Language (ASL) is used by 500,000 to two million people in the U.S.
(Lane et al. 1996; Schein 1989). Overall, national and local sign languages are used
all over the world as the natural means of communication in deaf communities.

Severalmethods exist for recognizing isolated signs, aswell as continuous signing.
Some researchers have reported results on continuous signing with vocabularies of
thousands of signs, using input from digital gloves, e.g., Yao et al. (2006). However,
glove-based interfaces are typically expensive for adoption by the general public, as
well as intrusive, since the user has to wear one or two gloves connected with wires
to a computer.

Computer vision methods for sign language recognition offer hope for cheaper,
non-intrusive interfaces compared to methods using digital gloves. Several such
methods have been proposed (Bauer et al. 2000; Cui and Weng 2000; Dreuw et al.
2006; Kadir et al. 2004; Starner and Pentland 1998; Vogler andMetaxas 1999; Wang
et al. 2010; Zieren and Kraiss 2005). However, computer vision methods typically
report lower accuracies compared tomethods usingdigital gloves, due to the difficulty
of extracting accurate information about the articulated pose andmotion of the signer.

An important constraint limiting the accuracy of computer vision methods is
the availability of training data. Using more examples per sign typically improves
accuracy (see, e.g., Kadir et al. 2004; Zieren and Kraiss 2005). However, existing
datasets covering large vocabularies have only a limited number of examples per sign.
As an example, theASLLVDdataset (Athitsos et al. 2008) includes about 3,000 signs,
but only two examples are available for most of the signs. Some interesting research
has aimed at enabling automated construction of large datasets. For example, Cooper
and Bowden (2009) aim at automatically generating large corpora by automatically
segmenting signs from close-captioned sign language videos. As another example,
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Farhadi et al. (2007) propose a method where sign models are learned using avatar-
produced data, and then transfer learning is used to createmodels adapted for specific
human signers.

The recent availability of depth cameras such as KinectTM has changed the
methodology and improved performance. Depth cameras provide valuable 3D infor-
mation about the position and trajectory of hands in signing. Furthermore, detection
and tracking of articulated human motion is significantly more accurate in depth
video than in color video. Several approaches have been published in recent years
that use depth cameras to improve accuracy in sign language recognition (Conly
et al. 2015; Wang et al. 2015a; Zafrulla et al. 2011).

1.2.4 Data Sets for Gesture and Action Recognition

Tens of gesture recognition datasets have been made available to the research com-
munity over the last several years. A summary of available datasets is provided in
Table1.1. In that table, for each data set we mark some important attributes of the
dataset, such as the type of gestures it contains, the data modalities it provides, the
viewing field, background, amount of data, and so on. Regarding the “occlusions”
attribute in that table, we should clarify that it only refers to occlusions of the sub-
ject by other objects (or subjects), and not to self occlusions. Self occlusions are
quite common in gestures, and are observed in most datasets. We should also note
that, regarding the complexity of the background, dynamic and/or cluttered back-
grounds can make gesture recognition challenging in color images and video. At the
same time, a complex background can be quite easy to segment if depth or skeletal
information is available, as is the case in several datasets on Table1.1.

In order to be able to fit Table1.1 in a single page,we had to use abbreviations quite
heavily. Table1.2 defines the different acronyms and abbreviations used in Table1.1.

The datasets we have created for our challenges have certain unique character-
istics, that differentiate them from other existing datasets. The CDG2011 dataset
(Guyon et al. 2014) has a quite diverse collection of gesture types, including static,
pantomime, dance, signs, and activities. This is in contrast to other datasets, that
typically focus on only one or maybe two gesture types. Furthermore, the CDG2011
dataset uses an evaluation protocol that emphasizes one-shot learning, whereas exist-
ing data sets typically have several training examples for each class. The CDG2013
dataset introduces audio data to the mix of color and depth that is available in some
other data sets, such as Sadeghipour et al. (2012) and Bloom et al. (2012).
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Table 1.2 Acronyms and abbreviations used in the table of datasets

Taxonomy attribute Acronym/
abbreviation

Meaning

Actors/objects HH Human–human interactions

Actors/objects IH Isolated human

Actors/objects O Humans with objects

Body parts F Full body

Body parts H Hands

Static/dynamic SF Subjects are in motion, but each frame
is individually classified

Modalities 6DMG WorldViz PPT-X4 (position + 3D
orientation) + Wii Remote Plus
(acceleration and angular speeds)

Modalities A Audio

Modalities B Binary segmentation mask

Modalities C RGB (color)

Modalities ChAir RGB, depth, skeletal, four inertial
motion units

Modalities D Depth

Modalities G Grayscale

Modalities MC Multiple cameras

Modalities S Stereo images

Modalities ST Skeletal tracking

Viewing field A Arm and hand

Viewing field E Egocentric

Viewing field F Full body

Viewing field MU Upper body in most cases

Viewing field U Upper body

Occlusions

Viewpoints F Frontal

Viewpoints Fixed Fixed viewpoint for each class

Viewpoints SV Fixed viewpoint for some classes,
variable for other classes

Viewpoints V Variable viewpoint

Controlled/uncontrolled C Controlled

Controlled/uncontrolled U Uncontrolled

Background CU Some cluttered, some uncluttered

Background C Cluttered

Background D Dynamic

(continued)
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Table 1.2 (continued)

Taxonomy attribute Acronym/
abbreviation

Meaning

Background SF Each frame is individually classified,
so background is seen only from a
single frame

Background SD Static in some cases, dynamic in some
cases

Background ST Static

Background U Uncluttered

Variabilities in gender/age/ethnicity A Variabilities in age

Variabilities in gender/age/ethnicity AU Unspecified whether there are
variabilities in age

Variabilities in gender/age/ethnicity AY Mostly non-senior adults

Variabilities in gender/age/ethnicity E Variabilities in ethnicity

Variabilities in gender/age/ethnicity EU Unspecified whether there are
variabilities in ethnicity

Variabilities in gender/age/ethnicity G variabilities in gender

Variabilities in gender/age/ethnicity U Unspecified

Segmented/unsegmented SF Each frame is individually classified

Amount of data A action samples

Amount of data F Frames

Amount of data G gesture samples

Amount of data V Video clips

Number of subjects U1 Unspecified, but most subjects appear
in only one sample

Number of subjects UM Unspecified, but most subjects appear
in several samples

Number of subjects US Unspecified, but some subjects appear
in more than one sample

Classes CBP Continuous space of body

Classes CDG11 about 300, but broken into subsets of
8–12 classes

Gesture type A Action

Gesture type BP Body pose

Gesture type D Deictic

Gesture type E Emblematic

Gesture type HS Handshape

Gesture type I Iconic

Gesture type S Sign

(continued)
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Table 1.2 (continued)

Taxonomy attribute Acronym/
abbreviation

Meaning

Individual or collaborative B Both individual and collaborative

Individual or collaborative C Collaborative

Individual or collaborative I Individual

Individual or collaborative MI mostly individual

Evaluation criteria ATSR Defined in (Ruffieux et al. 2013),
based on difference between detected
and

ground truth endpoints, normalized by
duration of the gesture

Evaluation criteria CA Classification accuracy

Evaluation criteria F F-Score

Evaluation criteria Fer. Defined in (Ferrari et al. 2008), checks
if detected endpoints are within
distance of

half length (of the body part in
question) from the ground truth
position

Evaluation criteria L Levenshtein distance

Evaluation criteria MPJPE Mean per-joint position error
(measured as Euclidean distance)

Evaluation criteria Pascal At least 50% overlap of bounding
boxes on all body parts

Evaluation criteria Ram. Defined in (Ramanan 2006), average
negative log likelihood of correct pose

Evaluation criteria RCC Defined in (Wang et al. 2010), based
on rank of the correct class for each
test sign

For any R, report percentage of test
signs for which the correct class was
in the top R classes

Evaluation criteria Sap. Defined in Sapp and Taskar (2013),
Accuracy is based on (variable)
threshold pixel distance

between joint location and ground
truth, scaled so that the torso length in
the ground truth 100 pixels
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1.3 Gesture Recognition Challenges

In this section we review the series of gesture and action recognition challenges
organized by ChaLearn from 2011 to 2015, as well as other international challenges
related to gesture recognition.

1.3.1 First ChaLearn Gesture Recognition Challenge
(2011–2012): One Shot Learning

ChaLearn launched in 2012 a challenge with prizes donated by Microsoft using
datasets described in Guyon et al. (2014). We organized two rounds in conjunction
with the CVPR conference (Providence, Rhode Island, USA, June 2012) and the
ICPR conference (Tsukuba, Japan, November 2012). Details on the challenge setting
and results are found in Guyon et al. (2013). We briefly summarize the setting and
results.

1.3.1.1 2011–2012 Challenge Protocol and Evaluation

The task of the challenge was to built a learning system capable of learning a gesture
classification problem from a single training example per class, from dynamic video
data complemented by a depthmap obtainedwithKinectTM. The rationale behind this
setting is that, in many computer interface applications to gesture recognition, users
want to customize the interface to use their own gestures. Therefore they should be
able to retrain the interface using a small vocabulary of their own gestures. We have
also experimented with other use cases in gaming and teaching gesture vocabularies.
Additionally, the problem of one-shot-learning is of intrinsic interest in machine
learning and the solutions deviced could carry over to other applications. It is in a
certain way an extreme case of transfer learning.

To implement this setting in the challenge, we collected a large dataset consist-
ing of batches, each batch corresponding to the video recording of short sequences
of gestures performed by the same person. The gestures in one batch pertained to
a small vocabulary of gestures taken from a variety of application domains (sign
language for the deaf, traffic signals, pantomimes, dance postures, etc.). During the
development phase, the participants had access to hundreds of batches of diverse
gesture vocabularies. This played the role of “source domain data” in the transfer
learning task. The goal of the participants was to get ready to receive new batches
from different gesture performers and different gesture vocabularies, playing the
role of “transfer domain data”. Their system would then need to learn from a single
example of gesture performed by the particular performer, before being capable of
recognizing the rest of the gestures in that batch. The full dataset is available from
http://gesture.chalearn.org/data.

http://gesture.chalearn.org/data
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More specifically, each batch was split into a training set (of one example for
each gesture) and a test set of short sequences of one to 5 gestures. Each batch
contained gestures from a different small vocabulary of 8–12 gestures, for instance
diving signals, signs of American Sign Language representing small animals, Italian
gestures, etc. The test data labelswere provided for the development data only (source
domain data), so the participants could self-evaluate their systems and pre-train
parts of it as is expected from transfer learning methods. The data also included 20
validation batches and 20 final evaluation batches as transfer domain data used by the
organizers to evaluate the participants. In those batches, only the labels of the training
gestures (one example each) was provided, the rest of the gesture sequences were
unlabelled and the goal of the participants was to predict those labels. We used the
Kaggle platform to manage submissions1 The participants received immediate feed-
back on validation data on a on-line leaderboard. The final evaluation was carried out
on the final evaluation data, and those results were only revealed after the challenge
was over. The participants had a few days to train their systems and upload their
predictions. Prior to the end of the development phase, the participants were invited
to submit executable software for their best learning system to a software vault. This
allowed the competition organizers to check their results and ensure the fairness of
the competition.

To compare prediction labels for gesture sequences to the truth values, we used
the generalized Levenshtein distances (each gesture counting as one token). The final
evaluation score was computed as the sum of such distances for all test sequences,
divided by the total number of gestures in the test batch. This score is analogous to an
error rate. However, it can exceed one. Specifically, for each video, the participants
provided an ordered list of labels R corresponding to the recognized gestures. We
compared this list to the corresponding list of labels T in the prescribed list of ges-
tures that the user had to play. These are the “true” gesture labels (provided that the
users did not make mistakes). We computed the generalized Levenshtein distance
L(R, T ), that is the minimum number of edit operations (substitution, insertion,
or deletion) that one has to perform to go from R to T (or vice versa). The Lev-
enhstein distance is also known as “edit distance”. For example: L([124], [32]) = 2;
L([1], [2]) = 1; L([222], [2]) = 2.

We provided code to browse though the data, a library of computer vision and
machine learning techniques written in Matlab featuring examples drawn from the
challenge datasets, and an end-to-end baseline system capable of processing chal-
lenge data and producing a sample submission. The competition pushed the state
of the art considerably. The participants narrowed down the gap in performance
between the baseline recognition system initially provided (�60% error) and human
performance (�2% error) by reaching �7% error in the second round of the chal-
lenge. There remains still much room for improvement, particularly to recognize
static postures and subtle finger positions.

1For round 1: http://www.kaggle.com/c/GestureChallenge. For round 2: http://www.kaggle.com/
c/GestureChallenge2.

http://www.kaggle.com/c/GestureChallenge
http://www.kaggle.com/c/GestureChallenge2
http://www.kaggle.com/c/GestureChallenge2
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1.3.1.2 2011–2012 Challenge Data

The datasets are described in details in a companion paper (Guyon et al. 2014).
Briefly, the data are organized in batches: development batches devel01–480, vali-
dation batches valid01–20, and final evaluation batches final01–20 (for round 1) and
final21–40 (for round 2). For the development batches, we provided all the labels. To
evaluate the performances on “one-shot-learning” tasks, the valid and final batches
were provided with labels only for one example of each gesture class in each batch
(training examples). The goal was to automatically predict the gesture labels for the
remaining unlabelled gesture sequences (test examples).

Each batch includes 100 recorded gestures grouped in sequences of 1–5 gestures
performed by the same user. The gestures are drawn from a small vocabulary of
8–12 unique gestures, which we call a “lexicon”. For instance a gesture vocabulary
may consist of the signs to referee volleyball games or the signs to represent small
animals in the sign language for the deaf. We selected lexicons from nine categories
corresponding to various settings or application domains (Fig. 1.5):

Fig. 1.5 Types of gestures. We created a classification of gesture types according to purpose
defined by three complementary axes: communication, expression and action. We selected 85 ges-
ture vocabularies, including Italian gestures, Indian Mudras, Sign language for the deaf, diving
signals, pantomimes, and body language
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1. Body language gestures (like scratching your head, crossing your arms).
2. Gesticulations performed to accompany speech.
3. Illustrators (like Italian gestures).
4. Emblems (like Indian Mudras).
5. Signs (from sign languages for the deaf).
6. Signals (like referee signals, diving signals, or Marshalling signals to guide

machinery or vehicle).
7. Actions (like drinking or writing).
8. Pantomimes (gestures made to mimic actions).
9. Dance postures.

During the challenge, we did not disclose the identity of the lexicons and of the users.

1.3.1.3 2011–2012 Challenge Results

The results of the top ranking participants were checked by the organizers who
reproduced their results using the code provided by the participants before they had
access to the final evaluation data. All of them passed successfully the verification
process. These results are shown in Tables1.3 and 1.4.

1.3.1.4 2011–2012 Challenge, Summary of the Winner Methods

The results of the challenge are analyzed in details, based on papers published in this
special topic and on descriptions provided by the top ranking participants in their
fact sheets (Guyon et al. 2013). We briefly summarize notable methods below.

Table 1.3 Results of round 1. In round 1 the baseline method was a simple template matching
method (see text). For comparison, we show the results on the final set number 2 not available in
round 1

Team Public score on
validation set

Private score on final
set #1

For comparison
score on final set #2

Alfnie 0.1426 0.0996 0.0915

Pennect 0.1797 0.1652 0.1231

OneMillionMonkeys 0.2697 0.1685 0.1819

Immortals 0.2543 0.1846 0.1853

Zonga 0.2714 0.2303 0.2190

Balazs Godeny 0.2637 0.2314 0.2679

SkyNet 0.2825 0.2330 0.1841

XiaoZhuwWudi 0.2930 0.2564 0.2607

Baseline method 1 0.5976 0.6251 0.5646
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Table 1.4 Results of round 2. In round 2, the baseline method was the “Principal Motion” method
(see text)

Team Public score on
validation set

For comparison score
on final set #1

Private score on final
set #2

Alfnie 0.0951 0.0734 0.0710

Turtle Tamers 0.2001 0.1702 0.1098

Joewan 0.1669 0.1680 0.1448

Wayne Zhang 0.2814 0.2303 0.1846

Manavender 0.2310 0.2163 0.1608

HIT CS 0.1763 0.2825 0.2008

Vigilant 0.3090 0.2809 0.2235

Baseline method 2 0.3814 0.2997 0.3172

The winner of both rounds (Alfonso Nieto Castañon of Spain, a.k.a. alfnie) used a
novel technique called “Motion Signature analyses”, inspired by the neural mecha-
nisms underlying information processing in the visual system. This is an unpublished
method using a sliding window to perform simultaneously recognition and temporal
segmentation, based solely on depth images. The method, described by the authors
as a “Bayesian network”, is similar to a Hidden Markov Model (HMM). It performs
simultaneous recognition and segmentation using the Viterbi algorithm. The pre-
processing steps include Wavelet filtering replacement of missing values and outlier
detection. Notably, this method is one of the fastest despite the fact that he imple-
mented it in Matlab (close to real time on a regular laptop). The author claims that
it has linear complexity in image size, number of frames, and number of training
examples.

The second best ranked participants (team Pennect of Universit of Pennsylvania,
USA, in round 1 and team Turtle Tamers of Slovakia, in round 2) used very similar
methods and performed similarly. The second team published their results in this
special topic (Konecny and Hagara 2014). Both methods are based on an HMM-
style model using HOG/HOF features to represent movie frames. They differ in that
Pennect used RGB images only while Turtle Tamers used both RGB and depth.
Another difference is that Pennect used HOG/HOF features at 3 different scales
while Turtle Tamers created a bag of features using K-means clustering from only
40× 40 resolution and 16 orientation bins. Pennect trained a one-versus-all linear
classifier for each frame in every model and used the discriminant value as a local
state score for the HMM while Turtle Tamers used a quadratic-chi kernel metric for
comparing pairs of frames in the training and test movie. As preprocessing, Pennect
uses mean subtraction and compensates for body translations while Turtle Tamers
replaces the missing values by the median of neighboring values. Both teams claim
a linear complexity in number of frames, number of training examples, and image
size. They both provided Matlab software that processes all the batches of the final
test set on a regular laptop in a few hours.
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The next best ranked participants (who won third place in round 2), the Joewan
team, who published in this special topic (Wan et al. 2013), used a slightly different
approach. They relied on themotion segmentationmethod provided by the organizers
to pre-segment videos. They then represented each video as a bag of 3D MOSIFT
features (integratingRGBand depth data), and then used a nearest neighbor classifier.
Their algorithm is super-quadratic in image size, linear in number of frames per video,
and linear in number of training examples. The method is rather slow and takes over
a day to process all the batches of the final test set on a regular laptop.

The third best ranked team in round 1 (OneMillionMonkeys) also used an HMM
in which a state is created for each frame of the gesture exemplars. This data rep-
resentation is based on edge detection in each frame. Edges are associated with
several attributes including the X/Y coordinates, their orientation, their sharpness,
their depth and location in an area of change. To provide a local state score to the
HMM for test frames, OneMillionMonkeys calculated the joint probability of all
the nearest neighbors in training frames using a Gaussian model. The system works
exclusively from the depth images. The system is one of the slowest proposed. Its
processing speed is linear in number of training examples but quadratic in image size
and number of frames per video. The method is rather slow and takes over a day to
process all the batches of the final test set on a regular laptop.

Methods robust against translation include those of Joewan (Wan et al. 2013) and
Immortals/Manavender (this is the same author under two different pseudonyms for
round 1 and round 2). The team Immortals/Manavender published their method in
this special topic (Malgireddy et al. 2013). Their representations are based on a bag
of visual words, inspired by techniques used in action recognition (Laptev 2005).
Such representations are inherently shift invariant. The slight performance loss in
translated data may be due to partial occlusions.

Although the team Zonga did not end up ranking among top ranking participants,
the authors, who published their method in this special topic, proposed a very original
method and ended up winning the best paper award. Notably, their outperformed all
baseline methods early on in the challenge by applying their method without tuning
it to the tasks of the challenge and remained at the top of the leaderboard for several
weeks. The used a novel technique based on tensor geometry, which provides a
data representation exhibiting desirable invariances and yields a very discriminating
structure for action recognition.

ChaLearn also organized demonstration competitions of gesture recognition sys-
tems using KinectTM, in conjunction with those events. Novel data representations
were proposed to tackle with success, in real time, the problem of hand and finger
posture recognition. The demonstration competition winners showed systems capa-
ble of accurately tracking in real time hand postures in application for touch free
exploration of 3Dmedical images for surgeons in the operating room, finger spelling
(sign language for the deaf), virtual shopping, and game controlling. Combining the
methods proposed in the demonstration competition tackling the problem of hand
postures and those of the quantitative evaluation focusing on the dynamics of hand
and arm movements is a promising direction of future research. For a long lasting
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impact, the challenge platform, the data and software repositories have been made
available for further research.2

1.3.2 ChaLearn Multimodal Gesture Recognition Challenge
2013

The focus of this second challenge was onmultiple instance, user independent learn-
ing of gestures from multimodal data, which means learning to recognize gestures
from several instances for each category performed by different users, drawn from a
vocabulary of 20 gesture categories (Escalera et al. 2013a, b). A gesture vocabulary
is a set of unique gestures, generally related to a particular task. In this challenge
we focus on the recognition of a vocabulary of 20 Italian cultural/anthropological
signs (Escalera et al. 2013b), see Fig. 1.6 for one example of each Italian gesture.

1.3.2.1 2013 Challenge Data

In all the sequences, a single user is recorded in front of a KinectTM, performing nat-
ural communicative gestures and speaking in fluent Italian. The main characteristics
of the dataset of gestures are:

• 13.858gesture samples recordedwith theKinectTM camera, including audio, skele-
tal model, user mask, RGB, and depth images.

• RGB video stream, 8-bit VGA resolution (640×480) with a Bayer color filter,
and depth sensing video stream in VGA resolution (640×480) with 11-bit. Both
are acquired in 20 fps on average.

• Audio data is captured using KinectTM 20 multiarray microphone.
• A total number of 27 users appear in the data set.
• The data set contains the following number of sequences, development: 393 (7.754
gestures), validation: 287 (3.362 gestures), and test: 276 (2.742 gestures), each
sequence lasts between 1 and 2min and contains between 8 and 20 gesture samples,
around 1.800 frames. The total number of frames of the data set is 1.720.800.

• All the gesture samples belonging to 20 main gesture categories from an Italian
gesture dictionary are annotated at frame level indicating the gesture label.

• 81% of the participants were Italian native speakers, while the remaining 19% of
the users were not Italian, but Italian-speakers.

• All the audio that appears in the data is from the Italian dictionary. In addition,
sequences may contain distractor words and gestures, which are not annotated
since they do not belong to the main dictionary of 20 gestures.

2http://gesture.chalearn.org/.

http://gesture.chalearn.org/
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Fig. 1.6 Data set gesture categories
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Table 1.5 Easy and challenging aspects of the data

Easy

Fixed camera

Near frontal view acquisition

Within a sequence the same user

Gestures performed mostly by arms and hands

Camera framing upper body

Several available modalities: audio, skeletal model, user mask, depth, and RGB

Several instances of each gesture for training

Single person present in the visual field

Challenging

Within each sequence:

Continuous gestures without a resting pose

Many gesture instances are present

Distracter gestures out of the vocabulary may be present in terms of both gesture and audio

Between sequences:

High inter and intra-class variabilities of gestures in terms of both gesture and audio

Variations in background, clothing, skin color, lighting, temperature, resolution

Some parts of the body may be occluded

Different Italian dialects

Fig. 1.7 Different data modalities of the provided data set

This dataset, available at http://sunai.uoc.edu/chalearn, presents various features
of interest as listed in Table1.5. Examples of the provided visual modalities are
shown in Fig. 1.7.

1.3.2.2 2013 Challenge Protocol and Evaluation

As in our previous 2011–2012 challenge, it consisted of two main components: a
development phase (April 30th to Aug 1st) and a final evaluation phase (Aug 2nd
to Aug 15th). The submission and evaluation of the challenge entries was via the

http://sunai.uoc.edu/chalearn
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K aggle platform.3 The official participation rules were provided on the website of
the challenge. In addition, publicity and news on the ChaLearn Multimodal Ges-
ture Recognition Challenge were published in well-known online platforms, such as
LinkedIn, Facebook, Google Groups and the ChaLearn website.

During the development phase, the participants were asked to build a system
capable of learning from several gesture samples a vocabulary of 20 Italian sign
gesture categories. To that end, the teams received the development data to train
and self-evaluate their systems. In order to monitor their progress they could use
the validation data for which the labels were not provided. The prediction results on
validation data could be submitted online to get immediate feed-back. A real-time
leaderboard showed to the participants their current standing based on their validation
set predictions.

During the final phase, labels for validation data were published and the par-
ticipants performed similar tasks as those performed in previous phase, using the
validation data and training data sets in order to train their system with more gesture
instances. The participants had only few days to train their systems and upload them.
The organizers used the final evaluation data in order to generate the predictions and
obtain the final score and rank for each team. At the end, the final evaluation data was
revealed, and authors submitted their own predictions and fact sheets to the platform.

As an evaluation metric we also used the Levenshtein distance described in pre-
vious section. A public score appeared on the leaderboard during the development
period and was based on the validation data. Subsequently, a private score for each
team was computed on the final evaluation data released at the end of the develop-
ment period, which was not revealed until the challenge was over. The private score
was used to rank the participants and determine the prizes.

1.3.2.3 2013 Challenge Results

The challenge attracted high level of participation, with a total of 54 teams and near
300 total number of entries. This is a good level of participation for a computer vision
challenge requiring very specialized skills. Finally, 17 teams successfully submitted
their prediction in final test set, while providing also their code for verification and
summarizing their method by means of a fact sheet questionnaire.

After verifying the codes and results of the participants, the final scores of the top
rank participants on both validation and test sets were made public: these results are
shown in Table1.6, where winner results on the final test set are printed in bold. In
the end, the final error rate on the test data set was around 12%.

3https://www.kaggle.com/c/multimodal-gesture-recognition.

https://www.kaggle.com/c/multimodal-gesture-recognition
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Table 1.6 Top rank results
on validation and test sets

Best scores are bolded

TEAM Validation score Test score

IVA MM 0.20137 0.12756

WWEIGHT 0.46163 0.15387

ET 0.33611 0.16813

MmM 0.25996 0.17215

PPTK 0.15199 0.17325

LRS 0.18114 0.17727

MMDL 0.43992 0.24452

TELEPOINTS 0.48543 0.25841

CSI MM 0.32124 0.28911

SUMO 0.49137 0.31652

GURU 0.51844 0.37281

AURINKO 0.31529 0.63304

STEVENWUDI 1.43427 0.74415

JACKSPARROW 0.86050 0.79313

JOEWAN 0.13653 0.83772

MILAN KOVAC 0.87835 0.87463

IAMKHADER 0.93397 0.92069

1.3.2.4 2013 Challenge Summary of the Winner Methods

Table1.7 shows the summary of the strategies considered by each of the top ranked
participants on the test set. Interestingly, the three top ranked participants agree in
the modalities and segmentation strategy considered, although they differ in the final
applied classifier. Next, we briefly describe in more detail the approach designed by
the three winners of the challenge.

The first ranked team IVA MM on the test set used a feature vector based on audio
and skeletal information, and applied late fusion to obtain final recognition results.
A simple time-domain end-point detection algorithm based on joint coordinates is
applied to segment continuous data sequences into candidate gesture intervals. A
Gaussian Hidden Markov Model is trained with 39-dimension MFCC features and
generates confidence scores for each gesture category. A Dynamic Time Warping
based skeletal feature classifier is applied to provide complementary information.
The confidence scores generated by the two classifiers are firstly normalized and
then combined to produce a weighted sum. A single threshold approach is employed
to classify meaningful gesture intervals from meaningless intervals caused by false
detection of speech intervals.

The second ranked team WWEIGHT combined audio and skeletal information,
using both joint spatial distribution and joint orientation. The method first searches
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Table 1.7 Team methods and results. Early and late refer to early and late fusion of fea-
tures/classifier outputs HMM HiddenMarkovModels, KNN Nearest Neighbor, RF Random Forest,
Tree Decision Trees, ADA Adaboost variants, SVM Support Vector Machines, Fisher Fisher Linear
Discriminant Analysis, GMM Gaussian Mixture Models, NN Neural Networks, DGM Deep Boltz-
mann Machines, LR Logistic Regression, DP Dynamic Programming, ELM Extreme Learning
Machines, SK skeleton

TEAM Test
score

Rank Modalities Segmentation Fusion Classifier

IVA MM 0.12756 1 Audio,SK Audio None HMM,DP,KNN

WWEIGHT 0.15387 2 Audio,SK Audio Late RF,KNN

ET 0.16813 3 Audio,SK Audio Late Tree,RF,ADA

MmM 0.17215 4 Audio,RGB+
Depth

Audio Late SVM,GMM,KNN

PPTK 0.17325 5 Skeleton,RGB,
Depth

Sliding windows Late GMM,HMM

LRS 0.17727 6 Audio,SK,
Depth

Sliding windows Early NN

MMDL 0.24452 7 Audio,SK Sliding windows Late DGM+LR

TELEPOINTS 0.25841 8 Audio,SK,RGB Audio,SK Late HMM,SVM

CSI MM 0.28911 9 Audio,SK Audio Early HMM

SUMO 0.31652 10 Skeleton Sliding windows None RF

GURU 0.37281 11 Audio,SK,
Depth

DP Late DP,RF,HMM

AURINKO 0.63304 12 Skeleton,RGB Skeleton Late ELM

STEVENWUDI 0.74415 13 Audio,SK Sliding windows Early DNN,HMM

JACKSPARROW 0.79313 14 Skeleton Sliding windows None NN

JOEWAN 0.83772 15 Skeleton Sliding windows None KNN

MILAN KOVAC 0.87463 16 Skeleton Sliding windows None NN

IAMKHADER 0.92069 17 Depth Sliding windows None RF

for regions of time with high audio-energy to define 1.8-s-long windows of time that
potentially contained a gesture. This had the effect that the development, validation,
and test data were treated uniformly. Feature vectors are then defined using a log-
spaced audio spectrogram and the joint positions and orientations above the hips.
At each time sample the method subtracts the average 3D position of the left and
right shoulders from each 3D joint position. Data is down-sampled onto a 5Hz grid
considering 1.8 s. There were 1593 features total (9 time samples × 177 features per
time sample). Since some of the detected windows can contain distractor gestures,
an extra 21st label is introduced, defining the ‘not in the dictionary’ gesture category.
Python’s scikit-learn was used to train two models: an ensemble of randomized
decision trees (ExtraTreesClassifier, 100 trees, 40% of features) and a K-Nearest
Neighbor model (7 neighbors, L1 distance). The posteriors from these models are
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Fig. 1.8 ExtraTreesClassifier feature importance

averaged with equal weight. Finally, a heuristic is used (12 gestures maximum, no
repeats) to convert posteriors to a prediction for the sequence of gestures.

Figure1.8 shows the mean feature importance for the windows size of 1.8 s for the
three sets of features: joint coordinates, joint orientations, and audio spectogram.One
can note that features from the three sets are selected as discriminative by the clas-
sifier, although skeletal features becomes more useful for the ExtraTreesClassifier.
Additionally, the most discriminative features are those in the middle of the windows
size, since begin-end features are shared among different gestures (transitions) and
thus are less discriminative for the classifier.

The third ranked team ET combined the output decisions of two designed
approaches. In the first approach, they look for gesture intervals (unsupervised) using
the audio files and extract these features from intervals (MFCC).Using these features,
authors train a random forest and gradient boosting classifier. The second approach
uses simple statistics (median, var, min, max) on the first 40 frames for each ges-
ture to build the training samples. The prediction phase uses a sliding window. The
authors create a weighted average of the output of these two models. The features
considered were skeleton information and audio signal.

Finally,we extracted some statistics from the results of the three challengewinners
in order to analyze common points and difficult aspects of the challenge. Figure1.9
shows the recognition of the 276 test sequences by the winners. Black bin means
that the complete list of ordered gestures was successfully recognized for those
sequences. Once can see that there exists some kind of correlation among methods.
Taking into account that consecutive sequences belong to the same user performing
gestures, it means that some some gestures are easier to recognize than others. Since
different users appear in the training and test sequences, it is sometimes difficult for
the models to generalize to the style of new users, based on the gesture instances
used for training.

Fig. 1.9 Recognition of test sequence by the three challenge winners. Black bin means that the
complete list of ordered gestures has been successfully recognized
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Fig. 1.10 Deviation of the number of gesture samples for each category by the three winners in
relation to the GT data

We also investigated the difficulty of the problem by gesture category, within each
of the 20 Italian gesture categories. Figure1.10 shows for each winner method the
deviation between the number of gesture instances recognized and the total number
of gestures, for each category. This was computed for each sequence independently,
and adding the deviation for all the sequences. In that case, a zero valuemeans that the
participant method recognized the same number of gesture instances for a category
that was recorded in the ground truth data. Although we cannot guarantee with this
measure that the order of recognized gesture matches with the ground truth, it gives
us an idea of how difficult the gesture sequences were to segment into individual
gestures. Additionally, the sum of total deviation for all the gestures for all the teams
was 378, 469, and 504, which correlates with the final rank of the winners. The figure
suggests a correlation between the performance of the three winners. In particular,
categories 6, 7, 8, 9, 16, 17, 18, and 19 were the ones that achieved most accuracy
for all the participants, meanwhile 1, 2, 3, 5, and 12 were the ones that introduced
the highest recognition error. Note that the public data set provides accurate label
annotations of end-begin of gestures, and thus, a more detailed recognition analysis
could be performed applying a different recognition measurement to Leveinstein,
such as Jaccard overlapping or sensitivity score estimation, which will also allow for
confusion matrix estimation based on both inter and intra user and gesture category
variability. This is left to future work.

1.3.3 ChaLearn Multimodal Gesture Spotting Challenge
2014

In ChaLearn LAP 2014 (Escalera et al. 2014) we focused on the user-independent
automatic spotting of a vocabulary of 20 Italian cultural/anthropological signs in
image sequences, see Fig. 1.6.



1 Challenges in Multi-modal Gesture Recognition 35

Table 1.8 Main characteristics of the Montalbano gesture dataset. SK: skeleton

Training seq. Validation seq. Test seq. Sequence
duration

FPS

393 (7,754
gestures)

287 (3,362
gestures)

276 (2,742
gestures)

1–2 min 20

Modalities Num. of users Gesture
categories

Labeled
sequences

Labeled frames

RGB, Depth,
Mask, SK

27 20 13,858 1,720,800

1.3.3.1 2014 Gesture Challenge Data

This challenge was based on an Italian gesture data set, called Montalbano gesture
dataset, an enhanced version of the ChaLearn 2013 multimodal gesture recognition
challenge (Escalera et al. 2013a, b) with more ground-truth annotations. In all the
sequences, a single user is recorded in front of a KinectTM, performing natural com-
municative gestures and speaking in fluent Italian. Examples of the different visual
modalities are shown in Fig. 1.7.

The main characteristics of the data set are:

• Largest data set in the literature, with a large duration of each individual perfor-
mance showing no resting poses and self-occlusions.

• There is no information about the number of gestures to spot within each sequence,
and several distracter gestures (out of the vocabulary) are present.

• High intra-class variability of gesture samples and low inter-class variability for
some gesture categories.

A list of data attributes for data set used in track 3 is described in Table1.8.

1.3.3.2 2014 Gesture Challenge Protocol and Evaluation

The challenge was managed using the Microsoft Codalab platform.4 We followed a
development (February 9 to May 20 2014) and tests phases (May 20th to June 1st
2014) as in our previous challenges.

To evaluate the accuracy of action/interaction recognition, we use the Jaccard
Index, For the n action, interaction, and gesture categories labelled for a RGB/RGBD
sequence s, the Jaccard Index is defined as:

Js,n = As,n
⋂

Bs,n

As,n
⋃

Bs,n
, (1.1)

4https://www.codalab.org/competitions/.

https://www.codalab.org/competitions/
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Fig. 1.11 Example of mean Jacquard Index calculation for gesture and action/interaction spotting

where As,n is the ground truth of action/interaction/gesture n at sequence s, and
Bs,n is the prediction for such an action at sequence s. As,n and Bs,n are binary
vectors where 1-values correspond to frames in which the n−th action is being
performed. The participants were evaluated based on the mean Jaccard Index among
all categories for all sequences, where motion categories are independent but not
mutually exclusive (in a certain frame more than one action, interaction, gesture
class can be active).

In the case of false positives (e.g. inferring an action, interaction or gesture not
labelled in the ground truth), the Jaccard Index is 0 for that particular prediction, and
it will not count in the mean Jaccard Index computation. In other words n is equal
to the intersection of action/interaction/gesture categories appearing in the ground
truth and in the predictions.

An example of the calculation for two actions is shown in Fig. 1.11. Note that
in the case of recognition, the ground truth annotations of different categories can
overlap (appear at the same time within the sequence). Also, although different
actors appear within the sequence at the same time, actions/interactions/gestures are
labelled in the corresponding periods of time (that may overlap), there is no need to
identify the actors in the scene. The example in Fig. 1.11 shows the mean Jaccard
Index calculation for different instances of actions categories in a sequence (single
red lines denote ground truth annotations and double red lines denote predictions).
In the top part of the image one can see the ground truth annotations for actions
walk and fight at sequence s. In the center part of the image a prediction is evaluated
obtaining a Jaccard Index of 0.72. In the bottom part of the image the same procedure
is performed with the action fight and the obtained Jaccard Index is 0.46. Finally, the
mean Jaccard Index is computed obtaining a value of 0.59 (Table 1.9).

1.3.3.3 2014 Gesture Challenge Results

Table1.10 summarizes the methods of the 17 participants that contributed to the test
set of track 3. Although DTW and HMM (and variants) were in the last edition of
the ChaLearn Multimodal Gesture competition (Escalera et al. 2013a, b), random
forest has been widely applied in this 2014 edition. Also, three participants used
deep learning architectures.



1 Challenges in Multi-modal Gesture Recognition 37

Ta
bl

e
1.

9
To

p
ro
w
s:
ac
tio

n/
in
te
ra
ct
io
n
20

14
re
co
gn

iti
on

re
su
lts
.

M
H

I
M
ot
io
n
H
is
to
ry

Im
ag
e,

ST
IP

Sp
at
io
-T
em

po
ra
l
in
te
re
st
po
in
ts
,

M
B

F
M
ul
tis
ca
le

B
lo
b

Fe
at
ur
es
,B

oW
B
ag

of
V
is
ua
lW

or
ds
,R

F
R
an
do

m
Fo

re
st
.B

ot
to
m
tw
o
ro
w
s:
ac
tio

n/
in
te
ra
ct
io
n
20

15
re
co
gn

iti
on

re
su
lts
.I

D
T
Im

pr
ov
ed

D
en
se

T
ra
je
ct
or
ie
s
(W

an
g

an
d
Sc
hm

id
20
13
)

Te
am

na
m
e

A
cc
ur
ac
y

R
an
k

Fe
at
ur
es

D
im

en
si
on

re
du
ct
io
n

C
lu
st
er
in
g

C
la
ss
ifi
er

Te
m
po
ra
l

co
he
re
nc
e

G
es
tu
re

re
pr
es
en
ta
tio

n

C
U
H
K
-S
W
JT
U

0.
50

71
73

1
Im

pr
ov
ed

tr
aj
ec
to
ri
es

(W
an
g

an
d
Sc
hm

id
20
13
)

PC
A

–
SV

M
Sl
id
in
g
w
in
do
w
s

Fi
sh
er

V
ec
to
r

A
D
SC

0.
50

11
64

2
Im

pr
ov
ed

tr
aj
ec
to
ri
es

(W
an
g

an
d
Sc
hm

id
20
13
)

–
–

SV
M

Sl
id
in
g
w
in
do
w
s

–

SB
U
V
IS

0.
44

14
05

3
Im

pr
ov
ed

tr
aj
ec
to
ri
es

(W
an
g

an
d
Sc
hm

id
20
13
)

–
–

SV
M

Sl
id
in
g
w
in
do
w
s

–

D
on
ke
yB

ur
ge
r

0.
34
21
92

4
M
H
I,
ST

IP
–

K
m
ea
ns

Sp
ar
se

co
de

Sl
id
in
g
w
in
do
w
s

–

U
C
-T
2

0.
12
15
65

5
Im

pr
ov
ed

tr
aj
ec
to
ri
es

(W
an
g

an
d
Sc
hm

id
20
13
)

PC
A

–
K
m
ea
ns

Sl
id
in
g
w
in
do
w
s

Fi
sh
er

V
ec
to
r

M
in
dL

A
B

0.
00
83
83

6
M
B
F

–
K
m
ea
ns

R
F

Sl
id
in
g
w
in
do
w
s

B
oW

M
M
L
A
B

0.
53

85
1

ID
T

PC
A

–
SV

M
–

Fi
sh
er

V
ec
to
r

FI
K
IE

0.
52

39
2

ID
T

PC
A

–
H
M
M

A
pp
ea
ra
nc
e
+

K
al
m
an

fil
te
r

–

B
es
ts
co
re
s
ar
e
bo

ld
ed



38 S. Escalera et al.

Ta
bl

e
1.

10
M
ul
tim

od
al

ge
st
ur
e
re
co
gn
iti
on

re
su
lts
.

SK
Sk

el
et
on
,

D
N

N
D
ee
p
N
eu
ra
l
N
et
w
or
k,

R
F

R
an
fo
m

Fo
re
st
,

2D
M

T
M

2D
m
ot
io
n
tr
ai
l
m
od

el
,

R
T

R
eg
re
ss
io
n
T
re
e

Te
am

A
cc
ur
ac
y

R
an
k

M
od

al
iti
es

Fe
at
ur
es

Fu
si
on

Te
m
p.

se
gm

en
ta
tio

n
D
im

en
si
on

re
du
ct
io
n

G
es
tu
re

re
pr
es
en
ta
tio

n
C
la
ss
ifi
er

L
IR

IS
0.

84
99

87
1

SK
,D

ep
th
,

R
G
B

R
A
W
,S

K
jo
in
ts

E
ar
ly

Jo
in
ts
m
ot
io
n

–
–

D
N
N

C
ra
SP

N
0.

83
39

04
2

SK
,D

ep
th
,

R
G
B

H
O
G
,S

K
E
ar
ly

Sl
id
in
g

w
in
do
w
s

–
B
oW

A
da
bo
os
t

JY
0.

82
67

99
3

SK
,R

G
B

SK
,H

O
G

L
at
e

M
R
F

PC
A

–
M
R
F,
K
N
N

C
U
H
K
-

SW
JT

U
0.
79
19
33

4
R
G
B

Im
pr
ov
ed

tr
a-

je
ct
or
ie
s
(W

an
g

an
d
Sc
hm

id
20
13
)

–
Jo
in
ts
m
ot
io
n

PC
A

Fi
sh
er

V
ec
to
r,

V
L
A
D

SV
M

L
pi
go
u

0.
78
88
04

5
D
ep
th
,R

G
B

R
A
W
,S

K
jo
in
ts

E
ar
ly

Sl
id
in
g

w
in
do
w
s

M
ax
-p
oo
lin

g
C
N
N

–
C
N
N

st
ev
en
w
ud
i

0.
78
73
10

6
SK

,d
ep
th

R
A
W

L
at
e

Sl
id
in
g

w
in
do
w
s

–
–

H
M
M
,D

N
N

Is
m
ar

0.
74
66
32

7
SK

SK
–

Sl
id
in
g

w
in
do
w
s

–
–

R
F

Q
ua
ds

0.
74
54
49

8
SK

SK
qu
ad
s

–
Sl
id
in
g

w
in
do
w
s

–
Fi
sh
er

V
ec
to
r

SV
M

Te
le
po

in
ts

0.
68
87
78

9
SK

,D
ep
th
,

R
G
B

ST
IP
S,

SK
L
at
e

Jo
in
ts
m
ot
io
n

–
–

SV
M

T
U
M
-f
or
tis
s

0.
64
89
79

10
SK

,D
ep
th
,

R
G
B

ST
IP
S

L
at
e

Jo
in
ts
m
ot
io
n

–
–

R
F,
SV

M

C
SU

-S
C
M

0.
59
71
77

11
Sk

el
et
on
,

D
ep
th
,m

as
k

H
O
G
,S

ke
le
to
n

L
at
e

Sl
id
in
g

w
in
do
w
s

–
2D

M
T
M

SV
M
,H

M
M

(c
on
tin

ue
d)



1 Challenges in Multi-modal Gesture Recognition 39

Ta
bl

e
1.

10
(c
on
tin

ue
d)

Te
am

A
cc
ur
ac
y

R
an
k

M
od

al
iti
es

Fe
at
ur
es

Fu
si
on

Te
m
p.

se
gm

en
ta
tio

n
D
im

en
si
on

re
du
ct
io
n

G
es
tu
re

re
pr
es
en
ta
tio

n
C
la
ss
ifi
er

iv
a.
m
m

0.
55
62
51

12
Sk

el
et
on

,R
G
B
,

de
pt
h

Sk
el
et
on
,H

O
G

L
at
e

Sl
id
in
g

w
in
do
w
s

–
B
oW

SV
M
,H

M
M

Te
rr
ie
r

0.
53
90
25

13
Sk

el
et
on

Sk
el
et
on

–
Sl
id
in
g

w
in
do
w
s

–
–

R
F

Te
am

N
et
he
rl
an
ds

0.
43
07
09

14
Sk

el
et
on
,

D
ep
th
,R

G
B

M
H
I

E
ar
ly

D
T
W

Pr
es
er
vi
ng

pr
oj
ec
tio

ns
–

SV
M
,R

T

V
ec
sR

el
0.
40
80
12

15
Sk

el
et
on
,

D
ep
th
,R

G
B

R
A
W
,s
ke
le
to
n

jo
in
ts

L
at
e

D
T
W

–
–

D
N
N

Sa
m
ge
st

0.
39
16
13

16
Sk

el
et
on
,

D
ep
th
,R

G
B
,

m
as
k

Sk
el
et
on
,

bl
ob
s,
m
om

en
ts

L
at
e

Sl
id
in
g

w
in
do
w
s

–
–

H
M
M

Y
N
L

0.
27
06
00

17
Sk

el
et
on

Sk
el
et
on

–
Sl
id
in
g

w
in
do
w
s

–
Fi
sh
er

V
ec
to
r

H
M
M
,S

V
M



40 S. Escalera et al.

1.3.3.4 2014 Gesture Challenge Summary of the Winner Methods

Next, we describe the main characteristics of the three winning methods.

First place: The proposed method was based on a deep learning architecture that
iteratively learned and integrated discriminative data representations from individual
channels, modelling cross-modality correlations and short- and long-term temporal
dependencies. This framework combined three data modalities: depth information,
grayscale video and skeleton stream (“articulated pose”). Articulated pose served as
an efficient representation of large-scale body motion of the upper body and arms,
while depth and video streams contained complementary information about more
subtle hand articulation. The articulated pose was formulated as a set of joint angles
and normalized distances between upper-body joints, augmented with additional
information reflecting speed and acceleration of each joint. For the depth and video
streams, the authors did not rely on hand-crafted descriptors, but on discriminatively
learning joint depth-intensity data representations with a set of convolutional neural
layers. Iterative fusion of data channels was performed at output layers of the neural
architecture. The idea of learning at multiple scales was also applied to the temporal
dimension, such that a gesture was considered as an ordered set of characteristic
motion impulses, or dynamic poses. Additional skeleton-based binary classifier was
applied for accurate gesture localization. Fusingmultiplemodalities at several spatial
and temporal scales led to a significant increase in recognition rates, allowing the
model to compensate for errors of the individual classifiers as well as noise in the
separate channels.

Second place: The approach combined a sliding-window gesture detector with mul-
timodal features drawn from skeleton data, color imagery, and depth data produced by
a first-generation KinectTM sensor. The gesture detector consisted of a set of boosted
classifiers, each tuned to a specific gesture or gesture mode. Each classifier was
trained independently on labeled training data, employing bootstrapping to collect
hard examples. At run-time, the gesture classifiers were evaluated in a one-versus-
all manner across a sliding window. Features were extracted at multiple temporal
scales to enable recognition of variable-length gestures. Extracted features included
descriptive statistics of normalized skeleton joint positions, rotations, and velocities,
as well as HOG descriptors of the hands. The full set of gesture detectors was trained
in under two hours on a single machine, and was extremely efficient at runtime,
operating at 1700 fps using skeletal data.

Third place: The proposedmethodwas based on four features: skeletal joint position
feature, skeletal joint distance feature, and histogram of oriented gradients (HOG)
features corresponding to left and right hands. Under the naïve Bayes assumption,
likelihood functions were independently defined for every feature. Such likelihood
functions were non-parametrically constructed from the training data by using kernel
density estimation (KDE). For computational efficiency, k-nearest neighbor (kNN)
approximation to the exact density estimator was proposed. Constructed likelihood
functions were combined to the multimodal likelihood and this serves as a unary
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term for our pairwise Markov random field (MRF) model. For enhancing temporal
coherence, a pairwise term was additionally incorporated to the MRF model. Final
gesture labels were obtained via 1DMRF inference efficiently achieved by dynamic
programming.

1.3.4 ChaLearn Action and Interaction Spotting Challenge
2014

The goal of this challenge was to perform automatic action and interaction spotting
of people appearing in RGB data sequences.

1.3.4.1 2014 Action Challenge Data

We presented a novel fully limb labelled dataset, the Human Pose Recovery and
Behavior Analysis HuPBA 8k+ dataset (Sánchez et al. 2014). This dataset is formed
by more than 8000 frames where 14 limbs are labelled at pixel precision, thus pro-
viding 124, 761 annotated human limbs. The characteristics of the data set are:

• The images are obtained from 9 videos (RGB sequences) and a total of 14 different
actors appear in the sequences. The image sequences have been recorded using a
stationary camera with the same static background.

• Each video (RGB sequence) was recorded at 15 fps rate, and each RGB image
was stored with resolution 480 × 360 in BMP file format.

• For each actor present in an image 14 limbs (if not occluded)weremanually tagged:
Head, Torso, R–L Upper-arm, R–L Lower-arm, R–L Hand, R–L Upper-leg, R–L
Lower-leg, and R–L Foot.

• Limbs are manually labelled using binary masks and the minimum bounding box
containing each subject is defined.

• The actors appear in a wide range of different poses and performing different
actions/gestures which vary the visual appearance of human limbs. So there is a
large variability of human poses, self-occlusions and many variations in clothing
and skin color.

• Several actions and interactions categories are labelled at frame level.

A key frame example for each gesture/action category is shown in Fig. 1.12. The
challenges the participants had to deal with for this new competition are:

• 235 action/interaction samples performed by 14 actors.
• Large difference in length about the performed actions and interactions. Several
distracter actions out of the 11 categories are also present.

• 11 action categories, containing isolated and collaborative actions: Wave, Point,
Clap, Crouch, Jump, Walk, Run, Shake Hands, Hug, Kiss, Fight. There is a high
intra-class variability among action samples.
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Fig. 1.12 Key frames of the HuPBA 8K+ dataset used in the tracks 1 and 2, showing actions (a–g),
interactions (h–k) and the idle pose (l)

Table1.11 summarizes the data set attributes for the case of action/interaction
spotting.

1.3.4.2 2014 Action Challenge Protocol and Evaluation

To evaluate the accuracy of action/interaction recognition, we use the Jaccard Index
as defined in Sect. 1.3.3.2.
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Table 1.11 Action and interaction data characteristics

Training actions Validation
actions

Test actions Sequence
duration

FPS

150 90 95 9× 1–2 min 15

Modalities Num. of users Action categories Interaction
categories

Labelled
sequences

RGB 14 7 4 235

1.3.4.3 2014 Action Challenge Results

In this section we summarize the methods proposed by the participants and the
winning methods. Six teams submitted their code and predictions for the test sets.
Top rows of Table1.9 summarizes the approaches of the participants who uploaded
their models. One can see that most methods are based on similar approaches. In
particular, alternative representations to classical BoW were considered, as Fisher
Vector and VLAD (Jegou et al. 2012). Most methods perform sliding windows and
SVMclassification. In addition, to refine the tracking of interest points, 4 participants
used improved trajectories (Wang and Schmid 2013).

1.3.4.4 2014 Action Challenge Summary of the Winner Methods

Next, we describe the main characteristics of the three winning methods.

First place: The method was composed of two parts: video representation and tem-
poral segmentation. For the representation of video clip, the authors first extracted
improved dense trajectories with HOG, HOF, MBHx, and MBHy descriptors. Then,
for each kind of descriptor, the participants trained a GMM and used Fisher vector to
transform these descriptors into a high dimensional super vector space. Finally, sum
poolingwas used to aggregate these codes in thewhole video clip and normalize them
with power L2 norm. For the temporal recognition, the authors resorted to a temporal
sliding method along the time dimension. To speed up the processing of detection,
the authors designed a temporal integration histogram of Fisher Vector, with which
the pooled Fisher Vector was efficiently evaluated at any temporal window. For each
sliding window, the authors used the pooled Fisher Vector as representation and fed
it into the SVM classifier for action recognition.

Second place: a human action detection framework called “mixture of heteroge-
neous attribute analyzer” was proposed. This framework integrated heterogeneous
attributes learned from various types of video features including static and dynamic,
local and global features, to boost the action detection accuracy. The authors first
detected a human from the input video by SVM-HOG detector and performed
forward-backward tracking. Multiple local human tracks are linked into long tra-
jectories by spatial-temporal graph based matching. Human key poses and local
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dense motion trajectories were then extracted within the tracked human bounding
box sequences. Second, the authors proposed a mining method that learned discrim-
inative attributes from three feature modalities: human trajectory, key pose and local
motion trajectory features. The mining framework was based on the exemplar-SVM
discriminative middle level feature detection approach. The learned discriminative
attributes from the three types of visual features were then mixed in a max-margin
learning algorithm which also explores the combined discriminative capability of
heterogeneous feature modalities. The learned mixed analyzer was then applied to
the input video sequence for action detection.

Third place: The framework for detecting actions in video is based on improved
dense trajectories applied on a sliding windows fashion. Authors independently
trained 11 one-versus-all kernel SVMs on the labelled training set for 11 different
actions. The feature and feature descriptions used are improved dense trajectories,
HOG, HOF, MBHx and MBHy. During training, for each action, a temporal sliding
window is applied without overlapping. For every action, a segment was labelled 0
(negative) for a certain action only if there is no frame in this segment labelled 1.
The feature coding method was bag-of-features. For a certain action, the features
associated with those frames which are labelled 0 (negative) are not counted when
we code the features of the action for the positive segments with bag-of-features.
On the basis of the labelled segments and their features, a kernel SVM was trained
for each action. During testing, non-overlap sliding window was applied for feature
coding of the video. Every frame in a segment was consistently labelled as the output
of SVM for each action. The kernel type, sliding window size and penalty of SVMs
were selected during validation. When building the bag-of-features, the clustering
method was K -means and the vocabulary size is 4000. For one trajectory feature in
one frame, all the descriptors were connected to form one description vector. The
bag-of-features were built upon this vector.

1.3.5 ChaLearn Action and Interaction Spotting Challenge
2015

The goal of this challenge was to perform automatic action and interaction spotting
of people appearing in RGB data sequences. This corresponds to the second round of
2014 Action/Interaction challenge (Baró et al. 2015). Data, protocol, and evaluation
were defined as explained in Sect. 1.3.4.

1.3.5.1 2015 Action Challenge Results

Results of the two top ranked participants are shown in bottom rows of Table1.9.
One can see that the methods of the participants are similar to the ones applied in the
2014 challenge for the same dataset (Top rows of Table1.9). Results of this second
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competition round improved by 2% the results obtained in the first round of the
challenge.

1.3.5.2 2015 Action Challenge Summary of the Winner Methods

First winner: This method is an improvement of the system proposed in Peng et al.
(2015), which is composed of two parts: video representation and temporal segmen-
tation. For the representation of video clip, the authors first extracted improved dense
trajectories with HOG, HOF, MBHx, and MBHy descriptors. Then, for each kind
of descriptor, the participants trained a GMM and used Fisher vector to transform
these descriptors into a high dimensional super vector space. Finally, sum pooling
was used to aggregate these codes in the whole video clip and normalize them with
power L2 norm. For the temporal recognition, the authors resorted to a temporal
sliding method along the time dimension. To speed up the processing of detection,
the authors designed a temporal integration histogram of Fisher Vector, with which
the pooled Fisher Vector was efficiently evaluated at any temporal window. For each
sliding window, the authors used the pooled Fisher Vector as representation and fed
it into the SVM classifier for action recognition. A summary of this method is shown
in Fig. 1.13.

Second winner: The method implements an end-to-end generative approach from
featuremodelling to activity recognition. The system combines dense trajectories and
Fisher Vectors with a temporally structured model for action recognition based on a

Fig. 1.13 Method summary for MMLAB team (Wang et al. 2015b)
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Fig. 1.14 Example of DT feature distribution for the first 200 frames of Seq01 for FKIE team,
a shows the distribution of the original implementation, b shows the distribution of the modified
version

simple grammar over action units. The authors modify the original dense trajectory
implementation of Wang and Schmid (2013) to avoid the omission of neighborhood
interest points once a trajectory is used (the improvement is shown in Fig. 1.14).
They use an open source speech recognition engine for the parsing and segmentation
of video sequences. Because a large data corpus is typically needed for training
such systems, images were mirrored to artificially generate more training data. The
final result is achieved by voting over the output of various parameter and grammar
configurations.

1.3.6 Other International Competitions for Gesture
and Action Recognition

In addition to the series of ChaLearn Looking at People challenges, different interna-
tional challenges have also been performed in the field of action/gesture recognition.
Some of them are reviewed below.

The ChAirGest challenge (Ruffieux et al. 2013) is a research oriented competition
designed to compare multimodal gesture recognizers. The provided data came from
one Kinect camera and 4 Inertial Motion Units (IMU) attached to the right arm
and neck of the subject. The dataset contains 10 different gestures, started from 3
different resting postures and recorded in two different lighting conditions by 10
different subjects. Thus, the total dataset contains 1200 annotated gestures split in
continuous video sequences containing a variable number of gestures. The goal of
the challenge was to promote research on methods using multimodal data to spot and
recognize gestures in the context of close human–computer interaction.
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In 2015, OpenCV ran at CVPRdifferent challenges,5 one of them focusing on ges-
ture recognition, using theChaLearn gesture recognition data. Thewinner of the com-
petitionwas also thework thatwon theChaLearn challenge at ECCV2014 (Neverova
et al. 2014b).

Another recent action recognition competition is theTHUMOSchallenge (Gorban
et al. 2015). Last round of the competition was ran at CVPR 2015. The last round of
the challenge contained a forward-looking data set with over 430 hours of video data
and 45 million frames (70% larger than THUMOS’14). All videos were collected
fromYouTube. Two tracks were performed: (1) Action Classification, for whole-clip
action classification on 101 action classes, and (2) Temporal Action Localization,
for action recognition and temporal localization on a subset of 20 action classes.

1.4 Summary of Special Topic Papers Not Related
to the Challenges

In this special topic, in addition to the papers that described systems that participated
in the ChaLearn gesture challenges, there are also several papers relating to broader
aspects of gesture recognition, including topics such as sign language recognition,
facial expression analysis, and facilitating development of real-world systems.

Three of these papers propose new methods for gesture and action recognition
(Malgireddy et al. 2013; Fanello et al. 2013; Lui 2012), that were also evaluated
on parts of the CDG2011 dataset (Guyon et al. 2014), used in the ChaLearn chal-
lenges held in 2011 and 2012. More specifically, Malgireddy et al. (2013) present an
approach for detecting and recognizing activities and gestures. Hierarchical models
are built to describe each activity as a combination of other, more simple activi-
ties. Each video is recursively divided into segments consisting of a fixed number
of frames. The relationship between observed features and latent variables is mod-
elled using a generative model that combines aspects of dynamic Bayesian networks
and hierarchical Bayesian models. Fanello et al. (2013) describe a system for real-
time action recognition using depth video. The paper proposes specific features that
are well adapted to real-time constraints, based on histograms of oriented gradients
and histograms of optical flow. Support vector machines trained on top of such fea-
tures perform action segmentation and recognition. Lui (2012) propose a method
for representing gestures as tensors. These tensors are treated as points on a product
manifold. In particular, the product manifold is factorized into three manifolds, one
capturing horizontal motion, one capturing vertical motion, and one capturing 2D
appearance. The difference between gestures is measured using a geodesic distance
on the product manifold.

5http://code.opencv.org/projects/opencv/wiki/VisionChallenge.

http://code.opencv.org/projects/opencv/wiki/VisionChallenge
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One paper Wang et al. (2012) studied an action recognition problem outside the
scope of the ChaLearn contests, namely recognizing poses and actions from a single
image. Hierarchical models are used for modelling body pose. Each model in this
hierarchy covers a part of the human body that can range from the entire body to a
specific rigid part. Different levels in this hierarchy correspond to different degrees
of coarseness versus detail in the models at each level.

Three papers proposed novelmethodswithin the area of sign language recognition
(Cooper et al. 2012; Nayak et al. 2012; Roussos et al. 2013). Cooper et al. (2012)
describe a method for sign language recognition using linguistic subunits that are
learned automatically by the system. Different types of such subunits are considered,
including subunits based on appearance and local motion of the hand, subunits based
on combining tracked 2D hand trajectories and hand shape, and subunits based on
tracked 3D hand trajectories. Nayak et al. (2012) address the problem of learning a
model for a sign that occurs multiple times in a set of sentences. One benefit from
such an approach is that it does not require the start and end frame of each sign as
training data. Another benefit is that the method identifies the aspects of a sign that
are least affected by movement epenthesis, i.e., by signs immediately preceding or
following the sign in question. Roussos et al. (2013) present a method for classifying
handshapes for the purpose of sign language recognition. Cropped hand images are
converted to a normalized representation called “shape-appearance images”, based
on a PCA decomposition of skin pixel colors. Then, active appearance models are
used to model the variation in shape and appearance of the hand.

One paper focused on the topic of facial expression analysis (Martinez and Du
2012). The paper proposes amodel for describing howhumans perceive facial expres-
sions of emotion. The proposedmodel consists ofmultiple distinct continuous spaces.
Emotions can be represented using linear combinations of these separate spaces. The
paper also discusses how the proposed model can be used to design algorithms for
facial expression recognition.

Another set of papers contributed methods that address different practical prob-
lems, that are important for building real-world gesture interfaces (Nguyen-Dinh
et al. 2014; Gillian and Paradiso 2014; Kohlsdorf and Starner 2013). One such prob-
lem is obtaining manual annotations and ground truth for large amounts of training
data. Obtaining such manual annotations can be time consuming, and can be an
important bottleneck in building a real system. Crowdsourcing is a potential solu-
tion, but crowdsourced annotations often suffer from noise, in the form of discrepan-
cies in how different humans annotate the same data. In Nguyen-Dinh et al. (2014),
two template-matching methods are proposed, called SegmentedLCSS and Warp-
ingLCSS, that explicitly deal with the noise present in crowdsourced annotations of
gestures. These methods are designed for spotting gestures using wearable motion
sensors. The methods quantize signals into strings of characters and then apply vari-
ations of the longest common subsequence algorithm (LCSS) to spot gestures.

In designing a real-world system, another important problem is rapid development.
Gillian and Paradiso (2014) present a gesture recognition toolkit, a cross-platform
open-source C++ library. The toolkit features a broad range of classification and
regression algorithms and has extensive support for building real-time systems. This
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includes algorithms for signal processing, feature extraction and automatic gesture
spotting.

Finally, choosing the gesture vocabulary can be an important implementation
parameter. Kohlsdorf and Starner (2013) propose a method for choosing a vocabu-
lary of gestures for a human–computer interface, so that gestures in that vocabulary
have a low probability of being confused with each other. Candidate gestures for the
interface can be suggested both by humans and by the system itself. The system com-
pares examples of each gesture with a large repository of unlabelled sensor/motion
data, to check how often such examples resemble typical session/motion patterns
encountered in that specific application domain.

1.5 Summary of Special Topic Papers Related to 2011–2012
Challenges

Next we briefly review the contributions of the accepted papers for the special topic
whose methods are applied on the data provided by 2011–2012 ChaLearn gesture
recognition challenges. Interestingly, none of the methods proposed in these papers
uses skeletal tracking. Instead, these methods use different features based on appear-
ance and/or motion. Where the papers differ is in their choice of specific features,
and also in the choice of gesture models that are built on top of the selected features.

Konecny and Hagara (2014) combine appearance (Histograms of Oriented Gra-
dients) and motion descriptors (Histogram of Optical Flow) from RGB and depth
images for parallel temporal segmentation and recognition. The Quadratic-Chi dis-
tance family is used to measure differences between histograms to capture cross-
bin relationships. Authors also propose trimming videos by removing unimportant
frames based on motion information. Finally, proposed descriptors with different
Dynamic Time Warping variants are applied for final recognition.

In contrast to Konecny and Hagara (2014), which employes commonly used fea-
tures, Wan et al. (2013) proposes a new multimodal descriptor, as well as a new
sparse coding method. The multimodal descriptor is called 3D EMoSIFT, is invari-
ant to scale and rotation, and hasmore compact and richer visual representations than
other state-of-the-art descriptors. The proposed sparse coding method is named sim-
ulation orthogonal matching pursuit (SOMP), and is a variant of BoW. Using SOMP,
each feature can be represented by some linear combination of a small number of
codewords.

A different approach is taken in Jiang et al. (2015), which combines three different
methods for classifying gestures. The first method uses an improved principal motion
representation. In the second method, a particle-based descriptor and a weighted
dynamic time warping are proposed for the location component classification. In
the third method, the shape of the human subject is used, extracted from the frame
in the gesture that exhibits the least motion. The explicit use of shape in this paper
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is in contrast to Konecny and Hagara (2014) and Wan et al. (2013), where shape
information is implicitly coded in the extracted features.

In Goussies et al. (2014), the focus is on transfer learning. The proposed method
did not do as well as the previous methods (Konecny and Hagara 2014; Wan et al.
2013; Jiang et al. 2015) on the CDG 2011 dataset, but nonetheless it contributes
novel ideas for transfer learning, that can be useful when the number of training
examples per class is limited. This is in contrast to the other papers related to the
2011–2012 challenges, that did not address transfer learning. The paper introduces
two mechanisms into the decision forest framework, in order to transfer knowledge
from the source tasks to a given target task. The first one is mixed information
gain, which is a data-based regularizer. The second one is label propagation, which
infers the manifold structure of the feature space. The proposed approach show
improvements over traditional decision forests in the ChaLearn Gesture Challenge
and on the MNIST dataset.

1.6 Summary of Special Issue Papers Related to 2013
Challenge

Next we briefly review the contributions of the accepted papers for the special issue
whose methods are applied on the data provided by 2013 ChaLearn multimodal
gesture recognition challenge. An important difference between this challenge and
the previous ChaLearn challenges is the multimodal nature of the data. Thus, a key
focus area for methods applied on this data is the problem of fusing information from
multiple modalities.

WuandCheng (2014) propose aBayesianCo-Boosting framework formultimodal
gesture recognition. Inspired by boosting learning and co-trainingmethod, the system
combines multiple collaboratively trained weak classifiers, Hidden Markov Models
in this case, to construct the final strong classifier. During each iteration round,
randomly a number of feature subsets are samples and weak classifiers parameters
for each subset are estimated. The optimal weak classifier and its corresponding
feature subset are retained for strong classifier construction. Authors also define
an upper bound of training error and derive the update rule of instance’s weight,
which guarantees the error upper bound to be minimized through iterations. This
methodology won the ChaLearn 2013 ICMI competition.

Pitsikalis et al. (2014) present a framework for multimodal gesture recognition
that is based on a multiple hypotheses rescoring fusion scheme. Authors employ
multiple modalities, i.e., visual cues, such as skeleton data, color and depth images,
as well as audio, and extract feature descriptors of the hands movement, handshape,
and audio spectral properties. Using a common hidden Markov model framework
authors build single-streamgesturemodels based onwhich they cangeneratemultiple
single stream-based hypotheses for an unknown gesture sequence. By multimodally
rescoring these hypotheses via constrained decoding and a weighted combination



1 Challenges in Multi-modal Gesture Recognition 51

scheme, authors end up with a multimodally-selected best hypothesis. This is further
refined by means of parallel fusion of the monomodal gesture models applied at a
segmental level. The proposed methodology is tested on the ChaLearn 2013 ICMI
competition data.

1.7 Discussion

We reviewed the gesture recognition topic, defining a taxonomy to characterize state
of the art works on gesture recognition. We also reviewed the gesture and action
recognition challenges organized by ChaLearn from 2011 to 2015, as well as other
international competitions related to gesture recognition. Finally, we reviewed the
papers submitted to the Special Topic on Gesture Recognition 2011–2014 we orga-
nized at Journal of Machine Learning Research.

Regarding the ChaLearn gesture recognition challenges, we began right at the
start of the KinectTM revolution when inexpensive infrared cameras providing image
depth recordings became available. We published papers using this technology and
other more conventional methods, including regular video cameras, to record data,
thus providing a good overview of uses of machine learning and computer vision
using multimodal data in this area of application. Notably, we organized a series of
challenges and made available several datasets we recorded for that purpose, includ-
ing tens of thousands of videos, which are available to conduct further research.6

Regarding the papers published in the gesture recognition special topic related to
2011–2012 challenges with the objective of performing one-shot learning, most of
the authors proposed new multimodal descriptors taking benefit from both RGB and
Depth cues in order to describe human body features, both static and dynamic ones.
As the recognition strategies, common techniques used were variants of classical
well-known Dynamic Time Warping and Hidden Markov Models. In particular, the
most efficient techniques so far have used sequences of features processed by graph-
ical models of the HMM/CRF family, similar to techniques used in speech recogni-
tion. Authors also considered a gesture candidate sliding window and motion-based
video-cutting approaches. Last approach was frequently used since sign language
videos included a resting pose. Also interesting novel classification strategies were
proposed, such as multilayered decomposition, where different length gesture units
are recognize at different levels (Jiang et al. 2015).

Regarding the papers published in the gesture recognition special topic related
to 2013 and 2014 challenges with the objective of performing user independent
multiple gesture recognition from large volumes of multimodal data (RGB, Depth
and audio), different classifiers for gesture recognition were used by the participants.
In 2013, the preferred one was Hidden Markov Models (used by the first ranked

6http://gesture.chalearn.org/.

http://gesture.chalearn.org/
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team of the challenge), followed by Random Forest (used by the second and third
winners). Although several state of the art learning and testing gesture techniques
were applied at the last stage of the methods of the participants, still the feature
vector descriptions are mainly based on MFCC audio features and skeleton joint
information. The published paper of the winner to the special topic presents a novel
coboosting strategy, where a set of HMMclassifiers and collaboratively included in a
boosting strategy considering random sets of features (Wu andCheng 2014). In 2014,
similar descriptors and classifiers were used, and in particular, three deep learning
architectures were considered, including the method of the winner team (Neverova
et al. 2014b).

In the case of the ChaLearn action/interaction challenges organized in 2014 and
2015 most methods were based on similar approaches. In particular, alternative rep-
resentations to classical BoW were considered, as Fisher Vector and VLAD (Jegou
et al. 2012). Most methods performed sliding windows and SVM classification. In
addition, to refine the tracking of interest points, several participants used improved
trajectories (Wang and Schmid 2013).

From the review of the gesture recognition topic, the achieved results in the per-
formed challenges and the rest of papers published in the gesture recognition Special
Topic, one can observe that still it is possible that progress will also be made in
feature extraction by making better use of the multimodal development data for bet-
ter transfer learning. For instance, we think that structural hand information around
hand joint could be useful to discriminate among gesture categories that may share
similar trajectories of hand/arms. Also recent approaches have shown that Random
Forest and Deep Learning, such as considering Convolutional Neural Networks, are
powerful alternatives to classical gesture recognition approaches, which still open
the door for future the design of new gesture recognition classifiers.

In the case of action detection or spotting, most of the methods are still based
on sliding-windows approaches, which makes recognition a time-consuming task.
Thus, the research on methods that can generate gesture/action candidates from data
in a different fashion are still an open issue.
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in Automatic Face and Gesture Recognition, 2015

J. Nagi, F. Ducatelle, G.A. Di Caro, D.C. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber,
L.M. Gambardella. Max-pooling convolutional neural networks for vision-based hand gesture
recognition, in ICSIPA (IEEE, 2011), pp. 342–347. ISBN 978-1-4577-0243-3

S.Nayak, S. Sarkar,B.Loeding,Unsupervisedmodelingof signs embedded in continuous sentences,
in IEEE Workshop on Vision for Human-Computer Interaction, 2005

S. Nayak, K. Duncan, S. Sarkar, B. Loeding, Finding recurrent patterns from continuous sign
language sentences for automated extraction of signs. J. Mach. Learn. Res. 13(9), 2589–2615
(2012)

C. Neidle, A. Thangali, S. Sclaroff, Challenges in development of the American Sign Language
lexicon video dataset (ASLLVD) corpus, in Workshop on the Representation and Processing of
Sign Languages: Interactions Between Corpus and Lexicon, 2012

N. Neverova, C. Wolf, G.W. Taylor, F. Nebout, Hand segmentation with structured convolutional
learning, in ACCV, 2014a

N. Neverova, C. Wolf, G.W. Taylor, F. Nebout, Multi-scale deep learning for gesture detection and
localization, in ChaLearn Looking at People, European Conference on Computer Vision, 2014b

L. Nguyen-Dinh, A. Calatroni, G. Troster, Robust online gesture recognition with crowdsourced
annotations. J. Mach. Learn. Res. 15, 3187–3220 (2014)

E. Ohn-Bar, M.M. Trivedi, Hand gesture recognition in real-time for automotive interfaces: a multi-
modal vision-based approach and evaluations, in IEEE Transactions on Intelligent Transportation
Systems, 2014

I. Oikonomidis, N. Kyriazis, A.A. Argyros, Markerless and efficient 26-DOF hand pose recovery,
in Asian Conference on Computer Vision (ACCV), 2010

I. Oikonomidis, N. Kyriazis, A.A. Argyros, Full DOF tracking of a hand interacting with an object
by modeling occlusions and physical constraints, in IEEE International Conference on Computer
Vision (ICCV), 2011, pp. 2088–2095

K. Oka, Y. Sato, H. Koike, Real-time fingertip tracking and gesture recognition. IEEE Comput.
Graphics Appl. 22(6), 64–71 (2002)

http://jmlr.org/papers/v14/malgireddy13a.html


58 S. Escalera et al.

R. Oka, Spotting method for classification of real world data. Comput. J. 41(8), 559–565 (1998)
E.J. Ong, R. Bowden, A boosted classifier tree for hand shape detection, in Face and Gesture

Recognition, 2004, pp. 889–894
O. Oreifej, Z. Liu, HON4D: histogram of oriented 4D normals for activity recognition from depth
sequences, in CVPR, 2013, pp. 716–723

A. Pardo, A. Clapes, S. Escalera, O. Pujol, Actions in context: system for people with demen-
tia, in 2nd International Workshop on Citizen Sensor Networks (Citisen2013) at the European
Conference on Complex Systems (ECCS’13), 2013

X. Peng, L. Wang, Z. Cai, Y. Qiao, Action and gesture temporal spotting with super vector rep-
resentation, in Computer Vision—ECCV 2014 Workshops, ed. by L. Agapito, M.M. Bronstein,
C. Rother, Lecture Notes in Computer Science, vol. 8925 (Springer, Berlin, 2015), pp. 518–527.
ISBN 978-3-319-16177-8. doi:10.1007/978-3-319-16178-5_36

A. Pieropan, G. Salvi, K.Pauwels, H.Kjellstrom,Audio-visual classification and detection of human
manipulation actions, in IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014

V. Pitsikalis, A. Katsamanis, S. Theodorakis, P. Maragos, Multimodal gesture recognition via mul-
tiple hypotheses rescoring. J. Mach. Learn. Res. (2014)

N. Pugeault, R. Bowden, Spelling it out: real-time ASL fingerspelling recognition, in ICCV Work-
shops, 2011, pp. 1114–1119

A. Quattoni, S.B. Wang, L.-P. Morency, M. Collins, T. Darrell, Hidden conditional random fields.
IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1848–1852 (2007)

D. Ramanan, Learning to parse images of articulated bodies, in NIPS, 2006, pp. 1129–1136
J.M. Rehg, T. Kanade, Model-based tracking of self-occluding articulated objects, in IEEE Inter-

national Conference on Computer Vision (ICCV), 1995, pp. 612–617
Z. Ren, J. Meng, J. Yuan, Z. Zhang, Robust hand gesture recognition with Kinect sensor, in ACM

International Conference on Multimedia, 2011a, pp. 759–760
Z. Ren, J. Yuan, Z. Zhang, Robust hand gesture recognition based on finger-earth mover’s distance
with a commodity depth camera, in ACM International Conference on Multimedia, 2011b, pp.
1093–1096

Z. Ren, J. Yuan, J.Meng, Z. Zhang, Robust part-based hand gesture recognition using Kinect sensor.
IEEE Trans. Multimed. 15(5), 1110–1120 (2013)

A. Roussos, S. Theodorakis, V. Pitsikalis, P. Maragos, Dynamic affine-invariant shape-appearance
handshape features and classification in sign language videos. J. Mach. Learn. Res. 14(6), 1627–
1663 (2013)

S. Ruffieux, D. Lalanne, E. Mugellini. ChAirGest: a challenge for multimodal mid-air gesture
recognition for close HCI, in Proceedings of the 15th ACM on International Conference on
Multimodal Interaction, 2013, pp. 483–488

A. Sadeghipour, L.-P. Morency, S. Kopp, Gesture-based object recognition using histograms of
guiding strokes, in British Machine Vision Conference, 2012, pp. 44.1–44.11

D. Sánchez, M.A. Bautista, S. Escalera, HuPBA 8k+: dataset and ECOC-graphcut based segmen-
tation of human limbs. Neurocomputing, 2014

B. Sapp, B. Taskar,Modec: multimodal decomposablemodels for human pose estimation, inCVPR,
IEEE, 2013

Y. Sato, T. Kobayashi, Extension of Hidden Markov Models to deal with multiple candidates of
observations and its application to mobile-robot-oriented gesture recognition, in International
Conference on Pattern Recognition (ICPR), vol, II, 2002, pp. 515–519

J.D. Schein, At Home Among Strangers (Gallaudet U. Press, Washington, DC, 1989)
C. Schuldt, I. Laptev, B. Caputo, Recognizing human actions: a local SVM approach, in ICPR, vol.
3, 2004, pp. 32–36

N. Shapovalova, W. Gong., M. Pedersoli, F.X. Roca, J. Gonzalez, On importance of interactions
and context in human action recognition, in Pattern Recognition and Image Analysis, 2011, pp.
58–66

http://dx.doi.org/10.1007/978-3-319-16178-5_36


1 Challenges in Multi-modal Gesture Recognition 59

J. Shotton, A.W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake,
Real-time human pose recognition in parts from single depth images, in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2011, pp. 1297–1304

L. Sigal, A.O. Balan, M.J. Black, HumanEva: synchronized video and motion capture dataset and
baseline algorithm for evaluation of articulated humanmotion. Int. J. Comput. Vis. 87(1–2), 4–27
(2010)

C. Sminchisescu, A. Kanaujia, D.Metaxas, Conditionalmodels for contextual humanmotion recog-
nition. Comput. Vis. Image Underst. 104, 210–220 (2006)

Y. Song, D. Demirdjian, R. Davis, Tracking body and hands for gesture recognition: NATOPS
aircraft handling signals database, in Automatic Face and Gesture Recognition, 2011, pp. 500–
506

T. Starner, A. Pentland, Real-time American Sign Language recognition using desk and wearable
computer based video. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1371–1375 (1998)

N. Stefanov, A. Galata, R. Hubbold, Real-time hand tracking with variable-length Markov Models
of behaviour, in Real Time Vision for Human-Computer Interaction, 2005

B. Stenger, A. Thayananthan, P.H.S. Torr, R. Cipolla, Filtering using a tree-based estimator, in IEEE
International Conference on Computer Vision (ICCV), 2003, pp. 1063–1070

E. Sudderth, M.Mandel, W. Freeman, A.Willsky, Distributed occlusion reasoning for tracking with
nonparametric belief propagation, in Neural Information Processing Systems (NIPS), 2004

D. Tran, D. Forsyth, Improved human parsing with a full relational model, in ECCV (IEEE, 2010),
pp. 227–240

J. Triesch, C. von der Malsburg, A system for person-independent hand posture recognition against
complex backgrounds. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1449–1453 (2001)

J. Triesch, C. von derMalsburg, Classification of hand postures against complex backgrounds using
elastic graph matching. Image Vis. Comput. 20(13–14), 937–943 (2002)

M. Van den Bergh, E. Koller-Meier, L. Van Gool, Real-time body pose recognition using 2D or 3D
haarlets. Int. J. Comput. Vis. 83(1), 72–84 (2009)

P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, 2001, pp. 511–518

C. Vogler, D Metaxas, Parallel Hidden Markov Models for American Sign Language recognition,
In IEEE International Conference on Computer Vision (ICCV), 1999, pp. 116–122

J. Wan, Q. Ruan, W. Li, S. Deng, One-shot learning gesture recognition from RGB-D data using
bag of features. J. Mach. Learn. Res. 14, 2549–2582 (2013). http://jmlr.org/papers/v14/wan13a.
html

H. Wang, C. Schmid, Action recognition with improved trajectories, in IEEE International Confer-
ence on Computer Vision, 2013

H. Wang, A. Stefan, S. Moradi, V. Athitsos, C. Neidle, F. Kamangar, A system for large vocabulary
sign search, in Workshop on Sign, Gesture and Activity (SGA), 2010

H. Wang, X. Chai, Y. Zhou, X. Chen, Fast sign language recognition benefited from low rank
approximation, in Automatic Face and Gesture Recognition, 2015a

J. Wang, Z. Liu, Y. Wu, J. Yuan, Learning actionlet ensemble for 3D human action recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 914–927 (2014)
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Chapter 2
Human Gesture Recognition on Product
Manifolds

Yui Man Lui

Abstract Action videos are multidimensional data and can be naturally represented
as data tensors. While tensor computing is widely used in computer vision, the
geometry of tensor space is often ignored. The aim of this paper is to demonstrate
the importance of the intrinsic geometry of tensor space which yields a very discrim-
inating structure for action recognition. We characterize data tensors as points on
a product manifold and model it statistically using least squares regression. To this
aim, we factorize a data tensor relating to each order of the tensor using higher order
singular value decomposition (HOSVD) and then impose each factorized element
on a Grassmann manifold. Furthermore, we account for underlying geometry on
manifolds and formulate least squares regression as a composite function. This gives
a natural extension from Euclidean space to manifolds. Consequently, classification
is performed using geodesic distance on a product manifold where each factor mani-
fold is Grassmannian. Ourmethod exploits appearance andmotionwithout explicitly
modeling the shapes and dynamics. We assess the proposed method using three ges-
ture databases, namely the Cambridge hand-gesture, the UMD Keck body-gesture,
and the CHALEARNgesture challenge data sets. Experimental results reveal that not
only does the proposed method perform well on the standard benchmark data sets,
but also it generalizes well on the one-shot-learning gesture challenge. Furthermore,
it is based on a simple statistical model and the intrinsic geometry of tensor space.
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2.1 Introduction

Human gestures/actions are the natural way for expressing intentions and can be
instantly recognized by people. We use gestures to depict sign language to deaf peo-
ple, convey messages in noisy environments, and interface with computer games.
Having automated gesture-based communication would broaden the horizon of
human-computer interaction and enrich our daily lives. In recent years, many gesture
recognition algorithms have been proposed (Mitra and Acharya 2007; Wang et al.
2009; Bilinski and Bremond 2011). However, reliable gesture recognition remains a
challenging area due in part to the complexity of human movements. To champion
the recognition performance, models are often complicated, causing difficulty for
generalization. Consequently, heavy-duty models may not have substantial gains in
overall gesture recognition problems.

In this paper, we propose a new representation to gesture recognition based upon
tensors and the geometry of product manifolds. Since human actions are expressed
as a sequence of video frames, an action video may be characterized as a third order
data tensor. Themathematical framework for working with high order tensors is mul-
tilinear algebra which is a useful tool for characterizing multiple factor interactions.
Tensor computing has been successfully applied to many computer vision appli-
cations such as face recognition (Vasilescu and Terzopoulos 2002), visual tracking
(Li et al. 2007), and action classification (Vasilescu 2002; Kim and Cipolla 2009).
However, the geometrical aspect of data tensors remains unexamined. The goal of
this paper is to demonstrate the importance of the intrinsic geometry of tensor space
where it provides a very discriminating structure for action recognition.

Notably, several recent efforts (Lui 2012a) have been inspired by the character-
istics of space and the associated construction of classifiers based upon the intrinsic
geometry inherent in particular manifolds. Veeraraghavan et al. (2005) modeled
human shapes from a shape manifold and expressed the dynamics of human silhou-
ettes using an autoregressive (AR)model on the tangent space. Turaga and Chellappa
(2009) extended this framework and represented the trajectories on a Grassmann
manifold for activity classification. The use of tangent bundles on special mani-
folds was investigated by Lui (2012b) where a set of tangent spaces was exploited
for action recognition. Age estimation was also studied using Grassmann manifolds
(Turaga et al. 2010). The geodesic velocity from an average face to the given face
was employed for age estimation where the space of landmarks was interpreted as
a Grassmann manifold. Lui and Beveridge (2008) characterized tangent spaces of
a registration manifold as elements on a Grassmann manifold for face recognition.
The importance of the ordering on Stiefel manifolds was demonstrated by Lui et al.
(2009) and an illumination model was applied to synthesize such elements for face
recognition. These successes motivate the exploration of the underlying geometry of
tensor space.

The method proposed in this paper characterizes action videos as data tensors and
demonstrates their association with a product manifold. We focus attention on the
intrinsic geometry of tensor space, and draw upon the fact that the geodesic on a
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product manifold is equivalent to the Cartesian product of geodesics from multiple
factor manifolds. In other words, elements of a product manifold are the set of all
elements inherited from factor manifolds. Thus, in our approach, action videos are
factorized to three factor elements using higher order singular value decomposition
(HOSVD) in which the factor elements give rise to three factor manifolds.We further
extend the product manifold representation to least squares regression. In doing so,
we consider the underlying geometry and formulate least squares regression as a
composite function. As such, we ensure that both the domain values and the range
values reside on a manifold through the regression process. This yields a natural
extension from Euclidean space to manifolds. The least squares fitted elements from
a training set can then be exploited for gesture recognition where the similarity is
expressed in terms of the geodesic distance on a product manifold associated with
fitted elements from factor manifolds.

We demonstrate the merits of our method on three gesture recognition problems
including hand gestures, body gestures, and gestures collected from the Microsoft
Kinect TM camera for the one-shot-learning CHALEARN gesture challenge. Our
experimental results reveal that our method is competitive to the state-of-the-art
methods and generalizes well to the one-shot-learning scheme, yet is based on a
simple statistical model. The key contributions of the proposed work are summarized
as follows:

• A new way of relating tensors on a product manifold to action recognition.
• A novel formulation for least squares regression on manifolds.
• The use of appearance andmotionwithout explicitlymodeling shapes or dynamics.
• A simple pixel-based representation (no silhouette or skeleton extraction).
• No extensive training and parameter tuning.
• No explicit assumption on action data.
• Competitive performance on gesture recognition.
• Applicable to other visual applications.

The rest of this paper is organized as follows: Related work is summarized in
Sect. 2.2. Tensor algebra, orthogonal groups, and Grassmannmanifolds are reviewed
in Sect. 2.3. The formulation of the proposed product manifold is presented in
Sect. 2.4 and is further elaborated with examples in Sect. 2.5. The statistical mod-
eling on manifolds is introduced in Sect. 2.6. Section 2.7 reports our experimental
results. Section 2.8 discusses the effect of using raw pixels for action recognition.
Finally, we conclude this paper in Sect. 2.9.

2.2 Related Work

Many researchers have proposed a variety of techniques for action recognition in
recent years. We highlight some of this work here, including bag-of-features mod-
els, autoregressive models, 3D Fourier transforms, tensor frameworks, and product
spaces.
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In the context of action recognition, bag-of-features models (Dollar et al. 2005;
Wang et al. 2009; Bilinski and Bremond 2011) may be among the most popular
methods wherein visual vocabularies are learned from feature descriptors and spa-
tiotemporal features are typically represented by a normalized histogram. While
encouraging results have been achieved, bag-of-featuresmethods have heavy training
loads prior to classification. In particular, feature detection and codebook generation
can consume tremendous amounts of time if the number of training samples is large.
Recently, Wang et al. (2009) have evaluated a number of feature descriptors and
bag-of-features models for action recognition. This study concluded that different
sampling strategies and feature descriptors were needed to achieve the best results
on alternative action data sets. Similar conclusions were also found by Bilinski and
Bremond (2011) where various sizes of codebooks are needed for different data sets
in order to obtain peak performances.

Another school of thought for action classification is using an autoregressive (AR)
model. Some of the earliest works involved dynamic texture recognition (Saisan et al.
2001) and human gait recognition (Bissacco et al. 2001). These works represented
actions using AR models. The authors found that the most effective way to compare
dynamics was by computing the Martin distance between AR models. Veeraragha-
van et al. (2005) modeled human silhouettes based on Kendall’s theory of shape
(Kendall 1984) where shapes were expressed on a shape manifold. This method
modeled the dynamics of human silhouettes using an ARmodel on the tangent space
of the shape manifold. The sequences of human shapes were compared by comput-
ing the distance between the AR models. Turaga and Chellappa (2009) investigated
statistical modeling with AR models for human activity analysis. In their work, tra-
jectories were considered a sequence of subspaces represented by AR models on a
Grassmann manifold. As such, the dynamics were learned and kernel density func-
tions with Procrustes representation were applied to density estimation.

Three-dimensional Fourier transform has been demonstrated as a valuable tool in
action classification. Weinland et al. (2006) employed Fourier magnitudes and cylin-
drical coordinates to represent motion templates. Consequently, the action matching
was invariant to translations and rotations around the z-axis. Although this method
was view invariant, the training videos needed to be acquired from multiple cam-
eras. Rodriguez et al. (2008) synthesized a filter respond using the Clifford Fourier
transform for action recognition. The feature representation was computed using
spatiotemporal regularity flow from the xy-parallel component. The advantage of
using Clifford algebra is the direct use of vector fields to Fourier transform.

Data tensors are the multidimensional generalizations to matrices. Vasilescu
(2002) modeled the joint angle trajectories on human motion as a set of factor-
ized matrices from a data tensor. Signatures corresponding to motion and identity
were then extracted using PCA for person identification. Kim and Cipolla (2009)
extended canonical correlation analysis to the tensor framework by developing a
Tensor Canonical Correlation Algorithm (TCCA). This method factorized data ten-
sors to a set of matrices and learned a set of projection matrices maximizing the
canonical correlations. The inner product was employed to compute the similarity
between two data tensors. The use of SIFT features with CCA was also considered
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for gesture recognition by Kim and Cipolla (2007). Recently, nonnegative tensor
factorization has been exploited for action recognition by Krausz and Bauckhage
(2010) where action videos were factorized using a gradient descent method and
represented as the sum of rank-1 tensors associated with a weighting factor. As
a result, the appearance was captured by the basis images and the dynamics was
encoded with the weighting factor.

Product spaces have received attention in applications related to spatiotemporal
interactions. Datta et al. (2009) modeled the motion manifold as a collection of
local linear models. This method learned a selection of mappings to encode the
motion manifold from a product space. Lin et al. (2009) proposed a probabilistic
framework for action recognition using prototype trees. Shape and motion were
explicitly learned and characterized via hierarchical K-means clustering. The joint
likelihood framework was employed to model the joint shape-motion space. Li and
Chellappa (2010) investigated the product space of spatial and temporal submanifolds
for action alignment. Sequential importance sampling was then used to find the
optimal alignment. Despite these efforts, the geometry of the product space has not
been directly considered and the geodesic nature on the product manifold remains
unexamined.

2.3 Mathematical Background

In this section, we briefly review the background mathematics used in this paper.
Particularly, we focus on the elements of tensor algebra, orthogonal groups, Stiefel
manifolds, and Grassmann manifolds.

2.3.1 Tensor Representation

Tensors provide a natural representation for high dimensional data. We consider a
video as a third order data tensor ∈ R

X×Y×T where X , Y , and T are the image width,
image height, and video length, respectively. High order data tensors can be regarded
as a multilinear mapping over a set of vector spaces. Generally, useful information
can be extracted using tensor decompositions. In particular, a Higher Order Singular
Value Decomposition (HOSVD) (De Lathauwer et al. 2000) is considered in this
paper because the data tensor can be factorized in a closed-form. A recent review
paper on tensor decompositions can be found in Kolda and Bader (2009). Before we
describe HOSVD, we illustrate a building block operation called matrix unfolding.
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Fig. 2.1 An example of matrix unfolding for a third order tensor. The illustration is for a video
action sequence with two spatial dimensions X and Y and a temporal dimension T

2.3.1.1 Matrix Unfolding

LetA be an order N data tensor ∈R
I1×I2×···×IN . The data tensorA can be converted

to a set of matrices via a matrix unfolding operation. Matrix unfolding maps a tensor
A to a set of matrices A(1), A(2), . . ., A(N ), where A(k) ∈ R

Ik×(I1×···×Ik−1×Ik+1···×IN )

is a mode-k matrix of A . An example of matrix unfolding of a third order, that is,
N = 3, tensor is given in Fig. 2.1. As Fig. 2.1 shows, we can slice a third order
tensor in three different ways along each axis and concatenate these slices into three
different matrices A(1), A(2), and A(3) where the rows of an unfolded matrix are
represented by a single variation of the tensor and the columns are composed by two
variations of the tensor.

2.3.1.2 Higher Order Singular Value Decomposition

Just as a data matrix can be factorized using a singular value decomposition (SVD),
a data tensor can also be factorized using higher order singular value decomposi-
tion (HOSVD), also known as multilinear SVD. HOSVD operates on the unfolded
matrices A(k), and each unfolded matrix may be factored using SVD as follows:

A(k) = U (k)�(k)V (k)T (2.1)

where �(k) is a diagonal matrix, U (k) is an orthogonal matrix spanning the column
space of A(k) associated with nonzero singular values, and V (k) is an orthogonal
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matrix spanning the row space of A(k) associated with nonzero singular values. Then,
an N order tensor can be decomposed using HOSVD as follows:

A = S ×1 U (1)×2 U (2) · · · ×n U (N )

where S ∈ R
(I1×I2×···×IN ) is a core tensor, U (1), U (2), . . ., U (N ) are orthogonal

matrices spanning the column space described in (2.1), and ×k denotes mode-k
multiplication. The core tensor signifies the interaction of mode matrices and is
generally not diagonal when the tensor order is greater than two.

2.3.2 Orthogonal Groups

Matrix Lie groups arise in various kinds of non-Euclidean geometry (Belinfante and
Kolman 1972). The General Linear Group1 GL (n) is a set of nonsingular n × n
matrices defined as:

GL (n) = {Y ∈ R
n×n : det(Y ) �= 0}.

The GL (n) is closed under a group operation, that is, matrix multiplication. This is
because the product of two nonsingular matrices is a nonsingular matrix. Of practical
importance here is the fact that elements of GL (n) are full rank and thus their row
and column spaces span R

n . A further subgroup of GL (n) is the orthogonal group
denoted as:

O(n) = {Y ∈ R
n×n : Y T Y = I }.

It is known that the determinants of orthogonal matrices can be either +1 or −1
where the matrices with the determinant of 1 are rotation matrices and the matrices
with the determinant of −1 are reflection matrices.

2.3.3 Stiefel Manifolds

The Stiefel manifold Vn,p is a set of n × p orthonormal matrices defined as:

Vn,p = {Y ∈ R
n×p : Y T Y = I }.

The Stiefel manifoldVn,p can be considered a quotient space ofO(n) so we can iden-

tify an isotropy subgroup H of O(n) expressed as
{[

Ip 0
0 Qn−p

]
: Qn−p ∈ O(n − p)

}

1In this paper, we are only interested in the field of real numberR. Unitary groupsmay be considered
in other contexts.
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where the isotropy subgroup leaves the element unchanged. Thus, the Stiefel mani-
fold can be expressed as Vn,p =O(n) /O(n − p). From a group theory point of view,
O(n) is a Lie group andO(n − p) is its subgroup so thatO(n) /O(n − p) represents
the orbit space. In other words, Vn,p is the quotient group of O(n) by O(n − p).

2.3.4 Grassmann Manifolds

When we impose a group action of O(n) onto the Stiefel manifold, this gives rise
to the equivalence relation between orthogonal matrices so that the elements of
Stiefel manifolds are rotation and reflection invariant. In other words, elements are
considered being equivalent if there exists a p × p orthogonal matrix Qp which
maps one point into the other. This equivalence relation can be written as:

�Y � = {Y Qp : Qp ∈ O(n)} (2.2)

where �Y � is an element on the Grassmann manifold. Therefore, the Grassmann
manifold Gn,p is a set of p-dimensional linear subspaces of Rn and its isotropy

subgroup composes all elements of
{[

Qp 0
0 Qn−p

]
: Qp ∈ O(p) , Qn−p ∈ O(n − p)

}
.

The quotient representation of Grassmann manifolds is expressed as Gn,p = O(n)

/ (O(p) × O(n − p)) = Vn,p / O(p). As such, the element of the Grassmann mani-
fold represents the orbit of a Stiefel manifold under the group action of orthogonal
groups. More details on the treatment of Grassmann manifolds can be found in
Edelman et al. (1998) and Absil et al. (2008).

2.4 Elements of Product Manifolds

This section discusses the elements of product manifolds in the context of gesture
recognition. We illustrate the essence of product manifolds and the factorization of
action videos. Further, we describe the realization of geodesic distance on the product
manifold and its use for action classification.

2.4.1 Product Manifolds

A product manifold can be recognized as a complex compound object in a high
dimensional space composed by a set of lower dimensional objects. For example,
the product of a line with elements y in R

1 and a solid circle with elements x in R
2

becomes a cylinder with elements (x , y) in R
3 as shown in Fig. 2.2. Formally, this

product topology can be expressed as:



2 Human Gesture Recognition on Product Manifolds 69

Fig. 2.2 An example of a
product manifold: a cylinder
is a cross product of a circle
and an interval

I = {y ∈ R : |y| < 1},
D2 = {x ∈ R

2 : |x | < 1},
D2 × I = {(x, y) ∈ R

2 × R : |x | < 1 and |y| < 1}

where D2 and I are viewed as topological spaces.
The cylinder may be equally well interpreted as either a circle of intervals or an

interval of circles. In general, a product manifold may be viewed as the cross section
of lower dimensional objects. Formally, letM1,M2, . . . ,Mq be a set of manifolds.
The set M1 × M2 × · · · × Mq is called the product of the manifolds where the
manifold topology is equivalent to the product topology. Hence, a product manifold
is defined as:

M = M1 × M2 × · · · × Mq

= {(x1, x2, . . . , xq) : x1 ∈ M1, x2 ∈ M2, . . . , xq ∈ Mq}

where × denotes the Cartesian product, Mk represents a factor manifold (a topo-
logical space), and xk is an element in Mk . Note that the dimension of a product
manifold is the sum of all factor manifolds (Lee 2003).

The product manifold naturally expresses a compound topological space associ-
ated with a number of factor manifolds. For action video classification, third order
data tensors are manifested as elements on three factor manifolds. As such, video
data can be abstracted as points and classified on a product manifold.

2.4.2 Factorization in Product Spaces

As discussed in Sect. 2.3, HOSVD operates on the unfolded matrices (modes) via
matrix unfolding in which the variation of each mode is captured by HOSVD. How-
ever, the traditional definition of HOSVD does not lead to a well-defined product
manifold in the context of action recognition.

We observe that the column of every unfoldedmatrix A(k) is composed bymultiple
orders from the original data tensorA ∈R

I1×I2×···×IN . This fact can also be observed
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in Fig. 2.1. Letm be the dimension of the columns, I1 × I2 × · · · × Ik−1 × Ik+1 · · · ×
IN , and p be the dimension of the rows, Ik , for an unfolded matrix A(k). We can then
assume that the dimension of the columns is greater than the dimension of the rows
due to the nature of matrix unfolding for action videos, that is, m > p. This implies
that the unfolded matrix A(k) only spans p dimensions.

Alternatively, one can factorize the data tensor using the right orthogonal matrices
(Lui et al. 2010). From the context of action videos, the HOSVD can be expressed
as:

A = Ŝ ×1 V (1)
horizontal-motion×2 V (2)

vertical-motion×3 V (3)
appearance

where Ŝ is a core tensor, V (k) are the orthogonal matrices spanning the row space
with the first p rows associated with non-zero singular values from the unfolded
matrices, respectively. Because we are performing action recognition on videos,
the orthogonal matrices, V (1)

horizontal-motion, V
(2)
vertical-motion, and V (3)

appearance, correspond to
horizontal motion, vertical motion, and appearance. Figure2.3 shows some examples
from the action decomposition.

From the factorization of HOSVD, each V (k) is a tall orthogonal matrix, thus it is
an element on a Stiefel manifold. When we impose a group action of the orthogonal
group, elements on the Stiefel manifold become rotation and reflection invariant. In
other words, they are elements on the Grassmann manifold described in (2.2). As
such, the action data are represented as the orbit of elements on the Stiefel manifold
under the rotation and reflection actions with respect to appearance and dynamics.
Section 2.5 will discuss how we benefit from imposing such a group action on the
Stiefel manifold.

2.4.3 Geodesic Distance on Product Manifolds

The geodesic in a product manifoldM is the product of geodesics inM1,M2, . . . ,
Mq (Ma et al. 1998; Begelfor andWerman 2006). Hence, for any differentiable curve
γ parametrized by t , we have γ (t) = (γi (t), γ j (t)) where γ is the geodesic on the
product manifoldM , and γi and γ j are the geodesics on the factor manifoldMi and
M j respectively. From this observation, the geodesic distance on a product manifold
may be expressed as a Cartesian product of canonical angles computed by factor
manifolds.

Just as there are alternatives to induce ametric on aGrassmannmanifold (Edelman
et al. 1998) using canonical angles, the geodesic distance on a product manifold
could also be defined in different ways. One possible choice is the chordal distance
that approximates the geodesic via a projection embedding (Conway et al. 1996).
Consequently, we define the geodesic distance on a product manifold as:

dM (A ,B) =‖ sin� ‖2 (2.3)
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where A andB are the N order data tensors, � = (θ1, θ2, . . . , θN ), and θk ∈ Gk is a
set of canonical angles (Björck and Golub 1973) computed independently from each
factor (Grassmann) manifold.

This development of geodesic distance on the product manifold can be related
back to our cylinder example where a circle in R

2 and a line in R
1 form a cylinder

in R
3 where R3 is the product space. Recall that a Grassmann manifold is a set of

p-dimensional linear subspaces. In analogous fashion, the product of a set of p1, p2,
. . . , pN linear subspaces forms a set of product subspaces whose dimension is (p1 +
p2 + · · · + pN ). The product subspaces are the elements on a product manifold. This
observation is consistent with the � in (2.3) where the number of canonical angles
agrees with the dimension of product subspaces on the product manifold.

Note that canonical angles θk are measured between V (k)
A and V (k)

B where each
is an orthogonal matrix spanning the row space associated with nonzero singular
values from a mode-k unfolded matrix. As such, an N order tensor in R

I1×I2×···×IN

would span N row spaces in I1, I2, . . . , IN , respectively, and the dimension of a
product manifold is the sum of each order of a data tensor, that is, (

∑N
i=1 = I1 +

I2 + · · · + IN ).

2.5 The Product Manifold Representation

The tensor representation on a product manifold models the variations in both space
and time for action videos. Specifically, the product manifold captures the individual
characteristics of spatial and temporal evolution through three factor manifolds. As
such, one factor manifold is acquiring the change in time, resulting in the appearance
(XY) component, while the other two capture the variations in horizontal and verti-
cal directions, demonstrating the horizontal motion (YT) and vertical motion (XT).
Putting all these representations together, geodesic distance on the product manifold
measures the changes in both appearance and dynamics.

The aim of this section is to illustrate how the product manifold characterizes
appearance and dynamics from action videos. To visualize the product manifold
representation, let us consider the example given in Fig. 2.3 where the first row
expresses the pairs of overlay appearance (XY) canonical variates, the second and
third rows reveal the pairs of overlay horizontalmotion (YT) and verticalmotion (XT)
canonical variates, and the bottom row gives the sum of canonical angles computed
from the pairs of canonical variates. Note that the canonical variates are elements on
Stiefel manifolds. In the first column, two distinct actions are factorized to canonical
variates. We can see that all canonical variates exhibit very different characteristics
in both appearance and motions. On the contrary, the second column shows the same
action performed by different actors and the canonical variates aremuchmore similar
than the first column, resulting in smaller canonical angles overall.

One of the advantages of the product manifold representation is that actions do not
need to be aligned in temporal space. To demonstrate thismerit, we permute the frame
order from action 3 denoted as action 4 and match it to action 1. Figure2.4 shows the
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Fig. 2.3 Examples of appearance andmotion changeswhere the first rowis the overlay appearances,
the second and third rows are the overlay horizontal motion and vertical motion, and the bottom
row gives the sum of canonical angles computed from each factorization of the pairs of canonical
variates

pairs of canonical variates between actions (1, 3) and actions (1, 4). We should first
note that the appearance (XY) of action 3 and action 4 span the same space despite
the visual differences resulting in the identical sum of canonical angles 38.15. This
is because elements on the Grassmann manifold are rotation and reflection invariant
from elements of the Stiefel manifold. This important concept is illustrated in Fig. 2.5
where the exchange matrix O(p) maps the appearance of action 4 to the appearance
of action 3.

In the example given in Fig. 2.4, themost prominent change is related to themotion
in vertical directions (XT) between action 3 and action 4. This arises from the fact
that the change ofmotionmostly occurs in the vertical directionwhenwe permute the
order of the video frames from action 3. Consequently, the sum of canonical angles
in XT varies from 33.58 to 38.16which is less similar to action 1.Whenwe identify a
waving hand moving from top to bottom and from bottom to top, the vertical motion
is the key feature. Otherwise, a simple cyclical search can compensate such variation.
As a result, the product manifold representation is resilient to misregistration in the
temporal space for appearance while keeping the dynamics intact.

Another intriguing attribute of the product manifold representation is its ability
to capture the rate of motion, which is useful in identifying some particular actions.
Figure2.6 shows the pairs of canonical variates of two similar actions—walking and
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Fig. 2.4 Examples of appearance and motion changes where Action 4 is a permuted version of
Action 3. The canonical angles for the appearance indicates that the action is not affected by the
frame order

Fig. 2.5 The characterization of the Grassmann manifold where a point is mapped to another point
on the Stiefel manifold via an exchanged matrix. The group action is (X, Q) �−→ XQ where X ∈
Vn,p and Q ∈ O(p) so that elements on the Grassmann manifold are closed under the orthogonal
matrix multiplication

running. First,wenote that there is little information from theverticalmotion since the
movements of walking and running occur horizontally. The appearance differences
between walking and running are not substantial, which is shown in the first column
of Fig. 2.6. The key information between walking and running is embedded in the
horizontal motion (YT). While the structure of horizontal motion between walking
and running is similar exhibiting a line-like pattern, they have very distinct slopes
shown in the horizontal motion column of Fig. 2.6. These slopes characterize the rate
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Fig. 2.6 Illustration of capturing the rate of actions. The first column shows the change of appear-
ance while the second column reveals the change of horizontal motion where the slopes exhibit the
rate of motion

of motion and are the key factors in recognizing these types of actions. In particular,
when walking and running are compared depicted in the third row of Fig. 2.6, the
idiosyncratic aspect is captured by the rate of horizontal motion. In general, it is
possible to see the rate of motion through both motion representations depending on
the type of actions.

2.6 Statistical Modeling

Least squares regression is one of the fundamental techniques in statistical analysis.
It is simple and often outperforms complicated models when the number of training
samples is small (Hastie et al. 2001). Since video data do not reside in Euclidean
space, we pay attention to the manifold structure. Here, we introduce a nonlinear
regression framework in non-Euclidean space for gesture recognition. We formulate
least squares regression as a composite function; as such, both domain and range
values are constrained on amanifold through the regression process. The least squares
fitted elements from a training set can then be exploited for gesture recognition.

2.6.1 Linear Least Squares Regression

Before we discuss the geometric extension, we will first review the standard form
of least squares fitting. We consider a regression problem y = Aβ where y ∈ R

n is
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the regression value, A([a1|a2| · · · |ak]) ∈ R
n×k is the training set, and β ∈ R

k is the
fitting parameter. The residual sum-of-squares can be written as:

R(β) =‖ y − Aβ ‖2 (2.4)

and the fitting parameter β can be obtained by minimizing the residual sum-of-
squares error from (2.4). Then, we have

β̂ = (AT A)−1AT y.

The regressed pattern from the training set has the following form

ŷ = Aβ̂ = A(AT A)−1AT y. (2.5)

The key advantage of least squares fitting is its simplicity and it intuitively measures
the best fit of the data.

2.6.2 Least Squares Regression on Manifolds

Non-Euclidean geometry often arises in computer vision applications. We consider
the nonlinear nature of space and introduce a geometric framework for least squares
regression. First, we extend the linear least squares regression from (2.5) to a non-
linear form by incorporating a kernel function shown in the following

A(A � A)−1(A � y)

where � is a nonlinear similarity operator. Obviously, � is equal to xT y in the linear
case. In this paper, we employ the RBF kernel given as:

x � y = exp

(
−

∑
k θk

σ

)
(2.6)

where x and y are the elements on a factor manifold, θk is the canonical angle
computed from the factor manifold, and σ is set to 2 in all our experiments. While
other kernel functions can be considered, our goal is to demonstrate our geometric
framework and choose a commonly used RBF kernel operator.

Considering the similarity measure given in (2.6), the regression model becomes
three sub-regression estimators given by

ψ(k)(y) = A(k)(A(k) � A(k))−1(A(k) � y(k)) (2.7)

where k denotes themode of unfolding, A(k) is a set of orthogonal matrices factorized
from HOSVD, and y(k) is an orthogonal matrix from the unfolded matrix.



76 Y.M. Lui

To gain a better insight on the regression model, we explore the geometrical
interpretation from (2.7). Given p training instances, the first element, A(k), is a set
of factorized training samples residing on a manifold. Furthermore, (A(k) � A(k))−1

produces a p × p matrix from the training set and (A(k) � y(k)) would create a p × 1
vector. Therefore, the rest of the regressionprovides aweightingvector characterizing
the training data on a factor manifold as:

w = (A(k) � A(k))−1(A(k) � y(k))

where the weighting vector is in a vector space, that is, w ∈ V .
Now, we have a set of factorized training samples, A(k), on a manifold and a

weighting vector, w, in a vector space. To incorporate these two elements with the
least squares fitting given in (2.7), we make a simple modification and reformulate
the regression as follows


(k)(y) = A(k) • (A(k) � A(k))−1(A(k) � y(k)) (2.8)

where • is an operator mapping points from a vector space back to a factor manifold.
By introducing an additional operator, we ensure that both the domain values y(k)

and the range values 
k(y) reside on a manifold. From a function composition point
of view, the proposed regression technique can be viewed as a composition map
G ◦ H where H : M −→ V and G : V −→ M where M is a manifold and V
is a vector space.

One possibleway to realize the compositionmap,G ◦ H , is to employ the tangent
space and modify the Karcher mean (Karcher 1977). The computation of Karcher
mean considers the intrinsic geometry and iterativelyminimizes the distance between
the updatedmean and all data samples via the tangent space. Since w is the weighting
vector, it naturally produces the weight between training samples. All we need is to
apply the weighting vector to weight the training samples on a factor manifold. This
is equivalent to computing the weighted Karcher mean, which is an element of a
manifold.

Algorithm 1: Weighted Karcher Mean Computation

1 Initialize a base point μ on a manifold
2 while not converged do
3 Apply the logarithmic map to the training samples Yi to the base point μ
4 Compute the weighted average on the tangent space at the base point μ
5 Update the base point μ by applying the exponential map on the weighted average
6 end

So far, our geometric formulation on least squares regression is very general. To
make it specific for gesture recognition, we impose rotation and reflection invariance
to the factorized element V (k) such that they are elements on a Grassmann mani-
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Fig. 2.7 An illustration of
logarithmic and exponential
maps where Y and μ are
points on a manifold, � is
the tangent vector, and TμM
is the tangent space at μ

fold and the computation of the weighted Karcher mean can be realized. Here, we
sketch the pseudo-code in Algorithm 1. As Algorithm 1 illustrates, the first step is
to initialize a base point on a manifold. To do so, we compute the weighted average
from the training samples in Euclidean space and project it back to the Grassmann
manifold using QR factorization. Then, we iteratively update the base point on the
Grassmann manifold. The update procedure involves the standard logarithmic map
and the exponential map on Grassmann manifolds (Edelman et al. 1998) described
as follows

logμ(Yi ) = U1�1V
T
1

where μ is the base point for the tangent space, Yi is a training instance factorized
from the Grassmannmanifold,μ⊥μT

⊥Yi (μT Yi )−1 =U1�1V T
1 ,�1 = arctan(�1), and

μ⊥ is the orthogonal complement to μ.

expμ(�) = μV2 cos(�2) +U2 sin(�2)

where � is the weighted tangent vector at μ and � = U2�2V T
2 . From a geometric

point of view, the logarithmic operator maps a point on a manifold to a tangent
space whereas the exponential map projects a point in the tangent space back to the
manifold. A pictorial illustration is given in Fig. 2.7. In addition, the Karcher mean
calculation exhibits fast convergence (Absil et al. 2004). Typically, convergence can
be reached within 10 iterations in our experiments. A sample run is depicted in
Fig. 2.8 where expeditious reduction of residuals occurs in the first few iterations.

To perform gesture recognition, a set of training videos is collected. All videos are
normalized to a standard size. During the test phase, the category of a query video
is determined by

j∗ = argmin
j

D(Y, 
 j (Y ))

where Y is a query video, 
 j is the regression instance for the class j given in
(2.8), and D is a geodesic distance measure. Because the query gesture Y and the
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Fig. 2.8 The residual values
of tangent vectors

regression instance are realized as elements on a product manifold, we employ the
chordal distance given in (2.3) for gesture classification.

In summary, the least squares regression model applies HOSVD on a query
gesture Y and factorizes it to three sub-regression models (
(1)

j , 

(2)
j , 


(3)
j ) on

three Grassmann manifolds where regressions are performed. The distance between
the regression output and query is then characterized on a product manifold; ges-
ture recognition is achieved using the chordal distance. We note that our least
squares framework is applicable to many matrix manifolds as long as the logarith-
mic and exponential maps are well-defined. Furthermore, when the kernel operator is
� = xT y, logx (y) = y, and expx (�) = x + �, the regressionmodel in (2.8) becomes
the canonical least squares regression in Euclidean space.

When statistical models exhibit high variance, shrinkage techniques are often
applied (Hastie et al. 2001). We see that a simple regularization parameter turns least
squares regression into ridge regression. This observation can also be applied to our
non-Euclidean least squares regression framework.

2.7 Experimental Results

This section summarizes our empirical results and demonstrates the proficiency of
our framework on gesture recognition. To facilitate comparison, we first evaluate
our method using two publicly available gesture data sets namely Cambridge hand-
gesture (Kim and Cipolla 2009) and UMD Keck body-gesture (Lin et al. 2009).
We further extend our method to the one-shot-learning gesture challenge (Chalearn
2011). Our experiments reveal that not only does our method perform well on the
standard benchmark data sets, but also it generalizes well on the one-shot-learning
gesture challenge.
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2.7.1 Cambridge Hand-Gesture Data Set

Our first experiment is conducted using the Cambridge hand-gesture data set which
has 900 video sequences with nine different hand gestures (100 video sequences per
gesture class). The gesture data are collected from five different illumination sets
labeled as Set1, Set2, Set3, Set4, and Set5. Example gestures are shown in Fig. 2.9.

We follow the experimental protocol employed by Kim and Cipolla (2009) where
Set5 is the target set, and Set1, Set2, Set3, and Set4 are the test sets. The target Set5
is further partitioned into a training set and validation set (90 video sequences in the
training set and 90 video sequences in the validation set). We employ five random
trials in selecting the training and validation videos in Set5. The recognition results
are summarized in Table2.1 where the classification rates are the average accuracy
obtained from five trial runs followed by the standard deviation. As Table2.1 shows,
our method performs very well across all illumination sets obtaining 91.7% average
classification rate.

Fig. 2.9 Hand gesture samples. Flat-leftward, flat-rightward, flat-contract, spread-leftward, spread-
rightward, spread-contract, V-shape-leftward, V-shape-rightward, and V-shape-contract

Table 2.1 Recognition results on the Cambridge hand-gesture data set (five trial runs)

Method Set1 (%) Set2 (%) Set3 (%) Set4 (%) Total (%)

Graph
embedding
(Yuan et al.
2010)

– – – – 82

TCCA (Kim
and Cipolla
2009)

81 81 78 86 82 ± 3.5

DCCA +
SIFT (Kim
and Cipolla
2007)

– – – – 85 ± 2.8

RLPP
(Harandi et al.
2012)

86 86 85 88 86.3 ± 1.3

TB{Vn,p}
(Lui 2012b)

88 84 85 87 86 ± 3.0

PM 1-NN (Lui
et al. 2010)

89 86 89 87 88 ± 2.1

Our method 93 89 91 94 91.7 ± 2.3
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2.7.2 UMD Keck Body-Gesture Data Set

The UMD Keck body-gesture data set consists of 14 naval body gestures acquired
from both static and dynamic backgrounds. In the static background, the subjects and
the camera remain stationary whereas the subjects and the camera are moving in the
dynamic environment during the performance of the gesture. There are 126 videos
collected from the static scene and 168 videos taken from the dynamic environment.
Example gestures are given in Fig. 2.10.

We follow the experimental protocol proposed by Lin et al. (2009) for both static
and dynamic settings. The region of interest is tracked by a simple correlation filter. In
the static background, the protocol is leave-one-subject-out (LOSO) cross-validation.
As for the dynamic environment, the gestures acquired from the static scene are used
for training while the gestures collected from the dynamic environment are the test
videos. The recognition results for both static and dynamic backgrounds are reported
in Table2.2. We can see that our method is competitive to the current state-of-the-art
methods in both protocols. One of the key advantages of ourmethod is its direct use of
raw pixels while the prototype-tree (Lin et al. 2009), MMI-2+SIFT (Qiu et al. 2011),
and CC K-means (Jiang et al. 2012) methods operate on silhouette images which
require image segmentation prior to classification. This makes our representation
more generic.

Fig. 2.10 Bodygesture samples.First row turn left, turn right, attention left, attention right, attention
both, stop left, and stop right. Second row stop both, flap, start, go back, close distance, speed up,
and come near

Table 2.2 Recognition results on the UMD Keck body-gesture data set

Method Static setting (%) Dynamic setting (%)

HOG3D (Bilinski and Bremond 2011) – 53.6

Shape manifold (Abdelkadera et al. 2011) 82 –

MMI-2+SIFT (Qiu et al. 2011) 95 –

CC K-means (Jiang et al. 2012) – 92.9

Prototype-tree (Lin et al. 2009) 95.2 91.1

TB{Vn,p} (Lui 2012b) 92.1 91.1

PM 1-NN (Lui et al. 2010) 92.9 92.3

Our method 94.4 92.3
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2.7.3 One-Shot-Learning Gesture Challenge

Microsoft KinectTM has recently revolutionized gesture recognition by provid-
ing both RGB and depth images. To facilitate the adaptation to new gestures,
CHALEARN (Guyon et al. 2012) has organized a one-shot-learning challenge for
gesture recognition.

The key aspect of one-shot-learning is to perform machine learning on a single
training example. As such, intra-class variability needs to be modeled from a single
example or learned from different domains. While traditional machine learning tech-
niques require a large amount of training data to model the statistical distribution,
least squares regression appears to be more robust when the size of training samples
is limited (Hastie et al. 2001).We employ our least squares regression framework and
model the intra-class variability by synthesizing training examples from the original
training instance. Consequently, we apply the same regression framework on the
product manifold to the one-shot-learning gesture challenge.

One of the gesture variations is performing gesture positions. Our initial studies
for frame alignment did not yield positive results due in part to the incidental features
of the upper body. Since gesture positions are the key source of variations, we synthe-
size training examples for translational instances on bothRGBand depth images. The
synthesized examples are generated by shifting the entire action video horizontally
and vertically. Specifically, we synthesize two vertically (up/down) and four hori-
zontally (left/right) translated instances along with the original training example. As
such, we have seven training instances for RGB and depth images, respectively. We
stress that we do not apply any spatial segmentation or intensity normalization to
video data; alignment is the only variation that we synthesize for one-shot-learning.
Our experiments on the training batches indicate that there is about 2% gain by
introducing the translational variations.

We assess the effectiveness of the proposed framework on the development data
set for the one-shot-learning gesture challenge. The development data set consists
of 20 batches of gestures. Each batch is made of 47 gesture videos and split into a
training set and a test set. The training set includes a small set of vocabulary spanning
from 8 to 15 gestures. Every test video contains 1–5 gestures. Detailed descriptions
of the gesture data can be found in Guyon et al. (2012).

Since the number of gestures varies for test videos, we perform temporal seg-
mentation to localize each gesture segment. It is supposed that the actor will return
to the resting position before performing a new gesture. Thus, we employ the first
frame as a template and compute the correlation coefficient with subsequent frames.
We can then localize the gesture segments by identifying the peak locations from
the correlations; the number of gestures is the number of peaks + 1. An illustration
of temporal segmentation is given in Fig. 2.11 where the peak locations provide a
good indication for the resting frames. Furthermore, we fix the spatial dimension
to 32 × 32 and dynamically determine the number of frames by selecting 90% of
the PCA energy from each training batch. Linear interpolation is then applied to
normalize the video length.
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Fig. 2.11 An illustration of
temporal segmentation
where the dash lines indicate
the peak locations and the
resting frames from the
action sequence

The recognition performance is evaluated using the Levenshtein distance
(Levenshtein 1966), also known as edit distance. Table2.3 shows the average errors
over 20 batches. As Table2.3 reveals, our method significantly outperforms the base-
line algorithm (Chalearn 2011) and achieves 28.73% average Levenshtein distance
per gesture on the development data set. Our method also ranks among the top algo-
rithms in the gesture challenge (Guyon et al. 2012). This illustrates that our method
can be effectively adopted for one-shot-learning from the traditional supervised learn-
ing paradigm.

While our method performs well on the one-shot-learning gesture challenge, it is
not a complete system yet. There are three particular batches that cause difficulties for
our algorithm. These batches are devel03, devel10, and devel19 where the example
frames are shown in Fig. 2.12. These three batches share a common characteristic
that the gesture is only distinguishable by identifying the hand positions. Since we
do not have a hand detector, the gross motion dominates the whole action causing it
to be confused with other similar gestures.

Another source of errors is made by the temporal segmentation. While the actor
is supposed to return to the resting position before performing a new gesture, this
rule has not always been observed. As a result, such variation introduces a mismatch
between the template and subsequent frames resulting errors in partitioning the video
sequence. The large error in devel03 is caused by the need for hand positions and
temporal segmentation. Future work will focus on combining both appearance and
motion for temporal segmentation.

Nevertheless, the experimental results from the Cambridge hand-gesture and the
UMDKeck body-gesture data sets are encouraging. These findings illustrate that our
method is effective in both hand gestures and body gestures. Once we have a reliable
hand detector, we expect to further improve gesture recognition from a single training
example. Currently, the processing time on 20 batches (2000 gestures) including both
training and testing is about 2 hours with a non-optimizedMATLAB implementation
on a 2.5 GHz Intel Core i5 iMac.
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Table 2.3 Recognition results on the development data for the one-shot-learning challenge where
TeLev is the sum of the Levenshtein distance divided by the true number of gestures and TeLen is
the average error made on the number of gestures

Batch Baseline Our method

TeLev (%) TeLen (%) TeLev (%) TeLen (%)

devel01 53.33 12.22 13.33 4.44

devel02 68.89 16.67 35.56 14.44

devel03 77.17 5.43 71.74 20.65

devel04 52.22 30.00 10.00 2.22

devel05 43.48 10.87 9.78 7.61

devel06 66.67 17.78 37.78 14.44

devel07 81.32 19.78 18.68 3.30

devel08 58.43 12.36 8.99 5.62

devel09 38.46 9.89 13.19 1.10

devel10 75.82 21.98 50.55 1.10

devel11 67.39 18.48 35.87 2.17

devel12 52.81 5.62 22.47 4.49

devel13 50.00 17.05 9.09 2.27

devel14 73.91 22.83 28.26 3.26

devel15 50.00 8.70 21.74 0.00

devel16 57.47 17.24 31.03 6.90

devel17 66.30 32.61 30.43 4.35

devel18 70.00 28.89 40.00 11.11

devel19 71.43 15.38 49.45 3.30

devel20 70.33 36.26 35.16 12.09

Average 62.32 18.01 28.73 6.24

Fig. 2.12 Gesture samples on the one-shot-learning gesture challenge (devel03, devel10, and
devel19)

2.8 Discussion

The proposed method is geometrically motivated. It decomposes a video tensor to
three Stiefel manifolds via HOSVD where the orthogonal elements are imposed to
Grassmannian spaces. Asmentioned before, one of the key advantages of ourmethod
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Fig. 2.13 The effect of background clutter. Appearance, horizontal motion, and vertical motion
are depicted in the first, second, and third columns, respectively

is its direct use of raw pixels. This gives rise to a practical and important question.
How robust can the raw pixel representation be against background clutter?

To address this concern, we synthesize an illustrative example given in Fig. 2.13.
The first, second, and third columns depict the appearance, horizontal motion, and
vertical motion of the gesture, respectively. A V-shape rightward gesture and a flat
leftward gesture are shown in the first row and second row. We superpose a cluttered
background on every frame of the flat leftward gesture exhibited in the third row.
While the appearances between the uniform flat gesture and the cluttered flat gesture
emerge differently, the deterioration on the dynamics is quite minimal. As a result,
the gesture performed with the background clutter can still be discriminated against
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other gestures. Numerically, the sum of the canonical angles between the uniform
(second row) and the cluttered background (third row) gestures is (56.09, 7.99, 9.17)
resulting in a geodesic distance of 5.91 on the product manifold. In contrast, the sum
of the canonical angles between the V-shape (first row) and the flat (second row)
gestures is (76.35, 23.66, 18.42) yielding a geodesic distance of 8.29. In addition,
when the V-shape gesture (first row) matches against the cluttered flat gesture (third
row), the sum of the canonical angles is (76.09, 23.75, 18.84) and the geodesic
distance is 8.31. This finding reveals that the geodesic distance between the uniform
and cluttered background gestures are quite similar against inter-class gestures, while
the geodesic distance is significantly smaller for the intra-class gestures. Hence, raw
pixels can be directly exploited in our representation.

As technology advances, we can now separate the foreground and background
more easily using a KinectTM camera. We hypothesize that better recognition results
may be obtained when the foreground gestures are extracted. On the other hand, our
method can still perform gracefully when a cluttered background is present.

2.9 Conclusions

This paper promotes the importance of the underlying geometry of data tensors. We
have presented a geometric framework for least squares regression and applied it to
gesture recognition. We view action videos as third order tensors and impose them
on a product manifold where each factor is Grassmannian. The realization of points
on these Grassmannians is achieved by applying HOSVD to a tensor representation
of the action video. A natural metric is inherited from the factor manifolds since
the geodesic on the product manifold is given by the product of the geodesic on the
Grassmann manifolds.

The proposed approach provides a useful metric and a regression model based
on latent geometry for action recognition. To account for the underlying geometry,
we formulate least squares regression as a composite function. This formulation
provides a natural extension fromEuclidean space tomanifolds. Experimental results
demonstrate that ourmethod is effective and generalizeswell to the one-shot-learning
scheme.

For longer video sequences, micro-action detection is needed which may be mod-
eled effectively using HMM. Future work will focus on developing more sophis-
ticated models for gesture recognition and other regression techniques on matrix
manifolds for visual applications.
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Chapter 3
Sign Language Recognition Using Sub-units

Helen Cooper, Eng-Jon Ong, Nicolas Pugeault and Richard Bowden

Abstract This chapter discusses sign language recognition using linguistic sub-
units. It presents three types of sub-units for consideration; those learnt from appear-
ance data as well as those inferred from both 2D or 3D tracking data. These sub-units
are then combined using a sign level classifier; here, two options are presented. The
first uses Markov Models to encode the temporal changes between sub-units. The
second makes use of Sequential Pattern Boosting to apply discriminative feature
selection at the same time as encoding temporal information. This approach is more
robust to noise and performs well in signer independent tests, improving results from
the 54% achieved by the Markov Chains to 76%.

Keywords Sign language recognition · Sequential pattern boosting · Depth
cameras · Sub-units · Signer independence · Data set

3.1 Introduction

This chapter presents several approaches to sub-unit based Sign language recognition
(SLR) culminating in a real timeKinect™ demonstration system. SLR is a non-trivial
task. Sign languages (SLs) aremade up of thousands of different signs; each differing
from the other by minor changes in motion, handshape, location or Non-manual
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features (NMFs). While gesture recognition (GR) solutions often build a classifier
per gesture, this approach soon becomes intractable when recognising large lexicons
of signs, for even the relatively straightforward task of citation-form, dictionary look-
up. Speech recognition was faced with the same problem; the emergent solution was
to recognise the subcomponents (phonemes), then combine them into words using
Hidden Markov Models (HMMs). Sub-unit based SLR uses a similar two stage
recognition system, in the first stage, sign linguistic sub-units are identified. In the
second stage, these sub-units are combined together to create a sign level classifier.

Linguists also describe SLs in terms of component sub-units; by using these sub-
units, not only can larger sign lexicons be handled efficiently, allowing demonstration
on databases of nearly 1000 signs, but they are also more robust to the natural varia-
tions of signs, which occur on both an inter and an intra signer basis. Thismakes them
suited to real-time signer independent recognition as described later. This chapterwill

Fig. 3.1 Overviewof the three types of sub-units extracted and the twodifferent sign level classifiers
used
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focus on four main sub-unit categories based on HandShape, Location, Motion and
Hand-Arrangement. There are several methods for labelling these sub-units and this
work builds on both the Ha, Tab, Sig, Dez system from the BSL dictionary (British
Deaf Association 1992) and The Hamburg Notation System (HamNoSys), which has
continued to develop over recent years to allow more detailed description of signs
from numerous SLs (Hanke and Schmaling 2004).

A comparison of sub-unit approaches is discussed, focussing on the advantages
and disadvantages of each. Also presented is a newly released Kinect data set, con-
taining multiple users performing signs in various environments. There are three
different types of sub-units considered; those based on appearance data alone, those
which use 2D tracking data with appearance based handshapes and those which use
3D tracking data produced by a Kinect™sensor. Each of these three sub-unit types is
tested with aMarkovmodel approach to combine sub-units into sign level classifiers.
A further experiment is performed to investigate the discriminative learning power
of Sequential Pattern (SP) Boosting for signer independent recognition. An overview
is shown in Fig. 3.1.

3.2 Background

The concept of using sub-units for SLR is not novel. Kim and Waldron (1993) were
among the first adopters, they worked on a limited vocabulary of 13–16 signs, using
data gloves to get accurate input information. Using the work of Stokoe (1960) as
a base, and their previous work in telecommunications (Waldron and Simon 1989),
they noted the need to break signs into their component sub-units for efficiency. They
continued this throughout the remainder of their work, where they used phonemic
recognition modules for hand shape, orientation, position and movement recognition
(Waldron and Kim 1994). They made note of the dependency of position, orientation
and motion on one another and removed the motion aspect allowing the other sub-
units to compensate (on a small vocabulary, a dynamic representation of position is
equivalent to motion) (Waldron and Kim 1995).

The early work of Vogler and Metaxas (1997) borrowed heavily from the studies
of sign language by Liddell and Johnson (1989), splitting signs into motion and
pause sections. Their later work (Vogler and Metaxas 1999), used parallel HMMs
on both hand shape and motion sub-units, similar to those proposed by the linguist
Stokoe (1960). Kadir et al. (2004) took this further by combining head, hand and
torso positions, aswell as hand shape, to create a system based on hard coded sub-unit
classifiers that could be trained on as little as a single example.

Alternative methods have looked at data driven approaches to defining sub-units.
Yin et al. (2009) used an accelerometer glove to gather information about a sign, they
then applied discriminative feature extraction and ‘similar state tying’ algorithms, to
decide sub-unit level segmentation of the data. Whereas Kong and Ranganath (2008)
andHan et al. (2009) looked at automatic segmentation of signmotion into sub-units,
using discontinuities in the trajectory and acceleration to indicate where segments
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begin and end. These were then clustered into a code book of possible exemplar
trajectories using either Dynamic Time Warping (DTW) distance measures Han
et al. or Principal Component Analysis (PCA) Kong and Ranganath.

Traditional sign recognition systems use tracking and data driven approaches (Han
et al. 2009; Yin et al. 2009). However, there is an increasing body of research that
suggests using linguistically derived features can offer superior performance. Cooper
and Bowden (2010) learnt linguistic sub-units from hand annotated data which they
combined with Markov models to create sign level classifiers, while Pitsikalis et al.
(2011) presented a method which incorporated phonetic transcriptions into sub-
unit based statistical models. They used HamNoSys annotations combined with the
Postures, Detentions, Transitions, Steady Shifts (PDTS) phonetic model to break the
signs and annotations into labelled sub-units. These were used to construct statistical
sub-unit models which they combined via HMMs.

The frequent requirement of tracked data means that the Kinect™ device has
offered the sign recognition community a short-cut to real-time performance. In the
relatively short time since its release, several proof of concept demonstrations have
emerged. Ershaed et al. (2011) have focussed on Arabic sign language and have
created a system which recognises isolated signs. They present a system working for
4 signs and recognise some close up handshape information (Ershaed et al. 2011).
At ESIEA they have been using Fast Artificial Neural Networks to train a system
which recognises two French signs (Wassner 2011). This small vocabulary is a proof
of concept but it is unlikely to be scalable to larger lexicons. It is for this reason
that many sign recognition approaches use variants of HMMs (Starner and Pentland
1997; Vogler and Metaxas 1999; Kadir et al. 2004; Cooper and Bowden 2007). One
of the first videos to be uploaded to the web came from Zafrulla et al. (2011) and was
an extension of their previous CopyCat game for deaf children (Zafrulla et al. 2010).
The original system uses coloured gloves and accelerometers to track the hands. By
tracking with a Kinect™, they use solely the upper part of the torso and normalise
the skeleton according to arm length (Zafrulla et al. 2011). They have an internal
data set containing 6 signs; 2 subject signs, 2 prepositions and 2 object signs. The
signs are used in 4 sentences (subject, preposition, object) and they have recorded 20
examples of each. Their data set is currently single signer, making the system signer
dependent, while they list under further work that signer independence would be
desirable. By using a cross validated system they train HMMs (Via the Georgia Tech
Gesture Toolkit Lyons et al. 2007) to recognise the signs. They perform 3 types of
tests, those with full grammar constraints achieving 100%, those where the number
of signs is known achieving 99.98% and those with no restrictions achieving 98.8%.

3.2.1 Linguistics

Sign language sub-units can be likened to speech phonemes, but while a spo-
ken language such as English has only 40–50 phonemes (Shoup 1980), SLs have
many more. For example, The Dictionary of British Sign Language/English (British
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Deaf Association 1992) lists 57 ‘Dez’ (HandShape), 36 ‘Tab’ (Location), 8 ‘Ha’
(Hand-Arrangement), 28 ‘Sig’ (Motion) (plus 4 modifiers, for example, short and
repeated) and there are two sets of 6 ‘ori’ (Orientation), one for the fingers and one
for the palm.

HamNoSys uses a more combinatorial approach to sub-units. For instance, it
lists 12 basic handshapes which can be augmented using finger bending, thumb
position and openeness characteristics to create a single HandShape sub-unit. These
handshapes are then combined with palm and finger orientations to describe the
final hand posture.Motion sub-units can be simple linear directions, known as ‘Path
Movements’ these can also be modified by curves, wiggles or zigzags. Motion sub-
units can also be modified by locations, for example, move fromA to Bwith a curved
motion or move down beside the nose.

In addition, whereas spoken phonemes are broadly sequential, sign sub-units are
parallel, with some sequential elements added where required. This means that each
of the 57 British Sign Language (BSL) HandShape options can (theoretically) be in
any one of the 36 BSL Orientation combinations. In practice, due to the physical
constraints of the human body, only a subset of comfortable combinations occur, yet
this subset is still considerable.

An advantage of the parallel nature of sub-units, is that they can be recognised
independently using different classifiers, then combined at theword level. The reason
this is advantageous is that Location classifiers need to be spatially variant, since they
describe where a sign happens. Hand-Arrangement should be spatially invariant
but not rotationally variant, since they describe positional relationships between the
hands. While Motion are a mixture of spatially, temporally, rotationally and scale
variant sub-units since they describe types of motion which can be as generic as
‘hands move apart’ or more specific such as ‘hand moves left’. Therefore each type
of sub-unit can be recognised by classifiers incorporating the correct combination
of invariances. This paper presents three methods for extracting sub-units; learnt
appearance based (Sect. 3.3), hard coded 2D tracking based (Sect. 3.4) and hard
coded 3D tracking based (Sect. 3.5).

3.3 Learning Appearance Based Sub-units

The work in this section learns a subset of each type of sub-unit using AdaBoost
from hand labelled data. As has been previously discussed, not all types of sub-units
can be detected using the same type of classifier. For Location sub-units, there needs
to be correlation between where the motion is happening and where the person is;
to this end spatial grid features centred around the face of the signer are employed.
For Motion sub-units, the salient information is what type of motion is occurring,
often regardless of its position, orientation or size. This is approached by extracting
moment features and using Binary patterns (BPs) and additive classifiers based on
their changes over time. Hand-Arrangement sub-units look at where the hands are
in relation to each other, so these are only relevant for bi-manual signs. This is done
using the same moment features as for Motion but this time over a single frame, as
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there is no temporal context required. All of these sub-unit level classifiers are learnt
usingAdaBoost (Freund and Schapire 1995). The features used in this section require
segmentation of the hands and knowledge of where the face is. The Viola Jones face
detector (Viola and Jones 2001) is used to locate the face. Skin segmentation could
be used to segment the hands, but since sub-unit labels are required this work uses the
data set from the work of Kadir et al. (2004) for which there is an in-house set of sub-
unit labels for a portion of the data. This data set was created using a gloved signer
and as such a colour segmentation algorithm is used in place of skin segmentation.

3.3.1 Location Features

In order that the sign can be localised in relation to the signer, a grid is applied to the
image, dependent upon the position and scale of the face detection. Each cell in the
grid is a quarter of the face size and the grid is 10 rectangles wide by 8 deep, as shown
in Fig. 3.2a. These values are based on the signing space of the signer. However, in
this case, the grid does not extend beyond the top of the signers head since the data
set does not contain any signs which use that area. The segmented frame is quantised
into this grid and a cell fires if over 50% of its pixels are made up of glove/skin. This
is shown in Eq.3.1 where Rwc is the weak classifier response and �skin(x, y) is the
likelihood that a pixel contains skin. f is the face height and all the grid values are
relative to this dimension.

Rwc =

⎧
⎪⎨

⎪⎩

1 if f 2

8 <

x2∑

i=x1

y2∑

j=y1

(�skin(i, j) > 0),

0 otherwise.

Where x1, y1, x2, y2 are given by

Fig. 3.2 Grid features for two stage classification. a Shows an example of the grid produced
from the face dimensions while b and c show grid features chosen by boosting for two of the 18
Location sub-units. The highlighted box shows the face location and the first and second features
chosen, are shown in black and grey respectively
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∀Gx ,∀Gy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = Gx f,

x2 = (Gx + 0.5) f,

y1 = Gy f,

y2 = (Gy + 0.5) f,

given Gx = {−2.5,−2,−1.5 . . . 2},
Gy = {−4,−3.5,−3 . . . 0}. (3.1)

For each of the Location sub-units, a classifier was built via AdaBoost to combine
cells which fire for each particular sub-unit, examples of these classifiers are shown
in Fig. 3.2b, c. Note how the first cell to be picked by the boosting (shown in black)
is the one directly related to the area indicated by the sub-unit label. The second
cell chosen by boosting either adds to this location information, as in Fig. 3.2b, or
comments on the stationary, non-dominant hand, as in Fig. 3.2c.

Some of the sub-units types contain values which are not mutually exclusive, this
needs to be taken into account when labelling and using sub-unit data. The BSL
dictionary (British Deaf Association 1992) lists several Location sub-units which
overlap with each other, such as face and mouth or nose. Using boosting to train
classifiers requires positive and negative examples. For best results, examples should
not be contaminated, that is, the positive set should not contain negatives and the
negative set should not contain positives. Trying to distinguish between an area
and its sub-areas can prove futile, for example, the mouth is also on the face and
therefore there are likely to be false negatives in the training set when training face
against mouth. The second stage, sign-level classification does not require the sub-
unit classifier responses to be mutually exclusive. As such a hierarchy can be created
of Location areas and their sub-areas. This hierarchy is shown in Fig. 3.3; a classifier
is trained for each node of the tree, using examples which belong to it, or its children,
as positive data. Examples which do not belong to it, its parent or its child nodes
provide negative data.

This eliminates false negatives from the data set and avoids confusion. In
Fig. 3.3 the ringed nodes show the sub-units for which there exist examples. Exam-

Fig. 3.3 The three
Location sub-unit trees used
for classification. There are
three separate trees, based
around areas of the body
which do not overlap. Areas
on the leaves of the tree are
sub-areas of their parent
nodes. The ringed labels
indicate that there are exact
examples of that type in the
data set
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ples are labelled according to this hierarchy, for example, face, face_lower or
face_lower_mouth which makes finding children and parents easier by using simple
string comparisons.

3.3.2 Motion and Hand-ArrangementMoment Feature
Vectors

For Hand-Arrangement and Motion, information regarding the arrangement and
motion of the hands is required. Moments offer a way of encoding the shapes in an
image; if vectors of moment values per frame are concatenated, then they can encode
the change in shape of an image over time.

There are several different types ofmomentswhich can be calculated, each of them
displaying different properties. Four types were chosen to form a feature vector,
m: spatial, mab, central, μab, normalised central, μ̄ab and the Hu set of invariant
moments (Hu 1962)H1–H7. The order of a moment is defined as a + b. This work
uses all moments, central moments and normalised central moments up to the 3rd
order, 10 per type, (00, 01, 10, 11, 20, 02, 12, 21, 30, 03). Finally, the Hu set of
invariant moments are considered, there are 7 of these moments and they are created
by combining the normalised central moments, see Hu (1962) for full details, they
offer invariance to scale, translation, rotation and skew. This gives a 37 dimensional
feature vector, with a wide range of different properties.

Rwc =
{
1 if Twc < Mi,t ,

0 otherwise.

(3.2)

Since spatial moments are not invariant to translation and scale, there needs to be a
common point of origin and similar scale across examples. To this end, the spatial
moments are treated in a similar way to the spatial features in Sect. 3.3.1, by centring
and scaling the image about the face of the signer before computation. For training
Hand-Arrangement, this vector is used to boost a set of thresholds for individual
moments, mi on a given frame t , Eq. 3.2. For Motion, temporal information needs
to be included. Therefore the video clips are described by a stack of these vectors,
M, like a series of 2D arrays, as shown in Fig. 3.4a where the horizontal vectors of
moments are concatenated vertically, the lighter the colour, the higher the value of
the moment on that frame.
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Fig. 3.4 Moment vectors and Binary Patterns for two stage classification. a A pictorial description
of moment vectors (normalised along each moment type for a selection of examples), the lighter
the colour the larger the moment value. b BP, working from top to bottom an increase in gradient
is depicted by a 1 and a decrease or no change by a 0

3.3.3 Motion Binary Patterns and Additive Classifiers

As has been previously discussed, the Motion classifiers are looking for changes in
the moments over time. By concatenating feature vectors temporally as shown in
Fig. 3.4b, these spatio-temporal changes can be found. Component values can either
increase, decrease or remain the same, from one frame to the next. If an increase is
described as a 1 and a decrease or no change is described as a 0 then a BP can be
used to encode a series of increases/decreases. A temporal vector is said to match
the given BP if every ‘1’ accompanies an increase between concurrent frames and
every ‘0’ a decrease/‘no change’. This is shown in Eq.3.3 whereMi,t is the value of
the component, Mi , at time t and bpt is the value of the BP at frame t .

Rwc = ||max∀t (BP(Mi,t ))| − 1|,
BP(Mi,t ) = bpt − d(Mi,t ,Mi,t+1),

d(Mi,t ,Mi,t+1) =
{
0 ifMi,t ≤ Mi,t+1,

1 otherwise.
(3.3)

See Fig. 3.5 for an example where feature vector A makes the weak classifier fire,
whereas feature vector B fails, due to the ringed gradients being incompatible.

Discarding all magnitude informationwould possibly remove salient information.
To retain this information, boosting is also given the option of using additive clas-
sifiers. These look at the average magnitude of a component over time. The weak
classifiers are created by applying a threshold, Twc, to the summation of a given
component, over several frames. This threshold is optimised across the training data
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Fig. 3.5 An example of a
BP being used to classify two
examples. A comparison is
made between the elements
of the weak classifiers BP
and the temporal vector of
the component being
assessed. If every ‘1’ in the
BP aligns with an increase in
the component and every ‘0’
aligns with a decrease or ‘no
change’ then the component
vector is said to match (e.g.,
case A). However if there are
inconsistencies as ringed in
case B then the weak
classifier will not fire

during the boosting phase. For an additive classifier of size T , over component mi ,
the response of the classifier, Rwc, can be described as in Eq.3.4.

Rwc =

⎧
⎪⎨

⎪⎩

1 if Twc ≤
T∑

t=0

Mi,t ,

0 otherwise.

(3.4)

Boosting is given all possible combinations of BPs, acting on each of the possi-
ble components. The BPs are limited in size, being between 2 and 5 changes (3–6
frames) long. The additive features are also applied to all the possible components,
but the lengths permitted are between 1 and 26 frames, the longest mean length of
Motion sub-units. Both sets of weak classifiers can be temporally offset from the
beginning of an example, by any distance up to the maximum distance of 26 frames.

Examples of the classifiers learnt are shown in Fig. 3.6, additive classifiers are
shown by boxes, increasing BPs are shown by pale lines and decreasing ones by dark
lines.When looking at a sub-unit such as ‘hands move apart’ (Fig. 3.6a), the majority
of the BP classifiers show increasing moments, which is what would be expected,
as the eccentricity of the moments is likely to increase as the hands move apart.
Conversely, for ‘hands move together’ (Fig. 3.6b), most of the BPs are decreasing.

Since some Motion sub-units occur more quickly than others, the boosted clas-
sifiers are not all constrained to being equal in temporal length. Instead, an optimal
length is chosen over the training set for each individual sub-unit. Several different
length classifiers are boosted starting at 6 frames long, increasing in steps of 2 and
finishing at 26 frames long. Training classification results are then found for each
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Fig. 3.6 Boosted temporal moments BP and additive Motion classifiers. The moment vectors are
stacked one frame ahead of another. The boxes show where an additive classifier has been chosen,
a dark line shows a decreasing moment value and a pale line an increasing value

sub-unit and the best length chosen to create a final set of classifiers, of various
lengths suited to the sub-units being classified.

3.4 2D Tracking Based Sub-units

Unfortunately, since the learnt, appearance based, sub-units require expertly anno-
tated data they are limited to data sets with this annotation. An alternative to
appearance based features is given by tracking. While tracking errors can prop-
agate to create sub-unit errors, the hand trajectories offer significant information
which can aid recognition. With the advances of tracking systems and the real-time
solution introduced by the Kinect™, tracking is fast becoming an option for real-
time, robust recognition of sign language. This section works with hand and head
trajectories, extracted from videos by the work outlined by Roussos et al. (2010).
The tracking information is used to extractMotion and Location information.Hand-
Shape information is extracted via Histograms of Gradients (HOGs) on hand image
patches and learnt from labels using random forests. The labels are taken from the
linguistic representations of Sign Gesture Mark-up Language (SiGML) (Elliott et al.
2001) or HamNoSys (Hanke and Schmaling 2004).1

1Note that conversion between the two forms is possible. However while HamNoSys is usually
presented as a font for linguistic use, SiGML is more suited to automatic processing.
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Fig. 3.7 Motions detected from tracking

3.4.1 Motion Features

In order to link thex, y co-ordinates obtained from the tracking to the abstract concepts
used by sign linguists, rules are employed to extract HamNoSys based information
from the trajectories. The approximate size of the head is used as a heuristic to discard
ambient motion (that less than 0.25 the head size) and the type of motion occurring
is derived directly from deterministic rules on the x and y co-ordinates of the hand
position. The types of motions encoded are shown in Fig. 3.7, the single handed
motions are available for both hands and the dual handed motions are orientation
independent so as to match linguistic concepts.

3.4.2 Location Features

Similarly the x and y co-ordinates of the sign location need to be described relative
to the signer rather than in absolute pixel positions. This is achieved via quantisation
of the values into a codebook based on the signer’s head position and scale in the
image. For any given hand position (xh, yh) the quantised version (x ′

h, y
′
h) is achieved

using the quantisation rules shown in Eq.3.5, where (x f , y f ) is the face position and
(w f , h f ) is the face size.

x ′ = (xh − x f )/w f ,

y′ = (yh − y f )/h f . (3.5)

Due to the limited size of a natural signing space, this gives values in the range of
y′ ∈ 0 . . . 10 and x ′ ∈ {0 . . . 8} which can be expressed as a binary feature vector of
size 36, where the x and y positions of the hands are quantised independently.
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Fig. 3.8 Example HOGs extracted from a frame

3.4.3 HandShape Features

While just the motion and location of the signs can be used for recognition of many
examples, it has been shown that adding the handshape can give significant improve-
ment (Kadir et al. 2004). HOG descriptors have proven efficient for sign language
hand shape recognition (Buehler et al. 2009) and these are employed as the base
feature unit. In each frame, the signer’s dominant hand is segmented using the x,y
position and a skin model. These image patches are rotated to their principal axis and
scaled to a square, 256 pixels in size. Examples of these image patches are shown in
Fig. 3.8 beside the frame from which they have been extracted. HOGs are calculated
over these squares at a cell size of 32 pixels square with 9 orientation bins and with 2
× 2 overlapping blocks, these are also shown in Fig. 3.8. This gives a feature vector
of 1764 histogram bins which describes the appearance of a hand.

3.4.4 HandShape Classifiers

This work focusses on just the 12 basic handshapes, building multi-modal classifiers
to account for the different orientations. A list of these handshapes is shown in
Fig. 3.9.

Unfortunately, linguists annotating sign do so only at the sign levelwhilemost sub-
units occur for only part of a sign. Also, not only do handshapes change throughout
the sign, they are made more difficult to recognise due to motion blur. Using the
motion of the hands, the sign can be split into its component parts (as in Pitsikalis
et al. 2011), that are then aligned with the sign annotations. These annotations are
in HamNoSys and have been prepared by trained experts, they include the sign
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Fig. 3.9 The base handshapes (Number of occurrences in the data set)

Fig. 3.10 A variety of examples for the HamNoSys/SiGML class ‘finger2’

breakdown but not the temporal alignment. The frames most likely to contain a static
handshape (i.e., those with limited or no motion) are extracted for training.

Note that, as shown in Fig. 3.10, a single SiGML class (in this case ‘finger2’) may
contain examples which vary greatly in appearance, making visual classification an
extremely difficult task.

The extracted hand shapes are classified using a multi-class random forest. Ran-
dom forests were proposed by Amit and Geman (1997) and Breiman (2001). They
have been shown to yield good performance on a variety of classification and regres-
sion problems, and can be trained efficiently in a parallel manner, allowing training
on large feature vectors and data sets. In this system, the forest is trained from auto-
matically extracted samples of all 12 handshapes in the data set, shown in Fig. 3.9.
Since signs may have multiple handshapes or several instances of the same hand-
shape, the total occurrences are greater than the number of signs, however they are
not equally distributed between the handshape classes. The large disparities in the
number of examples between classes (see Fig. 3.9) may bias the learning, therefore
the training set is rebalanced before learning by selecting 1000 random samples for
each class, forming a new balanced data set. The forest used consists of N = 100
multi-class decision trees Ti , each of which is trained on a random subset of the train-
ing data. Each tree node splits the feature space in two by applying a threshold on
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Table 3.1 Confusion matrix of the handshape recognition, for all 12 classes

one dimension of the feature vector. This dimension (chosen from a random subset)
and the threshold value are chosen to yield the largest reduction in entropy in the
class distribution. This recursive partitioning of the data set continues until a node
contains a subset of examples that belong to one single class, or if the tree reaches
a maximal depth (set to 10). Each leaf is then labelled according to the mode of the
contained samples. As a result, the forest yields a probability distribution over all
classes, where the likelihood for each class is the proportion of trees that voted for
this class. Formally, the confidence that feature vector x describes the handshape c
is given by:

p[c] = 1

N

∑

i<N

δc(Ti (x)),

where N is the number of trees in the forest, Ti (x) is the leaf of the i th tree Ti
into which x falls, and δc(a) is the Kronecker delta function (δc(a) = 1 iff. c = a,
δc(a) = 0 otherwise).

The performance of this hand shape classification on the test set is recorded on
Table3.1, where each row corresponds to a shape, and each column corresponds to a
predicted class (empty cells signify zero). Lower performance is achieved for classes
that are more frequent in the data set. The more frequently a handshape occurs in
the data set the more orientations it is likely to be used in. This in turn makes the
appearance of the class highly variable; see, for example, Fig. 3.10 for the case of
‘finger2’—the worst performing case. Also noted is the high confusion between
‘finger2’ and ‘fist’ most likely due to the similarity of these classes when the signer
is pointing to themselves.

The handshape classifiers are evaluated for the right hand only during frames
when it is not in motion. The sign recognition system is evaluated using two different
encodings for the detected hand shapes. As will be described in Sect. 3.6, the next
stage classifier requires inputs in the form of binary feature vectors. Two types of 12
bit binary feature vector can be produced from the classifier results. The first method
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applies a strict Winner Takes All (WTA) on the multi-class forest’s response: the
class with the highest probability is set to one, and the others to zero. For every
non-motion frame, the vector contains a true value in the highest scoring class. The
second method applies a fixed threshold (τ = 0.25) on the confidences provided by
the classifier for eachof the 12handshapes classes.Handshapes that have a confidence
above threshold (p[c] > τ ) are set to one, and the others to zero. This soft approach
carries the double advantage that a) the feature vector may encode the ambiguity
between handshapes, which may itself carry information, and b) may contain only
zeros if confidences in all classes are small.

3.5 3D Tracking Based Sub-units

With the availability of the Kinect™, real-time tracking in 3D is now a realistic
option. Due to this, this final sub-unit section expands on the previous tracking sub-
units to work in 3D. The tracking is obtained using the OpenNI framework (Ope
2010) with the PrimeSense tracker (Pri 2010). Two types of features are extracted,
those encoding the Motion and Location of the sign being performed.

3.5.1 Motion Features

Again, the focus is on linear motion directions, as with the sub-units described
in Sect. 3.4.1, but this time with the z axis included. Specifically, individual hand
motions in the x plane (left and right), the y plane (up and down) and the z plane
(towards and away from the signer). This is augmented by the bi-manual classifiers
for ‘handsmove together’, ‘handsmove apart’ and ‘handsmove in sync’, again, these
are all now assessed in 3D. The approximate size of the head is used as a heuristic
to discard ambient motion (that less than 0.25 the head size) and the type of motion
occurring is derived directly from deterministic rules on the x, y, z co-ordinates of
the hand position. The resulting feature vector is a binary representation of the found
linguistic values. The list of 17 motion features extracted is shown in Table3.2.

3.5.2 Location Features

Whereas previously, with 2D tracking, a coarse grid is applied, in this section the
skeleton returned by the PrimeSense tracker can now be leveraged. This allows
signer related locations to be described with higher confidence. As such, the location
features are calculated using the distance of the dominant hand from skeletal joints.
A feature will fire if the dominant hand is closer than Hhead/2 of the joint in question.
A list of the 9 joints considered is shown in Table3.2 and displayed to scale in
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Table 3.2 Table listing the locations and hand motions included in the feature vectors. The condi-
tions for motion are shown with the label. Where x, y, z is the position of the hand, either left (L)
or right (R), � indicates a change from one frame to the next and δ(L , R) is the Euclidean distance
between the left and right hands. λ is the threshold value to reduce noise and increase generalisation,
this is set to be a quarter the head height. FR and FL are the motion feature vectors relating to the
right and left hand respectively

Locations Motions

Right or left hand Bi-manual

Head Left �x > λ In sync

Neck Right �x < −λ |δ(L , R)| < λ

Torso Up �y > λ And

L shoulder Down �y < −λ FR = FL

L elbow Towards �z > λ Together

L hand Away �z < −λ �(δ(L , R)) < −λ

L hip None �L < λ Apart

R shoulder �R < λ �(δ(L , R)) > λ

R hip

Fig. 3.11. While displayed in 2D, the regions surrounding the joints are actually
3D spheres. When the dominant hand (in this image shown by the smaller red dot)
moves into the region around a joint then that feature will fire. In the example shown,
it would be difficult for two features to fire at once. When in motion, the left hand
and elbow regions may overlap with other body regions meaning that more than one
feature fires at a time.

3.6 Sign Level Classification

Each of the different sub-unit classifier sets is now combined with a sign-level clas-
sifier. The groups of binary feature vectors are each concatenated to create a single
binary feature vector F = ( fi )Di=1 per frame, where fi ∈ {0, 1} and D is the number
of dimensions in the feature vector. This feature vector is then used as the input
to a sign level classifier for recognition. By using a binary approach, better gen-
eralisation is obtained. This requires far less training data than approaches which
must generalise over both a continuous input space as well as the variability between
signs (e.g., HMMs). Two sign level classification methods are investigated. Firstly,
Markov models which use the feature vector as a whole and secondly Sequential
Patten Boosting which performs discriminative feature selection.
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Fig. 3.11 Body joints used
to extract sign locations

3.6.1 Markov Models

HMMs are a proven technology for time series analysis and recognition. While they
have been employed for sign recognition, they have issues due to the large training
requirements. Kadir et al. (2004) overcame these issues by instead using a simpler
Markov model when the feature space is discrete. The symbolic nature of linguistic
sub-units means that the discrete time series of events can be modelled without a
hidden layer. To this end a Markov chain is constructed for each sign in a lexicon.
An ergodic model is used and a Look Up Table (LUT) employed to maintain as
little of the chain as is required. Code entries not contained within the LUT are
assigned a nominal probability. This is done to avoid otherwise correct chains being
assigned zero probabilities if noise corrupts the input signal. The result is a sparse
state transition matrix, Pω(Ft |Ft−1), for each word ω giving a classification bank of
Markov chains. During creation of this transition matrix, secondary transitions can
be included, where Pω(Ft |Ft−2). This is similar to adding skip transitions to the left-
right hidden layer of a HMM which allows deletion errors in the incoming signal.
While it could be argued that the linguistic features constitute discrete emission prob-
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abilities; the lack of a doubly stochastic process and the fact that the hidden states are
determined directly from the observation sequence, separates this from traditional
HMMs which cannot be used due to their high training requirements. During classi-
fication, the model bank is applied to incoming data in a similar fashion to HMMs.
The objective is to calculate the chain which best describes the incoming data, that
is, has the highest probability that it produced the observation F . Feature vectors are
found in the LUT using an L1 distance on the binary vectors. The probability of a
model matching the observation sequence is calculated as

P(ω|s) = υw

l∏

t=1

Pω(Ft |Ft−1),

where l is the length of the word in the test sequence and υω is the prior probability of
a chain starting in any one of its states. In this work, without grammar, ∀ω, υω = 1.

3.6.2 SP Boosting

One limitation of Markov models is that they encode exact series of transitions over
all features rather than relying only on discriminative features. This leads to reliance
on user dependant feature combinations which if not replicated in test data, will
result in poor recognition performance. Squential Patterns (SPs), on the other hand,
compare the input data for relevant features and ignore the irrelevant features. A SP
is a sequence of discriminative itemsets (i.e., feature subsets) that occur in positive
examples and not negative examples (see Fig. 3.12). We define an itemset T as the
dimensions of the feature vector F = ( fi )Di=1 that have the value of 1: T ⊂ {1, ..., D}
is a set of integers where ∀t ∈ T, ft = 1. Following this, we define a SP T of length
|T| as: T = (Ti )

|T|
i=1, where Ti is an itemset.

In order to use SPs for classification, we first define a method for detecting SPs
in an input sequence of feature vectors. To this end, firstly let T be a SP we wish to
detect. Suppose the given feature vector input sequence of |F| frames is F = (Ft )

|F |
t=1,

where Ft is the binary feature vector defined in Sect. 3.6. We firstly convert F into
the SP I = (It )

|F|
t=1, where It is the itemset of feature vector Ft . We say that the SP

T is present in I if there exists a sequence (βi )
|T|
i=1, where βi < β j when i < j and

∀i = {1, ..., |T|}, Ti ⊂ Iβi . This relationship is denoted with the ⊂S operator, that is,
T ⊂S I. Conversely, if the sequence (βi )

|T|
i=1 does not exist, we denote it as T �⊂S I.

From this, we can then define a SP weak classifier as follows: Let T be a given
SP and I be an itemset sequence derived from some input binary vector sequence F .
A SP weak classifier, hT(I), can be constructed as follows:

hT(I) =
{
1, if T ⊂S I,
−1, if T �⊂S I.
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Fig. 3.12 Pictorial description of SPs. a Shows an example feature vector made up of 2D motions
of the hands. In this case the first element shows ‘right hand moves up’, the second ‘right hand
moves down’ etc. b Shows a plausible pattern that might be found for the sign ‘bridge’. In this
sign the hands move up to meet each other, they move apart and then curve down as if drawing a
hump-back bridge

A strong classifier can be constructed by linearly combining a number (S) of selected
SP weak classifiers in the form of:

H(I ) =
S∑

i=1

αi h
Ti
i (I ).

The weak classifiers hi are selected iteratively based on example weights formed
during training. In order to determine the optimal weak classifier at each Boost-
ing iteration, the common approach is to exhaustively consider the entire set of
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candidate weak classifiers and finally select the best weak classifier (i.e., that with
the lowest weighted error). However, finding SP weak classifiers corresponding to
optimal SPs this way is not possible due to the immense size of the SP search space.
To this end, the method of SP Boosting is employed (Ong and Bowden 2011). This
method poses the learning of discriminative SPs as a tree based search problem.
The search is made efficient by employing a set of pruning criteria to find the SPs
that provide optimal discrimination between the positive and negative examples. The
resulting tree-search method is integrated into a boosting framework; resulting in the
SP-Boosting algorithm that combines a set of unique and optimal SPs for a given
classification problem. For this work, classifiers are built in a one-versus-one manner
and the results aggregated for each sign class.

3.7 Appearance Based Results

This section of work uses the same 164 sign data set as Kadir et al. (2004) and
therefore a direct comparison can be made between their hard coded tracking based
system and the learnt sub-unit approach using detection based sub-units. For this
work, extra annotation was required as Kadir et al. (2004) used only sign boundaries.
7410 Location examples, 322 Hand-Arrangement examples and 578 Motion were
hand labelled for training sub-unit classifiers. The data set consists of 1640 examples
(ten of each sign). Signs were chosen randomly rather than picking specific examples
which are known to be easy to separate. The sub-unit classifiers are built using only
data from four of the ten examples of each sign and the word level classifier is
then trained on five examples (including the four previously seen by the sub-unit
classifiers) leaving five completely unseen examples for testing purposes. The second
stage classifier is trained on the previously used four training examples plus one other,
giving five training examples per sign. The results are acquired from the five unseen
examples of each of the 164 signs. This is done for all six possible combinations of
training/test data. Results are shown in Table3.3 alongside the results from Kadir
et al. (2004). The first three columns show the results of combining each type of
appearance sub-unit with the second stage sign classifier. Unsurprisingly, none of
the individual types contains sufficient information to be able to accurately separate
the data. However, when combined, the appearance based classifiers learnt from the
data are comparable to the hard coded classifiers used on perfectly tracked data. The
performance drops by only 6.6 Percentage Points (pp), from 79.2 to 72.6% whilst
giving the advantage of not needing the high quality tracking system.

Figure3.13, visually demonstrates the sub-unit level classifiers being used with
the second stage classifier. The output from the sub-unit classifiers are shown on the
right hand side in a vector format on a frame by frame basis. It shows the repetition of
features for the sign ‘Box’.As can be seen there is a pattern in the vectorwhich repeats
each time the sign is made. It is this repetition which the second stage classifier is
using to detect signs.
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Table 3.3 Classification performance of the appearance based two-stage detector.Using the appear-
ance based sub-unit classifiers. Kadir et al. (2004) results are included for comparison purposes

Hand-
arrangement

Location Motion Combined (Kadir et al.
2004)

Minimum (%) 31.6 30.7 28.2 68.7 76.1

Maximum (%) 35.0 32.2 30.5 74.3 82.4

Std dev 0.9 0.4 0.6 1.5 2.1

Mean (%) 33.2 31.7 29.4 72.6 79.2

Fig. 3.13 Repetition of the appearance based sub-unit classifier vector. The band down the right
hand side of the frame shows the sub-unit level classifier firing patterns for the last 288 frames, the
vector for the most recent frame is at the bottom. The previous video during the 288 frames shows
four repetitions of the sign ‘Box’

3.8 2D Tracking Results

The data set used for these experiments contains 984 Greek Sign Language (GSL)
signs with 5 examples of each performed by a single signer (for a total of 4920
samples). The handshape classifiers are learnt on data from the first 4 examples of
each sign. The sign level classifiers are trained on the same 4 examples, the remaining
sign of each type is reserved for testing.

Table3.4 shows sign level classification results. It is apparent from these results,
that out of the independent vectors, the location information is the strongest. This is
due to the strong combination of a detailed location feature vector and the temporal
information encoded by the Markov chain.
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Table 3.4 Sign level classification results using 2D tracked features and the Markov Models. The
first three rows show the results when using the features independently with the Markov chain
(The handshapes used are non-mutually exclusive). The next three rows give the results of using
all the different feature vectors. Including the improvement gained by allowing the handshapes to
be non-mutually exclusive (thresh) versus the WTA option. The final method is the combination of
the superior handshapes with the location, motion and the second order skips

Motion 25.1%

Location 60.5%

HandShape 3.4%

All: WTA 52.7%

All: thresh 68.4%

All + skips (P(Ft |Ft−2)) 71.4%

Table 3.5 Comparison of recall results on the 2D tracking data using both Markov chains and SPs

Markov chains SPs

Top 1 (%) Top 4 (%) Top 1 (%) Top 4 (%)

Recall 71.4 82.3 74.1 89.2

Shown also is the improvement afforded by using the handshape classifiers with
a threshold vs a WTA implementation. By allowing the classifiers to return multiple
possibilities more of the data about the handshape is captured. Conversely, when
none of the classifiers is confident, a ‘null’ response is permitted which reduces the
amount of noise. Using the non-mutually exclusive version of the handshapes in
combination with the motion and location, the percentage of signs correctly returned
is 68.4%. By including the 2nd order transitions whilst building the Markov chain
there is a 3 pp boost to 71.4%.

This work was developed for use as a sign dictionary, within this context, when
queried by a video search, the classification would not return a single response.
Instead, like a search engine, it should return a ranked list of possible signs. Ideally
the target sign would be close to the top of this list. To this end we show results for 2
possibilities; The percentage of signs which are correctly ranked as the first possible
sign (Top 1) and the percentage which are ranked in the top 4 possible signs.

This approach is applied to the best sub-unit features above combined with either
the Markov Chains or the SP trees. The results of these tests are shown in Table3.5.
When using the the same combination of sub-unit features as found to be optimal
with the Markov Chains, the SP trees are able to improve on the results by nearly
3 pp, increasing the recognition rate from 71.4 to 74.1%. A further improvement is
also found when expanding the search results list, within the top 4 signs the recall
rate increases from 82.3 to 89.2%.
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3.9 3D Tracking Results

While the Kinect™work is intended for use as a live system, quantitative results can
be obtained by the standard method of splitting pre-recorded data into training and
test sets. The split between test and training data can be done in several ways. This
work uses two versions, the first to show results on signer dependent data, as is often
used, the second shows performance on unseen signers, a signer independent test.

3.9.1 Data Sets

Two data sets were captured for training; The first is a data set of 20 GSL signs, ran-
domly chosen and containing both similar and dissimilar signs. This data includes
six people performing each sign an average of seven times. The signs were all cap-
tured in the same environment with the Kinect™and the signer in approximately
the same place for each subject. The second data set is larger and more complex.
It contains 40 Deutsche Gebärdensprache—German Sign Language (DGS) signs,
chosen to provide a phonetically balanced subset of HamNoSys phonemes. There
are 15 participants each performing all the signs 5 times. The data was captured using
a mobile system giving varying view points.

3.9.2 GSL Results

Two variations of tests were performed; firstly the signer dependent version, where
one example from each signer was reserved for testing and the remaining examples
were used for training. This variation was cross-validated multiple times by selecting
different combinations of train and test data. Of more interest for this application
however, is signer independent performance. For this reason the second experiment
involves reserving data from a subject for testing, then training on the remaining
signers. This process is repeated across all signers in the data set. The results of
both the Markov models and the Sequential Patten Boosting applied to the basic 3D
features are shown in Table3.6.

As is noted in Sect. 3.6.2, while the the Markov models perform well when they
have training data which is close to the test data, they are less able to generalise.
This is shown by the dependent results being high, average 92% within the top 4,
compared to the average independent result which is 17 pp lower at 75%. It is even
more noticeable when comparing the highest ranked sign only, which suffers from a
drop of 25 pp, going from 79 to 54%. When looking at the individual results of the
independent test it can be seen that there are obvious outliers in the data, specifically
signer 3 (the only female in the data set), where the recognition rates are markedly
lower. This is reflected in statistical analysis which gives high standard deviation
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Table 3.6 Results across the 20 sign GSL data set

Test Markov models SP-boosting

Top 1 (%) Top 4 (%) Top 1 (%) Top 4 (%)

Independent 1 56 80 72 91

2 61 79 80 98

3 30 45 67 89

4 55 86 77 95

5 58 75 78 98

6 63 83 80 98

Mean 54 75 76 95
StdDev 12 15 5 4

Dependent mean 79 92 92 99.90

across the signers in both the top 1 and top 4 rankings when using the Markov
Chains.

When the SP-Boosting is used, again the dependant case produces higher results,
gaining nearly 100% when considering the top 4 ranked signs. However, due to the
discriminative feature selection process employed; the user independent case does
not show such marked degradation, dropping just 4.9 pp within the top 4 signs,
going from 99.9 to 95%.When considering the top ranked sign the reduction is more
significant at 16 pp, from 92 to 76%, but this is still a significant improvement on
the more traditional Markov model. It can also be seen that the variability in results
across signers is greatly reduced using SP-Boosting, whilst signer 3 is still the signer
with the lowest percentage of signs recognised, the standard deviation across all signs
has dropped to 5% for the first ranked signs and is again lower for the top 4 ranked
signs.

3.9.3 DGS Results

The DGS data set offers a more challenging task as there is a wider range of signers
and environments. Experiments were run in the same format using the same fea-
tures as for the GSL data set. Table3.7 shows the results of both the dependent and
independent tests. As can be seen with the increased number of signs the percentage
accuracy for the first returned result is lower than that of the GSL tests at 59.8%
for dependent and 49.4% for independent. However the recall rates within the top 4
ranked signs (now only 10% of the data set) are still high at 91.9% for the dependent
tests and 85.1% for the independent ones. Again the relatively low standard deviation
of 5.2% shows that the SP-Boosting is picking the discriminative features which are
able to generalise well to unseen signers.
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Table 3.7 Subject independent (SI) and Subject dependent (SD) test results across 40 signs in the
DGS data set

Subject dependent Subject independent

Top 1 (%) Top 4 (%) Top 1 (%) Top 4 (%)

Min 56.7 90.5 39.9 74.9

Max 64.5 94.6 67.9 92.4

StdDev 1.9 1.0 8.5 5.2

Mean 59.8 91.9 49.4 85.1

Fig. 3.14 Aggregated
confusion matrix of the first
returned result for each
subject independent test on
the DGS data set

As can be seen in the confusion matrix (see Fig. 3.14), while most signs are well
distinguished, there are some signs which routinely get confused with each other. A
good example of this is the three signs ‘already’, ‘Athens’ and ‘Greece’ which share
very similar hand motion and location but are distinguishable by handshape which
is not currently modelled on this data set.

3.10 Discussion

Three different approaches to sub-unit feature extraction have been compared in this
paper. The first based on appearance only, the latter two on tracking. The advantage of
the first approach is that it doesn’t depend on high quality tracking for good results.
However, it would be easily confused via cluttered backgrounds or short sleeves
(often a problemwith sign language data sets). The other advantage of the appearance
based classification is that it includes information not available by trajectories alone,
thus encoding information about handshape within the moment based classifiers.
While this may aid classification on small data sets it makes it more difficult to
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de-couple the handshape from the motion and location sub-units. This affects the
generalisation ability of the classifiers due to the differences between signers.

Where 2D tracking is available, the results are superior in general to the appearance
based results. This is shown in thework byKadir et al. (2004),who achieve equivalent
results on the same data using tracking trajectories when compared to the appearance
based ones presented here. Unfortunately, it is not always possible to accurately track
video data and this is why it is still valid to examine appearance based approaches.
The 2D tracking Location sub-features presented here are based around a grid, while
this is effective in localising the motion it is not as desirable as the HamNoSys
derived features used in the improved 3D tracking features. The grid suffers from
boundary noise as the hands move between cells. This noise causes problems when
the features are used in the second stage of classification. With the 3D features this is
less obvious due to them being relative to the signer in 3D and therefore the locations
are not arbitrarily used by the signer in the same way as the grid is. For example
if a signer puts their hands to their shoulders, this will cause multiple cells of the
grid to fire and it may not be the same one each time. When using 3D, if the signer
puts their hands to their shoulders then the shoulder feature fires. This move from an
arbitrary grid to consciously decided body locations reduces boundary effect around
significant areas in the signing space.

This in turn leads to the sign level classifiers. The Markov chains are very good
at recognising signer dependent, repetitive motion, in these cases they are almost
on a par with the SPs. However, they are much less capable of managing signer
independent classification as they are unable to distinguish between the signer accents
and the signs themselves and therefore over-fit the data. Instead the SPs look for the
discriminative features between the examples, ignoring any signer specific features
which might confuse the Markov Chains.

3.11 Conclusions

This work has presented three approaches to sub-unit based sign recognition. Tests
were conducted using boosting to learn three types of sub-units based on appearance
features, which are then combined with a second stage classifier to learn word level
signs. These appearance based features offer an alternative to costly tracking.

The second approach uses a 2D tracking based set of sub-units combined with
some appearance based handshape classifiers. The results show that a combination
of these robust, generalising features from tracking and learnt handshape classifiers
overcomes the high ambiguity and variability in the data set to achieve excellent
recognition performance: achieving a recognition rate of 73% on a large data set of
984 signs.

The third and final approach translates these tracking based sub-units into 3D,
this offers user independent, real-time recognition of isolated signs. Using this data
a new learning method is introduced, combining the sub-units with SP-Boosting as a
discriminative approach. Results are shown on two data sets with the recognition rate
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reaching 99.9% on a 20 sign multi-user data set and 85.1% on a more challenging
and realistic subject independent, 40 sign test set. This demonstrates that true signer
independence is possible when more discriminative learning methods are employed.
In order to strengthen comparisons within the SLR field the data sets created within
this work have been released for use within the community.

3.12 Future Work

The learnt sub-units show promise and, as shown by the work of Pitsikalis et al.
(2011), there are several avenues which can be explored. However, for all of these
directions, more linguistically annotated data is required across multiple signers to
allow the classifiers to discriminate between the features which are signer specific
and those which are independent. In addition, handshapes are a large part of sign,
while the work on the multi-signer depth data set has given good results, handshapes
should be included in future work using depth cameras. Finally, the recent creation of
a larger, multi-signer data set has set the ground work in place for better quantitative
analysis. Using this data in the same manner as the DGS40 data set should allow
bench-marking of Kinect sign recognition approaches, both for signer dependent
and independent recognition. Appearance only techniques can also be verified using
the Kinect data set where appropriate as the RGB images are also available though
they are not used in this paper. Though it should be noted that this is an especially
challenging data set for appearance techniques due to the many varying backgrounds
and subjects.
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Chapter 4
MAGIC Summoning: Towards Automatic
Suggesting and Testing of Gestures with Low
Probability of False Positives During Use

Daniel Kyu Hwa Kohlsdorf and Thad E. Starner

Abstract Gestures for interfaces should be short, pleasing, intuitive, and easily
recognized by a computer. However, it is a challenge for interface designers to create
gestures easily distinguishable from users’ normal movements. Our tool MAGIC
Summoning addresses this problem. Given a specific platform and task, we gather
a large database of unlabeled sensor data captured in the environments in which the
system will be used (an “Everyday Gesture Library” or EGL). The EGL is quantized
and indexed via multi-dimensional Symbolic Aggregate approXimation (SAX) to
enable quick searching. MAGIC exploits the SAX representation of the EGL to sug-
gest gestures with a low likelihood of false triggering. Suggested gestures are ordered
according to brevity and simplicity, freeing the interface designer to focus on the user
experience. Once a gesture is selected, MAGIC can output synthetic examples of the
gesture to train a chosen classifier (for example, with a hidden Markov model).
If the interface designer suggests his own gesture and provides several examples,
MAGIC estimates how accurately that gesture can be recognized and estimates its
false positive rate by comparing it against the natural movements in the EGL. We
demonstrate MAGIC’s effectiveness in gesture selection and helpfulness in creating
accurate gesture recognizers.
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4.1 Introduction

The success of theNintendoWii,Microsoft Kinect, andGoogle’s andApple’smobile
devices demonstrates the popularity of gesture-based interfaces. Gestural interfaces
can be expressive, quick to access, and intuitive (Guimbretière and Winograd 2000;
Pirhonen et al. 2002; Starner et al. 1998;Witt 2007). Yet gesture-based interfacesmay
trigger functionality incorrectly, confusing normal movement with a command. For
example, the Apple iPod’s “shake-to-shuffle” gesture, which is intended to signal
when the user wants to skip a song and randomly select another, tends to trigger
falsely while the user is walking (see Fig. 4.1a). Part of the difficulty is that the
recognizer must constantly monitor an accelerometer to determine if the gesture is
being performed. Some accelerometer or gyro-based interfaces constrain the problem
by requiring the user to segment the gesture by pressing a button. For example, in
Nintendo’s Wii Bowling the player presses the “B” trigger when beginning to swing
his arm and releases the trigger at the end of the swing to release the virtual bowling
ball. Such apush-to-gesture approach is similar to the push-to-talkmethod that speech
recognition researchers use to improve performance. Yet such mechanisms can slow
interactions, confuse users, and limit the utility of gesture interaction. For example,
the fast, easy-to-access nature of the shake-to-shuffle gesture would be impeded if the
user needed to hold a button to perform the gesture. Ideally, such free-space “motion
gestures” (Ashbrook 2009) should be short, pleasing to perform, intuitive, and easily
recognized by a computer against a background of the user’s normal movements.

Touchpad gesture shortcuts, which upon execution can start an affiliated appli-
cation on a laptop or mobile phone (Ouyang and Li 2012), are another example of
command gestures that must be differentiated from everyday motions. Fortunately,
these gestures are naturally isolated in time from each other since most touchpad
hardware does not even provide data to the operating system when no touches are
being sensed. However, an interface designer must still create gesture commands that
are not easily confused with normal click or drag and drop actions (see Fig. 4.1b).

Many “direct manipulation” (Hutchins et al. 1985) gestures such as pointing
gestures and pinch-to-zoom gestures are used in modern interfaces. These gestures
provide the user continuous feedback while the gesture is occurring, which allows
the user to adjust to sensing errors or cancel the interaction quickly. However, rep-
resentational gestures that are intended to trigger a discrete action are less common.
We posit that their relative scarcity relates to the difficulty of discovering appropri-
ate gestures for the task. Our previous studies have shown that designing command
gestures that do not trigger accidentally during normal, everyday use is difficult for
both human computer interaction (HCI) and pattern recognition experts (Ashbrook
and Starner 2010). In addition, the current process to determine the viability of a
gesture is challenging and expensive. Gestures are often found to be inappropriate
only after the system has entered user testing. If a gesture is found to trigger acciden-
tally during testing, the gesture set has to be changed appropriately, and the testing
has to be repeated. Such an iterative design cycle can waste a month or more with
each test. Thus, we posit the need for a tool to help designers quickly judge the
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Fig. 4.1 Top a “shake-to-shuffle” gesture (left) can be confused with normal up-and-down move-
ment while walking (right). Bottom a touchpad shortcut gesture (left) can be confused with normal
cursor movement (right)

suitability of a gesture from a pattern recognition perspective while they focus on
the user experience aspects of the gestural interface.

Several gesture design tools havebeendescribed in theHCI literature (Dannenberg
and Amon 1989; Long 2001; Fails and Olsen 2003; Maynes-Aminzade et al. 2007;
Dey et al. 2004), yet none address the issue of false positives. Similarly, most gesture
recognition toolkits in the pattern recognition and related literature focus on isolated
gestures (Wobbrock et al. 2007; Lyons et al. 2007) or the recognition of strings of
gestures, such as for sign language (Westeyn et al. 2003). Rarely do such tools focus
on gesture spotting (Yang et al. 2009) for which the critical metric is false positives
per hour.

Ashbrook and Starner (2010) introduced the “Multiple Action Gesture Interface
Creation” (MAGIC) Toolkit. AMAGIC user could specify gesture classes by provid-
ing examples of each gesture. MAGIC provided feedback on each example and each
gesture class by visualizing intra- and inter-class distances and estimating the proto-
type recognizer’s accuracy by classifying all provided gesture examples in isolation.
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Unlike the above tools, MAGIC could predict whether a query gesture would tend
to trigger falsely by comparing the gesture to a database of movements recorded in
the everyday lives of users. Primarily designed as an HCI Tool, the system used a
nearest neighbor method with a dynamic time warping (DTW) distance measure (Fu
et al. 2008).

One shortcoming of this work was that the relative false positive rates predicted
in user studies were not compared to the actual false positive rates of a gesture
recognizer running in the field. Another shortcomingwas the long time (up to 20min)
needed to search for potential hits in a database of everyday user movements (an
“Everyday Gesture Library” or EGL) even while using approximations like scaling
with matching (Fu et al. 2008). MAGIC was designed as an interactive tool, yet
due to the delay in feedback, gesture interaction designers waited until all gestures
were designed before testing them against the EGL. Often, when doing an EGL test
in batch, the interface designers discovered that many of their gestures were poor
choices. Designers “learned to fear the EGL.” Faster feedback would allow designers
to compare candidate gestures to theEGLas they perform each example, speeding the
process and allowing more exploration of the space of acceptable gestures. Another
result from previous studies is that users were frustrated by encountering too many
false positives in the Everyday Gesture Library (Ashbrook and Starner 2010). In
other words, many designed gestures are rejected since the number of predicted false
positives is too high.

Here, we focus on the pattern recognition tasks needed to create MAGIC Sum-
moning, a completely new, web-based MAGIC implementation designed to address
the needs discovered from using the original. Section4.2 introduces the basic oper-
ation of the tool. Section4.3 describes an indexing method for the EGL using a
multi-dimensional implementation of indexable Symbolic Aggregate approXima-
tion (iSAX) that speeds EGL comparisons by an order of magnitude over the DTW
implementation. While not as accurate as DTW or other methods such as HMMs,
our system’s speed allows interface designers to receive feedback after every ges-
ture example input instead of waiting to test the gesture set in batch. We compare
the iSAX approach to linear searches of the EGL with HMMs and DTW to show
that our approach, while returning fewer matches, does predict the relative suitabil-
ity of different gestures. Section4.4.4 continues this comparison to show that the
predictions made by MAGIC match observations made when the resulting gesture
recognizers are tested in a real continuous gesture recognition setting. Sections4.5
and 4.6 provide additional details. The first describes a method of using the EGL
to create a null (garbage) class that improves the performance of a HMM classifier
and a DTW classifier when compared to a typical thresholding method. The second
demonstrates the stability of ourmethod by examining its sensitivity to its parameters
and provides a method capable of learning reasonable defaults for those parameters
in an unsupervised manner. These sections expand significantly upon previous work
published in Face and Gesture (Kohlsdorf et al. 2011), while the remaining sections
represent unpublished concepts.

Section4.7 may be of the most interest to many readers. This section describes
how MAGIC Summoning suggests novel gestures that are predicted to have a low
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probability of false positives. While the capability may be surprising at first, the
technique follows directly from the iSAX indexing scheme. In Sect. 4.7.2 we show
that the suggested gestures have low false positive rates during a user study in a
real life setting. In our tests, the space of gestures that are not represented in EGLs
tends to be large. Thus, there are many potential gestures from which to choose.
Section4.7.3 describes our attempts at finding metrics that enable ordering of the
suggested gestures with regard to brevity, simplicity, and “quality.”

4.2 MAGIC Summoning Web-Based Toolkit

MAGIC Summoning is a web-based toolkit that helps users design motion-based
gestural commands (as opposed to static poses) that are expected not to trigger falsely
in everyday usage (Kohlsdorf 2011; Kohlsdorf et al. 2011). All MAGIC experiments
described in this paper focus on creating user-independent recognizers. This choice
reflects our interest in creating useful gesture interfaces and is also due to practicality;
collecting large data sets for the EGL from a single user is time consuming and
onerous. To ground the discussionwith a practical problem,we focus on the challenge
of designing gestures performed by moving an Android phone in one’s hand. We
assume a three-axis accelerometer, which is always included in modern Android
phones. The goal is to create gestures (and an appropriate classifier) that, when
recognized, trigger functions like “open mailbox” or “next song.” Without a push-
to-gesture trigger, such gestures are highly susceptible to false positives (Ashbrook
2009), which emphasizes the need for the MAGIC tool.

4.2.1 Creating Gesture Classes and Testing for Confusion
Between Classes

MAGIC Summoning has two software components: a gesture recorder running on
theAndroid device and theMAGICweb application. The first step in gesture creation
is to start a new project in the web service. The interface designer specifies the set of
gestures through collecting training data for each of the gestures using the recorder.
In order to record a training example, the interaction designer opens the recorder
on his smart phone and performs the gesture. The recorder automatically estimates
when the gesture starts and when it ends using the method described by Ashbrook
(2009). Specifically, the recorder tracks the variance of the accelerometer data in a
sliding window. If the variance is above a user-defined threshold, recording starts. If
it falls below the threshold, then recording ends.

After the example is recorded, the designer is asked to associate the example
with an appropriate gesture label, and the recorder uploads the example to the web.
The designer evaluates the gesture in the web application to determine how well it
can be distinguished from other gestures. All gestures and their examples are listed
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Fig. 4.2 Magic Summoning showing the gesture classes, their examples, and the number of EGL
hits (lower numbers are better)

in MAGIC Summoning’s sidebar (see Fig. 4.2). Examples marked with a red cross
are misclassified given the current model, and instances marked with a green circle
indicate correct classification. By default, MAGIC Summoning uses a one near-
est neighbor classifier with dynamic time warping (NN-DTW) to classify gestures,
although other classifiers such as a hidden Markov model (HMM) could be substi-
tuted. By clicking on an instance, the designer can see the raw sensor data plotted
for that example as well as the predicted number of false positives in the EGL (the
method used to calculated this number is explained in Sect. 4.3).

Clicking on a gesture in the sidebar opens a view with statistics about it. One
statistic is the goodness of the gesture. The goodness is defined as the harmonic
mean of precision and recall (Ashbrook 2009):

goodness = 2 ∗ precision ∗ recall

precision + recall
.
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Fig. 4.3 Mean and standard deviation of the distance between each example in a class and of the
class as a whole in relation to other classes

Similar to the original work by Ashbrook (2009), MAGIC Summoning provides
users with information about the inter-class distance and the intra-class distance of
the gesture. Both are visualized using a mean and standard deviation plot. In an intra-
class distance plot we calculate the means and standard deviations of the distances
from all examples in a class to all other examples in that class and visualize the result
as a box plot (see Fig. 4.3). In an inter-class distance plot we calculate the means and
standard deviations from one class to all the others in the training set. The distance
between two classes is the mean distance of all examples of one class to all examples
of another. These statistics and visualizations help designers find inconsistencies in
the examples of a given gesture class as well as unintentional similarities between
classes.
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4.2.2 Android Phone Accelerometer Everyday
Gesture Library

We collected a large EGL (>1.5 million seconds or 19days total) using six partic-
ipants’ Android phones in Bremen, Germany. The age of the participants ranged
from 20 to 30years. We implemented a background process that wrote the three-
axis accelerometer data to the phone’s flash memory. Unfortunately, the sampling
frequency varied as the models of Android phones we used return samples only
when the change in the accelerometer reading exceeds a factory-defined threshold.
The phones used are the Motorola Droid, the Samsung Galaxy, HTC Nexus One,
the HTC Legend, and the HTC Desire. Other EGLs loadable in MAGIC include
movements sensed with a Microsoft Kinect and gestures made on trackpads. We
focus mostly on our EGL created with Android phones, but readers interested in
experiments with other sensors can refer to Kohlsdorf (2011) for more information.

4.2.3 Testing for False Positives with the EGL

The original Macintosh-based MAGIC tool displayed a timeline that showed which
candidate gesture matched the EGL and at which time. However, gesture design-
ers did not care when or why a given gesture showed a given false positive in the
EGL; they just wished to know how many “hits” occurred in the EGL so that they
could accept or reject the gesture (Ashbrook 2009). Thus, we omitted the timeline
for simplicity in the web-based application. In the following section we will describe
our accelerated method for testing a gesture for potential false positives against the
EGL. This method enables rapid iteration on different gesture sets by the interac-
tion designer.

If a user is displeased by the results after testing, he can delete gestures suspected
of high false positive rates or misclassification errors and design new gestures. When
the user is satisfied with the gesture set, MAGIC Summoning can train a classifier
based on hiddenMarkov models (HMMs) or the default NN-DTWmethod. The user
can then download the trained recognizer. Note that we do not suggest using the
iSAX method used to search the EGL as a gesture recognizer as we have tuned the
method for speed, not accuracy.

4.3 False Positive Prediction

When testing a gesture set against the EGL, the original MAGIC calculates the DTW
distance for every example of each candidate gesture, sliding a window through time
across the EGL and allowing the window to grow or shrink to better match the
example when a potential close match is discovered. If the resulting distance is
above a certain user-defined threshold it counts as a false positive “hit.” Ashbrook
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Fig. 4.4 When finding start and stop points of a gesture or finding interesting regions in the EGL,
we run a sliding window over the raw recorded time series and calculate the sample variance in that
window when a new sample is inserted. If the variance is above a certain threshold, the gesture or
interesting region starts. It stops when the variance falls below that threshold

and Starner (2010) assert that the sum of the hits predicts how well the gesture will
perform in everyday life (an assertion supported by our experiments described later).

In optimizing the speed of the EGL comparison, Ashbrook (2009) observed that
not all regions of the EGL need checking. Since we are interested in motion-based
gestures instead of static poses, parts of the EGL with low variance in their signal
need not be examined. Thus, we pre-process the EGL to find “interesting” regions
where the average variance over all dimensions in the sensor data in a region defined
by a sliding window over 10 samples exceeds a given threshold (see Fig. 4.4).1

Eliminating regions from the EGL that can not possibly match candidate gestures
significantly speeds EGL search. Note that a similar technique was described earlier
to segment gestures when the interface designer is creating examples of candidate
gestures. All experiments in this paper will use these techniques.

Searching the EGL parallelizes well, as each processor can be devoted to different
regions of the EGL. However, even on a high-end, eight-coreMacintosh workstation,
searches were too slow for an interactive system. For a small, 5-h EGL with three-
axis accelerometer data sampled at 40Hz, each example required between 5 and 25s
to check. Thus, one gesture with 10 examples could require minutes to search in the
EGL. This slowness causes interface designers to create gestures in batch and then
check them against the EGL. Testing a set of eight gestures with all their examples
could take up to 20min, leading to a relatively long and frustrating development
cycle for the designer (Ashbrook and Starner 2010). In the following sections, we
describe a method to speed the EGL search using iSAX. We start with an overview
of our method and our assumptions. We then provide the specific methods we used
to adapt iSAX to our problem.

4.3.1 Overview of EGL Search Method and Assumptions

InMAGIC Summoning, we first segment the EGL into interesting regions as defined
previously. Each region is divided into four even subregions to form a “word” of

1Word spotting algorithms in speech recognition perform similar checks, rejecting regions of
“silence” before employing more computationally intensive comparisons.
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length four. The region is then encoded into a string of symbols using the standard
SAX quantization method. The string is entered into an iSAX tree representing the
EGL. The iSAX tree is initialized with cardinality two but quickly grows as many
regions hash to the same leaf on the suffix tree and the leaf needs to be split (Shieh
and Keogh 2008). As each region is encoded into the iSAX tree, its location in the
EGL is recorded in the leaf. Once the EGL is completely encoded into an iSAX tree,
we can perform “approximate search” using a gesture example as a query (Shieh
and Keogh 2008). The query is split into four regions and SAX-encoded in much the
same way as the interesting regions of the EGL. An approximate search to determine
the number of matches between the query and the EGL becomes a simple matter
of matching the query string to the appropriate branch of the iSAX suffix tree and
returning the number of strings contained in that branch.

One failing of this approach is that the interesting regions may be significantly
larger or smaller than the candidate gestures. Regions significantly smaller than the
command gestures are not of concern as they will never falsely match a command
gesture in practice. We can eliminate such regions out-of-hand from the comparison.
However, regions of movement that might match the query gesture may be hidden
within longer regions in the EGL.

A key insight, which will be used repeatedly, is that we need not recover every
region of the EGL that might cause a false match with the query.We are not intending
iSAX to be used as a gesture recognizer. Instead, our goal is to allow the designer
to compare the suitability of a gesture relative to other candidates quickly. As long
as the movement occurs repeatedly in the EGL at isolated times as well as in longer
regions, the iSAX method will report a number of “hits,” which will be sufficient to
warn the interaction designer of a problem.

A second insight is that users of gesture interfaces often pause before and after they
perform a command gesture. Gesture recognizers exploit this behavior and use these
pauses to help identify the command gesture. Movements that look like command
gestures embedded in long regions of user motion are unlikely to be matched in
practice by these recognizers. However, short everyday user motions that are similar
to a command gesture are a particular worry for false positives. Thus, the iSAX
encoding scheme of the EGL above seems suitable for our needs. However, if the
goal of the interaction designer is to create gestures that can be chained together to
issue a series of commands quickly, these longer regions in the EGL will need to be
encoded more formally using constraints on how long a section can be encoded in
each symbol. Such constraints can be derived from the length of expected command
gestures (usually between 1 and 4s in our experience), and the length of SAX word
defined by the system.

A final insight is that a more precise comparison against the EGL can be made
at the end of the gesture design process with the gesture recognizer that is output by
MAGIC. During gesture design, all we require of the EGL search method is that it
is fast enough to be interactive and that it provides an early warning when a given
gesture may be susceptible to false triggering. Given the above operational scenario,
we tune our iSAX implementation to provide fast feedback to the user. Details on
the implementation follow below.
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Fig. 4.5 SAX process used to convert a time series to a string. The raw data is segmented into a
user-specified word length, in this case four. Then each segment is replaced by a symbol associated
with that region on the y-axis, based on the average value. The resulting string is represented by the
string of symbols with superscripts indicating the number of symbols used to quantize each region:
b4a4a4a4

4.3.2 SAX Encoding

SAX quantizes time series in both time and value and encodes them into a string of
symbols (Lin et al. 2007). For example, the time series in Fig. 4.5 is divided into four
equal portions (for a “word” length of four) and converted into a string using a four
symbol vocabulary (a “cardinality” of four).

To be more precise, we first normalize the time series to have a zero mean and
standard deviation of one. Assuming the original time series T = t1, . . . , t j , . . . , tn
has n samples, we want to first quantize the time series into a shorter time series
T̄ = t̄1, . . . , t̄i , . . . t̄w of word length w. The i th element of T̄ can be calculated by

t̄i = w

n

n
w i∑

k=( n
w (i−1)+1)

tk .

Given the values in the compressed time series, we next convert them into sym-
bols using a small alphabet of size (cardinality) a. Imagine the y-axis divided into
an arbitrary number of regions bounded by a − 1 breakpoints. Each of these regions
is assigned to a symbol from the alphabet. Since we wish each symbol in the vocab-
ulary to be used approximately the same amount, we place a normal Gaussian curve
centered at 0 on the y-axis and place the breakpoints such that the area under the
Gaussian for each section is equal. By performing the SAX process on the EGL and
each gesture example separately, we are able to compare the changes in the signals
through timewithout concern regarding their offsets from zero or relative amplitudes.

One convenience of the SAX representation is that there exists a distance calcu-
lation between two strings, defined as MINDIST by Lin et al. (2007), that is a lower
bound on the Euclidean distance between the original two time series. Thus, we can
search the EGL for possible false positives with some measure of confidence.



130 D.K.H. Kohlsdorf and T.E. Starner

Another convenience of the representation is that the cardinality of each separate
region can be increased whenever more precision is needed. For example, suppose
we increase the cardinality of the first region in Fig. 4.5 to eight (thus, the vocabulary
would include letters a–h). The string might then be d8a4a4a4, as the region of the
y-axis formerly covered by symbols a and b would now be covered by symbols a, b,
c, and d. We can compare strings with regions of different cardinality by observing
that we know that each time series is normalized before SAX encoding and that the
regions are defined by a normal Gaussian centered at zero with all regions having
an equal area under the Gaussian’s curve. Thus, we still know the minimal distance
possible between each region, and we can still use MINDIST to determine a lower
bound on the Euclidean distance between the original two time series. This capability
will be useful in our upcoming discussion on iSAX and its application to the EGL.

4.3.3 Multi-dimensional iSAX Indexing and EGL Search

iSAX is a tree-based method for time series indexing introduced in Shieh and Keogh
(2008). For encoding the EGL, our goal is create an iSAX tree that can be traversed
quicklywhen searching for amatch to aSAX-encoded example of a gesture. Each leaf
of the tree contains the number of occurrences of that string in the EGL as well as the
position of each occurrence. To begin, assume we are searching an EGL represented
by the simple iSAX tree in Fig. 4.6 with a query represented by a2a2b2b2 (for the
sake of argument, assume we decided to represent the example gesture crudely, with
regions of cardinality two). Immediately, we see that there is no branch of the tree
with an a2 in the first position, and we return no matches in the EGL. Now assume
that we are searching the EGL for a query of b2b2b2b2. We find that there is a node
of the EGL that contains that string, and that node has children (that is, the node
is an “internal node”). Looking at the children in that branch, we see that we need
to re-code the query gesture to have cardinality three in the first region. Re-coding
reveals that the query gesture is better represented by the sequence c3b2b2b2, which
matches one of the terminal leaves in the tree. The number of sequences from the
EGL stored in that leaf is returned as the number of “hits” in the EGL.

Next we describe how to encode a one-dimensional EGL into an iSAX tree. First,
we find all the “interesting” regions in the EGL using the variance method discussed
earlier. We divide the regions evenly into four sections and encode them using SAX

Fig. 4.6 iSAX tree with
three leaves. On the first level
all symbols’ cardinalities are
equal. The node b2b2b2b2 is
an internal node. For the
children under this node, the
cardinality of the first region
is increased by one
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with cardinality two, allowing for sixteen possible strings. Note that each node in
an iSAX tree holds a hash table mapping child nodes to an iSAX word. Thus, when
inserting a region into the iSAX tree, we compare the region’s SAX string to the hash
table in the root node. If there is no match, we create a child node and enter it into the
hash table using its SAX string. If the SAX string is found, we examine the node to
see if it is a terminal leaf. Each leaf points to a file (called a “bucket”) stored on disk
holding all of the regions that have mapped to it. The leaf also contains the position
of each of the regions in the EGL and a count of the number of regions contained in
the leaf. If the number of regions in the bucket exceeds a user specified size (called
the “bucket size”), it is deleted, and the cardinality of the iSAX word is increased at
one position (picked by round robin). At the deleted node’s position we insert a new
internal node. All the time series of the deleted node are inserted into the new node
but with a higher cardinality. Children of the internal node are created as needed,
effectively splitting the previous leaf into several new leaves. When we encounter a
internal node during the insertion of a region, we search the node’s hash table for
children that match and proceed normally, creating a new leaf node if no matching
child exists.

Note that this method of creating the iSAX tree dynamically adjusts the size
of the vocabulary to better distinguish similar regions in the EGL. Given a bigger
vocabulary, the SAX word will fit more exactly to the region. In other words, this
method of encoding devotes more bits to describing similar movements that are
repeated often in the EGL. Thus, when a query gesture is compared to the EGL iSAX
tree, MAGIC will quickly return with no or few hits (depending on the specified
bucket size) if the query is very distinct from the EGL. If the query is similar to
motions in the EGL, the search process will traverse deeper in the tree, examining
finer and finer distinctions between the query and the regions contained in the EGL.

The above discussion assumed that the data was one-dimensional. For multi-
dimensional data, such as is used in the experiments described below, we create n
iSAX trees, one for each dimension of the recorded data. We index all dimensions
separately and join those n trees under one new root node (see Fig. 4.7).

Fig. 4.7 Amulti-dimensional iSAX tree. Under the root node there is a dimension layer. Each node
in this layer is the root node for a one-dimensional iSAX tree. During search, we search all iSAX
trees, one for each dimension
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Table 4.1 Testing gestures for potential false positives against a database of pre-recorded device
usage

Test preparation :
0) Collect a large data base of user movements in advance .
1) Find interesting regions by applying variance thresholding .
2) Build an n dimensional iSAX tree .

Gesture testing :
0) Find star t and end point of gesture .
1) Search the iSAX tree in al l n dimensions .
2) Return the number of time series in the minimum fi le .

We query the EGL iSAX tree (constructed from the EGL) in all n dimensions. The
result of that search is n files, one for each dimension. The number of hits can then
be calculated by counting the number of places where each hit from each dimension
overlap for all dimensions. Comparing the timestamps can be costly, sowe introduced
an approximation based on the observation that there can never be more overlapping
time series than the number in the dimension with the lowest number of matches.
For example, consider the result of a search in three dimensions (x , y, z) where the
number of hits in the EGL are x = 4, y = 20 and z = 6. There can never be more
then four hits total if we require that hits must overlap in all dimensions. The overall
EGL testing method is summarized in Table4.1.

Upon reflection, the EGL search procedure described above raises several ques-
tions and possibilities. What are reasonable values for the bucket size, word size,
and cardinalities used in encoding the EGL, and how sensitive is MAGIC to these
parameters? This question will be examined in detail in Sect. 4.6. A nice side effect
of EGL search is that we can use the matches found to train a class of gestures that a
recognizer should ignore (a “garbage” or NULL class). Section4.5 will explore this
option. Searching for which SAX strings are not contained in the EGL tree can sug-
gest which gestures are not made during everyday movement. In Sect. 4.7, we exploit
this attribute to recommend gestures to the interaction designer. However, first we
will provide evidence that searching the EGL does indeed predict the number of false
positives during the usage of a gesture interface.

4.4 Experimental Verification

In the following section we describe two experiments that suggest that an iSAX
search of the EGL is a viable means to predict false positives. Our first goal is to
show that false positive prediction using iSAX is correlated with the previousmethod
of searching the EGL linearly using dynamic time warping (Ashbrook 2009). We
will also conduct an experiment in which wewill show that the EGL is able to predict
the relative number of false positives when using a gesture interface in everyday life.
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We describe the data used for the experiments and our experimental method before
presenting our findings.

4.4.1 EGLs and Gestures Used in Evaluations

We use three different data sets to serve as EGL databases. The first is our Android
accelerometer data set as described earlier. Before indexing the recorded data, we
extracted the interesting regions, applying a threshold of th = 0.001 (triggering at
almost any movement) and a window size of N = 10 (0.25 s at 40Hz). The average
duration of the interesting regions is 11,696ms. The second EGL is based on the
Alkan database2 of everyday movements collected with an iPhone (Hattori et al.
2011). The third data set is another collection of everyday movements collected on
Android phones for a different project at Georgia Tech. These two latter EGLs were
processed in the same manner as the first.

We collected a reference data set of gestures for evaluation purposes. We acted as
interaction designers and designed four gestures by performing them while holding
a smart phone. For each gesture we collected 10 examples, resulting in 40 examples
total. The four gestures are: drawing a circle in the air, touching your shoulder,
shaking the phone up and down, and hacking (a motion similar to swinging an ax).
The average duration of the gestures is between 1 and 2s.

4.4.2 Comparison Conditions: NN-DTW and HMMs

When comparing the dynamic time warping EGL search method to a search in
iSAX index space we will use the following procedure. The DTWmethod compares
each interesting region from the EGL to each gesture example (Ashbrook 2009).
We calculate the dynamic time warping distance of a new gesture to all examples
in the EGL and apply a threshold chosen empirically. All regions for which the
distance is below this threshold for any example count as a false positive (in keeping
with MAGIC’s ability to output a one nearest neighbor classifier for live gesture
recognition).

For yet another comparison, we use hidden Markov models to search the EGL for
false positives. For the experiments in this paper, we use a six-state HMM (ignoring
initial and end states) with one skip transition and one Gaussian output probability
per state per dimension (see Fig. 4.8). We collect all the examples for our gesture set
first and then train a HMM for each of the gestures. We classify each region in the
EGL and apply a threshold based on maximum likelihood to determine if a region

2Alkan web site can be found at: http://alkan.jp/.

http://alkan.jp/
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Fig. 4.8 The topology of the left–right, six-state HMM used in our experiments. The first state is
the start state, and the eighth state is the end state. Each internal state transitions to itself and its
successor. We include a skip transition to help recognize shorter gestures

in the EGL is close enough to the gesture to count as a false positive. We chose both
the maximum likelihood threshold as well as the distance threshold so that classifier
accuracy stayed high (93% for NN-DTW and 100% for HMM).

4.4.3 Comparison of iSAX to NN-DTW and HMM
in Searching EGLs

We wish to compare our iSAX EGL search method to the more conventional
NN-DTW and HMM techniques described above. When selecting between two can-
didate gestures, the interaction designerwishes to choose the onewith a lower number
of predicted false positives. Thus, if a first gesture has few hits when NN-DTW or
HMMs are used and a second gesture has many hits, that same trend should be shown
with iSAX. The absolute number of EGL hits does not matter, but there should be a
strong correlation between the relative number of hits returned by iSAX and the other
two techniques when run on the same set of gestures. We use the Pearson correlation
coefficient as a metric to compare the techniques.

Regardless of the search method used, we store the number of hits in a vector.
Each entry of that vector corresponds to the overall number of false positives for
a given gesture. For iSAX and NN-DTW, the overall number of false positives for
a gesture is calculated by searching the EGL for each example of that gesture and
summing the resulting numbers of hits. For HMM models, thresholding on the log
likelihood probability is used. For our set of four test gestures, testing returns three
vectors (one for each method) of four elements (one for each gesture). We calculate
the Pearson correlation coefficient between the iSAXvector and theNN-DTWvector
and between the iSAX vector and the HMM vector.

To reassure ourselves that this technique produces a meaningful metric, we per-
formed Monte Carlo simulation experiments. Indeed, the correlation of random vec-
tors with four elements show low r values.
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Fig. 4.9 Left the hits per hour in the EGL based on iSAX search. Right a comparison of the number
of hits per hour returned by iSAX, NN-DTW, and HMMs from the EGL

First, we compare the search methods on the EGL from Bremen. We chose the
iSAX parameters empirically:

word length: 4
base cardinality: 2
bucket: 6000.
Figure4.9 compares the number of hits per hour returned by each method. The

hits per hour metric reflects the number of matches found in the EGL divided by
the original time required to record the EGL. One can see that our iSAX search
approximation returns many fewer hits than NN-DTW or HMMs. However, the
magnitude of the iSAX values correlate strongly with the NN-DTW (r = 0.96) and
HMM (r = 0.97) results. Thus, a high number of hits returned by iSAX on the EGL
(high compared to other gestures tested with iSAX) is a good indicator for when a
gesture should be discarded. The remaining gestures are suitable candidates for user
testing.

We also measured the time needed to complete the search for each method on a
2.0GHz Intel Core Duo T2500 Macbook with 2GB of RAM. The NN-DTW and
HMM methods require more then 10min to complete the search on all 40 gesture
examples whereas iSAX search required 22 s, a 27X increase in speed. With such
speed, each of the gesture examples could have been checked as it was entered by
the interaction designer. In fact, the EGL search would require less than a second for
each gesture example, which is less than the amount of time required to check a new
example for confusion against all the other gesture examples with NN-DTW when
creating a eight gesture interface (Ashbrook 2009). Thus, we have obtained our goal
of maintaining interactivity during gesture design.
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We were curious as to how much EGL data is needed to predict poor command
gestures.We generated three random subsets of the EGL by picking 100, 200 and 500
interesting regions at random from the data set and comparing the correlation coef-
ficient between iSAX and NN-DTW. The correlation between the results remained
surprisingly high, even with an EGL containing only 100 regions:

• n = 100: r = 0.89
• n = 200: r = 0.93
• n = 500: r = 0.93.

As later experiments show,more data is better, but even a relatively small EGL can
help the interaction designer avoid choosing troublesome gestures.We also compared
iSAX versus NN-DTW in the Alkan and Georgia Tech EGLs, with similar results to
the original Bremen EGL:

• Alkan: r = 0.94
• Georgia Tech: r = 0.99.

Our results suggest that the results of an iSAX search on the EGL correlate highly
with those of the slower EGL search methods. Even though the absolute number
of hits found by the iSAX method are significantly fewer than the other methods,
the relative number of hits can be used to compare the desirability of one candidate
gesture versus another.

4.4.4 Comparison of iSAX Predictions to HMM and
NN-DTW Gesture Recognizer Use in Practice

Next, we examine whether our iSAX EGL search method is able to predict false
positives in everyday life. In fact, this experiment is the first to verify that any EGL
search is able to predict false positive rates of a gesture recognizer in practice.

We exported NN-DTW and HMM recognizers fromMAGIC Summoning for the
four gestures trained during the process described in the previous experiment. We
integrated the HMM classifier into an interactive system. Next, we recruited four
Android phone users who had not contributed to the EGLs nor the training of the
gestures.

In order to understand how difficult it was to perform the gestures correctly,
we asked the users to perform each gesture 10 times without feedback. The HMM
classifier performed at 60% accuracy, which is not surprising given the gestures and
testing procedure. Next we allowed the users to train with the HMM recognizer
to become more familiar with how to perform the gestures so that they could be
more easily recognized. This way of learning can be found in commercial systems
like the Nintendo Wii, which uses avatars to help users learn control gestures. Not
surprisingly, the four users’ average accuracy with the HMM recognizer improved
to 95% after training.



4 MAGIC Summoning: Towards Automatic Suggesting and Testing of Gestures … 137

Fig. 4.10 The EGL hits per hour found during deployment. Left the EGL hits for NN-DTW search
per gesture. Right the EGL hits for HMM search per gesture. The EGL hits for a gesture are the
average hits over all four users. The bars correspond to one standard deviation

After the users completed their training, we installed a software application on
their phones that notified the users when to perform one randomly selected gesture,
once every hour. Otherwise, the users performed their normal activities, and the
application records all the users’ movements. We searched the recorded data for the
intended gestures. The HMM classifier found 50–70% of the intentional gestures
whereas NN-DTW search found all of them. However, the NN-DTW classifier had
lower precision than the HMMs. Given that we specifically allowed gestures that
were known to be poor (from EGL testing) and that the system did not provide
feedback to the users, such poor performance is to be expected (and desired from the
point of the experiment).

Figure4.10 shows the false positive rates for each gesture and recognizer. We
observed a high correlation (r = 0.84) between the relative false positive rates pre-
dicted by the iSAX search on the original EGL and the actual, tested NN-DTW
performance on the users’ data. The correlation was even higher (r = 0.97) for the
HMM classifier. These results support our hypothesis that MAGIC Summoning can
be used to predict gestures at risk of having many false positives when deployed in
gesture recognizers in practice.

4.5 Improving Recognition Through a NULL Class
Created from EGL Search

In the experiments in the previous section, we needed to specify a threshold to avoid
false positives when distinguishing the four gestures from our four users’ everyday
motions. For NN-DTW, the threshold was a distance, while with HMMs it was
a probability. Setting this threshold requires more pattern recognition experience
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than an interaction designer may possess, and often gestures are not separable from
everyday movements with a simple threshold. Another option is to create a NULL
(garbage) class, which attempts to capture all the motion not matching the gestures
of interest. With this technique, the recognizer runs continually but does not return
a result when the sensor data matches the NULL class.

Here, we use EGL data to train a NULL class automatically so that a user-defined
threshold is not needed. Multi-dimensional iSAX search of the EGL returns time
series similar to a query gesture. Thus, it is a simple matter to collect the EGL hits
from all examples of all gestures in the gesture interface to train a NULL gesture
(using either technique).

The following experiment is based on the data collected while our four users
performed the four requested gestures during their daily activities. We adjusted the
thresholds upward for the HMM and NN-DTW recognizers to avoid misclassifica-
tions in theEGLwhile still detecting the gestures from the training set.Wealso trained
NULL classes for both recognizers. Figure4.11 shows the results of all four recog-
nizers running on the user study data. Using the EGL NULL class method resulted
in a statistically significant improvement of both the NN-DTW (p << 0.0001) and
HMM (p < 0.05) recognizers. Both avoided more false positives using the NULL
class instead of a threshold. Gesture recognition accuracy and correlation to the iSAX
EGLhits remained consistent with the experiment in the previous section. The results
suggest that training a NULL class based on EGL hits can be a successful way to
improve performance and reduce complexity for the interaction designer. Note that
many variations of this technique are possible and might further improve results. For
example, a different NULL class could be trained for each gesture.

Fig. 4.11 Left the false positives per hour avoided using a NULL class for each gesture based on
EGL hits versus the simple threshold. Right the false positives per hour avoided for HMMs using
the NULL class versus the simple threshold
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4.6 iSAX Parameter Sensitivity Experiments

In Sect. 4.4.4, iSAX was able to predict the relative performance of a gesture during
continuous recognition. However, the process required setting several parameters:
word length, bucket size, and initial cardinality. In addition, we compared the false
positive predictions to that of the NN-DTWmethod, which itself required a distance
threshold (when a NULL class is not used). How sensitive is our method to these
parameters? We use the same four test gestures (circle, shake, shoulder, hack) and
EGL as in our user study to explore this issue.

Observe that the cardinality of the sequences is automatically adjusted during the
creation of the EGL iSAX tree, quickly changing from its initial minimal setting of
two. Effectively, this parameter is not set by the user, and we can remove it from the
following experiments on parameter sensitivity by holding it at a reasonable value.
We choose a base cardinality of four (card = 4), given that this level of complexity
was judged sufficient from observations in the original iSAX experiments (Shieh
2010; Shieh and Keogh 2008) and in our own work (Kohlsdorf et al. 2011).

In the experiments below, we compare the iSAX results, while varying the bucket
size andword length, to theNN-DTWmethod using the correlationmethod described
above. We also tried comparing the iSAX method to NN-DTW with different rea-
sonable distance thresholds (3.3, 5, 10), but we found little change in the results.
For example, the bottom of Fig. 4.12 shows graphs comparing iSAX word length
to correlation with NN-DTW at each of the distance thresholds. The graphs are
very similar, indicating that the comparison with NN-DTW is relatively stable with
respect to the distance threshold used. Thus, we turn our attention to word length
and bucket size.

In the first part of the experiment we test the correlation of the EGL searches
using NN-DTW and iSAX trees constructed with different iSAX word lengths (4,
5, 6, …, 13) and bucket sizes (1000, 2000, …, 10000). Figure4.12 plots the results.
Changes in bucket size cause minor variations in correlation; however, word length
has significant effects.

Since the performance of our method seems mostly dependent on one parameter,
we propose an automatic parameter tuning method that does not require any data
except a pre-recorded EGL. The central concept is to choose random regions from
the EGL to serve as a gesture training set and to tune the iSAX parameters to that set
using hill climbing.

We require the user to specify the number of gestures in the data set (N ), howmany
examples we want to collect for each gesture (M), and a threshold on the dynamic
time warping distance over which two time series are distinct. We pick N regions
of motion (“interesting” regions) at random from the EGL to serve as “reference
gestures.” For those N reference gestures we extract M examples from the EGL
where the DTW distance to the reference gesture is smaller than a threshold. Then
we compute the false positives for this gesture set using the NN-DTW method. In
order to find the appropriate word length we use hill climbing in the iSAX parameter
space. At each step, we perform false positive prediction using iSAX and compare



140 D.K.H. Kohlsdorf and T.E. Starner

Fig. 4.12 Top correlation to NN-DTW versus iSAX word length versus iSAX bucket size.
Bottom iSAX word length versus correlation to NN-DTW for distance thresholds of 3.3, 5, and 10,
respectively

the results to the NN-DTW results using the Pearson correlation coefficient as an
objective function.

We ran an experiment to test this hill-climbing technique, allowing the procedure
to set the word length automatically and comparing the results to NN-DTW. We
started the word length at 4 and increased it to 13. If the observed correlation at a
given word length is followed by a smaller one when the next word length is tried,
the algorithm stops and returns the last word length. As one can see in Fig. 4.12,
after 3 iterations iSAX finds a local maximum. However, this sequential method is
not optimal. For example, if the word length which maximizes the correlation is 9
and the local maximum at the word length 6 is smaller, we would stop too early.
However, this problem can be solved by including simulated annealing or stochastic
gradient descent in the future.
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In this chapter, we showed that the iSAX EGL search relies on several parameters
but that the parameters can be tuned automatically. Word length seems the primary
parameter that needs to be tuned.

4.7 MAGIC Summoning: Suggesting Gestures with Low
Probability of False Positives During Use

To this point, we have focused on efficient gesture testing. However, when using
MAGIC to design gestures in previous studies, our participants wished to have
MAGIC suggest potential gestures instead of creating their own. Often the gestures
designed by the participants showed high false positive rates when tested against the
EGL, leading to frustration. MAGIC users said they would rather select from a set
of gestures that were “known good” than experiment blindly with constraints they
did not understand (Ashbrook 2009).

In the next section, we describe a method for suggesting gestures based on a
pre-recorded EGL. We then perform an experiment where we test suggested ges-
tures for false positives during normal device usage by naive subjects. Finally, we
examine different possible metrics to order the suggestions for easier selection by the
designer. While we have mostly used accelerometers in our experiments to date, here
we concentrate on capacitive trackpads, specifically those used on Apple’s laptops.
Data from inertial sensors are hard to visualize for an interaction designer without a
inverse kinematic system tomap the sensor readings into limbmovement.While such
systems are now feasible with adequate accuracy, we wished to avoid the additional
complexity for these first experiments. Trackpads provide two dimensional data that
are easy to visualize for an interaction designer, and trackpads are commonly used
in everyday office work. In addition, industry has begun to include more complex
command gestures in their trackpad-based products (Li 2010).

4.7.1 Synthesizing and Visualizing Gestures

We introduce a method for proposing gestures that do not collide with every day
movements using four steps, briefly outlined here. First, we collect an EGL that is
representative of the usage of the device or sensor. Next, we build an iSAX tree based
on the EGL. We systematically enumerate the possible SAX strings and check for
those which are NOT contained in the tree. Finally, we visualize these gestures and
present them to the interaction designer. Once the designer selects a set of gestures
for his interface, MAGIC Summoning can train a recognizer for the gestures using
synthesized data.
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4.7.1.1 Collecting an EGL

Collecting a representativeEGL is often time-consuming and is best doneby someone
familiar both with the specific sensor involved and pattern recognition in general.
Fortunately, the process is only necessary once for the device of interest and then can
be used for different interface designers and tasks. Mostly, the EGL will be collected
across multiple people to ensure that the resulting gestures can be user independent.
Ideally, the EGL should be collected across every situation and physical context
where the device might be used (for example, sitting at a desk or driving) to make
sure that incidental motions are well represented. If the resulting gesture recognizer
is intended to work across different devices (for example, across multiple version of
Android phones), the EGL should be collected from a representative sample of those
devices.

4.7.1.2 Representing the EGL and Generating Gestures

Next, we convert the EGL into a simplified iSAX tree structure. Unlike the work
above, here we only care that a given string occurred in the EGL instead of how
many times it occurred. Thus, we can use a simpler indexing method that will allow
easier gesture building later. We convert interesting regions from the EGL to SAX
words and build the set of all strings observed in the EGL. Since the sensor input is
multivariate, we build the SAX word in each dimension and concatenate the words.
Thus, for n dimensions and a word length of w, the indexing key grows to n ∗ w.
Given the cardinalities in the word, discovering gestures that are not represented in
the EGL is a simple matter of combinatorics. We generate all possible gestures and
store the gesture as a viable candidate if it is not contained in the EGL.

4.7.1.3 Visualizing Candidate Gestures and Training Gesture
Recognizers

In order for the interface designer to select between the different candidate gestures,
wemust visualize them. Specifically, we need to convert the candidate gesture from a
SAX string into a real valued time series. For each SAX symbol, we know that valid
values are somewhere between the upper and lower breakpoint of the area assigned to
the symbol. We choose a random point between these breakpoints for each symbol.
We then use spline interpolation or re-sampling to fit a curve through the resulting
values from each SAX symbol. We used an exponential moving average to smooth
the resulting curve. The overall process is shown in Fig. 4.13. Note that by repeating
this process we can generate a synthetic set of time series that could have generated
the SAX word. This synthetic data is used to visualize acceptable versions of the
trackpad gesture to the interaction designer. We will also use this synthetic data to
train a recognizer for the gesture if it is selected (see below).
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Fig. 4.13 Converting a SAX word to example gestures

Fig. 4.14 The MAGIC Summoning gesture suggestion interface

Figure4.14 shows MAGIC Summoning’s user interface for gesture suggestion.
In the center of the window we display a synthesized gesture. The color of the lines
indicates the time course of the gesture as it is performed on the trackpad (from
dark to light). Many synthetic examples of a given SAX word are drawn to give the
interaction designer a sense of the possible shapes of the gesture. New suggestions
are displayed periodically, effectively creating a movie of potential gestures. In our
first implementation, gesture suggestions were selected randomly, keeping a list of
previously viewed gestures so as to avoid repetition. If the interaction designer sees
a desirable gesture, he stops the presentation with a key press.

If other gestures have already been selected by the user, the similarity of the
currently displayed gesture to the already selected gestures is shown in a bar plot in
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a window at the bottom left. Based on these similarity scores, the user can retain the
gesture or continue searching other suggestions. In this case, we decided to use the
$1 Recognizer (Wobbrock et al. 2007) both for generating similarity scores and for
gesture recognition. To train the gesture recognizer, we simply used the synthetic
examples generated during the visualization process.

4.7.1.4 $1 Recognizer

Since the $1 Recognizer is widely used in HCI research (Belatar and Coldefy 2010;
Dang and André 2010) but is not necessarily known to machine learning researchers,
we give a quick overview here. The recognizer is optimized for single stroke ges-
tures and can be considered instance-based learning. Each instance or template is
re-sampled to be of equal length with all others and then rotated, scaled, and trans-
lated to a canonical form before being used. During recognition the query gesture is
compared to all the stored templates using an angular distance metric. In continuous
recognition we can apply a threshold on that distance, and the rest of the recog-
nition process is similar to the dynamic time warping approach described earlier.
The authors report recognition accuracies of 99%, which is comparable to DTW
implementations on the same data sets. The method is simple, fast to compute, and
understandable by pattern recognition novices. Thus, the algorithm is well-suited
for experimentation by interface designers. With MAGIC Summoning, interaction
designers do not need to collect any training data for the recognizer. The training
data is produced synthetically from the EGL as described above. Note that we can
use the $1 Recognizer as a distance measure for EGL search (albeit slowly compared
to iSAX), which will be useful for comparison experiments below.

4.7.2 Testing Suggested Gestures and Recognizers in Practice

We collected an EGL consisting of ten participants using their personal Mac laptops
for one week. Figure4.15 visualizes the EGL. While indexing the EGL, we set the
SAX word length to four. For a two dimensional touchpad, the length doubles to
eight. Setting the cardinality to four leads to a total number of 65,536 (48) possible
strings.

We observed 1222 unique strings in the collected EGL. The space is surprisingly
sparse; there are 64,314 strings not found in the EGL, suggesting that there are a
large number of gestures that could be made with a low probability of false positives.

We performed an experiment to evaluate if the proposed suggestion and selection
process described in the previous section can produce gestures that show a low false
positive rate in everyday life. In addition, we were concerned as to whether synthetic
data would be sufficient to train a high accuracy recognizer for this domain. We
acted as an interaction designer and selected six gestures using the visualization
tool above (see Fig. 4.16). We preferred gestures that were simple and memorable.



4 MAGIC Summoning: Towards Automatic Suggesting and Testing of Gestures … 145

Fig. 4.15 Bottom the touch pad EGL. Top an excerpt from the EGL showing five false positives
during testing of a gesture, indicated as colored bubbles

Fig. 4.16 The six gestures used in the study. Gestures are drawn from dark to light
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Fig. 4.17 Seventy generated gestures with potential low false positive rates. Gestures ordered from
left-to-right and from top-to-bottom with increasing entropy

Figure4.17 demonstrates 70 other gestures suggested by the system that were not
used.We trained a $1 Recognizer for each of the six gestures selected using synthetic
data generated by MAGIC.

We designed a six user study with users who did not contribute to the EGL. As in
the false positive prediction experiments from the previous section, we asked users
to practice with the recognition system so that they could perform the gestures with
confidence. Users were able to improve their performance from ≈46% to ≈90%
quickly. Afterward, the users worked on their computers for 4h while all touchpad
movements were recorded. Every 10min we sent a notification to the users asking
them to perform one of the six gestures, resulting in four examples of each gesture
for each participant. Thus, we collected 24h of data and 144 gesture examples.

The gesture recognizerwas able to recognize 98%of the performed gestures. Even
though synthetic data was use to train the recognizer, these findings are similar to
those of Wobbrock et al. (2007), who reported a 99% accuracy in their experiments.
The false positive rates of the gestures are low except for one gesture (see Fig. 4.18).
Thus, the experiment supports the hypothesis that MAGIC Summoning can suggest
gestures and aid the interaction designer in creating a gesture system that results in
low false positives. However, several questions remain. Can we order the suggestions
so as to present the “best” gestures first? Also, the experiment as described has no
control condition.What would have been the result if we had tried suggesting random
gestures from the 64,314 available?
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Fig. 4.18 Results of the trackpad gesture user study in false positives per hour. All but one of the
gestures suggested by MAGIC Summoning show a low false positive rate

4.7.3 Ordering Gesture Suggestions

In this section we will explore possible ways of ordering gestures such that users can
quickly find desirable gestures from the large number of possibilities. Our intuition
is that users prefer simple gestures since they can be accessed quickly and are easy
to memorize.

Our first approach is defining the complexity of a gesture as the entropy of its
SAX word (Mitchell 1997):

H(word) = −
card∑

i=0

p(symboli ) ∗ log(symboli ).

However, if we want to prefer simpler gestures, we should check to determine if
false positive rates in real usage are correlated with simplicity. Otherwise, proposing
simpler gestures first could be counterproductive. Intuitively, one would think that
simpler gestures would trigger more often in everyday life. To investigate this ques-
tion we trained the $1 Recognizer with 100 randomly chosen gestures and searched
the EGL with it. For each gesture we calculated the entropy and compared the false
positive rate to the entropy and found no correlation (r2 ≈ 0.04). Thus, there seems
to be little additional risk to suggesting lower entropy gestures first.

The above heuristic seems logical for ordering suggestions. Low entropy gestures
would seem to be simpler and easier to perform. To confirm this intuition we ran a
small user study. We generated 100 gestures and sorted them using the above score.
We examined the 20 best-ranked gestures and rejected ones that required significant
overlap of the strokes (see Fig. 4.19) as the static visualization of the strokes could
confuse subjects. For each of the 10 remaining gestures we asked six users to perform
the gesture in the air, on the table or on their touchpad and asked them to assign a
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Fig. 4.19 MAGIC
Summoning gestures with
significant overlap of the
strokes were rejected to
avoid user confusion

score of performability between 1 and 10.All participants received the same gestures.
Interestingly, wewere not able to find a correlation between the entropy of a gesture’s
SAX word and the users’ ratings (r2 = 0.09).

Given the above result, we desire gestures not in the EGL but that are known to be
performable. With a trackpad, all suggested gestures should be physically possible,
but in future work with inertial sensors the suggestions could become impossible
without constraining the system in some manner.

We decided to prefer gesture suggestions where the substrings of the SAX word
representing the candidate gesture are represented in the EGL, but the gesture string
itself was not present. We will assume one dimension for ease of illustration. If a
gestureACBD is not in the EGL, but the subcomponentsAC,CB, andBDorACBand
CBDwerewell represented in the EGL,wemight conclude that ACBD is possible for
the user to perform. In other words, we will prefer gestures where the most n-grams
from the EGL are included in the suggested gesture’s string. Intuitively, though,
such a heuristic causes concern that such gestures might have a higher chance of
false triggering.

To investigate this possibility, we extracted bi-grams and tri-grams from the EGL,
created candidate gestures from them, and tried to find a correlation between the
false positives in the EGL and the number of n-grams in the gesture’s string. Note
that this method of composition creates gestures with a variety of properties: ones
common in the EGL, rare in the EGL, and not present in the EGL. A correlation
would indicate an increased risk with this method of ordering the suggestions, but
we did not find one, giving a modicum of assurance in the method:
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Bi-grams r2 = 0.000676
Tri-grams r2 = 0.000256.
Beside low false positives, another criteria for a good gesture system is that there

should be a low chance of confusion between gestures. If the user is creating a
control system with six gestures and has already selected five of them, we should
prefer suggestions that are distinct from the five gestures already chosen.Wemeasure
the distinguishably of a gesture using the Hamming distance (Hamming 1950) of the
gesture’s SAX word. Thus, when ordering gestures, we sort using a score defined as

score(word) = dist (word)

(1 + entropy(word))

where the distance of the word is the average Hamming distance to all other gestures
in the gesture set. This metric provides a high distance to the other gestures and a
low entropy. Note that we use (1 + entropy(word)) to avoid unreasonably high or
infinite scores when the entropy value is near 0.

Given the results of the above experiments, we are now tuningMAGIC Summon-
ing to generate gestures composed from parts of the EGL and to suggest gestures
that are most dissimilar to each other. We intend to test this ordering system in our
future work with suggesting gestures for use with inertial sensors.

4.7.4 How Selective are MAGIC Summoning’s Suggestions?

In the above user study, we selected six gestures by hand fromMAGIC Summoning’s
suggestions and tested the $1 Recognizer that MAGIC output for both accuracy and
false triggering. However, there were many possible gestures that the system could
have output instead. In this last section we will investigate if suggesting gestures
based on our method is better generated ones by chance.

As we have seen previously, using iSAX results in fewer hits being identified
in an EGL than those found by typical gesture recognizers (HMM, NN-DTW, $1
Recognizer, etc.). The sole reason to use iSAX is that it quickly returns whether or
not a candidate gesture is worthwhile to investigate further. However, we do not need
to generate gesture suggestions in real time. In fact, as soon as an EGL is collected,
the same “overnight” process that generates the EGL’s iSAX tree representation for
prediction could track the gestures not represented in the EGL. Once these gestures
are known, the recognizer of choice could be trained with synthetic data of the
gesture, and the recognizer could be run on the EGL for a more precise estimate
of the expected hits. The number of false positives returned should allow a finer
discrimination between candidate gestures. In the following experiment, we use this
new procedure to generate suggested gestures and test ones with the lowest number
of false positives on the test data collected from subjects not represented in the EGL.

In this experiment, we generated 2000 random gestures from SAX strings not
in the EGL. For each of the gestures we synthesized 40 examples and trained a $1
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Fig. 4.20 Number of false positives identified in the EGL using the $1 Recognizer for each of 2000
gestures synthesized from SAX strings not represented in the EGL. Gestures with more than 2 hits
per hour are not graphed to preserve scale

recognizer with them. We used this recognizer to test search the EGL in the classic
way, that is testing each interesting region using the trained recognizer. We used a
typical threshold (th = 0.85) for the $1 score. All results above that threshold count
as a hit with the EGL. Figure4.20 orders the gestures by least to most number of
hits per hour in the EGL. Clearly the $1 Recognizer identifies many potential false
positives, yet most of the gestures still have low rates.

Figure4.21, top, shows another view of this data. Note that over 35% of the 2000
gestures have 0–0.0001 false positives/hour. Compare this rate to that of Fig. 4.21,
bottom. This graph was generated using all the SAX strings represented in the EGL.
Less than 12% of these gestures have such low false positive rates. Clearly, the SAX
representation does have considerable predictive power on which suggested gestures
are least likely to trigger falsely using the $1 Recognizer in the EGL. In fact, better
than one in three of the gestures suggested by choosing SAX strings not in the EGL
will be candidates for very low false positive rates with the synthetically trained $1
Recognizer.

The above observation suggests a relatively efficient method for creating gesture
candidates for the interaction designer. First, randomly choose a unrepresented SAX
string in the EGL. Train the desired recognizer using synthetic data. Run the recog-
nizer on the EGL. If the rate of false positives per hour is less than 0.0001, keep the
gesture. Otherwise, discard it. Generate as many gesture suggestions as is possible
given time constraints. (Approximately 25min is required to generate 100 gesture
suggestions using a modern laptop, but such a process is highly parallelizable and
can be run in batch before the interaction designer approaches the system.) Order
the suggestions as described above and present them to the interaction designer for
selection.

We conducted an experiment evaluating this algorithm. We split the collected
EGL for touchpad gestures into two subsets. Each subset contains randomly chosen,
distinct time series from the original EGL. The intersection between the subsets is
empty. We used the first subset to generate 100 randomly chosen, distinct gestures
candidates that show less then0.0001 false positives per hour using the$1Recognizer.
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Fig. 4.21 Histogram demonstrating the percentages of the number of false positives per hour for
gestures with SAX representations not in the EGL (top) and all gestures with SAX representations
in the EGL (bottom)

We used these recognizers to then search the data in the second subset. On average
we found the gestures to trigger 0.0022 times per hour, with a standard deviation of
0.003. These rates correspond to an average time between false triggerings of 455h,
or approximately onemonth assuming usage 16h/day. Thus, this method of choosing
gestures to suggest to an interaction designer seems desirable as well as practical.

4.8 Future Work

To date, the task for most gesture recognition systems has been to optimize accuracy
given a set of gestures to be recognized. In this paper, we have reversed the problem,
seeking to discover which gestures might be most suitable for recognition.
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However, improved suggestion ordering is an area for improvement. Performa-
bility might be improved by modeling how gestures are produced (Cao and Zhai
2007) and prioritizing those gestures with least perceived effort. For domains where
the coupling between sensor data and limb movement are not as apparent, such as
accelerometer-basedmotion gestures, inverse kinematicmodels and 3D avatars seem
appropriate both for prioritizing suggestions and for visualizing the gesture for the
interaction designer. For situations with many degrees of freedom, such as whole
body movement as tracked by the Microsoft Kinect©, the space of potential ges-
tures may be extremely large. Physical and behavioral constraints might be applied
to reduce the search space for the interaction designer. While MAGIC and MAGIC
Summoning have been applied tomultiple domains, we have only applied the gesture
suggestion functions to trackpads.We are eager to investigateMAGIC Summoning’s
usefulness and usability in other domains.

4.9 Conclusion

We have described two pattern recognition tasks that can be used to help interaction
designers create gesture interfaces: testing a user-defined gesture (and its classifier)
against a previously captured database of typical usage sensor data to determine its
tendency to trigger falsely and suggesting gestures automatically to the designer. We
have shown that iSAX can be used to provide near immediate feedback to the user as
to whether a gesture is inappropriate. While this method is approximate and recovers
only a fraction of the total false positives in the EGL, MAGIC Summoning’s results
correlate strongly with those of HMMs, DTW, and the $1 Recognizer and can thus
be used to provide guidance during training. We showed that MAGIC Summoning
and the EGL could be used to create a null class of close false matches that increase
the performance of the chosen classifier.

To suggest gestures to the interaction designer that may have low chance of trig-
gering falsely, we exploited the SAX representation used to index the EGL. MAGIC
Summoning generates all the strings not in the EGL, converts the SAX strings
back into a gesture visualization, and suggests appropriate gestures to the designer.
MAGIC Summoning also outputs classifiers for the gesture, trained on synthetic
data generated from the SAX string. Using the task of finding command gestures
for Mac trackpads, we showed that the gestures generated by MAGIC Summoning
have generally low false positive rates when deployed and that the classifiers output
by the system were adequate to the task of spotting the gesture.

Even if iSAX search of an EGL is not a perfect predictor for the false positives
of a gesture in every day usage, we find that the approximations are sufficient to
speed interface design significantly. MAGIC’s methods are not intended to replace
user testing with the final device. However, we believe that the tool will decrease the
number of iterations needed to build a fast and stable gesture recognition interface.
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Chapter 5
Language-Motivated Approaches to Action
Recognition

Manavender R. Malgireddy, I. Nwogu and V. Govindaraju

Abstract We present language-motivated approaches to detecting, localizing and
classifying activities and gestures in videos. In order to obtain statistical insight into
the underlying patterns of motions in activities, we develop a dynamic, hierarchi-
cal Bayesian model which connects low-level visual features in videos with poses,
motion patterns and classes of activities. This process is somewhat analogous to the
method of detecting topics or categories from documents based on the word content
of the documents, except that our documents are dynamic. The proposed generative
model harnesses both the temporal ordering power of dynamic Bayesian networks
such as hidden Markov models (HMMs) and the automatic clustering power of hier-
archical Bayesian models such as the latent Dirichlet allocation (LDA) model. We
also introduce a probabilistic framework for detecting and localizing pre-specified
activities (or gestures) in a video sequence, analogous to the use of filler models
for keyword detection in speech processing. We demonstrate the robustness of our
classification model and our spotting framework by recognizing activities in uncon-
strained real-life video sequences and by spotting gestures via a one-shot-learning
approach.

Keywords Dynamic hierarchical Bayesian networks · Topic models · Activity
recognition · Gesture spotting · Generative models

Editors: Isabelle Guyon and Vassilis Athitsos.

M.R. Malgireddy (B) · I. Nwogu · V. Govindaraju
Department of Computer Science and Engineering, University at Buffalo, SUNY,
Buffalo, NY 14260, USA
e-mail: mrm42@buffalo.edu

I. Nwogu
e-mail: inwogu@buffalo.edu

V. Govindaraju
e-mail: govind@buffalo.edu

© Springer International Publishing AG 2017
S. Escalera et al. (eds.), Gesture Recognition, The Springer Series
on Challenges in Machine Learning, DOI 10.1007/978-3-319-57021-1_5

155



156 M.R. Malgireddy et al.

5.1 Introduction

Vision-based activity recognition is currently a very active area of computer vision
research, where the goal is to automatically recognize different activities from a
video. In a simple case where a video contains only one activity, the goal is to
classify that activity, whereas, in a more general case, the objective is to detect the
start and end locations of different specific activities occurring in a video. The former,
simpler case is known as activity classification and latter as activity spotting. The
ability to recognize activities in videos, can be helpful in several applications, such
as monitoring elderly persons; surveillance systems in airports and other important
public areas to detect abnormal and suspicious activities; and content based video
retrieval, amongst other uses.

There are several challenges in recognizing human activities from videos and
these include videos taken with moving background such as trees and other objects;
different lighting conditions (day time, indoor, outdoor, night time); different view
points; occlusions; variations within each activity (different persons will have their
own style of performing an activity); large number of activities; and limited quantities
of labeled data amongst others.

Recent advances in applied machine learning, especially in natural language and
text processing, have led to a new modeling paradigm where high-level problems
can be modeled using combinations of lower-level segmental units. Such units can
be learned from large data sets and represent the universal set of alphabets to fully
describe a vocabulary. For example, in a high-level problem such as speech recog-
nition, a phoneme is defined as the smallest segmental unit employed to form an
utterance (speech vector). Similarly, in language based documents processing, words
in the document often represent the smallest segmental unit while in image-based
object identification, the bag-of-words (or bag-of-features) technique learns the set of
small units required to segment and label the object parts in the image. These features
can then be input to generative models based on hierarchical clustering paradigms,
such as topic modeling methods, to represent different levels of abstractions.

Motivated by the successes of this modeling technique in solving general high-
level problems, we define an activity as a sequence of contiguous sub-actions, where
the sub-action is a discrete unit that can be identified in a action stream. For example,
in a natural setting, when a person waves goodbye, the sub-actions involved could
be (i) raising a hand from rest position to a vertical upright position; (ii) moving the
arm from right to left; and (iii) moving the arm from left to right. The entire activity
or gesture1 therefore consists of the first sub-action occurring once and the second
and third sub-actions occurring multiple times. Extracting the complete vocabulary
of sub-actions in activities is a challenging problem since the exhaustive list of sub-
actions involved in a set of given activities is not necessarily known beforehand. We
therefore proposemachine learningmodels and algorithms to (i) compose a compact,
near-complete vocabulary of sub-actions in a given set of activities; (ii) recognize the

1When referring to activity spotting purposes, we use the term gestures instead of activities, only
to be consistent with the terminology of the ChaLearn Gesture Challenge.
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specific actions given a set of known activities; and (iii) efficiently learn a generative
model to be used in recognizing or spotting a pre-specified action, given a set of
activities.

We therefore hypothesize that the use of sub-actions in combination with the use
of a generative model for representing activities will improve recognition accuracy
and can also aid in activity spotting. We will perform experiments using various
available publicly available benchmark data sets to evaluate our hypothesis.

5.2 Background and Related Work

Although extensive research has gone into the study of the classification of human
activities in video, fewer attempts have been made to spot actions from an activity
stream. A recent, more complete survey on activity recognition research is presented
by Aggarwal and Ryoo (2011). We divide the related work in activity recognition
into two main categories: activity classification and activity spotting.

5.2.1 Activity Classification

Approaches for activity classification can be grouped into three categories: (i) space-
time approaches: a video is represented as a collection of space-time feature points
and algorithms are designed to learn a model for each activity using these features;
(ii) sequential approaches: features are extracted from video frames sequentially
and a state-space model such as a hidden Markov model (HMM) is learned over
the features; (iii) hierarchical approaches: an activity is modeled hierarchically, as
combination of simpler low level activities. We will briefly describe each of these
approaches along with the relevant literature, in sections below.

5.2.1.1 Space-Time Approaches

Space-time approaches represent a video as a collection of feature points and use
these points for classification. A typical space-time approach for activity recognition
involves the detection of interest points and the computation of various descriptors
for each interest point. The collection of these descriptors (bag-of-words) is therefore
the representation of a video. The descriptors of labeled training data are presented
to a classifier during training. Hence, when an unlabeled, unseen video is presented,
similar descriptors are extracted as mentioned above and presented to a classifier for
labeling. Commonly used classifiers in the space-time approach to activity classifi-
cation include support vector machines (SVM), K-nearest neighbor (KNN), etc.

Spatio-temporal interest points were initially introduced by Laptev and Lin-
deberg (2003) and since then, other interest-point-based detectors such as those
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based on spatio-temporal Hessian matrix (Willems et al. 2008) and Gabor filters
(Bregonzio et al. 2009; Dollár et al. 2005) have been proposed. Various other descrip-
tors such as those based on histogram-of-gradients (HoG) (Dalal and Triggs 2005)
or histogram-of-flow (HoF) (Laptev et al. 2008), three-dimensional histogram-of-
gradients (HoG3D) (Kläser et al. 2008), three-dimensional scale-invariant feature
transform (3D-SIFT) (Scovanner et al. 2007) and local trinary patterns (Yeffet and
Wolf 2009), have also been proposed to describe interest points. More recently,
descriptors based on tracking interest points have been explored (Messing et al.
2009; Matikainen et al. 2009). These use standard Kanade-Lucas-Tomasi (KLT)
feature trackers to track interest points over time.

In a recent paper by Wang et al. (2009), the authors performed an evaluation of
local spatio-temporal features for action recognition and showed that dense sam-
pling of feature points significantly improved classification results when compared
to sparse interest points. Similar results were also shown for image classification
(Nowak et al. 2006).

5.2.1.2 Sequential Approaches

Sequential approaches represent an activity as an ordered sequence of features, here
the goal is to learn the order of specific activity using state-space models. HMMs and
other dynamic Bayesian networks (DBNs) are popular state-space models used in
activity recognition. If an activity is represented as a set of hidden states, each hidden
state can produce a feature at each time frame, known as the observation.HMMswere
first applied to activity recognition in 1992 by Yamato et al. (1992). They extracted
features at each frame of a video by first binarizing the frame and dividing it into
(M × N ) meshes. The feature for each mesh was defined as the ratio of black pixels
to the total number of pixels in the mesh and all the mesh features were concatenated
to form a feature vector for the frame. An HMM was then learned for each activity
using the standard Expectation-Maximization (EM) algorithm. The system was able
to detect various tennis strokes such as forehand stroke, smash, and serve from one
camera viewpoint. The major drawback of the conventional HMM was its inability
to handle activities with multiple persons. A variant of HMM called coupled HMM
(CHMM) was introduced by Oliver et al. (2000), which overcame this drawback by
coupling HMMs, where each HMM in the CHMM modeled one person’s activity.
In their experiments they coupled two HMMs to model human-human interactions,
but again this was somewhat limited in its applications. An approach to extend both
HMMandCHMMsby explicitlymodeling the duration of an activity using stateswas
also proposed by Natarajan and Nevatia (2007). Each state in a coupled hidden semi-
Markov model (CHSMMs) had its own duration and the sequence of these states
defined the activity. Their experiments showed that CHSMM modeled an activity
better than the CHMM.
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5.2.1.3 Hierarchical Approaches

The main idea of hierarchical approaches is to perform recognition of higher-level
activities by modeling them as a combination of other simpler activities. The major
advantage of these approaches over sequential approaches is their ability to recognize
activities with complex structures. In hierarchical approaches, multiple layers of
state-basedmodels such asHMMs and other DBNs are used to recognize higher level
activities. In most cases, there are usually two layers. The bottom layer takes features
as inputs and learns atomic actions called sub-actions. The results from this layer
are fed into the second layer and used for the actual activity recognition. A layered
hidden Markov model (LHMM) (Oliver et al. 2002) was used in an application
for office awareness. The lower layer HMMs classified the video and audio data
with a time granularity of less than 1 s while the higher layer learned typical office
activities such as phone conversation, face-to-face conversation, presentation, etc.
Each layer of the HMMwas designed and trained separately with fully labeled data.
Hierarchical HMMs (Nguyen et al. 2005) were used to recognize human activities
such as person having “short-meal”, “snacks” and “normal meal”. They also used
a 2-layer architecture where lower layer HMM modeled simpler behaviors such as
moving from one location in a room to another and the higher layer HMM used
the information from layer one as its features. The higher layer was then used to
recognize activities. A method based on modeling temporal relationships among a
set of different temporal events (Gong and Xiang 2003) was developed and used for
a scene-level interpretation to recognize cargo loading and unloading events.

The main difference between the above mentioned methods and our proposed
method, is that these approaches assume that the higher-level activities and atomic
activities (sub-actions) are known a priori, hence, the parameters of the model can
be learned directly based on this notion. While this approach might be suitable for
a small number of activities, it does not hold true for real-word scenarios where
there is often a large number of sub-actions along with many activities (such as is
found in the HMDB data set which is described in more detail in Sect. 5.6.2). For
activity classification, we propose to first compute sub-actions by clustering dynamic
features obtained from videos, and then learn a hierarchical generative model over
these features, thus probabilistically learning the relations between sub-actions, that
are necessary to recognize different activities including those in real-world scenarios.

5.2.2 Activity Spotting

Only a few methods have been proposed for activity spotting. Among them is the
work of Yuan et al. (2009), which represented a video as a 3D volume and activities-
of-interest as sub-volumes. The task of activity spotting was therefore reduced to one
of performing an optimal search for activities in the video. Another work in spotting
by Derpanis et al. (2010) introduced a local descriptor of video dynamics based on
visual spacetime oriented energy measures. Similar to the previous work, their input
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was also a video which was searched for a specific action. The limitation of these
techniques is their inability to adapt to changes in view points, scale, appearance etc.
Rather than being defined on the motion patterns involved in an activity, these meth-
ods performed template matching type techniques, which do not readily generalize
to new environments exhibiting a known activity. Both methods reported their results
on the KTH and CMU data sets (described in more detail in Sect. 5.6), where the
environment in which the activities were being performed did not readily change.

5.3 A Language-Motivated Hierarchical Model
for Classification

Our proposed language-motivated hierarchical approach aims to perform recognition
of higher-level activities by modeling them as a combination of other simpler activ-
ities. The major advantage of this approach over the typical sequential approaches
and other hierarchical approaches is its ability to recognize activities with complex
structures. By employing a hierarchical approach, multiple layers of state-based
dynamic models can be used to recognize higher level activities. The bottom layers
take observed features as inputs in order to recognize atomic actions (sub-actions).
The results from these lower layers are then fed to the upper layers and used to
recognize the modular activity.

5.3.1 Hierarchical Activity Modeling Using Multi-class
Markov Chain Latent Dirichlet Allocation
(MCMCLDA)

We propose a supervised dynamic, hierarchical Bayesian model, the multi-class
Markov chain latent Dirichlet allocation (MCMCLDA), which captures the tempo-
ral information of an activity bymodeling it as sequence of motion patterns, based on
the Markov assumption. We develop this generative learning framework in order to
obtain statistical insight into the underlying motions patterns (sub-actions) involved
in an activity. An important aspect of this model is that motion patterns are shared
across activities. So although the model is generative in structure, it can act discrim-
inatively as it specifically learns which motion patterns are present in each activity.
The fact that motion patterns are shared across activities was validated empirically
(Messing et al. 2009) on the University of Rochester activities data set. Our proposed
generative model harnesses both the temporal ordering power of DBNs and the auto-
matic clustering power of hierarchical Bayesian models. The model correlates these
motion patterns over time in order to define the signatures for classes of activities.
Figure 5.1 shows an overview of the implementation network although we do not
display poses, since they have no direct meaningful physical manifestations.
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Fig. 5.1 Our general framework abstracts low-level visual features from videos and connects them
to poses, motion patterns and classes of activity. a A video sequence is divided into short segments
with a few frames only. In each segment, the space time interest points are computed. At the interest
points, HoG and HoF are computed, concatenated and quantized to represent our low-level visual
words. We discover and model a distribution over visual words which we refer to as poses (not
shown in image). b Atomic motions are discovered and modeled as distributions over poses. We
refer to these atomic motions asmotion patterns or sub-actions. c Each video segment is modeled as
a distribution over motion patterns. The time component is incorporated by modeling the transitions
between the video segments, so that a complete video is modeled as a dynamic network of motion
patterns. The distributions and transitions of underlying motion patterns in a video determine the
final activity label assigned to that video

A given video is broken into motion segments comprising of either a combination
of a fixed number of frames, or at the finest level, a single frame. Each motion
segment can be represented as bag of vectorized descriptors (visual words) so that
the input to the model (at time t) is the bag of visual words for motion segment t .
Our model is similar in sprit to Hospedales et al. (2009), where the authors mine
behaviors in video data from public scenes using an unsupervised framework. A
major difference is that our MCMCLDA is a supervised version of their model in
which motion-patterns/behaviors are shared across different classes, which makes
it possible to handle a large number of different classes. If we assume that there
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exists only one class, then the motion-patterns are no longer shared, our model also
becomes unsupervised and will thus be reduced to that of Hospedales et al. (2009).

WeviewMCMCLDAas a generative process and include a notation section before
delving into the details of the LDA-type model:

m = any single video in the corpus,
zt =motion pattern at time t (a video is assumed to bemade up ofmotion patterns),
yt,i = the hidden variable representing a pose at motion pattern i , in time t (motion
patterns are assumed to be made up of poses),
xt,i = the slices of the input video which we refer to as visual words and are the
only observable variables,
φy = the visual word distribution for pose y,
θz = motion pattern specific pose distribution,
cm is the class label for the video m (for one-shot learning, one activity is repre-
sented by one video (Nm = 1)),
ψ j = j th class-specific transition matrix for the transition from onemotion pattern
to the next,
γc = the transition matrix distribution for a video,
α,β = the hyperparameters of the priors.

The complete generative model is given by:

ψ z
j ∼ Dir(ψ z

j |γ j ),

θ z ∼ Dir(θz|α),

φ y ∼ Dir(φy|β),

zt ∼ Mult (zt |ψ zt−1
j ),

yt,i ∼ Mult (yt,i |θ zt ),

xt,i ∼ Mult (xt,i |φ yt,i ),

where Mult (·) refers to a multinomial distribution.
Now, consider the Bayesian network of MCMCLDA shown in Fig. 5.2. This can

be interpreted as follows: For each video m in the corpus, a motion pattern indicator
zt is drawn from p(zt |zt−1,ψcm ), denoted by Mult(ψ zt−1

cm ), where cm is the class
label for the video m. Then the corresponding pattern specific pose distribution θ zt
is used to draw visual words for that segment. That is, for each visual word, a pose
indicator yt,i is sampled according to pattern specific pose distribution θ zt , and then
the corresponding pose-specific word distribution φ yt,i is used to draw a visual word.
The poses φ y , motion patterns θ z and transition matrices ψ j are sampled once for
the entire corpus.

The joint distribution of all known and hidden variables given the hyperparameters
for a video is:

p
(
{xt , yt , zt }T1 , φ, ψ j , θ |α, β, γ j

)
= p(φ|β)p(θ |α)p(ψ |γ j )

∏
t

∏
i

p(xt,i |yt,i )p(yt,i |zt )p(zt |zt−1).
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Fig. 5.2 Left plates diagram for standard LDA; right plates diagram for a dynamic model which
extends LDA to learning the states from sequence data

5.3.2 Parameter Estimation and Inference of the MCMCLDA
Model

As in the case with LDA, exact inference is intractable. We therefore use collapsed
Gibbs sampler for approximate inference and learning. The update equation for pose
from which the Gibbs sampler draws the hidden pose yt,i is obtained by integrating
out the parameters θ, φ and noting that xt,i = x and zt = z:
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p
(
yt,i = y|y¬(t,i), z, x

) ∝ n¬(t,i)
x,y + β

∑Nx
x=1 n

¬(t,i)
x,y + Nxβ

(
n¬(t,i)
y,z + α

)
, (5.1)

where n¬(t,i)
x,y denote the number of times that visual word x is observed with pose y

excluding the token at (t, i) and n¬(t,i)
y,z refers to the number of times that pose y is

associated with motion pattern z excluding the token at (t, i). Nx is size of codebook
and Ny is the number of poses.

The Gibbs sampler update for motion-pattern at time t is derived by taking into
account that at time t , there can bemany different poses associated to a singlemotion-
pattern zt and also the possible transition from zt−1 to zt+1. The update equation for
zt can be expressed as:

p (zt = z|y, z¬t) ∝ p (yt |zt = z, z¬t , y¬t ) p
(
zt = z|zcm¬t , cm

)
. (5.2)

The likelihood term p(yt |zt = z, z¬t , y¬t ) cannot be reduced to the simplified form
as in LDA as the difference between n¬t

y,z and ny,z is not one, since there will be
multiple poses associated to the motion-pattern zt . ny,z denotes the number of times
pose y is associated with motion-pattern z and n¬t

y,z refers to the number of times pose
y is observed with motion-pattern z excluding the poses (multiple) at time t . Taking
the above condition into account, the likelihood term can be obtained as below:

p (yt |zt = z, z¬t , y¬t ) =
∏

y �(ny,z + α)∏
y �(n¬t

y,z + α)

�
(∑

y n
¬t
y,z + Nyα

)

�
(∑

y ny,z + Nyα
) .

Prior term p(zt = z|zcm¬t , cm) is calculated as belowdepending on the values of zt−1, zt
and zt+1.

i f zt−1 �= z :

= n(cm )
zt−1,z,¬t + γcm∑

z n
(cm )
zt−1,z,¬t + Nzγcm

n(cm )
z,zt+1,¬t + γcm∑

zt+1
n(cm )
z,zt+1,¬t + Nzγcm

,

i f zt−1 = z = zt+1 :

= n(cm )
zt−1,z,¬t + 1 + γcm∑

z n
(cm )
zt−1,z,¬t + 1 + Nzγcm

n(cm )
z,zt+1,¬t + γcm∑

zt+1
n(cm )
z,zt+1,¬t + Nzγcm

,

i f zt−1 = z �= zt+1 :

= n(cm )
zt−1,z,¬t + γcm∑

z n
(cm )
zt−1,z,¬t + Nzγcm

n(cm )
z,zt+1,¬t + γcm∑

zt+1
n(cm )
z,zt+1,¬t + 1 + Nzγcm

.

Here n(cm )
zt−1,z,¬t denotes the count from all the videos with the label cm where motion-

pattern z is followed bymotion-pattern zt−1 excluding the token at t . n
(cm )
z,zt+1,¬t denotes
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the count from all the videos with label cm where motion-pattern zt+1 is followed by
motion-pattern zt excluding the token at t . Nz is the number of motion-patterns. The
Gibbs sampling algorithm iterates betweenEqs. 5.1 and 5.2 andfinds the approximate
posterior distribution. To obtain the resulting model parameters {φ, θ, φ} from the
Gibbs sampler, we use the expectation of their distribution (Heinrich 2008), and
collect Ns such samples of the model parameters.

For inference, we need to find the best motion-pattern sequence for a new video.
The Gibbs sampler draws Ns samples of parameters during the learning phase. We
assume that these are sufficient statistics for the model and that no further adaptation
of parameters is necessary. We then adopt the Viterbi decoding algorithm to find the
best motion-pattern sequence. We approximate the integral over φ, θ, ψ using the
point estimates obtained during learning. To formulate the recursive equation for the
Viterbi algorithm, we can define the quantity

δt (i) = max
z1,...,zt−1

∫

φ,θ,ψcm

p
(
z1:(t−1), zt = i, x1:t |φ, θ, ψcm

)
,

≈ max
z1,...,zt−1

(
1

Ns

∑
s

p
(
z1:(t−1), zt = i, x1:t |φs, θ s, ψ s

cm

))
,

that is δt (i) is the best score at time t , which accounts for first t motion-segments
and ends in motion-pattern i . By induction we have

δt+1( j) ≈ max
i

δt (i)
1

Ns

∑
s

p
(
zt+1 = j |zt = i, ψ s

cm

)
p

(
xt+1|zt+1 = j, θ s, φs

)
.

(5.3)

To find the best motion-pattern, we need to keep track of the arguments that max-
imized Eq. 5.3. For the classification task we calculate the likelihood p
 for each
class and assign the label which has maximum value in:

p
 = max
1≤ j≤Nz

δT ( j).

5.4 Experiments and Results Using MCMCLDA

In this section, we present our observations as well as the results of applying our
proposed language-motivated hierarchical model to sub-action analysis as well as
to activity classification, using both simulated data as well as a publicly available
benchmark data set.



166 M.R. Malgireddy et al.

Fig. 5.3 Digital digits for
simulations

5.4.1 Study Performed on Simulated Digit Data

To flesh out the details of our proposed hierarchical classificationmodel, we present a
study performed on simulated data. The ten simulated dynamic activity classes were
the writing of the ten digital digits, 0–9 as shown in Fig. 5.3. The word vocabulary
was made up of all the pixels in a 13 × 5 grid and the topics or poses represented the
distribution over the words. An activity class therefore consisted of the steps needed
to simulate the writing of each digit and the purpose of the simulation was to visually
observe the clusters of motion patterns involved in the activities.

5.4.1.1 Analysis of Results

A total of seven clusters were discovered and modeled, as shown in Fig. 5.4. These
represent the simulated strokes (or topics) involved in writing each digit. There were
fourteen motion patterns discovered, as shown in the two bottom rows of Fig. 5.4.
These are the probabilistic clusters of the stroke motions. An activity or digit written
was therefore classified based on the sequences of distributions of these motion
patterns over time.

5.4.2 Study Performed on the Daily Activities Data Set

TheDaily Activities data set contains high resolution (1280 × 760 at 30 fps) videos,
with 10 different complex daily life activities such as eating banana, answering
phone, drinking water, etc.. Each activity was performed by five subjects three times,
yielding a total of 150 videos. The duration of each video varied between 10 and 60 s.

We generated visual words for the MCMCLDA model in a manner similar to
Laptev (2005), where theHarris3Ddetector (Laptev andLindeberg 2003)was used to
extract space-time interest points atmultiple scales. Each interest point was described
by the concatenation of HoF andHoG (Laptev 2005) descriptors. After the extraction
of these descriptors for all the training videos, we used the k-means clustering algo-
rithm to form a codebook of descriptors (or visual words (VW)). Furthermore, we
vector-quantized each descriptor by calculating its membership with respect to the
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Fig. 5.4 The top row shows seven poses discovered from clustering words. Themiddle and bottom
rows show the fourteen motion patterns discovered and modeled from the poses. A motion pattern
captures one or more strokes in the order they are written

codebook. We used the original implementation available online2 with the standard
parameter settings to extract interest points and descriptors.

Due to the limitations of the distributed implementation of space-time interest
points (Laptev et al. 2008), we reduced the video resolution to 320 × 180. In
our experimental setup, we used 100 videos for training and 50 videos for test-
ing exactly as pre-specified by the original publishers of this data set (Messing
et al. 2009). Both the training and testing sets had a uniform distribution of sam-
ples for each activity. We learned our MCMCLDA model on the training videos,
with a motion segment size of 15 frames. We ran a Gibbs sampler for a total
of 6000 iterations, ignoring the first 5000 sweeps as burn-in, then took 10 sam-
ples at a lag of 100 sweeps. The hyperparameters were fixed initially with values
(α = 5, β = 0.01, γ = 1) and after burn-in, these values were empirically estimated
usingmaximum-likelihood estimation (Heinrich 2008) as (α = 0.34, β = 0.001 and
γ = {0.04, 0.05, 0.16, 0.22, 0.006, 0.04, 0.13, 0.05, 0.14, 0.45}). We set the num-
ber of motion-patterns, poses and codebook size experimentally as Nz = 100, Ny =
100 and Nx = 1000.

2Implementation can be found at http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#
stip.

http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
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Fig. 5.5 Confusionmatrix for analyzing theUniversity ofRochester daily activities data set.Overall
accuracy is 80.0%. Zeros are omitted for clarity. The labels and their corresponding meaning are:
ap-answer phone; cB-chop banana; dP-dial phone; dW-drink water; eB-eat banana; eS-eat snack;
lP-lookup in phonebook; pB-peel banana; uS-use silverware; wW-write on whiteboard

The confusion matrix computed from this experiment is given in Fig. 5.5 and
a comparison with other activity recognition methods on the Daily Activities data
set is given in Table 5.1. Because the data set was already pre-divided, the other
recognition methods reported in Table 5.1 were trained and tested on the same sets
of training and testing videos.

Qualitatively, Fig. 5.7 pictorially illustrates some examples of different activities
having the same underlying shared motion patterns.

5.4.2.1 Analysis of Results

We present comparative results with other systems in Table 5.1. The results show that
the approach based on computing a distribution mixture over motion orientations at
each spatial location of the video sequence (Benabbas et al. 2010), slightly outper-
formed our hierarchical model. Interestingly, in our test, one activity, the write on
whiteboard (wW) activity is quite confused with use silverware (uS) activity, signifi-
cantly bringing down the overall accuracy. The confusion matrix for Benabbas et al.
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Fig. 5.6 Confusion matrix results from Benabbas et al. (2010) on the University of Rochester daily
activities data set

(2010) is presented in Fig. 5.6 and it shows several of the classes being confused,
no perfect recognition scores and also one of the class recognition rates being below

Table 5.1 The accuracy numbers reported in literature from applying different activity recognition
techniques on the daily activities data set

Technique Focus Accuracy (%)

Latent velocity trajectory Motion feature enhancement 67

features (Messing et al. 2009)a

Naive-Bayes pairwise Motion feature enhancement 70

trajectory features
(Matikainen et al. 2010)

Salient region tracking Motion feature enhancement 74

features (Bilen et al. 2011)

Video temporal Motion feature enhancement 80

cropping technique

Our supervised dynamic Dynamic hierarchical modeling 80

hierarchical model

Direction of motion Motion feature enhancement 81

features (Benabbas et al. 2010)
aThe authors also reported velocity trajectory feature augmented with prior spatial layout informa-
tion, resulting in an accuracy of 89%
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Fig. 5.7 Different activities showing shared underlyingmotion patterns. The sharedmotion patterns
are 85 and 90, amidst other underlying motion patterns shown

50%. Being a generative model, the MCMCLDA model performs comparably to
other discriminative models in a class labeling task.

Figure 5.7 pictorially illustrates some examples of different activities having the
same underlying shared motion patterns. For example, the activity of answering the
phone shares a common motion pattern (#85) with the activities of dialing the phone
and drinking water. Semantically, we observe that this shared motion is related to
the lifting sub-action.
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5.5 A Language-Motivated Model for Gesture
Recognition and Spotting

Few methods have been proposed for gesture spotting and among them include the
work of Yuan et al. (2009), who represented a video as a 3D volume and activities-
of-interest as sub-volumes. The task of gesture spotting was therefore reduced to
performing an optimal search for gestures in the video. Another work in spotting
was presented by Derpanis et al. (2010) who introduced a local descriptor of video
dynamics based on visual space-time oriented energy measures. Similar to the pre-
vious work, their input was also a video in which a specific action was searched for.
The limitation in these techniques is their inability to adapt to changes in view points,
scale, appearance, etc. Rather than being defined on the motion patterns involved in
an activity, these methods performed a type of 3D template matching on sequen-
tial data; such methods do not readily generalize to new environments exhibiting
the known activity. We therefore propose to develop a probabilistic framework for
gesture spotting that can be learned with very little training data and can readily
generalize to different environments.

Justification: Although the proposed framework is a generative probabilistic
model, it performs comparably to the state-of-the-art activity techniques which are
typically discriminative in nature, as demonstrated in Tables 5.2 and 5.3. An addi-
tional benefit of the framework is its usefulness for gesture spotting based on learning
from only one, or few training examples.

Background: In speech recognition, unconstrained keyword spotting refers to the
identification of specific words uttered, when those words are not clearly separated
from other words, and no grammar is enforced on the sentence containing them. Our
proposed spotting framework uses the Viterbi decoding algorithm and is motivated
by the keyword-filler HMM for spotting keywords in continuous speech. The current
state of the art keyword filler HMM dates back to the seminal papers of Rohlicek
et al. (1989) as well as Rose and Paul (1990), where the basic idea is to create one
HMM of the keyword and a separate HMM of the filler or non keyword regions.
These two models are then combined to form a composite filler HMM that is used
to annotate speech parts using the Viterbi decoding scheme. Putative decisions arise
when the Viterbi path crosses the keyword portion of the model. The ratio between
the likelihood of the Viterbi path that passes through the keyword model and the

Table 5.2 Comparison of our
proposed model and features
for KTH data set

Method Accuracy (%)

(Laptev et al., 2008) 91.8

(Yuan et al., 2009) 93.3

(Wang et al., 2011) 94.2

(Gilbert et al., 2011) 94.5

(Kovashka and Grauman, 2010) 94.53

Proposed mcHMM 94.67
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Table 5.3 Comparison of our proposed model and features for the HMDB data set

Method Accuracy (%)

Best results on 51 activities (original)

(Kuehne et al. 2011) 23.18

Proposed mcHMM on 51 activities (original) 25.64

Best results on 10 activities (original)

(Kuehne et al. 2011) 54.3

Proposed mcHMM on 10 activities (original) 57.67

Proposed mcHMM on 10 activities (stabilized) 66.67

likelihood of an alternate path that passes solely through the filler portion can be
used to score the occurrence of keywords. In a similar manner, we compute the
probabilistic signature for a gesture class, and using the filler model structure, we
test for the presence of that gesture within a given video. For one-shot learning, the
parameters of the single training video are considered to be sufficiently representative
of the class.

5.5.1 Gesture Recognition Using a Multichannel
Dynamic Bayesian Network

In a general sense, the spotting model can be interpreted as an HMM (whose random
variables involve hidden states and observed input nodes) but unlike the classic
HMM, this model has multiple input channels, where each channel is represented
as a distribution over the visual words corresponding to that channel. In contrast to
the classic HMM, our model can have multiple observations per state and channel,
and we refer to this as the multiple channel HMM (mcHMM). Figure 5.8 shows a
graphical representation of the mcHMM.

5.5.2 Parameter Estimation for the Gesture
Recognition Model

To determine the probabilistic signature of an activity class, one mcHMM is trained
for each activity. The generative process for mcHMM involves first sampling a state
from an activity, based on the transition matrix for that activity; then a frame-feature
comprising of the distribution of visual words is sampled according to a multinomial
distribution for that state3 and this is repeated for each frame. Similar to a classic
HMM, the parameters for the mcHMM are therefore:

3States are modeled as multinomials since our input observables are discrete values.
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Fig. 5.8 Plates model for
mcHMM showing the
relationship between
activities or gestures, states
and the two channels of
observed visual words (VW)

1. Initial state distribution π = {πi },
2. State transition probability distribution A = {ai j },
3. Observation densities for each state and descriptor B = {bdi }.

The joint probability distribution of observations (O) and hidden state sequence
(Q) given the parameters of the multinomial representing a hidden state (λ) can be
expressed as:

P(O, Q|λ) = πq1bq1(O1)

T∏
t=2

aqt−1qt · bqt (Ot ),

where bqt (Ot ) is modeled as follows:

bqt (Ot ) = ∏D
d=1 b

d
q (O

d
t ),

= ∏D
d=1 Mult (Od

t |bdq ),

and D is the number of descriptors.
EM is implemented to find the maximum likelihood estimates. The update equa-

tions for the model parameters are:

π̂ =
R∑

r=1

γ r
1 (i),

âi j =
∑R

r=1

∑T
t=1 ηr

t (i, j)∑R
r=1

∑T
t=1 γ r

t (i)
,

b̂dj (k) =
∑R

r=1

∑T
t=1 γ r

t ( j) · nd,k
t

nd,.
t∑R

r=1

∑T
t=1 γ r

t ( j)
,
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where R is number of videos and γ1(i) is the expected number of times the activity
being modeled started with state i ;

ηr
t (i, j) is the expected number of transitions from state i to state j and γ r

t (i) is
the expected number of transitions from state i ;

nd,k
t is the number of times that visual word k occurred in descriptor d at time t

and nd,.
t is the total number of visual words that occurred in descriptor d at time t .

5.5.3 Gesture Spotting via Inference on the Model

The gesture spotting problem is thus reduced to an inference problem where, given
a new not-previously-seen test video, and the model parameters or probabilistic
signatures of known activity classes, the goal is to establish which activity class
distributions most likely generated the test video. This type of inference can be
achieved using the Viterbi algorithm.

We constructed our spotting network such that there could be a maximum of
five gestures in a video. This design choice was driven by our participation in the
Chalearn competition where there was a maximum of five gestures in every test
video. Each of these gesture classes was seen during training, hence, there were no
random gestures inserted into the test video. This relaxed our network, compared to
the original filler model in speech analysis, where there can exist classes that have
not been previously seen. Figure 5.9 shows an example of the stacked mcHMMs
involved the gesture spotting task. This toy example shown in the figure can spot

Fig. 5.9 Activity spotting by computing likelihoods via Viterbi decoding. The toy example shown
assumes there are at most two activities in any test video, where the first activity is from the set of
activities that start from s′ and end at s′′, followed by one from the set that start from s′′ and end at
e′. The image also shows an example of a putative decision path from e′ to s′, after the decoding is
completed
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gestures in a test video comprised of at most two gestures. This network has a non-
emitting start state S′. This state does not have any observation density associated
with it. From this state, we can enter any of K gestures, which is shown by having
edges from S′ to K mcHMMs. All the gestures are then connected to non-emitting
state S′′ which represents the end of first gesture. Similarly we can enter the second
gesture from S′′ and end at e′ or directly go from S′′ to e′ which handles the case for
a video having only one gesture. This can be easily extended to the case where there
are at most five gestures.

The Viterbi decoding algorithm was implemented to traverse the stacked network
and putative decisions arose when the Viterbi path crosses the keyword portion of
the model. The ratio between the likelihood of the Viterbi path that passed through
the keyword model and the likelihood of an alternate path that passes through the
non-keyword portion was then used to score the occurrence of a keyword, where a
keyword here referred to a gesture class. An empirically chosen threshold value was
thus used to select the occurrence of a keyword in the video being decoded.

5.6 Experiments and Results Using mcHMM

In this section, we present our approach on generating visual words and our obser-
vations as well as the results of applying proposed mcHMM model to activity clas-
sification and gesture spotting, using publicly available benchmark data sets.

5.6.1 Generating Visual Words

An important step in generating visual words is the the need to extract interest points
from frames sampled from the videos at 30 fps. Interest points were obtained from
the KTH and HMDB data set by sampling dense points in every frame in the video
and then tracking these points for the next L frames. These are known as dense
trajectories. For each of these tracks, motion boundary histogram descriptors based
on HoG and HoF descriptors were extracted. These features are similar to the ones
used in dense trajectories (Wang et al. 2011), although rather than sampling interest
points at every L frames or when the current point is lost before being tracked for L
frames, we sampled at every frame. By so doing, we obtained a better representation
for each frame, whereas the original work used the features to represent the whole
video and was not frame-dependent.

Because the HMDB data set is comprised of real-life scenes which contain people
and activities occurring at multiple scales, the frame-size in the video was reduced by
a factor of two repeatedly, and motion boundary descriptors were extracted at multi-
ple scales. In the Chalearn data set, since the videos were comprised of RGB-depth
frames, we extracted interest points by (i) taking the difference between two con-
secutive depth frames and/or (ii) calculating the centroid of the depth foreground in
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Fig. 5.10 Interest points for 2 consecutive video frames. Top Depth-subtraction interest points;
bottom extrema interest points (with centroid)

every frame and computing the extrema points (from that centroid) in the depth fore-
ground. The second process ensured that extrema points such as the hands, elbows,
top-of-the-head, etc., were always included in the superset of interest points. The
top and bottom image pairs in Fig. 5.10 show examples of consecutive depth frames
from the Chalearn data set, with the interest points obtained via the two different
methods, superimposed. Again, HoG and HoF descriptors were extracted at each
interest point so that similar descriptors could be obtained in all the cases. We used
a patch size of 32 × 32 and a bin size of 8 for HoG and 9 for HoF implementation.

The feature descriptors were then clustered to obtain visual words. In general,
from the literature (Wang et al. 2011; Laptev et al. 2008), in order to limit complex-
ity, researchers randomly select a finite number of samples (roughly in the order of
100,000) and cluster these to form visual words. This could prove reasonable when
the number of samples is a few orders of magnitude greater than 100,000. But in
dealing with densely sampled interest points at every frame, the amount of descrip-
tors generated especially at multiple scales become significantly large. We therefore
divided the construction of visual words for HMDB data set into a two step process
where visual words were first constructed for each activity class separately, and then
the visual words obtained for each class were used as the input samples to cluster
the final visual words. For the smaller data sets such as KTH and Chalearn Gesture
Data Set, we randomly sampled 100,000 points and clustered them to form the visual
words.
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5.6.2 Study Performed on the HMDB and KTH Data Sets

In order to compare our framework to the other current state-of-the-art methods, we
performed activity classification on video sequences created from the KTH database
(Schüldt et al. 2004); KTH is a relatively simplistic data set comprised of 2391 video
clips used to train/test six human actions. Each action is performed several times by
25 subjects in various outdoor and indoor scenarios. We split the data into training
set of 16 subjects and test set of 9 subjects, which is exactly the same setup used by
the authors of the initial paper (Schüldt et al. 2004). Table 5.2 shows the comparison
of accuracies obtained.

Similarly, we performed activity classification tests on Human Motion Database
(HMDB) (Kuehne et al. 2011). HMDB is currently the most realistic database for
human activity recognition comprising of 6766 video clips and 51 activities extracted
from a wide range of sources like YouTube, Google videos, digitized movies and
other videos available on the Internet. We follow the original experimental setup
using three train-test splits (Kuehne et al. 2011). Each split has 70 video for training
and 30 videos for testing for each class. All the videos in the data set are stabilized
to remove the camera motion and the authors of the initial paper (Kuehne et al.
2011) report results on both original and stabilized videos for 51 activities. The
authors also selected 10 common actions from HMDB data set that were similar to
action categories in the UCF50 data set (University of Central Florida 2010) and
compared the recognition performance. Table 5.3 summarizes the performance of
proposed mcHMM method on 51 activities as well as 10 activities for both original
and stabilized videos.

5.6.2.1 Analysis of Results

For both the case of simple actions as found in the KTH data set and the case of
significantly more complex actions as found in the HMDB data set, the mcHMM
model performs comparably with other methods, outperforming them in the activity
recognition task. Our evaluation against state-of-the-art data sets suggest that perfor-
mance is not significantly affected over a range of factors such as camera position
and motion as well as occlusions. This suggests that the overall framework (com-
bination of dense descriptors and a state-based probabilistic model) is fairly robust
with respect to these low-level video degradations. At the time of this submission,
althoughwe outperformed the only currently reported accuracy results on theHMDB
data set, as shown by the accuracy scores reported, the framework is still limited in
its representative power to capture the complexity of human actions.

5.6.3 Study Performed on the ChaLearn Gesture Data Set

Lastly, we present our results of gesture spotting from the ChaLearn gesture data set
(ChaLearn 2011). The ChaLearn data set consisted of video frames with RGB-Depth
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information. Since the task-at-hand was gesture spotting via one-shot learning, only
one video per class was provided to train an activity (or gesture). The data set was
divided into three parts: development, validation and final. In the first phase of the
competition, participants initially developed their techniques against the development
data set. Ground truth was not provided during the development phase. Once the
participants had aworkingmodel, they then ran their techniques against the validation
data set and uploaded their predicted results to the competition website, where they
could receive feedback (scores based on edit distances) on the correctness of the
technique. In the last phase of the competition, the final data set was released so
that participants could test against it and upload their predicted results. Similarly,
edit scores were used to measure the correctness of the results and the final rankings
were published on the competition website.

We reported results using two methods (i) mcHMM (ii) mcHMM with LDA
(Blei et al. 2003). For mcHMM method, we constructed visual words as described
in Sect. 5.6.1 and represented each frame as two histograms of visual words. This
representation was input to the model to learn parameters of the mcHMM model.
In the augmented framework, mcHMM + LDA, the process of applying LDA to the
input data can be viewed as a type of dimensionality reduction step since the number
of topics are usually significantly smaller than the number of unique words. In our
work, a frame is analogous to a document and visual words are analogous to words
in a text document. Hence, in the combined method, we performed the additional
step of using LDA to represent each frame as a histogram of topics. These reduced-
dimension features were input to the mcHMM model. Gesture spotting was then
performed by creating a spotting network made up of connected mcHMM models,
one for each gesture learned, as explained in Sect. 5.5.3.

For the mcHMMmodel, we experimentally fixed the number of states to 10. The
number of visual words was computed as the number of classes multiplied by a
factor of 10, for example if the number of classes is 12, then number of visual words
generatedwill be 120. The dimensionality of the input features to themcHMMmodel
was the number of visual words representing one training sample. For the augmented
model the dimension of the features was reduced by a factor of 1.25, that is in the
previous example, the length of feature vector would be reduced from 120 to 96.
All the above parameters were experientially found using the development set. The
same values were then used for the validation and final sets.

5.6.3.1 Analysis of Results

Table 5.4 shows the results of one-shot-learning on the ChaLearn data at the three
different stages of the competition. We present results based on the two variants
of our framework—the mcHMM model framework and the augmented mcHMM
+ LDA framework. Our results indicate that the framework augmented with LDA
outperforms the unaugmented one, two out of three times. During implementation,
the computational performance for the augmented framework was also significantly
better than the unaugmented model due the reduced number of features needed for
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Table 5.4 Results for ChaLearn gesture data set

Method Data set Edit distance

Proposed mcHMM Development 0.26336

Proposed mcHMM + LDA Development 0.2409

Baseline Validation 0.59978

Proposed mcHMM Validation 0.26036

Proposed mcHMM + LDA Validation 0.23328

Top ranking participant Validation 0.20287

Top ranking participant Final 0.09956

Proposed mcHMM + LDA Final 0.18465

training and for inference. It is also interesting to observe how the edit distances
reduced from the development phase through the final phase, dropping by up to six
percentage points, due to parameter tuning.

5.7 Conclusion and Future Work

In the course of this paper, we have investigated the use of motion patterns (repre-
senting sub-actions) exhibited during different complex human activities. Using a
language-motivated approach we developed a dynamic Bayesian model which com-
bined the temporal ordering power of dynamic Bayesian networks with the automatic
clustering power of hierarchical Bayesian models such as the LDA word-topic clus-
tering model. We also showed how to use the Gibbs samples for rapid Bayesian
inference of video segment clip category. Being a generative model, we can detect
abnormal activities based on low likelihoodmeasures. This framework was validated
by its comparable performance on tests performed on the daily activities data set, a
naturalistic data set involving everyday activities in the home.

We also investigated the use of a multichannel HMM as a generative probabilistic
model for single activities and it performed comparably to the state-of-the-art activity
classification techniques which are typically discriminative in nature, on two extreme
data sets—the simplistic KTH, and the very complex and realistic HMDB data sets.
An additional benefit of this framework was its usefulness for gesture spotting based
on learning from only one, or few training examples. We showed how the use of
the generative dynamic Bayesian model naturally lent itself to the spotting task,
during inference. The efficacy of this model was shown by the results obtained from
participating in ChaLearn Gesture Challenge where an implementation of the model
finished top-5 in the competition.

In the future, wewill consider using the visual words learned from a set of training
videos to automatically segment a test video. The use of auto-detected video segments
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could prove useful both in activity classification and gesture spotting. It will also be
interesting to explore the use of different descriptors available in the literature, in
order to find those best-suited for representing naturalistic videos.
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Chapter 6
A Model of the Perception of Facial
Expressions of Emotion by Humans:
Research Overview and Perspectives

Aleix M. Martinez and Shichuan Du

Abstract In cognitive science and neuroscience, there have been two leading mod-
els describing how humans perceive and classify facial expressions of emotion—the
continuous and the categorical model. The continuous model defines each facial
expression of emotion as a feature vector in a face space. This model explains, for
example, how expressions of emotion can be seen at different intensities. In contrast,
the categorical model consists of C classifiers, each tuned to a specific emotion cat-
egory. This model explains, among other findings, why the images in a morphing
sequence between a happy and a surprise face are perceived as either happy or sur-
prise but not something in between. While the continuous model has a more difficult
time justifying this latter finding, the categorical model is not as good when it comes
to explaining how expressions are recognized at different intensities or modes. Most
importantly, both models have problems explaining how one can recognize com-
binations of emotion categories such as happily surprised versus angrily surprised
versus surprise. To resolve these issues, in the past several years, we have worked
on a revised model that justifies the results reported in the cognitive science and
neuroscience literature. This model consists of C distinct continuous spaces. Multi-
ple (compound) emotion categories can be recognized by linearly combining these
C face spaces. The dimensions of these spaces are shown to be mostly configural.
According to this model, the major task for the classification of facial expressions of
emotion is precise, detailed detection of facial landmarks rather than recognition.We
provide an overview of the literature justifying the model, show how the resulting
model can be employed to build algorithms for the recognition of facial expression of
emotion, and propose research directions in machine learning and computer vision
researchers to keep pushing the state of the art in these areas. We also discuss how
the model can aid in studies of human perception, social interactions and disorders.
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Keywords Vision · Face perception · Emotions · Computational modeling ·
Categorical perception · Face detection

6.1 Introduction

The face is an object of major importance in our daily lives. Faces tell us the identity
of the person we are looking at and provide information on gender, attractiveness and
age, among many others. Of primary interest is the production and recognition of
facial expressions of emotion. Emotions play a fundamental role in human cognition
(Damasio 1995) and are thus essential in studies of cognitive science, neuroscience
and social psychology. Facial expressions of emotion could also play a pivotal role
in human communication (Schmidt and Cohn 2001). And, sign languages use facial
expressions to encode part of the grammar (Wilbur 2011). It has also been speculated
that expressions of emotionwere relevant in human evolution (Darwin 1872).Models
of the perception of facial expressions of emotion are thus important for the advance
of many scientific disciplines.

A first reason machine learning and computer vision researchers are interested
in creating computational models of the perception of facial expressions of emotion
is to aid studies in the above sciences (Martinez 2003). Furthermore, computational
models of facial expressions of emotion are important for the development of artificial
intelligence (Minsky 1988) and are essential in human-computer interaction (HCI)
systems (Pentland 2000).

Yet, as much as we understand how facial expressions of emotion are produced,
very little is known on how they are interpreted by the human visual system.Without
proper models, the scientific studies summarized above as well as the design of
intelligent agents and efficient HCI platforms will continue to elude us. A HCI
system that can easily recognize expressions of no interest to the human user is of
limited interest. A system that fails to recognize emotions readily identified by us is
worse.

In the last several years,wehavedefined a computationalmodel consistentwith the
cognitive science and neuroscience literature. The present paper presents an overview
of this research and a perspective of future areas of interest. We also discuss how
machine learning and computer vision should proceed to successfully emulate this
capacity in computers and how these models can aid in studies of visual perception,
social interactions and disorders such as schizophrenia and autism. In particular, we
provide the following discussion.

• A model of human perception of facial expressions of emotion: We provide an
overview of the cognitive science literature and define a computational model
consistent with it.

• Dimensions of the computational space: Recent research has shown that human
used mostly shape for the perception and recognition of facial expressions of
emotion. In particular, we show that configural features are of much use in this
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process. A configural feature is defined as a non-rotation invariant modeling of the
distance between facial components; for example, the vertical distance between
eyebrows and mouth.

• We argue that to overcome the current problems of face recognition algorithms
(including identity and expressions), the area should make a shift toward a more
shape-based modeling. Under this model, the major difficulty for the design of
computer vision and machine learning systems is that of precise detection of the
features, rather than classification. We provide a perspective on how to address
these problems.

The rest of the paper is organized as follows. Section6.2 reviews relevant research
on the perception of facial expressions of emotion by humans. Section6.3 defines
a computational model consistent with the results reported in the previous section.
Section6.4 illustrates the importance of configural and shape features for the recog-
nition of emotions in face images. Section6.5 argues that the real problem inmachine
learning and computer vision is a detection one and emphasizes the importance of
research in this domain before we can move forward with improved algorithms of
face recognition. In Sect. 6.6, we summarize some of the implications of the proposed
model. We conclude in Sect. 6.7.

6.2 Facial Expressions: From Production to Perception

The human face is an engineering marvel. Underneath our skin, a large number of
muscles allow us to produce many configurations. The face muscles can be summa-
rized as Action Unit (AU) (Ekman and Friesen 1976) defining positions characteris-
tic of facial expressions of emotion. These face muscles are connected to the motor
neurons in the cerebral cortex through the corticobulbar track. The top muscles are
connected bilaterally, while the bottom ones are connected unilaterally to the oppo-
site hemisphere.With proper training, one can learn tomovemost of the facemuscles
independently. Otherwise, facial expressions take on predetermined configurations.

There is debate on whether these predetermined configurations are innate or
learned (nature vs. nurture) and whether the expressions of some emotions is univer-
sal (Izard 2009). By universal, we mean that people from different cultures produce
similar muscle movements when expressing some emotions. Facial expressions typi-
cally classified as universal are joy, surprise, anger, sadness, disgust and fear (Darwin
1872; Ekman and Friesen 1976). Universality of emotions is controversial, since it
assumes facial expressions of emotion are innate (rather than culturally bound). It
also favors a categorical perception of facial expressions of emotion. That is, there
is a finite set of predefined classes such as the six listed above. This is known as the
categorical model.

In the categorical model, we have a set of C classifiers. Each classifier is specif-
ically designed to recognize a single emotion label, such as surprise. Several psy-
chophysical experiments suggest the perception of emotions by humans is categorical
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(Ekman and Rosenberg 2005). Studies in neuroscience further suggest that distinct
regions (or pathways) in the brain are used to recognize different expressions of
emotion (Calder et al. 2001).

An alternative to the categorical model is the continuous model (Russell 2003;
Rolls 1990). Here, each emotion is represented as a feature vector in a multidimen-
sional space given by some characteristics common to all emotions. One such model
is Russell’s 2-dimensional circumplex model (Russell 1980), where the first basis
measures pleasure-displeasure and the second arousal. This model can justify the
perception of many expressions, whereas the categorical model needs to define a
class (i.e., classifier) for every possible expression. It also allows for intensity in the
perception of the emotion label. Whereas the categorical model would need to add
an additional computation to achieve this goal (Martinez 2003), in the continuous
model the intensity is intrinsically defined in its representation. Yet, morphs between
expressions of emotions are generally classified to the closest class rather than to an
intermediate category (Beale and Keil 1995). Perhaps more interestingly, the con-
tinuous model better explains the caricature effect (Rhodes et al. 1987; Calder et al.
1997), where the shape features of someone’s face are exaggerated (e..g, making a
long nose longer). This is because the farther the feature vector representing that
expression is from the mean (or center of the face space), the easier it is to recognize
it (Valentine 1991).

In neuroscience, the multidimensional (or continuous) view of emotions was best
exploited under the limbic hypothesis (Calder et al. 2001). Under this model, there
should be a neuralmechanism responsible for the recognition of all facial expressions
of emotion, which was assumed to take place in the limbic system. Recent results
have however uncovered dissociated networks for the recognition of most emotions.
This is not necessarily proof of a categorical model, but it strongly suggests that there
are at least distinct groups of emotions, each following distinct interpretations.

Furthermore, humans are only very good at recognizing a number of facial expres-
sions of emotion. Themost readily recognized emotions are happiness and surprise. It
has been shown that joy and surprise can be robustly identified extremely accurately at
almost any resolution (Du and Martinez 2011). Figure6.1 shows a happy expression
at four different resolutions. The reader should not have any problem recognizing
the emotion in display even at the lowest of resolutions. However, humans are not
as good at recognizing anger and sadness and are even worse at fear and disgust.

A major question of interest is the following. Why are some facial configurations
more easily recognizable than others? One possibility is that expressions such as joy
and surprise involve larger face transformations than the others. This has recently
proven not to be the case (Du andMartinez 2011).While surprise does have the largest
deformation, this is followed by disgust and fear (which are poorly recognized).
Learning why some expressions are so readily classified by our visual system should
facilitate the definition of the form and dimensions of the computational model of
facial expressions of emotion.

The search is on to resolve these twoproblems. First,weneed todetermine the form
of the computational space (e.g., a continuous model defined by a multidimensional
space). Second, we ought to define the dimensions of this model (e.g., the dimensions



6 A Model of the Perception of Facial Expressions … 187

Fig. 6.1 Happy faces at four different resolutions. From left to right 240 by 160, 120 by 80, 60 by
40, and 30 by 20 pixels. All images have been resized to a common image size for visualization

of thismultidimensional face space are given by configural features). In the following
sections we overview the research we have conducted in the last several years leading
to a solution to the above questions.We then discuss on the implications of thismodel.
In particular, we provide a perspective on howmachine learning and computer vision
researcher should move forward if they are to define models based on the perception
of facial expressions of emotion by humans.

6.3 A Model of the Perception of Facial
Expressions of Emotion

In cognitive science and neuroscience researchers have been mostly concerned with
models of the perception and classification of the six facial expressions of emotion
listed above. Similarly, computer vision and machine learning algorithms generally
employ a face space to represent these six emotions. Sample feature vectors or
regions of this feature space are used to represent each of these six emotion labels.
This approach has a major drawback—it can only detect one emotion from a single
image. In machine learning, this is generally done by a winner-takes-all approach
(Torre and Cohn 2011). This means that when a new category wants to be included,
one generally needs to provide labeled samples of it to the learning algorithm.

Yet, everyday experience demonstrates that we can perceive more than one emo-
tional category in a single image (Martinez 2011), even if we have no prior experience
with it. For example, Fig. 6.2 shows images of faces expressing different surprises—
happily surprised, angrily surprised, fearfully surprised, disgustedly surprised and
the typically studied surprise.

If we were to use a continuous model, we would need to have a very large number
of labels represented all over the space; including all possible types of surprises.
This would require a very large training set, since each possible combination of
labels would have to be learned. But this is the same problem a categorical model
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Fig. 6.2 Faces expressing different surprise. From left to right happily surprised, sadly surprised,
angrily surprised, fearfully surprised, disgustedly surprised, and surprise

would face. In such a case, dozens if not hundreds of sample images for each possible
category would be needed. Alternatively, Susskind et al. (2007) have shown that the
appearance of a continuous model may be obtained from a set of classifiers defining
a small number of categories.

If we define an independent computational (face) space for a small number of
emotion labels, we will only need sample faces of those few facial expressions of
emotion. This is indeed the approach we have taken. Details of this model are given
next.

Key to this model is to note that we can define new categories as linear combina-
tions of a small set of categories. Figure6.3 illustrates this approach. In this figure, we
show howwe can obtain the above listed different surprises as a linear combination of
known categories. For instance, happily surprised can be defined as expressing 40%
joy plus 60% surprise, that is, expression = 0.4 happy + 0.6 surprise. A large number
of such expressions exist that are a combination of the six emotion categories listed
above and, hence, the above list of six categories is a potential set of basic emotion
classes. Also, there is some evidence form cognitive science to suggest that these
are important categories for humans (Izard 2009) Of course, one needs not base the
model on this set of six emotions. This is an area that will undoubtedly attract lots
of interest. A question of particular interest is to determine not only which basic
categories to include in the model but how many. To this end both, cognitive studies
with humans and computational extensions of the proposed model will be necessary,
with the results of one area aiding the research of the other.

The approach described in the preceding paragraph would correspond to a cat-
egorical model. However, we now go one step further and define each of these
face spaces as continuous feature spaces, Fig. 6.3. This allows for the percep-
tion of each emotion at different intensities, for example, less happy to exhilarant
(Neth and Martinez 2010). Less happy would correspond to a feature vector (in
the left most face space in the figure) closer to the mean (or origin of the feature
space). Feature vectors farther from the mean would be perceived as happier. The
proposed model also explains the caricature effect, because within each category
the face space is continuous and exaggerating the expression will move the feature
vector representing the expression further from the mean of that category.
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Fig. 6.3 This figure shows how to construct linear combinations of known categories. At the top
of the figure, we have the known or learned categories (emotions). The coefficients si determine
the contribution of each of these categories to the final perception of the emotion

Furthermore, the proposed model can define new terms, for example, “hatred”
which is defined as having a small percentage of disgust and a larger percentage of
anger; still linear. In essence, the intensity observed in this continuous representation
defines the weight of the contribution of each basic category toward the final decision
(classification). It also allows for the representation and recognition of a very large
number of emotion categories without the need to have a categorical space for each
or having to use many samples of each expression as in the continuous model.

The proposed model thus bridges the gap between the categorical and continuous
ones and resolves most of the debate facing each of the models individually. To
complete the definition of the model, we need to specify what defines each of the
dimensions of the continuous spaces representing each category. We turn to this
problem in the next section.

6.4 Dimensions of the Model

In the early years of computer vision, researchers derived several feature- and shape-
based algorithms for the recognition of objects and faces (Kanade 1973; Marr 1976;
Lowe 1983). In these methods, geometric, shape features and edges were extracted
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from an image and used to build a model of the face. This model was then fitted to
the image. Good fits determined the class and position of the face.

Later, the so-called appearance-based approach, where faces are represented by
their pixel-intensity maps or the response of some filters (e.g., Gabors), was stud-
ied (Sirovich and Kirby 1987). In this alternative texture-based approach, a metric
is defined to detect and recognize faces in test images (Turk and Pentland 1991).
Advances in pattern recognition and machine learning have made this the preferred
approach in the last two decades (Brunelli and Poggio 1993).

Inspired by this success, many algorithms developed in computer vision for the
recognition of expressions of emotion have also used the appearance-based model
(Torre and Cohn 2011). The appearance-based approach has also gained momentum
in the analysis of AUs from images of faces. The main advantage of the appearance-
based model is that one does not need to predefine a feature or shape model as in the
earlier approaches. Rather, the face model is inherently given by the training images.

The appearance-based approach does provide good results from near-frontal
images of a reasonable quality, but it suffers from several major inherent problems.
The main drawback is its sensitivity to image manipulation. Image size (scale), illu-
mination changes and pose are all examples of this. Most of these problems are
intrinsic to the definition of the approach since this cannot generalize well to condi-
tions not included in the training set. One solution would be to enlarge the number
of training images (Martinez 2002). However, learning from very large data sets (in
the order of millions of samples) is, for the most part, unsolved (Lawrence 2005).
Progress has been made in learning complex, non-linear decision boundaries, but
most algorithms are unable to accommodate large amounts of data—either in space
(memory) or time (computation).

This begs the question as to how the human visual system solves the problem. One
could argue that, throughout evolution, the homo genus (and potentially before it)
has been exposed to trillions of faces. This has facilitated the development of simple,
yet robust algorithms. In computer vision and machine learning, we wish to define
algorithms that take a shorter time to learn a similarly useful image representation.
One option is to decipher the algorithm used by our visual system. Research in
face recognition of identity suggests that the algorithm used by the human brain is
not appearance-based (Wilbraham et al. 2008). Rather, it seems that, over time, the
algorithm has identified a set of robust features that facilitate rapid categorization
(Young et al. 1987; Hosie et al. 1988; Barlett and Searcy 1993).

This is also the case in the recognition of facial expressions of emotion (Neth
and Martinez 2010). Figure6.4 shows four examples. These images all bear a neu-
tral expression, that is, an expression associated to no emotion category. Yet, human
subjects perceive them as expressing sadness, anger, surprise and disgust. The most
striking part of this illusion is that these faces do not and cannot express any emo-
tion, since all relevant AUs are inactive. This effect is called over-generalization
(Zebrowitz et al. 2010), since human perception is generalizing the learned features
defining these face spaces over to images with a different label.

The images in Fig. 6.4 do have something in common though—they all include a
configural transformation.What the human visual system has learned is that faces do
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not usually look like those in the image. Rather the relationship (distances) between
brows, nose, mouth and the contour of the face is quite standard. They follow a
Gaussian distribution with small variance (Neth and Martinez 2010). The images
shown in this figure however bear uncanny distributions of the face components.
In the sad-looking example, the distance between the brows and mouth is larger
than normal (Neth and Martinez 2009) and the face is thinner than usual (Neth and
Martinez 2010). This places this sample face,most likely, outside the 99%confidence
interval of all Caucasian faces on these two measures. The angry-looking face has
a much-shorter-than-average brow to mouth distance and a wide face. While the
surprise-looking face has a large distance between eyes and brows and a thinner
face. The disgust-looking face has a shorter distance between brows, eyes, nose and
mouth. These effects are also clear in the schematic faces shown in the figure.

Yet, configural cues alone are not sufficient to create an impressive, lasting effect.
Other shape changes are needed. For example, the curvature of themouth in joy or the
opening of the eyes—showing additional sclera—in surprise. Note how the surprise-
looking face in Fig. 6.4 appears to also express disinterest or sleepiness. Wide-open
eyes would remove these perceptions. But this can only be achieved with a shape
change. Hence, our face spaces should include both, configural and shape features.
It is important to note that configural features can be obtained from an appropriate
representation of shape. Expressions such as fear and disgust seem to be mostly
(if not solely) based on shape features, making recognition less accurate and more

Fig. 6.4 The four face images and schematics shown above all correspond to neutral expressions
(i.e., the sender does not intend to convey any emotion to the receiver). Yet, most human subjects
interpret these faces as conveying anger, sadness, surprise and disgust. Note that although these faces
look very different from one another, three of them are actually morphs from the same (original)
image
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Fig. 6.5 a Shown here are the two most discriminant dimensions of the face shape vectors. We
also plot the images of anger and sadness of Ekman and Friesen (1976). In dashed are simple linear
boundaries separating angry and sad faces according to the model. The first dimension (distance
between brows and mouth) successfully classifies 100% of the sample images. This continuous
model is further illustrated in b. Note that, in the proposed computational model, the face space
defining sadness corresponds to the right-bottom quadrant, while that of anger is given by the
left-top quadrant. The dashed arrows in the figure reflect the fact that as we move away from the
“mean” (or norm) face, recognition of that emotion become easier
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Fig. 6.6 Shown in the above are the six feature spaces defining each of the six basic emotion cat-
egories. A simple linear support vector machine (SVM) can achieve high classification accuracies;
where we have used a one-versus-all strategy to construct each classifier and tested it using the
leave-one-out strategy. Here, we only used two features (dimensions) for clarity of presentation.
Higher accuracies are obtained if we include additional dimensions and training samples

susceptible to image manipulation. We have previously shown (Neth and Martinez
2010) that configural cues are amongst the most discriminant features in a classical
(Procrustes) shape representation, which can be made invariant to 3D rotations of
the face (Hamsici and Martinez 2009a).
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Thus, each of the six categories of emotion (happy, sad, surprise, angry, fear and
disgust) is represented in a shape space given by classical statistical shape analysis.
First the face and the shape of themajor facial components are automatically detected.
This includes delineating the brows, eyes, nose, mouth and jaw line. The shape is
then sample with d equally spaced landmark points. The mean (center of mass) of
all the points is computed. The 2d-dimensional shape feature vector is given by the
x and y coordinates of the d shape landmarks subtracted by the mean and divided
by its norm. This provides invariance to translation and scale. 3D rotation invariance
can be achieved with the inclusion of a kernel as defined in Hamsici and Martinez
(2009a). The dimensions of each emotion category can now be obtained with the
use of an appropriate discriminant analysis method. We use the algorithm defined by
Hamsici and Martinez (2008) because it minimizes the Bayes classification error.

As an example, the approach detailed in this section identifies the distance between
the brows and mouth and the width of the face as the two most important shape fea-
tures of anger and sadness. It is important to note that, if we reduce the computational
spaces of anger and sadness to 2-dimensions, they are almost indistinguishable. Thus,
it is possible that these two categories are in fact connected by a more general one.
This goes back to our question of the number of basic categories used by the human
visual system. The face space of anger and sadness is illustrated in Fig. 6.5, where
we have also plotted the feature vectors of the face set of Ekman and Friesen (1976).

As in the above, we can use the shape space defined above to find the two most
discriminant dimensions separating each of the six categories listed earlier. The
resulting face spaces are shown in Fig. 6.6. In each space, a simple linear classifier
in these spaces can successfully classify each emotion very accurately. To test this,
we trained a linear support vector machine (Vapnik 1998) and use the leave-one-out
test on the data set of images of Ekman and Friesen (1976). Happiness is correctly
classified 99% of the time. Surprise and disgust 95% of the time. Sadness 90% and
anger 94%.While fear is successfully classified at 92%. Of course, adding additional
dimensions in the feature space and using nonlinear classifiers can readily achieve
perfect classification (i.e., 100%). The important point from these results is to note
that simple configural features can linearly discriminate most of the samples in each
emotion. These features are very robust to image degradation and are thus ideal for
recognition in challenging environments (e.g., low resolution)—a message to keep
in mind for the development of machine learning and computer vision systems.

6.5 Precise Detection of Faces and Facial Features

As seen thus far, human perception is extremely tuned to small configural and shape
changes. If we are to develop computer vision and machine learning systems that
can emulate this capacity, the real problem to be addressed by the community is
that of precise detection of faces and facial features (Ding and Martinez 2010).
Classification is less important, since this is embedded in the detection process; that
is, we want to precisely detect changes that are important to recognize emotions.
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Fig. 6.7 Two example of imprecise detections of a face with a state of the art algorithm

Most computer vision algorithms defined to date provide, however, inaccurate
detections.One classical approach todetection is templatematching. In this approach,
we first define a template (e.g., the face or the right eye or the left corner of the mouth
or any other feature we wish to detect). This template is learned from a set of sample
images; for example, estimating the distribution or manifold defining the appearance
(pixel map) of the object (Yang et al. 2002). Detection of the object is based on a
window search. That is, the learned template is compared to all possible windows
in the image. If the template and the window are similar according to some metric,
then the bounding box defining this window marks the location and size (scale) of
the face. The major drawback of this approach is that it yields imprecise detections
of the learned object, because a window of an non-centered face is more similar to
the learned template than a window with background (say, a tree). An example of
this result is shown in Fig. 6.7.

A solution to the above problem is to learn to discriminate between non-centered
windows of the objects and well centered ones (Ding and Martinez 2010). In this
alternative, a non-linear classifier (or some density estimator) is employed to discrim-
inate the region of the feature space defining well-centered windows of the objects
and non-centered ones.We call these non-centeredwindows the context of the object,
in the sense that these windows provide the information typically found around the
object but do not correspond to the actual face. This features versus context idea
is illustrated in Fig. 6.8. This approach can be used to precisely detect faces, eyes,
mouth, or any other facial feature where there is a textural discrimination between it
and its surroundings. Figure6.9 shows some sample results of accurate detection of
faces and facial features with this approach.

The same features versus context idea can be applied to other detection and mod-
eling algorithms, such as Active Appearance Models (AAM) (Cootes et al. 2001).
AAMuse a linear model—usually based on Principal Component Analysis (PCA)—
to learn the relationship between the shape of an object (e.g., a face) and its texture.
One obvious limitation is that the learned model is linear. A solution to this problem
is to employ a kernel map. Kernel PCA is one option. Once we have introduced
a kernel we can move one step further and use it to address additional issues of
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Fig. 6.8 The idea behind the features versus context approach is to learn to discriminate between
the feature we wish to detect (e.g., a face, an eye, etc.) and poorly detected versions of it. This
approach eliminates the classical overlapping of multiple detections around the object of interest at
multiple scales. At the same time, it increases the accuracy of the detection because we are moving
away from poor detections and toward precise ones

Fig. 6.9 Precise detections of faces and facial features using the algorithm of Ding and Martinez
(2010)

interest. A first capability we may like to add to a AAM is the possibility to work
with three-dimensions. The second could be to omit the least-squares iterative nature
of the Procrustes alignment required in most statistical shape analysis methods such
as AAM. An approach that successfully addresses these problem uses a set of ker-
nels called Rotation Invariant Kernels (RIK) (Hamsici and Martinez 2009a). RIK
add yet another important advantage to shape analysis: they provide rotation invari-
ance. Thus, once the shape is been mapped to the RIK space, objects (e.g., faces) are
invariant to translation, scale and rotation. These kernels are thus very attractive for
the design of AAM algorithms (Hamsici and Martinez 2009b).

By now we know that humans are very sensitive to small changes. But we do not
yet know how sensitive (or accurate). Of course, it is impossible to be pixel accurate
when marking the boundaries of each facial feature, because edges blur over several
pixels. This can be readily observed by zooming in the corner of an eye. To estimate
the accuracy of human subjects, we performed the following experiment. First, we
designed a system that allows users to zoom in at any specified location to facilitate
delineation of each of the facial features manually. Second, we asked three people
(herein referred to as judges) to manually delineate each of the facial components of
close to 4, 000 images of faces. Third, we compared the markings of each of the three
judges. The within-judge variability was (on average) 3.8 pixels, corresponding to a
percentage of error of 1.2% in terms of the size of the face. This gives us an estimate
of the accuracy of the manual detections. The average error of the algorithm of
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Fig. 6.10 Manifold learning is ideal for learning mappings between face (object) images and their
shape description vectors

Ding and Martinez (2010) is 7.3 pixels (or 2.3%), very accurate but still far short
of what humans can achieve. Thus, further research is needed to develop computer
vision algorithms that can extract even more accurate detection of faces and its
components.

Another problem is what happens when the resolution of the image diminishes.
Humans are quite robust to these image manipulations (Du and Martinez 2011).
One solution to this problem is to use manifold learning. In particular, we wish to
define a non-linear mapping f (.) between the image of a face and its shape. This is
illustrated in Fig. 6.10. That is, given enough sample images and their shape feature
vectors described in the preceding section, we need to find the function which relates
the two. This can be done, for example, using kernel regression methods (Rivera and
Martinez 2012). One of the advantages of this approach is that this function can be
defined to detect shape from very low resolution images or even under occlusions.
Occlusions can be “learned” by adding synthetic occlusions or missing data in the
training samples but leaving the shape feature vector undisturbed (Martinez 2002).
Example detections using this approach are shown in Fig. 6.11.

One can go one step further and recover the three-dimensional information when
a video sequence is available (Gotardo and Martinez 2011a). Recent advances in
non-rigid structure from motion allow us to recover very accurate reconstructions of
both the shape and the motion even under occlusion. A recent approach resolves the
nonlinearity of the problem using kernel mappings (Gotardo and Martinez 2011b).

Combining the two approaches to detection defined in this section should yield
even more accurate results in low-resolution images and under occlusions or other
image manipulations. We hope that more research will be devoted to this important
topic in face recognition.

The approaches defined in this section are a good start, butmuch research is needed
to make these systems comparable to human accuracies. We argue that research in
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Fig. 6.11 Shape detection examples at different resolutions. Note how the shape estimation is
almost as good regardless of the resolution of the image

machine learning should address these problems rather than the typical classification
one. A first goal is to define algorithms that can detect face landmarks very accurately
even at low resolutions. Kernel methods and regression approaches are surely good
solutions as illustrated above. Butmore targeted approaches are needed to define truly
successful computational models of the perception of facial expressions of emotion.

6.6 Discussion

In the real world, occlusions and unavoidable imprecise detections of the
fiducial points, among others, are known to affect recognition (Torre and Cohn 2011;
Martinez 2003). Additionally, some expressions are, by definition, ambiguous. Most
importantly though seems to be the fact that people are not very good at recogniz-
ing facial expressions of emotion even under favorable condition (Du and Martinez
2011). Humans are very robust at detection joy and surprise from images of faces;
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regardless of the image conditions or resolution. However, we are not as good at
recognizing anger and sadness and are worst at fear and disgust.

The above results suggest that there could be three groups of expressions of
emotion. The first group is intended for conveying emotions to observers. These
expressions have evolved a facial construct (i.e., facial muscle positions) that is
distinctive and readily detected by an observer at short or large distances. Example
expressions in this group are happiness and surprise. A computer vision system—
especially a HCI—should make sure these expressions are accurately and robustly
recognized across image degradation. Therefore, we believe that work needs to be
dedicated to make systems very robust when recognizing these emotions.

The second group of expressions (e.g., anger and sadness) is reasonably recog-
nized at close proximity only. A computer vision system should recognize these
expressions in good quality images, but can be expected to fail as the image degrades
due to resolution or other image manipulations. An interesting open question is to
determine why this is the case and what can be learned about human cognition from
such a result.

The third and final group of emotions constitutes those at which humans are not
very good recognizers. This includes expressions such as fear and disgust. Early
work (especially in evolutionary psychology) had assumed that recognition of fear
was primal because it served as a necessary survival mechanism (LeDoux 2000).
Recent studies have demonstrated much the contrary. Fear is generally poorly recog-
nized by healthy human subjects (Smith and Schyns 2009; Du and Martinez 2011).
One hypothesis is that expressions in this group have evolved for other than commu-
nication reasons. For example, it has been proposed that fear opens sensory channels
(i.e., breathing in and wide open eye), while disgust closes them (i.e., breathing out
and closed eyes) (Susskind et al. 2008). Under this model, the receiver has learned
to identify those face configurations to some extent, but without the involvement
of the sender—modifying the expression to maximize transmission of information
through a noisy environment—the recognition of these emotions has remained poor.
Note that people can be trained to detect such changes quite reliably (Ekman and
Rosenberg 2005), but this is not the case for the general population.

Another area that will require additional research is to exploit other types of facial
expressions. Facial expressions are regularly used by people in a variety of setting.
More research is needed to understand these. Moreover, it will be important to test
the model in natural occurring environments. Collection and handling of this data
poses several challenges, but the research described in these pages serves as a good
starting point for such studies. In such cases, it may be necessary to go beyond a linear
combination of basic categories. However, without empirical proof for the need of
something more complex than linear combinations of basic emotion categories, such
extensions are unlikely. The cognitive system has generally evolved the simplest
possible algorithms for the analysis or processing of data. Strong evidence of more
complex models would need to be collected to justify such extensions. One way to
do this is by finding examples that cannot be parsed by the current model, suggesting
a more complex structure is needed.
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It is important to note that these results will have many applications in studies
of agnosias and disorders. Of particular interest are studies of depression or anxiety
disorders. Depression afflicts a large number of people in the developed countries.
Models that can help us better understand its cognitive processes, behaviors and pat-
terns could be of great importance for the design of coping mechanisms. Improve-
ments may also be possible if it were to better understand how facial expressions
of emotion affect these people. Other syndromes such as autism are also of great
importance these days. More children than ever are being diagnosed with the disor-
der (CDC 2012; Prior 2003). We know that autistic children do not perceive facial
expressions of emotion as others do (Jemel et al. 2006) (but see Castelli 2005). A
modified computational model of the perception of facial expressions of emotion in
autism could help design better teaching tools for this group and may bring us closer
to understanding the syndrome.

There are indeed many great possibilities for machine learning researchers to help
move these studies forward. Extending or modifying the modeled summarized in
the present paper is one way. Developing machine learning algorithms to detect face
landmarkmore accurately is another.Developing statistical tools thatmore accurately
represent the underlying manifold or distribution of the data is yet another great way
to move the state of the art forward.

6.7 Conclusions

In the present work we have summarized the development of a model of the per-
ception of facial expressions of emotion by humans. A key idea in this model is to
linearly combine a set of face spaces defining some basic emotion categories. The
model is consistent with our current understanding of human perception and can
be successfully exploited to achieve great recognition results for computer vision
and HCI applications. We have shown how, to be consistent with the literature, the
dimensions of these computational spaces need to encode configural and shape fea-
tures.

We conclude that tomove the state of the art forward, face recognition research has
to focus on a topic that has received little attention in recent years—precise, detailed
detection of faces and facial features. Although we have focused our study on the
recognition of facial expressions of emotion, we believe that the results apply to most
face recognition tasks.We have listed a variety ofways inwhich themachine learning
community can get involved in this research project and briefly discussed applications
in the study of human perception and the better understanding of disorders.
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Chapter 7
Finding Recurrent Patterns from Continuous
Sign Language Sentences for Automated
Extraction of Signs

Sunita Nayak, Kester Duncan, Sudeep Sarkar and Barbara Loeding

Abstract We present a probabilistic framework to automatically learn models of
recurring signs from multiple sign language video sequences containing the vocabu-
lary of interest. We extract the parts of the signs that are present in most occurrences
of the sign in context and are robust to the variations produced by adjacent signs. Each
sentence video is first transformed into amultidimensional time series representation,
capturing the motion and shape aspects of the sign. Skin color blobs are extracted
from frames of color video sequences, and a probabilistic relational distribution is
formed for each frame using the contour and edge pixels from the skin blobs. Each
sentence is represented as a trajectory in a low dimensional space called the space
of relational distributions. Given these time series trajectories, we extract signemes
from multiple sentences concurrently using iterated conditional modes (ICM). We
show results by learning single signs from a collection of sentences with one com-
mon pervading sign, multiple signs from a collection of sentences withmore than one
common sign, and single signs from a mixed collection of sentences. The extracted
signemes demonstrate that our approach is robust to some extent to the variations
produced within a sign due to different contexts. We also show results whereby these
learned sign models are used for spotting signs in test sequences.
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7.1 Introduction

Sign language research in the computer vision community has primarily focused on
improving recognition rates of signs either by improving the motion representation
and similarity measures (Yang et al. 2002; Al-Jarrah and Halawani 2001; Athitsos
et al. 2004; Cui and Weng 2000; Wang et al. 2007; Bauer and Hienz 2000) or by
adding linguistic clues during the recognition process (Bowden et al. 2004; Derpanis
et al. 2004). Ong and Ranganath (2005) presented a review of the automated sign
language research and also highlighted one important issue in continuous sign lan-
guage recognition. While signing a sentence, there exists transitions of the hands
between two consecutive signs that do not belong to either sign. This is called move-
ment epenthesis (Liddell and Johnson 1989). This needs to be dealt with first before
dealing with any other phonological issues in sign language (Ong and Ranganath
2005). Most of the existing work in sign language assumes that the training signs
are already available and often signs used in the training set are the isolated signs
with the boundaries chopped off, or manually selected frames from continuous sen-
tences. The ability to recognize isolated signs does not guarantee the recognition of
signs in continuous sentences. Unlike isolated signs, a sign in a continuous sentence
is strongly affected by its context in the sentence. Figure7.1 shows two sentences
‘I BUY TICKET WHERE?’ and ‘YOU CAN BUY THIS FOR HER’ with a com-
mon sign ‘BUY’ between them. The frames representing the sign ‘BUY’ and the
neighboring signs are marked. The unmarked frames between the signs indicate the
frames corresponding to movement epenthesis. It can be observed that the same sign
‘BUY’ is preceded and succeeded by movement epenthesis that depends on the end
and start of the preceding and succeeding sign respectively. The movement epenthe-
sis also affects how the sign is signed. This effect makes the automated extraction,
modeling and recognition of signs from continuous sentences more difficult when
compared to just plain gestures, isolated signs, or finger spelling.

In this paper, we address the problem of automatically extracting the part of a
sign that is most common in all occurrences of the sign, and hence expected to
be robust with respect to the variation of adjacent signs. These common parts can
be used for spotting or recognition of signs in continuous sign language sentences.
They can also be used by sign language experts for teaching or studying variations
between instances of signs in continuous sign language sentences, or in automated
sign language tutoring systems. Furthermore, they can be used even in the process
of translating sign language videos directly to spoken words.

In a related work inspired by the success of the use of phonemes in speech recog-
nition, the authors sought to extract common parts in different instances of a sign
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(a) Continuous Sentence ‘I BUY TICKET WHERE?’

(b) Continuous Sentence ‘YOU CAN BUY THIS FOR HER’

Fig. 7.1 Movement epenthesis in sign language sentences. Frames corresponding to the common
sign ‘BUY’ are marked in red. Signs adjacent to BUY are marked in magenta. Frames between
marked frames represent movement epenthesis that is, the transition between signs. Note that the
sign itself is also affected by having different signs preceding or following it

and thus arrive at a phoneme-analogue for signs (Bauer and Kraiss 2002). But unlike
speech, sign language does not have a completely defined set of phonemes. Hence,
we consider extracting commonalities at the sentence and sub-sentence level.

A different but a closely related problem is the extraction of common subse-
quences, also called motifs, from very long multiple gene sequences in biology
(Bailey and Elkan 1995; Lawrence et al. 1993; Pevzner and Sze 2000; Rigoutsos
and Floratos 1998). Lawrence et al. (1993) used a Gibbs sampling approach based
on discrete matches or mismatches of subsequences that were strings of symbols of
gene sequences. Bailey andElkan (1995) used expectationmaximization to find com-
mon subsequences in univariate biopolymer sequences. In biology, researchers deal
with univariate discrete sequences, and hence their algorithms are not always directly
applicable to other multivariate continuous domains in time series like speech or sign
language. Some researchers tried to symbolize a continuous time series into discrete
sequences and used existing algorithms from bioinformatics. For example, Chiu et al.
(2003) symbolized the time series into a sequence of symbols using local approxi-
mations and used random projections to extract common subsequences in noisy data.
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Tanaka et al. (2005) extended their work by performing principal component analy-
sis on the multivariate time series data and projected them onto a single dimension
and symbolized the data into discrete sequences. However, it is not always possible
to get all the important information in the first principal component alone. Further
extending his work, Duchene et al. (2007) find recurrent patterns from multivariate
discrete data using time series random projections.

Due to the inherent continuous nature of many time series data like gesture and
speech, new methods were developed that do not require approximating the data to a
sequence of discrete symbols. Denton (2005) used a continuous random-walk noise
model to cluster similar substrings. Nayak et al. (2005) and Minnen et al. (2007)
use continuous multivariate sequences and dynamic time warping to find distances
between the substrings. Oates (2002), Nayak et al. (2005, 2009a) are among the
few works in finding recurrent patterns that address non-uniform sampling of time
series. The recurrent pattern extraction approach proposed in this paper is based on
multivariate continuous time series, uses dynamic time warping to find distances
between substrings, and handles length variations of common patterns.

Following the success of HiddenMarkovModels (HMMs) in speech recognition,
they were used by sign language researchers (Vogler and Metaxas 1999; Starner
and Pentland 1997; Bowden et al. 2004; Bauer and Hienz 2000; Starner et al. 1998)
for representing and recognizing signs. However, HMMs require a large number of
training data and unlike speech, data from native signers is not as easily available
as speech data. Hence, non-HMM-based approaches have been used (Farhadi et al.
2007; Nayak et al. 2009a; Yang et al. 2010; Buehler et al. 2009; Nayak et al. 2009b;
Oszust and Wysocki 2010; Han et al. 2009). In this paper, we use a continuous
trajectory representation of signs in a multidimensional space and use dynamic time
warping to match subsequences. The relative configuration of the two hands and
face in each frame is represented by a relational distribution (Vega and Sarkar 2003;
Nayak et al. 2005), which in itself is a probability density function. The motion
dynamics of the signer is captured as changes in the relational distributions. It also
allows us to interpolate motion, if required, for data sets with lower frame capture
rates. It should also be noted that, unlikemany of the previous works in sign language
that perform tracking of the hands using 3D magnetic trackers or color gloves (Fang
et al. 2004; Vogler and Metaxas 2001; Wang et al. 2002; Ma et al. 2000; Cooper
and Bowden 2009), our representation does not require tracking and relies on skin
segmentation.

We present a Bayesian framework to extract the common subsequences or
signemes fromall the given sentences simultaneously. Figure7.2 depicts the overview
of our approach. With this framework, we can extract the first most common sign,
the second most common sign, the third most common sign and so on. We represent
each sentence as a trajectory in a multi-dimensional space that implicitly captures
the shape and motion in the video. Skin color blobs are extracted from frames of
color video, and a relational distribution is formed for each frame using the edge
pixels in the skin blobs. Each sentence is then represented as a trajectory in a low
dimensional space called the space of relational distributions, which is arrived at
by performing principal component analysis (PCA) on the relational distributions.
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Fig. 7.2 Overviewof our approach. Each of the n sentences is represented as a sequence in the Space
of Relational Distributions, and common patterns are extracted using iterated conditional modes
(ICM). The parameter set {a1,w1, . . . , an,wn} is initialized using uniform random sampling and
the conditional density corresponding to each sentence is updated in a sequential manner
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There are other alternatives to PCA that are possible and discussed in Nayak et al.
(2009b). The other choices do not change the nature of the signeme finding approach,
they only affect the quality of the features. The starting locations (a1, . . . , an) and
widths (w1, . . .wn) of the candidate signemes in all the n sentences are together rep-
resented by a parameter vector. The starting locations are initialized with random
starting locations, based on uniform random sampling from each sentence, and the
initial width values are randomly selected from a given range of values. The para-
meter vector is updated sequentially by sampling the starting point and width of the
possible signeme in each sentence from a joint conditional distribution that is based
on the locations and widths of the target possible signeme in all other sentences. The
process is iterated till the parameter values converge to a stable solution.Monte Carlo
approaches like Gibbs sampling (Robert and Casella 2004; Gilks et al. 1998; Casella
and George 1992), which is a special case of the Metropolis-Hastings algorithm
(Chib and Greenberg 1995) can be used for global optimization while updating the
parameter vector by performing importance sampling on the conditional probability
distribution. However, this has a high burn-in period.

In this paper, we adopt a greedy approach based on the use of iterated conditional
modes (ICM) (Besag 1986). ICM converges much faster than a Gibbs sampler, but is
known to be largely dependent on the initialization. We overcome this limitation by
performing ICM a number of times equal to the average length of the n sentences,
with different initializations. The most frequently occurring solution from all the
ICM runs is considered as the final solution.

The work in this paper builds on the work of Nayak et al. (2009a) and is different
in multiple respects. We propose a system that is generalized to extract more than
one common sign from a collection of sentences (first most common sign, second
most common sign and so on), whereas in the previous work, only single signs were
extracted. We also extract single signs from a mixed collection of sentences where
there are more than one common sign in context. In addition to this, we present a
more in-depth exposition of the underlying theory.

The contributions of this paper can be summarized as follows: (i) we present an
unsupervised approach to automatically extract parts of signs that are robust to the
variation of adjacent signs simultaneously from multiple sign language sentences,
(ii) our approach does not consider all possible parameter combinations, instead
samples each of them in a sequential manner until convergence, which saves a lot
of computation, (iii) we show results on extracting signs from plain color videos
of continuous sign language sentences without using any color gloves or magnetic
trackers, and (iv) we show results whereby the learned signs are used for spotting
signs in test sequences.

We organize the paper as follows. Section7.2 presents a short review of relational
distributions. In Sect. 7.3, we present the definition of signeme and then formulate
the problem of finding signemes from a given set of sequences in a probabilistic
framework. We describe how we solve it using iterated conditional modes. It is then
followed by a description of our experiments and results in Sect. 7.4. Finally, Sect. 7.5
concludes the paper and discusses possible future work.
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7.2 Relational Distributions

We use relational distributions to capture the global and relative configuration of
the hands and the face in an image. Motion is then captured as the changes in the
relational distributions. They were originally introduced by Vega and Sarkar (2003)
for human gait recognition. They have also been used before for representing sign
language sentences without the use of color gloves or magnetic trackers (Nayak et al.
2005, 2009b). We briefly review them here in this section.

How do we capture the global configuration of the object? We start with low-
level primitives that are most likely to come from the articulated object. The exact
nature of the low-level primitives can vary. Some common choices include edges,
salient points, Gabor filter outputs and so on. We use edges in this work. We start
from some level of segmentation of the object from the scene. These processes
are fairly standard and have been used widely in gesture and sign recognition. They
may involve color-based segmentation, skin-color segmentation, or background sub-
traction. In this work, we perform skin-color segmentation using histogram-based
Bayesian classification (Phung et al. 2005). We use the contours of the skin blobs
and Canny edges within the blobs as our low-level image primitives. The global
configuration is captured by considering the relationships between these primitives.

We use the distance between two primitives in the vertical and horizontal direc-
tions (dx, dy) as relational attributes. Let vector u = {dx, dy} represent the vector
of relational attributes. The joint probability function P(u) then describes the dis-
tribution of primitives within an image and captures the shape of the pattern in the
image. This probability is called a relational distribution. It captures the global con-
figuration of the low-level primitives. Figure7.3c illustrates how motion is captured
using relational distributions. It shows the top view of the distributions. The region
near to center represents points closer to each other, for example, the edge points
within the face or within the hand, while farther from center represents the farther
away points, for example, the relationship between edge points of a hand and the
face. Notice the change in the relational distribution as the signer moves one of her
hands. To be able to discriminate symmetrically opposite motion, we maintain the
signs (or directions) of the horizontal and vertical distances between the edge pix-
els in each ordered pair. This leads to representing the probability distribution in a
four quadrant system. Given that these relational distributions exhibit complicated
shapes that are difficult to be modeled readily using a combination of simple shaped
distributions such as Gaussian mixtures, we adopt non-parametric histogram-based
representation. For better discrimination of the probabilities, we do not add counts
to the center of the histogram which represents the distance of the edge pixels from
itself or very close adjacent pixels. Each bin then counts the pairs of edge pixels
between which the horizontal and vertical distances each lie in some fixed range that
depends on the location of the bin in the histogram.

In our experiments, we found that an empirically-determined fixed histogram
size of 51 × 51 was sufficient. The above range is then defined using linear mapping
between the image size and the histogram size, for example, image size along the
horizontal direction corresponds to half the histogram size in the horizontal direc-
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Fig. 7.3 Variations in relational distributions with motion. aMotion sequence. b Edge pixels from
the skin color blobs. c Relational distributions constructed from the low level features (edge pixels)
of the images in the motion sequence. The horizontal axis of the relational distribution represents
the horizontal distance between the edge pixels and its vertical axis represents the vertical distance
between edge pixels

tion. One could use histogram bin size optimization techniques for optimizing the
histograms, but we do not address them in this paper. We then reduce the dimension-
ality of the relational distributions by performing PCA on the set of relational dis-
tributions from all the input sentences and retain the number of dimensions required
to keep a certain percentage of energy, typically 95%. The new subspace arrived at
is called the space of relational distributions (SoRD). Each video sequence is thus
represented as a sequence of points in the SoRD space.

Note that the choice of the relational distribution is not a central requirement for
the signeme learning process discussed in this paper. We use relational distributions
to enable us to work with pure video data, without the use of markers or colored
gloves. If magnetic markers or colored gloves are available then one could use their
attributes to construct a different feature space and consider trajectories in them.
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One advantage of our representation is that the face and head locations are implicitly
taken into account in addition to the hands. In short, the first step of the process is to
construct a time series representation in an appropriate feature space.

7.3 Problem Formulation

Sign language sentences are series of signs. Figure7.4 illustrates the traces of the
first versus second dimension in the feature space, of three sentences S1, S2 and S3
with only one common sign, R, among them. The signeme represents the portion of
the sign that is most similar across the sentences.

Table7.1 defines the notations that will be used in this paper. We formulate the
signeme extraction problem as finding the most recurring patterns among a set of
n sentences {S1, . . . ,Sn}, that have at least one common sign present in all the
sentences.

The commonality concept underlying the definition of a signeme can be cast in
terms of distances. Let swi

ai represent a substring from the sequenceSi consisting of the
points with indices ai , . . . ai + wi − 1, and d(x, y) denote the distance between two
substrings x andy based ondynamic timewarping.Wedefine the set of signemes to be
the set of substrings denoted by {sw1

a1 , . . . , s
wn
an } that is most similar among all possible

substrings from the given set of sentences. In the generalized case where C most
common signs are sought, the set of signemes are defined as {sw11

a11 , s
w11
a12 , . . . , s

wnC
anC }. In

theory, C can extend to the number of words in the shortest sentence.
Let θ = {a1,w1, . . . an,wn} denote the parameter set representing a set of sub-

strings, at least one from each of the n sentences, and θm denote the parameter set

Fig. 7.4 Concept of signemes. First versus second dimensions of sentences S1 with signs R11, R,

R12 in order, S2 with signs R21, R, R22 and S3 with signs R31, R, R32. The common sign is R. The
portion of R that is most similar across sentences is the signeme representative of R
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Table 7.1 Notations

{S1, . . . ,Sn} Set of n sentences with at least one common sign present in all the sentences.
The index within a sentence could represent time or arc length in
configuration shape space

Li Length of sentence Si
s
wj
a j Subsequence of sentence S j starting from index a j to a j + wj − 1. We may

sometimes use swj,a to make explicit the j-th index if it is not represented
along with any other superscript or subscript of this term

A, B Possible choices of width for signemes of a sign include all integers from A to
B. The values of A and B are decided based on the dynamics involved in the
sign

θ Set of parameters {a1,w1, . . . , an,wn} defining a set of substrings of the
given sentences

θ(ai ) Set of all parameters excluding the parameter ai . We have similar
interpretations for θ(wi ) or θ(i)

d(x, y) Distance between the subsequences x and y based on a mapping found using
dynamic time warping (DTW). This distance has to be calculated carefully so
that it is not biased towards finding short subsequences only

representing the target set of signemes in the n sentences. We find θm using the
probabilistic framework of Eq.7.1.

θm = argmax
θ

p(θ) (7.1)

Note that p(θ) is a probability over the space of all possible substrings. We define
this probability to be a function of the inter-substring distances in Eq.7.2:

p(θ) = g(θ)
∑

θ g(θ)
. (7.2)

The term g(θ) is defined in Eq.7.3 as follows:

g(θ) = exp

⎛

⎝−β

n∑

i=1

n∑

j=1

d(swi
ai , s

wj
a j )

⎞

⎠ (7.3)

with β being a positive constant.
Note that g(θ) varies inversely with the summation of the pair-wise distances of

all the subsequences given by θ . Also note that p(θ) is hard to compute or even
sample from because it is computationally expensive to compute the denominator
in Eq.7.2, as it involves the summation over all possible parameter combinations. β
acts as a scale parameter, which controls the slopes of the peaks in the probability
space. It can also be looked upon as the smoothing parameter. If probability sampling
algorithms like Gibbs sampling (Casella and George 1992) are used in later steps,
then the rate of convergence would be determined by this parameter.
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Let θi represent the parameters from the i th sentence, that is, {ai ,wi } and θ(i)

represent the rest of the parameters, {a1, w1 . . . ai−1,wi−1,ai+1,wi+1 . . . an ,wn}. To
make sampling easier, we construct a conditional density function of the parameters
from each sentence, that is, θi , given the values of the rest of the parameters, that
is, θ(i). In other words, we construct a probability density function of the possible
starting points and widths in each sentence, given the estimated starting points and
widths of the common pattern in all other sentences, that is, f (θi |θ(i)). Of course,
this conditional density function has to be derived from the joint density function
specified in Eq.7.2. This is outlined in Eq.7.4 as follows:

f (θi |θ(i)) = p(θ)

p(θ(i))
= p(θ)

∑
θi
p(θ)

= g(θ)
∑

θi
g(θ)

. (7.4)

Since the normalization to arrive at this conditional density function involves
summation over one parameter, it is now easier to compute and sample from. The
specific form for this conditional density function using the dynamic time warping
(DTW) distances as described in Eq.7.5 is

f (θi |θ(i)) = exp
(−β

∑n
k=1 d(swi

ai , s
wk
ak ))

)

∑
θi
exp

(−β
∑n

k=1 d(swi
ai , s

wk
ak ))

) . (7.5)

Note that the distance terms that do not involve ai and wi , that is, do not involve
the i-th sentence appear both in the numerator and the denominator and so cancel
out. For notational convenience, this is sometimes represented using conditional g
functions described below in Eq.7.6 as:

f (θi |θ(i)) = g(θi |θ(i))
∑

θi
g(θi |θ(i))

, (7.6)

where g(θi |θ(i)) = exp
(−β

∑n
k=1 d(swi

ai , s
wk
ak ))

)
.

7.3.1 Distance Measure

The distance function d in the above equations needs to be chosen carefully such
that it is not biased towards the shorter subsequences. Here, we briefly describe how
we compute the distance between two substrings using dynamic time warping. Let l1
and l2 represent the length of the two substrings and e(i, j) represent the Euclidean
distance between the i th data point from the first substring and the j th data point from
the second substring. Let D represent the score matrix of size (l1 + 1) × (l2 + 1).
The 0th row and 0th column of D are initialized to infinity, except D(0, 0), which
is initialized to 0. The rest of the score matrix, D, is completed using the following
recursion of Eq.7.7:
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D(i, j) = e(i, j) + min{D(i − 1, j), D(i − 1, j − 1), D(i, j − 1)}, (7.7)

where 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2. The optimal warp path is then traced back from
D(l1, l2) to D(0, 0). The distance measure between the two substrings is then given
by D(l1, l2) normalized by the length of the optimal warping path.

7.3.2 Parameter Estimation

In order to extract the common signs from a given set of sign language sentences, we
need to compute θi for each of the sentences sequentially. Gibbs sampling (Casella
and George 1992) is a Markov Chain Monte Carlo approach (Gilks et al. 1998)
that allows us to sample the conditional probability density f (θi |θ(i)) for all the
sequences sequentially and then iterate the whole process until convergence. Gibbs
sampling results in a global optimum, but its convergence is very slow. The burn-in
period is typically thousands of iterations. Therefore, we perform the optimization
using iterated conditional modes (ICM), first proposed by Besag (1986). ICM has
much faster convergence, but it is also known to be heavily dependent on the ini-
tialization. We address this limitation by running the optimization multiple times
with different initializations and choosing the most frequently occurring solution as
the final solution.

Algorithm 1: Iterated Conditional Modes({a01 ,w0
1, . . . , a

0
n ,w

0
n})

comment: Choose {a1,w1, . . . , an,wn} that maximizes distribution p(a1,w1, . . . , an,wn)

comment: Initialization:

θ0 ← {a01 ,w0
1, . . . , a

0
n ,w

0
n}

repeat⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i ← 0 to n

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

comment: Jointly sample ai ,wi . Li is the length of sequence Si

for wi ← A to B

do
{
for ai ← 0 to Li − wi + 1
do g(ai ,wi |θ(ai ,wi )) ← exp

(−β
∑n

k=1 d(swi
ai , s

wk
ak )

)

comment: Normalize

for wi ← A to B

do

{
for ai ← 0 to Li − wi + 1

do f (ai ,wi |θ(ai ,wi )) ← g(ai ,wi |θ(ai ,wi ))∑
ai ,wi

g(ai ,wi |θ(ai ,wi ))

ai ,wi ← ARG MAX ( f (ai ,wi |θ(ai ,wi )))

until CHANGE IN PARAMETERS({a1,w1, . . . , an,wn}) == 0
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Algorithm 1 outlines the process of ICM to extract the common patterns or
signemes froma set of sentenceswith a given initial parameter vector.Weaim to select
the set of parameters that maximizes the probability p(θ) or p(a1,w1, . . . , an,wn).
We do that by estimating each of the parameters a1,w1, . . . an,wn in a sequential
manner. Since we expect the starting location and width of a subsequence represent-
ing the common sign to be strongly correlated, we estimate ai andwi jointly. First we
compute g(θi |θ(i)) that is, g(ai ,wi |θ(ai ,wi )) from which we compute the conditional
density functions f (θi |θ(i)) that is, f (ai ,wi |θ(ai ,wi )). Note that it involves a summa-
tion over ai and wi only, which involves much less computation than that required
for computing p(θ) which involves a summation over a1,w1, . . . an,wn . The values
for ai andwi are updated with those that maximize the conditional density f (θi |θ(i)).
The process is carried out sequentially for i = 1 to n, and then repeated iteratively
till the values of the parameter vector {a1,w1, a2,w2, . . . an,wn} do not change any
more.

Figure7.5 depicts the sampling process for a single iteration, r . Note the con-
ditional and sequential nature of sampling from various sentences within the sin-
gle iteration. In Fig. 7.6, we show an example of how the conditional probability
f (θai ,wi |θ(ai ,wi )) changes for the first six sentences from a given set of fourteen video
sentences containing a common sign ‘DEPART’. The vertical axis in the probabili-
ties represents the starting locations and the horizontal axis represents the possible
widths. The brighter regions represent a higher probability value. Note that the prob-
abilities are spread out in the first iteration for each sentence and it slowly converges
to a fixed starting location for each of them. They remain more spread out across the
horizontal (width) axis because we vary the width only in a small range of A to B
for each sign, that is decided based on the amount of motion present in the sign.

Figure7.7 plots the typical convergence of the parameter values in a single ICM
run. It plots the norm of difference between consecutive parameter vectors versus
the parameter vector update count, which is incremented each time a parameter is
sampled or selected from the probability distribution f (θi |θ(i)). It shows that ICM
converges in less than 56/14 = 4 iterations. This, in turn, also indicates the local
nature of the optimization achieved with ICM. The initialization is very important
in this case. In the next subsection, we describe how we address this problem.

7.3.3 Sampling Starting Points for ICM

In order to address the local convergence nature of ICM, we adopt a uniform random
sampling-based approach. We start by randomly assigning values to the parameter
vector θ . The width w0

i is obtained by sampling a width value based on uniform
random distribution from the set of all possible widths in a given range [A, B].
The value for a0i is obtained by sampling a starting point based on uniform random
distribution from the set of all possible starting points in the i th sequence, that is,
from the set {1 . . . (Li − w0

i + 1)}.
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Fig. 7.5 Sequential update
of the parameter values using
ICM. a–c Respectively show
the parameter updates in the
first sentence, the i th and the
nth sentences. In the r th
iteration, the parameters of
the common sign in i th
sentence are computed based
on the parameter values of
the previous (i − 1)
sentences obtained in the
same iteration, and those of
the (i + 1)th to nth sentences
obtained in the previous, that
is, the (r − 1)th iteration

Different initial parameter vectors are obtained by independently sampling the
sentences multiple times. ICM is run using each initial parameter vector generated
and the most common solution is considered as the final solution. The uniform
sampling of the frames in the sentences for selecting the starting locations ensures
the whole parameter space is covered uniformly. The number of times we sample the
initial parameter vector and run the ICM algorithm decides how densely we cover the
whole parameter space. We run it the number of times equal to the average number
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Fig. 7.6 Convergence of the conditional probability density f (θi |θ(i)) for sentences S1 . . . S6 from
a given set of sentences S1 . . . S14. The brighter regions represent a higher probability value. The
vertical axis in the probabilities represents the starting locations and the horizontal axis represents
the possible widths. Note that the probabilities are spread out in the first iteration and it slowly
converges to a particular starting location. They are still spread across the horizontal (width) axis
because we vary the width only in a small range that is decided based on the amount of motion
present in the sign

of frames in each sentence from the given set of sentences for extracting the sign.
One could choose to run a multiple of the average number of times as well, but we
found the average number to be sufficient to show the stability of the solution in our
experiments. Algorithm 2 presents the process as a pseudocode.
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Fig. 7.7 Convergenceof values of the parameter set. The aboveplot shows the normof the difference
between two consecutive parameter vectors representing the set of starting points and widths of the
common subsequence in the given set of sequences. It shows the typical convergence with a given
initialization vector. ICM is repeated with multiple initializations and the most frequently occurring
solution is considered as the final solution

Algorithm 2: Extract Signemes(L1, . . . Ln, A, B)

comment: Generate multiple initialization vectors and call ICM with each of them.

N = MEAN(L1, L2, . . . , Ln)

for j ← 1 to N

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

for i ← 1 to n

do

{
w0
i = UNIFORM(A . . . B)

a0i = UNIFORM(1 . . . Li − w0
i + 1)

{a j
1 ,w

j
1, . . . , a

j
n ,w

j
n} = ITERATED CONDITIONAL MODES(a01 ,w

0
1,

. . . , a0n ,w
0
n)

for i ← 1 to n

do

⎧
⎪⎨

⎪⎩

comment: Assign most frequently occurring value as the final value.

wi = MODE(w j
i )

ai = MODE(a j
i )

For extracting the sign ‘DEPART’ from 14 sentences, we had 89 frames per sen-
tence on an average. Hence we ran 89 different ICM runs for extracting the common
subsequence representing ‘DEPART’. Figure7.8 shows the plots of histograms of
start and end location of the sign in each of the 14 sentences from the 89 runs. It
should be noted that in most of the sentences, more than 50% of the total number of
runs result in the same solution.
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Fig. 7.8 Histograms showing the start and end locations of signs extracted from 14 different
sentences using multiple ICM runs. The initial parameter vector for each ICM run was chosen
independently using uniform random sampling. As it can be seen the start and end points found by
most of the runs converge to the same solution (denoted by single high bars in most of sentences).
The legend shown in the plot for the first sentence, S1, holds for other sentences as well

7.4 Experiments and Results

In this section, we present visual and quantitative results of our approach for extract-
ing signemes from video sequences representing sentences fromAmerican Sign Lan-
guage. We first describe the data set used then present the results of the automatic
common pattern extraction.
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7.4.1 Data Set

Our data set consists of 155 American Sign Language (ASL) video sequences orga-
nized into 12 groups (collections) based on the vocabulary (word that pervades the
sentences of the group). For instance, the ‘DEPART’ group is comprised of all the
sentences containing the word ‘DEPART’, the ‘PASSPORT’ group is comprised of
all the sentences containing the word ‘PASSPORT’ and so on. The breakdown of
these ‘pure’ groups and the number of sentences (sequences) in each are as follows.

• DEPART - 14 sentences
• BAGGAGE - 14 sentences
• CANT - 14 sentences
• BUY - 11 sentences
• SECURITY - 16 sentences
• HAVE - 6 sentences
• MOVE - 11 sentences
• TIME - 14 sentences
• FUTURE - 12 sentences
• TABLE - 13 sentences
• PASSPORT - 14 sentences
• TICKET - 16 sentences

This data set was used to extract 12 common subsequences when we searched for
the first most common sign, and 24 common subsequences when we searched for the
second most common sign. We also organized the video sequences into 10 groups
by combining two ‘pure’ groups of sentences as described above. This was used
to investigate the power of our framework for selecting the common sequences in
a ‘mixed’ collection. The breakdown of these ‘mixed’ groups and the number of
sentences in each are as follows:

• DEPART (14 sentences) + BAGGAGE (14 sentences)
• CANT (14 sentences) + BUY (11 sentences)
• TIME (14 sentences) + TABLE (13 sentences)
• PASSPORT (14 sentences) + TICKET (16 sentences)
• SECURITY (16 sentences) + FUTURE (12 sentences)
• MOVE (11 sentences) + HAVE (6 sentences)
• BUY (11 sentences) + TABLE (13 sentences)
• DEPART (14 sentences) + FUTURE (12 sentences)
• BAGGAGE (14 sentences) + TICKET (16 sentences)
• SECURITY (16 sentences) + PASSPORT (14 sentences)

All of the signs were performed by the same signer with plain clothing and back-
ground. The video sequences were captured at 25 frames per second with a frame
resolution of 490 × 370.



7 Finding Recurrent Patterns from Continuous Sign … 221

7.4.2 Common Pattern Extraction Results

In this section, we present the results of our method for extracting common patterns
from sign language sentences. We first present results for extracting the single most
common sign and multiple common signs from the ‘pure’ sentence groups, followed
by results for the most common patterns from the ‘mixed’ groups.

7.4.2.1 Extracting the Most Common Pattern

Weperform extraction of themost common patterns from the ‘pure’ sentence groups.
We possess a priori knowledge of the most common word due to the organization
of the sentence groups. However, our goal is to extract the most common sequences
automatically. As an example, Fig. 7.9 depicts the result of extraction of the sign
‘DEPART’ from 14 video sequences. It plots the SoRD first dimension coefficients
of the frames versus the frame number for each sentence. The highlighted portions
represent the signeme. The odd columns show the ground truth and the even columns
show the corresponding results. As can be seen, the extracted patterns and the cor-
responding ground truth patterns are quite similar, except for a few frames at the
beginning and end of the some of the patterns. Note that since we deal with contin-
uous video sequences, a difference of one or two frames between the ground truth
and the extracted pattern is not considered a problem.

Figure7.10a shows the scatter plot of the ground truth start positions versus the
estimated start positions of the pattern extracted from each of the 155 sentences in the
video data set. Figure7.10b shows the corresponding scatter plot for the end position
of the patterns in the sentences. As can be seen most of the points in the scatter
plots lie along the diagonal. This indicates that very few of the extracted patterns are
wrong. Incorrect results correspond to the points positioned far from the diagonal.
Figures7.11 and 7.12 show one instance of the signeme extracted from group of
sentences.

7.4.2.2 Extracting Multiple Common Signs

In this section we present some visual results for the extraction of the two most
common signs from the ‘pure’ groups of sentences. We focused on extracting only
two signs because the shortest ASL sentence contained two signs. Figure7.13 shows
the results for the two most common signs extracted from the sentence ‘BAGGAGE
THERE NOT MINE THERE’. The extracted subsequences correspond to the ASL
words ‘BAGGAGE’ and ‘MINE’. Consequently, the word ‘BAGGAGE’ appears in
all the 14 sentences of the group, whereas the word ‘MINE’ (or ‘MY’) shows up
in 11 sentences coinciding with what was expected. Similarly, Fig. 7.14 shows the
results for the twomost common signs extracted from the sentence ‘MY PASSPORT
THERESTILLGOODTHERE’. The extracted subsequences correspond to theASL
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Fig. 7.9 The first dimension of the video sequences containing a common sign ‘DEPART’. The
sequences are indicated by the dotted curves and the solid lines on each of them indicate the common
pattern or signeme. The odd columns represent the ground truth and the even columns show the
results

words ‘MY’ and ‘PASSPORT’. The word ‘MY’ appears in all the 11 sentences of
the group, whereas the word ‘PASSPORT’ appears in all 14 sentences. These results
are encouraging.

7.4.2.3 Extracting the Most Common Patterns from Mixed Sentences

We perform extraction of the most common patterns from the collection of ‘mixed’
sentences as outlined in Sect. 7.4.1. Figure7.15a shows the scatter plot of the ground
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Fig. 7.10 Extraction of the most common patterns or signemes from the ‘pure’ sentence groups.
The closer the points are to the diagonal, the closer the result is to the ground truth

(a) BUY

(b) CANT

(c) DEPART

(d) FUTURE

(e) MOVE

Fig. 7.11 Signemes extracted from sentences
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(f) PASSPORT

(g) SECURITY

(h) TICKET

(i) TIME

(j) TABLE

Fig. 7.12 Signemes extracted from sentences

truth start positions versus the estimated start positions of the pattern extracted from
each of the sentences. Similarly, Fig. 7.15b shows the corresponding scatter plot for
the end position of the patterns in the sentences. As can be seen, the points are more
scattered as compared to the results shown in Fig. 7.10where the sentences usedwere
known to contain common words. However, this result is still encouraging. A large
proportion of the extracted patterns are incorrect, but there are many relatively near
the diagonal. This result demonstrates the robustness of our algorithm for finding
similarities in the presence of great dissimilarity.Webelieve that the incorrect patterns
extracted are due to the differences in the frame width ranges for the mixed sentence
sets. For example, sentences containing the word ‘MOVE’ were combined with
sentences containing the word ‘HAVE’. The frame width range for the sign ‘HAVE’
is between 4 and 6 frameswith 4 being theminimumwidth and 6 being themaximum
width. On the other hand, the frame width range for the sign ‘MOVE’ is between



7 Finding Recurrent Patterns from Continuous Sign … 225

(a) Frames corresponding to the word ‘BAGGAGE’

(b) Frames corresponding to the word ‘MINE’

Fig. 7.13 Extraction of the twomost common patterns or signemes from the sentence ‘BAGGAGE
THERE NOT MINE THERE’

(a) Frames corresponding to the word ‘MY’

(b) Frames corresponding to the word ‘PASSPORT’

Fig. 7.14 Extraction of the two most common patterns or signemes from the sentence ‘MY PASS-
PORT THERE STILL GOOD THERE’
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Fig. 7.15 Extraction of the most common patterns or signemes from the ‘mixed’ sentence groups.
The closer the points are to the diagonal, the closer the result is to the ground truth



226 S. Nayak et al.

19 and 27 frames. Combining these width ranges could be done using an average
of the two or by selecting the minimum and maximum values between the two.
However, these methods produced similar results. The correct combination of these
range widths is a priority for future work.

7.4.3 Sign Localization

We used the extracted signemes to localize or spot signs in test sentences. The same
process that is used for training sign models is used for sign localization. How-
ever, rather than randomly assigning initial parameter values, we use the parameters
learned.We testedwith 12 test sentences from the ‘pure’ group specified in Sect. 7.4.1
and their lengths varied from 4 to 12 signs. These test sentences were not used during
training. The set of points representing the signeme were matched with the segments
of the SoRD points from the test sentences to find the segment with the minimum
matching score, whichwould represent the sign in the test sentence. The SoRDpoints
of the signeme retrieved from the test sentence aremapped to their nearest frames and
compared with the ground truth frame series representing the sign in the sentence.
Localization performance is characterized as follows. Let a1 and b1 denote the start
and end frame numbers of the underlying ground truth sign in the test sentence, and
a2 and b2 denote the start and end frame numbers of the subsequence retrieved as the
signeme for the test sentence.We calculate the precision and recall values of each test
sentence as m

a2−a1+1 and m
b2−a2+1 respectively where m is the number of overlapping

frames. Table7.2 displays the results acquired. The ‘Baggage’, ‘Cant’, ‘Have’, and
‘Table’ test sequences were failure cases where there was no overlap between the
extracted model frames and the localization frames (see Fig. 7.16). Notice that the
localization results heavily depend on the extracted signeme models. For a visual
representation of this information, we define the Start Offset, �S, and End Offset,
�E , as �S = a1 − a2 and �E = b1 − b2. The plot of the Start Offset versus the
End Offset is shown in Fig. 7.16. Ideally, both the offsets should be zero. The points
for different signs are scattered in the four quadrants depending on the nature of the

Table 7.2 Localization
performance

Test group Precision Recall

Buy 1.0 0.70

Depart 1.0 0.64

Future 0.71 0.756

Move 1.0 0.60

Passport 1.0 0.47

Security 0.57 0.67

Ticket 1.0 0.58

Time 0.63 1.0
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Fig. 7.16 Start offset versus
end offset of localized signs
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overlap between the ground truth sign and the retrieved signeme. Each point in the
plot corresponds to a separate test sign. Its distance from the origin indicates the
localizing quality of the signeme in its test sentence. The closer it is to the origin,
the better the quality.

7.5 Conclusion and Future Work

We presented a novel algorithm to extract signemes, that is, the common pattern
representing a sign, frommultiple long video sequences of American Sign Language
(ASL). A signeme is a part of the sign that is robust to the variations of the adjacent
signs and the associated movement epenthesis. We first represent each sequence as
a series of points in a low dimensional space of relational distributions, and then use
a probabilistic framework to locate the signemes in each sequence concurrently. We
use iterative conditional modes (ICM) to sample the parameters, that is, the starting
location and width of the signemes in each sentence in a sequential manner. We show
results on ASL video sequences that do not involve using any magnetic trackers or
gloves for extracting the most common signs. The extracted signemes demonstrate
that our approach is robust to some extent to the variations produced within a sign
due to different contexts.

The approach in this paper can be used to speed up training set generation for
ASL algorithms by drastically reducing the manual aspect of the process. Rather
than manually demarcating signs in continuous sentences, which for our work took
an expert approximately 5min, we would just need instances of sentences containing
the sign whose model is sought and based on our experiments this can be generated
in approximately 2min. Another contribution of this work is an empirically derived
robust representation of the sign that is stable with respect to the variations due to



228 S. Nayak et al.

neighboring signs and sentence context. These stable representations could be useful
for detection of signs and gestures in extended gesture sequences.

There are some ways we can advance the work in this paper. One issue is the
precision of the features used for representing the video sequences. Relational dis-
tributions when used as fixed size histograms perform well for discriminating global
motion. However, optimizing the bin size of the histograms to the required precision
might improve the accuracy. Additionally, we plan to extend our work to address the
challenge of handling the large variations encountered when automatically recog-
nizing signemes across different signers. Also, the algorithm is dependent to a large
extent on the distance measure and conventional dynamic time warping cannot deal
with the amplitude variations in the signs, which are very common across signers.
We plan to work on a variation of dynamic time warping that is robust to amplitude
differences between various instances of signs.
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Chapter 8
Dynamic Affine-Invariant Shape-Appearance
Handshape Features and Classification
in Sign Language Videos

Anastasios Roussos, Stavros Theodorakis, Vassilis Pitsikalis
and Petros Maragos

Abstract We propose the novel approach of dynamic affine-invariant shape-
appearance model (Aff-SAM) and employ it for handshape classification and sign
recognition in sign language (SL) videos. Aff-SAM offers a compact and descriptive
representation of hand configurations as well as regularized model-fitting, assisting
hand tracking and extracting handshape features. We construct SA images represent-
ing the hand’s shape and appearancewithout landmark points.Wemodel the variation
of the images by linear combinations of eigenimages followed by affine transforma-
tions, accounting for 3D hand pose changes and improving model’s compactness.
We also incorporate static and dynamic handshape priors, offering robustness in
occlusions, which occur often in signing. The approach includes an affine signer
adaptation component at the visual level, without requiring training from scratch a
new singer-specific model. We rather employ a short development data set to adapt
the models for a new signer. Experiments on the Boston-University-400 continuous
SL corpus demonstrate improvements on handshape classificationwhen compared to
other feature extraction approaches. Supplementary evaluations of sign recognition
experiments, are conducted on a multi-signer, 100-sign data set, from the Greek sign
language lemmas corpus. These explore the fusion with movement cues as well as
signer adaptation of Aff-SAM to multiple signers providing promising results.
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8.1 Introduction

Sign languages (SL), that is, languages that convey information via visual patterns,
commonly serve as an alternative or complementarymode of human communication.
The visual patterns of SL are formed mainly by handshapes and manual motion, as
well as by non-manual patterns. The hand localization and tracking in a sign video as
well as the derivation of features that reliably describe the configuration of the signer’s
hand are crucial for successful handshape classification. All the above are essential
components for automatic sign language recognition systems or for gesture based
human-computer interaction. Nevertheless, these tasks still pose several challenges,
which are mainly due to the fast movement and the great variation of the hand’s 3D
shape and pose.

In this article,we propose a novelmodeling of the shape and dynamics of the hands
during signing that leads to efficient handshape features, employed to train statistical
handshape models and finally for handshape classification and sign recognition.
Based on 2D images acquired by amonocular camera, we employ a video processing
approach that outputs reliable and accurate masks for the signer’s hands and head.
We construct Shape-Appearance (SA) images of the hand by combining (1) the
hand’s shape, as determined by its 2D hand mask, with (2) the hand’s appearance,
as determined by a normalized mapping of the colors inside the hand mask. The
proposed modeling does not employ any landmark points and bypasses the point
correspondence problem. In order to design amodel of the variation of the SA images,
which we call Affine Shape-Appearance Model (Aff-SAM), we modify the classic
linear combination of eigenimages by incorporating 2Daffine transformations. These
effectively account for various changes in the 3D hand pose and improve the model’s
compactness. After developing a procedure for the training of the Aff-SAM, we
design a robust hand tracking system by adopting regularized model fitting that
exploits prior information about the handshape and its dynamics. Furthermore, we
propose to use as handshape features the Aff-SAM’s eigenimage weights estimated
by the fitting process.

The extracted features are fed into statistical classifiers based onGaussianmixture
models (GMM), via a supervised training scheme. The overall framework is eval-
uated and compared to other methods in extensive handshape classification experi-
ments. The SL data are from the BostonUniversity BU400 corpus (Neidle andVogler
2012). The experiments are based on manual annotation of handshapes that contain
3D pose parameters and the American Sign Language (ASL) handshape configura-
tion. Next, we define classes that account for varying dependency of the handshapes
w.r.t. the orientation parameters. The experimental evaluation addresses first, in a
qualitative analysis the feature spaces via a cluster quality index. Second, we evalu-
ate via supervised training a variety of classification tasks accounting for dependency
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w.r.t. orientation/pose parameters, with/without occlusions. In all cases we also pro-
vide comparisons with other baseline approaches or more competitive ones. The
experiments demonstrate improved feature quality indices as well as classification
accuracies when compared with other approaches. Improvements in classification
accuracy for the non-occlusion cases are on average of 35% over baseline meth-
ods and 3% over more competitive ones. Improvements by taking into account the
occlusion cases are on average of 9.7% over the more competitive methods.

In addition to the above, we explore the impact of Aff-SAM features in a sign
recognition task based on statistical data-driven subunits and hiddenMarkovmodels.
These experiments are applied on data from the Greek Sign Language (GSL) lemmas
corpus (DictaSign 2012), for two different signers, providing a test-bed for the fusion
with movement-position cues, and as evaluation of the affine-adapted SA model to a
new signer, for which there has been no Aff-SAM training. These experiments show
that the proposed approach can be practically applied to multiple signers without
requiring training from scratch for the Aff-SAM models.

8.2 Background and Related Work

The first step of a hand gesture analysis system is the localization of the hands. This
is usually implemented using several types of visual features, as skin color, edge
information, shape andmotion.Color cues are applicable because of the characteristic
colors of the human skin. Many methods, including the one presented here, use skin
color segmentation for hand detection (Argyros and Lourakis 2004; Yang et al. 2002;
Sherrah and Gong 2000). Some degree of robustness to illumination changes can be
achieved by selecting color spaces, as theHSV, YCbCr or the CIE-Lab, that separate
the chromaticity from the luminance components (Terrillon et al. 2000; Kakumanu
et al. 2007). In our approach, we adopt the CIE-Lab color space, due to its property
of being perceptually uniform. Cui and Weng (2000) and Huang and Jeng (2001)
employ motion cues assuming the hand is the only moving object on a stationary
background, and that the signer is relatively still.

The next visual processing step is the hand tracking. This is usually based on blobs
(Starner et al. 1998; Tanibata et al. 2002; Argyros and Lourakis 2004), hand appear-
ance (Huang and Jeng 2001), or hand boundary (Chen et al. 2003; Cui and Weng
2000). The frequent occlusions during signing make this problem quite challenging.
In order to achieve robustness against occlusions and fast movements, Zieren et al.
(2002), Sherrah and Gong (2000) and Buehler et al. (2009) apply probabilistic or
heuristic reasoning for simultaneous assignment of labels to the possible hand/face
regions. Our strategy for detecting and labeling the body-parts shares similarities
with the above. Nevertheless, we have developed a more elaborate preprocessing of
the skin mask, which is based on the mathematical morphology and helps us separate
the masks of different body parts even in cases of overlaps.
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Furthermore, a crucial issue to address in a SL recognition system is hand feature
extraction, which is the focus of this paper. A commonly extracted positional feature
is the 2D or 3D center-of-gravity of the hand blob (Starner et al. 1998; Bauer and
Kraiss 2001; Tanibata et al. 2002; Cui and Weng 2000), as well as motion features
(e.g., Yang et al. 2002; Chen et al. 2003). Several works use geometric measures
related to the hand, such as shape moments (Hu 1962; Starner et al. 1998) or sizes
and distances between fingers, palm, and back of the hand (Bauer and Kraiss 2001),
though the latter employs color gloves. In other cases, the contour that surrounds the
hand is used to extract translation, scale, and/or in-plane rotation invariant features,
such as Fourier descriptors (Chen et al. 2003; Conseil et al. 2007).

Segmented hand images are usually normalized for size, in-plane orientation,
and/or illumination and afterwards principal component analysis (PCA) is often
applied for dimensionality reduction and descriptive representation of handshape
(Sweeney and Downton 1996; Birk et al. 1997; Cui and Weng 2000; Wu and Huang
2000; Deng and Tsui 2002; Dreuw et al. 2008; Du and Piater 2010). Our model uses
a similar framework but differs from these methods mainly in the following aspects.
First, we employ amore general class of transforms to align the hand images, namely
affine transforms that extend both similarity transforms, used, for example, by Birk
et al. (1997) and translation-scale transforms as in the works of Cui andWeng (2000),
Wu and Huang (2000) and Du and Piater (2010). In this way, we can effectively
approximate a wider range of changes in the 3D hand pose. Second, the estimation
of the optimum transforms is done simultaneously with the estimation of the PCA
weights, instead of using a pipeline to make these two sets of estimations. Finally,
unlike all the above methods, we incorporate combined static and dynamic priors,
which make these estimations robust and allow us to adapt an existing model on a
new signer.

Closely related to PCA approaches, active shape and active appearance models
(Cootes and Taylor 2004; Matthews and Baker 2004) are employed for handshape
feature extraction and recognition (Ahmad et al. 1997;Huang and Jeng2001;Bowden
and Sarhadi 2002; Fillbrandt et al. 2003). Our proposed shape-appearance model
follows the same paradigm with these methods but differs: the modeled images are
Shape-Appearance images and the image warps are not controlled by the shape
landmarks but more simply by the 6 parameters of the affine transformation. In this
way, it avoids shape representation through landmarks and the cumbersome manual
annotation related to that.

Other more general purpose approaches have also been seen in the literature.
A method earlier employed for action-type features is the histogram of oriented
gradients (HOG): these descriptors are used for the handshapes of a signer (Buehler
et al. 2009; Liwicki and Everingham 2009; Ong et al. 2012). Farhadi et al. (2007)
employ the scale invariant feature transform (SIFT) descriptors. Finally, Thangali
et al. (2011) take advantage of linguistic constraints and exploit them via a Bayesian
network to improve handshape recognition accuracy. Apart from the methods that
process 2D hand images, there are methods built on a 3D hand model, in order to
estimate the finger joint angles and the 3D hand pose (Athitsos and Sclaroff 2002;
Fillbrandt et al. 2003; Stenger et al. 2006; Ding and Martinez 2009; Agris et al.
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2008). These methods have the advantage that they can potentially achieve view-
independent tracking and feature extraction; however, their model fitting process
might be computationally slow.

Finally, regarding our related work, Roussos et al. (2010b) have included a short
description of an initial tracking system similar to the one we adopt here. A prelimi-
nary version of the Aff-SAM method was presented by Roussos et al. (2010a). This
is substantially extended here in many aspects, the main of which are the follow-
ing: (1) We incorporate dynamic and static handshape priors offering robustness in
cases of occlusions (2) We develop an affine signer adaptation component, exploring
the adaptation of Aff-SAM to multiple signers (3) Extensive handshape classifica-
tion experiments are presented (4) Sign recognition experiments are conducted on a
multi-signer database. In the sign recognition experiments of Sect. 8.8, we employ
the handshape subunits construction presented by Roussos et al. (2010b). Finally,
Theodorakis et al. (2011, 2012) present preliminary results onmovement-handshape
integration for continuous sign recognition.

8.3 Visual Front-End Preprocessing

The initial step of the visual processing is not the main focus of our method, nev-
ertheless we describe it for completeness and reproducibility. The output of this
subsystem at every frame is a set of skin region masks together with one or multiple
labels assigned to every region, Fig. 8.1. These labels correspond to the body-parts
of interest for sign language recognition: head (H), left hand (L) and right hand (R).
The case that a mask has multiple labels reflects an overlap of the 2D regions of the
corresponding body-parts, that is, there is an occlusion of some body-parts. Referring

R
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HR
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H

Fig. 8.1 Output of the initial hands and head tracking in two videos of two different signers, from
different databases. Example frames with extracted skin regionmasks and assigned body-part labels
H (head), L (left hand), R (right hand)
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for example to the right hand, there are the following cases: (1) The system outputs
a mask that contains the right hand only, therefore there is no occlusion related to
that hand, and (2) The output mask includes the right hand as well as other body-part
region(s), therefore there is an occlusion. As presented in Sect. 8.4, the framework
of SA refines this tracking while extracting handshape features.

8.3.1 Probabilistic Skin Color Modeling

We are based on the color cue for body-parts detection. We consider a Gaussian
model of the signer’s skin color in the perceptually uniformcolor spaceCIE-Lab, after
keeping the two chromaticity components a∗, b∗, to obtain robustness to illumination
(Cai and Goshtasby 1999). We assume that the (a∗,b∗) values of skin pixels follow
a bivariate Gaussian distribution ps(a∗, b∗), which is fitted using a training set of
color samples (Fig. 8.2). These samples are automatically extracted from pixels of
the signer’s face, detected using a face detector (Viola and Jones 2003).

8.3.2 Morphological Processing of Skin Masks

In each frame, a first estimation of the skin mask S0 is derived by thresholding at
every pixel x the value ps(a∗(x), b∗(x)) of the learned skin color distribution, see
Figs. 8.2 and 8.3b. The corresponding threshold is determined so that a percentage
of the training skin color samples are classified to skin. This percentage is set to

a∗

b∗

log(ps(a∗, b∗))

−120

−100

−80

−60

−40

−20

Fig. 8.2 Skin color modeling. Training samples in the a∗–b∗ space and fitted pdf ps(a∗, b∗).
The ellipse bounds the colors that are classified to skin, according to the thresholding of
ps(a∗(x), b∗(x)). The straight line corresponds to the first PCA eigendirection on the skin samples
and determines the projection that defines the mapping g(I) used in the Shape-Appearance images
formation
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(a) Input (b) S0 (c) S2 (d) S2 Bc (e) Segmented S2

Fig. 8.3 Results of skin mask extraction and morphological segmentation. a Input. b Initial skin
mask estimation S0. c Final skin mask S2 (morphological refinement). d Erosion S2 � Bc of S2
and separation of overlapped regions. e Segmentation of S2 based on competitive reconstruction
opening

99% to cope with training samples outliers. The skin mask S0 may contain spurious
regions or holes inside the head area due to parts with different color, as for instance
eyes, mouth. For this, we regularize S0 with tools from mathematical morphology
(Soille 2004; Maragos 2005): First, we use the concept of holes H (S) of a binary
image S, that is, the set of background components, not connected to the border of
the image. In order to fill also some background regions that are not holes in the
strict sense but are connected to the image border passing from a small “canal”, we
designed a filter that we call generalized hole filling. This filter yields a refined skin
mask estimation S1 = S0 ∪ H (S0) ∪ {H (S0 • B) ⊕ B} where B is a structuring
element with size 5 × 5 pixels, and ⊕ and • denotes Minkowski dilation, closing
respectively. The connected components (CCs) of relevant skin regions can be at
most three (corresponding to the head and the two hands) and cannot have an area
smaller than a threshold Amin , which corresponds to the smallest possible area of a
hand region for the current signer and video acquisition conditions. Therefore, we
apply an area openingwith a varying threshold value: we find all CCs of S1, compute
their areas and finally discard all the components whose area is not on the top 3 or is
less than Amin . This yields the final skin mask S2, see Fig. 8.3c.

8.3.3 Morphological Segmentation of the Skin Masks

In the frames where S2 contains three CCs, these yield an adequate segmentation. On
the contrary,when S2 contains less than threeCCs, the skin regions of interest occlude
each other. In such cases though, the occlusions are not always essential: different skin
regions in S2 may be connected via a thin connection, Fig. 8.3c. Therefore we further
segment the skin masks of some frames by separating occluded skin regions with
thin connections: If S2 contains Ncc < 3 connected components, we find the CCs of
S2 � Bc, Fig. 8.3d, for a structuring element Bc of small radius, for example, 3 pixels
and discard those CCs whose area is smaller than Amin . A number of remaining CCs
not greater than Ncc implies the absence of any thin connection, thus does not provide
any occlusion separation. Otherwise, we use each one of these CCs as the seed of
a different segment and expand it to cover S2. For this we propose a competitive
reconstruction opening, see Fig. 8.3e, described by the following iterative algorithm:
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In every iteration (1) each evolving segment expands using its conditional dilation
by the 3 × 3 cross, relative to S2 (2) pixels belonging to more than one segment are
excluded from all segments. This means that segments are expanded inside S2 but
their expansion stops wherever they meet other segments. The above two steps are
repeated until all segments remain unchanged.

8.3.4 Body-Part Label Assignment

This algorithm yields (1) an assignment of one or multiple body-part labels, head,
left and right hand, to all the segments and (2) an estimation of ellipses at segments
with multiple labels (occluded). Note that these ellipses yield a rough estimate of
the shapes of the occluded regions and contribute to the correct assignment of labels
after each occlusion. A detailed presentation of this algorithm falls beyond the scope
of this article. A brief description follows. Non-occlusions: For the hands’ labels,
given their values in the previous frames, we employ a prediction of the centroid
position of each hand region taking into account three preceding frames and using a
constant acceleration model. Then, we assign the labels based onminimum distances
between the predicted positions and the segments’ centroids. We also fit one ellipse
on each segment since an ellipse can coarsely approximate the hand or head contour.
Occlusions: Using the parameters of the body-part ellipses already computed from
the three preceding frames, we employ similarly forward prediction for all ellipses
parameters, assuming constant acceleration. We face non-disambiguated cases by
obtaining an auxiliary centroid estimation of each body-part via template matching
of the corresponding image region between consecutive frames. Then, we repeat
the estimations backwards in time. Forward and backward predictions, are fused
yielding a final estimation of the ellipses’ parameters for the signer’s head and hands.
Figure8.1 depicts the output of the initial tracking in sequences of frames with
non-occlusion and occlusion cases. We observe that the system yields accurate skin
extraction and labels assignment.

8.4 Affine Shape-Appearance Modeling

In this section, we describe the proposed framework of dynamic affine-invariant
shape-appearance model which offers a descriptive representation of the hand con-
figurations as well as a simultaneous hand tracking and feature extraction process.

8.4.1 Representation by Shape-Appearance Images

We aim to model all possible configurations of the dominant hand during signing,
using directly the 2D hand images. These images exhibit a high diversity due to



8 Dynamic Affine-Invariant Shape-Appearance Handshape Features … 239

(a) I(x)

(b) f (x)

Fig. 8.4 ConstructionofShape-Appearance images.aCroppedhand images I(x).bCorresponding
Shape-Appearance images f (x). For the foreground of f (x) we use the most descriptive feature
of the skin chromaticity. The background has been replaced by a constant value that is out of the
range of the foreground values

the variations on the configuration and 3D hand pose. Further, the set of the visible
points of the hand is significantly varying. Therefore, it is more effective to represent
the 2D handshape without using any landmarks. We thus represent the handshape
by implicitly using its binary mask M , while incorporating also the appearance of
the hand, that is, the color values inside this mask. These values depend on the hand
texture and shading, and offer crucial 3D information.

If I(x) is a cropped part of the current color frame around the hand mask M , then
the hand is represented by the following Shape-Appearance (SA) image (see Fig. 8.4):

f (x) =
{
g(I(x)), if x ∈ M

−cb, otherwise
,

where g : R3 → Rmaps the color values of the skin pixels to a color parameter that is
appropriate for the hand appearance representation. Thismapping ismore descriptive
for hand representation than a common color-to-gray transform. In addition, g is
normalized so that the mapped values g(I) of skin colors I have zero mean and
unit variance. cb > 1 is a background constant that controls the balance between
shape and appearance. As cb gets larger, the appearance variation gets relatively less
weighted and more emphasis is given to the shape part. In the experiments, we have
used cb = 3 (that is three times the standard deviation of the foreground values g(I)).

The mapping g(I) is constructed as follows. First we transform each color value
I to the CIE-Lab color space, then keep only the chromaticity components a∗, b∗.
Finally, we output the normalized weight of the first principal eigendirection of
the PCA on the skin samples, that is the major axis of the Gaussian ps(a∗, b∗),
see Sect. 8.3.1 and Fig. 8.2c. The output g(I) is the most descriptive value for the
skin pixels’ chromaticity. Furthermore, if considered together with the training of
ps(a∗, b∗), the mapping g(I) is invariant to global similarity transforms of the values
(a∗,b∗). Therefore, the SA images are invariant not only to changes of the luminance
component L but also to a wide set of global transforms of the chromaticity pair
(a∗,b∗). As it will be described in Sect. 8.5, this facilitates the signer adaptation.
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8.4.2 Modeling the Variation of Hand Shape-Appearance
Images

Following Matthews and Baker (2004), the SA images of the hand, f (x), are mod-
eled by a linear combination of predefined variation images followed by an affine
transformation:

f (W p(x)) ≈ A0(x) +
Nc∑
i=1

λi Ai (x), x ∈ �M . (8.1)

A0(x) is the mean image, Ai (x) are Nc eigenimages that model the linear variation.
These images can be considered as affine-transformation-free images. In addition,
λ = (

λ1 . . . λNc

)
are the weights of the linear combination andW p is an affine trans-

formation with parameters p = (p1 . . . p6) that is defined as follows:

W p(x, y) =
(
1 + p1 p3 p5
p2 1 + p4 p6

) ⎛
⎝ x

y
1

⎞
⎠ .

The affine transformation models similarity transforms of the image as well as a
significant range of changes in the 3D hand pose. It has a non-linear impact on the SA
images and reduces the variation that is to be explained by the linear combination part,
as compared to other appearance-based approaches that use linear models directly in
the domain of the original images (e.g., Cui andWeng 2000). The linear combination
of (8.1) models the changes in the configuration of the hand and the changes in the
3D orientation that cannot be modeled by the affine transform.

Wewill hereafter refer to the proposedmodel as Shape-AppearanceModel (SAM).
A specific model of hand SA images is defined from the base image A0(x) and the
eigenimages Ai (x), which are statistically learned from training data. The vectors p
andλ are themodel parameters that fit themodel to the handSA image of every frame.
These parameters are considered as features of hand pose and shape respectively.

8.4.3 Training of the SAM Linear Combination

In order to train the hand SA images model, we employ a representative set of hand-
shape images from frameswhere themodeled hand is fully visible and non-occluded.
Currently, this set is constructed by a random selection of approximately 500 such
images. To exclude the variation that can be explained by the affine transformations
of the model, we apply a semi-automatic affine alignment of the training SA images.
For this, we use the framework of procrustes analysis (Cootes and Taylor 2004;
Dryden and Mardia 1998), which is an iterative process that is repeatedly applying
1-1 alignments between pairs of training samples. In our case, the 1-1 alignments
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Fig. 8.5 Semi-automatic affine alignment of a training set of Shape-Appearance images. (Top row)
6 out of 500 SA images of the training set. (Bottom row) Corresponding transformed images, after
affine alignment of the training set. A video that demonstrates this affine alignment is available
online (see text)

are affine alignments, implemented by applying the inverse-compositional (IC) algo-
rithm (Gross et al. 2005) on pairs of SA images.

The IC algorithm result depends on the initialization of the affine warp, since the
algorithm converges to a local optimum. Therefore, in each 1-1 alignment we test
two different initializations: Using the binary masks M of foreground pixels of the
two SA images, these initializations correspond to the two similarity transforms that
make the two masks have the same centroid, area and orientation.1 Among the two
alignment results, the plausible one is kept, according to manual feedback from a
user.

It must be stressed that the manual annotation of plausible alignment results is
needed only during the training of the SA model, not during the fitting of the model.
Also, compared to methods that use landmarks to model the shape (e.g., Cootes and
Taylor 2004; Matthews and Baker 2004; Ahmad et al. 1997; Bowden and Sarhadi
2002), the amount of manual annotation during training is substantially decreased:
The user here is not required to annotate points but just make a binary decision by
choosing the plausible result of 1-1 alignments. Other related methods for aligning
sets of images are described by Learned-Miller (2005) and Peng et al. (2010). How-
ever, the adopted Procrustes analysis framework facilitates the incorporation of the
manual annotation in the alignment procedure. Figure8.5 shows some results from
the affine alignment of the training set. For more details, please refer to the following
URL that contains a video demonstration of the training set alignment: http://cvsp.
cs.ntua.gr/research/sign/aff_SAM.We observe that the alignment produces satisfac-
tory results, despite the large variability of the images of the training set. Note that
the resolution of the aligned images is 127 × 133 pixels.

Then, the images Ai of the linear combination of the SA model are statistically
learned using principal component analysis (PCA) on the aligned training SA images.
The number Nc of eigenimages kept is a basic parameter of the SA model. Using
a larger Nc, the model can better discriminate different hand configurations. On the
other hand, if Nc gets too large, the model may not generalize well, in the sense that it

1The existence of two such transforms is due to the modulo-π ambiguity of the orientation.

http://cvsp.cs.ntua.gr/research/sign/aff_SAM
http://cvsp.cs.ntua.gr/research/sign/aff_SAM
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Fig. 8.6 Result of the PCA-based learning of the linear variation images of Eq. (8.1): mean image
A0(x) and principal modes of variation that demonstrate the first 5 eigenimages. The top (bottom)
row corresponds to deviating from A0 in the direction of the corresponding eigenimage, with a
weight of 3σi (−3σi ), where σi is the standard deviation of the corresponding component

will be consumed on explaining variation due to noise or indifferent information. In
the setup of our experiments, we have practically concluded that the value Nc = 35
is quite effective. With this choice, the eigenimages kept explain 78% of the total
variance of the aligned images.

Figure8.6 demonstrates results of the application of PCA. Even though the modes
of principal variation do not correspond to real handshapes, there is some intuition
behind the influence of each eigenimage at themodeled hand SA image. For example,
the first eigenimage A1 hasmainly to dowith the foreground appearance: as itsweight
gets larger, the foreground intensities get darker and vice-versa. As another example,
we see that by increasing the weight of the second eigenimage A2, the thumb is
extended. Note also that when we decrease the weight of A4 all fingers extend and
start detaching from each other.

8.4.4 Regularized SAM Fitting with Static and Dynamic
Priors

After having built the shape-appearance model, we fit it in the frames of an input sign
language video, in order to track the hand and extract handshape features. Precisely,
we aim to find in every frame n the parameters λ = λ[n] and p = p[n] that generate
a model-based synthesized image that is sufficiently “close” to the current input
SA image f (x). In parallel, to achieve robustness against occlusions, we exploit
prior information about the handshape and its dynamics. Therefore, we minimize
the following energy:

E(λ, p) = Erec(λ, p) + wS ES(λ, p) + wDED(λ, p) , (8.2)
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where Erec is a reconstruction error term. The terms ES(λ, p) and ED(λ, p) cor-
respond to static and dynamic priors on the SAM parameters λ and p. The values
wS ,wD are positive weights that control the balance between the 3 terms.

The reconstruction error term Erec is a mean square difference defined by:

Erec(λ, p) = 1

NM

∑
x

{
A0(x) +

Nc∑
i=1

λi Ai (x) − f (W p(x))

}2

,

where the above summation is done over all the NM pixels x of the domain of the
images Ai (x).

The static priors term ES(λ, p) ensures that the solution stays relatively close to
the parameters mean values λ0, p0:

ES(λ, p) = 1

Nc
‖λ − λ0‖2�λ

+ 1

Np

∥∥ p − p0
∥∥2

� p
,

where Nc and Np are the dimensions of λ and p respectively (since we model
affine transforms, Np=6). These numbers act as normalization constants, since they
correspond to the expected values of the quadratic terms that they divide. Also, �λ

and � p are the covariance matrices of λ and p respectively,2 which are estimated
during the training of the priors (Sect. 8.4.4.2). We denote by ‖ y‖A, with A being a
N × N symmetric positive-definite matrix and y ∈ R

N , the following Mahalanobis
distance from y to 0:

‖ y‖A �
√
yT A−1 y .

Using such a distance, the term ES(λ, p) penalizes the deviation from the mean
values but in a weighted way, according to the appropriate covariance matrices.

The dynamic priors term ED(λ, p)makes the solution stay close to the parameters
estimationsλe = λe[n], pe = pe[n] based on already fitted values on adjacent frames
(for how these estimations are derived, see Sect. 8.4.4.1):

ED(λ, p) = 1

Nc

∥∥λ − λe
∥∥2

�ελ

+ 1

Np

∥∥ p − pe
∥∥2

�ε p
, (8.3)

where �ελ
and �ε p are the covariance matrices of the estimation errors of λ and p

respectively, see Sect. 8.4.4.2 for the training of these quantities too. The numbers
Nc and Np act again as normalization constants. Similarly to ES(λ, p), the term
ED(λ, p) penalizes the deviation from the predicted values in a weighted way, by
taking into account the corresponding covariance matrices. Since the parameters λ

are the weights of the eigenimages Ai (x) derived from PCA, we assume that their
mean λ0 = 0 and their covariance matrix �λ is diagonal, which means that each
component of λ is independent from all the rest.

2We have assumed that the parameters λ and p are statistically independent.
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It is worth mentioning that the energy-balancing weights wS ,wD are not con-
stant through time, but depend on whether the modeled hand in the current frame is
occluded or not (this information is provided by the initial tracking preprocessing step
of Sect. 8.3). In the occlusion cases, we are less confident than in the non-occlusion
cases about the input SA image f (x), which is involved in the term Erec(λ, p). There-
fore, in these cases we obtain more robustness by increasing the weights wS ,wD . In
parallel, we decrease the relative weight of the dynamic priors term wD

wS+wD
, in order

to prevent error accumulation that could be propagated in long occlusions via the
predictions λe, pe. After parameters tuning, we have concluded that the following
choices are effective for the setting of our experiments: (1) wS = 0.07, wD = 0.07 for
the non-occluded cases and (2) wS = 0.98, wD = 0.42 for the occluded cases.

An input video is split into much smaller temporal segments, so that the SAM
fitting is sequential inside every segment as well independent from the fittings in all
the rest segments: All the video segments of consecutive non-occluded and occluded
frames are found and the middle frame of each segment is specified. For each non-
occluded segment, we start from its middle frame and we get (1) a segment with
forward direction by ending to the middle frame of the next occluded segment and
(2) a segment with backward direction by ending after the middle frame of the
previous occluded segment. With this splitting, we increase the confidence of the
beginning of each sequential fitting, since in a non-occluded frame the fitting can be
accurate even without dynamic priors. In the same time, we also get the most out
of the dynamic priors, which are mainly useful in the occluded frames. Finally, this
splitting strategy allows a high degree of parallelization.

8.4.4.1 Dynamical Models for Parameter Prediction

In order to extract the parameter estimations λe, pe that are used in the dynamic
prior term ED (8.3), we use linear prediction models (Rabiner and Schafer 2007). At
each frame n, a varying number K = K (n) of already fitted frames is used for the
parameter prediction. If the frame is far enough from the beginning of the current
sequential fitting, K takes its maximum value, Kmax . This maximum length of a
predictionwindow is a parameter of our system (in our experiments, we used Kmax =
8 frames). If on the other hand, the frame is close to the beginningof the corresponding
segment, then K varies from 0 to Kmax , depending on the number of frames of the
segment that have been already fitted.

If K = 0, we are at the starting frame of the sequential fitting, therefore no pre-
diction from other available frames can be made. In this case, which is degener-
ate for the linear prediction, we consider that the estimations are derived from the
prior means λe = λ0, pe = p0 and also that �ελ

= �ε, �ε p = � p, which results to
ED(λ, p) = ES(λ, p). In all the rest cases, we apply the framework that is described
next.
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Given the prediction window value K , the parameters λ are predicted using the
following autoregressive model:

λe[n] =
K∑

ν=1

Aν λ[n ∓ ν] ,

where the − sign (+ sign) corresponds to the case of forward (backward) predic-
tion. Also, Aν are Nc × Nc weight matrices that are learned during training (see
Sect. 8.4.4.2). Note that for every prediction direction and for every K , we use a dif-
ferent set of weight matrices Aν that is derived from a separate training. This is done
to optimize the prediction accuracy for the specific case of every prediction window.
Since the components of λ are assumed independent to each other, it is reasonable to
consider that all weight matrices Aν are diagonal, which means that each component
has an independent prediction model.

As far as the parameters p are concerned, they do not have zero mean and we
cannot consider them as independent since, in contrast to λ, they are not derived from
a PCA. Therefore, in order to apply the same framework as above, we consider the
following re-parametrization:

p̃ = UT
p ( p − p0) ⇔ p = p0 +U p p̃ ,

where the matrixU p contains column-wise the eigenvectors of� p. The new parame-
ters p̃ have zeromean and diagonal covariance matrix. Similarly to λ, the normalized
parameters p̃ are predicted using the following model:

p̃e[n] =
K∑

ν=1

Bν p̃[n ∓ ν] ,

where Bν are the corresponding weight matrices which again are all considered
diagonal.

8.4.4.2 Automatic Training of the Static and Dynamic Priors

In order to apply the regularized SAM fitting, we first learn the priors on the para-
meters λ and p and their dynamics. This is done by training subsequences of frames
where the modeled hand is not occluded. This training does not require any manual
annotation. We first apply a random selection of such subsequences from videos of
the same signer. Currently, the randomly selected subsequences used in the exper-
iments are 120 containing totally 2882 non-occluded frames and coming from 3
videos. In all the training subsequences, we fit the SAM in each frame independently
by minimizing the energy in Eq. (8.2) withwS =wD = 0 (that is without prior terms).
In this way, we extract fitted parameters λ, p for all the training frames. These are
used to train the static and dynamic priors.
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8.4.4.3 Static Priors

In this case, for both cases of λ and p, the extracted parameters from all the frames
are used as samples of the same multivariate distribution, without any consideration
of their successiveness in the training subsequences. In this way, we form the training
sets Tλ and Tp that correspond to λ and p respectively. Concerning the parameter
vector λ, we have assumed that its mean λ0 = 0 and its covariance matrix �λ is
diagonal. Therefore, only the diagonal elements of�λ, that is the variances σ 2

λi
of the

components of λ, are to be specified. This could be done using the result of the PCA
(Sect. 8.4.2), but we employ the training parameters of Tλ that come from the direct
SAM fitting, since they are derived from a process that is closer to the regularized
SAM fitting. Therefore, we estimate each σ 2

λi
from the empirical variance of the

corresponding component λi in the training set Tλ. Concerning the parameters p, we
estimate p0 and � p from the empirical mean and covariance matrix of the training
set Tp.

8.4.4.4 Dynamic Priors

As already mentioned, for each prediction direction (forward, backward) and for
each length K of the prediction window, we consider a different prediction model.
The (K + 1)-plets3 of samples for each one of thesemodels are derived by sliding the
appropriate window in the training sequences. In order to have as good accuracy as
possible, we do not make any zero (or other) padding in unknown parameter values.
Therefore, the samples are picked only when the window fits entirely inside the
training sequence. Similarly to linear predictive analysis (Rabiner and Schafer 2007)
and other tracking methods that use dynamics (e.g., Blake and Isard 1998) we learn
the weight matrices Aν , Bν by minimizing the mean square estimation error over all
the prediction-testing frames. Since we have assumed that Aν and Bν are diagonal,
this optimization is done independently for each component of λ and p̃, which is
treated as 1D signal. The predictive weights for each component are thus derived
from the solution of an ordinary least squares problem. The optimum values of the
mean squared errors yield the diagonal elements of the prediction errors’ covariance
matrices �ελ

and �ε p̃ , which are diagonal.

8.4.4.5 Implementation and Results of SAM Fitting

The energy E(λ, p) (8.2) of the proposed regularized SAM fitting is a special case
of the general objective function that is minimized by the simultaneous inverse com-
positional with a prior (SICP) algorithm of Baker et al. (2004). Therefore, in order
to minimize E(λ, p), we specialize this algorithm for the specific types of our prior
terms. Details are given in the Appendix A. At each frame n of a video segment, the

3The (K + 1)-plets follow from the fact that we need K neighbouring samples + the current sample.
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Fig. 8.7 Regularized Shape-Appearance Model fitting in a sign language video. In every input
frame, we superimpose the model-based reconstruction of the hand in the frame domain,
A0(W−1

p (x)) + ∑
λi Ai (W−1

p (x)). In the upper-right corner, we display the reconstruction in the
model domain, A0(x) + ∑

λi Ai (x), which determines the optimum weights λ. A demo video is
available online (see text)

fitting algorithm is initialized as follows. If the current frame is not the starting frame
of the sequential fitting (that is K (n) �= 0), then the parameters λ, p are initialized
from the predictions λe, pe. Otherwise, if K (n) = 0, we test as initializations the
two similarity transforms that, when applied to the SAM mean image A0, make its
mask have the same centroid, area and orientation as the mask of the current frame’s
SA image. We twice apply the SICP algorithm using these two initializations, and
finally choose the initialization that yields the smallest regularized energy E(λ, p).

Figure8.7 demonstrates indicative results of the regularized fitting of the dominant
hand’s SAM in a sign language video. For more details, please refer to the following
URL that contains a video of these results: http://cvsp.cs.ntua.gr/research/sign/aff_
SAM. We observe that in non-occlusion cases, this regularized method is effective
and accurately tracks the handshape. Further, in occlusion cases, even after a lot
of occluded frames, the result is especially robust. Nevertheless, the accuracy of the
extracted handshape is smaller in cases of occlusions, compared to the non-occlusion
cases, since the prior terms keep the result closer to the SAM mean image A0. In
addition, extensive handshape classification experiments were performed in order to
evaluate the extracted handshape features employing the proposed Aff-SAMmethod
(see Sect. 8.7).

8.5 Signer Adaptation

We develop a method for adapting a trained Aff-SAM model to a new signer. This
adaptation is facilitated by the characteristics of the Aff-SAM framework. Let us
consider an Aff-SAM model trained to a signer, using the procedure described in
Sect. 8.4.3. We aim to reliably adapt and fit the existing Aff-SAM model on videos
from a new signer.

http://cvsp.cs.ntua.gr/research/sign/aff_SAM
http://cvsp.cs.ntua.gr/research/sign/aff_SAM
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BrengiSArengiS

Fig. 8.8 Skin color modeling for the two signers of the GSL lemmas corpus, where we test the
signer adaptation. Training samples in the a∗-b∗ chromaticity space and fitted pdf’s ps(a∗, b∗). In
each case, the straight line defines the normalized mapping g(I) used in the Shape-Appearance
images formation

8.5.1 Skin Color and Normalization

The employed skin color modeling adapts on the characteristics of the skin color
of a new signer. Figure8.8 illustrates the skin color modeling for the two signers
of the GSL lemmas corpus, where we test the adaptation. For each new signer, the
color model is built from skin samples of a face tracker (Sects. 8.3.1, 8.4.1). Even
though there is an intersection, the domain of colors classified as skin is different
between the two. In addition, the mapping g(I) of skin color values, used to create
the SA images, is normalized according to the skin color distribution of each signer.
The differences in the lines of projection reveal that the normalized mapping g(I) is
different in these two cases. This skin color adaptation makes the body-parts label
extraction of the visual front-end preprocessing to behave robustly over different
signers. In addition, the extracted SA images have the same range of values and are
directly comparable across signers.

8.5.2 Hand Shape and Affine Transforms

Affine transforms can reliably compensate for the anatomical differences of the hands
of different signers. Figure8.9 demonstrates some examples. In each case, the right
hands of the signers are in a similar configuration and viewpoint. We observe that
there exist pairs of affine transformations that successfully align the handshapes of
both signers to the common model domain. For instance, the affine transforms have
the ability to stretch or shrink the hand images over the major hand axis. They thus
automatically compensate for the fact that the second signer has thinner hands and
longer fingers. In general, the class of affine transforms can effectively approximate
the transformation needed to align the 2D hand shapes of different signers.
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Fig. 8.9 Alignment of the hands of two different signers, using affine transformations. First row
input frames with superimposed rectangles that visualize the affine transformations. Second row
cropped images around the hand. Third row alignment of the cropped images in a common model
domain, using the affine transformations

8.5.3 New Signer Fitting

To process a new signer the visual front-end is applied as in Sect. 8.3. Then, we only
need to re-train the static and dynamic priors on the new signer. For this, we randomly
select frames where the hand is not occluded. Then, for the purposes of this training,
the existing SAM is fitted on them by minimizing the energy in Eq. (8.2) with wS =
wD = 0, namely the reconstruction error term without prior terms. Since the SAM
is trained on another signer, this fitting is not always successful, at this step. At that
point, the user annotates the frames where this fitting has succeeded. This feedback
is binary and is only needed during training and for a relatively small number of
frames. For example, in the case of the GSL lemmas corpus, we sampled frames
from approximately 1.2% of all corpus videos of this signer. In 15% of the sampled
frames, this fitting with no priors was annotated as successful. Using the samples
from these frames, we learn the static and dynamic priors of λ and p, as described
in Sect. 8.4.4.2 for the new signer. The regularized SAM fitting is implemented as in
Sect. 8.4.4.5.

Figure8.10 demonstrates results of the SAM fitting, in the case of signer adap-
tation. The SAM eigenimages are learned using solely Signer A. The SAM is then
fitted on the signer B, as above. For comparison, we also visualize the result of the
SAM fitting to the signer A, for the same sign. Demo videos for these fittings also
are included in the following URL: http://cvsp.cs.ntua.gr/research/sign/aff_SAM.
We observe that, despite the anatomical differences of the two signers, the perfor-
mance of the SAM fitting is satisfactory after the adaptation. In both signers, the
fitting yields accurate shape estimation in non-occlusion cases.

http://cvsp.cs.ntua.gr/research/sign/aff_SAM
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Source signer (A)

New signer (B)

Fig. 8.10 Regularized Shape-Appearance Model fitting on 2 signers. The SA model was trained
on Signer A and adapted for Signer B. Demo videos are available online (see text)

8.6 Data Set and Handshape Annotation
for Handshape Classification

The SL Corpus BU400 (Neidle and Vogler 2012) is a continuous American sign
language database. The background is uniform and the images have a resolution of
648× 484 pixels, recorded at 60 frames per second. In the classification experiments
we employ the front camera video, data from a single signer, and the story ‘Accident’.
We next describe the annotation parameters required to produce the ground-truth
labels. These concern the pose and handshape configurations and are essential for
the supervised classification experiments.

8.6.1 Handshape Parameters and Annotation

The parameters that need to be specified for the annotation of the data are the (pose-
independent) handshape configuration and the 3D hand pose, that is the orientation
of the hand in the 3D space. For the annotation of the handshape configurations we
followed the SignStreamannotation conventions (Neidle 2007). For the 3Dhand pose
we parametrized the 3D hand orientations inspired by the HamNoSys description
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(a) Front (F) (b) Side (S) (c) Bird’s (B) (d) Palm (P)

Fig. 8.11 3D Hand Orientation parameters: a–c Extended Finger Direction Parameters: a Signer’s
front view (F), b side view (S), c birds’ view (B); d palm orientation (P). Note that we have modified
the corresponding figures of Hanke (2004) with numerical parameters

(Hanke 2004). The adopted annotation parameters are as follows: (1) Handshape
identity (HSId) which defines the handshape configuration, that is, (‘A’, ‘B’, ‘1’, ‘C’
etc.), see Table8.1 for examples. (2) 3D Hand Orientation (hand pose) consisting of
the following parameters (see Fig. 8.11): (i) Extended Finger Direction parameters
that define the orientation of the hand axis. These correspond to the hand orientation
relatively to the three planes that are defined relatively to: the Signer’s Front view
(referred to as F), the Bird’s view (B) and the Side view (S). (ii) Palm Orientation
parameter (referred to as P) for a given extended finger direction. This parameter is
defined w.r.t. the bird’s view, as shown in Fig. 8.11d.

8.6.2 Data Selection and Classes

Weselect and annotate a set of occluded and non-occluded handshapes so that (1) they
cover substantial handshape and pose variation as they are observed in the data and
(2) they are quite frequent. More specifically we have employed three different data
sets (DS): (1)DS-1: 1430 non-occluded handshape instanceswith 18 differentHSIds.
(2) DS-1-extend: 3000 non-occluded handshape instances with 24 different HSIds.
(3) DS-2: 4962 occluded and non-occluded handshape instances with 42 different
HSIds. Table8.1 presents an indicative list of annotated handshape configurations
and 3D hand orientation parameters.

8.7 Handshape Classification Experiments

In this section we present the experimental framework consisting of the statistical
system for handshape classification. This is based (1) on the handshape features
extracted as described in Sect. 8.4; (2) on the annotations as described in Sect. 8.6.1
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as well as (3) on the data selection and classes (Sect. 8.6.2). Next, we describe the
experimental protocol containing the main experimental variations of the data sets,
of the class dependency, and of the feature extraction method.

8.7.1 Experimental Protocol and Other Approaches

The experiments are conducted by employing cross-validation by selecting five dif-
ferent random partitions of the dataset into train-test sets. We employ 60% of the
data for training and 40% for testing. This partitioning samples data, among all real-
izations per handshape class in order to equalize class occurrence. The number of
realizations per handshape class are on average 50, with a minimum and maximum
number of realizations in the range of 10–300 depending on the experiment and the
handshape class definition. We assign to each experiment’s training set one GMM
per handshape class; each has one mixture and diagonal covariance matrix. The
GMMs are uniformly initialized and are afterwards trained employing Baum-Welch
re-estimation (Young et al. 1999). Note that we are not employing other classifiers
since we are interested in the evaluation of the handshape features and not the classi-
fier.Moreover this frameworkfitswith commonhiddenMarkovmodel (HMM)-based
SL recognition frameworks (Vogler and Metaxas 1999), as in Sect. 8.8.

8.7.1.1 Experimental Parameters

The experiments are characterized by the dataset employed, the class dependency
and the feature extraction method as follows:

Data Set (DS): We have experimented employing three different data sets DS-1,
DS-1-extend and DS-2 (Sect. 8.6.2 for details).

Class dependency (CD): The class dependency defines the orientation parame-
ters in which our trained models are dependent to (Table8.2). Take for instance the

Table 8.2 Class dependency on orientation parameters. One row for each model dependency
w.r.t. the annotation parameters. The dependency or non-dependency state to a particular parameter
for the handshape trained models is noted as ‘D’ or ‘*’ respectively. For instance the D-HBP model
is dependent on the HSId and Bird’s view and Palm orientation parameters

Class Annotation parameters

Dependency
label

HSId(H) Front(F) Side(S) Bird’s(B) Palm(P)

D-HFSBP D D D D D

D-HSBP D * D D D

D-HBP D * * D D

D-HP D * * * D

D-H D * * * *
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orientation parameter ‘Front’ (F). There are two choices, either (1) construct hand-
shape models independent to this parameter or (2) construct different handshape
models for each value of the parameter. In other words, at one extent CD restricts the
models generalization by making each handshape model specific to the annotation
parameters, thus highly discriminable, see for instance in Table8.2 the experiment
corresponding to D-HFSBP. At the other extent CD extends the handshape models
generalization w.r.t. to the annotation parameters, by letting the handshape models
account for pose variability (that is depend only on the HSId; same HSId’s with
different pose parameters are tied), see for instance experiment corresponding to the
case D-H (Table8.2). The CD field takes the values shown in Table8.2.

8.7.1.2 Feature Extraction Method

Apart from the proposed Aff-SAM method, the methods employed for handshape
feature extraction are the following:

Direct Similarity Shape-Appearance Modeling (DS-SAM): Main differences of
this method with Aff-SAM are as follows: 1) we replace the affine transformations
that are incorporated in the SA model (8.1) by simpler similarity transforms and 2)
we replace the regularized model fitting by direct estimation (without optimization)
of the similarity transform parameters using the centroid, area and major axis orien-
tation of the hand region followed by projection into the PCA subspace to find the
eigenimage weights. Note that in the occlusion cases, this simplified fitting is done
directly on the SA image of the region that contains the modeled hand as well as the
other occluded body-part(s) (that is the other hand and/or the head), without using
any static or dynamic priors as those of Sect. 8.4.4. This approach is similar to Birk
et al. (1997) and is adapted to fit our framework.

Direct Translation Scale Shape-Appearance Modeling (DTS-SAM): The main
differences of this method with Aff-SAM are the following: (1) we replace the affine
transformations that are incorporated in the Shape-Appearance model (8.1) by sim-
pler translation-scale transforms and (2) we replace the regularized model fitting by
direct estimation of the translation and scale parameters using the square that tightly
surrounds the hand mask, followed again by projection into the PCA subspace to
find the eigenimage weights. In this simplified version too, the hand occlusion cases
are treated by simply fitting the model to the Shape-Appearance image that contains
the occlusion, without static or dynamic priors. This approach is similar to Cui and
Weng (2000), Wu and Huang (2000) and Du and Piater (2010) and is adapted so as
to fit our proposed framework.

Other tested methods from the literature contain the Fourier Descriptors (FD):
These are derived from the Fourier coefficients of the contour that surrounds the
hand, after appropriate normalizations for scale and rotation invariance (Chen et al.
2003; Conseil et al. 2007). For dimensionality reduction, we keep the descriptors that
correspond to the first NFD frequencies. We tested different values for the parameter
NFD and finally kept NFD = 50 that yield the best performance. Moments (M):
These consist of the seven Hu moment invariants of the hand region (Hu 1962).
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These depend only on the central moment of the binary shape of the hand region and
are invariant to similarity transforms of the hand region. Region Based (RB): These
consist of the area, eccentricity, compactness and minor and major axis lengths of
the hand region (Agris et al. 2008). Compared to the proposed Aff-SAM features we
consider the rest five sets of features belonging to either baseline features or more
advanced features. First, the baseline features contain the FD,M and RB approaches.
Second, the more advanced features contain the DS-SAM and DTS-SAM methods
which we have implemented as simplified versions of the proposed Aff-SAM. As it
will be revealed by the evaluations, the more advanced features are more competitive
than the baseline features and the comparisons with them are more challenging.

8.7.2 Feature Space Evaluation Results

Herein we evaluate the feature space of the Aff-SAM method. In order to approxi-
mately visualize it, we employ the weights λ1, λ2 of the two principal eigenimages
of Aff-SAM. Figure8.12(a) provides a visualization of the trained models per class,

Fig. 8.12 Feature space for the Aff-SAM features and the D-HFSBP experiment case (see text).
The trained models are visualized via projections on the λ1 − λ2 plane that is formed from the
weights of the two principal Aff-SAM eigenimages. Cropped handshape images are placed at the
models’ centroids
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for the experiment corresponding to D-HFSBP class dependency (that is each class
is fully dependent on orientation parameters). It presents a single indicative cropped
handshape image per class to add intuition on the presentation: these images cor-
respond to the points in the feature space that are closest to the specific classes’
centroids. We observe that similar handshape models share close positions in the
space. The presented feature space is indicative and it seems clear when compared
to feature spaces of other methods. To support this we compare the feature spaces
with the Davies-Boulding index (DBi), which quantifies their quality. In brief, the
DBi is the average over all n clusters, of the ratio of intra-cluster distances σi ver-
sus the inter-cluster distance di, j of i, j clusters, as a measure of their separation:
DBi = 1

n

∑n
i=1 maxi �= j (

σi+σ j

di, j
) (Davies and Bouldin 1979). Figure8.13 presents the

results. The reported indices are for varying CD field, that is the orientation parame-
ters on which the handshape models are dependent or not (as discussed in Sect. 8.7.1)
and are referred in Table8.2. We observe that the DBi’s for the Aff-SAM features
are lower that is the classes are more compact and more separable, compared to the
other cases. The closest DBi’s are these of DS-SAM. In addition, the proposed fea-
tures show stable performance over experiments w.r.t. class-dependency, indicating
robustness to some amount of pose variation.

8.7.3 Results of Classification Experiments

We next show average classification accuracy results after 5-fold cross-validation for
each experiment. together with the standard deviation of the accuracies. The experi-
ments consist of (1) Class dependency and Feature variation for non-occlusion cases
and (2) Class dependency and Feature variation for both occlusion and non-occlusion
cases. Table8.3 presents averages as well as comparisons with other features for

Fig. 8.13 Davies-Bouldin
index (DBi) in logarithmic
scale (y-axis) for multiple
feature spaces and varying
models class dependency to
the orientation parameters.
Lower values of DBi indicate
better compactness and
separability of classes
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Table 8.3 Experiments overview with selected average overall results over different main feature
extraction methods and experimental cases of DS and CD experiments, with occlusion or not (see
Sect. 8.7.1). CD: class dependency. Occ.: indicates whether the dataset includes occlusion cases. #
HSIds: the number of HSId employed, Avg.Acc.: average classification accuracy, Std.: standard
deviation of the classification accuracy

Data Set # HSIds CD Occ. Feat. method Avg. Acc.% Std.

DS-1 18 Table. 8.2 Aff-SAM 93.7 1.5

✗ DS-SAM 93.4 1.6

DTS-SAM 89.2 1.9

DS-1-
extend

24 ‘D-H’ Aff-SAM 77.2 1.6

✗ DS-SAM 74 2.3

DTS-SAM 67 1.4

DS-2 42 Table. 8.2 Aff-SAM 74.9 0.9

� DS-SAM 66.1 1.1

DTS-SAM 62.7 1.4

the three main experimental data sets discussed. The averages are over all cross-
validation cases, and over the multiple experiments w.r.t. class dependency, where
applicable. For instance, in the first block for the case ‘DS-1’, that is non-occluded
data from the dataset DS-1, the average is taken over all cases of class dependency
experiments as described in Table8.2. For the ‘DS-1-extend’ case, the average is
taken over the D-H class dependency experiment, since we want to increase the
variability within each class.

8.7.3.1 Feature Comparisons for Non-occluded Cases

Next, follow comparisons by employing the referred feature extraction approaches,
for two cases of data sets, while accounting for non-occluded cases.

8.7.3.2 Data Set DS-1

In Fig. 8.14 we compare the employed methods, while varying the models’ depen-
dency w.r.t. the annotation parameters (x axis). We employ the DS-1 data set, con-
sisting of 18 handshape types from non-occlusion cases. The number of classes are
shown in Table8.4. In Fig. 8.14 we depict the performance over the different meth-
ods and models’ dependency. At the one extent (that is ‘D-HFBSP’) we trained one
GMMmodel for each different combination of the handshape configuration parame-
ters (H, F, B, S, P). Thus, the trained models were dependent on the 3D handshape
pose and so are the classes for the classification (34 different classes). In the other
extent (‘D-H’) we trained one GMM model for each HSId thus the trained models
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Fig. 8.14 Classification experiments for non-occlusion cases, dataset DS-1. Classification Accu-
racy for varying experiments (x-axis) that is the dependency of each class w.r.t. the annotation
parameters [H, F, B, S, P] and the feature employed (legend). For the numbers of classes per
experiment see Table8.4

Table 8.4 Number of classes for each type of class dependency (classification experiments for
Non-Occlusion cases)

Class dependency parameters D-HFSBP D-HSBP D-HBP D-HP D-H

# Classes 34 33 33 31 18

were independent to the 3D handshape pose and so are the classes for the classi-
fication (18 different classes). Furthermore we observe that the proposed method
outperforms the baseline methods (FD, RB, M) and DTS-SAM. However the clas-
sification performance of Aff-SAM and DS-SAM methods is quite close in some
cases. This is due to the easy classification task (small number of HSIds and 3D pose
variability and non-occlusion cases). The classification performance of the proposed
method is slightly affected from the decrease of the dependency on the annotation
parameters. This strengthens our previous observation that the proposed method can
handle small pose variations. For a results’ overview see Table8.3 (DS-1 block). The
averages are across all pose-dependency cases.

8.7.3.3 Data Set DS-1-extend

This is an extension of DS-1 and consists of 24 different HSIds with much more
3D handshape pose variability. We trained models independent to the 3D handshape
pose. Thus, these experiments refer to the D-H case. Table8.3 (DS-1-extend block)
shows average results for the three competitive methods. We observe that Aff-SAM
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Fig. 8.15 Classification experiments for both occluded and non-occluded cases. Classification
Accuracy by varying the dependency of each class w.r.t. to the annotation parameters [H,F,B,S,P]
(x-axis) and the feature employed (legend). For the numbers of classes per experiment see Table8.5

Table 8.5 Number of classes for each type of class dependency (classification experiments for
Occlusion and Non-Occlusion cases)

Class dependency parameters D-HFSBP D-HSBP D-HBP D-HP D-H

# Classes 100 88 83 72 42

outperforms both DS-SAM and DTS-SAM achieving average improvements of 3.2
and 10.2% respectively. This indicates the advancement of the Aff-SAM over the
other two competitive methods (DS-SAM and DTS-SAM) in more difficult tasks.
It also shows that, by incorporating more data with extended variability w.r.t. pose
parameters, there is an increase in the average improvements.

8.7.3.4 Feature Comparisons for Occluded and Non-occluded Cases

In Fig. 8.15 we vary the models’ dependency w.r.t. the annotation parameters similar
to Sect. 8.7.3.1. However, DS-2 data set consists of 42 handshape HSIds for both
occlusion and non-occlusion cases. For the number of classes per experiment see
Table8.5. Aff-SAM outperforms both DS-SAM and DST-SAM obtaining on aver-
age 10% performance increase in all cases (Fig. 8.15). This indicates that Aff-SAM
handles handshape classification obtaining decent results even during occlusions.
The performance for the other baseline methods is not shown since they cannot
handle occlusions and the results are lower. The comparisons with the two more
competitive methods show the differential gain due to the claimed contributions
of the Aff-SAM. By making our models independent to 3D pose orientation, that
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is,-H, the classification performance decreases. This makes sense since by taking
into consideration the occlusion cases the variability of the handshapes’ 3D pose
increases; as a consequence the classification task is more difficult. Moreover, the
classification during occlusions may already include errors at the visual modeling
level concerning the estimated occluded handshape. In this experiment, the range of
3D pose variations is larger than the amount handled by the affine transforms of the
Aff-SAM.

8.8 Sign Recognition

Next, we evaluate the Aff-SAM approach, on automatic sign recognition experi-
ments, while fusing with movement/position cues, as well as concerning its applica-
tion on multiple signers. The experiments are applied on data from the GSL lexicon
corpus (DictaSign 2012). By employing the presented framework for tracking and
feature extraction (Sect. 8.3) we extract the Aff-SAM features (Sect. 8.4). These are
then employed to construct data-driven subunits as in Roussos et al. (2010b) and
Theodorakis et al. (2012), which are further statistically trained. The lexicon corpus
contains data from two different signers, A and B. Given the Aff-SAM based models
from signer A these are then adapted and fitted to another signer (B) as in Sect. 8.5
for which no Aff-SAMmodels have been trained. The features resulting as a product
of the visual level adaptation, are employed next in the recognition experiment. For
signer A, the features are extracted from the signer’s own model. Note that, there are
other aspects concerning signer adaptation during SL recognition, as for instance the
manner of signing or the different pronunciations, which are not within the focus of
this article.

GSL Lemmas: We employ 100 signs from the GSL lemmas corpus. These are
articulated in isolation with five repetitions each, from two native signers (male and
female). The videos have a uniform background and a resolution of 1440 × 1080
pixels, recorded at 25 fps.

8.8.1 Sub-unit Modeling and Sign Recognition

The SL recognition framework consists of the following: (1) First by employing
the movement-position cue we construct dynamic/static SUs based on dynamic and
static discrimination (Pitsikalis et al. 2010; Theodorakis et al. 2012). (2) Second
we employ the handshape features and the sub-unit construction via clustering of
the handshape features (Roussos et al. 2010b). (3) We then create one lexicon for
each information cue, that is, movement-position and handshape. For the movement-
position lexicon we recompose the constructed dynamic/static SUs, whereas for the
Handshape lexicon we recompose the handshape subunits (HSU) to form each sign
realization. (4) Next, for the training of the SUs we employ a GMM for the static and
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Fig. 8.16 Sign recognition
in GSL lemmas corpus
employing 100 signs for
each signer A and B, and
multiple cues: Hanshape
(HS), Movement-Position
(MP) cue and MP+HS fusion
between both via Parallel
HMMs
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handshape subunits and an 5-state HMM for the dynamic subunits. Concerning the
training, we employ four realizations for each sign for training and one for testing.
(5) Finally, we fuse the movement-position and handshape cues via one possible late
integration scheme, that is Parallel HMMs (PaHMMs) (Vogler and Metaxas 1999).

8.8.2 Sign Recognition Results

In Fig. 8.16 we present the sign recognition performance on the GSL lemmas corpus
employing 100 signs from two signers, A and B, while varying the cues employed:
movement-position (MP), handshape (HS) recognition performance and the fusion
of both MP+HS cues via PaHMMs. For both signers A and B, handshape-based
recognition outperforms the one of movement-position cue. This is expected, and
indicates that handshape cue is crucial for sign recognition. Nevertheless, the main
result we focus is the following: The sign recognition performance in Signer-B is
similar to Signer-A, where the Aff-SAM model has been trained. Thus by applying
the affine adaptation procedure and employing only a small development set, as
presented in Sect. 8.5 we can extract reliable handshape features for multiple signers.
As a result, when both cues are employed, and for both signers, the recognition
performance increases, leading to a 15 and 7.5% absolute improvement w.r.t. the
single cues respectively.

8.9 Conclusions

In this paper, we propose a new framework that incorporates dynamic affine-invariant
Shape-Appearancemodeling and feature extraction for handshape classification. The
proposed framework leads to the extraction of effective features for hand config-
urations. The main contributions of this work are the following: (1) We employ
Shape-Appearance hand images for the representation of the hand configurations.
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These images are modeled with a linear combination of eigenimages followed by an
affine transformation, which effectively accounts for some 3D hand pose variations.
(2) In order to achieve robustness w.r.t. occlusions, we employ a regularized fitting
of the SAM that exploits prior information on the handshape and its dynamics. This
process outputs an accurate tracking of the hand as well as descriptive handshape fea-
tures. (3) We introduce an affine-adaptation for different signers than the signer that
was used to train the model. (4) All the above features are integrated in a statistical
handshape classification GMM and a sign recognition HMM-based system.

The overall visual feature extraction and classification framework is evaluated on
classification experiments as well as on sign recognition experiments. These explore
multiple tasks of gradual difficulty in relation to the orientation parameters, as well as
both occlusion and non-occlusion cases. We compare with existing baseline features
as well as with more competitive features, which are implemented as simplifications
of the proposed SAM method. We investigate the quality of the feature spaces and
evaluate the compactness-separation of the different features in which the proposed
features show superiority. The Aff-SAM features yield improvements in classifica-
tion accuracy too. For the non-occlusion cases, these are on average 35% over the
baseline methods (FD, RB, M) and 3% over the most competitive SAM methods
(DS-SAM, DST-SAM). Furthermore, when we also consider the occlusion cases,
the improvements in classification accuracy are on average 9.7% over the most com-
petitive SAM methods (DS-SAM, DST-SAM). Although DS-SAM yields similar
performance in some cases, it under-performs in the more difficult and extended
data set classification tasks. On the task of sign recognition for a 100-sign lexicon of
GSL lemmas, the approach is evaluated via handshape subunits and also fused with
movement-position cues, leading to promising results. Moreover, it is shown to have
similar results, even if we do not train an explicit signer dependent Aff-SA model,
given the introduction of the affine-signer adaptation component. In this way, the
approach can be easily applicable to multiple signers.

To conclude with, given that handshape is among the main sign language pho-
netic parameters, we address issues that are indispensable for automatic sign lan-
guage recognition. Even though the framework is applied on SL data, its application
is extendable on other gesture-like data. The quantitative evaluation and the intu-
itive results presented show the perspective of the proposed framework for further
research.
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Appendix A. Details about the Regularized Fitting Algorithm

We provide here details about the algorithm of the regularized fitting of the shape-
appearance model. The total energy E(λ, p) that is to be minimized can be written
as (after a multiplication with NM that does not affect the optimum parameters):

J (λ, p) =
∑
x

{
A0(x) +

Nc∑
i=1

λi Ai (x) − f (W p(x))

}2

+

NM

Nc

(
wS ‖λ − λ0‖2�λ

+ wD

∥∥λ − λe
∥∥2

�ελ

)
+

NM

Np

(
wS

∥∥ p − p0
∥∥2

� p
+ wD

∥∥ p − pe
∥∥2

�ε p

)
.

(8.4)

If σλi , σ p̃i are the standard deviations of the components of the parameters λ,
p̃ respectively and σελ,i , σε p̃,i are the standard deviations of the components of the
parameters’ prediction errors ελ, ε p̃, then the corresponding covariance matrices�λ,
� p̃, �ελ

, �ε p̃ , which are diagonal, can be written as:

�λ = diag(σ 2
λ1

, . . . , σ 2
λNc

),� p̃ = diag(σ 2
p̃1 , . . . , σ

2
p̃Nc

),

�ελ
= diag(σ 2

ελ,1
, . . . , σ 2

ελ,Nc
),�ε p̃ = diag(σ 2

ε p̃,1
, . . . , σ 2

ε p̃,Np
).

The squared norms of the prior terms in Eq. (8.4) are thus given by:

‖λ − λ0‖2�λ
=

Nc∑
i=1

(
λi

σλi

)2

,

∥∥λ − λe
∥∥2

�ελ

=
Nc∑
i=1

(
λi − λe

i

σελ,i

)2

,

∥∥ p − p0
∥∥2

� p
= ( p − p0)

TU p�
−1
p̃ UT

p ( p − p0) = ‖ p̃‖2� p̃
=

Np∑
i=1

(
p̃i
σ p̃i

)2

,

∥∥ p − pe
∥∥2

�ε p
= ∥∥ p̃ − p̃e

∥∥2
�ε p̃

=
Np∑
i=1

(
p̃i − p̃ei
σε p̃,i

)2

.

Therefore, if we set:

m1 = √
wSNM/Nc , m2 = √

wDNM/Nc ,

m3 = √
wSNM/Np , m4 = √

wDNM/Np ,
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the energy in Eq. (8.4) takes the form:

J (λ, p) =
∑
x

{
A0(x) +

Nc∑
i=1

λi Ai (x) − f (W p(x))

}2

+
NG∑
i=1

G2
i (λ, p) , (8.5)

with Gi (λ, p) being NG = 2Nc + 2Np prior functions defined by:

Gi (λ, p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m1
λi
σλi

, 1 ≤ i ≤ Nc

m2
λ j−λe

j

σελ, j
, j = i − Nc, Nc + 1 ≤ i ≤ 2Nc

m3
p̃ j

σ p̃ j
, j = i − 2Nc, 2Nc + 1 ≤ i ≤ 2Nc + Np

m4
p̃ j− p̃ej
σε p̃, j

, j = i − 2Nc − Np, 2Nc + Np + 1 ≤ i ≤ 2Nc + 2Np

.

(8.6)
Each component p̃ j , j = 1, . . . , Np, of the re-parametrization of p can be written
as:

p̃ j = vT
p̃ j

( p − p0) , (8.7)

where v p̃ j is the j-th column of U p, that is the eigenvector of the covariance matrix
� p that corresponds to the j-th principal component p̃ j .

In fact, the energy J (λ, p), Eq. (8.5), for general prior functions Gi (λ, p), has
exactly the same form as the energy that is minimized by the algorithm of Baker et al.
(2004). Next, we describe this algorithm and then we specialize it in the specific case
of our framework.

A.1. Simultaneous Inverse Compositional Algorithm
with a Prior

We briefly present here the algorithm simultaneous inverse compositional with a
prior (SICP) (Baker et al. 2004). This is aGauss-Newton algorithm that finds a local
minimum of the energy J (λ, p) (8.5) for general cases of prior functions Gi (λ, p)
and warps W p(x) that are controlled by some parameters p.

The algorithm starts from some initial estimates of λ and p. Afterwards, in every
iteration, the previous estimates of λ and p are updated to λ′ and p′ as follows. It is
considered that a vector 	λ is added to λ:

λ′ = λ + 	λ (8.8)

and a warp with parameters 	 p is applied to the synthesized image A0(x) +∑
λi Ai (x). As an approximation, the latter is taken as equivalent to updating the

warp parameters from p to p′ by composing W p(x) with the inverse of W	 p(x) :
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W p′ = W p ◦ W−1
	 p . (8.9)

From the above relation, given that p is constant, p′ can be expressed as a
R

Np → R
Np function of	 p, p′ = p′(	 p), with p′(	 p = 0) = p. Further, p′(	 p)

is approximated with a first order Taylor expansion around 	p = 0:

p′(	 p) = p + ∂ p′

∂	 p
	 p . (8.10)

where ∂ p′
∂	 p is the Jacobian of the function p′(	 p), which generally depends on 	 p.

Based on the aforementioned type of updates of λ and p as well as the considered
approximations, the values 	λ and 	 p are specified by minimizing the following
energy:

F(	λ,	 p) =
∑
x

{
A0

(
W	 p(x)

) +
Nc∑
i=1

(λi + 	λi )Ai
(
W	 p(x)

)

− f
(
W p(x)

)}2

+
NG∑
i=1

G2
i

(
λ + 	λ, p + ∂ p′

∂	 p
	 p

)
,

simultaneously with respect to 	λ and 	 p. By applying first order Taylor approxi-
mations on the two terms of the above energy F(λ, p), one gets:

F(	λ,	 p) ≈
∑
x

{
Esim(x) + SDsim(x)

(
	λ

	 p

)}2

+
NG∑
i=1

{
Gi (λ, p) + SDGi

(
	λ

	 p

)}2

,

(8.11)

where Esim(x) is the image of reconstruction error evaluated at the model domain:

Esim(x) = A0(x) +
Nc∑
i=1

λi Ai (x) − f
(
W p(x)

)

and SDsim(x) is a vector-valued “steepest descent” image with Nc + N p channels,
each one of them corresponding to a specific component of the parameter vectors λ

and p:

SDsim(x) =
[
A1(x), ..., ANc (x),

(
∇A0(x) +

Nc∑
i=1

λi∇Ai (x)

)
∂Wp(x)

∂ p

]
, (8.12)
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where the gradients ∇Ai (x) =
[

∂Ai
∂x1

, ∂Ai
∂x2

]
are considered as row vector functions.

Also SDGi , for each i = 1, ..., NG , is a row vector with dimension Nc + N p that
corresponds to the steepest descent direction of the prior term Gi (λ, p):

SDGi =
(

∂Gi

∂λ
,

∂Gi

∂ p
∂ p′

∂	 p

)
. (8.13)

The approximated energy F(λ, p) (8.11) is quadratic with respect to both	λ and
	 p, therefore the minimization can be done analytically and leads to the following
solution:

(
	λ

	 p

)
= −H−1

[∑
x

SDT
sim(x)Esim(x) +

NG∑
i=1

SDT
Gi
Gi (λ, p)

]
, (8.14)

where H is the matrix (which approximates the Hessian of F):

H =
∑
x

SDT
sim(x)SDsim(x) +

NG∑
i=1

SDT
Gi
SDGi .

In conclusion, in every iteration of the SICP algorithm, the Eq. (8.14) is applied
and the parameters λ and p are updated using Eqs. (8.8) and (8.10). This process

terminates when a norm of the update vector

(
	λ

	 p

)
falls below a relatively small

threshold and then it is considered that the process has converged.

A.1.1. Combination with Levenberg-Marquardt Algorithm

In the algorithm described above, there is no guarantee that the original energy (8.5),
that is the objective function before any approximation, decreases in every iteration; it
might increase if the involved approximations are not accurate. Therefore, following
Baker and Matthews (2002), we use a modification of this algorithm by combining
it with the Levenberg-Marquardt algorithm: In Eq. (8.14) that specifies the updates,
we replace the Hessian approximation H by H + δ diag(H), where δ is a positive
weight and diag(H) is the diagonal matrix that contains the diagonal elements of
H . This corresponds to an interpolation between the updates given by the Gauss-
Newton algorithm and weighted gradient descent. As δ increases, the algorithm has
a behavior closer to gradient descent, which means that from the one hand is slower
but from the other hand yields updates that are more reliable, in the sense that the
energy will eventually decrease for sufficiently large δ.

In every iteration, we specify the appropriate weight δ as follows. Starting from
setting δ to 1/10of its value in the previous iteration (or from δ = 0.01 if this is thefirst
iteration), we compute the updates	λ and	 p using theHessian approximation H +
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δ diag(H) and then evaluate the original energy (8.5). If the energy has decreased we
keep the updates and finish the iteration. If the energy has increased, we set δ → 10 δ

and try again. We repeat that step until the energy decreases.

A.2. Specialization in the Current Framework

In this section, we derive the SICP algorithm for the special case that concerns our
method. This case arises when (1) the general warps W p(x) are specialized to affine
transforms and (2) the general prior functions Gi (λ, p) are given by Eq. (8.6).

A.2.1. The Case of Affine Transforms

In our framework, the general warps W p(x) of the SICP algorithm are specialized
to affine transforms with parameters p = (p1 · · · p6) that are defined by:

W p(x, y) =
(
1 + p1 p3 p5
p2 1 + p4 p6

) ⎛
⎝ x

y
1

⎞
⎠ .

In this special case, which is analyzed also in Baker et al. (2004), the Jacobian ∂Wp(x)

∂ p
that is used in Eq. (8.12) is given by:

∂Wp(x)

∂ p
=

(
x1 0 x2 0 1 0
0 x1 0 x2 0 1

)
.

The restriction to affine transforms implies also a special form for the Jacobian
∂ p′
∂	 p that is used in Eq. (8.13). More precisely, as described in Baker et al. (2004), a

first order Taylor approximation is first applied to the inverse warp W−1
	 p and yields

W−1
	 p ≈ W−	 p. Afterwards, based on Eq. (8.9) and the fact that the parameters of a

composition Wr = W p ◦ Wq of two affine transforms are given by:

r =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1 + q1 + p1q1 + p3q2
p2 + q2 + p2q1 + p4q2
p3 + q3 + p1q3 + p3q4
p4 + q4 + p2q3 + p4q4
p5 + q5 + p1q5 + p3q6
p6 + q6 + p2q5 + p4q6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

the function p′(	 p) (8.10) is approximated as:
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p′(	 p) =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1 − 	p1 − p1	p1 − p3	p2
p2 − 	p2 − p2	p1 − p4	p2
p3 − 	p3 − p1	p3 − p3	p4
p4 − 	p4 − p2	p3 − p4	p4
p5 − 	p5 − p1	p5 − p3	p6
p6 − 	p6 − p2	p5 − p4	p6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Therefore, its Jacobian is given by:

∂ p′

∂	 p
= −

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + p1 p3 0 0 0 0
p2 1 + p4 0 0 0 0
0 0 1 + p1 p3 0 0
0 0 p2 1 + p4 0 0
0 0 0 0 1 + p1 p3
0 0 0 0 p2 1 + p4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

A.2.2. Specific Type of Prior Functions

Apart from the restriction to affine transforms, in the proposed framework of the
regularized shape-appearance model fitting, we have derived the specific formulas
of Eq. (8.6) for the prior functions Gi (λ, p) of the energy J (λ, p) in Eq. (8.5).
Therefore, in our case, their partial derivatives, which are involved in the above
described SICP algorithm (see Eq. (8.13)), are specialized as follows:

∂Gi

∂ p
(7)=

⎧⎪⎪⎨
⎪⎪⎩
0 , 1 ≤ i ≤ 2Nc
m3
σ p̃ j

vT
p̃ j

, j = i − 2Nc , 2Nc + 1 ≤ i ≤ 2Nc + Np

m4
σε p̃, j

vT
p̃ j

, j = i − 2Nc − Np , 2Nc + Np + 1 ≤ i ≤ 2Nc + 2Np

,

∂Gi

∂λ
=

⎧⎪⎪⎨
⎪⎪⎩

m1
σλi

eTi , 1 ≤ i ≤ Nc

m2
σελ, j

eTj , j = i − Nc , Nc + 1 ≤ i ≤ 2Nc

0 , 2Nc + 1 ≤ i ≤ 2Nc + 2Np

,

where ei , 1 ≤ i ≤ Nc, is the i th column of the Nc × Nc identity matrix.
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Chapter 9
Discriminative Hierarchical Part-Based
Models for Human Parsing and Action
Recognition

Yang Wang, Duan Tran, Zicheng Liao and David Forsyth

Abstract We consider the problem of parsing human poses and recognizing their
actions in static images with part-based models. Most previous work in part-based
models only considers rigid parts (e.g., torso, head, half limbs) guided by human
anatomy. We argue that this representation of parts is not necessarily appropriate. In
this paper, we introduce hierarchical poselets—a new representation for modeling
the pose configuration of human bodies. Hierarchical poselets can be rigid parts,
but they can also be parts that cover large portions of human bodies (e.g., torso
+ left arm). In the extreme case, they can be the whole bodies. The hierarchical
poselets are organized in a hierarchical way via a structured model. Human parsing
can be achieved by inferring the optimal labeling of this hierarchical model. The pose
information captured by this hierarchical model can also be used as a intermediate
representation for other high-level tasks. We demonstrate it in action recognition
from static images.
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9.1 Introduction

Modeling human bodies (or articulated objects in general) in images is a long-lasting
problem in computer vision. Compared with rigid objects (e.g., faces and cars) which
can be reasonably modeled using several prototypical templates, human bodies are
much more difficult to model due to the wide variety of possible pose configurations.

A promising solution for dealing with the pose variations is to use part-based
models. Part-based representations, such as cardboard people (Ju et al. 1996) or pic-
torial structure (Felzenszwalb andHuttenlocher 2005), provide an elegant framework
for modeling articulated objects, such as human bodies. A part-based model repre-
sents the human body as a constellation of a set of rigid parts (e.g., torso, head, half
limbs) constrained in some fashion. The typical constraints used are tree-structured
kinematic constraints between adjacent body parts, for example, torso-upper half-
limb connection, or upper-lower half-limb connection. Part-based models consist
of two important components: (1) part appearances specifying what each body part
should look like in the image; (2) configuration priors specifying how parts should be
arranged relative to each other. Part-basedmodels have been used extensively in vari-
ous computer vision applications involving humans, such as human parsing (Felzen-
szwalb and Huttenlocher 2005; Ramanan 2006), kinematic tracking (Ramanan et al.
2005), action recognition (Yang et al. 2010) and human-object interaction (Yao and
Fei-Fei 2010).

Considerable progress has beenmade to improve part-basedmodels. For example,
there has been a line of work on using better appearance models in part-based mod-
els. A representative example is the work by Ramanan (2006), who learns color
histograms of parts from an initial edge-based model. Ferrari et al. (2008) and
Eichner and Ferrari (2009) further improve the part appearance models by reducing
the search space using various tricks, for example, the relative locations of part loca-
tions with respect to a person detection and the relationship between different part
appearances (e.g., upper-arm and torso tend to have the same color), Andriluka et al.
(2009) build better edge-based appearance models using the HOG descriptors (Dalal
and Triggs 2005). Sapp et al. (2010b) develop efficient inference algorithm to allow
the use of more expensive features. There is also work (Johnson and Everingham
2009; Mori et al. 2004; Mori 2005; Srinivasan and Shi 2007) on using segmenta-
tion as a pre-processing step to provide better spatial support for computing part
appearances.

Another line of work is on improving configuration priors in part-based models.
Most of them focus on developing representations and fast inference algorithms that
by-pass the limitations of kinematic tree-structured spatial priors in standard pictorial
structure models. Examples include common-factor models (Lan and Huttenlocher
2005), loopy graphs (Jiang andMartin 2008; Ren et al. 2005; Tian and Sclaroff 2010;
Tran and Forsyth 2010), mixtures of trees (Wang andMori 2008). There is also work
on building spatial priors that adapt to testing examples (Sapp et al. 2010a).

Most of the previous work on part-based models use rigid parts that are anatomi-
cally meaningful, for example, torso, head, half limbs. Those rigid parts are usually
represented as rectangles (e.g., Andriluka et al. 2009; Felzenszwalb andHuttenlocher
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2005; Ramanan 2006; Ren et al. 2005; Sigal and Black 2006; Wang and Mori 2008)
or parallel lines (e.g., Ren et al. 2005). However, as pointed out by some recent work
(Bourdev and Malik 2009; Bourdev et al. 2010), rigid parts are not necessarily the
best representation since rectangles and parallel lines are inherently difficult to detect
in natural images.

In this paper, we introduce a presentation of parts inspired by the early work of
Marr (1982). The work in Marr (1982) recursively represents objects as generalized
cylinders in a coarse-to-fine hierarchical fashion. In this paper, we extend Marr’s
idea for two problems in the general area of “looking at people”. The first problem
is human parsing, also known as human pose estimation. The goal is to find the
location of each body part (torso, head, limbs) of a person in a static image. We
use a part-based approach for human parsing. The novelty of our work is that our
notion of “parts” can range from basic rigid parts (e.g., torso, head, half-limb), to
large pieces of bodies covering more than one rigid part (e.g., torso + left arm). In
the extreme case, we have “parts” corresponding to the whole body. We propose a
new representation called “hierarchical poselets” to capture this hierarchy of parts.
We infer the human pose using this hierarchical representation.

The hierarchical poselet also provides rich information about body poses that can
be used in other applications. To demonstrate this, we apply it to recognize human
action in static images. In this application, we use hierarchical poselets to capture
various pose information of the human body, this information is further used as some
intermediate representation to infer the action of the person.

Apreliminary version of thiswork appeared inWang et al. (2011).We organize the
rest of the paper as follows. Section9.2 reviews previous work in human parsing and
action recognition. Section9.3 introduces hierarchical poselet, a new representation
for modeling human body configurations. Section9.4 describes how to use hierarchi-
cal poselets for human parsing. Section9.5 develops variants of hierarchical poselets
for recognizing human action in static images. We present experimental results on
human parsing and action recognition in Sect. 9.6 and conclude in Sect. 9.7.

9.2 Previous Work

Finding and understanding people from images is a very active area in computer
vision. In this section, we briefly review previous work in human parsing and action
recognition that is most related to our work.

Human parsing Early work related to finding people from images is in the setting
of detecting and tracking people with kinematic models in both 2D and 3D. Forsyth
et al. (2006) provide an extensive survey of this line of work.

Recentwork has examined the problem in static images. Some of these approaches
are exemplar-based. For example, Toyama and Blake (2001) track people using
2D exemplars. Mori and Malik (2002) and Sullivan and Carlsson (2002) estimate
humanposes bymatching pre-stored 2D templateswithmarked ground-truth 2D joint
locations. Shakhnarovich et al. (2003) use local sensitive hashing to allow efficient
matching when the number of exemplars is large.
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Part-based models are becoming increasingly popular in human parsing. Early
work includes the cardboard people (Ju et al. 1996) and the pictorial structure
(Felzenszwalb and Huttenlocher 2005). Tree-structured models are commonly used
due to its efficiency. But there are also methods that try to alleviate the limitation
of tree-structured models, include common-factor models (Lan and Huttenlocher
2005), loopy graphs (Jiang and Martin 2008; Ren et al. 2005; Tian and Sclaroff
2010; Tran and Forsyth 2010), mixtures of trees (Wang and Mori 2008).

Manypart-basedmodels use discriminative learning to train themodel parameters.
Examples include the conditional random fields (Ramanan and Sminchisescu 2006;
Ramanan 2006), max-margin learning (Kumar et al. 2009; Wang et al. 2011; Yang
and Ramanan 2011) and boosting (Andriluka et al. 2009; Sapp et al. 2010b; Singh
et al. 2010). Previous approaches have also explored various features, including
image segments (superpixels) (Johnson and Everingham 2009; Mori et al. 2004;
Mori 2005; Sapp et al. 2010a, b; Srinivasan and Shi 2007), color features (Ramanan
2006; Ferrari et al. 2008), gradient features (Andriluka et al. 2009; Johnson and
Everingham 2010; Wang et al. 2011; Yang and Ramanan 2011).

Human action recognitionMost of the previouswork on human action recognition
focuses on videos. Some work (Efros et al. 2003) uses global template for action
recognition. A lot of recent work (Dollár et al. 2005; Laptev et al. 2008; Niebles
et al. 2006) uses bag-of-words models. There is also work (Ke et al. 2007; Niebles
and Fei-Fei 2007) using part-based models.

Comparedwith videos, human action recognition from static images is a relatively
less-studied area. Wang et al. (2006) provide one of the earliest examples of action
recognition in static images. Recently, template models (Ikizler-Cinbis et al. 2009),
bag-of-words models (Delaitre et al. 2010), part-based models (Delaitre et al. 2010;
Yang et al. 2010) have all been proposed for static-image action recognition. There is
also a line of work on using contexts for action recognition in static images, including
human-object context (Desai et al. 2010; Gupta et al. 2009; Yao and Fei-Fei 2010)
and group context (Lan et al. 2010; Maji et al. 2011).

9.3 Hierarchical Poselets

Our pose representation is based on the concept of “poselet” introduced in Bourdev
and Malik (2009). In a nutshell, poselets refer to pieces of human poses that are
tightly clustered in both appearance and configuration spaces. Poselets have been
shown to be effective at person detection (Bourdev and Malik 2009; Bourdev et al.
2010).

In this paper, we propose a new representation called hierarchical poselets. Hier-
archical poselets extend the original poselets in several important directions to make
them more appropriate for human parsing. We start by highlighting the important
properties of our representation.
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Beyond rigid “parts”: Most of the previous work in part-based human modeling
are based on the notion that the human body can be modeled as a set of rigid parts
connected in some way. Almost all of them use a natural definition of parts (e.g.,
torso, head, upper/lower limbs) corresponding to body segments, and model those
parts as rectangles, parallel lines, or other primitive shapes.

As pointed out by Bourdev and Malik (2009), this natural definition of “parts”
fails to acknowledge the fact that rigid parts are not necessarily the most salient
features for visual recognition. For example, rectangles and parallel lines can be
found as limbs, but they can also be easily confused with windows, buildings, and
other objects in the background. So it is inherently difficult to build reliable detectors
for those parts. On the other hand, certain visual patterns covering large portions of
human bodies, for example, “a torso with the left arm raising up” or “legs in lateral
pose”, are much more visually distinctive and easier to identify. This phenomenon
was observed even prior to the work of poselet and was exploited to detect stylized
human poses and build appearance models for kinematic tracking (Ramanan et al.
2005).

Multiscale hierarchy of “parts”: Another important property of our representation
is that we define “parts” at different levels of hierarchy to cover pieces of human
poses at various granularity, ranging from the configuration of the whole body, to
small rigid parts. In particular, we define 20 parts to represent the human pose and
organize them in a hierarchy shown in Fig. 9.1. To avoid terminological confusion,
we will use “part” to denote one of the 20 parts in Fig. 9.1 and use “primitive part”
to denote rigid body parts (i.e., torso, head, half limbs) from now on.

In this paper, we choose the 20 parts and the hierarchical structure in Fig. 9.1
manually.Of course, it is possible to define parts corresponding to other combinations
of body segments, for example, left part of the whole body. It may also be possible to
learn the connectivity of parts automatically from data, for example, using structure
learningmethods similar to theChow-Liu algorithm (Chow andLiu 1968).Wewould
like to leave these issues as future work.

We use a procedure similar to Yang et al. (2010) to select poselets for each part.
First, we cluster the joints on each part into several clusters based on their relative x

Fig. 9.1 An illustration of
the hierarchical pose
representation. The black
edges indicate the
connectivity among different
parts
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and y coordinateswith respect to some reference joint of that part. For example, for the
part “torso”, we choose themiddle-top joint as the reference and compute the relative
coordinates of all the other joints on the torso with respect to this reference joint.
The concatenation of all those coordinates will be the vector used for clustering. We
run K-means clustering on the vectors collected from all training images and remove
clusters that are too small. Similarly, we obtain the clusters for all the other parts.
In the end, we obtain 5–20 clusters for each part. Based on the clustering, we crop
the corresponding patches from the images and form a set of poselets for that part.
Figure9.2 shows examples of two different poselets for the part “legs”.

Our focus is the new representation, so we use standard HOG descriptors (Dalal
andTriggs 2005) to keep the feature engineering to theminimum.For eachposelet,we
construct HOG features from patches in the corresponding cluster and from random
negative patches. Inspired by the success of multiscale HOG features (Felzenszwalb
et al. 2010), we use different cell sizes when computing HOG features for different
parts. For example, we use cells of 12 × 12 pixel regions for poselets of the whole
body, and cells of 2 × 2 for poselets of the upper/lower arm. This is motivated by the
fact that large body parts (e.g., whole body) are typically well-represented by coarse
shape information, while small body parts (e.g., half limb) are better represented by
more detailed information. We then train a linear SVM classifier for detecting the
presence of each poselet. The learned SVMweights can be thought as a template for
the poselet. Examples of several HOG templates for the “legs” poselets are shown
as the last columns of Fig. 9.2. Examples of poselets and their corresponding HOG
templates for other body parts are shown in Fig. 9.3.

A poselet of a primitive part contains two endpoints. For example, for a poselet
of upper-left leg, one endpoint corresponds to the joint between torso and upper-left
leg, the other one corresponds to the joint between upper/lower left leg. We record
the mean location (with respect to the center of the poselet image patch) of each
endpoint. This information will be used in human parsing when we need to infer the
endpoints of a primitive part for a test image.

Fig. 9.2 Examples of two poselets for the part “legs”. Each row corresponds to a poselet. We show
several patches from the poselet cluster. The last column shows the HOG template of the poselet
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Fig. 9.3 Visualization of some poselets learned from different body parts on the UIUC people data
set, including whole body, large parts (top to bottom torso+left arm, legs, torso+head, left arm), and
rigid parts (top to bottom upper/lower left arm, torso, upper/lower left leg, head). For each poselet,
we show two image patches from the corresponding cluster and the learned SVM HOG template

9.4 Human Parsing

In this section, we describe how to use hierarchical poselets in human parsing. We
first develop an undirected graphical model to represent the configuration of the
human pose (Sect. 9.4.1). We then develop the inference algorithm for finding the
best pose configuration in the model (Sect. 9.4.2) and the algorithm for learning
model parameters (Sect. 9.4.3) from training data.

9.4.1 Model Formulation

We denote the complete configuration of a human pose as L = {li }K
i=1, where K is

the total number of parts (i.e., K = 20 in our case). The configuration of each part li

is parametrized by li = (xi , yi , zi ). Here (xi , yi ) defines the image location, and zi is
the index of the corresponding poselet for this part, that is, zi ∈ {1, 2, ...,Pi }, where
Pi is the number of poselets for the i-th part. In this paper, we assume the scale of
the person is fixed and do not search over multiple scales. It is straightforward to
augment li with other information, for example, scale and foreshortening.

The complete pose L can be represented by a graph G = {V ,E }, where a vertex
i ∈ V denotes a part and an edge (i, j) ∈ E captures the constraint between parts
i and j . The structure of G is shown in Fig. 9.1. We define the score of labeling an
image I with the pose L as:
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F(L , I ) =
∑

i∈V
φ(li ; I ) +

∑

(i, j)∈E
ψ(li , l j ) (9.1)

The details of the potential functions in Eq.9.1 are as follows.
Spatial prior ψ(li , l j ) This potential function captures the compatibility of con-

figurations of part i and part j . It is parametrized as:

ψ(li , l j ) = α�
i; j;zi ;z j

bin(xi − x j , yi − y j )

=
Pi∑

a=1

P j∑

b=1

1a(zi )1b(z j )α
�
i; j;a;bbin(xi − x j , yi − y j )

Similar to Ramanan (2006), the function bin(·) is a vectorized count of spatial his-
togram bins. We use 1a(·) to denote the function that takes 1 if its argument equals a,
and 0 otherwise. Here αi; j;zi ;z j is amodel parameter that favors certain relative spatial
bins when poselets zi and z j are chosen for parts i and j , respectively. Overall, this
potential function models the (relative) spatial arrangement and poselet assignment
of a pair (i, j) of parts.

Local appearance φ(li ; I ) This potential function captures the compatibility of
placing the poselet zi at the location (xi , yi ) of an image I . It is parametrized as:

φ(li ; I ) = β�
i;zi

f (I (li )) =
Pi∑

a=1

β�
i;a f (I (li )) · 1a(zi )

where βi;zi is a vector of model parameters corresponding to the poselet zi and
f (I (li )) is a feature vector corresponding to the image patch defined by li . We
define f (I (li )) as a length Pi + 1 vector as:

f (I (li )) = [ f1(I (li )), f2(I (li )), ..., fPi (I (li )), 1]

Each element fr (I (li )) is the score of placing poselet zr at image location (xi , yi ).
The constant 1 appended at the end of vector allows us to learn the model with a bias
term. In other words, the score of placing the poselet zi at image location (xi , yi )

is a linear combination (with bias term) of the responses all the poselet templates
at (xi , yi ) for part i . We have found that this feature vector works better than the
one used in Yang et al. (2010), which defines f (I (li )) as a scalar of a single poselet
template response. This is because the poselet templates learned for a particular part
are usually not independent of each other. So it helps to combine their responses as
the local appearance model.

We summarize and highlight the important properties of our model and contex-
tualize our research by comparing with related work.

Discriminative “parts” Our model is based on a new concept of “parts” which
goes beyond the traditional rigid parts. Rigid parts are inherently difficult to detect.
We instead consider parts covering a wide range of portions of human bodies.We use
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poselets to capture distinctive appearance patterns of various parts. These poselets
have better discriminative powers than traditional rigid part detectors. For example,
look at the examples in Figs. 9.2 and 9.3, the poselets capture various characteristic
patterns for large parts, such as the “A”-shape for the legs in the first row of Fig. 9.2.

Coarse-to-fine granularityDifferent parts in ourmodel are represented by features
at varying levels of details (i.e., cell sizes in HOG descriptors). Conceptually, this
multi-level granularity can be seen as providing an efficient coarse-to-fine search
strategy. However, it is very different from the coarse-to-fine cascade pruning in
Sapp et al. (2010b). The method in Sapp et al. (2010b) prunes the search space of
small parts (e.g., right lower arm) at the coarse level using simple features and apply
more sophisticated features in the pruned search space. However, we would like to
argue that at the coarse level, one should not even consider small parts, since they
are inherently difficult to detect or prune at this level. Instead, we should focus on
large body parts since they are easy to find at the coarse level. The configurations of
large pieces of human bodies will guide the search of smaller parts. For example, an
upright torso with arms raising up (coarse-level information) is a very good indicator
of where the arms (fine-level details) might be.

Structured hierarchical model A final important property of our model is that we
combine information across different parts in a structured hierarchical way. The orig-
inal work on poselets (Bourdev and Malik 2009; Bourdev et al. 2010) uses a simple
Hough voting scheme for person detection, that is, each poselet votes for the center of
the person, and the votes are combined together. This Hough voting might be appro-
priate for person detection, but it is not enough for human parsing which involves
highly complex and structured outputs. Instead, we develop a structured model that
organize information about different parts in a hierarchical fashion. Another work
that uses hierarchical models for human parsing is the AND-OR graph in Zhu et al.
(2008). But there are two important differences. First, the appearance models used in
Zhu et al. (2008) are only defined on sub-parts of body segments. Their hierarchical
model is only used to put all the small pieces together. As mentioned earlier, appear-
ance models based on body segments are inherently unreliable. In contrast, we use
appearance models associated with parts of varying sizes. Second, the OR-nodes in
Zhu et al. (2008) are conceptually similar to poselets in our case. But the OR-nodes
in Zhu et al. (2008) are defined manually, while our poselets are learned.

Our work on human parsing can be seen as bridging the gap between two popular
schools of approaches for human parsing: part-based methods, and exemplar-based
methods. Part-based methods, as explained above, model the human body as a col-
lection of rigid parts. They use local part appearances to search for those parts in an
image, and use configuration priors to put these pieces together in some plausible
way. But since the configuration priors in these methods are typically defined as pair-
wise constraints between parts, these methods usually lack any notion that captures
what a person should look like as a whole. In contrast, exemplar-based methods
(Mori and Malik 2002; Shakhnarovich et al. 2003; Sullivan and Carlsson 2002)
search for images with similar whole body configurations, and transfer the poses
of those well-matched training images to a new image. The limitation of exemplar-
based approaches is that they require good matching of the entire body. They cannot
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handle test images of which the legs are similar to some training images, while the
arms are similar to other training images. Our work combines the benefits of both
schools. On one hand, we capture the large-scale information of human pose via
large parts. On the other hand, we have the flexibility to compose new poses from
different parts.

9.4.2 Inference

Given an image I , the inference problem is to find the optimal pose labeling L∗
that maximize the score F(L , I ), that is, L∗ = argmaxL F(L , I ). We use the max-
product version of belief propagation to solve this problem. We pick the vertex
corresponding to part “whole body” as the root and pass messages upwards towards
this root. The message from part i to its parent j is computed as:

mi (l j ) = max
li

(u(l j ) + ψ(li , l j )) (9.2)

u(l j ) = φ(l j ) +
∑

k∈kids j

mk(l j )

Afterwards, we pass messages downward from the root to other vertices in a similar
fashion. This message passing scheme is repeated several times until it converges. If
we temporarily ignore the poselet indices zi and z j and think of li = (xi , yi ), we can
represent the messages as 2D images and pass messages using techniques similar to
those in Ramanan (2006). The image u(l j ) is obtained by summing together response
images from its child parts mk(l j ) and its local response image φ(l j ). φ(l j ) can be
computed in linear time by convolving the HOG feature map with the template of
z j . The maximization in Eq.9.2 can also be calculated in time linear to the size of
u(l j ). In practice, we compute messages on each fixed (zi , z j ) and enumerate all the
possible assignments of (zi , z j ) to obtain the final message. Note that since the graph
structure is not a tree, this message passing scheme does not guarantee to find the
globally optimal solution. But empirically, we have found this approximate inference
scheme to be sufficient for our application.

The inference gives us the image locations and poselet indices of all the 20 parts
(both primitive and non-primitive). To obtain the final parsing result, we need to
compute the locations of the two endpoints for each primitive part. These can be
obtained from the mean endpoint locations recorded for each primitive part poselet
(see Sect. 9.3).

Figure9.4 shows a graphical illustration of applying our model on a test image.
For each part in the hierarchy, we show two sample patches and the SVM HOG
template corresponding to the poselet chosen for that part.
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Fig. 9.4 A graphical illustration of applying our model on a test image. For each part (please refer
to Fig. 9.1), we show the inferred poselet by visualizing two sample patches from the corresponding
poselet cluster and the SVM HOG template

9.4.3 Learning

In order to describe the learning algorithm, we first write Eq.9.1 as a linear function
of a single parameter vector w which is a concatenation of all the model parameters,
that is:

F(L , I ) = w��(I, L), where

w = [αi; j;a;b;βi;a], ∀i, j, a, b

�(I, L) = [1a(zi )1b(z j )bin(xi − x j , yi − y j ); f (I (li ))1a(zi )], ∀i, j, a, b

The inference scheme in Sect. 9.4.2 solves L∗ = argmaxL w��(I, L). Given a
set of training images in the form of {I n, Ln}N

n=1, we learn the model parameters w
using a form of structural SVM (Tsochantaridis et al. 2005) as follows:

min
w,ξ

1

2
||w||2 + C

∑

n

ξ n, s.t. ∀n, ∀L (9.3)

w��(I n, Ln) − w��(I n, L) ≥ �(L , Ln) − ξ n (9.4)

Consider a training image I n , the constraint in Eq.9.4 enforces the score of the true
label Ln to be larger than the score of any other hypothesis label L by some margin.
The loss function �(L , Ln) measures how incorrect L is compared with Ln . Similar
to regular SVMs, ξn are slack variables used to handle soft margins. This formulation
is often called margin-rescaling in the SVM-struct literature (Tsochantaridis et al.
2005).

We use a loss function that decomposes into a sum of local losses defined on each
part �(L , Ln) = ∑K

i=1 �i (Li , Ln
i ). If the i-th part is a primitive part, we define the

local loss �i (Li , Ln
i ) as:
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�i (Li , Ln
i ) = λ · 1(zi �= zn

i ) + d((xi , yi ), (xn
i , yn

i )) (9.5)

where1(·) is an indicator function that takes 1 if its argument is true, and 0 otherwise.
The intuition of Eq.9.5 is as follows. If the hypothesized poselet zi is the same as the
ground-truth poselet zn

i for the i-th part, the first term of Eq.9.5 will be zero. Other-
wise it will incur a loss λ (we choose λ = 10 in our experiments). The second term
in Eq.9.5, d((xi , yi ), (xn

i , yn
i )), measures the distance (we use l1 distance) between

two image locations (xi , yi ) and (xn
i , yn

i ). If the hypothesized image location (xi , yi )

is the same as the ground-truth image location (xn
i , yn

i ) for the i-th part, no loss is
added. Otherwise a loss proportional to the l1 distance of these two locations will be
incurred.

If the i-th part is not a primitive part, we simply set �(Li , Ln
i ) to be zero. This

choice is based on the following observation. In our framework, non-primitive parts
only serve as some intermediate representations that help us to search for and dis-
ambiguate small primitive parts. The final human parsing results are still obtained
from configurations li of primitive parts. Even if a particular hypothesized L gets
one of its non-primitive part labeling wrong, it should not be penalized as long as
the labelings of primitive parts are correct.

The optimization problem in Eqs. (9.3, 9.4) is convex and can be solved using
the cutting plane method implemented in the SVM-struct package (Joachims et al.
2008). However we opt to use a simpler stochastic subgradient descent method to
allow greater flexibility in terms of implementation.

First, it is easy to show that Eqs. (9.3, 9.4) can be equivalently written as:

min
w

1

2
||w||2 + C

∑

n

Rn(L),where Rn(L) =

max
L

(
�(L , Ln) + w��(I n, L) − w��(I n, Ln)

)

In order to do gradient descent, we need to calculate the subgradient ∂wRn(L) at
a particular w. Let us define:

L� = argmax
L

(
�(L , Ln) + w��(I n, L)

)
(9.6)

Equation 9.6 is called loss-augmented inference (Joachims et al. 2008). It can be
shown that the subgradient ∂wRn(L) can be computed as ∂wR(L) = �(I n, L�) −
�(I n, Ln). Since the loss function �(L , Ln) can be decomposed into a sum over
local losses on each individual part, the loss-augmented inference in Eq.9.6 can be
solved in a similar way to the inference problem in Sect. 9.4.2. The only difference
is that the local appearance model φ(li ; I ) needs to be augmented with the local loss
function�(Li , Ln

i ). Interested readers are referred to Joachims et al. (2008) for more
details.
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9.5 Action Recognition

The hierarchical poselet is a representation general enough to be used in many appli-
cations. In this section, we demonstrate it in human action recognition from static
images.

Look at the images depicted in Fig. 9.5. We can easily perceive the actions of
people in those images, even though only static images are given. So far most work
in human action recognition has been focusing on recognition from videos. While
videos certainly provide useful cues (e.g., motion) for action recognition, the exam-
ples in Fig. 9.5 clearly show that the information conveyed by static images is also an
important component of action recognition. In this paper, we consider the problem
of inferring human actions from static images. In particular, we are interested in
exploiting the human pose as a source of information for action recognition.

Several approaches have been proposed to address the problem of static image
action recognition in the literature. The first is a standard pattern classification
approach, that is, learning a classifier based on certain image feature representa-
tions. For example, Ikizler-Cinbis et al. (2009) learn SVM classifiers based on HOG
descriptors. The limitation with this approach is that it completely ignores the pose
of a person. Another limitation is that SVM classifiers implicitly assume that images
from the same action category can be represented by a canonical prototype (which
are captured by the weights of the SVM classifier). However, the examples in Fig. 9.5
clearly show that humans can have very varied appearances when performing the
same action, which are hard to characterize with a canonical prototype.

Another approach to static image action recognition is to explicitly recover the
human pose, then use the pose as a feature representation for action recognition. For
example, Ferrari et al. (2009) estimate the 2D human pose in TV shots. The estimated
2D poses can be used to extract features which in turn can be used to retrieve TV
shots containing people with similar poses to a query. As point out in Yang et al.

dancing playing golf running sitting walking

athletics badminton baseball gymnastics parkour soccer tennis volleyball

Fig. 9.5 Human actions in static images. We show some sample images and their annotations on
the two data sets used in our experiments (see Sect. 9.6). Each image is annotated with the action
category and joints on the human body. It is clear from these examples that static images convey a
lot of information about human actions
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(2010), the problem with this approach is that 2D human pose estimation is still a
very challenging problem. The output of the state-of-the-art pose estimation system
is typically not reliable enough to be directly used for action recognition.

The work in Yang et al. (2010) is the closest to ours. It uses a representation
based on human pose for action recognition. But instead of explicitly recovering the
precise pose configuration, it represents the human pose as a set of latent variables
in the model. Their method does not require the predicted human pose to be exactly
correct. Instead, it learns which components of the pose are useful for differentiating
various actions.

The pose representation in Yang et al. (2010) is limited to four parts: upper body,
left/right arm, and legs. Learning and inference in their model amounts to infer the
best configurations of these four parts for a particular action. A limitation of this
representation is that it does not contain pose information about larger (e.g., whole
body) or smaller (e.g., half-limbs) parts. We believe that pose information useful for
discerning actions can vary depending on different action categories. Some actions
(e.g., running) have distinctive pose characteristics in terms of both the upper and
lower bodies, while other actions (e.g., pointing) are characterized by only one arm.
The challenge is how to represent the pose information at various levels of details
for action recognition.

In this section, we use hierarchical poselets to capture richer pose information for
action recognition. While a richer pose representation may offer more pose informa-
tion (less bias), it must also be harder to estimate accurately (more variance). In this
paper, we demonstrate that our rich pose representation (even with higher variance)
is useful for action recognition.

9.5.1 Action-Specific Hierarchical Poselets

Since our goal is action recognition, we choose to use an action-specific variant
of the hierarchical poselets. This is similar to the action-specific poselets used in
Yang et al. (2010). The difference is that the action-specific poselets in Yang et al.
(2010) are only defined in terms of four parts—left/right arms, upper-body, and legs.
These four parts are organized in a star-like graphical model. In contrast, our pose
representation captures a much wider range of information across various pieces of
the human body. So ours is a much richer representation than Yang et al. (2010).

The training images are labeled with ground-truth action categories and joints on
the human body (Fig. 9.5). We use the following procedure to select poselets for a
specific part (e.g., legs) of a particular action category (e.g., running). We first collect
training images of that action category (running). Then we cluster the joints on the
part (legs) into several clusters based on their relative (x, y) coordinates with respect
to some reference joint. Each cluster will correspond to a “running legs” poselet.
We repeat this process for the part in other action categories. In the end, we obtain
about 15–30 clusters for each part. Figures9.6 and 9.7 show examples of poselets
for “playing golf” and “running” actions, respectively.
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Fig. 9.6 Examples of poselets for “playing golf”. For each poselet, we visualize several patches
from the corresponding cluster and the SVM HOG template. Notice the multi-scale nature of the
poselets. These poselets cover various portions of the human bodies, including the whole body (1st
row), both legs (2nd row), one arm (3rd row), respectively

Fig. 9.7 Examples of poselets for “running”. For each poselet, we visualize several patches from
the corresponding cluster and the SVM HOG template. Similar to Fig. 9.6, these poselets cover
various portions of the human bodies

Similarly, we train a classifier based on HOG features (Dalal and Triggs 2005)
to detect the presence of each poselet. Image patches in the corresponding poselet
cluster are used as positive examples and random patches as negative examples for
training the classifier. Similar to the model in Sect. 9.4, we use different cell sizes
when constructing HOG features for different parts. Large cell sizes are used for
poselets of large body parts (e.g., whole body and torso), while small cell sizes are
used for small body parts (e.g., half limbs). Figures9.6 and 9.7 show some examples
of the learned SVM weights for some poselets.
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9.5.2 Our Model

Let I be an image containing a person, Y ∈ Y be its action label where Y is the
action label alphabet, L be the pose configuration of the person. The complete pose
configuration is denoted as L = {li }K

i=1 (K = 20 in our case), where li = (xi , yi , zi )

represents the 2D image location and the index of the corresponding poselet cluster
for the i-th part. The complete pose L can be represented by a graph G = {V ,E }
shown in Fig. 9.1. A vertex i ∈ V denotes the i-th part and an edge (i, j) ∈ E repre-
sents the spatial constraint between the i-th and the j-th parts.Wedefine the following
scoring function to measure the compatibility of the triple (I, L , Y ):

F(I, L , Y ) = ωY (I ) +
∑

i∈V
φY (I, li ) +

∑

i, j∈E
ψY (li , l j ) (9.7)

Here we use the subscript to explicitly emphasize that these functions are specific
for a particular action label Y . The details of the potential functions in Eq.9.7 are as
follows.

Root appearance ωY (I ): This potential function models the compatibility of the
action label Y and the global appearance of an image I . It is parametrized as:

ωY (I ) = α�
Y · f (I ) (9.8)

Here f (I ) is a feature vector extracted from the whole image I without considering
the pose. In this paper, we use the HOG descriptor (Dalal and Triggs 2005) of I as
the feature vector f (I ). The parameters αY can be interpreted as a HOG template
for the action category Y . Note that if we only consider this potential function, the
parameters {αY }Y∈Y can be obtained from the weights of a multi-class linear SVM
trained with HOG descriptors f (I ) alone without considering the pose information.

Part appearance φY (I, li ): This potential function models the compatibility of the
configuration li of the i-th part and the local image patch defined by li = (xi , yi , zi ),
under the assumption that the action label is Y . Since our goal is action recognition,
we also enforce that the poselet zi should comes from the action Y . In other words,
if we define Z Y

i as the set of poselet indices for the i-th part corresponding to the
action category Y , this potential function is parametrized as:

φY (I, li ) =
{

β�
i,Y · f (I, li ) if zi ∈ Z Y

i

−∞ otherwise.
(9.9)

Here f (I, li ) is the score of placing the SVM HOG template zi at location (xi , yi )

in the image I .
Pairwise part constraint ψ(li , l j ): This potential function models the compatibil-

ity of the configurations between the i-th and the j-th parts, under the assumption
that the action label is Y . We parametrize this potential function using a vectorized
counts of spatial histogram bins, similar to Ramanan (2006), Yang et al. (2010).
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Again, we enforce poselets zi and z j to come from action Y as follows:

ψY (li , l j ) =
{

γ �
i,Y · bin(li − l j ) if zi ∈ Z Y

i , z j ∈ Z Y
j

−∞ otherwise
(9.10)

Here bin(·) is a vector all zeros with a single one for the occupied bin.
Note that if the potential functions and model parameters in Eqs. (9.7, 9.8, 9.9,

9.10) do not depend on the action label Y , the part appearance φ(·) and pairwise part
constraint ψ(·) exactly recover the human parsing model in Sect. 9.4.

9.5.3 Learning and Inference

We define the score of labeling an image I with the action label Y as follows:

H(I, Y ) = max
L

F(I, L , Y ) (9.11)

Given the model parameters � = {α, β, γ }, Eq. 9.11 is a standard MAP inference
problem in undirected graphical models. We can approximately solve it using mes-
sage passing scheme similar to that in Sect. 9.4.2. The predicted action label Y ∗ is
chosen as Y ∗ = argmaxY H(I, Y ).

We adopt the latent SVM (Felzenszwalb et al. 2010) framework for learning the
model parameters. First, it is easy to see that Eq.9.7 can bewritten as a linear function
of model parameters as F(I, L , Y ) = ���(I, L , Y ), where � is the concatenation
of all the model parameters (i.e., α, β and γ ) and �(I, L , Y ) is the concatenation
of the corresponding feature vectors. Given a set of training examples in the form
of {I n, Ln, Y n}N

n=1, the model parameters are learned by solving the following opti-
mization problem:

min
�,ξ

1

2
||�||2 + C

∑

n

ξ n, s.t. ∀n, ∀Y (9.12)

H(I n, Y n) − H(I n, Y ) ≥ �(Y, Y n) − ξ n (9.13)

It is easy to show that Eqs. (9.12, 9.13) can be equivalently written as:

min
�

1

2
||�||2 + C

∑

n

Rn, where (9.14)

Rn = max
Y,L

(
�(Y, Y n) + �� · �(I n, Y )

)
− max

L
�� · �(I n, L , Y n)

The problem in Eq.9.14 is not convex, but we can use simple stochastic sub-
gradient descent to find a local optimum. Let us define:
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(Y ∗, L∗) = argmax
Y,L

(�(Y, Y n) + �� · �(I n, L , Y ))

L ′ = argmax
L

(�� · �(I n, L , Y n))

Then the gradient of Eq.9.14 can be computed as:

� + C
∑

n

(
�(I n, L∗, Y ∗) − �(I n, L ′, Y n)

)

To initialize the parameter learning, we first learn a pose estimation model using
the labeled (I n, Ln) collected from training exampleswith class labelY . The parame-
ters of these pose estimation models are used to initialize βY and γY . The parameters
αY are initialized from a linear SVM model based on HOG descriptors without
considering the poses.

9.6 Experiments

In this section, we present our experimental results on human parsing (Sect. 9.6.1)
and action recognition (Sect. 9.6.2).

9.6.1 Experiments on Human Parsing

There are several data sets popular in the human parsing community, for example,
Buffy data set (Ferrari et al. 2008), PASCAL stickmen data set (Eichner and Ferrari
2009). But these data sets are not suitable for us for several reasons. First of all, they
only contain upper-bodies, but we are interested in full-body parsing. Second, as
pointed out in Tran and Forsyth (2010), there are very few pose variations in those
data sets. In fact, previous work has exploited this property of these data sets by
pruning search spaces using upper-body detection and segmentation (Ferrari et al.
2008), or by building appearance model using location priors (Eichner and Ferrari
2009). Third, the contrast of image frames of the Buffy data set is relatively low. This
issue suggests that better performance can be achieved by engineering detectors to
overcome the contrast difficulties. Please refer to the discussion in Tran and Forsyth
(2010) for more details. In our work, we choose to use two data sets1 containing
very aggressive pose variations. The first one is the UIUC people data set introduced
in Tran and Forsyth (2010). The second one is a new sport image data set we have
collected from the Internet which has been used in Wang et al. (2011). Figure9.8
shows scatter plots of different body parts of our data sets compared with the Buffy

1Both data sets can be downloaded from http://vision.cs.uiuc.edu/humanparse.

http://vision.cs.uiuc.edu/humanparse
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mrarewol+daehmrareppu+daeh

Buffy UIUC people sport images Buffy UIUC people sport images

Fig. 9.8 Scatter plots of heads (red) and upper/lower arms (blue and green) with respect to fixed
upper body position on three data sets

data set (Ferrari et al. 2008) using a visualization style similar to Tran and Forsyth
(2010) . It is clear that the two data sets used in this paper have muchmore variations.

9.6.1.1 UIUC People Data Set

The UIUC people data set (Tran and Forsyth 2010) contains 593 images (346 for
training, 247 for testing). Most of them are images of people playing badminton.
Some are images of people playing Frisbee, walking, jogging or standing. Sample
images and their parsing results are shown in the first three rows of Fig. 9.9. We
compare with two other state-of-the-art approaches that do full-body parsing (with
published codes): the improved pictorial structure by Andriluka et al. (2009), and the
iterative parsing method by Ramanan (2006). The results are also shown in Fig. 9.9.

To quantitatively evaluate different methods, we measure the percentage of cor-
rectly localized bodyparts. Following the convention proposed inFerrari et al. (2008),
a body part is considered correctly localized if the endpoints of its segment lies within

Ours PS IIP Ours PS IIP Ours PS IIP

Fig. 9.9 Examples of human body parsing on the UIUC people data set. We compare our method
with the pictorial structure (PS) (Andriluka et al. 2009) and the iterative image parsing (IIP)
(Ramanan 2006). Notice the large pose variations, cluttered background, self-occlusions, and many
other challenging aspects of the data set
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Table 9.1 Human parsing results by our method and two comparison methods (Ramanan 2006;
Andriluka et al. 2009) on two data sets. The percentage of correctly localized parts is shown for
each primitive part. If two numbers are shown in one cell, they indicate the left/right body parts. As
a comparison, we also show the results of using only rigid parts (basic-level)

(a) UIUC people data set

Method Torso Upper leg Lower leg Upper arm Forearm Head

Ramanan
(2006)

44.1 11.7 7.3 25.5 25.1 11.3 10.9 25.9 25 30.8

Andriluka
et al. (2009)

70.9 37.3 35.6 23.1 22.7 22.3 30.0 9.7 10.5 59.1

Our method
(basic-level)

79.4 53.8 53.4 47.8 39.7 17.8 21.1 11.7 16.6 65.2

Our method
(full model)

86.6 58.3 54.3 53.8 46.6 28.3 33.2 23.1 17.4 68.8

(b) Sport image data set

Method Torso Upper leg Lower leg Upper arm Forearm Head

Ramanan
(2006)

28.7 7.4 7.2 17.6 20.8 8.3 6.6 20.2 21 12.9

Andriluka
et al. (2009)

71.5 44.2 43.1 30.7 31 28 29.6 17.3 15.3 63.3

Our method
(basic-level)

73.3 45.0 47.6 40.4 39.9 19.4 27.0 13.3 9.9 47.5

Our method
(full model)

75.3 50.1 48.2 42.5 36.5 23.3 27.1 12.2 10.2 47.5

50% of the ground-truth segment length from their true locations. The comparative
results are shown in Table9.1a. Our method outperforms other approaches in local-
izing most of body parts. We also show the result (3rd row, Table9.1a) of using only
the basic-level poselets corresponding to the rigid parts. It is clear that our full model
using hierarchical poselets outperforms using rigid parts alone.

Detection and parsing: An interesting aspect of our approach is that it produces
not only the configurations of primitive parts, but also the configurations of other
larger body parts. These pieces of information can potentially be used for applications
(e.g., gesture-based HCI) that do not require precise localizations of body segments.
In Fig. 9.10, we visualize the configurations of four larger parts on some examples.
Interestingly, the configuration of the whole body directly gives us a person detector.
So our model can be seen as a principled way of unifying human pose estimation,
person detection, and many other areas related to understanding humans. In the first
row of Table9.2, we show the results of person detection on the UIUC people data set
by running our human parsing model, then picking the bounding box corresponding
to the part “whole body” as the detection.We comparewith the state-of-the-art person
detectors in Felzenszwalb et al. (2010) andAndriluka et al. (2009). Sincemost images
contain one person, we only consider the detection with the best score on an image
for all the methods. We use the metric defined in the PASCAL VOC challenge to
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Fig. 9.10 Examples of other information produced by our model. On each image, we show
bounding boxes corresponding to the whole body, left arm, right arm and legs. The size of each
bounding box is estimated from its corresponding poselet cluster

Table 9.2 Comparison of accuracies of person detection on both data sets. In our method, the
configuration of the poselets corresponding to the whole body can be directly used for person
detection

Our method Felzenszwalb et al. (2010) Andriluka et al. (2009)

UIUC people 66.8 48.58 50.61

Sport image 63.94 45.61 59.94

measure the performance. A detection is considered correct if the intersection over
union with respect to the ground truth bounding box is at least 50%. It is interesting
to see that our method outperforms other approaches, even though it is not designed
for person detection.

9.6.1.2 Sport Image Data Set

The UIUC people data set is attractive because it has very aggressive pose and spatial
variations. But one limitation of that data set is that it mainly contains images of peo-
ple playing badminton. One might ask what happens if the images are more diverse.
To answer this question, we have collected a new sport image data set from more
than 20 sport categories, including acrobatics, American football, croquet, cycling,
hockey, figure skating, soccer, golf and horseback riding. There are in total 1299
images. We randomly choose 649 of them for training and the rest for testing. The
last three rows of Fig. 9.9 show examples of human parsing results, together with
results of Andriluka et al. (2009) and Ramanan (2006) on this data set. The quanti-
tative comparison is shown in Table9.1b. We can see that our approach outperforms
the other two on the majority of body parts (Fig. 9.11).

Similarly, we perform person detection using the poselet corresponding to the
whole body. The results are shown in the second row of Table9.2. Again, our method
outperforms other approaches.
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Ours PS IIP Ours PS IIP Ours PS IIP

Fig. 9.11 Examples of human body parsing on the sport image data set. We compare our method
with the pictorial structure (PS) (Andriluka et al. 2009) and the iterative image parsing (IIP)
(Ramanan 2006)

9.6.1.3 Kinematic Tracking

To further illustrate our method, we apply the model learned from the UIUC peo-
ple data set for kinematic tracking by independently parsing the human figure in
each frame. In Fig. 9.12, we show our results compared with applying the method
in Ramanan (2006). It is clear from the results that kinematic tracking is still a very
challenging problem. Both methods make mistakes. Interestingly, when our method
makes mistakes (e.g., figures with blue arrows), the output still looks like a valid
body configuration. But when the method in Ramanan (2006) makes mistakes (e.g.,
figures with red arrows), the errors can be very wild.We believe this can be explained
by the very different representations used in these two methods. In Ramanan (2006),
a human body is represented by the set of primitive parts. Kinematic constraints are
used to enforce the connectivity of those parts. But these kinematic constraints have
no idea what a person looks like as a whole. In the incorrect results of Ramanan
(2006), all the primitive parts are perfectly connected. The problem is their connec-
tivity does not form a reasonable human pose as a whole.

In contrast, our model uses representations that capture a spectrum of both large
and small body parts. Even in situations where the small primitive parts are hard to
detect, our method can still reason about the plausible pose configuration by pulling
information from large pieces of the human bodies.

9.6.2 Experiments on Action Recognition

We test our approach on two publicly available data sets: the still images data set
(Ikizler et al. 2008) and the Leeds sport data set (Johnson and Everingham 2010).
Both data sets contain images of people with ground-truth pose annotations and
action labels.
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Fig. 9.12 Examples of kinematic tracking on the baseball and figure skating data sets. The 1st and
3rd rows are our results. The 2nd and 4th rows are results of Ramanan (2006). Notice howmistakes
of our method (blue arrows) still look like valid human poses, while those of Ramanan (2006) (red
arrows) can be wild

9.6.2.1 Still Image Data Set

We first demonstrate our model on the still image data set collected in Ikizler et al.
(2008). This data set contains more than 2000 static images from five action cat-
egories: dancing, playing golf, running, sitting, and walking. Sample images are
shown in the first two rows of Fig. 9.5. Yang et al. (2010) have annotated the pose
with 14 joints on the human body on all the images in the data set. Following Yang
et al. (2010), we choose 1/3 of the images from each category to form the training
data, and the remaining ones as the test data.2

We compare our approach with two baseline method. The first baseline is a multi-
class SVMbased onHOG features. For the second baseline, we usemixtures of SVM
models similar to that in Felzenszwalb et al. (2010). We set the number of mixtures
for each class to be the number of whole-body poselets. From Table9.3, we can see
that our approach outperforms the baseline by a large margin. Our performance is

2A small number of images/annotations we obtained from the authors of Yang et al. (2010) are
somehow corrupted due to some file-system failure. We have removed those images from the data
set.
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Table 9.3 Performance on the still image data set. We report both overall and average per-class
accuracies

Method Overall Avg per-class

Our approach 65.15 70.77

Yang et al. (2010)a 63.49 68.37

SVM mixtures 62.8 64.05

Linear SVM 60.32 61.5
aThe results are based on our own implementation

dancing playing golf running

sitting walking

Fig. 9.13 Visualization of some inferred poselets on the still image data set. These test images
have been correctly recognized by our model. For a test image, we show three poselets that have
high responses. Each poselet is visualized by showing several patches from its cluster

also better than the reported results in Yang et al. (2010). However, the accuracy
numbers are not directly comparable since the training/testing data sets and features
are not completely identical. In order to do a fair comparison, we re-implemented
the method in Yang et al. (2010) by only keeping the parts used in Yang et al. (2010).
Our full model performs better.

In Fig. 9.13,we visualize several inferred poselets on some exampleswhose action
categories are correctly classified. Each poselet is visualized by showing several
patches from the corresponding poselet cluster.

9.6.2.2 Leeds Sport Data Set

The Leeds sport data set (Johnson and Everingham 2010) contains 2000 images from
eight different sports: athletics, badminton, baseball, gymnastics, parkour, soccer,
tennis, volleyball. Each image in the data set is labeled with 14 joints on the human
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Table 9.4 Performance on the Leeds sport data set. We report both overall and average per-class
accuracies

Method Overall Avg per-class

Our approach 54.6 54.6

SVM mixtures 52.7 49.13

Linear SVM 52.7 52.93

athletics badminton baseball

soccer tennis volleyball

Fig. 9.14 Visualization of some inferred poselets on the Leeds sport data set. These test images
have been correctly recognized by our model. For a test image, we show three poselets that have
high responses. Each poselet is visualized by showing several patches from its cluster

body. Sample images and the labeled joints are shown in the last four rows of Fig. 9.5.
This data set is very challenging due to very aggressive pose variations.

We choose half of the images for training, and the other half for testing. The
performance is shown in Table9.4. Again, we compare with the HOG-based SVM
and SVMmixtures as the baselines. We can see that our method still outperforms the
baseline. Similarly, we visualize the inferred poselets on some examples in Fig. 9.14.

9.6.2.3 Unseen Actions

An interesting aspect of our model is that it outputs not only the predicted action
label, but also some rich intermediate representation (i.e., action-specific hierarchical
poselets) about the human pose. This information can potentially be exploited in
various contexts. As an example, we apply the model learned from the still image
data set to describe images from sports categories not available during training. In
Fig. 9.15, we show examples of applying the model learned from the still image



298 Y. Wang et al.

American football→dancing croquet→playing golf field hockey→running

Fig. 9.15 Visualization of inferred poses on unseen actions. Here the actions of the test images
(American football, croquet andfield hockey) are not available during training.Ourmodel recognizes
these examples as dancing, playing golf, running, respectively. Some of the results (e.g., croquet→
golfing) make intuitive sense. Others (e.g., football→dancing) might not be intuitive at first. But
if we examine the poselets carefully, we can see that various pieces of the football player are very
similar to those found in the dancing action

data set to images with unseen action categories. The action categories (American
football, croquet and field hockey) for the examples in Fig. 9.15 are disjoint from the
action categories of the still image data set. In this situation, our model obviously
cannot correctly predict the action labels (since they are not available during training).
Instead, it classifies those images using the action labels it has learned. For example,
it classifies “American football” as “dancing”, “croquet” as “playing golf”, “field
hockey” as “running”. More importantly, our model outputs poselets for various
parts which support its prediction. From these information, we can say a lot about
“American football” even though the predicted action label is wrong. For example,
we can say it is closer to “dancing” than “playing golf” because the pose of the
football player in the image is similar to certain type of dancing legs, and certain
type of dancing arms.

9.7 Conclusion and Future Work

We have presented hierarchical poselets, a new representation for modeling human
poses. Different poselets in our representation capture human poses at various levels
of granularity. Some poselets correspond to the rigid parts typically used in previous
work. Others can correspond to large pieces of the human bodies. Poselets corre-
sponding to different parts are organized in a structured hierarchical model. The
advantage of this representation is that it infers the human pose by pulling informa-
tion across various levels of details, ranging from the coarse shape of the whole body,
to the fine-detailed information of small rigid parts. We have demonstrate the appli-
cations of this representation in human parsing and human action recognition from
static images. Recently, similar ideas (Sun and Savarese 2011) have been applied in
other applications, such as object detection.
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As future work, we would like to explore how to automatically construct the
parts and the hierarchy using data-driven methods. This will be important in order
to extend hierarchical poselets to other objects (e.g., birds) that do not have obvious
kinematic structures. We also like to apply the hierarchical poselet representation to
other vision tasks, such as segmentation.
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Chapter 10
Keep It Simple and Sparse: Real-Time
Action Recognition

Sean Ryan Fanello, Ilaria Gori, Giorgio Metta and Francesca Odone

Abstract Sparsity has been showed to be one of the most important properties
for visual recognition purposes. In this paper we show that sparse representation
plays a fundamental role in achieving one-shot learning and real-time recognition
of actions. We start off from RGBD images, combine motion and appearance cues
and extract state-of-the-art features in a computationally efficient way. The proposed
method relies on descriptors based on 3D Histograms of Scene Flow (3DHOFs)
and Global Histograms of Oriented Gradient (GHOGs); adaptive sparse coding is
applied to capture high-level patterns from data. We then propose a simultaneous
on-line video segmentation and recognition of actions using linear SVMs. The main
contribution of the paper is an effective real-time system for one-shot actionmodeling
and recognition; the paper highlights the effectiveness of sparse coding techniques
to represent 3D actions. We obtain very good results on three different datasets: a
benchmark dataset for one-shot action learning (the ChaLearn Gesture Dataset), an
in-house dataset acquired by a Kinect sensor including complex actions and gestures
differing by small details, and a dataset created for human-robot interaction purposes.
Finally we demonstrate that our system is effective also in a human-robot interaction
setting and propose a memory game, “All Gestures You Can”, to be played against
a humanoid robot.
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10.1 Introduction

Action recognition as a general problem is a very fertile research theme due to its
strong applicability in several real world domains, ranging from video-surveillance
to content-based video retrieval and video classification. This paper refers specifi-
cally to action recognition in the context of Human–Machine Interaction (HMI), and
therefore it focuses on whole-body actions performed by a human who is standing
at a short distance from the sensor.

Imagine a system capable of understanding when to turn the TV on, or when to
switch the lights off on the basis of a gesture; themain requirement of such a system is
an easy and fast learning and recognition procedure. Ideally, a single demonstration
suffices to teach the system a new gesture. More importantly, gestures are powerful
tools, throughwhich languages canbebuilt. In this regard, developing a systemable to
communicate with deaf people, or to understand paralyzed patients, would represent
a great advance, with impact on the quality of life of impaired people. Nowadays
these scenarios are likely as a result of the spread of imaging technologies providing
real-time depth information at consumer’s price (as for example the Kinect (Shotton
et al. 2011) by Microsoft); these depth-based sensors are drastically changing the
field of action recognition, enabling the achievement of high performance using fast
algorithms.

Following this recent trend we propose a complete system based on RGBD video
sequences, which models actions from one example only. Our main goal is to recog-
nize actions in real-time with high accuracy; for this reason we design our system
accounting for good performance as well as low computational complexity. The
method we propose can be summarized as follows: after segmentation of the moving
actor,we extract two types of features fromeach image, namely,GlobalHistogramsof
OrientedGradient (GHOGs) tomodel the shape of the silhouette, and 3DHistograms
of Flow (3DHOFs) to describe motion information. We then apply a sparse coding
stage, which allows us to take care of noise and redundant information and produces
a compact and stable representation of the image content. Subsequently, we summa-
rize the action within adjacent frames by building feature vectors that describe the
feature evolution over time. Finally, we train a Support Vector Machine (SVM) for
each action class.

Our framework can segment and recognize actions accurately and in real-time,
even though they are performed in different environments, at different speeds, or
combined in sequences of multiple actions. Furthermore, thanks to the simultaneous
appearance and motion description complemented by the sparse coding stage, the
method provides a one-shot learning procedure. These functions are shown on three
different experimental settings: a benchmark dataset for one-shot action learning (the
ChaLearnGestureDataset), an in-house dataset acquired by aKinect sensor including
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complex actions and gestures differing by small details, and an implementation of
the method on a humanoid robot interacting with humans.

In order to demonstrate that our system can be efficiently engaged in real world
scenarios, we developed a real-time memory game against a humanoid robot, called
“All Gestures You Can” (Gori et al. 2012). Our objective in designing this interac-
tion game is to stress the effectiveness of our gesture recognition system in complex
and uncontrolled settings. Nevertheless, our long term goal is to consider more gen-
eral contexts, which are beyond the game itself, such as rehabilitation and human
assistance. Our game may be used also with children with memory impairment,
for instance the Attention Deficit/Hyperactivity Disorder (ADHD) (Comoldi et al.
1999). These children cannot memorize items under different conditions, and have
low performances during implicit and explicit memory tests (Burden and Mitchell
2005). Interestingly, Comoldi et al. (1999) shows that when ADHD children were
assisted in the use of an appropriate strategy, they performed the memory task as
well as controls. The game proposed in this paper could be therefore used to train
memory skills to children with attention problems, using the robot as main assistant.
The interaction with the robot may increase their motivation to maintain attention
and help with the construction of a correct strategy.

The paper is organized as follows: in Sect. 10.2 we briefly review the state of the
art. In Sect. 10.3 sparse representation is presented; Sect. 10.4 describes the complete
modeling and recognition pipeline. Section 10.5 validates the approach in different
scenarios; Sect. 10.6 shows a real application in the context of Human Robot Interac-
tion (HRI). Finally, Sect. 10.7, presents future directions and possible improvements
of the current implementation.

10.2 Related Work

The recent literature is richof algorithms for gesture, action, and activity recognition—
we refer the reader toAggarwal andRyoo (2011), Poppe (2010) for a complete survey
of the topic. Even though many theoretically sound, good performing and original
algorithms have been proposed, to the best of our knowledge, none of them fulfills at
the same time real-time, one-shot learning and high accuracy requirements, although
such requirements are all equally important in real world application scenarios.

Gesture recognition algorithms differ in many aspects. A first classification may
be done with respect to the overall structure of the adopted framework, i.e. how
the recognition problem is modeled. In particular, some approaches are based on
machine learning techniques, where each action is described as a complex structure;
in this class we find methods based on Hidden Markov Models (Malgireddy et al.
2012), Coupled Hidden Semi-Markov models (Natarajan and Nevatia 2007), action
graphs (Li et al. 2010) or Conditional Markov Fields (Chatzis et al. 2013). Other
methods are based on matching: the recognition of actions is carried out through a
similarity match with all the available data, and the most similar datum dictates the
estimated class (Seo and Milanfar 2012; Mahbub et al. 2011).
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The two approaches are different in many ways. Machine learning methods tend
to be more robust to intra-class variations, since they distill a model from differ-
ent instances of the same gesture, while matching methods are more versatile and
adapt more easily to one-shot learning, since they do not require a batch training
procedure. From the point of view of data representation, the first class of methods
usually extracts features from each frame, whereas matching-based methods try to
summarize all information extracted from a video in a single feature vector. A recent
and prototypical example of machine learning method can be found in Malgireddy
et al. (2012), which proposes to extract local features (Histograms of Flow and His-
tograms of Oriented Gradient) on each frame and apply a bag-of-words step to obtain
a global description of the frame. Each action is thenmodeled as amulti channel Hid-
denMarkovModel (mcHMM). Although the presented algorithm leads to very good
classification performance, it requires a computationally expensive offline learning
phase that cannot be used in real-time for one-shot learning of new actions. Among
the matching-based approaches, Seo and Milanfar (2012) is particularly interesting:
the algorithm extract a new type of features, referred to as 3D LSKs, from space-time
regression kernels, particularly appropriate to identify the spatio-temporal geometric
structure of the action; it then adopts theMatrix Cosine Similarity measure (Shneider
and Borlund 2007) to perform a robust matching. Another recent method following
the trend of matching-based action recognition algorithms is Mahbub et al. (2011);
in this work themain features are standard deviation on depth (STD),Motion History
Image (MHI) (Bobick and Davis 2001) and a 2D Fourier Transformation in order to
map all information in the frequency domain. This procedure shows some benefits,
for instance the invariance to camera shifts. For the matching step, a simple and
standard correlation measure is employed. Considering this taxonomy, the work we
propose falls within the machine learning approaches, but addresses specifically the
problem of one-shot learning. To this end we leverage on the richness of the video
signal used as a training example and on a dictionary learning approach to obtain an
effective and distinctive representation of the action.

An alternative to classifying gesture recognition algorithms is based on the data
representation of gesture models. In this respect there is a predominance of features
computed on local areas of single frames (local features), but also holistic features
are often used on the whole image or on a region of interest. Among the most known
methods, it is worth mentioning the spatio-temporal interesting points (Laptev and
Lindeberg 2003), spatio-temporal Hessian matrices (Willems et al. 2008), Gabor Fil-
ters (Bregonzio et al. 2009), Histograms of Flow (Fanello et al. 2010), Histograms of
Oriented Gradient (Malgireddy et al. 2012), semi-local features (Wang et al. 2012),
combination of multiple features (Laptev et al. 2008), Motion History Image (MHI)
(Bobick and Davis 2001), Space–Time shapes Gorelick et al. (2007), Self-Similarity
Matrices Efros et al. (2003). Also, due to the recent diffusion of real-time 3D vision
technology, 3D features have been recently employed (Gori et al. 2012). For compu-
tational reasons as well as the necessity of specific invariance properties, we adopt
global descriptors, computed on a region of interest obtained through motion seg-
mentation. We do not rely on a single cue but rather combine motion and appearance
similarly to Malgireddy et al. (2012).
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The most similar works to this paper are in the field of HMI as for example Lui
(2012) and Wu et al. (2012): they both exploit depth information and aim at one-
shot learning trying to achieve low computational cost. The first method employs
a nonlinear regression framework on manifolds: actions are represented as tensors
decomposed viaHigherOrder Singular ValueDecomposition. The underlying geom-
etry of tensor space is used. The second one extracts Extended-MHI as features
and uses Maximum Correlation Coefficient (Hirschfeld 1935) as classifier. Features
from RBG and Depth streams are fused via aMultiview Spectral Embedding (MSE).
Differently from these works, our approach aims specifically to obtain an accurate
real-time recognition from one video example only.

We conclude the section with a reference to some works focusing on continu-
ous action or activity recognition (Ali and Aggarwal 2001; Green and Guan 2004;
Liao et al. 2006; Alon et al. 2009). In this case training and test videos contain
many sequential gestures, therefore the temporal segmentation of videos becomes
fundamental. Our work deals with continuous action recognition as well, indeed
the proposed framework comprehends a novel and robust temporal segmentation
algorithm.

10.3 Visual Recognition with Sparse Data

One-shot learning is a challenging requirement as the small quantity of training data
makes the modeling phase extremely hard. For this reason, in one-shot learning
settings a careful choice of the data representation is very important. In this work
we rely on sparse coding to obtain a compact descriptor with a good discriminative
power even if it is derived from very small datasets.

Themain concept behind sparse coding is to approximate an input signal as a linear
combination of a few components selected from a dictionary of basic elements, called
atoms. We refer to adaptive sparse coding when the coding is driven by data. In this
case, we require a dictionary learning stage, where the dictionary atoms are learnt
(Olshausen and Fieldt 1997; Yang et al. 2009; Wang et al. 2010).

The motivations behind the use of image coding arise from biology: there is
evidence that similar signal codinghappens in the neurons of the primaryvisual cortex
(V1), which produces sparse and overcomplete activations (Olshausen and Fieldt
1997). From the computational point of view the objective is to find an overcomplete
model of images, unlike methods such as PCA, which aims at finding a number of
components that is lower than the data dimensionality. Overcomplete representation
techniques have become very popular in applications such as denoising, inpainting,
super-resolution, segmentation (Elad and Aharon 2006; Mairal et al. 2008a, b) and
object recognition (Yang et al. 2009). In this work we assess their effectiveness also
for gesture recognition.

Let X = [x1, . . . , xm] ∈ R
n×m be the matrix whose m columns xi ∈ R

n are the
feature vectors. The goal of adaptive sparse coding is to learn a dictionaryD (a n × d
matrix, with d the dictionary size and n the feature vector size) and a codeU (a d × m
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matrix) that minimize the reconstruction error:

min
D,U

‖X − DU‖2F + λ‖U‖1, (10.1)

where ‖ · ‖F is the Frobenius norm. As for the sparsity, it is known that the L1-norm
yields to sparse results while being robust to signals perturbations. Other penalties
such as the L0-norm could be employed, however the problem of finding a solution
becomes NP-hard and there is no guarantee that greedy algorithms reach the optimal
solution. Notice that fixing U, the above optimization reduces to a least square prob-
lem, whilst, given D, it is equivalent to linear regression with the sparsifying norm
L1. The latter problem is referred to as a feature selection problem with a known
dictionary (Lee et al. 2007). One of themost efficient algorithms that converges to the
optimal solution of the problem in Eq.10.1 for a fixed D, is the feature-sign search
algorithm (Lee et al. 2007). This algorithm searches for the sign of the coefficients
U; indeed, considering only non-zero elements the problem is reduced to a standard
unconstrained quadratic optimization problem (QP), which can be solved analyti-
cally. Moreover it performs a refinement of the signs if they are incorrect. For the
complete procedure we refer the reader to Lee et al. (2007).

In the context of recognition tasks, it has been proved that a sparsification of
the data representation improves the overall classification accuracy (see for instance
Guyon and Elisseeff 2003; Viola and Jones 2004; Destrero et al. 2009 and refer-
ences therein). In this case sparse coding is often cast into a coding-pooling scheme,
which finds its root in the Bag of Words paradigm. In this scheme a coding opera-
tor is a function f (xi ) = ui that maps xi to a new space ui ∈ R

k ; when k > n the
representation is called overcomplete. The action of coding is followed by a pool-
ing stage, whose purpose is to aggregate multiple local descriptors in a single and
global one. Common pooling operators are the max operator, the average operator,
or the geometric L p-norm pooling operator (Feng et al. 2011). More in general, a
pooling operator takes the codes located in S regions — for instance cells of the
spatial pyramid, as in Yang et al. (2009)—and builds a succinct representation. We
define as Ys the set of locations within the region s. Defining the pooling operator
as g, the resultant feature can be rewritten as: p(s) = g(i∈Ys )(u(i)). After this stage, a
region s of the image is encoded with a single feature vector. The final descriptor of
the image is the concatenation of the descriptors ps among all the regions. Notice
that the effectiveness of pooling is subject to the coding stage. Indeed, if applied on
non-coded descriptors, pooling would bring to a drastic loss of information.

10.4 Action Recognition System

In this section we describe the versatile real-time action recognition system we pro-
pose. The system, depicted in Fig. 10.1, consists of three layers, that can be summa-
rized as follows:
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Fig. 10.1 Overview of the recognition system, where video segmentation and classification are
performed simultaneously

• Region Of Interest detection: We detect a Region of Interest (ROI), where the
human subject is actually performing the action.We use the combination ofmotion
and depth to segment the subject from the background.

• Action Representation: Each ROI within a frame is mapped into a feature space
with a combination of 3D Histogram of Flow (3DHOF) and Global Histogram
of Oriented Gradient (GHOG) on the depth map. The resultant 3DHOF+GHOG
descriptor is processed via a sparse coding step to compute a compact and mean-
ingful representation of the performed action.

• Action Learning: Linear SVMs are used on frame buffers. A novel on-line video
segmentation algorithm is proposed which allows isolating different actions while
recognizing the action sequence.

10.4.1 Region of Interest Segmentation

The first step of each action recognition system is to identify correctly where in
the image the action is occurring. Most of the algorithms in the literature involve
background modeling techniques (Stauffer and Grimson 1999), or space-time image
filtering in order to extract the interesting spatio-temporal locations of the action
(Laptev and Lindeberg 2003). Other approaches require an a priori knowledge of the
body pose (Lv and Nevatia 2007). This task is greatly simplified in our architecture,
since in human-machine interaction we can safely assume the human to stand in
front of the camera sensors and that there is no other motion in the scene. For each
video in the dataset, we initially compute the frame differences within consecutive
frames in a small buffer, obtaining the set P of pixels that are moving. Relying
on this information, we compute the mean depth μ of the pixels belonging to P ,
which corresponds to the mean depth of the subject within the considered buffer.
Thus, for the rest of the video sequence, we select the region of interest as ROI(t) =
{pi, j (t) : μ − ε ≤ d(pi, j (t)) ≤ μ + ε}, where d(pi, j (t)) is the depth of the pixel
pi, j (t) at time t and ε is a tolerance value. In Fig. 10.2 examples of segmentation are
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Fig. 10.2 Region of Interest detection. Left RGB video frames. Center depth frames. Right the
detected ROI

shown. We determined empirically that this segmentation procedure achieves better
performance with respect to classic thresholding algorithms such as Otsu’s method
(Otsu 1979).

10.4.2 Action Representation

Finding a suitable representation is the most crucial part of any recognition system.
Ideally, an image representation should be both discriminative and invariant to image
transformations. A discriminative descriptor should represent features belonging to
the same class in a similar way, while it should show low similarity among data
belonging to different classes. The invariance property, instead, ensures that image
transformations such as rotation, translation, scaling do not affect the final repre-
sentation. In practice, there is a trade-off between these two properties (Varma and
Ray 2007): for instance, image patches are highly discriminative but not invariant,
whereas image histograms are invariant but not discriminative, since different images
could be associated to the same representation. When a lot of training data is pro-
vided, one could focus on a more discriminative and less invariant descriptor. In our
specific case however, where only one training example is provided, invariance is a
necessary condition in order to provide discriminant features; this aspect is greatly
considered in our method.

From the neuroscience literature it is known that body parts are represented
already in the early stages of human development (Mumme 2001) and that certainly
adults have prior knowledge on the body appearance. Many suggests that motion
alone can be used to recognize actions (Bisio et al. 2010). In artificial systems this
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developmental-scale experience is typically not available, although actions can still
be represented from twomain cues:motion and appearance (Giese and Poggio 2003).
Although many variants of complex features describing human actions have been
proposed, many of them imply computationally expensive routines. Differently, we
rely on simple features in order to fulfill real-time requirements, and we show that
they still have a good discriminative power. In particular we show that a combination
of 3D Histograms of Flow (3DHOFs) and Global Histograms of Gradient (GHOGs)
models satisfactorily human actions. When a large number of training examples is
available, these two features should be able to describe a wide variety of actions,
however in one-shot learning scenarios with noisy inputs, they are not sufficient. In
this respect, a sparse representation, which keeps only relevant and robust compo-
nents of the feature vector, greatly simplifies the learning phase making it equally
effective.

10.4.2.1 3D Histogram of Flow

Whereas 2D motion vector estimation has been largely investigated and various fast
and effective methods are available today (Papenberg et al. 2006; Horn and Shunk
1981), the scene flow computation (or 3D motion field estimation) is still an active
research field due to the required additional binocular disparity estimation prob-
lem. The most promising works are the ones from Wedel et al. (2010), Huguet and
Devernay (2007) and Cech et al. (2011); however these algorithms are computation-
ally expensive andmay require computation time in the range of 1.5 s per frame. This
high computational cost is due to the fact that scene flow approaches try to estimate
both the 2D motion field and disparity changes. Because of the real-time require-
ment, we opted for a simpler and faster method that produces a coarser estimation,
but is effective for our purposes.

For each frame Ft we compute the 2D optical flow vectors U (x, y, t) and
V (x, y, t) for the x and y components with respect to the previous frame Ft−1, via
the Fanerbäck algorithm (Farnebäck 2003). Each pixel (xt−1, yt−1) belonging to the
ROI of the frame Ft−1 is reprojected in 3D space (Xt−1,Yt−1, Zt−1) where the Zt−1

coordinate is measured through the depth sensor and Xt−1,Yt−1 are computed by:

(
Xt−1

Yt−1

)
=

⎛
⎜⎝

(xt−1 − x0)Zt−1

f
(yt−1 − y0)Zt−1

f

⎞
⎟⎠ ,

where f is the focal length and (x0, y0)T is the principal point of the sensor. Simi-
larly, we can reproject the final point (xt , yt ) of the 2D vector representing the flow,
obtaining another 3D vector (Xt ,Yt , Zt )

T . For each pixel of the ROI, we can define
the scene flow as the difference of the two 3D vectors in two successive frames Ft−1

and Ft :



312 S.R. Fanello et al.

Fig. 10.3 The figure illustrates high level statistics obtained by the proposed scene flow description
(3D-HOFs). Starting from the left we show the histogram of the scene flow directions at time t ,
for a moving hand going on the Right , Le f t , Forward, Backward respectively. Each cuboid
represents one bin of the histogram, for visualization purposes we divided the 3D space in n × n × n
bins with n = 4. Filled cuboids represent high density areas

D = (Ẋ , Ẏ , Ż)T =
= (Xt − Xt−1,Yt − Yt−1, Zt − Zt−1)

T .

Once the 3Dflow for each pixel of the ROI at time t has been computed, we normalize
it with respect to the L2-norm, so that the resulting descriptors D1, . . . ,Dn (n pixels
of the ROI) are invariant to the overall speed of the action. In order to extract a
compact representation we build a 3D Histogram of Flow (3DHOF) z(t) of the 3D
motion vectors, where z(t) ∈ R

n1 and 3
√
n1 is the quantization parameter of the space

(i.e. the bin size). In addition we normalize each 3DHOF z(t) so that
∑

j z j (t) = 1;
hence we guarantee that these descriptors are invariant to the subject of interest’s
scale.

Figure 10.3 shows that the movements toward different directions reveal to be
linearly separable, and the main directions are accurately represented: each cuboid
represents one bin of the histogram, and the 3D space is divided in n × n × n bins
with n = 4. It is possible to notice how, in the Right direction for example, all the
filled bins lay on the semi-space defined by x < 0. Similar observations apply all
cases.

10.4.2.2 Global Histogram of Oriented Gradient

In specific contexts, motion information is not sufficient to discriminate actions, and
information on the pose or appearance becomes crucial. One notable example is the
American Sign Language (ASL), whose lexicon is based mostly on the shape of
the hand. In these cases modeling the shape of a gesture as well as its dynamics is
very important. Thus we extend the motion descriptor with a shape feature com-
puted on the depth map. If we assume the subject to be in front of the camera, it
is unlikely that the perspective transformation would distort his/her pose, shape or
appearance, therefore we can approximately work with invariance to translation and
scale.We are interested in characterizing shapes, and the gradient of the depth stream
shows the highest responses on the contours, thus studying the orientation of the gra-
dient is a suitable choice. The classical Histograms of Oriented Gradient (HOGs)
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(Dalal and Triggs 2005) have been designed for detection purposes and do not show
the above-mentioned invariance; indeed dividing the image in cells makes each sub-
histogram dependent on the location and the dimension of the object. Furthermore,
HOGs exhibit a high spatial complexity, as the classical HOG descriptor belongs
to R

(ncells×nblocks×n2). Since we aim at preserving such invariance as well as lim-
iting the computational complexity, we employed a simpler descriptor, the Global
Histogram of Oriented Gradient (GHOG). This appearance descriptor produces an
overall description of the appearance of the ROI without splitting the image in cells.
We compute the histogram of gradient orientations of the pixels on the entire ROI
obtained from the depth map to generate another descriptor h(t) ∈ R

n2 , where n2
is the number of bins. The scale invariance property is preserved normalizing the
descriptor so that

∑
j h j (t) = 1. Computing this descriptor on the depth map is fun-

damental in order to remove texture information; in fact, in this context, the only
visual properties we are interested in are related to shape.

10.4.2.3 Sparse Coding

At this stage, each frame Ft is represented by two global descriptors: z(t) ∈ R
n1 for

the motion component and h(t) ∈ R
n2 for the appearance component. Due to the

high variability of human actions and to the simplicity of the descriptors, a feature
selection stage is needed to catch the relevant information underlying the data and
discarding the redundant ones such as background or body parts not involved in the
action; to this aim we apply a sparse coding stage to our descriptor.

Given the set of the previously computed 3DHOFs Z = [z(1), . . . , z(K )], where
K is the number of all the frames in the training data, our goal is to learn one motion
dictionary DM (a n1 × d1 matrix, with d1 the dictionary size and n1 the motion
vector size) and the codes UM (a d1 × K matrix) that minimize the Eq.10.1, so that
z(t) ∼ DMuM(t). In the same manner, we define the equal optimization problem for
a dictionary DG (a n2 × d2 matrix) and the codes UG (a d2 × K matrix) for the set
of GHOGs descriptors H = [h(1), . . . ,h(K )]. Therefore, after the Sparse Coding
stage, we can describe a frame as a code u(i), which is the concatenation of the
motion and appearance codes: u(i) = [uM(i),uG(i)].

Notice that we rely on global features, thus we do not need any pooling operator,
which is usually employed to summarize local features into a single one.

10.4.3 Learning and Recognition

The goal of this phase is to learn a model of a given action from data. Since we
are implementing a one-shot action recognition system, the available training data
amounts to one training sequence for each action of interest. In order to model the
temporal extent of an action we extract sets of sub-sequences from a sequence,
each one containing T adjacent frames. In particular, instead of using single frame
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descriptors (described in Sect. 10.4.2), wemove to a concatenation of frames: a set of
T frames is represented as a sequence [u(1), . . . ,u(T )] of codes. This representation
allows us to perform simultaneously detection and classification of actions.

The learning algorithm we adopt is the Support Vector Machine (SVM)
(Vapnik 1998). We employ linear SVMs, since they can be implemented with con-
stant complexity during the test phase fulfilling real-time requirements (Fan et al.
2008).Additionally, recent advances in the object recognitionfield, such asYang et al.
(2009), showed that linear classifiers can effectively solve the classification problem
if a preliminary sparse coding stage has previously been applied. Our experiments
confirm these findings. Another advantage of linear SVMs is that they can be imple-
mented with a linear complexity in training (Fan et al. 2008); given this property,
we can provide a real-time one-shot learning procedure, extremely useful in real
applications.

The remainder of the section describes in details the two phases of action learning
and action recognition.

10.4.3.1 Action Learning

Given a video Vs of ts frames, containing only one action As , we compute a set of
descriptors [u(1), . . . ,u(ts)] as described in Sect. 10.4.2. Then, action learning is
carried out on a set of data that are descriptions of a frame buffer BT (t), where T is
its length:

BT (t) = (u(t − T ), . . . ,u(t − 1),u(t))T .

We use a one-versus-all strategy to train a binary linear SVM for each class As , so
that at the end of the training phase we obtain a set of N linear SVM classifiers
f1(B̄), . . . , fN (B̄), where N is the number of actions. In particular, in this one-shot
learning pipeline, the set of buffers

Bs = [BT (t0), . . . ,BT (ts)]

computed from the single video Vs of the class As are used as positive examples for
the action As . All the buffers belonging to A j with j �= s are the negative examples.
Although we use only one example for each class, we benefit from the chosen repre-
sentation: indeed, descriptors are computed per frame, therefore one single video of
length ts provides a number of examples equal to ts − T where T is the buffer size.
Given the training data {B, y} where B is the set of positive and negative examples
for the primitive As , yi = 1 if the example is positive, yi = −1 otherwise, the goal
of SVM is to learn a linear function (wT , b) such that a new test vector B̄ is predicted
as:

ypred = sign( f (B̄)) = sign(wTB̄ + b).
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10.4.3.2 On-line Recognition: Video Segmentation

Given a test video V , which may contain one or more known actions, the goal is to
predict the sequence of the performed actions. The video is analyzed using a sliding
windowBT (t) of size T . We compute the output score fi (BT (t)) of the i = 1, . . . , N
SVM machines for each test buffer BT (t) and we filter these scores with a low-pass
filter W that attenuates noise. Therefore the new score at time t becomes:

Hi (BT (t)) = W � fi (BT (t)) i = 1, . . . , N , (10.2)

where the � is the convolution operator. Figure 10.4 depicts an example of these
scores computed in real-time. As long as the scores evolve we need to predict (on-
line) when an action ends and another one begins; this is achieved computing the
standard deviation σ(H) for a fixed t over all the scores Ht

i (Fig. 10.4, right chart).
When an action ends we can expect all the SVM output scores to be similar, because
no model should be predominant with respect to idle states; this brings to a local
minimum in the function σ(H). Therefore, each local minimum corresponds to the
end of an action and the beginning of a new one. Let n be the number of local minima
computed from the standard deviation function; there will be n + 1 actions, and in
particular actions with the highest score before and after each break point will be
recognized. We can easily find these minima in real-time: we calculate the mean
value of the standard deviation over time using a sliding window. When the standard
deviation trend is below the mean, all the SVMs scores predict similar values, hence
it is likely that an action has just ended. In Fig. 10.5 the segmented and recognized
actions are shown together with their scores.

Fig. 10.4 The figure illustrates on the left the SVMs scores (Eq.10.2) computed in real-time at
each time step t over a sequence of 170 frames. On the right the standard deviation of the scores and
its mean computed on a sliding window are depicted. The local minima of the standard deviation
function are break points that define the end of an action and the beginning of another one. See
Sect. 10.4.3.2 for details
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Fig. 10.5 The figure illustrates only the scores of the recognized actions via the method described
in Sect. 10.4.3.2. Blue dots are the break points computed by the video segmentation algorithm that
indicate the end of an action and the beginning of a new one

10.5 Experiments

In this section we evaluate the performance of our system in three different settings:

• ChaLearn Gesture Dataset. The first experiment has been conducted on a pub-
licly available dataset, released by ChaLearn (CGD2011) (2011). The main goal
of the experiment is to compare our method with other techniques.

• Kinect Data. In the second experiment we discuss how to improve the recognition
rate using all the functionalities of a real Kinect sensor. Gestures with high level
of detail are easily caught by the system.

• Human-Robot Interaction. For the last experiment we considered a real HMI
scenario: we implement the system on a real robot, the iCub humanoid robot
(Metta et al. 2008), showing the applicability of our algorithm also in human-
robot interaction settings.

For the computation of the accuracy between a sequence of estimated actions and
the ground truth sequence we use the normalized Levenshtein Distance (Levenshtein
1966), defined as:

T eLev = S + D + I

M
,

where each action is treated as a symbol in a sequence, S is the number of substitutions
(misclassifications), D the number of deletions (false negatives), I the number of
insertions (false positives) and M the length of the ground truth sequence. More
specifically, this measure computes the minimum number of modifications that are
required to transform a sequence of events in another one. It is widely used in speech
recognition contexts, where each symbol represents an event. In action and gesture
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recognition,when sequences of gestures are to be evaluated, theLevenshteinDistance
shows to be a particularly suitable metric, as it allows accounting not only for the
single classifier accuracy, but also for the capability of the algorithm to accurately
distinguish different gestures in a sequence (Minnen et al. 2006).

We empirically choose a quantization parameter for the 3DHOF, n1 equal to 5,
n2 = 64 bins for the GHOG descriptor, and dictionary sizes d1 and d2 equal to 256
for both motion and appearance components. This led to a frame descriptor of size
189 for simple descriptors, which increases to 512 after the sparse coding processing.
The whole system runs at 25 fps on 2.4 Ghz Core 2 Duo Processor.

10.5.1 ChaLearn Gesture Dataset

We firstly assess our method on the ChaLearn dataset for the One-Shot Gesture
Recognition Challenge (Guyon et al. 2012), see Fig. 10.6. The dataset is organized
in batches, where each batch includes 100 recorded gestures grouped in sequences
of 1–5 gestures arbitrarily performed at different speeds. The gestures are drawn
from a small vocabulary of 8–15 unique gestures called lexicon, which is defined
within a batch. For each video bothRGBandDepth streams are provided, butonly one
example is given for the training phase. In our experiments we do not use information
on the body pose of the human. We consider the batches from devel_01 to devel_20;
each batch has 47 videos, where L (the lexicon size) videos are for training and the
remaining are used as test data.

The main parameter of the system is the buffer size T , however in Fig. 10.6 it is
possible to notice that the parameter offers stable performances with a buffer range
of 1–20, so it does not represent a critical variable of our method. Furthermore, high
performance for awide buffer length range imply that our framework is able to handle
different speeds implicitly.We compute the Levenshtein Distance as the average over
all the batches, which is 25.11% for features processed with sparse coding, whereas
simple 3DHOF+GHOG descriptors without sparse coding lead to a performance of

Fig. 10.6 On the left examples of 2 different batches from the ChaLearn Dataset (CGD2011)
(2011). On the right the overall Levenshtein Distance computed in 20 batches with respect to the
buffer size parameter is depicted for both 3DHOF+GHOG features and descriptors processed with
sparse coding
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43.32%. Notably, each batch has its own lexicon and some of them are composed of
only gestures performed by hand or fingers; in these cases, if the GHOG is computed
on the entire ROI, the greatest contribution of the histogram comes from the body
shape, whilst finger actions (see Fig. 10.2, bottom row) represent a poor percentage
of the final descriptor. If we consider batches where the lexicon is not composed of
only hand/fingers gestures, the Levenshtein Distance reduces to 15%.

We compared our method with several approaches. First of all a Template Match-
ing technique, where we used as descriptor the average of all depth frames for each
action. The test video is split in slices estimated using the average size of actions. In
the recognition phase we classify each slice of the video comparing it with all the
templates. The overall Levenshtein Distance becomes 62.56%. For the second com-
parison we employ Dynamic TimeWarping (DTW)method (Sakoe and Chiba 1978)
with 3DHOF+GHOG features.Wemanually divided test videos in order to facilitate
the recognition for DTW; nevertheless the global Levenshtein Distance is 49.41%.
Finallywe report the results presented in some recentworks in the field, which exploit
techniques based on manifolds (Lui 2012), Motion History Image (MHI) (Wu et al.
2012), Bag of Visual Words (BoVW) (Wu et al. 2012), 2D FFT-MHI (Mahbub et al.
2011) and Temporal BayesianModel (TBM)with Latent Dirichlet Allocation (LDA)
(Malgireddy et al. 2012).

Table 10.1 shows that most of the compared approaches are outperformed by
our method except for Malgireddy et al. (2012); however the method proposed by
Malgireddy et al. (2012) has a training computational complexity of O(n × k2)
for each action class, where k is the number of HMM states and n the number of
examples, while the testing computational complexity for a video frame is O(k2).
Thanks to the sparse representation, we are able to use linear SVMs, which reduce
the training complexity with respect to the number of training examples toO(n × d)

Table 10.1 Levenshtein distance on the ChaLearn Gesture Dataset. For SVM classification we
chose the appropriate buffer size for each batch according to the defined lexicon. TeLev is the
Levenshtein Distance, TeLen is the average error (false positives + false negatives) made on the
number of gestures (see text)

Method TeLev (%) TeLen

Sparse representation (proposed) 25.11 5.02%

3DHOF+GHOG 43.32 9.03%

Template matching 62.56 15.12%

DTW 49.41 Manual

Manifold LSR Lui (2012) 28.73 6.24%

MHI Wu et al. (2012) 30.01 NA

Extended-MHI Wu et al. (2012) 26.00 NA

BoVW Wu et al. (2012) 72.32 NA

2D FFT-MHI Mahbub et al. (2011) 37.46 NA

TBM+LDA Malgireddy et al. (2012) 24.09 NA
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for each SVM, where d is the descriptor size. In our case d is a constant value fixed
a priori, and does not influence the scalability of the problem. Therefore we may
approximate the asymptotic behavior of the SVM in training to O(n). Similarly,
in testing the complexity for each SVM is constant with respect to the number of
training examples when considering a single frame, and it becomes O(N ) for the
computation of all the N class scores. This allows us to provide real-time training
and testing procedures with the considered lexicons.

Furthermore our on-line video segmentation algorithm shows excellent results
with respect to the temporal segmentation used in the compared frameworks; in fact
it is worth noting that the proposed algorithm leads to an action detection error rate
T eLen = FP+FN

M equal to 5.02%, where FP and FN are false positives and false
negatives respectively, and M is the number of all test gestures. Considering the final
results of the ChaLearn Gesture Challenge (Round 1)1, we placed 9th over 50 teams,
but our method also fulfills real-time requirements for the entire pipeline, which was
not a requirement of the challenge.

10.5.1.1 Motion Versus Appearance

In this section we evaluate the contribution of the frame descriptors. In general
we notice that the combination of both motion and appearance descriptors leads to
the best results when the lexicon is composed of actions where both motion and
appearance are equally important. To show this, we considered the 20 development
batches from the ChaLearn Gesture Dataset. For this experiment, we used only coded
descriptors, since we have already experienced that they obtain higher performance.
Using only the motion component, the Levenshtein Distance is equal to 62.89%,
whereas a descriptor based only on the appearance leads to an error of 34.15%.
The error obtained using only the 3DHOF descriptors was expected, due to the
nature of the lexicons chosen: indeed in most gestures the motion component has
little significance. Considering instead batch devel_01, where motion is an important
component in the gesture vocabulary, we have that 3DHOF descriptors lead to a
Levenshtein Distance equal to 29.48%, the GHOG descriptors to 21.12% and the
combination is equal to 9.11%. Results are consistent with previous findings, but in
this specific case the gap between the motion and the appearance components is not
critical.

10.5.1.2 Linear Versus Non-linear Classifiers

In this section we compare the performances of linear and non linear SVM for the
action recognition task. The main advantage of a linear kernel is the computational

1The leaderboard website is: https://www.kaggle.com.
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time: non-linear SVMs have aworst case training computational complexity per class
equal to O(n3 × d) against the O(n × d) of linear SVMs, where n is the number
of training examples, and d is the descriptor size. In testing, non linear SVMs show
computational complexity ofO(n × d) per frame, since the number of support vec-
tors grows linearly with n. Moreover, non-linear classifiers usually require additional
kernel parameter estimation, which especially in one-shot learning scenarios is not
trivial. Contrarily, linear SVMs take O(d) per frame. For this experiment we used
coded features where both motion and appearance are employed. A non-linear SVM
with RBFKernel has been employed, where the kernel parameter and the SVM regu-
larization term have been chosen empirically after 10 trials on a subset of the batches.
The Levenshtein Distance among the 20 batches is 35.11%; this result confirms that
linear classifiers are sufficient to obtain good results with low computational cost if
an appropriate data representation, as the one offered by sparse coding, is adopted.

10.5.2 Kinect Dataset

In this section we assess the ability of our method to recognize more complex ges-
tures captured by a Kinect for Xbox 360 sensor. In Sect. 10.5.1, we noted that the
resolution of the proposed appearance descriptor is quite low and may not be ideal
when actions differ by small details, especially on the hands, therefore a localization
of the interesting parts to model would be effective. The simplest way to build in this
specific information is to resort to a body part tracker; indeed, if a body tracker were
available it would have been easy to extract descriptors from different limbs and then
concatenate all the features to obtain the final frame representation. An excellent can-
didate to provide a reliable body tracker isMicrosoft Kinect SDK, which implements
the method in Shotton et al. (2011). This tool retrieves the 20 principal body joints
position and pose of the user’s current posture. Given these positions, we assign each
3D point of the ROI to its nearest joint, so that it is possible to correctly isolate the
two hands and the body from the rest of the scene (see Fig. 10.7). Then, we slightly
modify the approach, computing 3DHOF and GHOG descriptors on three different
body parts (left/right hand and whole body shape); the final frame representation
becomes the concatenation of all the part descriptors. As for the experiments we
have acquired two different sets of data (see Fig. 10.7): in the first one the lexicon
is composed of numbers performed with fingers, in the second one we replicate the
lexicons devel_3 of the ChaLearn Gesture Dataset, the one where we obtained the
poorest performances. In Fig. 10.7 on the left the overall accuracy is shown; using
sparse coding descriptors computed only on the body shape we obtain a Levenshtein
Distance around 30%. By concatenating descriptors extracted from the hands the
system achieves 10% for features enhanced with sparse coding and 20% for normal
descriptors.
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Fig. 10.7 On the right and bottom the two vocabularies used in Sect. 10.5.2; these gestures are
difficult to model without a proper body tracker, indeed the most contribution for the GHOG comes
from the body shape rather than the hand. On the left the Levenshtein Distance

We compared our method with two previously mentioned techniques: a Template
Matching algorithm and an implementation of the Dynamic TimeWarping approach
(Sakoe and Chiba 1978). The resulted Levenshtein Distance is respectively 52.47
and 42.36%.

10.5.3 Human-Robot Interaction

The action recognition system has been implemented and tested on the iCub, a 53
degrees of freedom humanoid robot developed by the RobotCub Consortium (Metta
et al. 2008). The robot is equippedwith force sensors andgyroscopes, and it resembles
a 3-years old child. It mounts two Dragonfly cameras, providing the basis for 3D
vision, thus after an offline camera calibration procedure we can rely on a full stereo
vision system; here the depth map is computed following Hirschmuller (2008). In
this setting the action recognition system can be used for more general purposes such
as Human-Robot-Interaction (HRI) or learning by imitation tasks. In particular our
goal is to teach iCub how to perform simple manipulation tasks, such as move/grasp
an object. In this sense, we are interested in recognizing actions related to the arm-
handmovements of the robot.We define 8 actions, as shown in Fig. 10.8, bottom row,
according to the robot manipulation capabilities. Each action is modeled using only
the motion component (3DHOF), since we want the descriptor to be independent on
the particular object shape used.

In Fig. 10.8we show the accuracy based on theLevenshteinDistance; thismeasure
has been calculated on more than 100 actions composed of sequences of 1–6 actions.
Notably the error is less than 10%; these good results were expected due to the high
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Fig. 10.8 Accuracy for actions sequences (see bottom row).We evaluated the performance onmore
than 100 actions composed of sequences of 1 to 6 actions

discriminative power of the 3DHOFs (Fig. 10.3) on the chosen lexicon, which leads
to a linearly separable set.

10.6 All Gestures You Can: A Real Application

As pointed out in the previous sections, our approach was designed for real appli-
cations where real-time requirements need to be fulfilled. We developed and imple-
mented a “game” against a humanoid robot, showing the effectiveness of our system
in a real HRI setting: “All Gestures You Can” (Gori et al. 2012), a game aiming
at improving memory skills, visual association and concentration. Our game takes
inspiration from the classic “Simon” game; nevertheless, since the original version
has been often defined as “visually boring”, we developed a revisited version, based
on gesture recognition, which involves a “less boring” opponent: the iCub (Metta
et al. 2008). Both the human and the robot have to take turns and perform the longest
possible sequence of gestures by adding one gesture at each turn: one player starts
performing a gesture, the opponent has to recognize the gesture, imitate it and add
another gesture to the sequence. The game is carried on until one of the two play-
ers loses: the human player can lose because of limited memory skills, whereas the
robot can lose because the gesture recognition system fails. As described in the pre-
vious sections, the system has been designed for one-shot learning; however, Kinect
does not provide information about finger configuration, therefore a direct mapping
between human fingers and the iCub’s ones is not immediate. Thus we set a prede-
fined pool of 8 gestures (see Fig. 10.9, on the left). The typical game setting is shown
in Fig. 10.10: the player stays in front of the robot while performing gestures that are
recognized with Kinect. Importantly, hand gestures cannot be learned exploiting the
Skeleton Data of Kinect: the body tracker detects the position of the hand and it is



10 Keep It Simple and Sparse: Real-Time Action Recognition 323

Fig. 10.9 On the left the hand gestures. The vision system has been trained using 8 different actors
performing each gesture class for 3 times. On the right the game architecture. There are three main
modules that take care of recognizing the action sequence, defining the game rules and making the
robot gestures

Fig. 10.10 The first two turns of a match. Left the human player performs the first gesture of the
sequence.Center iCub recognized the gesture and imitates it.Right iCub adds a new random gesture
to the sequence

not enough to discriminate more complicate actions, – e.g. see gesture classes 1 and
5 or 2 and 6 in Fig. 10.9.

The system is simple and modularized as it is organized in three components (see
Fig. 10.9) based on the iCub middleware, YARP (Metta et al. 2006), which manages
the communication between sensors, processors, and modules. The efficiency of
the proposed implementation is assured by its multithreading architecture, which
also contributes to real-time performances. The software presented in this section is
available in the iCub repository.2

2Code available at https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib/src/demoGesture
Recognition.

https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib/src/demoGestureRecognition.
https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib/src/demoGestureRecognition.
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The proposed game has been played by more than 30 different players during the
ChaLearn Kinect Demonstration Competition at CVPR 2012.3 Most of them were
completely naive without prior knowledge about the gestures. They were asked to
play using a lexicon that had been trained specifically for the competition (Fig. 10.9).
After 50matcheswe had 75%of robot victories. This result indicates that the recogni-
tion system is robust also to different players performing variable gestures at various
speeds. 15% of the matches have been won by humans and usually they finished dur-
ing the first 3–4 turns of the game; this always occurred when players performed very
different gestures with respect to the trained ones. A few players (10% of matches)
succeeded in playing more than 8 turns, and they won due to recognition errors. “All
Gestures You Can” ranked 2nd in the ChaLearn Kinect Demonstration Competition.

10.7 Discussion

This paper presented the design and implementation of a complete action recognition
system tobeused in realworld applications such asHMI.Wedesigned each step of the
recognition pipeline to function in real-time while maximizing the overall accuracy.
We showed how a sparse action representation could be effectively used for one-shot
learning of actions in combination with conventional machine learning algorithms
(i.e. SVM), even if the latter would normally require a larger set of training data.
The comprehensive evaluation of the proposed approach showed that we achieve
good trade-off between accuracy and computation time. The main strengths of our
learning and recognition pipeline can be summarized as follows:

1. One-Shot Learning: One example is sufficient to teach an new action to the
system; this is mainly due to the effective per-frame representation.

2. Sparse Frame Representation: Starting from a simple and computationally
inexpensive description that combines global motion (3DHOF) and appearance
(GHOG) information over a ROI, subsequently filtered through sparse coding,
we obtained a sparse representation at each frame. We showed that these global
descriptors are appropriate to model actions of the upper body of a person.

3. On-line Video Segmentation: We propose a new, effective, reliable and on-line
video segmentation algorithm that achieved a 5% error rate on action detection
on a set of 2000 actions grouped in sequences of 1–5 gestures. This segmentation
procedure works concurrently with the recognition process, thus a sequence of
actions is simultaneously segmented and recognized.

4. Real-time Performances: The proposed system can be used in real-time appli-
cations, as it does require neither a complex features processing nor a computa-
tionally expensive training and testing phases. From the computational point of
view the proposed approach scales well even for large vocabularies of actions.

3The competition website is http://gesture.chalearn.org/.
A YouTube video of our game is available at http://youtu.be/U_JLoe_fT3I.

http://gesture.chalearn.org/.
http://youtu.be/U_JLoe_fT3I


10 Keep It Simple and Sparse: Real-Time Action Recognition 325

5. Effectiveness in Real Scenarios: Our method achieves good performances in a
Human-Robot Interaction setting, where the RGBD images are obtained through
binocular vision and disparity estimation. For testing purposes, we proposed a
memory game, called “All Gestures You Can”, where a person can challenge the
iCub robot on action recognition and sequencing. The system ranked 2nd at the
Kinect Demonstration Competition.4

We stress here the simplicity of the learning and recognition pipeline: each stage
is easy to implement and fast to compute. It is shown to be adequate to solve the
problem of gesture recognition; we obtained high-quality results while fulfilling real-
time requirements. The approach is competitive against many of the state-of-the-art
methods for action recognition.

We are currently working on a more precise appearance description at frame level
still under the severe constraint of real-time performance; this would enable the use
of more complex actions even when the body tracker is not available.
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Chapter 11
One-Shot Learning Gesture Recognition
from RGB-D Data Using Bag of Features

Jun Wan, Qiuqi Ruan, Wei Li and Shuang Deng

Abstract For one-shot learning gesture recognition, two important challenges are:
how to extract distinctive features and how to learn a discriminative model from only
one training sample per gesture class. For feature extraction, a new spatio-temporal
feature representation called 3D enhanced motion scale-invariant feature transform
is proposed, which fuses RGB-D data. Compared with other features, the new feature
set is invariant to scale and rotation, and has more compact and richer visual repre-
sentations. For learning a discriminative model, all features extracted from training
samples are clustered with the k-means algorithm to learn a visual codebook. Then,
unlike the traditional bag of feature models using vector quantization (VQ) to map
each feature into a certain visual codeword, a sparse coding method named simu-
lation orthogonal matching pursuit (SOMP) is applied and thus each feature can be
represented by some linear combination of a small number of codewords. Compared
with VQ, SOMP leads to a much lower reconstruction error and achieves better
performance. The proposed approach has been evaluated on ChaLearn gesture data-
base and the result has been ranked amongst the top best performing techniques on
ChaLearn gesture challenge (round 2).
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11.1 Introduction

Human gestures frequently provide a natural and intuitive communication modality
in daily life, and the techniques of gesture recognition can be widely applied in many
areas, such as human computer interaction (HCI) (Pavlovic et al. 1997; Zhu et al.
2002), robot control (Malima et al. 2006; Shan et al. 2007), sign language recognition
(Gao et al. 2004; T. Starner and Pentland 1998) and augmented reality (Reifinger et al.
2007). To model gesture signals and achieve acceptable recognition performance,
the most common approaches are to use Hidden Markov Models (HMMs) or its
variants (Kim et al. 2007) which are a powerful model that includes hidden state
structure. Yamato et al. (1992) used image preprocessing operations (background
subtraction, image blurring) to extract low-level features and usedHMMto recognize
tennis motions. Brand et al. (1997) suggested a coupled HMM that combined two
HMMs with causal possibly asymmetric links to recognize gestures. Vogler (2003)
presented a parallel HMMalgorithm tomodel gesture components and can recognize
continuous gestures in sentences. Then a more general probabilistic model named
dynamic Bayesian network (DBN) is proposed. DBN includes HMMs and Kalman
filters as special cases (Suk et al. 2010). Youtian et al. (2006) defined five classes
of gestures for HCI and developed a DBN-based model which used local features
(contour, moment, height) and global features (velocity, orientation, distance) as
observations. Suk et al. (2010) proposed a DBN-based system to control media
player or slide presentation. They used local features (location, velocity) by skin
extraction and motion tracking to design the DBN inference.

However, bothHMMandDBNmodels assume that observations given themotion
class labels are conditional independent. This restrictionmakes it difficult or impossi-
ble to accommodate long-range dependencies among observations or multiple over-
lapping features of the observations (Sminchisescu et al. 2005). Therefore, Smin-
chisescu et al. (2005) proposed conditional random fields (CRF) which can avoid
the independence assumption between observations and allow non-local dependen-
cies between state and observations. Wang et al. (2006) then incorporated hid-
den state variables into the CRF model, namely, hidden conditional random field
(HCRF). They used HCRF to recognize gesture recognition and proved that HCRF
can get better performance. Later, the latent-dynamic conditional field (LDCRF)
model (Morency et al. 2007) was proposed, which combines the strengths of CRFs
and HCRFs by capturing both extrinsic dynamics and intrinsic sub-structure. The
detailed comparisons are evaluated by Morency et al. (2007).

Another important approach is dynamic time warping (DTW) widely used in
gesture recognition. Early DTW-based methods were applied to isolated gesture
recognition (Corradini 2001; Lichtenauer et al. 2008). Then Ruiduo et al. (2007)
proposed an enhanced Level-Building DTW method. This method can handle the
movement epenthesis problem and simultaneously segment and match signs to con-
tinuous sign language sentences. Besides these methods, other approaches are also
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widely used for gesture recognition, such as linguistic sub-units (Cooper et al. 2012)
and topology-preserving self-organizing networks (Flórez et al. 2002). Although the
mentioned methods have delivered promising results, most of them assume that the
local features (shape, velocity, orientation, position or trajectory) are detected well.
However, the prior successes of hand detection and tracking are major challenging
problems in complex surroundings. Moreover, as shown in Table11.1, most of the
mentioned methods need dozens or hundreds of training samples to achieve high
recognition rates. For example, in Yamato et al. (1992), the authors used at least
50 samples for each class to train HMM and got the average recognition rate 96%.
Besides, Yamato et al. (1992) suggested that the recognition rate will be unstable if
the number of samples is small. When there is only one training sample per class,
thosemethods are difficult to satisfy the requirement of high performance application
systems.

In recent years, BoF-based methods derived from object categories (Fei-Fei and
Perona 2005) and action recognition (Wang et al. 2009) have become an important
branch for gesture recognition. Dardas and Georganas (2011) proposed a method for
real-time hand gesture recognition based on standardBoFmodel, but theyfirst needed
to detect and track hands and that would be difficult in a clutter background. For
example, when the hand and face are overlapped or the background is similar to skin
color, hand detection may fail. Shen et al. (2012) extracted maximum stable extremal
regions (MSER) features (Forssen and Lowe 2007) from the motion divergence
fields which were calculated by optical flow (Lowe 2004), and learned a codebook
using hierarchical k-means algorithm, then matched the test gesture sequence with
the database using a term frequency-inverse document frequency (tf-idf) weighting
scheme. These methods need dozens or hundreds of training samples. However, in
this paper, we explore one-shot learning gesture recognition (Malgireddy et al. 2012),
that is, using one training sample per each class. Some important challenging issues
for one-shot learning gesture recognition are the following:

1. How to extract distinctive features? Different people have different speeds,
trajectories and spatial positions to perform the same gesture. Even when a sin-
gle person performs the gestures, the trajectories are not identical. Therefore, the
extracted spatio-temporal features should be invariant to image-plane rotation, scale
and spatial position. Simple descriptors, such as motion trajectories (Yang et al.
2002) and spatio-temporal gradients (Freeman and Roth 1995), may not meet the
invariant conditions. Therefore, we propose a new spatio-temporal feature which is
scale, image-plane rotation and space invariant and can capture more compact and
richer visual representations. The new feature will be introduced in Sect. 11.3.1.

2.How to select a suitablemodel?Here, we select BoF-basedmodel to recognize
gestures because it reveals promising results for one-shot learning (Hernández-Vela
et al. 2012) and has a number of attractive properties. First, in our BoF representation,
we do not need the prior success of hand detection and tracking. Second, BoF is
a modular system with three parts, namely, (i) spatio-temporal feature extraction,
(ii) codebook learning and descriptor coding, (iii) classifier, each of which can be
easily replaced with different methods. For instance, we can apply various methods,
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such as Cuboid (Dollár et al. 2005) or Harris3D (Laptev 2005) for the local spatio-
temporal feature extraction while leaving the rest of the system unchanged.

In this paper, we focus on solving these two challenging issues and propose a new
approach to achieve good performance for one-shot learning gesture recognition.
Our experimental results reveal that our method is competitive to the state-of-the-art
methods. The key contributions of the proposed method are summarized as follows:

• A new framework derived from the BoF model is proposed. • A new spatio-
temporal feature (3D EMoSIFT) is proposed. • The new feature is invariant to scale
and rotation. • The new feature is not sensitive to slight motion. • Using SOMP
instead of VQ in the coding stage. • Obtained high ranking results on ChaLearn
gesture challenge.

The rest of paper is organized as follows: Sect. 11.2 reviews the background
including BoF model and some local spatio-temporal features. In Sect. 11.3, we
describe the proposed approach in detail. Section11.4 presents the experimental
results. In Sect. 11.5, we conclude the paper and discuss future work.

11.2 Background

In this section, we first introduce the traditional BoF framework for recognition and
then review the local spatio-temporal features which are widely used in BoF model.

11.2.1 Traditional Bag of Feature (BoF) Model

Figure11.1a illustrates the traditional BoF approach for gesture (or action) recog-
nition. In the training part, after extracting local features from training videos, the
visual codebook is learned with the k-means algorithm. Then each feature is mapped
to a certain visual codeword through the clustering process and the video can be rep-
resented by the histogram of visual codewords. The histograms representing training
videos are treated as input vectors for a support vector machine (SVM) (Chang and
Lin 2011) to build a classifier. In the testing stage, the features are extracted from
a new input video, and then those features are mapped into a histogram vector by
the descriptor coding method (e.g., VQ) using the pre-trained codebook. Then, the
histogram vector is finally fed into an SVM classifier to get the recognition result.

However, as shown in Fig. 11.1b, we list at least three differences between our
model and the traditional BoF model. First, there is only one training sample per
gesture class, while dozens or hundreds of training samples per class are provided in
the traditional BoF model. Second, we use SOMP to replace VQ in the coding stage.
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Fig. 11.1 a An overview of the traditional BoF model (the left green rectangle); b an overview of
our model (the right blue rectangle)

That is because SOMP can get better performance. Third, in the recognition stage,
we just use the simple nearest neighbor (NN) classifier instead of SVM to recognize
gestures.

11.2.2 Spatio-Temporal Features

We describe some spatio-temporal features which represent the state-of-the-art tech-
niques on object recognition tasks. Those features are commonly used to detect
salient and stable local batches from videos.

The Cuboid detector depends on a set of linear filters for computing the response
function of a video clip. The response function has the form of a 2D Gaussian
smoothing function (applied in the spatial domain) and a quadrature pair of 1DGabor
filters (applied in the temporal direction). Then the keypoints are detected at the local
maxima of the response function. The video batches extracted at each of the keypoints
are converted to a descriptor. There are a number of ways to compute descriptors
from video batches as discussed by Dollár et al. (2005). Among those, gradient-
based descriptors such as histograms of oriented gradients (HOG) and concatenated
gradient vectors are themost reliable ones. Formore details about the Cuboid feature,
please see Dollár et al. (2005).
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The Harris3D detector (Laptev 2005) is an extension of the Harris corner detector
(Harris and Stephens 1988). The author computes a spatio-temporal second-moment
matrix at each video point using independent spatial and temporal scale values, a
separableGaussian smoothing function, and space-time gradients. The final locations
of space-time interest points are given by the local positive spatio-temporal maxima.
Then, at each keypoint, two types of descriptors are calculated, which are HOG and
histograms of optical flow (HOF) descriptors.

The MoSIFT (Chen and Hauptmann 2009) is derived from scale invariant feature
transform (SIFT) (Lowe 2004) and optical flow (Lucas et al. 1981). First, a pair of
Gaussian pyramids are built from two successive frames, respectively. Then, optical
flow pyramids are calculated by each layer of the pair of Gaussian pyramids. Next, a
local extreme detected fromdifference ofGaussian pyramids (DoG) can only become
an interest point if it has sufficient motion in the optical flow pyramid. Finally, as the
process of the SIFT descriptor calculation, the MoSIFT descriptors are respectively
computed from Gaussian pyramid and optical flow pyramid so that each MoSIFT
descriptor now has 256 dimensions.

Ming et al. (2012) propose a new feature called 3D MoSIFT that is derived from
MoSIFT. Compared with MoSIFT, 3DMoSIFT fuses the RGB data and depth infor-
mation into the feature descriptors. First, Ming et al. (2012) adopt the same strategy
using theRGBdata to detect interest points. Then, for each interest point, 3D gradient
space and 3Dmotion space are constructed by usingRGBdata and depth information.
In 3D gradient (motion) space, they map 3D space into three 2D planes: xy plane,
yz plane and xz plane. Next, for each plane, they used SIFT algorithm to calculate
the descriptors. Therefore, each 3D MoSIFT descriptor has 768 dimensions.

11.3 The Proposed Approach for One-Shot Learning
Gesture Recognition

We propose a new spatio-temporal feature called 3D EMoSIFT. The new feature is
invariant to scale and image-plane rotation. Then we use kmeans algorithm to learn
codebook and apply SOMP algorithm to achieve descriptor coding. Besides, we
adopt a methodology based on DTW and motion energy for temporal segmentation.
Below, we describe each stage in detail.

11.3.1 Spatio-Temporal Feature Extraction: 3D EMoSIFT

The first stage is to extract rich spatio-temporal representations from the video clips.
To obtain such representations, there are many ways to select (Dollár et al. 2005;
Laptev 2005; Chen and Hauptmann 2009). However, those approaches only rely
on RGB data and do not consider the depth information, which may lead to acquire
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Fig. 11.2 Results of interest point detection (marked with the red cross) in two consecutive frames.
a 3D MoSIFT; b 3D EMoSIFT. We can see that some redundant points are detected in some slight
motion regions (i.e., background regions) which shows 3DMoSIFT is sensitive to slight movement.
However, 3D EMoSIFT can detect interest points from the regions with large motion (i.e., hand and
arm regions), which shows 3D EMoSIFT is not sensitive to slight motion

insufficient information. Although 3DMoSIFT can fuse the RGB-D data to calculate
descriptors, it still cannot accurately detect interest points. For instance, as shown
in Fig. 11.2a, 3D MoSIFT capture some redundant interest points when some slight
motion happens (e.g., slight motion in the background), showing that 3D MoSIFT
is sensitive to slight movement. Besides, 3D MoSIFT (Ming et al. 2012) is a little
sketchy. To solve the mentioned problems, we propose a new spatio-temporal feature
and give examples to explain how to extract the new feature step by step.

11.3.1.1 Feature Points Detection from RGB-D Data

Although the 3DMoSIFT feature has achieved good results in human activity recog-
nition, it still cannot eliminate some influences from the slight motion as shown in
Fig. 11.2a. Therefore, we fuse depth information to detect robust interest points. We
know that SIFT algorithm (Lowe 2004) uses the Gaussian function as the scale-space
kernel to produce a scale space of an input image. The whole scale space is divided
into a sequence of octaves and each octave consists of a sequence of intervals, where
each interval is a scaled image.
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BuildingGaussian Pyramid.Given a gesture sample including two videos (one for
RGB video and the other for depth video),1 a Gaussian pyramid for every grayscale
frame (converted from RGB frame) and a depth Gaussian pyramid for every depth
frame can be built via Eq. (11.1).

LI
i,j(x, y) = G(x, y, kjσ) ∗ LI

i,0(x, y), 0 ≤ i < n, 0 ≤ j < s + 3,

LD
i,j(x, y) = G(x, y, kjσ) ∗ LD

i,0(x, y), 0 ≤ i < n, 0 ≤ j < s + 3,
(11.1)

where (x, y) is the coordinate in an image; n is the number of octaves and s is the
number of intervals;LI

i,j andL
D
i,j denote the blurred image of the (j + 1)th image in the

(i + 1)th octave; LI
i,0 (or L

D
i,0) denotes the first grayscale (or depth) image in the (i +

1)th octave; For i = 0, LI
0,0 (or L

D
0,0) is calculated from the original grayscale (depth)

frame via bilinear interpolation and the size of LI
0,0 is twice the size of the original

frame; For i > 1, LI
i,0 (or L

D
i,0) is down-sampled from LI

i−1,s (or L
D
i−1,s) by taking every

second pixel in each row and column. In Fig. 11.3a, the blue arrow shows that the
first image LI

1,0 in the second octave is down-sampled from the third image LI
0,2 in the

first octave. ∗ is the convolution operation; G(x, y, kjσ) = 1
2π(kjσ)2

e−(x2+y2)/(2(kjσ)2) is
a Gaussian function with variable-scale value; σ is the initial smoothing parameter
in Gaussian function and k = 21/s (Lowe 2004). Then, the difference of Gaussian
(DoG) images, Df , are calculated from the difference of two nearby scales in Eq.
(11.2).

Dfi,j = LI
i,j+1 − LI

i,j, 0 ≤ i < n, 0 ≤ j < s + 2. (11.2)

We give an example to intuitively understand the Gaussian pyramid and DoG
pyramid. Figure11.3 shows two Gaussian pyramids (LIt , LIt+1 ) built from two con-
secutive grayscale frames and two depth Gaussian pyramids (LDt , LDt+1 ) built from
the corresponding depth frames. In this example, the number of octaves is n = 4 and
the number of intervals is s = 2; Therefore, for each frame, we can build five images
for each octave. And we can see that larger kjσ results in a more blurred image (see
the enlarged portion of the red rectangle in Fig. 11.3). Then, we use the Gaussian
pyramid shown in Fig. 11.3a to build the DoG pyramid via Eq. (11.2), which is shown
in Fig. 11.4.

BuildingOptical FlowPyramid First, we briefly review theLucas-Kanademethod
(Lucas et al. 1981) which is widely used in computer vision. The method assumes
that the displacement of two consecutive frames is small and approximately constant
within a neighborhood of the point ρ. The two consecutive frames are denoted by F1
and F2 at time t and t + 1, respectively. Then the optical flow vector (vρ) of the point
ρ can be solved by the least squares principle (Lucas et al. 1981). Namely, it solves:

Avρ = b,

1The depth values are normalized to [0 255] in depth videos.
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Fig. 11.3 Building Gaussian pyramids and depth Gaussian pyramids for two consecutive frames. a
TheGaussian pyramid LIt at time t; b the Gaussian pyramid LIt+1 at time t + 1; c the depth Gaussian
pyramid LDt at time t; d the depth Gaussian pyramid LDt+1 at time t + 1
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Fig. 11.4 Building the difference of Gaussian pyramid Df It from Fig. 11.3a at time t

where A=

⎡
⎢⎢⎢⎢⎢⎢⎣

F1x(q1) F1y(q1)
F1x(q2) F1y(q2)

. .

. .

. .

F1x(qn) F1y(qn)

⎤
⎥⎥⎥⎥⎥⎥⎦
, vρ=

[
vρ
x

vρ
y

]
, and b=

⎡
⎢⎢⎢⎢⎢⎢⎣

−F1t(q1)
−F1t(q2)

.

.

.

−F1t(qn)

⎤
⎥⎥⎥⎥⎥⎥⎦
, q1, q2, ..., qn are

the pixels inside the window around the point ρ, F1x(qi) and F1y(qi) calculated by
different operators (e.g., Scharr operator, Sobel operator) are the partial derivatives of
the image F1 along the horizontal and vertical directions, and F1t(qi) = F2(qi) −
F1(qi) calculated by two consecutive frames is the partial derivatives along time.
Besides, vρ

x (vρ
y ) denotes the horizontal (vertical) velocity of the point ρ. So we can

know the optical flow V = [Vx Vy]T of all the points in the image F1 via Eq. (11.3).

[Vx Vy]T =
ζ⋃

i=1

[vρi
x vρi

y ]T , (11.3)

where ζ is the number of points in the image F1, vρi
x (vρi

y ) denotes the horizontal (ver-
tical) velocity of the point ρi, and Vx (Vy) denotes the horizontal (vertical) component
of the estimated optical flow for all the points in an image. In order to facilitate the fol-
lowing description, we rewrite Eq. (11.3), so as to define OpticalFlowKL(F1,F2),
as follow:

[Vx Vy]T = OpticalFlowKL(F1,F2)
def=

ζ⋃
i=1

[vρi
x vρi

y ]T .

Next, once two Gaussian pyramids (LIt and LIt+1 ) shown in Fig. 11.3a, b are
obtained at time t and t + 1, respectively, we can calculate the optical flow at each
interval of each octave via Eq. (11.4). That is say,

[V It
x,(i,j) V

It
y,(i,j)]T = OpticalFlowKL(LIt

i,j,L
It+1
i,j ), 0 ≤ i < n, 0 ≤ j < s + 3, (11.4)
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where LIt
i,j denotes the blurred image of the (j + 1)th interval in the (i + 1)th octave

at time t, n and s are defined the same as Eq. (11.1).
So the horizontal and vertical optical flow pyramids at time t are the union sets⋃
i,j V

It
x,(i,j) and

⋃
i,j V

It
y,(i,j), respectively. For example, we use the Gaussian pyramids

in Fig. 11.3a, b to compute the optical flow pyramid via Eq. (11.4). And the results are
illustrated in Fig. 11.5a, b where we can see that the highlighted parts occur around
the motion parts.

Local Extrema Detection Here, we describe three different methods (SIFT, 3D
MoSIFT, 3D EMoSIFT) for interest point detection and show the similarities and
differences among these methods.

Fig. 11.5 The horizontal and vertical optical flow pyramids are calculated from Fig. 11.3a, b. a The
horizontal component of the estimated optical flow pyramid V It

x at time t. b The vertical component
of the estimated optical flow pyramid V It

y at time t. c The depth changing component VDt
z at time t
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Fig. 11.6 a The SIFT algorithm for interest points detection. Maxima and minima of the DoG
images are detected by comparing a pixel (marked with a red triangle) to its 26 neighbors in 3 × 3
regions at the current and adjacent scales (marked with black circles); b the point prediction via the
optical flow vector

(1) Local Extrema Detection: SIFT
In order to detect the local maxima and minima in the DoG pyramid Df ItI,j, each

point is compared to its eight neighbors in the current image and nine neighbors
in the above and below images of each octave, which is illustrated in Fig. 11.6a.
A point is selected only if it is larger than all of these neighbors or smaller than all
of them. In Fig. 11.4, the DoG pyramid Df Iti,j has four octaves and each octave has
four images at time t. So we can find the local extrema points in the middle of two
images at each octave, namely, Df Iti,j, ∀i ∈ [0, 3], j ∈ [1, 2]. For example, in the first

octave, we detect the local extrema points at the second image Df It0,1 (via comparing

the point to his 8 neighbor points in the current image Df It0,1, 9 neighbor points in the

image Df It0,0, and 9 neighbor points in the image Df It0,2) and the third image Df It0,2 (via

comparing the point to his 8 neighbor points in the current image Df It0,2, 9 neighbor

points in the imageDf It0,1, and 9 neighbor points in the imageDf It0,3). So we can detect
the local extrema points in other octaves similar to the first octave. The detected
points (marked with red points) are shown in Fig. 11.7a, which shows that many
redundant points are detected in the background and torso regions.

(2) Local Extrema Detection: 3D MoSIFT 2

3D MoSIFT first detect the local extrema like SIFT algorithm. Then those local
extrema can only become interest points when those points have sufficient motion
in the optical flow pyramid. That is say, if a point is treated as an interest point, the
velocity of this point should satisfy the following condition:

vx ≥ β1 × w, vy ≥ β1 × h, (11.5)

where vx (vy) is the horizontal (vertical) velocity of a point from the horizontal
(vertical) optical flow pyramid Vx (Vy); β1 is a pre-defined threshold; w and h are the
width and height of the blurred image in the scale space.

2MoSIFT and 3D MoSIFT have the same strategy to detect interest points.
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Fig. 11.7 After interest point detection, the SIFT-based descriptors are calculated by threemethods:
SIFT, 3DMoSIFT and 3D EMoSIFT. The detected points are marked with red circles and the green
arrows show the direction of movements. The figure shows that SIFT and 3DMoSIFT detect many
useless points in the background and torso regionswhile the result by 3DEMoSIFT ismore accurate.
a SIFT; b 3D MoSIFT; c 3D EMoSIFT

As shown in Fig. 11.5a, b, we can see that only the local extrema located in the
highlighted parts of the optical flow pyramids (V It

x and V It
y ) will become interest

points. Because only the points in the highlighted parts have large motions, which
may satisfy the condition in Eq. (11.5). Other extrema will be eliminated, because
they have no sufficient motion in the optical flow pyramids. The final results (marked
with red points) are shown in Fig. 11.7b.3 Comparing with SIFT algorithm, we can
see that if the points are still, they will be filtered out via the conditions in Eq. (11.5).
However, in Fig. 11.7b, some useless points (from the background and torso regions)
are still detected, which indicate that 3D MoSIFT is sensitive to the slight motion.

(3) Local Extrema Detection: 3D EMoSIFT
To eliminate the effect of the slight motion, we introduce a new condition to filter

out the detected points by the SIFT algorithm. According to the above mentioned
description, we have obtained the pyramids LDt ,LDt+1 , V It

x , V It
y . For a given point p1

from an image in different scale spaces at time t, we can easily know the horizontal
and vertical velocities vx, vy by the corresponding image of the pyramids V It

x , V It
y .

Then the predicted point p2 at time t + 1 can be calculated by the point p1 at time t
according to Fig. 11.6b. Therefore, we can know the depth changing component at
time t as:

VDt
z,(i,j)(p1) = LDt+1

i,j (p2) − LDt
i,j (p1), 0 ≤ i < n, 0 ≤ j < s + 3. (11.6)

Figure11.5c shows the depth changing pyramid via Eq. (11.6).We can see that the
highlighted parts accurately occur in the gesture motion region. Therefore, the local
extrema shown in Fig. 11.7a by SIFT algorithm will become interest points when
those points not only have sufficient motion which is satisfied with the condition of
3D MoSIFT in Eq. (11.5) but also have enough depth changing which is shown in
the highlighted regions of Fig. 11.5c. That is say, the interest point detection must
simultaneously satisfy the condition in Eq. (11.5) and a new condition defined as:

3Here, β1 = 0.005 according to the reference (Ming et al. 2012).
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vz ≥ β2 ×
√

w2 + h2, (11.7)

where vz is the depth changing value of a point from the depth changing pyramid Vz;
β2 is a pre-defined threshold. The final results is shown in Fig. 11.7c.4 We can see
that 3D EMoSIFT can filter out the still points and the points with slight motion.

11.3.1.2 Feature Descriptors

The previous operations assigned an image location and scale to each interest point.
That is say we can use the interest point to select the Gaussian images from dif-
ferent pyramids. Here, we give an example to illustrate how to compute the feature
descriptor vector which is similar to the process in Ming et al. (2012). We assume
that a detected point (marked with green dot) is found in DoG pyramid Df It0,1 at time
t in Fig. 11.4, which indicates that the detected point locates at the second image
of the first octave. Then the corresponding points (marked with green dot) in dif-
ferent pyramids are shown in Figs. 11.3 and 11.5 at time t. To calculate the feature
descriptors, we first extract the local patches (�1–�5) around the detected point in
five pyramids (LIt ,LDt , V It

x , V It
y and V It

z ), where �1 is extracted from LIt
0,1, �2 from

LDt
0,1, �3 from V It

x,(0,1), �4 from V It
y,(0,1) and �5 from VDt

z,(0,1). These five patches are
labeled as green rectangles in Figs. 11.3 and 11.5. The local patches �1–�5 are of the
same size 16 × 16 pixels and are shown in Fig. 11.8.We first consider the appearance
properties to construct the 3D gradient space via local patches �1 and �2. Then we
use the rest of local patches (�3, �4 and �5) to construct 3D motion space.

Feature Descriptors in 3D Gradient Space For a given point p with its coordinate
(i, j), we can simply calculate its horizontal and vertical gradients from RGB-D data
(�1 and �2) as follow:

Ix(i, j) = �1(i, j + 1) − �1(i, j),

Iy(i, j) = �1(i + 1, j) − �1(i, j),

Dx
z (i, j) = �2(i, j + 1) − �2(i, j),

Dy
z(i, j) = �2(i + 1, j) − �2(i, j),

where Ix(i, j) and Iy(i, j) are the horizontal and vertical gradients calculated from �1;
Dx

z and Dy
z(i, j) are the horizontal and vertical gradients from �2. We can calculate

four gradients (Ix, Iy,Dx
z and Dy

z ) for each point. Because the local patches (�1 and
�2) are of size 16 × 16, there are 256 points and each point has four gradient values.

Then, as shown in Fig. 11.8a, for each point p, the 3D gradient space can
be constructed by Ix(i, j), Iy(i, j),Dx

z (i, j) and Dy
z(i, j). Now we use the xy plane

to illustrate how to calculate the feature descriptor in the 3D gradient space.
For each point p with its coordinate (i, j), we compute the gradient magnitude,
mag(i, j) = √

Ix(i, j)2 + Iy(i, j)2, and orientation, ori(i, j) = tan−1(Iy(i, j)/Ix(i, j))

4Here, β1 = β2 = 0.005.
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Fig. 11.8 Computing the feature descriptor in two parts: a 3DGradient Space, b 3DMotion Space,
c Feature descriptor calculation

in the xy plane. Then, in xy plane, we can generate a new patch �xy which is the
left image in the first row of Fig. 11.8c. The size of �xy is 16 × 16. For each point
with its coordinate (i, j) from�xy, it has two values: the gradient magnitudemag(i, j)
and orientation ori(i, j). �xy can be divided into 16 (4 × 4) grids. For each grid with
4 × 4 points, we calculate its orientation histogram with 8 bins, which means the
orientation is grouped into 8 directions which is represented by the right image in
the first row of Fig. 11.8c. This leads to a descriptor vector with 128 (4 × 4 × 8)
dimensions in xy plane. Here, each sample added to the histogram is weighed by its
gradient magnitude and by a Gaussian weighting function (Lowe 2004). Similarly,
we can calculate the descriptors in xz and yz planes. Therefore, the descriptor vector
of the 3D gradient space has 384 (128 × 3) dimensions.

Feature Descriptors in 3D Motion Space For a given point p with coordinates
(i, j),∀ 0 ≤ i ≤ 15, 0 ≤ j ≤ 15, we can easily know the velocities according to the
local patches �3, �4, and �5. That is say, vx(i, j) = �3(i, j), vy(i, j) = �4(i, j) and
vz(i, j) = �5(i, j).

Thus, we can construct the 3D motion space as shown in Fig. 11.8b. Similar
to the descriptor calculation in 3D gradient space, we can compute the magnitude
and orientation (using vx, vy, vz) for the local patch around the detected points in
three planes. The only difference is that vz is the same in both xz and yz planes.
Therefore, we obtain the descriptors with 384 dimensions in the 3D motion space.
Finally, we integrate these two descriptor vectors into a long descriptor vector with
768 dimensions.
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11.3.1.3 Overview the 3D EMoSIFT Features

In this section, we propose a new spatio-temporal feature called 3D EMoSIFT. Each
3D EMoSIFT feature descriptor has 768 dimensions. Since the 3D EMoSIFT feature
is derived from SIFT algorithm, the features are invariant to scale and rotation.
Besides, compared to other similar features (SIFT, MoSIFT, 3D MoSIFT), the new
features can capture more compact motion patterns and are not sensitive to the slight
motion (see the Fig. 11.7). For a given sample including an RGB video and a depth
video, we can calculate feature descriptors between two consecutive frames. Then
the sample can be represented by the set of all the feature descriptors extracted from
the video clips. Algorithm 1 illustrates how to calculate the proposed features.

Now each sample is denoted by the set of descriptor vectors, and we want to use
those vectors for BoF representation. To do that, we will create histograms counting
howmany times a descriptor vector (representing a feature) appears at interest points
anywhere in the video clip representing the gesture. There is a need to first replace
the descriptor vectors by codes to limit the number of features, otherwise there would
be too many entries in the histogram and the representation would be too sparse. So,
we will describe the means of creating a codebook in the next Sect. 11.3.2.

Algorithm 1: The algorithm for the 3D EMoSIFT feature

Input:

• A sample with two videos: Vr = [I1, I2, ..., IQ] (RGB data), Vd = [D1,D2, ...,DQ]
(depth data)

• Number of frames : Q

Output:

• The set of feature descriptors : X

1: Initialization: X = [ ]
2: for i = 1 to Q − 1 do
3: Obtain the frames: Ii and Ii+1 from Vr ; Di and Di+1 from Vd
4: Build the Gaussian Pyramids: LIi ,LIi+1 ,LDi and LDi+1 via Equation (11.1)
5: Build the different of Gaussian (DoG) Pyramid: Df Ii via Equation (11.2)
6: Build the Optical Flow Pyramids: V Ii

x and V Ii
y via Equation (11.4)

7: Build the depth changing Pyramid: VDi
z via Equation (11.6)

8: Find the set of interest points: P=[p1, ..., pm] via Fig. 11.6(a), Equation (11.5) and (11.7)
9: for j = 1 to m do
10: Get the information of the interest point from the set P: pi
11: Compute feature descriptor from the local patch around pi: x ∈ �768 via Fig. 11.8
12: X = [X x]
13: end for
14: end for
15: Return X
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11.3.2 Codebook Learning and Coding Descriptors

Suppose the matrix X is the set of all descriptor vectors for an entire video
clip representing a gesture, and X = [x1, x2, ..., xN ] ∈ �d×N , where xi denotes a
description with d dimensions. A codebook B with M entries is denoted with
B = [b1, b2, ..., bM ] ∈ �d×M . The coding methods map each descriptor into a M-
dimensional code to generate the video representation. We first introduce how to
learn a codebook B, then review VQ and introduce SOMP for code descriptors.

11.3.2.1 Codebook Learning

Let η denote the number of gesture classes (thatmeans there are η training samples for
one-shot learning), � = [X1,X2, ...,Xη], � ∈ �d×Ltr is the set of all the descriptor
vectors extracted from all the training samples,Xi ∈ �d×Ni withNi descriptor vectors
is the set extracted from the ith class, and Ltr = ∑η

i=1 Ni is the number of features
extracted from all the training samples. Then we learn the codebook B ∈ �d×M

(M <
∑η

i=1 Ni) with M entries by applying the k-means algorithm (Wang et al.
(2010)) over all the descriptors � in our work. However, unlike traditional BoF
models, we use a new parameter γ ∈ (0, 1) instead of the codebook size M (The
way we select γ will be discussed in Sect. 11.4.). γ is expressed as a fraction of Ltr .
Therefore, the codebook sizeM can be calculated below:

M = Ltr × γ. (11.8)

11.3.2.2 Coding Descriptors by VQ

In the traditional VQ method, we can calculate the Euclidean distance between a
given descriptor x ∈ �d and every codeword bi ∈ �d of the codebook B and find the
closest codeword. The VQ method can be formulated as:

min
C

‖X − BC‖2F, s.t.‖ci‖0 = 1, ‖ci‖1 = 1, ci � 0, ∀ i, (11.9)

where ‖ · ‖F is the Frobenius norm, C = [c1, c2, ..., cN ] ∈ �M×N is the set of codes
for X, ‖ · ‖0 is the �0 norm that counts the number of nonzero elements, ‖ · ‖1 is the
�1 norm; The conditions ‖ci‖0 = 1, ‖ci‖1 = 1, ci � 0, mean that only one element
is equal to 1 and the others are zero in each code ci ∈ �M .

This formulation in Eq. (11.9) allows us to compare more easily with sparse
coding (see the Sect. 11.3.2.3). In Eq. (11.9), the conditions may be too restrictive,
which gives rise to usually a coarse reconstruction of X. Therefore, we use a sparse
coding method instead of VQ.
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11.3.2.3 Coding Descriptors by SOMP

Inspired by image classification (Yang et al. 2009) and robust face recognition
(Wright et al. 2009) via sparse coding, we relax the restricted conditions in Equation
(11.9) and suppose X has a sparse representation C = [c1, c2, ..., cN ], ci ∈ �M that
means each ci contains k (k 	 M) or fewer nonzero elements. Then, the problem
can be stated as the following optimization problem:

min
C

‖X − BC‖2F, s.t.‖ci‖0 ≤ k, ∀ i. (11.10)

Solving Equation (11.10) accurately is an NP-hard problem (Wright et al. 2009;
Guo et al. 2013). Nevertheless, approximate solutions are provided by greedy algo-
rithms or convex relaxation, such as SOMP (Tropp et al. 2006; Rakotomamonjy
2011). To the best of our knowledge, we are the first to use SOMP in BoF model for
gesture recognition, especially for one-shot learning gesture recognition.

Then we give a brief introduction about the SOMP algorithm and analyze the
computational complexity. SOMP is a greedy algorithm which is based on the idea
of selecting an element of the codebook and building all signal approximations
as the projection of the signal matrix X on the span of these selected codewords.
This algorithm (Tropp et al. 2006; Rakotomamonjy 2011) is shown in Algorithm 2.
Regarding the computational complexity, we note that the most demanding part of
the SOMP is the correlation E computation which has the complexityO(dMN). And
the complexity of the linear system to be solved for obtaining C at each iteration is
O(|�|). So the complexity for k iterations is about O(dkMN) + O(k|�|). Although
the complexity of SOMP is more expensive than VQ which has O(dMN) (Linde
et al. 1980). SOMP has several merits which will be discussed later.

Algorithm 2: The SOMP algorithm

Input:

• A signal matrix (the feature set): X = [x1, x2, ..., xN ] ∈ �d×N

• A learned codebook: B = [b1, b2, ..., bM ] ∈ �d×M

• the sparsity: k

Output:

• The sparse representation: C

1: Initialization: the residual matrix Rs = X , the index set � = [ ];
2: for i = 1 to k do
3: E = BTRs, where E = ∪p,q[ep,q]
4: Find the index λ = argmaxq

∑
p |ep,q|

5: � = [� λ]
6: C = (BT

�B�)−1BT
�X

7: Rs = X − BC
8: end for
9: return C
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When the codebook B ∈ �D×M and a descriptor set X ∈ �d×N are given, the set
of codes C ∈ �M×N can be calculated by the coding methods (VQ or SOMP). Then
the mean reconstruction error (MRE) for X is defined as:

εMRE =
N∑
i=1

εi/N,

where εi = ‖xi − Bci‖22 is the reconstruction error of the ith descriptor.
To compare theMREs for both theVQ and SOMPmethods, amatrixX ∈ �64×2000

is randomly generated based on the standard normal distribution. Then the matrix
X is split into two parts (X1 ∈ �64×1000 and X2 ∈ �64×1000). The matrix X1 is used
to build a codebook B by the k-means algorithm. Then we use X2 to calculate the
codes CVQ and CSOMP via Eqs. (11.9) and (11.10), respectively. Finally we calculate
theMREs under varied cluster numbers and different sparsity values k = {5, 10, 15}.
Figure11.9 shows the results of both coding methods. We can see that the MREs of
the SOMP method is much lower than theMREs of the VQ method.

Compared with the VQ method, SOMP has several advantages. First, the code-
book B is usually overcomplete (i.e.,M > d). Overcomplete codings smoothly inter-
polate between input vectors and are robust under input noise (Olshausen et al.
1997). Second, SOMP achieves a much lower reconstruction error. Although there
is no direct relationship between lower reconstruction error and good recognition
results, some authors (Yang et al. 2009; Wan et al. 2012) have shown that oftentimes
better reconstruction leads to better performance. Third, the sparsity prior allows
the learned representation to capture salient patterns of local descriptors. Accord-
ing to our experimental results in Sect. 11.4, although VQ can produce satisfactory
accuracy, SOMP can achieve better performance.

Fig. 11.9 Comparison MREs using both VQ and SOMP methods
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11.3.3 Coefficient Histogram Calculation and Classification

ThematrixX contains the descriptors obtained froma test sample andC contains their
corresponding sparse representations over the learned codebookB. The sparse coeffi-
cients of the vector ci ∈ C present the contribution of all the entries in approximating
the descriptor xi ∈ X. The sparse coefficients associatedwith all the descriptors of the
test sample thus collectively demonstrate the contribution of the entries toward the
representation of that sample. Therefore, we use the coefficient histogram to denote
the representation of each individual sample via Eq. (11.11).

h = 1

N

N∑
i=1

ci, (11.11)

where ci ∈ �M is the ith descriptor of C ∈ �M×N , and N is the total number of
descriptors extracted from a sample and h ∈ �M .

Because we have only one sample per class for training, multi-class SVMs are
not trivially applicable because they require in principle a large number of training
examples. So we select the NN classification for gesture recognition.

In the above discussion, we assume that every video has one gesture but this
assumption is not suitable for continuous gesture recognition system. Therefore, we
first apply DTW to achieve temporal gesture segmentation, which splits the mul-
tiple gestures to be recognized. We use the sample code about DTW provided in
ChaLearn gesture challenge website (http://gesture.chalearn.org/data/sample-code).
The detailed description of how to use DTW in one-shot learning can be found in
Guyon et al. (2013). We briefly introduce the process for temporal gesture segmen-
tation by DTW so as to make this paper more self-contained.

11.3.4 Temporal Gesture Segmentation Based on DTW

Let V = [I1, ..., IN ] be a video with N frames, where Ii is the ith frame (grayscale
image) in the video. A video is represented by a set of motion features obtained from
difference images as follows. First, the difference image is computed by subtracting
consecutive frames in a video, that is Ei = Ii+1 − Ii, i = 1, ...,N − 1. The difference
image is shown in Fig. 11.10b. Then a grid of equally spaced cells is defined over the
difference image. The default size of the grid is 3 × 3 as shown in Fig. 11.10c. For
each cell, we calculate the average value in the difference image, so a 3 × 3 matrix is
generated. Finally, we flatten this matrix into a vector which is called motion feature.
Therefore, a video V with N frames is represented by a matrix (the set of motion
features) fV ∈ �9×(N−1).

The reference sequence with κ training videos is denoted by Ftr=[fV tr1 , ..., fV trκ ],
fV tr is the set of motion features of a training video. A test sequence is denoted by
Fte = fV te (the set of motion features for the test video). We calculate the negative

http://gesture.chalearn.org/data/sample-code
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Fig. 11.10 An example for the calculation of motion feature vector

Fig. 11.11 Temporal gesture segmentation by DTW

Euclidean distance between each entry (a motion feature) from Ftr and each entry
(amotion feature) fromFte. Thenwecalculate theDTWdistance and apply theViterbi
algorithm Viterbi (1967) to find the temporal segmentation (an optimal warping
path). In Fig. 11.11, the left gray image shows the set of motion features (Ftr) as the
reference sequence calculated from training videos. Amotion feature (Fte) as the test
sequence is computed from a new input video. The optimal path is shown in the top
right corner (the green line is the optimal path; the short red lines are the boundary
of two neighboring gestures). We can see that the testing video is splitted into five
gestures.
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11.3.5 Overview of the Proposed Approach

In this section, we describe the proposed approach based on bag of 3D EMoSIFT
features for one-shot learning gesture recognition in detail. In the recognition stage, it
has five steps: temporal gesture segmentation by DTW, feature descriptor extraction
using 3D EMoSIFT, coding descriptor via SOMP, coefficient histogram calculation
and the recognition results via NN classifier. The overall process is summarized in
Algorithm 3.

Algorithm 3: The proposed approach for one-shot learning gesture recognition

The condition for one-shot learning: given K training samples (RGB-D data) for K class
(one sample per gesture class).
Input:

• Training samples (RGB-D data): Tr = [tr1, ..., trK ]
• A learned codebook: B (computed from training stage)
• Coefficient histograms of training samples: Hr =[hr1, hr2, ..., hrK ] via Equation (11.11)

(computed from training stage)
• A test sample (RGB-D data): te

Output:

• The recognition results: class

1: Initialization: class = [ ]
2: Temporal gesture segmentation: [te1 , te2 , ..., teN ] = DTW (Tr, te), N ≥ 1
3: for i = 1 to N do
4: Spatio-temporal feature extraction: Xte = 3D_EMoSIFT(tei )
5: For Xte , calculate its sparse representation C over the pre-trained codebook B

minC ‖Xte − BC‖2F s.t. ‖cj‖0 ≤ k, ∀ j
6: Calculate the coefficient histogram hte via Equation (11.11)
7: Recognition: tmp_calss = nn_classify(Hr, hte )
8: class = [class tmp_calss]
9: end for
10: return class

11.4 Experimental Results

This section summarizes our results and demonstrates the proposed method is well
suitable for one-shot learning gesture recognition. We first discuss the parameters
of the proposed method. We further extend our method to compare with other state-
of-the-art methods. Our experiments reveal that the proposed method gives superior
recognition performance than many existing approaches.
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Fig. 11.12 Some samples from ChaLearn gesture database

11.4.1 Database

We evaluate the proposed method on development batches (devel01–devel20), vali-
dation batches (valid01–valid20) and final batches (final21–final40) which contain
in total 6000 gestures. The sixty batches are from Chalearn gesture challenge. Each
batch is made of 47 gesture videos and split into a training set and a test set. The train-
ing set includes a small set of vocabulary spanning from 8 to 15 gestures. Every test
video contains 1–5 gestures. Detailed descriptions of the gesture data can be found
in Guyon et al. (2012). All the samples are recorded with a Microsoft KinectTM

camera which provides both RGB and depth video clips. Some examples are shown
in Fig. 11.12 where the first row is RGB images and the corresponding depth images
are shown in the second row.

11.4.2 Metric of Evaluation

We adopt the metric of evaluation that was used by the challenge organizers (Guyon
et al. 2012) to rank the entries. To evaluate performance, we use Levenshtein distance
to calculate the score between the predicted labels and the truth labels. This distance
between two strings is defined as the minimum number of operations (insertions,
substitutions or deletions) needed to transform one string into the other. In our case,
the strings contain the gesture labels detected in each sample. For all comparisons,
we compute the mean Levenshtein distance (MLD) over all video clips and batches.
MLD score is analogous to an error rate (although it can exceed 1).

11.4.3 Parameters Discussion

This part gives the discussion of the parameters of the proposed method. First, we
analysis the parameters of 3D EMoSIFT. Then, two parameters from the BoF model
are discussed.
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11.4.3.1 Parameters of 3D EMoSIFT

There are five parameters for constructing 3D EMoSIFT features. Three parame-
ters σ, n and s in Eq. (11.1) are derived from SIFT algorithm. We set σ = 1.6 and
s = 3. Because Lowe (2004) suggest that when σ = 1.6 and s = 3, they can pro-
vide the optimal repeatability according to their experimental results. Besides, the
number of octaves n can be calculated according to the original image size, such as
int(log2(min(width, height))) Vedaldi and Fulkerson (2008).

The rest of parameters are β1 in Eq. (11.5) and β2 in Eq. (11.7). β1 and β2

determine the detection of interest points based on motion and depth change. When
β1 and β2 are smaller, more interest points will be detected. We find that when
β1 ∈ [0.003 0.008],β2 ∈ [0.003 0.008], the performances are very stable as shown
in Fig. 11.13 where the results are calculated from two batches.We can see that MLD
scores vary from 0.075 to 0.092 for devel01 batch, from 0.089 to 0.134 for devel02
batch. Therefore, β1 = β2 = 0.005 is used throughout this paper based on empirical
results.

11.4.3.2 Parameters of the BoF Model

There are two parameters in the BoF model: γ in Eq. (11.8) and k in Eq. (11.10).
Unlike traditional BoF models, we use a new parameter γ ∈ (0, 1) to replace the
codebook sizeM mentioned in Sect. 11.3.2. We first explain the reasons for choosing
γ. Table11.2 shows some information on different batches (final21–final40), such as
the number of training samples and the number of features extracted from training
samples.We can see that the number of features varies on different batches. If a given
codebook sizeM is too large, it may cause over-clustering on some batches where the
number of features is relatively fewer (e.g., final25 and final36). Therefore, the over-
clustering will effect the final MLD score. For instance, we evaluate seven different

Fig. 11.13 Parameters: σ = 1.6, s = 3, γ = 0.2 and k = 10. The MLD scores are calculated with
different values β1,β2. a On devel01 batch; b on devel02 batch
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Table 11.2 This table shows some information for every batch. The last row reveals the average
number. Although the average number of 3D EMoSIFT features has decreased by 28.15%, 3D
EMoSIFThas a higher performance than3DMoSIFT inour experimental results.Besides, compared
3D MoSIFT features, the process time of 3D EMoSIFT can be faster to build the cookbook

Batch names Number of
training
samples:Ntr

Number of
features (3D
MoSIFT):L1tr

Number of
features (3D
EMoSIFT):L2tr

Decrease in
ratio:1 − L2tr

L1tr
(%)

Final21 10 18116 13183 27.23

Final22 11 19034 15957 16.17

Final23 12 11168 7900 29.26

Final24 9 10544 7147 32.22

Final25 11 8547 6180 27.69

Final26 9 9852 7675 22.10

Final27 10 29999 20606 31.31

Final28 11 16156 10947 32.24

Final29 8 30782 22692 26.28

Final30 10 20357 14580 28.38

Final31 12 22149 17091 22.84

Final32 9 12717 10817 14.94

Final33 9 42273 29034 31.32

Final34 8 24099 16011 33.56

Final35 8 39409 27013 31.45

Final36 9 9206 6914 24.90

Final37 8 22142 14181 35.95

Final38 11 26160 18785 28.19

Final39 10 16543 11322 31.56

Final40 12 11800 10128 14.17

Average 9.85 20052.65 14408.15 28.15

codebook sizes: {800, 1000, 1500, 2000, 2500, 3000, 3500}. The corresponding
results are shown in Table11.3 where the best performance is 0.18242. Then we
evaluate different values {0.1, 0.2, 0.3} for γ, and the results are shown in Table11.4.
We can see that even though γ = 0.1, the correspondingMLDscore is 0.17415which
can easily beat the best performance in Table11.3. Additionally, when γ = 0.1, the
corresponding mean codebook size 1440 is much smaller than the given codebook
size 3500 which is from the best result in Table11.3.

The theory of sparse coding and the codebook learning are in a developing stage
and the problems for selecting optimal parameters (e.g., γ, sparsity k) are still open
issues (Guha and Ward 2012). In this paper, we use a simple strategy to decide
these two parameters. At first, we keep k = 10 and set γ with different values (rang-
ing from 0.1 to 0.5), then determine γ by the lowest MLD score. Figure11.14a
shows the results. It reveals when γ = 0.5, we can get a higher performance and the
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Table 11.3 Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and k = 10 (final21–final40). MLD
scores with different codebook sizes M

Codebook sizeM 800 1000 1500 2000 2500 3000 3500

MLD score 0.21448 0.21504 0.19514 0.18961 0.18684 0.18574 0.18242

Table 11.4 Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and k = 10 (final21–final40). MLD
scores with different values for γ

γ 0.1 0.2 0.3

MLD score 0.17415 0.14753 0.14032

Mean codebook size 1440 2881 4322

Fig. 11.14 a Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and k = 10 (final21–final40). MLD
scores with different values of γ; b Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and γ = 0.5
(final21–final40). MLD scores with different values of sparsity k

correspondingMLD score is 0.13145. Then we set different values of k with γ = 0.5
and the results are shown in Fig. 11.14b. We can see that MLD scores remain stable.
When γ = 0.5 and k = 12, the proposed method gets the lowest MLD score (the
corresponding value is 0.1259).

11.4.4 Comparisons

In order to compare with other methods, we first use the standard BoF model to eval-
uate different spatio-temporal features. Then the performances of VQ and SOMP
is given. Besides, we evaluate the performances of both the gradient-based and
motion-based features. Finally, we compare the proposed approach with some pop-
ular sequence matching methods.
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11.4.4.1 Comparison with Other Spatio-Temporal Features

In our experiments, we use the standard BoF model to evaluate different spatio-
temporal features, which means VQ is used for coding descriptors. As shown in
Fig. 11.14b, the results are relatively stable when sparsity k has different values.
Therefore, we evaluate different values {0.1, 0.2, 0.3, 0.4, 0.5} for γ and set k = 10.
The results are shown in Table11.5, where we can draw the following conclusions.

First, the results of 3D EMoSIFT and 3DMoSIFT consistently exceed traditional
features (e.g., Cuboid, Harris3D and MoSIFT). More specifically, the least MLD
scores (corresponding to the best recognition rate) for 3D EMoSIFT is 0.13311,
compared to 0.14476 for 3D MoSIFT, 0.28064 for Cuboid, 0.18192 for Harris3D,
and 0.335 for MoSIFT.

Second, from the previous works, we know that traditional features have achieved
promising results (Dollár et al. 2005; Laptev 2005; Chen and Hauptmann 2009).
However, those featuresmay be not sufficient to capture the distinctivemotion pattern
only from RGB data because there is only one training sample per class.

Third, although 3D MoSIFT and 3D EMoSIFT are derived from the SIFT and
MoSIFT features,MoSIFT still cannot achieve satisfactory outcomes. That is because
the descriptors captured by MoSIFT are simply calculated from RGB data while 3D
MoSIFT and 3D EMoSIFT construct 3D gradient and 3D motion space from the
local patch around each interest point by fusing RGB-D data.

To show the distinctive views for both 3DMoSIFT and 3D EMoSIFT features, we
record three gesture classes: clapping, pointing and waving. The samples are shown
in Fig. 11.15, where the training samples are shown in the first three rows (of the first

Table 11.5 Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and k = 10 (final21–final40).
It shows MLD scores by different spatio-temporal features with different values of γ, where (R)
means the features are extracted from RGB video, (R+D) means the features are extracted from the
RGB and depth videos. The values shown in bold indicate superior performance, with MLD scores
below 0.16

Methods\γ 0.1 0.2 0.3 0.4 0.5

Cuboid(R) 0.36717 0.36495 0.34332 0.33111 0.31392

Cuboid(R+D) 0.33666 0.31559 0.30948 0.30782 0.28064

Harris3D hog(R) 0.30061 0.26012 0.25014 0.23516 0.23461

Harris3D hog(R + D) 0.24903 0.22795 0.22407 0.22795 0.22684

Harris3D hof(R) 0.34831 0.32668 0.31281 0.29895 0.29063

Harris3D hof(R + D) 0.32169 0.29174 0.28508 0.27898 0.27121

Harris3D hoghof(R) 0.24237 0.21963 0.20022 0.19468 0.18857

Harris3D hoghof(R + D) 0.20965 0.18802 0.18303 0.18747 0.18192

MoSIFT(R) 0.41653 0.39601 0.35885 0.36606 0.33500

MoSIFT(R + D) 0.44426 0.44260 0.43594 0.42318 0.40488

3D MoSIFT(R + D) 0.19135 0.16694 0.16195 0.14476 0.14642

3D EMoSIFT(R + D) 0.16528 0.15419 0.14753 0.13977 0.13311
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Fig. 11.15 The first two columns are the samples used for training and testing. The third and fifth
columns reveal the spatial distribution of the visual words for the samples, which show3DEMoSIFT
is more compact. We superimpose the interest points in all frames into one image. Different visual
words are represented by different colors. The fourth and sixth columns are shown the histograms
for each sample. The histogram vector is �2 normalization. It shows each class has some dominating
visual words. A compact feature encourages gestures from the same class to be described by similar
histograms (or visual words), especially the dominating visual words. The histograms from the
same class learned by 3D EMoSIFT are similar (i.e., clapping gesture)

two columns) and the testing samples are shown in the last three rows (of the first two
columns). We first extract 3D MoSIFT and 3D EMoSIFT features from the six sam-
ples. Then we use 3D MoSIFT and 3D EMoSIFT features extracted from the three
training samples to generate a codebook which has 20 visual words, respectively.
Each descriptor is mapped into a certain visual word with VQ. The spatial distribu-
tion of visual words for each sample are shown in Fig. 11.15 where different visual
words are represented by different colors. It shows that 3D EMoSIFT is more com-
pact. A more compact feature leads to a better performance (see Table11.5) and can
effectively reduce the redundant features (see Table11.2). Besides, a compact feature
should encourage the signals from the same class to have similar representations. In
other words, the signals from the same class are described by similar histograms (or
visual words). From the Fig. 11.15, we can see that the samples from the same class
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have similar histograms (e.g., clapping gesture) when we use 3D EMoSIFT. How-
ever, 3D MoSIFT cannot get good similar histograms. From the above discussions,
we see that 3D EMoSIFT is suitable for one-shot learning gesture recognition. Inter-
estingly, 3D EMoSIFT is also more sparsity than 3DMoSIFT (see the histograms in
Fig. 11.15).

11.4.4.2 Comparison Between VQ and SOMP

We then evaluate different coding methods (VQ, SOMP) on development
(devel01–devel20) batches. Figure11.16 shows the results. The minimum MLD
by SOMP is 0.004 (see devel13), while 0.008 (see devel01) for VQ. And most of
the performances by SOMP are much better than VQ. Later, we test 3D MoSIFT
and 3D EMoSIFT features on final21–final40 batches. MLD scores are given in
Table11.6. It can be seen that in most cases, SOMP leads the performance whenever
3D MoSIFT or 3D EMoSIFT is used. We also provide the results by 3D EMoSIFT
for every batch in Fig. 11.17 which shows that SOMP is better than VQ inmost cases.
In a word, compared with VQ, SOMP not only has lower reconstruction errors (see

Fig. 11.16 Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3, k = 10 and γ = 0.3 (devel01–devel20).
The results with different coding methods (VQ, SOMP)

Table 11.6 Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 , k = 10, and γ varies from 0.1 to 0.5
(final21–final40). MLD scores are calculated by different coding methods

Methods\γ 0.1 0.2 0.3 0.4 0.5

3D MoSIFT_VQ 0.19135 0.16694 0.16195 0.14476 0.14642

3D MoSIFT_SOMP 0.18303 0.16251 0.15918 0.15086 0.14088

3D EMoSIFT_VQ 0.16528 0.15419 0.14753 0.13977 0.13311

3D EMoSIFT_SOMP 0.17415 0.14753 0.14032 0.13478 0.13145
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Fig. 11.17 Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3, k = 10 and γ = 0.3 (final21–final40).
The results with different coding methods (VQ, SOMP)

Fig. 11.9) but also achieves better performance. We note that 3D EMoSIFT does
not work well on devel03 batch as shown in Fig. 11.16. That is because there are
static gestures (postures) on devel03 batch, while 3D EMoSIFT can only capture
distinctive features when the gestures are in motion.

11.4.4.3 Comparison Between Gradient-Based and Motion-Based
Features

We know that 3D EMoSIFT feature includes two basic components, namely,
gradient-based features and motion-based features. And each component is of size
384 dimensions. In this section, we separately evaluate these two components and
determinate which component is more essential to gesture recognition. The results
evaluated on development batches are separately shown in Fig. 11.18 where the inte-
grated feature consists of the gradient-based and motion-based features. The average
MLD scores are 0.1945 for the integrated feature, 0.216 for the gradient-based fea-
tures, and 0.313 for the motion-based features. It can be seen that the performance of
the gradient-based features, which are comparative to the results of the integrated fea-
ture, are much better than the performance of the motion-based features. In addition,
our method outperforms two published papers on devel01–devel20 batches, that is
say, our method: 0.1945, Lui (2012): 0.2873, (Malgireddy et al. 2012): 0.2409.

As mentioned in Sect. 11.3.1, 3D EMoSIFT is constructed in two stages (inter-
est point detection and descriptor calculation). So whenever the gradient-based or
motion-based features are calculated, we should first detect the interest points. We
randomly select a sample from Chalearn gesture database and test the average time
with c++ programs and OpenCV library (Bradski 2000) on a standard personal com-
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Fig. 11.18 Results for parameters: β1 = β2 = 0.005, σ = 1.6, s = 3, k = 10, and γ = 0.3
(devel01–devel20)

Table 11.7 The average computation time for different parts in 3D EMoSIFT feature

Interest point detection
average time (ms/f)

Gradient-based descriptor
average time (ms/f)

Motion-based descriptor
average time (ms/f)

887 2.1 1.4

puter (CPU: 3.3GHz, RAM: 8GB). Table11.7 shows that the main processing time
occurs in the stage of interest point detection. The remaining parts for calculating
the gradient-base and motion-based descriptor is small compared with the time for
interest point detection. In our future work, we will focus on how to efficiently detect
interest points.

11.4.4.4 Comparison with Other Methods

Here, we compare the proposed approach with some popular sequence matching
methods such as HMM, DTW, CRF, HCRF and LDCRF, and also give the final
results of top contestants. The results are reported in Table11.8 where the principal
motion method Escalante and Guyon (2012) is the baseline method and DTW is an
optional method on Chalearn gesture challenge (round 2).

The top ranking results in the competition are from three teams (Alfine, Turtle
Tamers and Joewan), which are provided in the technical report (Guyon et al. 2013).
We use the code provided by Morency et al. (2007) to train the CRF-based classi-
fiers, because this code was well developed and can be easily used. Every frame is
represented by a vector of motion feature mentioned in Sect. 11.3.4. Those motion
features extracted from training videos are used to train CRF-based models. For
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Table 11.8 Results of different methods on Chalearn gesture data set

Method Validation set(01–20) Final set(21–40) Team name

Motion signature
analysis

0.0995 0.0710 Alfnie

HMM+HOGHOF 0.2084 0.1098 Turtle Tamers

BoF+3D MoSIFT 0.1824 0.1448 Joewan

Principle motion 0.3418 0.3172 –

DTW 0.4616 0.3899 –

CRF 0.6365 0.528 –

HCRF 0.64 0.6 –

LDCRF 0.608 0.5145 –

Our method 0.1595 0.1259 –

the CRF model, every class has a corresponding label (gesture label). CRF predicts
a label for each frame in a video. During evaluation, the video label is predicted
based on the most frequently occurring label per frame (Morency et al. 2007). For
the HCRF (or LDCRF) model, we train a single HCRF (or LDCRF) model with
different number of hidden states (from 2 to 6 states) and select the lowest MLD
scores as the final results which are shown in Table11.8. We can see that the pro-
posed method is competitive to the state-of-the-art methods. Besides, the CRF-based
methods get poor performances. That is because the simple motion features may be
indistinguishable to represent the gesture pattern.

11.5 Conclusion

In this paper, we propose a unified framework based on bag of features for one-
shot learning gesture recognition. The proposed method gives superior recognition
performance than many existing approaches. A new feature, named 3D EMoSIFT,
fuses RGB-D data to detect interest points and constructs 3D gradient and motion
space to calculate SIFT descriptors. Compared with existing features such as Cuboid
(Dollár et al. 2005), Harri3D (Laptev 2005), MoSIFT (Chen and Hauptmann 2009)
and 3D MoSIFT (Ming et al. 2012), it gets competitive performance. Additionally,
3D EMoSIFT features are scale and rotation invariant and can capture more compact
and richer video representations even though there is only one training sample for
each gesture class. This paper also introduces SOMP to replace VQ in the descriptor
coding stage. Then each feature can be represented by some linear combination of
a small number of visual codewords. Compared with VQ, SOMP leads to a much
lower reconstruction error and achieves better performance.

Although the proposed method has achieved promising results, there are several
avenues which can be explored. At first, most of the existing local spatio-temporal
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features are extracted from a static background or a simple dynamic background. In
our feature research,wewill focus on extending 3DEMoSIFT to extract features from
complex background, especially for one-shot learning gesture recognition. Next, to
speed up processing time, we can achieve fast feature extraction on a Graphics
Processing Unit (GPU) (Chen et al. 2003). Also, we will explore the techniques
required to optimize the parameters, such as the codebook size and sparsity.
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Chapter 12
One-Shot-Learning Gesture Recognition
Using HOG-HOF Features

Jakub Konečný and Michal Hagara

Abstract The purpose of this paper is to describe one-shot-learning gesture
recognition systems developed on the ChaLearn Gesture Dataset (ChaLearn 2011).
We use RGB and depth images and combine appearance (Histograms of Oriented
Gradients) and motion descriptors (Histogram of Optical Flow) for parallel temporal
segmentation and recognition. The Quadratic-Chi distance family is used to measure
differences between histograms to capture cross-bin relationships. We also propose
a new algorithm for trimming videos—to remove all the unimportant frames from
videos. We present two methods that use a combination of HOG-HOF descriptors
together with variants of a Dynamic TimeWarping technique. Both methods outper-
form other published methods and help narrow the gap between human performance
and algorithms on this task. The code is publicly available in the MLOSS repository.

Keywords Chalearn ·Histogram of oriented gradients ·Histogram of optical flow ·
Dynamic time warping

12.1 Introduction

Gesture recognition can be seen as a way for computers to understand human
body language. Improving state-of-the-art algorithms for gesture recognition facili-
tates human-computer communication beyond primitive text user interfaces or GUIs
(graphical user interfaces). With rapidly improving comprehension of human ges-
tures we can start buildingNUIs (natural user interfaces) for controlling computers or
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J. Konečný (B) · M. Hagara
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robots. With the availability of such technologies, conventional input devices, such
as a keyboard or mouse, could be replaced in situations in which they are incon-
venient in future. Other applications of gesture recognition include sign language
recognition, socially assistive robotics and game technology.

In this paper, we focus on the one-shot learning gesture recognition problem,
in particular the ChaLearn Gesture Dataset (ChaLearn 2011). The data set was
released jointly with a competition, where the goal was to develop a system capable
of learning to recognize new categories of gestures from a single training example
of each gesture. The large data set of hand and arm gestures was pre-recorded using
an infrared sensor, KinectTM , providing both RGB and depth images (Guyon et al.
2012, 2013).

The purpose of this work is to describe methods developed during the ChaLearn
Gesture Challenge by the Turtle Tamers team (authors of this paper). We finished
in 2nd place in round 2 and were invited to present our solution at the International
Conference on Pattern Recognition 2012, Tsukuba, Japan. The code has been made
publicly available in the MLOSS repository.1

Since the goal of the challenge was to provide solid baseline methods for this data
set, our methods were specifically tailored for this particular competition and data
set. Hence, they lack a certain generality, and we discuss and suggest changes for
more general settings later.

The rest of this work is organised as follows. Related work is summarized in
Sect. 12.2. In Sect. 12.3wedescribe the data set and the problem in detail. In Sect. 12.4
we focus on the preprocessing needed to overcome some of the problems in the data
set. Section12.5 covers feature representation, using Histogram of Oriented Gradi-
ents and Histogram of Optical Flow, as well as a method used to compare similarities
between these representations. In Sect. 12.6 we describe the actual algorithms, and
in Sect. 12.7 we briefly describe algorithms of other participants and compare their
results with ours, as well as with other published works. In Sect. 12.8 we summarize
our paper and suggest an area for future work.

12.2 Related Work

In this section we provide a brief literature review in the area of gesture and action
recognition and motivate our choices of models.

One possible approach to the problem of gesture recognition consists of analyzing
motion descriptors obtained from video. Ikizler and Forsyth (2007) use the output of
Human Motion Capture systems in combination with Hidden Markov Models. Wu
et al. (2012) use ExtendedMotionHistory Image as amotion descriptor and apply the
method to the ChaLearn Gesture Dataset. They fuse dual modalities inherent in the
Kinect sensor using Multiview Spectral Embedding (Xia et al. 2010) in a physically
meaningful manner.

1The code is available at https://mloss.org/software/view/448.

https://mloss.org/software/view/448
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Apopular recent approach is to useConditional RandomFields (CRF).Wang et al.
(2006) introduce the discriminative hidden state approach, in which they combine
the ability of CRFs to use long range dependencies and the ability of HiddenMarkov
Models to model latent structure. More recent work (Chatzis et al. 2012) describes
joint segmentation and classification of sequences in the framework of CRFs. The
method outperforms other popular related approaches with no sacrifices in terms of
the imposed computational costs.

An evolution of Bag-of-Words (Lewis 1998), a method used in document analy-
sis, where each document is represented using the apparition frequency of each word
in a dictionary, is one of the most popular in Computer Vision. In the image domain,
these words become visual elements of a certain visual vocabulary. First, each image
is decomposed into a large set of patches, obtaining a numeric descriptor. This can
be done, for example, using SIFT (Lowe 1999), or SURF (Bay et al. 2006). A set
of N representative visual words are selected by means of a clustering process over
the descriptors in all images. Once the visual vocabulary is defined, each image can
be represented by a global histogram containing the frequencies of visual words.
Finally, this histogram can be used as input for any classification technique. Exten-
sions to image sequences have been proposed, the most popular being Space-Time
Interest Points (Laptev 2005). Wang et al. (2009) have evaluated a number of feature
descriptors and bag-of-features models for action recognition. This study concluded
that different sampling strategies and feature descriptors were needed to achieve the
best results on alternative action data sets. Recently an extension of these models to
the RGB-D images, with a new depth descriptor was introduced by Hernandez-Vela
et al. (2012).

Themethods outlined above usually ignore particular spatial position of a descrip-
tor. We wanted to exploit the specifics of the data set, particularly the fact that user
position does not change within the same batch, thus also the important parts of the
same gestures will occur roughly at the same place. We use a combination of appear-
ance descriptor, Histogram of Oriented Gradients (Dalal and Triggs 2005) and local
motion direction descriptor, Histogram of Optical Flow (Kanade and Lucas 1981).
We adopted Quadratic-Chi distance (Pele andWerman 2010) to measure differences
between these histograms. This approach only works well at high resolutions of
descriptors. An alternative may be to use a non-linear support vector machine with
a χ2 kernel (Laptev et al. 2008). Another possible feature descriptor that includes
spatio-temporal position of features could be HOG3D (Klaser and Marszalek 2008),
which was applied to this specific data set by Fanello et al. (2013).

12.3 Data and Problem Setting

In this section, we discuss the easy and difficult aspects of the data set and state the
goal of the competition.



368 J. Konečný and M. Hagara

The purpose of the ChaLearn Gesture Challenge2 was to develop an automated
system capable of learning to recognize new categories of gestures from a single
training example of each gesture. A large data set of gestures was collected before the
competition, which includes more than 50, 000 gestures recorded with the KinectTM

sensor, providing both RGB and depth videos. The resolution of these videos is
240 × 320 pixels, at 10 frames per second. The gestures are grouped into more than
500 batches of 100 gestures, each batch including 47 sequences of 1–5 gestures drawn
from small gesture vocabularies from 8 to 14 gestures. The gestures come from over
30 different gesture vocabularies, and were performed by 20 different users.

During the challenge, development batches devel01–480were available,with truth
labels of gestures provided. Batches valid01–20 and final01–40 were provided with
labels for only one example of each gesture class in each batch (training set). These
batches were used for evaluation purposes. The goal is to automatically predict the
gesture labels for the unlabelled gesture sequences (test set). The gesture vocabularies
were selected from nine categories corresponding to various settings or applications,
such as body language gestures, signals or pantomimes.

Easy aspects of the data set include the use of a fixed camera and the availability of
the depth data.Within each batch, there is a single user, only homogeneous recording
conditions and a small vocabulary. In every sequence, different gestures are separated
by the user returning to a resting position. Gestures are usually performed by hands
and arms. In particular, we made use of the fact that the user is always at the same
position within one batch.

The challenging aspects of the data are that within a single batch there is only one
labelled example of each gesture. Between different batches there are variations in
recording conditions, clothing, skin color and lightning. Some users are less skilled
than others, thus there are some errors or omissions in performing the gestures. And
in some batches, parts of the body may be occluded.

For the evaluation of results the Levenshtein distance was used, provided as the
metric for the competition. That is theminimumnumber of edit operations (insertion,
deletion or substitution) needed to be performed to go from one vector to another.
For each unlabelled video, the distance D(T, L) was computed, where T is the
truth vector of labels, and L is our predicted vector of labels. This distance is also
known as the “edit distance”. For example, D([1, 2], [1]) = 1, D([1, 2, 3], [2, 4]) =
2, D([1, 2, 3], [3, 2]) = 2.

The overall score for a batch was computed as a sum of Levenshtein distances
divided by the total number of gestures performed in the batch. This is similar to an
error rate (but can exceed 1). We multiply the result by a factor of 100 to resemble
the fail percentage. For simplicity, in the rest of this work, we call it the error rate.

2Details and website: http://gesture.chalearn.org/.

http://gesture.chalearn.org/
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12.4 Preprocessing

In this section we describe how we overcame some of the challenges with the given
data set as well as the solutions we propose. In Sect. 12.4.1 we focus on depth
noise removal. Later we describe the need for trimming the videos—removing set
of frames—and the method employed.

12.4.1 Depth Noise Removal

One of the problems with the given data set is the noise (or missing values) in the
depth data. Whenever the Kinect sensor does not receive a response from a particular
point, the sensor outputs a 0, resulting in the black areas shown in Fig. 12.1. This noise
usually occurs along the edges of objects or, particularly in this data set, humans.
The noise is also visible if the object is out of the range of the sensor (0.8–3.5m).

The level of noise is usually the same within a single batch. However, there is a
big difference in the noise level across different batches. If the level is not too high,
it looks like ‘salt and pepper’ noise.

Later, in Sect. 12.5, we use Histograms of Oriented Gradients (HOGs), which
work best with sharp edges, so we need a filter that preserves the edges. One of the
best filters for removing this kind of noise is themedian filter, and also has our desired
property. Median filter replaces every pixel with the median of pixels in small area
around itself. The effect of the median filter is shown in Fig. 12.2. We can see this
filter does not erase big areas of noise, however, this is not a problem in our methods.
As mentioned earlier, HOG features are sensitive to the edges, but these large areas
usually occur along the edges, so the difference in computed features will not be
significant.

Fig. 12.1 Examples of depth images with various levels of noise
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Fig. 12.2 Effect of median filter on depth image

12.4.2 Trimming

Inmost batches we can find videoswith quite long parts, at the beginning or at the end
of the video, where nothing important happens. Sometimes the user is not moving
at all, sometimes trying to turn on/off the recorder.3 Another problem occurring less
often is in batches, where gestures are rather static. There is often variation in time
the user stays in a particular gesture setting.4 This is a problem for most possible
approaches for tackling the one-shot-learning problem. A solution can be to remove
frames from the beginning and end of the videos, as well as any part with too much
inactivity.

One possible approach to removing parts of inactivity can be to watch the amount
of motion in the video, and remove parts where nothing happens. This is the idea we
employed.

A naive but effective way is to take the depth video and compute differences for
every pixel between two consecutive frames. Taking depth videos allows us to ignore
problems of texture of clothing or background. We then simply count the number of
pixelswhose change exceeds a given threshold, orwe can simply sum the differences.
After numerous experiments we ended up with Algorithm 1. Suppose we have a
video, n frames long. First we remove the background5 from individual frames and
apply the median filter. Then we do not compute differences of consecutive frames,
but rather between frames i and i + 3. This is to make the motion curve smoother
and thus the method more robust. We also found that it was important to even out
the amount of motion between, for instance, hand in front of body and hand in front
of background. To that end, we set an upper boundary constraint on the difference
at 15 (on a scale 0 to 255). Then we computed the actual motion as an average of
differences between the chosen frames, as previously described, above particular
frame, for example

3An example is batch devel12, video 23.
4An example is batch devel39, particularly video 18.
5Using an algorithm bgremove provided in sample code of the Challenge (ChaLearn 2011).
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motion(2) ← (mot (1) + mot (2))/2,

motion(12) ← (mot (9) + mot (10) + mot (11) + mot (12))/4. (12.1)

In the mot variable we store the average change across all pixels. Then we scaled the
motion to range [0, 1].

Algorithm 1 Trimming a video
n ← length(video)

gap ← 3 max Di f f ← 15 threshold ← 0.1 minT rim ← 5
for i = 1 → n do

video(i) ← bgremove(video(i)) � Background removal
video(i) ← med f ilt (video(i)) � Median filter

end for
for i = 1 → (n − gap) do

di f f (i) ← abs(video(i) − video(i + gap))

di f f (i) ← min{di f f (i), max Di f f }
mot (i) ← mean(di f f (i)) � Mean across all pixels

end for
motion ← avgMotion(mot) � As in Eq.12.1
motion ← scale(motion) � Scale motion so its range is 0 to 1
f rames ← vector(1 : n)

if |beginSequence(motion < threshold)| ≥ minT rim then
f rames ← tr im Begin( f rames) � Remove all frames

end if
if |end Sequence(motion < threshold)| ≥ minT rim then

f rames ← tr im End( f rames) � Remove all frames
end if
for all |sequence(motion < threshold)| > minT rim do

f rames ← tr imMiddle(sequence, f rames) � Remove all frames but minT rim
end for
return video( f rames)

Once we have the motion in the expected range, we can start actually removing
frames. At first, we remove sequences from the beginning and the end of the video
with motion below a threshold (set to 0.1), under the condition that they are of
length at least minT rim (set to 5) frames. Then we find all sequences in the middle
of the video with motion below the threshold of length more than 5, and uniformly
choose 5 frames to remain in the video. For example if we were to trim a sequence of
length 13, only frames {1, 4, 7, 10, 13} would remain. Then we return the video with
the remaining frames. Figure12.3 illustrates the threshold and the motion computed
by this algorithm on a particular video.

One possible modification of this algorithm is in the step in which we scale the
motion to the range of [0, 1]. In this case, we simply subtract min(motion), and
divide by (max(motion) − min(motion)). However, especially in videos with 4
or 5 gestures, sometimes large outliers cause problems, because the threshold is
too big. Since the motion curve tends to be relatively smooth, instead of choosing
max(motion) we could choose the value of the second highest local maximum.
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Fig. 12.3 Example of a motion graph, batch devel11, video 32

This scaling performs slightly better on long videos, but does not work well on short
videos. Since, we do not know how many gestures to expect in advance, we used the
simpler method.

It is not straightforward to generalize this approach to color videos, since there
is no easy way to distinguish the background from the foreground. Additionally,
the texture of clothing could cause big problems to this approach. This could be
overcome by adding an algorithm that would subtract the background after seeing
the whole video, but we have not tried this.

12.5 Feature Representation and Distance Measure

In this section, we briefly describe the tools we propose for extracting features.
Gestures differ from each other, both in appearance and the amount of motion while
performing a particular gesture. A good descriptor of the static part of a gesture is
the Histogram of Oriented Gradients, proposed by Dalal and Triggs (2005). A good
method for capturing the size and direction of motion is computing the Optical Flow
using the Lucas-Kanade method (Kanade and Lucas 1981; Lucas 1984) and creating
a histogram of flow. Motivation for these choices is explained in Sect. 12.2. Finally,
we describe the Quadratic-Chi distance family proposed by Pele andWerman (2010)
for measuring distances between histograms.

12.5.1 Histogram of Oriented Gradients

In this section we briefly describe the HOG features. The underlying idea is that
the appearance and shape of a local object can often be characterized rather well
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Fig. 12.4 Example visualisation of the HOG features

by the distribution of local intensity gradient (or edge) directions, even without
precise knowledge of the corresponding gradient (or edge) positions. In practice this
is implemented by dividing the image window into small spatial regions (“cells”),
for each cell accumulating a local 1-D histogram of gradient directions (or edge
orientations) over the pixels of the cell. It is also useful to contrast-normalize the
local responses before using them. This can be done by accumulating a measure of
local histogram “energy” over larger spatial regions (“blocks”) and using the results
to normalize all of the cells in the block.

We used a simple [−1, 0, 1] gradient filter, applied in both directions and dis-
cretized the gradient orientations into 16 orientation bins between 0◦ and 180◦. We
had cells of size 40 × 40 pixels and blocks of size 80 × 80 pixels, each containing
4 cells. The histogram in each cell is normalized with sum of Euclidean norms of
histograms in the whole block. Each cell (except cells on the border) belongs to 4
blocks, thus for one cell we have 4 locally normalized histograms, the sum of which
is used as the resulting histogram for the cell. Since this method cannot be used to
normalize histograms of marginal cells, from 240 × 320 image we get only 4 × 6
spatial cells of 16 orientation bins each. Figure12.4 provides a visual example of the
HOG features at their actual resolution. The space covered is smaller than the original
image, but that is not a problem, since the gestures from the data set are not per-
formed on the border of the frames. Dalal and Triggs (2005) conclude, that fine-scale
gradients, fine orientation binning, relatively coarse spatial cells, and high-quality
local contrast normalization in overlapping descriptor blocks are all important for
obtaining good performance.

As in Fig. 12.4, we computed the HOG features from depth images, since it cap-
tures only the edges we are interested in, and not textures of clothing and so on.
We used the efficient implementation from Piotr’s toolbox (Dollár 2017), function
hog(image, 40, 16).
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12.5.2 Histogram of Optical Flow

In this section we describe the general optical flow principle and the Lucas-Kanade
method (Kanade and Lucas 1981; Lucas 1984) for estimating the actual flow. For
details we refer the reader to these works. Here we present only a brief description
of the method.

The optical flow methods try to estimate the motion between two images, at
times t and t + �t at every position (in our case two consecutive frames of video).
In general, the optical flow equation is formulated as a single equation with two
variables. All optical flow methods introduce additional conditions for estimating
the flow. The Lucas-Kanade method assumes that the flow is essentially constant in
a local neighbourhood of the pixel under consideration, and solves the equation for
all the pixels in the neighbourhood. The solution is obtained using the least squares
principle.

After obtaining the optical flow in every point of the image we divide the
image (of 240 × 320 pixels) to a grid of 6 × 8 spatial cells. We then put each
optical flow vector into one of 16 orientation bins in each spatial cell, and scale
them so that they sum to 1 to get a histogram of 6 × 8 × 16 fields. We also tried
to scale in each spatial cell separately, and the difference of error rate in our
methods on all development batches was less than 0.5. We computed the opti-
cal flow from color videos, converted to grayscale, again using efficient imple-
mentation of the Flow estimation from Piotr’s toolbox (Dollár 2017), function
optFlowLk(image1, image2, [] , 4, 2, 9e-5);

12.5.3 Measuring Distance of the Histograms

Our method relies on making comparisons between pairs of frames in two videos,
which requires as a component, to measure differences between histograms. The
relatively simple methods based on the sum of bin-to-bin distances suffer from the
following limitation: If the number of bins is too small, the measure is not discrimi-
native and if it is too large it is not robust. Distances, that take into account cross-bin
relationships, can be both robust and discriminative. With the HOG and HOF feature
at the resolution that we selected, simple bin-to-bin comparisons are not robust, as
exemplified in Fig. 12.5. Thus we would like a measure that would look into sur-
rounding orientation bins and, after experimenting, also to surrounding spatial cells.
Thus we would also like a measure, that would reduce the effect of big differences,
and also look into surrounding spatial cells. We adopted the following Quadratic-Chi
distance family introduced by Pele and Werman (2010).

Let P and Q be two histograms. Let A be a non-negative symmetric bounded
bin-similarity matrix, such that each diagonal element is bigger or equal to every
other element in its row. Let 0 ≤ m < 1 be a normalization factor. A Quadratic-Chi
histogram distance is defined as:
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Fig. 12.5 Example of need for cross-bin similarities: the same moment in performance of the same
gesture in two different videos. The right hand stays at the same place, the left hand is moving.
This illustrates how the same element can result in different neighbouring orientation bins in HOG
being big in different cases

QC A
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∑
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(
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where we define 0
0 = 0. The normalization factor m reduces the effect of big differ-

ences (the bigger it is, the bigger reduction; in our methods set to 0.5). While com-
paring the i th orientation bins of two histograms, we want to look into the matching
orientation bins, to 4 surrounding orientation bins (2 left, 2 right), and into the same
orientation bins within 8 surrounding spatial cells. MATLAB code for creating the
matrix A which captures these properties is in Appendix B.

12.6 Recognition

In this section we describe the twomethods we propose for one-shot-learning gesture
recognition. We create a single model and look for the shortest path of a new video
through the model in our first method. For the second method we create a separate
model for every training video and using sliding frame window to look for similar
parts of training videos.

12.6.1 Single Model—Dynamic Time Warping

In this method (we will call it SM) we use both Histograms of Oriented Gradients
and Histograms of Optical Flow and perform temporal segmentation simultaneously
with recognition.
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Fig. 12.6 Model for SM—Dynamic TimeWarping. Each node represents a single frame of a train
video. Each row (on the figure) represents single train video. We add a new node—RP, or Resting
Position—representing state where the user is not performing any particular gesture. The arrows
indicate possible transitions between states (nodes)

At first, we create a model illustrated in Fig. 12.6 for the whole batch in the
following way: Every row in the figure represents a single training video. Every
node represents a single frame of the video. In a node we store HOG and HOF
features belonging to the particular frame. Recall that theHOFneeds two consecutive
frames. Thus if a video has f frames, the representation of this video has f − 1 nodes,
ignoring the HOG of first frame. We add an arbitrary node, called Resting Position
(RP), obtained as the average representation of first frames of each video.

Since we want to capture the variation in the speed of performing the gestures,
we set the transitions in the following way. When being in a particular node n at time
t , moving to time t + 1 we can either stay in the same node (slower performance),
move to node n + 1 (the same speed of performance), or move to node n + 2 (faster
performance). Experiments suggested allowing transition to node n + 3 is not needed
with the trimming described in Sect. 12.4. It even made the whole method perform
worse. From the node we call RP (Resting Position) we can move to the first three
nodes of any video, and from the last three nodes of every video we can move to the
RP.

When we have this model, we can start inferring the gestures present in a new
video. First, we compute representations of all the frames in the new video. Then we
compute similarities of every node of our model with every frame representation of
the new video. We compute similarities of both matching HOGs and HOFs, using
the Quadratic-Chi distance described in Sect. 12.5.3, and simply sum the distances.
This makes sense since the empirical distribution functions of distances of HOGs and
HOFs are similar. We can represent these distances as a matrix of size N × ( f − 1),
where N is the number of all nodes in the model, and f is the number of frames
in the new video. Using the Viterbi algorithm we find the shortest path through this
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Fig. 12.7 Example of flow
of states in model—devel01,
video number 11—true
labels are {9, 4, 4, 9}. The
gray levels represent the
shortest cumulative path
ending in a particular point

matrix (we constrain the algorithm to begin in RP or in any of the first three nodes
of any gesture). Every column is considered a time point, and in every time point
we are in one state (row of the matrix). Between neighbouring time points the states
can change only along the transitions in the model. This approach is also known as
Dynamic Time Warping, Berndt and Clifford (1994).

The result of theViterbi algorithm is a path, a sequence of nodeswhich correspond
to states in which our new videowas in time. From this path we can easily infer which
gestures were present (which rows in Fig. 12.6), and in what order. The flow of states
in time is displayed in Fig. 12.7 (the color represents the cumulative cost up to a
particular point—the darker the color, the larger the cumulative cost).

12.6.2 Multiple Models—Sliding Frame

The second method we propose is the M M . Here we used only the Histogram of
Oriented Gradients and perform temporal segmentation prior to recognition. We
created a similar model as in SM , but separately for every training video, illustrated
in Fig. 12.8. Again, every node represents HOG features of a single frame. Thus
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Fig. 12.8 Model for every training video in M M . Every node represents a single frame of that
video. The arrows indicate possible transitions between states (nodes)

Fig. 12.9 Example of sliding frame matrix—devel01, video number 11

if we have k different gestures, we have k similar models. We do not need an RP
node, since we will be looking for short sequences in these models similar to short
sequences of frames of a new video. Again, the possible transitions between states
in the models, capture variation in the speed of performing gestures.

M M differs from SM mainly in its approach to inferring the gestures that are
present. First, we compute all the HOG representations of a new video and compute
their similarities with all the nodes in k models. Then we employ the idea of a sliding
frame. The idea is to take a small sequence of the new video and monitor the parts of
the training videos that it resembles. First we select frames 1 to l (we set l = 10) and
treat this similarly as in SM . We look for the shortest path through our first model
without constraint on where to begin or end. We do the same with every model. This
results in numerical values representing the resemblance of a small part of our new
video with any part of every training video, and optionally also the number of nodes
resembling it. Thenwe select frames 2 to (l + 1), repeat the whole process, andmove
forward through the whole video.

Finally we obtain a matrix of size k × ( f − l + 1), where k is the number of
gestures and f is the number of frames in the new video. Every column represents
a time instance and every row a gesture. An example of such a matrix is shown
in Fig. 12.9. Humans can fairly easily learn to recognize where and which gestures
are present, but this is a bit more challenging task for a computer. We tried to treat
columns as feature vectors and feed it to SM and tried to build a Hidden Markov
Model to infer gestures present. We also tried to include information of what nodes
of a particular model were present for every time instant, so we can prefer gestures
where most of the nodes were included. That was difficult to take into account,
because the start and end of most videos are very similar (Resting Position). All the
methods had problems identifying two identical gestures occurring after each other,
and also two similar gestures occurring after each other. We did not find satisfactory
solutions to these problems without deteriorating performance.

Neither of these methods manages to beat the naive approach. We resorted to
first segment the video using an algorithm provided by the organizers in the sample
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code called dtw_segment. The algorithm is very fast and segments the videos very
well. After segmenting, we simply summed along the rows in corresponding parts
of the scores matrix and picked the minimum. An improvement was to perform a
weighed sum that emphasizes the center of the video, since the important information
is usually in the middle.

We used only HOG features in this method because every attempt to include HOF
features resulted in considerably worse results. An explanation for this behaviour
is we do not need to focus on the overall movement while looking only for short
segments of videos, but it is more important to capture the static element. Thus the
motion information is redundant in this setting.

12.7 Results

The performance of the two methods (SM & M M) on the data set is reported in
this section. We also compare our results with those of other challenge participants
as well as with other already published methods with experiments on this data set.
Finally we summarize our contributions and suggest an area for future work.

12.7.1 Experimental Results

All our experiments were conducted on an Intel Core i7 3610QMprocessor, with 2×
4GB DDR3 1600MHz memory. The running time of SM was approximately 115%
of real-time (takes longer to process than to record), while M M was approximately
90% of real-time. However, none of our methods could be trivially converted to an
online method, since we need to have the whole video in advance.

The performance of our methods on all available data sets is presented in
Table12.1. The results show that our preprocessing steps positively influence the
final results. The M M works better on the first 20 development batches, but per-
forms worse overall. All other published works provides results only on the first
20 batches—too few for any reliable conclusions. Therefore we suggest providing
results on all the batches for bigger relevance.

As mentioned in Sect. 12.2, we chose our descriptors to exploit specific properties
of the data set—the user stays at the same place, and thus the important parts of ges-
tures occur roughly in the same position within the image. Hence it is not surprising
that our model is not translation nor scale invariant. Guyon et al. (2013) created 20
translated and scaled data batches, and analyzed the robustness of methods of top
ranking participants. In general, the bag-of-features models have this property, but
they are usually rather slow. If we wanted to incorporate translation invariance, one
method could be to extract body parts from the image (the algorithm is provided
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Table 12.1 Overviewof our results on data sets. The numbers are normalizedLevenshtein distances
described in Sect. 12.3

Batches SM M M

devel01–20 23.78 21.99

devel01–480 29.40 34.43

valid01–20 20.01 24.48

final01–20 17.02 23.08

final21–40 10.98 18.47

devel01–20 (without trimming) 26.24 22.82

devel01–20 (without medfilt) 24.70 23.92

devel01–20 (SM ; only HOG) 24.53

devel01–20 (M M ; HOG and HOF) 28.73

Fig. 12.10 Scores of our methods on first 20 development batches. The numbers on y-axis are
normalized Levenshtein distances described in Sect. 12.3

within Kinect Development Toolkit6) and align the images so that the user is at the
same position.

The results of our method on each of the first 20 batches is displayed in Fig. 12.10.
Often our methods perform similarly, but one can spot significant differences in
batches devel06 (SM—11.11, M M—36.67), devel10 (SM—54.95, M M—29.67)
and devel17 (SM—34.78, M M—9.78). In batches devel10 and devel17, the gestures
are only static and all occur in the same place in space. In this particular setting, the
information about any motion (HOF) can be redundant. This could be a reason
why M M performs better, since we do not include any motion descriptors in the
representation. In devel06, the problem is, the gestures are performed very quickly,

6Available at http://www.microsoft.com/en-us/kinectforwindows/develop/.

http://www.microsoft.com/en-us/kinectforwindows/develop/
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Table 12.2 Comparison of results of methods from the competition as well as published methods.
The numbers are normalized Levenshtein distances described in Sect. 12.3

Method/team devel01–20 valid01–20 final01–20 final21–40

SM (ours) 23.78 20.01 17.02 10.98

M M (ours) 21.99 24.48 23.08 18.47

Alfnie NA 9.51 7.34 7.10

Pennect NA 17.97 16.52 12.31

Joewan 19.45 16.69 16.80 14.48

OneMillionMonkeys NA 26.97 16.85 18.19

Mananender 26.34 23.32 21.64 19.25

Wu et al. 26.00 25.43 18.46 18.53

BoVDW 26.62 NA NA NA

Lui 28.73 NA NA NA

Fanello et al. 25.11 NA NA NA

thus the videos are often very short. This is a problem since the matrix in Fig. 12.9
has only a few columns, resulting in poor performance of M M .

The above analysis brings us to a new preprocessing step. Suppose we have many
algorithms for solving this one-shot-learning task. If we knew in advance which
algorithmwas best at recognizing particular gestures, then we could boost the overall
performance by selecting the ‘best’ algorithms in advance, after seeing the training
videos. This is a problem we have unsuccessfully tried to solve, and which remains
open for future work. If we always pick the better from our two methods, we would
achieve score of 19.04 on the batches devel01–20.

The methods used by other challenge participants—alfnie, Pennect, Joewan (Wan
et al. 2013), OneMillionMonkeys, Manavender (Malgireddy et al. 2012)—are sum-
marized by Guyon et al. (2012, 2013). We briefly describe other published works
applied on this data set.Weprovide a comparison of all of thesemethods inTable12.2.

Wu et al. (2012) pre-segment videos and represent motions of users by Extended-
Motion-History-Image and use a maximum correlation coefficient classifier. The
Multi-view Spectral Embedding algorithm is used to fuse duo modalities in a phys-
ically meaningful manner.

Hernandez-Vela et al. (2012) present a Bag-of-Visual-and-Depth-Words
(BoVDW) model for gesture recognition, that benefits from the multimodal fusion
of visual and depth features. They combine HOG and HOF features with a new
proposed depth descriptor.

Tensor representation of action videos is proposed by Lui (2012). The aim of
his work is to demonstrate the importance of the intrinsic geometry of tensor space
which yields a very discriminating structure for action recognition. The method is
assessed using three gesture databases, including Chalearn gesture challenge data
set.
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Fanello et al. (2013) develop a real-time learning and recognition system for
RGB-D images. The proposed method relies on descriptors based on 3D Histogram
of Flow, Global Histogram of Oriented Gradient and adaptive sparse coding. The
effectiveness of sparse coding techniques to represent 3D actions is highlighted in
their work.

12.7.2 Contributions

Let us now summarize our contributions. As part of the competition we man-
aged to create solid state-of-the-art methods for the new data set—the goal of the
competition—which will serve as a reference point for future works. Although the
crucial elements of our methods are not novel, they provide a new perspective on
the possibilities of using well studied techniques, namely capturing the cross-bin
relationships using the Quadratic-Chi distance. Further we present a novel algorithm
for trimming videos, based only on depth data. As a preprocessing step we remove
frames that bring little or no additional information, and thus make the method more
robust. Experimental results show that this method does not only boost our perfor-
mance, but also those of other published methods. Our detailed experiments with
two very well performing methods suggest that different kinds of settings require
different methods for the best performance. In particular, the possibility of choosing
from more different types of models (like ours and bag-of-features) under different
motion conditions remain unstudied and an open problem.

12.8 Discussion and Conclusions

In this paper we presented two methods for solving the one-shot-learning gesture
recognition task introduced in the ChaLearn Gesture Challenge (ChaLearn 2011).
We have significantly helped narrow the gap between human and machine perfor-
mance (the baseline method achieved 50% error rate on final evaluation set, our
method 11%, while the human error rate is under 2%). Our methods outperform
other published methods and we suggest that other authors provide results on the
whole data set for greater relevance of achieved results.

We combine static—Histograms of Oriented Gradients—and dynamic—
Histogram of Optical Flow—descriptors in the first method, where we create one
model and perform temporal segmentation simultaneously with recognition using
Dynamic Time Warping. We use only static descriptors and use pre-segmentation as
a preprocessing step in the second method, where we look for similar parts in the
training videos using a sliding frame.

Our first method is similar to the one developed by team Pennect in the Challenge,
and also performs similarly. They also used HOG features, but at different scales,
and used a one-versus-all linear classifier, while we use the Quadratic-Chi distance
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(Pele andWerman 2010) tomeasure distances between individual frames. The recog-
nition was also parallel with temporal segmentation using a DTW model. Surpris-
ingly, the Pennect team used only the color images.

Bag-of-features models provide comparable (Wan et al. 2013) or slightly worse
results than ours (Hernandez-Vela et al. 2012). The advantage of these models is that
they are scale and translation invariant -which is necessary for real-world applications
like in gaming industry. On the other hand, these methods rely on presegmentation
of videos to single gestures, and are considerably slower, hence are currently not
applicable. An interesting property of these methods is their results seem to have
lower variance—error rate at difficult data sets (for instance devel10) is smaller, but
struggle to obtain strong recognition rate on easy data sets (devel08, devel09).

We present a novel video trimming technique, based on the amount of motion. Its
motivation is to remove unimportant segments of videos and thus reduce the prob-
ability of confusing gestures. The method improves overall results of our methods
(Table12.1), and small improvement was confirmed by Wu et al. (2012)—2% and
Wan et al. (2013)—0.5%.

Finally, we suggest an area for future work. Havingmore well workingmethods at
our disposal, we can analyse their results on different types of gesture vocabularies,
users and other settings. Overall performance could be boosted if we were able
to decide which recognizer to use in advance. Especially, deeper analysis of the
differences of results between Bag-of-words models and Dynamic Time Warping
models is needed to obtain better description of their behaviour on different types of
gesture recognition tasks.

Appendix A

In this appendix, we analyse the computational complexity of our methods.
Let us first describe the computational complexity of the building blocks of

our algorithms. Let r, c be the resolution of our videos. For this data set we have
r = 240, c = 320. Let P denote number of pixels (P = rc). Computing both HOG
and HOF features requires performing a fixed number of iterations for every pixel.
Creating histograms in spatial cells requires a fixed number of operationswith respect
to the size of these cells. Thus the complexity of computing HOG and HOF descrip-
tors for one example requires O(P) operations. Let m be the number of pixels used
in the median filter for every pixel. Since computing the median requires ordering,
the complexity of filtering an image requires O(Pm logm) operations. In total, for
both SM and M M , the whole training on a batch of N frames in total requires
O(N Pm log(m)) operations.

Before evaluating anewvideoof F frames,wehave to compute the representations
of the frames, which is done in O(F Pm logm) operations. In both methods we
then perform a Viterbi search. In M M this is divided into several searches, but the
total complexity stays the same. The most time consuming part is computing the
Quadratic-Chi distances (Sect. 12.5.3) between all F N pairs of frames from the new
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video and model. Computing the distance needs sum over elements over sparse
H × H matrix (H being the size of the histograms used) described in Algorithm 2.
The number of non-zero elements is linear in H . Thus, the overall complexity of
evaluating a new video is O(N Pm log(m) + N F H).

To summarize, the running time of our methods is linear in the number of training
frames, number of frames of a new video, number of pixels of a single frame, and size
of histogram (number of spatial cell times number of orientation bins). Dependence
on size of the filtering region for every pixel is linearithmic since it requires sorting.

Appendix B

In this Appendix, we provide MATLAB algorithm for creating similarity matrix
used in the Quadratic-Chi distance described in Sect. 12.5.3. We have histograms of
h × w spatial cells, and p orientation bins in each of the spatial bins. The size of the
final matrix is H × H , where H = hwp.

Algorithm 2 MATLAB code producing the similarity matrix

gauss = fspecial('gaussian', 3, 0.56);

B = diag(ones(1,h)) + 2*( diag(ones(1, h-1), 1) + diag(ones(1, h-1), -1));

C = diag(ones(1,w)) + 2*( diag(ones(1, w-1), 1) + diag(ones(1, w-1), -1));

D = kron(C, B); % Kronecker tensor product

D(D == 1) = gauss (5);

D(D == 2) = gauss (2);

D(D == 4) = gauss (1);

A = imfilter( eye(p), gauss , 'circular');

A = sparse(kron(D, A)); % The final similarity matrix
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Chapter 13
Multi-layered Gesture Recognition
with Kinect

Feng Jiang, Shengping Zhang, Shen Wu, Yang Gao and Debin Zhao

Abstract This paper proposes a novel multi-layered gesture recognition method
with Kinect. We explore the essential linguistic characters of gestures: the com-
ponents concurrent character and the sequential organization character, in a multi-
layered framework, which extracts features from both the segmented semantic units
and the whole gesture sequence and then sequentially classifies the motion, location
and shape components. In the first layer, an improved principle motion is applied to
model the motion component. In the second layer, a particle-based descriptor and a
weighted dynamic time warping are proposed for the location component classifi-
cation. In the last layer, the spatial path warping is further proposed to classify the
shape component represented by unclosed shape context. The proposed method can
obtain relatively high performance for one-shot learning gesture recognition on the
ChaLearn Gesture Dataset comprising more than 50,000 gesture sequences recorded
with Kinect.
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13.1 Introduction

Gestures, an unsaid body language, playvery important roles in daily communication.
They are considered as the most natural means of communication between humans
and computers (Mitra and Acharya 2007). For the purpose of improving humans’
interactionwith computers, considerablework has been undertaken on gesture recog-
nition, which has wide applications including sign language recognition (Vogler
and Metaxas 1999; Cooper et al. 2012), socially assistive robotics (Baklouti et al.
2008), directional indication through pointing (Nickel and Stiefelhagen 2007) and
so on (Wachs et al. 2011).

Based on the devices used to capture gestures, gesture recognition can be roughly
categorized into two groups: wearable sensor-based methods and optical camera-
based methods. The representative device in the first group is the data glove (Fang
et al. 2004), which is capable of exactly capturing the motion parameters of the
user’s hands and therefore can achieve high recognition performance. However, these
devices affect the naturalness of the user interaction. In addition, they are also expen-
sive, which restricts their practical applications (Cooper et al. 2011). Different from
the wearable devices, the second group of devices are optical cameras, which record
a set of images overtime to capture gesture movements in a distance. The gesture
recognition methods based on these devices recognize gestures by analyzing visual
information extracted from the captured images. That is why they are also called
vision-based methods. Although optical cameras are easy to use and also inexpen-
sive, the quality of the captured images is sensitive to lighting conditions and cluttered
backgrounds, thus it is very difficult to detect and track the hands robustly, which
largely affects the gesture recognition performance.

Recently, the Kinect developed by Microsoft was widely used in both industry
and research communities (Shotton et al. 2011). It can capture both RGB and depth
images of gestures. With depth information, it is not difficult to detect and track the
user’s body robustly even in noisy and cluttered backgrounds. Due to the appealing
performance and also reasonable cost, it has been widely used in several vision
tasks such as face tracking (Cai et al. 2010), hand tracking (Oikonomidis et al.
2011), human action recognition (Wang et al. 2012) and gesture recognition (Doliotis
et al. 2011; Ren et al. 2013). For example, one of the earliest methods for gesture
recognition using Kinect is proposed in Doliotis et al. (2011), which first detects the
hands using scene depth information and then employs Dynamic Time Warping for
recognizing gestures. Ren et al. (2013) extracts the static finger shape features from
depth images andmeasures the dissimilarity between shape features for classification.
Although, Kinect facilitates us to detect and track the hands, exact segmentation of
finger shapes is still very challenging since the fingers are very small and form many
complex articulations.

Although postures and gestures are frequently considered as being identical, there
are significant differences (Corradini 2002). A posture is a static pose, such as mak-
ing a palm posture and holding it in a certain position, while a gesture is a dynamic
process consisting of a sequence of the changing postures over a short duration.
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Compared to postures, gestures contain much richer motion information, which is
important for distinguishing different gestures especially those ambiguous ones. The
main challenge of gesture recognition lies in the understanding of the unique char-
acters of gestures. Exploring and utilizing these characters in gesture recognition are
crucial for achieving desired performance. Two crucial linguistic models of gestures
are the phonological model drawn from the component concurrent character (Stokoe
1960) and the movement-hold model drawn from the sequential organization char-
acter (Liddell and Johnson 1989). The component concurrent character indicates
that complementary components, namely motion, location and shape components,
simultaneously characterize a unique gesture. Therefore, an ideal gesture recogni-
tion method should have the ability of capturing, representing and recognizing these
simultaneous components. On the other hand, the movement phases, i.e. the transi-
tion phases, are defined as periods during which some components, such as the shape
component, are in transition; while the holding phases are defined as periods during
which all components are static. The sequential organization character characterizes
a gesture as a sequential arrangement of movement phases and holding phases. Both
the movement phases and the holding phases are defined as semantic units. Instead
of taking the entire gesture sequence as input, the movement-hold model inspires
us to segment a gesture sequence into sequential semantic units and then extract
specific features from them. For example, for the frames in a holding phase, shape
information is more discriminative for classifying different gestures.

It should be noted that the component concurrent character and the sequential
organization character demonstrate the essences of gestures from spatial and tem-
poral aspects, respectively. The former indicates which kinds of features should be
extracted. The later implies that utilizing the cycle of movement and hold phases
in a gesture sequence can accurately represent and model the gesture. Considering
these two complementary characters together provides us a way to improve ges-
ture recognition. Therefore, we developed a multi-layered classification framework
for gesture recognition. The architecture of the proposed framework is shown in
Fig. 13.1, which contains three layers: the motion component classifier, the location
component classifier, and the shape component classifier. Each of the three layers
analyzes its corresponding component. The output of one layer limits the possible
classification in the next layer and these classifiers complement each other for the
final gesture classification. Such a multi-layered architecture assures achieving high
recognition performance while being computationally inexpensive.

The main contributions of this paper are summarized as follows:

• The phonological model (Stokoe 1960) of gestures inspires us to propose a novel
multi-layered gesture recognition framework, which sequentially classifies the
motion, location and shape components and therefore achieves higher recognition
accuracy while having low computational complexity.

• Inspired by the linguistic sequential organization of gestures (Liddell and Johnson
1989), the matching process between two gesture sequences is divided into two
steps: their semantic units arematched first, and then the frames inside the semantic
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Fig. 13.1 Multi-layered gesture recognition architecture

units are further registered. A novel particle-based descriptor and a weighted
dynamic time warping are proposed to classify the location component.

• The spatial path warping is proposed to classify the shape component represented
by unclosed shape context, which is improved from the original shape context but
the computation complexity is reduced from O(n3) to O(n2).

Our proposed method participated the one-shot learning CHALEARN gesture
challenge and was top ranked (Guyon et al. 2013). The ChaLearn Gesture Dataset
(CGD 2011) (Guyon et al. 2014) is designed for one-shot learning and comprises
more than 50,000 gesture sequences recorded with Kinect. The remainder of the
paper is organized as follows. Related work is reviewed in Sect. 13.2. The detailed
descriptions of the proposed method are presented in Sect. 13.3. Extensive experi-
mental results are reported in Sect. 13.4. Section 13.5 concludes the paper.

13.2 Related Work

Vision based gesture recognition methods encompasses two main categories: three
dimensional (3D) model based methods and appearance based methods. The former
computes a geometrical representation using the joint angles of a 3D articulated
structure recovered from a gesture sequence, which provides a rich description that
permits awide range of gestures. However, computing a 3Dmodel has high computa-
tional complexity (Oikonomidis et al. 2011). In contrast, appearance based methods
extract appearance features from a gesture sequence and then construct a classifier
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to recognize different gestures, which have been widely used in vision based gesture
recognition (Dardas 2012). The proposedmulti-layered gesture recognition falls into
the appearance based methods.

13.2.1 Feature Extraction and Classification

The well known features used for gesture recognition are color (Awad et al. 2006;
Maraqa and Abu-Zaiter 2008), shapes (Ramamoorthy et al. 2003; Ong and Bowden
2004) and motion (Cutler and Turk 1998; Mahbub et al. 2013). In early work, color
information is widely used to segment the hands of a user. To simplify the color based
segmentation, the user is required to wear single or differently colored gloves (Kadir
et al. 2004; Zhang et al. 2004). The skin color models are also used (Stergiopoulou
and Papamarkos 2009; Maung 2009) where a typical restriction is wearing of long
sleeved clothes. When it is difficult to exploit color information to segment the hands
froman image (Wanet al. 2012b),motion information extracted from twoconsecutive
frames is used for gesture recognition. Agrawal and Chaudhuri (2003) explores the
correspondences between patches in adjacent frames and uses 2D motion histogram
to model the motion information. Shao and Ji (2009) computes optical flow from
each frame and then uses different combinations of the magnitude and direction of
optical flow to compute a motion histogram. Zahedi et al. (2005) combines skin
color features and different first- and second-order derivative features to recognize
sign language.Wong et al. (2007) uses PCA onmotion gradient images of a sequence
to obtain features for a Bayesian classifier. To extract motion features, Cooper et al.
(2011) extends haar-like features from spatial domain to spatio-temporal domain and
proposes volumetric Haar-like features.

The features introduced above are usually extracted from RGB images captured
by a traditional optical camera. Due to the nature of optical sensing, the quality of the
captured images is sensitive to lighting conditions and cluttered backgrounds, thus
the extracted features fromRGB images are not robust. In contrast, depth information
from a calibrated camera pair (Rauschert et al. 2002) or direct depth sensors such
as LiDAR (Light Detection and Ranging) is more robust to noises and illumination
changes. More importantly, depth information is useful for discovering the distance
between the hands and body orthogonal to the image plane, which is an important cue
for distinguishing some ambiguous gestures. Because the direct depth sensors are
expensive, inexpensive depth cameras, e.g., Microsoft’s Kinect, have been recently
used in gesture recognition (Ershaed et al. 2011; Wu et al. 2012b). Although the
skeleton information offered by Kinect is more effective in the expression of human
actions than pure depth data, there are some cases that skeleton cannot be extracted
correctly, such as interaction between human body and other objects. Actually, in the
CHALERAN gesture challenge (Guyon et al. 2013), the skeleton information is not
allowed to use. To extract more robust features from Kinect depth images for gesture
recognition, Ren et al. (2013) proposes the part based finger shape features, which
do not depend on the accurate segmentation of the hands. Wan et al. (2013, 2014b)
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extend SIFT to spatio-temporal domain and propose 3DEMoSIFT and 3D SMoSIFT
to extract features from RGB and depth images, which are invariant to scale and
rotation, and havemore compact and richer visual representations.Wan et al. (2014a)
proposes a discriminative dictionary learningmethod on 3DEMoSIFT features based
on mutual information and then uses sparse reconstruction for classification. Based
on 3D Histogram of Flow (3DHOF) and Global Histogram of Oriented Gradient
(GHOG), Fanello et al. (2013) applies adaptive sparse coding to capture high-level
feature patterns. Wu et al. (2012a) utilizes both RGB and depth information from
Kinect and an extended-MHI representation is adopted as the motion descriptors.

The performance of a gesture recognition method is not only related to the used
features but also to the adopted classifiers. Many classifiers can be used for ges-
ture recognition, e.g., dynamic time warping (DTW) (Reyes et al. 2011; Lichtenauer
et al. 2008; Sabinas et al. 2013), linear SVMs (Fanello et al. 2013), neuro-fuzzy
inference system networks (Al-Jarrah and Halawani 2001), hyper rectangular com-
posite NNs (Su 2000), and 3D Hopfield NN (Huang and Huang 1998). Due to the
ability of modeling temporal signals, Hidden Markov Model (HMM) is possibly the
most well known classifier for gesture recognition. Bauer andKraiss (2002) proposes
a 2D motion model and performes gesture recognition with HMM. Vogler (2003)
presentes a parallel HMM algorithm to model gestures, which can recognize con-
tinuous gestures. Fang et al. (2004) proposes a self-organizing feature maps/hidden
Markov model (SOFM/HMM) for gesture recognition in which SOFM is used as an
implicit feature extractor for continuous HMM. Recently, Wan et al. (2012a) pro-
poses ScHMM to deal with the gesture recognition where sparse coding is adopted
to find succinct representations and Lagrange dual is applied to obtain a codebook.

13.2.2 One-Shot Learning Gesture Recognition and Gesture
Characters

Although a large number of work has been done, gesture recognition is still very
challenging and has been attracting increasing interests. One motivation is to over-
come the well-known overfitting problem when training samples are insufficient.
The other one is to further improve gesture recognition by developing novel features
and classifiers.

In the case of training samples being insufficient, most of classification methods
are very likely to overfit. Therefore, developing gesture recognition methods that
use only a small training dataset is necessary. An extreme example is the one-shot
learning that uses only one training sample per class for training. The proposed work
in this paper is also for one-shot learning. In the literature, several previous work has
been focused on one-shot learning. In Lui (2012a), gesture sequences are viewed as
third-order tensors and decomposed to three Stiefel Manifolds and a natural metric is
inherited from the factor manifolds. A geometric framework for least square regres-
sion is further presented and applied to gesture recognition. Mahbub et al. (2013)
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proposes a space-time descriptor and applies Motion History Imaging (MHI) tech-
niques to track the motion flow in consecutive frames. The Euclidean distance based
classifiers is used for gesture recognition. Seo and Milanfar (2011) presents a novel
action recognition method based on space-time locally adaptive regression kernels
and thematrix cosine similaritymeasure.Malgireddy et al. (2012) presents an end-to-
end temporal Bayesian framework for activity classification. A probabilistic dynamic
signature is created for each activity class and activity recognition becomes a prob-
lem of finding the most likely distribution to generate the test video. Escalante et al.
(2013) introduces principal motion components for one-shot learning gesture recog-
nition. 2D maps of motion energy are obtained per each pair of consecutive frames
in a video. Motion maps associated to a video are further processed to obtain a PCA
model, which is used for gesture recognition with a reconstruction-error approach.
More one-shot learning gesture recognition methods are summarized by Guyon et al.
(2013).

The intrinsic difference between gesture recognition and other recognition prob-
lems is that gesture communication is highly complex and owns its unique characters.
Therefore, it is crucial to develop specified features and classifiers for gesture recog-
nition by exploring the unique characters of gestures as explained in Sect. 13.1. There
are some efforts toward this direction and some work has modeled the component
concurrent or sequential organization and achieved significant progress. To capture
meaningful linguistic components of gestures, Vogler and Metaxas (1999) proposes
PaHMMs which models the movement and shape of user’s hands in independent
channels and then put them together at the recognition stage. Chen and Koskela
(2013) uses multiple Extreme Learning Machines (ELMs) (Huang et al. 2012) as
classifiers for simultaneous components. The outputs from the multiple ELMs are
then fused and aggregated to provide the final classification results. Chen andKoskela
(2013) proposes a novel representation of human gestures and actions based on com-
ponent concurrent character. They learn the parameters of a statistical distribution
that describes the location, shape, and motion flow. Inspired by the sequential orga-
nization character of gestures, Wang et al. (2002) uses the segmented subsequences
instead of the whole gesture sequence as the basic units that convey the specific
semantic expression for the gesture and encode the gesture based on these units. It
is successfully applied in large vocabulary sign gestures recognition.

To our best knowledge, there is no work in the literature modeling both the com-
ponent concurrent character and the sequential organization character in gesture
recognition, especially for one-shot learning gesture recognition. It should be noted
that these two characters demonstrate the essences of gestures from spatial and tem-
poral aspects, respectively. Therefore, the proposed method that exploits both these
characters in a multi-layered framework is desirable to improve gesture recognition.
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13.3 Multi-layered Gesture Recognition

The proposed multi-layered classification framework for one-shot learning gesture
recognition contains three layers as shown in Fig. 13.1. In the first layer, an improved
principle motion is applied to model the motion component. In the second layer,
a particle based descriptor is proposed to extract dynamic gesture information and
then a weighted dynamic time warping is proposed for the location component clas-
sification. In the last layer, we extract unclosed shape contour from the key frame of
a gesture sequence. Spatial path warping is further proposed to recognize the shape
component. Once the motion component classification at the first layer is accom-
plished, the original gesture candidates are divided into possible gesture candidates
and impossible gesture candidates. The possible gesture candidates are then fed to
the second layer which performs the location component classification. Compared
with the original gesture candidates, classifying the possible gesture candidates is
expected to reduce the computational complexity of the second layer distinctly. The
possible gesture candidates are further reduced by the second layer. In the reduced
possible gesture candidates, if the first two best matched candidates are difficult to
be discriminated, i.e. the absolute difference of their matching scores is lower than a
predefined threshold, then the reduced gesture candidates are forwarded to the third
layer; otherwise the best matched gesture is output as the final recognition result.

In the remaining of this section, the illuminating cues are first observed in
Sect. 13.3.1. Inter-gesture segmentation is then introduced in Sect. 13.3.2. The
motion, location and shape component classifiers in each layer are finally introduced
in Sects. 13.3.3, 13.3.4 and 13.3.5, respectively.

13.3.1 Gesture Meaning Expressions and Illuminating Cues

Although from the point of view of gesture linguistics, the basic components and
how gestures convey meaning are given (Stokoe 1960), there is no reference to the
importance and complementarity of the components in gesture communication. This
section wants to draw some illuminating cues from observations. For this purpose,
10 undergraduate volunteers are invited to take part in the observations.

Five batches of data are randomly selected from the development data of CGD
2011. The pre-defined identification strategies are shown in Table 13.1. In each test,
all the volunteers are asked to follow these identification strategies. For example,
in Test 2, they are required to only use the motion cue and draw simple lines to
record the motion direction of each gesture in the training set. Then the test gestures
are shown to the volunteers to be identified using these drawn lines. The results are
briefly summarized in Table 13.1.

From the observations above, the following illuminating cues can be drawn:

• During gesture recognition, gesture components in the order of importance are
motion, location and shape.
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Table 13.1 Observations on CGD 2011

Test Avg. Acc. (%) Identification strategy Description

1 75.0 None Memorizing all the training
gestures, and identifying test
gesture by recollection

2 90.3 Motion Drawing lines to record motion
direction of each training gesture

3 83.5 Shape Drawing sketches to describe the
hand shape of each training
gesture

4 87.6 Location Drawing sketches to describe the
location of each training gesture

5 95.3 Motion and shape Strategy 2 and 3

6 100.0 Motion and location and shape Strategy 2, 3 and 4

• Understanding a gesture requires the observation of all these gesture components.
None of these components can convey the complete gesture meanings indepen-
dently. These gesture components complement each other.

13.3.2 Inter-gesture Segmentation Based on Movement
Quantity

The inter-gesture segmentation is used to segment a multi-gesture sequence into sev-
eral gesture sequences.1 To perform the inter-gesture segmentation, we first measure
the quantity ofmovement for each frame in amulti-gesture sequence and then thresh-
old the quantity of movement to get candidate boundaries. Then, a sliding window
is adopted to refine the candidate boundaries to produce the final boundaries of the
segmented gesture sequences in a multi-gesture sequence.

13.3.2.1 Quantity of Movement

In amulti-gesture sequence, each frame has the relevant movement with respect to its
adjacent frame and the first frame. These movements and their statistical information

1In this paper, we use the term “gesture sequence” to mean an image sequence that contains only
one complete gesture and “multi-gesture sequence” to mean an image sequence which may contain
one or multiple gesture sequences.
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are useful for inter-gesture segmentation. For a multi-gesture depth sequence I , the
Quantity of Movement (QOM) for frame t is defined as a two-dimensional vector

QOM(I, t) = [QOMLocal(I, t),QOMGlobal(I, t)] , (13.1)

where QOMLocal(I, t) and QOMGlobal(I, t) measure the relative movement of frame
t respective to its adjacent frame and the first frame, respectively. They can be com-
puted as

QOMLocal(I, t) =
∑

m,n

σ(It(m, n), It−1(m, n)) , (13.2)

QOMGlobal(I, t) =
∑

m,n

σ(It(m, n), I1(m, n)) , (13.3)

where (m, n) is the pixel location and the indicator function σ(x, y) is defined as

σ(x, y) =
{
1 if |x − y| ≥ ThresholdQOM
0 otherwise

, (13.4)

where ThresholdQOM is a predefined threshold, which is set to 60 empirically in this
paper.

13.3.2.2 Inter-gesture Segmentation

We assume that there is a home pose between a gesture and another one in a multi-
gesture sequence. The inter-gesture segmentation is facilitated by the statistical char-
acteristics ofQOMGlobal of the beginning and ending phases of the gesture sequences
in the training data. One advantage of using QOMGlobal is that it does not need to
segment the user from the background.

Firstly the average frame number L of all gestures in the training set is obtained.
The mean and standard deviation of QOMGlobal of the first and last �L/8� frames of
each gesture sequence are computed. After that, a threshold Thresholdinter is obtained
as the sum of the mean and the doubled standard deviation. For a test multi-gesture
sequence T which has ts frames, the inter-gesture boundary candidate set is defined
as

Bca
inter = {i|QOMGlobal(T , i) ≤ Thresholdinter, i ∈ {1, . . . , ts}} . (13.5)

The boundary candidates are further refined through a sliding window of size
�L/2�, defined as {j + 1, j + 2, . . . , j + �L/2�} where j starts from 0 to ts − �L/2�.
In each sliding window, only the candidate with the minimal QOMGlobal is retained
and other candidates are eliminated from Bca

inter . After the sliding window stops,
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Fig. 13.2 An example of illustrating the inter-gesture segmentation results

the inter-gesture boundaries are obtained, which are exemplified as the blue dots in
Fig. 13.2. The segmented gesture sequences will be used for motion, location, and
shape component analysis and classification.

13.3.3 Motion Component Analysis and Classification

Owing to the relatively high importance of the motion component, it is analyzed
and classified in the first layer. The principal motion (Escalante and Guyon 2012) is
improved by using the overlapping block partitioning to reduce the errors of motion
pattern mismatchings. Furthermore, our improved principal motion uses both the
RGB and depth images. The gesture candidates outputted by the first layer is then
fed to the second layer.

13.3.3.1 Principal Motion

Escalante andGuyon (2012) uses a set of histograms ofmotion energy information to
represent a gesture sequence and implements a reconstruction based gesture recogni-
tion method based on principal components analysis (PCA). For a gesture sequence,
motion energy images are calculated by subtracting consecutive frames. Thus, the
gesture sequence with N frames is associated to N − 1 motion energy images. Next,
a grid of equally spaced blocks is defined over each motion energy image as shown
in Fig. 13.3c. For each motion energy image, the average motion energy in each of
the patches of the grid is computed by averaging values of pixels within each patch.
Then a 2D motion map for each motion energy image is obtained and each element
of the map accounts for the average motion energy of the block centered on the
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Fig. 13.3 An example of a gesture with large movements. a, b Two frames from a gesture.
c The motion energy image of a. The grid of equally spaced bins adopted by the Principle
Motion (Escalante and Guyon 2012). d The motion energy image of b. The overlapped grid used by
our method where the overlapping neighborhood includes all 3 × 3 equally spaced neighbor bins

corresponding 2D location. The 2D map is then vectorized into an Nb-dimensional
vector. Hence, anN frame gesture sequence is associated to a matrix Y of dimensions
(N − 1) × Nb. All gestures in the reference set with size V can be represented with
matrices Yv, v ∈ {1, . . . ,V} and PCA is applied to each Yv. Then the eigenvectors
corresponding to the top c eigenvalues form a set Wv, v = {1, . . . ,V}.

In the recognition stage, each test gesture is processed as like training gestures and
represented by a matrix S. Then, S is projected back to each of the V spaces induced
by Wv, v ∈ {1, . . . ,V}. The V reconstructions of S are denoted by R1, . . . ,RV . The
reconstruction error of each Rv is computed by

ε(v) = 1

n

n∑

i=1

√√√√
m∑

j=1

(Rv(i, j) − S(i, j))2 , (13.6)

where n and m are the number of rows and columns of S. Finally, the test gesture is
recognized as the gesture with label obtained by argminv ε(v).

13.3.3.2 Improved Principle Motion

Gestureswith largemovements are usually performedwith significant deformation as
shown inFig. 13.3. InEscalante andGuyon (2012),motion information is represented
by a histogram whose bins are related to spatial positions. Each bin is analyzed
independently and the space interdependency among the neighboring bins is not
further considered. The interdependency can be explored to improve the robustness
of representing the gesture motion component, especially for the gestures with larger
movement. To this end, an overlapping neighborhood partition is proposed. For
example, if the size of bins is 20 × 20, the overlapping neighborhood contains 3 × 3
equally spaced neighboring bins in a 60 × 60 square region. The averaged motion
energy in the square region is taken as the current bin’s value as shown in Fig. 13.3.

The improved principle motion is applied to both the RGB and depth data. The
RGB images are transformed into gray images before computing their motion energy
images. For each reference gesture, the final V reconstruction errors are obtained by
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multiplying the reconstruction errors of the depth data and the gray data. These V
reconstruction errors are further clustered byK-means to get two centers. The gesture
labels associated to those reconstruction errors belonging to the center with smaller
value are treated as the possible gesture candidates. The remaining gesture labels are
treated as the impossible gesture candidates. Then the possible candidates are fed to
the second layer.

We compare the performance of our improved principal motion model with the
original principal motion model (Escalante and Guyon 2012) on the first 20 develop-
ment batches of CGD 2011. Using the provided code (Guyon et al. 2014; Escalante
and Guyon 2012) as baseline, the average Levenshtein distances (Levenshtein 1966)
are 44.92 and 38.66% for the principal motion and the improved principal motion,
respectively.

13.3.4 Location Component Analysis and Classification

Gesture location component refers to the positions of the arms and hands relative
to the body. In the second layer, the sequential organization character of gestures is
utilized in the gesture sequence alignment. According to the movement-hold model,
each gesture sequence is segmented into semantic units, which convey the specific
semantic meanings of the gesture. Accordingly, when aligning a reference gesture
and a test gesture, the semantic units are aligned first, then the frames in each semantic
unit are registered. A particle-based representation for the gesture location compo-
nent is proposed to describe the location component of the aligned frames and a
Weighted Dynamic TimeWarping (WDTW) is proposed for the location component
classification.

13.3.4.1 Intra-gesture Segmentation and Alignment

To measure the distance between location components of a reference gesture
sequence R = {R1,R2 . . . ,RLR} and a test gesture sequence T = {T1,T2 . . . ,TLT },
an alignment � = {(ik, jk)|k = 1, . . . ,K, ik ∈ {1, . . . ,LR}, jk ∈ {1, . . . ,LT }} can be
determined by the best path in the Dynamic Time Warping (DTW) grid and K is the
path length. Then the dissimilarity between two gesture sequences can be obtained
as the sum of the distances between the aligned frames.

The above alignment does not consider the sequential organization character of
gestures. Themovement-holdmodel proposed by Liddell and Johnson (1989) reveals
sequential organization of gestures,which should be explored in the analysis and clas-
sification of gesture location component.QOMLocal(I, t), described in Sect. 13.3.2.1,
measures the movement between two consecutive frames. A large QOMLocal(I, t)
indicates that the t-th frame is in a movement phase, while a small QOMLocal(I, t)
indicates that the frame is in a hold phase. Among all the frames in a hold phase, the
one with the minimal QOMLocal(I, t) is the most representative frame and is marked
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Fig. 13.4 Intra-gesture segmentation and the alignment between test and reference sequences

as an anchor frame. Considering the sequential organization character of gestures,
the following requirement should be satisfied to compute �: each anchor frame in a
test sequence must be aligned with one anchor frame in the reference sequence.

As shown in Fig. 13.4, the alignment between the test and reference sequences
has two stages. In the first stage, DTW is applied to align the reference and test
sequences. Each anchor frame is represented by “1” and the remaining frames are
represented by “0”. Then the associated best path �̂ = {(îk, ĵk)|k = 1, . . . , K̂} in the
DTW grid can be obtained. For each (îk, ĵk), if both îk and ĵk are anchor frames, then
îk and ĵk are the boundaries of the semantic units. According to the boundaries, the
alignment between semantic units of the reference and test sequences is obtained. In
the second stage, as shown in Fig. 13.4, each frame in a semantic unit is represented
by [QOMLocal,QOMGlobal] and DTW is applied to align the semantic unit pairs
separately. Then the final alignment � is obtained by concatenating the alignments
of the semantic unit pairs.

13.3.4.2 Location Component Segmentation and Its Particle
Representation

After the frames of the test and reference sequences are aligned, the next problem is
how to represent the location information in a frame. Dynamic regions in each frame
contain the most meaningful location information, which are illustrated in Fig. 13.5i.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 13.5 Dynamic region segmentation

A simple thresholding-based foreground-background segmentation method is
used to segment the user in a frame. The output of the segmentation is a mask
frame that indicates which pixels are occupied by the user as shown in Fig. 13.5b.
The mask frame is then denoised by a median filter to get a denoised frame as shown
in Fig. 13.5c. The denoised frame is first binarized and then dilated with a flat disk-
shaped structuring element with radius 10 as shown in Fig. 13.5d. The swing frame
as shown in Fig. 13.5h is obtained by subtracting the binarized denoised frame from
the dilated frame.The swing region (those white pixels in the swing frame) covers
the slight swing of user’s trunk and can be used to eliminate the influence of body
swing. From frame t, define set � as

{(m, n)|F1(m, n) − Ft(m, n) ≥ ThresholdQOM} , (13.7)

where F1 and Ft are the user masks of the first frame and frame t, respectively.
ThresholdQOM is the same as in Sect. 13.3.2.1. For each connected region in �, only
if the number of pixels in this region exceeds Np and the proportion overlapped with
swing region is less than r, it is regarded as a dynamic region. Here Np = 500 is a
threshold used to remove the meaningless connected regions in the difference frame
as shown in Fig. 13.5g. If a connected region has less than Np pixels, we think this
region should not be a good dynamic region for extracting location features, e.g., the
small bright region on the right hand of the user in Fig. 13.5g. This parameter can be
set intuitively. The parameter r = 50% is also a threshold used to complement with
Np to remove the meaningless connected regions in the difference frame. After using
Np to remove some connected regions, there may be a retained connected region
which has more than Np pixels but it may still not be a meaningful dynamic region
for extracting position features if the connected region is caused by the body swing.
Obviously we can exploit the swing region to remove such a region. To do this, we
first compute the overlap rate between this region and the swing region. If the overlap
rate is larger than r, it is reasonable to think this region is mainly produced by the
body swing. Therefore, it should be further removed. As like Np, this parameter is
also very intuitive to set and is not very sensitive to the performance.
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Fig. 13.6 Four examples of particle representation of the location component (the black dots are
the particles projected onto X-Y plane)

To represent the dynamic region of frame t, a particle-based description is pro-
posed to reduce the matching complexity. The dynamic region of frame t can
be represented by a 3D distribution: Pt(x, y, z) where x and y are coordinates
of a pixel and z = It(x, y) is the depth value of the pixel. In the form of non-
parametric representation, Pt(x, y, z) can be represented by a set of N̂ particles,
PLocation(It) = {(xn, yn, zn)|N̂n=1}. We use K-means to cluster all pixels inside the
dynamic region into N̂ clusters. Note that for a pixel, both its spatial coordinates
and depth value are used. Then the centers of clusters are used as the representative
particles. In this paper, 20 representative particles are used for each frame, as shown
in Fig. 13.6.

13.3.4.3 Location Component Classification

Assume the location component of two aligned frames can be represented as two par-
ticle sets, P = {P1,P2 . . .PN̂ } andQ = {Q1,Q2 . . .QN̂ }. The matching cost between
particle Pi and Qj, denoted by C(Pi,Qj), is computed as their Euclidean distance.
The distance of the location component between these two aligned gesture frames is
defined by the minimal distance between P and Q. Computing the minimal distance
between two particle sets is indeed to find an assignment � to minimize the cost
summtion of all particle pairs

� = argmin
�

N̂∑

i=1

C(Pi,Q�(i)) . (13.8)

This is a special case of the weighted bipartite graph matching and can be solved
by the Edmonds method (Edmonds 1965). Edmonds method which finds an optimal
assignment for a given cost matrix is an improved Hungarian method (Kuhn 1955)
with time complexity O(n3) where n is the number of particles. Finally, the distance
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of the location component between two aligned gesture frames is obtained

dis(P,Q) =
N̂∑

i=1

C(Pi,Q�(i)) . (13.9)

The distance between the reference sequence R and the test sequence T can be
computed as the sum of all distance between the location components of the aligned
frames in �

DISLocation(R,T |�) =
K∑

k=1

dis(PLocation(Rik ),PLocation(Tjk )) . (13.10)

This measurement implicitly gives all the frames the same weights. However, in
many cases gestures are distinguished by only a few frames. Therefore, rather than
directly computing Eq. 13.10, we propose the Weighted DTW (WDTW) to compute
the distance of location component between R and T as

WDISLocation(R,T |�) =
K∑

k=1

WR
ik × dis(PLocation(Rik ),PLocation(Tjk )) , (13.11)

whereWR = {WR
ik
|ik ∈ {1, . . . ,LR}} is the weight vector. Different from the method

of evaluating the phase difference between the test and reference sequences (Jeong
et al. 2011) and the method of assigning different weights to features (Reyes et al.
2011), we assign different weights to the frames of the reference gesture sequence.
For each reference gesture sequence, firstly we use the regular DTW to calculate
and record the alignment � between the current reference gesture sequence and all
the other reference gesture sequences. Secondly for each frame in the current refer-
ence gesture sequence, we accumulate its corresponding distances with the matched
frames in the best path in the DTW. Then, the current frame is weighted by the aver-
age distance between itself and all the corresponding frames in the best path. The
detailed procedure of computing the weight vector are summarized in Algorithm 1.

In the second layer, we first use K-means to cluster the input possible gesture
candidates into two cluster centers according to the matching scores between the test
gesture sequence and the possible gesture candidates. The candidates in the cluster
with smallermatching score are discarded. In the remaining candidates, if the first two
best matched candidates are difficult to be distinguished, i.e. the absolute difference
of their normalized location component distances is lower than a predefined threshold
ε, then these candidates are forwarded to the third layer; otherwise the best matched
candidate is output as the final recognition result. Two factors influence the choice
of the parameter ε. The first one is the number of the gesture candidates and the other
one is the type of gestures. When the number of the gesture candidates is large or
most of the gesture candidates are the shape dominant gestures, a high threshold is
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Algorithm 1: Computing weight vector WR for a reference R

Input: all the O reference gesture depth sequences: I1, I2, . . . , IO

Output: weight vector for R,WR = {WR
m|m ∈ {1, . . . ,LR}}

1: for each m ∈ [1,LR] do
2: WR

m = 0
3: NR

m = 0
4: end for
5: for each n ∈ [1,O] do
6: Compute the alignment � = {(ik, jk)} between R and In

7: for each m ∈ [1,LR] do
8: WR

m = WR
m + ∑

(ik=m,jk )∈� dis(PLocation(Rik ),PLocation(Injk ))

9: NR
m = NR

m + ∑
(ik ,jk )∈� δ(ik = m)

10: if n = O then
11: WR

m = WR
m�NR

m
12: end if
13: end for
14: end for

preferred. In our experiments, we empirically set its value with 0.05 by observing
the matching scores between the test sample and each gesture candidates (Fig. 13.7).

Fig. 13.7 Weighted dynamic time warping framework
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13.3.5 Shape Component Analysis and Classification

The shape in a hold phase is more discriminative than the one in a movement phase.
The key frame in a gesture sequence is defined as the frame which has the minimiza-
tion QOMLocal. Shape component classifier classifies the shape features extracted
from the key frame of a gesture sequence using the proposed Spatial Path Warping
(SPW), which first extracts unclosed shape context (USC) features and then cal-
culates the distance between the USCs of the key frames in the reference and the
test gesture sequences. The test gesture sequence is classified as the gesture whose
reference sequence has the smallest distance with the test gesture sequence.

13.3.5.1 Unclosed Shape Segmentation

The dynamic regions of a frame have been obtained in Sect. 13.3.4.2. In a key frame,
the largest dynamic region D is used for shape segmentation. Although shapes are
complex and do not have robust texture and structured appearance, in most cases
shapes can be distinguished by their contours. The contour points of D are extracted
by the Canny algorithm. The obtained contour point set is denoted by C1 as shown
in Fig. 13.8a. K-means is adopted to cluster the points in D into two clusters based
on the image coordinates and depth of each point. If a user faces to the camera, the
cluster with smaller average depth contains most of information for identifying the
shape component. Canny algorithm is used again to extract contour points of the
cluster with smaller average depth. The obtained closed contour point set is denoted
by C2 as shown in Fig. 13.8b. Furthermore, an unclosed contour point set can be
obtained by C3 = C2

⋂
C1 as shown in Fig. 13.8c, which will be used to reduce the

computational complexity of matching shapes.

13.3.5.2 Shape Representation and Classification

The contour of a shape consists of a 2-D point setP = {p1, p2, . . . , pN }. Their relative
positions are important for the shape recognition. From the statistical point of view,

Fig. 13.8 Unclosed shape segmentation and context representation. a Is an example of point set
C1, b is an example of point set C2 and c is an example of obtained point set C3; d Is the log-polar
space used to decide the ranges of K bins



406 F. Jiang et al.

Belongie et al. (2002) develops a strong shape contour descriptor, namely Shape
Context (SC). For each point pi in the contour, a histogram hpi is obtained as the
shape context of the point whose k-th bin is calculated by

hpi(k) = �{(pj − pi) ∈ bin(k)|pj ∈ P, i �= j, k ∈ {1, . . . ,K}} , (13.12)

where bin(k) defines the quantification range of the k-th bin. The log-polar space for
bins is illustrated in Fig. 13.8d.

Assume P and Q are the point sets for the shape contours of two key frames, the
matching cost 	(pi, qj) between two points pi ∈ P and qj ∈ Q is defined as

	(pi, qj) = 1

2

K∑

k=1

[hpi(k) − hqj (k)]2
hpi(k) + hqj (k)

. (13.13)

Given the set of matching costs between all pairs of points pi ∈ P and qj ∈ Q,
computing the minimal distance between P and Q is to find a permutation 
 to
minimize the following sum


 = argmin



∑

i

	(pi, q
(i)) , (13.14)

which can also be solved by the Edmonds algorithm as like solving Eq. 13.8.
An unclosed contour contains valuable spatial information. Thus, a Spatial Path

Warping algorithm (SPW) is proposed to compute the minimal distance between two
unclosed contours. Compared with the Edmonds algorithm, the time complexity of
the proposed SPW is reduced from O(n3) to O(n2) where n is the size of the point
set of an unclosed shape contour. As shown in Fig. 13.8c, the points on an unclosed
contour can be represented as a clockwise contour point sequence. SPW is used to
obtain the optimal match between two given unclosed contour point sequences. For
two unclosed contour point sequences {p′

1, . . . , p
′
n}, {q′

1, . . . , q
′
m}, a dynamic window

is set to constrain the points that one point canmatch,whichmakes thematchingmore
robust to local shape variation. We set the window size wwith max(Ls, abs(n − m)).
In most cases, the window size is the absolute difference between the lengths of the
two point sequences. In extreme cases, if two sequences have very close lengths,
i.e., their absolute difference is less then Ls, we set the the window size with Ls. The
details of proposed SPW are summarized in Algorithm 2.
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Algorithm 2: Computing distance between two unclosed contour point sequences

Input: two unclosed contour point sequences {p′
1, . . . , p

′
n}, {q′

1, . . . , q
′
m}

Output: distance between these two point sequences SPW[n,m].
1: Set w = max(Ls, abs(n − m))

2: for each i ∈ [0, n] do
3: for each j ∈ [0,m] do
4: SPW[i, j] = ∞
5: end for
6: end for
7: SPW[0, 0] = 0
8: for each i ∈ [1, n] do
9: for each j ∈ [max(1, i − w),min(m, i + w)] do
10: SPW[i, j]=	(p′

i, q
′
j) + min(SPW[i − 1, j], SPW[i, j − 1], SPW[i − 1, j − 1])

11: end for
12: end for

13.4 Experiments

In this section, extensive experiment results are presented to evaluate the proposed
multi-layered gesture recognition method. All the experiments are performed in
Matlab 7.12.0 on a Dell PC with Duo CPU E8400. The ChaLearn Gesture Dataset
(CGD2011) (Guyon et al. 2014) is used in all experiments, which is designed for one-
shot learning. The CGD 2011 consists of 50,000 gestures (grouped in 500 batches,
each batch including 47 sequences and each sequence containing 1–5 gestures drawn
from one of 30 small gesture vocabularies of 8–15 gestures), with frame size 240 ×
320, 10 frames/second, recorded by 20 different users.

The parameters used in the proposed method are listed in Table 13.2. Noted that
the parameters c and Nb are set with the default values used in the sample code of
the principal model.2 The threshold for foreground and background segmentation is
adaptively set to the maximal depth minus 100 for each batch data. For example,
the maximal depth of the devel01 batch is 1964. Then the threshold for this batch
is 1864. The number 100 is in fact a small bias from the maximal depth, which is
empirically set in our experiments. We observed that slightly changing this number
does not significantly affect the segmentation. Considering the tradeoff between the
time complexity and recognition accuracy, in our experiments, we empirically set N̂
to 20, which achieves the desired recognition performance.

In our experiments, Levenshtein distance is used to evaluate the gesture recogni-
tion performance, which is also used in the CHALERAN gesture challenge. It is the
minimum number of edit operations (substitution, insertion, or deletion) that have to
be performed from one sequence to another (or vice versa). It is also known as “edit
distance”.

2Available at http://gesture.chalearn.org/data/sample-code.

http://gesture.chalearn.org/data/sample-code.
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Table 13.2 The parameters used in the proposed multi-layered gesture recognition and their
descriptions

Parameter and description Applied to Value From prior
or not

Sensitive to
perfor-
mance

Training
data used or
not

Np: Minimal number of pixels
in a connected region

D 500 Y N Y

r: Maximal overlap rate
between a connected region
and the swing region

D 50% N N N

ε: Threshold for the difference
between the first two largest
matches

D, E 0.05 Y N Y

Ls: Minimal length of the
sliding window

E 5 N N N

ThresholdQOM A, D, E 60 Y Y N

Thresholdinter A Adaptive N Y Y

c: number of eigenvalues for
each gesture

C 10 Y N N

Nb: number of bins for each
motion energy image

C 192 Y N N

N̂ : number of particles D 20 Y N N

Threshold for foreground and
background segmentation

D, E Max
depth—100

Y N Y

A Inter-gesture segmentation; B intra-gesture segmentation; C Motion component analysis and

classification

D Location component analysis and classification; E Shape component analysis and classification;

Training data CGD 2011

13.4.1 Performance of Our Method with Different layers

We evaluate the performance of the proposed method with different layers on the
development (devel01–devel480) batches of CGD 2011 and Table 13.3 reports the
results. If only the first layer is used for classification, the average Levenhstein
distance is 37.53% with running time 0.54 s per gesture. If only the second layer is
used for recognition, the average Levenhstein distance is 29.32% with running time
6.03 s per gesture. If only the third layer is used, the average Levenhstein distance is
39.12% with the running time 6.64 s per gesture. If the first two layers are used, the
average Levenhstein distance is 24.36% with running time 2.79 s per gesture. If all
three layers are used, the average normalized Levenhstein distance is 19.45% with
running time 3.75 s per gesture.

From these comparison results, we can see that the proposed method achieves
high recognition accuracy while having low computational complexity. The first
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Table 13.3 Performance of using the first layer, the second layer, the third layer, first two layers
and three layers on Chalearn gesture data set (devel01–devel480)

Methods First layer for
recognition

Second layer
for recognition

Third layer for
recognition

First two
layers for
recognition

Three layers
for recognition

TeLev (%) 37.53 29.32 39.12 24.36 19.45

Recognition
time per
gesture (s)

0.54 6.03 6.64 2.79 3.75

layer can identify the gesture candidates at the speed of 80 fps (frames per second).
The second layer has relatively high computational complexity. If we only use the
second layer for classification, the average computing time is roughly 11 times of
the first layer. Despite with relatively high computational cost, the second layer
has stronger classification ability. Compared with using only the second layer, the
computational complexity of using the first two layers in the proposed method is
distinctly reduced and can achieve 16 fps. The reason is that although the second
layer is relatively complex, the gesture candidates forwarded to it are significantly
reduced by the first layer. When all three layers are used, the proposed method still
achieve about 12 fps, which is faster than the video recording speed (10 fps) of CGD
2011.

13.4.2 Comparison with Recent Representative Methods

We compare the proposed method with other recent representative methods on the
first 20 development data batches. Table 13.4 reports the performance of the proposed
method on each batch and also the average performance on all 20 batches. The
average performance of the proposed method and the compared methods are shown
in Table 13.5.

For the comparison on each batch, the proposed method is compared with a
manifold and nonlinear regression based method (Manifold LSR) (Lui 2012b), an
extendedmotion-history-image and correlation coefficient basedmethod (Extended-
MHI) (Wu et al. 2012a), and a motion silhouettes based method (Motion His-
tory) (Mahbub et al. 2013). The comparison results are shown in Fig. 13.9.

In batches 13, 14, 17, 18, 19, the proposed method does not achieve the best
performance. However, the proposed method achieves the best performance in the
remaining 15 batches. In batches 3, 10 and 11, most of gestures consist of static
shapes, which can be efficiently identified by the shape classifier in the third layer.
Batches 1, 4, 7 and 8 consist of motion dominated gestures, which can be classi-
fied by the motion and location component classifiers in the first and second layers.
In batches 18 and 19, the proposed method has relatively poor performance. As in
batch 18, most of gestures have small motion, similar locations, and non-stationary
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Table 13.4 Recognition performance of using the second layer, first two layers and three layers on
first 20 development batches of CGD 2011 (TeLev is the average Levenshtein distance)

Batch Second layer for recognition First two layers for recognition Three layers for recognition

—— TeLev (%) Recognize time

per gesture (s)

TeLev (%) Recognize time

per gesture (s)

TeLev (%) Recognize time

per gesture (s)

1 7.24 6.78 0.11 3.40 1.11 3.59

2 41.21 11.38 44.21 7.10 34.35 10.00

3 62.98 8.86 69.20 2.99 39.95 5.61

4 4.51 5.98 3.93 2.10 6.93 2.30

5 11.68 10.96 2.62 3.05 4.77 3.31

6 44.64 5.59 39.94 2.69 23.51 3.42

7 12.44 3.59 8.51 1.70 8.51 1.79

8 5.56 4.94 0.00 2.14 5.71 2.94

9 10.56 5.10 6.44 2.50 6.44 3.01

10 44.21 5.88 29.13 3.24 16.52 3.95

11 42.75 6.46 36.36 3.98 28.93 6.31

12 8.56 5.16 1.06 2.00 7.06 2.34

13 16.24 3.68 12.93 1.20 12.93 1.99

14 44.69 2.50 40.13 0.90 27.98 2.35

15 15.78 4.61 4.21 1.09 6.21 2.19

16 36.54 8.35 36.27 4.21 23.41 6.94

17 36.25 9.10 29.55 5.10 26.32 5.39

18 62.4 1.99 69.21 0.81 53.55 1.60

19 54.31 5.07 51.32 2.84 47.61 3.02

20 17.74 2.58 10.61 1.40 10.61 2.01

Average 29.02 5.93 24.79 2.73 19.62 3.69

Table 13.5 Performance comparison on the 20 development data batches (TeLen is the average
error made on the number of gestures)

Methods Extend-
MHI
Wu et al.
(2012a)

Manifold
LSR
Lui
(2012a)

Sparse
coding

Fanello
et al.
(2013)

Temporal
Bayesian

Malgireddy
et al. (2012)

Motion
history

Mahbub
et al.
(2013)

CSMMI+3D
EMoSIFT
Wan et al.
(2014a)

Proposed

TeLev
(%)

26.00 28.73 25.11 24.09 31.25 18.76 19.62

TeLen # 6.24 5.02 # 18.01 # 5.91
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Fig. 13.9 Performance comparison on the 20 development batches in CGD 2011

hand shapes. These gestures may be difficult to be identified by the proposedmethod.
In batch 19, the gestures have similar locations and hands coalescence, which is diffi-
cult to be identified by the second layer and the third layer classifiers in our method.
Overall, the proposed method significantly outperforms other recent competitive
methods.

Theproposedmethod is further comparedwithDTW,continuousHMM(CHMM),
semi-continuous HMM (SCHMM) and SOFM/HMM (Fang et al. 2004) on the
development (devel01∼devel480) batches of CGD 2011. All compared methods use
one of three feature descriptors including dynamic region grid representation (DP),
dynamic region particle representation (DG) andDynamicAligned ShapeDescriptor
(DS) (Fornés et al. 2010).

• Dynamic region grid representation. For the dynamic region of the current frame
obtained in Sect. 13.3.4.2, a grid of equally spaced cells is defined and the default
size of grid is 12 × 16. For each cell, the average value of depth in the square
region is taken as the value of current bin. So a 12 × 16 matrix is generated, which
is vectorized into the feature vector of the current frame.

• Dynamic region particle representation. The particles for the current frame
obtained in Sect. 13.3.4.2 cannot directly be used as an input feature vector and
they have to be reorganized. The 20 particles {(xn, yn, zn)|20n=1} are sorted according
to ‖(xn, yn)‖2 and then the sorted particles are concatenated in order to get a 60-
dimensional feature vector to represent the current frame.

• Dynamic region D-Shape descriptor (Fornés et al. 2010) Firstly, the location of
some concentric circles is defined, and for each one, the locations of the equidistant
voting points are computed. Secondly, these voting points will receive votes from
the pixels of the shape of the dynamic region, depending on their distance to each
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Table 13.6 Performance of different sequence matching methods on 480 development batches of
CGD 2011

Method Number of
mixtures for each
state

TeLev (%) Recognition time per gesture (s)

DP DG DS DP DG DS

DTW # 38.23 41.19 33.16 2.67 2.51 2.60

CHMM 5 31.41 33.29 31.13 6.91 6.83 6.89

SCHMM 30 31.01 32.92 29.35 6.82 6.75 6.79

SOFM/HMM 5 28.27 30.31 27.20 6.77 6.71 6.74

DP dynamic region particle representation, DG dynamic region grid representation, DS dynamic
region D-Shape descriptor

voting point. By locating isotropic equidistant points, the inner and external part
of the shape could be described using the same number of voting points. In our
experiment, we used 11 circles for the D-Shape descriptor. Once we have the
voting points, the descriptor vector is computed.

Here, each type of HMM is a 3-state left-to-right model allowing possible skips.
For CHMM and SCHMM, the covariance matrix is a diagonal matrix with all diag-
onal elements being 0.2. The comparison results are reported in Table 13.6.

Compared with these methods, the proposed method achieves the best perfor-
mance. Noted that in all compared methods, SOFM/HMM classifier with the DS
descriptor achieves the second best performance. As explained in Sect. 13.1, sequen-
tiallymodelingmotion, position and shape components is very important for improv-
ing the performance of gesture recognition. Except the proposed method, other
compared methods do not utilize these components. On the other hand, statisti-
cal models like CHMM, SCHMM and SOFM/HMM need more training samples
to estimate model parameters, which also affect their performance in the one-shot
learning gesture recognition.

13.5 Conclusion

The challenges of gesture recognition lie in the understandingof the unique characters
and cues of gestures. This paper proposed a novel multi-layered gesture recognition
with Kinect, which is linguistically and perceptually inspired by the phonological
model and the movement-hold model. Together with the illuminating cues drawn
from observations, the component concurrent character and the sequential organiza-
tion character of gestures are all utilized in the proposed method. In the first layer,
an improved principle motion is applied to model the gesture motion component. In
the second layer, a particle based descriptor is proposed to extract dynamic gesture
information and then a weighted dynamic time warping is proposed to classify the
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location component. In the last layer, the spatial path warping is further proposed
to classify the shape component represented by unclosed shape context, which is
improved from the original shape context but needs lower matching time. The pro-
posed method can obtain relatively high performance for one-shot learning gesture
recognition. Our work indicates that the performance of gesture recognition can be
significantly improved by exploring and utilizing the unique characters of gestures,
which will inspire other researcher in this field to develop learning methods for
gesture recognition along this direction.
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14.1 Introduction

As one of themost natural and intuitiveways for human computer interaction, gesture
recognition has been attracting more and more attention from academe and industry.
With automatic gesture recognition techniques, one can use his/her hands to freely
interact with computers. It has been widely applied to sign language recognition
(Zafrulla et al. 2011; Oz and Leu 2011), robot control (Raheja et al. 2010), games
(Roccetti et al. 2011), etc. In the early days, accelerometer-based approaches were
especially popular for gesture recognition, due to their simpleness and accuracy in
data acquirement (Mantyla et al. 2000; Chambers et al. 2002; Pylva̋na̋inen 2005;
Liu et al. 2009). As an extension to the accelerometer, the inertial measurement
unit (IMU) can be adopted to collect more information, such as linear accelera-
tion and angular acceleration. There are also several IMU-based gesture recognition
methods proposed recently (Zhang et al. 2013; Yin and Davis 2013). Nevertheless,
the requirement of wearing accelerometers or IMUs limits the applicability of the
above approaches. Vision-based approaches, which do not need to wear any extra
devices, offer an appealing approach to gesture recognition. However, vision-based
approaches are vulnerable to illumination, self-occlusion, and variation of gesture.
Moreover, visual feature representation is still an open problem.

As an alternative, depth-aware camera (e.g. Microsoft® Kinect™) can capture
RGB image, depth image, and audio, which makes gesture recognition less sensitive
to illumination changes, self-occlusion, and can offer strong information for back-
ground removal, object detection, and localization in 3D space. With the prevalence
of depth-aware camera, the study of gesture recognition is extremely stimulated and
multi-modal based approaches are becoming a hot topic. Recently, there are many
research works to utilize multiple modalities acquired by depth-aware camera for
gesture recognition (Wu et al. 2012; Lui 2012a; Malgireddy et al. 2012; Bayer and
Silbermann 2013; Nandakumar et al. 2013; Chen and Koskela 2013). Since 2011,
ChaLearn has organized a series of competitions based on the multi-modal gesture
data captured by Kinect™. The tasks include one-shot-learning of gestures (Guyon
et al. 2012) and continuous gesture spotting and recognition (Escalera et al. 2013).
Many of participants achieved satisfactory performances on gesture recognition.
However, for multi-modal based approaches, there still exist two critical issues for
gesture recognition: how to select discriminative features for recognition, and how
to fuse features from different modalities.

In the context of dynamic gesture recognition, an instance is represented by a
time series sequence. Most of existing feature extraction methods for time series
are mainly based on the self-defined criterion functions to evaluate each feature
dimension’s contribution (Kashyap 1978; Mörchen 2003; Yoon et al. 2005). For face
detection, Viola and Jones (2001, 2004) constructed a strong classifier by selecting
a small number of important features using AdaBoost. Foo et al. (2004) and Zhang
et al. (2005) employed boosting learning for the single-modal gesture recognition
task. However, boosting learning could be prone to be overfitting in practice when
training data is rather small. As a late fusion strategy, co-training alternately uses



14 Bayesian Co-Boosting for Multi-modal Gesture Recognition 419

the most confident unlabeled data instance(s) in one modality to assist the model
training of anothermodality, to overcome the problemof insufficient training samples
(Blum andMitchell 1998). Furthermore, Yu et al. (2008, 2011) proposed a Bayesian
undirected graphical model interpretation for co-training methods in the context
of semi-supervised multi-view learning. These two publications clarified several
fundamental assumptions underlying these models and can automatically estimate
how much trust should be given to each view so as to accommodate noisy views.

Inspired by boosting and Bayesian co-training methods, we present a novel
Bayesian Co-Boosting training framework to realize effectively the multi-modal
fusion for gesture recognition task.1 In our framework, weak classifiers are trained
with weighted data instances through multiple iterations. In each iteration round,
several feature subsets are randomly generated and weak classifiers are trained on
different feature groups. Only the weak classifier, which achieves the minimal train-
ing error, togetherwith the corresponding feature subset is retained. Instance’sweight
is updated according to the classification result given by the weak classifiers of two
modalities, so that the difficult instances will gain more focus in the subsequent iter-
ations. The strong classifier is constructed with all retained weak classifiers, and the
classification decision is determined by the voting result of all weak classifiers. The
weak classifier’s voting weight is related to its prediction error on the training set.

The main contributions of this paper are concluded as follows:

1. The proposed framework is illuminated in a Bayesian perspective, and its error
upper bound is minimized through iterations, which is guaranteed in theory.

2. Feature selection and multi-modal fusion are naturally embedded into the train-
ing process of weak classifiers in each Co-Boosting iteration round and bring
significant improvement to the recognition performance.

3. A novel parameter estimationmethod is presented to address the training problem
of hidden Markov model on the weighted dataset.

This paper is organized as follows. In Sect. 14.2, commonly used approaches for
gesture recognition is reviewed. We describe our proposed approach and related
theoretical derivation in Sect. 14.3. Section14.4 presents the experimental result of
our method, comparing with several state-of-the-art methods. Finally, we conclude
our work in Sect. 14.5.

14.2 Related Work

Gesture recognition has been an important research topic in human computer inter-
action and computer vision field. There already exist a few published surveys in
this area, such as Gavrila (1999), Mitra and Acharya (2007), Weinland et al. (2011),

1Our preliminary work of multi-modal fusion on ChaLearn MMGR challenge 2013 achieved the
1st prize on gesture recognition (Wu et al. 2013).
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and Suarez and Murphy (2012). As concluded in these literatures, classifiers com-
monly used in gesture recognition include k-nearest neighbours (Malassiotis et al.
2002), hidden Markov model (Eickeler et al. 1998), finite state machine (Yeasin
and Chaudhuri 2000), neural network (Yang and Ahuja 2001), and support vector
machine (Biswas and Basu 2011).

Gesture recognition based on accelerometers has been investigated by many
researchers (Mantyla et al. 2000; Chambers et al. 2002; Pylva̋na̋inen 2005; Liu et al.
2009). As an extension to the accelerometer sensors, the applications of inertial
measurement unit (IMU) have also been explored recently. Ruffieux et al. (2013)
collected a benchmark dataset with Kinect™ and XSens IMU sensors for the devel-
opment and evaluation of multi-modal gesture spotting and recognition algorithms.
With this dataset, Yin and Davis (2013) presented a hand tracking method based on
gesture salience, and concatenated hidden Markov models were applied to perform
gesture spotting and recognition.

Considering the inconvenienceofwearing accelerometers or IMUswhile perform-
ing gestures, it is more natural to develop vision-based gesture recognition systems.
Single or stereo camera is mostly widely used in research, but Kinect™ sensor has
been attracting increasing interest, due to its ability to capture both color and depth
images simultaneously. ChaLearn has organized several competitions focused on
the Kinect™-based gesture recognition ever since 2011 (Guyon et al. 2012; Escalera
et al. 2013).

Approaches based on hiddenMarkovmodel (HMM) arewidely adopted in vision-
based gesture recognition. Elmezain et al. (2008) applied HMM to recognize isolated
and continuous gestures in real-time. Spatio-temporal trajectories were converted
to orientation dynamic features and then quantized to one of the codewords. The
quantized observation sequence was then used to inference the hidden gesture label.
Gaus et al. (2013) compared the recognition performance given by both fixed state
HMMand variable state HMM. In Nandakumar et al. (2013), gesture instances in the
continuous data streamwere segmented using both audio and hand joint information.
Three modalities were used for classification: HMM classifier for MFCC2 feature
extracted from audio signal, and SVM (support vector machine) classifier for both
RGB (STIP feature) and skeleton (covariance descriptor).Wu et al. (2013) performed
automatic gesture detection based on the endpoint detection result in the audio data
stream. HMM classifiers were then applied to both audio and skeleton features, and
a late fusion strategy was employed to make the final classification decision.

In order to enhance the recognition performance of HMM-based approaches,
ensemble learning, especiallyAdaBoost, has been embedded into the training process
of hidden Markov models in a few researches. Adaptive boosting (Freund and
Schapire 1995; Yoav and Robert 1997) is a training framework to generate multiple

2MFCC: Mel-Frequency Cepstral Coefficients (Zheng et al. 2001), a common used audio feature
for speech recognition. The feature extraction process is as follows: (a) the signal segment is turned
into frequency domain using Discrete Fourier Transform; (b) the short-term power spectrum is
warped into the Mel-frequency; (c) the warped power spectrum is convolved with the triangular
band-pass filter; (d) the MFCC feature is the Discrete Cosine Transform result of the convolved
power spectrum.
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weak classifiers with different training instances’ weight distribution, and construct
a strong classifier with these weak classifiers to achieve a better classification per-
formance. Foo et al. (2004) proposed a novel AdaBoost-HMM classifier to boost the
recognition of visual speech elements. Weak classifiers were trained using biased
Baum-Welch algorithm under the AdaBoost framework to cover different groups of
training instances. Their decisions on the unlabeled instance were combined follow-
ing a novel probability synthesis rule to obtain the final decision. In Zhang et al.
(2005), a similar approach was applied in the application of sign language recog-
nition. However, both researches neglected the potential noisy dimensions in the
feature space, which could cause the deterioration of recognition performance.

Besides HMM-based approaches, there are also many other methods proposed
in the context of vision-based gesture recognition. In Lui et al. (2010) and Lui
(2012b), action videos were factorized using higher order singular value decomposi-
tion (HOSVD) and the classification was performed based on the geodesic distance
on the product manifold. Boyali and Kavakli (2012) proposed a variant version of
sparse representation based classification (innovated by Wright et al. 2009; Wagner
et al. 2009) for gesture recognition. For amore complete overview of commonly used
approaches in gesture recognition, we recommend the survey papers mentioned at
the beginning of this section.

14.3 Bayesian Co-Boosting with Hidden Markov Model

For multi-modal gesture recognition task, fusion of features from different modal-
ities is one of the most vital problems. Many existing approaches use a simple
weighted-based fusion strategy (Bayer and Silbermann 2013; Nandakumar et al.
2013). However, this weight coefficient usually needs to be empirically tuned, which
is rather difficult if not impossible on large-scale dataset. As we mentioned before,
Bayesian co-training (Yu et al. 2008, 2011) can automatically determine each view’s
confidence score, which inspired us to adopt a similar approach to fuse multiple
modalities. Boosting learning can perform feature selection through training multi-
ple weak classifiers, and can be used in gesture recognition to select optimal feature
dimensions for the classification problem.

In this section,we introduce a novel BayesianCo-Boosting training framework for
combining multiple hiddenMarkov model classifiers for multi-modal gesture recog-
nition. Based on the proposedBayesianCo-Boosting framework, differentmodalities
are naturally combined together and can provide complementary information for each
other. We also analyze the minimization of the error upper bound so as to derive the
update rule of instance’s weight in Co-Boosting process.
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14.3.1 Model Learning

In the task of multi-modal gesture recognition, two or more modalities (in this paper,
we constraint the amount of modalities to be two) are simultaneously available for
describing gesture instances. Based on the raw data of each modality, a time series
sequence of feature vectors can be extracted according to certain feature extraction
procedures. This time series sequence data is then used as the input to the pre-trained
classifier for model training and evaluation.

The most straightforward approach to this problem is to separately train a classi-
fier for each modality, and then combine their classification results in a late fusion
style. However, this approach will bring the following issues. First, feature vectors
may contain noisy data dimensions, which will lead to deterioration of classification
performance. Second, one classifier for onemodality may not be sufficient to achieve
a satisfying classification accuracy level. Third, the fusion weights of different clas-
sifiers, which have significant impact on the final classification result, are difficult to
be tuned manually.

In this paper, we propose an approach to solve all these problems together. Under
the Co-Boosting framework, multiple weak classifiers of each modality are trained
through a number of iterations. The final strong classifier is a linear combination of
these weak classifiers, and each classifier’s weight is determined by its prediction
error on the training dataset. Figure14.1 depicts the work flow of our proposed
method, and Algorithm 1 describes the detailed procedures in the model training
process.

The aim of our proposed Bayesian Co-Boosting framework is to generate a strong
classifier for the multi-modal gesture recognition task. As we can see in Fig. 14.1,
the resulting strong classifier H (xi ) is the combination of multiple weak classifiers
trained on V different modalities through T iterations. In each iteration round, Mv

candidate weak classifiers are trained on the v-th modality using different feature

Bayesian Co-
Boosting Learner

Bayesian Co-
Boosting Learner

Bayesian Co-
Boosting Learner

Fig. 14.1 Work flow of Bayesian Co-Boosting training framework.
xi : training instance;wi,t : training instance xi ’s weight at the t-th iteration; ht,v (xi ): weak classifier
learnt from modality v at the t-th iteration; H (xi ): final strong classifier
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dimension subsets, and the best candidate among them is selected as the optimal
weak classifier h∗

t,v (xi ). The optimal weak classifier is the one which achieves the
minimal training error among all candidate weak classifiers for modality v. Then we
use all these selected weak classifiers (one weak classifier per modality) obtained at
this iteration round to update each training instance’s weight.

In the rest of this section, we firstly introduce the training process of a single
weak classifier with weighted instances. Secondly, we derive the update rule of the
instance’s weight to minimize the training error’s upper bound from a Bayesian
perspective. The construction of the strong classifier H (xi ) is described at the end
of this section.

Algorithm 1 Bayesian Co-Boosting Training Framework.3

Input: training instances {xi }
Output: strong classifier H (xi )
1: initialize data weight distribution {wi }
2: for t = 1, . . . , T do
3: for v = 1, . . . , V do
4: for m = 1, . . . , Mv do
5: randomly generate feature subset F̃t,v,m ⊂ Fv, |F̃t,v,m | = λv · |Fv|
6: generate training dataset {(x̃i ,wi )} with feature dimensions in F̃t,v,m
7: train candidate weak classifier ht,v,m (xi ) (refer to Algorithm 2)
8: calculate classifier’s training error εt,v,m
9: end for
10: select optimal candidate weak classifier h∗

t,v (xi ) and feature subset F̃∗
t,v

11: calculate weak classifier’s voting weight α∗
t,v

12: end for
13: update instances’ weights {wi } (refer to Algorithm 3)
14: end for
15: construct strong classifier H (xi )

14.3.1.1 Weak Classifier Training

As we concluded in Sect. 14.2, hidden Markov3 model is one of the most com-
monly used classifiers in gesture recognition. Therefore, in this paper, we implement
the Bayesian Co-Boosting training framework with HMM-based weak classifiers
embedded. However, other weak classifiers can also be easily adopted in our frame-
work.

Hidden Markov model is a statistical model based on Markov process, in which
the generation of an observation sequence is modeled as the result of a series of unob-
served state transitions (Rabiner 1989). In order to deal with continuous observation

3T : the number of Co-Boosting iteration rounds; V : the number of modalities; Mv: the number of
candidate weak classifiers for modality v; Fv: all available feature dimensions for modality v; λv:
the feature dimension selection ratio for modality v.



424 J. Wu and J. Cheng

vectors, a multi-variate Gaussian distribution is adopted to determine the observation
probability of each observation-state pair. To simplify the subsequent analysis, we
define the following symbols:

xi,1:Ti : observation sequence of length Ti , composed of feature vectors xi,t .
zi,1:Ti : state transition sequence; zi,t ∈ {1, . . . , K }, K is the number of states.
D : the training dataset consists of N observation sequences xi,1:Ti .
πk : initial state probability, πk = P

(
zi,1 = k

)
.

A j,k : state transition probability, A j,k = P
(
zi,t+1 = k|zi,t = j

)
.

μk, �k : mean vector and covariance matrix, P
(
xi,t |zi,t = k

) = N
(
xi,t |μk, �k

)
.

For multiple-class classification problem in gesture recognition, a hiddenMarkov
model is trained for eachgesture class,with its parameters denoted as θc. The resulting
classifier is denoted as

ŷi = argmax
c

P (xi |θc)

where xi = xi,1:Ti is the unlabeledgesture instance. P (xi |θc)measures the probability
for model θc generating observation sequence xi and can be rewritten as

P (xi |θc) =
∑

zi

P (xi , zi |θc)

where the full data probability P (xi , zi |θc) is given by

P (xi , zi |θc) = P (zi |θc) P (xi |zi , θc)

= πzi,1

T−1∏

t=1

Azi,t ,zi,t+1

T∏

t=1

N
(
xi,t |μzi,t , �zi,t

)

For the parameter estimation problem of HMM, commonly used Baum-Welch
algorithm (a variation of EM algorithm) can only deal with unweighted train-
ing instances. In boosting learning, however, instances are assigned with different
weights, which are adjusted at the end of each iteration round to guide the subse-
quent weak classifiers focus on more difficult instances. Hence, we need to extend
the standard Baum-Welch algorithm (Murphy 2012) to accommodate the weighted
instances’ training problem in our approach. Our proposed parameter estimation
method is also based on the EM algorithm.

Given the weighted training dataset {(xi ,wi )}, parameter estimation problem is
to find the optimal parameters that maximize the log likelihood of the observed data,
which is defined as

� (θ) =
N∑

i=1

wi log P (xi |θ) =
N∑

i=1

wi log

[
∑

zi

P (xi , zi |θ)

]
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But this is difficult to optimize, since the log cannot be pushed inside the sum. To
get around this problem, we define the complete data log likelihood as

�c (θ) =
N∑

i=1

wi log P
(
xi , z

∗
i |θ

)

where z∗
i is the optimal state transition sequence, and is inferred with Viterbi

algorithm.
Therefore, the expected complete data log likelihood for dataset D is given by

Q (θ, θold) = E [�c (θ) |D, θold] (14.1)

and the optimal parameters are estimated by maximizing this.
On the basis of the definition of P (xi , zi |θc), Eq. (14.1) can be rewritten as

Q (θ, θold) = E

[
N∑

i=1

wi log P
(
xi , z

∗
i |θ

)
]

=
N∑

i=1

wiE

[

log
∏

zi

P (xi , zi |θ)I (z∗
i =zi)

]

=
N∑

i=1

wi

∑

zi

E
[
I

(
z∗
i = zi

)]
log P (xi , zi |θ)

=
N∑

i=1

K∑

k=1

wi P
(
z∗
i,1 = k|xi , θt−1

)
logπk

+
N∑

i=1

K∑

j=1

K∑

k=1

Ti−1∑

t=1

wi P
(
z∗
i,t = j, z∗

i,t+1 = k|xi , θt−1
)
log A j,k

+
N∑

i=1

K∑

k=1

Ti∑

t=1

wi P
(
z∗
i,t = k|xi , θt−1

)
log P

(
xi,t |zi,t = k

)

In the E step of EM algorithm, we firstly compute two groups of probabilities
with forward-backward algorithm, as describe in Murphy (2012)

γi,t (k) = P
(
zi,t = k|xi , θt−1

)

ξi,t ( j, k) = P
(
zi,t = j, zi,t+1 = k|xi , θt−1

) (14.2)

where γi,t (k) indicates the probability of the hidden state at time t being state k,
and ξi,t ( j, k) represents the probability of the hidden state being state j at time t
and state k at time (t + 1). Based on these probabilities, we compute the following
expectation items
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E
[
N 1
k

] =
N∑

i=1

wiγi,1 (k)

E
[
N j,k

] =
N∑

i=1

Ti−1∑

t=1

wiξi,t ( j, k)

E [Nk] =
N∑

i=1

Ti∑

t=1

wiγi,t (k)

E [x̄k] =
N∑

i=1

Ti∑

t=1

wiγi,t (k) xi,t

E
[
x̄k x̄

T
k

] =
N∑

i=1

Ti∑

t=1

wiγi,t (k) xi,t x
T
i,t

(14.3)

In the M step, parameters are updated so that Q (θ, θold) is maximized. Here, we
only present the final update rule for each parameter, due to the limitation of space

π̂k = E
[
N 1
k

]

∑K
k ′=1 E

[
N 1
k ′
]

Â j,k = E
[
N j,k

]

∑K
k ′=1 E

[
N j,k ′

]

μ̂k = E [x̄k]

E [Nk]

�̂k = E
[
x̄k x̄ Tk

]

E [Nk]
− μ̂kμ̂

T
k

(14.4)

The training procedure of weak classifier is demonstrated in Algorithm 2.

Algorithm 2Weak Classifier Training
Input: weighted training instances {(xi ,wi )}
Output: weak classifier h (xi )
1: for c = 1, . . . ,C do
2: initialize model parameters θc
3: for t = 1, . . . , T do
4: initialize expectation items
5: for i = 1, . . . , N do
6: compute γi,t (k) , ξi,t ( j, k) according to Equation (14.2)
7: update expectation items according to Equation (14.3)
8: end for
9: compute θc =

{
π̂k , Â j,k , μ̂k , �̂k

}
according to Equation (14.4)

10: end for
11: end for
12: construct weak classifier h (xi ) = argmaxc P (xi |θc)
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14.3.1.2 Instance’s Weight Updating

In this sub-section, we define the training error for instances in each class, together
with its upper bound to simplify the error minimization formulation. Based on this
formulation, we derive the update rule for instance’s weight in our proposed frame-
work.

In the t-th iteration round of Bayesian Co-Boosting training process, the training
error for class c is denoted by Et,c, and the corresponding error upper bound is
denoted by Bt,c.

We define the random variable zi ∈ {1, . . . ,C} to represent the hidden label for
observation xi . The binary prediction value for each candidate class of the strong
classifier is determined by

Ht,c (xi ) = sgn
(
Pt,c,i > P̄t,c,i

) =
{+1, Pt,c,i > P̄t,c,i

−1, Pt,c,i ≤ P̄t,c,i

where
Pt,c,i = P

(
zi = c|h1,1 (xi ) , h1,2 (xi ) , . . . , ht,1 (xi ) , ht,2 (xi )

)

P̄t,c,i = P
(
zi �= c|h1,1 (xi ) , h1,2 (xi ) , . . . , ht,1 (xi ) , ht,2 (xi )

)

and h∗,∗ (xi ) ∈ {1, . . . ,C} represents the predicted class label of weak classifier.
The training error Et,c is defined as the sum of 0 − 1 loss of classifier’s binary

predictions for the c-th class, which is

Et,c =
∑

i :yi=c

∞ (
Ht,c (xi ) �= 1

) +
∑

i :yi �=c

∞ (
Ht,c (xi ) = 1

)
(14.5)

where function ∞ (·) equals to 1 when the inner expression is true; otherwise, its
value is 0.

The error upper bound Bt,c is given by

Bt,c =
N∑

i=1

(
P̄t,c,i
Pt,c,i

)sgn(yi=c)

=
∑

i :yi=c

P̄t,c,i
Pt,c,i

+
∑

i :yi �=c

Pt,c,i
P̄t,c,i

(14.6)

Theorem 1 Et,c ≤ Bt,c always holds with definitions in Eqs. (14.5) and (14.6).

Proof For each training instance xi , we consider its training error Et,c,i and the
corresponding upper bound Bt,c,i . It surely falls into one of the following conditions:

(1) Ht,c (xi ) = 1, yi = c: Based on the definition of Ht,c (xi ), we have Pt,i,c > P̄t,i,c.
Since Et,c,i = 0, Bt,c,i = P̄t,i,c/Pt,i,c ∈ [0, 1), thus Et,c,i ≤ Bt,c,i .

(2) Ht,c (xi ) = 1, yi �= c: Based on the definition of Ht,c (xi ), we have Pt,i,c > P̄t,i,c.
Since Et,c,i = 1, Bt,c,i = Pt,i,c/P̄t,i,c ∈ [1,+∞), thus Et,c,i ≤ Bt,c,i .

(3) Ht,c (xi ) �= 1, yi = c: Based on the definition of Ht,c (xi ), we have Pt,i,c ≤ P̄t,i,c.
Since Et,c,i = 1, Bt,c,i = P̄t,i,c/Pt,i,c ∈ [1,+∞), thus Et,c,i ≤ Bt,c,i .
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(4) Ht,c (xi ) �= 1, yi �= c: Based on the definition of Ht,c (xi ), we have Pt,i,c ≤ P̄t,i,c.
Since Et,c,i = 0, Bt,c,i = Pt,i,c/P̄t,i,c ∈ [0, 1), thus Et,c,i ≤ Bt,c,i .

Therefore, Et,c,i ≤ Bt,c,i holds for every instance xi ; hence, Et,c ≤ Bt,c is
proved. �

In the Co-Boosting training process, the weight of each training instance should
reflect the difficulty for current weak classifiers to correctly classify it. Hence,
instance’s weight can be determined by

wi = P̄t,yi ,i
Pt,yi ,i

(14.7)

Now we derive the update rule of training instance’s weight so as to minimize the
error upper bound Bt,c through iterations, from a Bayesian perspective.

Based on the definition of Pt,c,i , we have

Pt,c,i = P
(
zi = c|h1,1, h1,2, . . . , ht,1, ht,2

)

= P
(
zi = c, h1,1, h1,2, . . . , ht,1, ht,2

)

P
(
h1,1, h1,2, . . . , ht,1, ht,2

)

= P
(
zi = c, h1,1, h1,2, . . . , ht−1,1, ht−1,2

)

P
(
h1,1, h1,2, . . . , ht−1,1, ht−1,2

)
P

(
ht,1|zi = c

)
P

(
ht,2|zi = c

)

P
(
ht,1, ht,2|h1,1, h1,2, . . . , ht−1,1, ht−1,2

)

= Pt−1,c,i · P
(
ht,1|zi = c

)
P

(
ht,2|zi = c

)

P
(
ht,1, ht,2|h1,1, h1,2, . . . , ht−1,1, ht−1,2

)

in which h∗,∗ = h∗,∗ (xi ) is the predicted class label given by the weak classifier.
Similarly, we can derive the update equation for P̄t,c,i

P̄t,c,i = P̄t−1,c,i · P
(
ht,1|zi �= c

)
P

(
ht,2|zi �= c

)

P
(
ht,1, ht,2|h1,1, h1,2, . . . , ht−1,1, ht−1,2

)

Therefore, the ratio between P̄t,c,i and Pt,c,i can be rewritten as

P̄t,c,i
Pt,c,i

= P̄t−1,c,i · P (
ht,1|zi �= c

)
P

(
ht,2|zi �= c

)

Pt−1,c,i · P (
ht,1|zi = c

)
P

(
ht,2|zi = c

) (14.8)

In order to simplify the following theoretical derivation, we define these symbols

Pc,1 = P
(
ht,1 = c|zi = c

)
, Pc,2 = P

(
ht,1 = c|zi �= c

)

Pc,3 = P
(
ht,1 �= c|zi = c

)
, Pc,4 = P

(
ht,1 �= c|zi �= c

)

Qc,1 = P
(
ht,2 = c|zi = c

)
, Qc,2 = P

(
ht,2 = c|zi �= c

)

Qc,3 = P
(
ht,2 �= c|zi = c

)
, Qc,4 = P

(
ht,2 �= c|zi �= c

)

(14.9)

For each instance xi , considering whether its ground-truth label yi and predicted
label ht,1, ht,2 is equal to c or not, we can assign it into one of the following subsets
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D1 = {
xi |ht,1 = c, ht,2 = c, yi = c

}
, D2 = {

xi |ht,1 = c, ht,2 = c, yi �= c
}

D3 = {
xi |ht,1 = c, ht,2 �= c, yi = c

}
, D4 = {

xi |ht,1 = c, ht,2 �= c, yi �= c
}

D5 = {
xi |ht,1 �= c, ht,2 = c, yi = c

}
, D6 = {

xi |ht,1 �= c, ht,2 = c, yi �= c
}

D7 = {
xi |ht,1 �= c, ht,2 �= c, yi = c

}
, D8 = {

xi |ht,1 �= c, ht,2 �= c, yi �= c
}

(14.10)

On the basis of the above data partitioning, Bt,c can be expanded as

Bt,c =
∑

i :yi=c

P̄t,c,i
Pt,c,i

+
∑

i :yi �=c

Pt,c,i
P̄t,c,i

=
∑

i :xi∈D1

P̄t−1,c,i Pc,2Qc,2

Pt−1,c,i Pc,1Qc,1
+

∑

i :xi∈D2

Pt−1,c,i Pc,1Qc,1

P̄t−1,c,i Pc,2Qc,2

+
∑

i :xi∈D3

P̄t−1,c,i Pc,2Qc,4

Pt−1,c,i Pc,1Qc,3
+

∑

i :xi∈D4

Pt−1,c,i Pc,1Qc,3

P̄t−1,c,i Pc,2Qc,4

+
∑

i :xi∈D5

P̄t−1,c,i Pc,4Qc,2

Pt−1,c,i Pc,3Qc,1
+

∑

i :xi∈D6

Pt−1,c,i Pc,3Qc,1

P̄t−1,c,i Pc,4Qc,2

+
∑

i :xi∈D7

P̄t−1,c,i Pc,4Qc,4

Pt−1,c,i Pc,3Qc,3
+

∑

i :xi∈D8

Pt−1,c,i Pc,3Qc,3

P̄t−1,c,i Pc,4Qc,4

To simplify the expression, we define

α1 = Pc,1
Pc,2

, α2 = Pc,3
Pc,4

, α3 = Qc,1

Qc,2
, α4 = Qc,3

Qc,4
(14.11)

S1 =
∑

i :xi∈D1

P̄t−1,c,i

Pt−1,c,i
, S2 =

∑

i :xi∈D2

Pt−1,c,i

P̄t−1,c,i
, S3 =

∑

i :xi∈D3

P̄t−1,c,i

Pt−1,c,i
, S4 =

∑

i :xi∈D4

Pt−1,c,i

P̄t−1,c,i

S5 =
∑

i :xi∈D5

P̄t−1,c,i

Pt−1,c,i
, S6 =

∑

i :xi∈D6

Pt−1,c,i

P̄t−1,c,i
, S7 =

∑

i :xi∈D7

P̄t−1,c,i

Pt−1,c,i
, S8 =

∑

i :xi∈D8

Pt−1,c,i

P̄t−1,c,i

(14.12)

where αk, k = 1, . . . 4 are unknown variables and Sk, k = 1, . . . , 8 can be computed
with weak classifier’s prediction. Then we rewrite Bt,c as

Bt,c = S1
α1α3

+ S2 · α1α3 + S3
α1α4

+ S4 · α1α4

+ S5
α2α3

+ S6 · α2α3 + S7
α2α4

+ S8 · α2α4

The partial derivatives of Bt,c for the unknown variables α1:4 are
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∂Bt,c

∂α1
= − S1

α2
1α3

+ S2 · α3 − S3
α2
1α4

+ S4 · α4

∂Bt,c

∂α2
= − S5

α2
2α3

+ S6 · α3 − S7
α2
2α4

+ S8 · α4

∂Bt,c

∂α3
= − S1

α1α
2
3

+ S2 · α1 − S5
α2α

2
3

+ S6 · α2

∂Bt,c

∂α4
= − S3

α1α
2
4

+ S4 · α1 − S7
α2α

2
4

+ S8 · α2

(14.13)

The optimal values of αk should ensure that all partial derivatives in Eq. (14.13)
are equal to 0. Therefore, we obtain the following equations

α1 =
√

S1/α3 + S3/α4

S2 · α3 + S4 · α4
, α2 =

√
S5/α3 + S7/α4

S6 · α3 + S8 · α4

α3 =
√

S1/α1 + S5/α2

S2 · α1 + S6 · α2
, α4 =

√
S3/α1 + S7/α2

S4 · α1 + S8 · α2

(14.14)

and αk can be solved within a few iterations (less than 10 rounds for most conditions,
according to our experimental results).

Based on the definitions in Eq. (14.9), it is obvious that

Pc,1 + Pc,3 = 1, Pc,2 + Pc,4 = 1

Qc,1 + Qc,3 = 1, Qc,2 + Qc,4 = 1
(14.15)

and these eight variables can be solved after all αk are obtained.
Based on the above analysis for training errorminimization, the detailed algorithm

for multiple weak classifiers training is concluded in Algorithm 3.

Algorithm 3 Instance’s Weight Updating
Input: training instances {xi }
Input: instances’ weight

{
wi,t−1

}

Input: weak classifiers ht,1 (xi ) , ht,2 (xi )
Output: updated instances’ weight

{
wi,t

}

1: for c = 1, . . . ,C do
2: assign instances into Dk according to Equation (14.10)
3: compute Sk according to Equation (14.12)
4: compute αk according to Equation (14.14)
5: compute Pc,k , Qc,k according to Equation (14.11) and (14.15)
6: for instance xi in the c-th class do
7: compute Pt,c,i , P̄t,c,i according to Equation (14.8)
8: compute wi,t according to Equation (14.7)
9: end for
10: end for
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14.3.2 Class Label Inference

In our multi-modal gesture recognition system, the predicted class label of unclassi-
fied instance is determined by the voting result of all weak classifiers.

For the optimalweak classifier h∗
t,v (xi )with training error ε∗

t,v, the classifierweight
is defined as

α∗
t,v = log

1 − ε∗
t,v

ε∗
t,v

where the training error is calculated by

ε∗
t,v =

C∑

c=1

∑

i :yi=c

wi · ∞ {
h∗
t,v (xi ) �= c

}

The final prediction of instance’s class label is determined by

H (xi ) = argmax
c

T∑

t=1

2∑

v=1

α∗
t,v∞{h∗

t,v (xi ) = c}

14.4 Experimental Results

In this section, experiments are carried out on two multi-modal gesture recognition
datasets, to prove the effectiveness of our proposed Bayesian Co-Boosting training
framework. On the basis of comparative results of different training algorithms, the
main contributing elements to our improvement on classification accuracy are also
analyzed.

14.4.1 Baseline Methods Description

The training framework we propose in this paper is a general model, and some
state-of-the-art methods can be considered as the special cases of our framework.
The key parameters controlling the complexity of training process are T (number
of iterations), V (number of modalities), and Mv (number of feature subset candi-
dates). Various approaches can be obtainedwith different combinations of these three
parameters.

Ifwe set T = 1, thenmodel is trainedwithout boosting learning.Many approaches
using a single HMM to model instances from one gesture class can be categorized
into this case.
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If we set V = 1, then the classifier is actually trained with only one feature modal-
ity. During iterations, feature selection procedure remains unchanged, but the update
rule of instance’s weight no longer applies. In this case, an instance’s weight can be
updated in a similar way as described in Viola and Jones (2004).

If we set Mv = 1 for each modality, the feature selection procedure is removed
from training process. In this case, there is no need to generate feature subset, since
it may cause unnecessary information loss. All feature dimensions are used during
training.

Now we define 7 baseline approaches listed as follows, each of which is a special
case of our framework. Through this comparison, we can discover which part of the
framework is really contributing to the improvement in classification accuracy.

(1) M1: training a classifier with the 1st modality:
Parameters setup: T = 1, V = 1, M1 = 1.
Classifier: H (xi ) = argmaxc P

(
xi |θ1,c

)
.

xi is the unlabeled instance, and θ1,c are the parameters of hiddenMarkov model
for instances in the c-th class, trained on the 1st modality.

(2) M2: training a classifier with the 2nd modality:
Parameters setup: T = 1, V = 1, M2 = 1.
Classifier: H (xi ) = argmaxc P

(
xi |θ2,c

)
.

xi is the unlabeled instance, and θ2,c are the parameters of hiddenMarkov model
for instances in the c-th class, trained on the 2nd modality.

(3) M1+M2: training classifiers with the 1st and 2nd modality:
Parameters setup: T = 1, V = 2, M1 = M2 = 1.
Classifier: H (xi ) = argmaxc

[
αP

(
xi |θ1,c

) + (1 − α) P
(
xi |θ2,c

)]
.

xi is the unlabeled instance, and θ1,c and θ2,c are respectively the parameters of
hidden Markov model for instances in the c-th class, trained on the 1st and 2nd
modality.

(4) Boost.M1: training boosted classifiers with the 1st modality:
Parameters setup: T > 1, V = 1, M1 = 1.
Classifier: H (xi ) = argmaxc

∑T
t=1 αt,1∞{ht,1 (xi ) = c}.

ht,1 (xi ) = argmaxc P
(
xi |θt,1,c

)
is the weak classifier learnt at the t-th boosting

iteration, and αt,1 is the corresponding classifier’s weight.
(5) Boost.M2: training boosted classifiers with the 2nd modality:

Parameters setup: T > 1, V = 1, M2 = 1.
Classifier: H (xi ) = argmaxc

∑T
t=1 αt,2∞{ht,2 (xi ) = c}.

ht,2 (xi ) = argmaxc P
(
xi |θt,2,c

)
is the weak classifier learnt at the t-th boosting

iteration, and αt,2 is the corresponding classifier’s weight.
(6) Boost.Sel.M1: training boosted classifiers with selected features of the 1st

modality:
Parameters setup: T > 1, V = 1, M1 > 1.
Classifier: H (xi ) = argmaxc

∑T
t=1 αt,1∞{ht,1 (xi ) = c}.

ht,1 (xi ) = argmaxc P
(
xi |θt,1,c

)
is the weak classifier learnt at the t-th boosting

iteration, and αt,1 is the corresponding classifier’s weight. Unlike “Boost.M1”,
feature selection is performed in the training process of weak classifier ht,1 (xi ).
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(7) Boost.Sel.M2: training boosted classifiers with selected features of the 2nd
modality:
Parameters setup: T > 1, V = 1, M2 > 1.
Classifier: H (xi ) = argmaxc

∑T
t=1 αt,2∞{ht,2 (xi ) = c}.

ht,2 (xi ) = argmaxc P
(
xi |θt,2,c

)
is the weak classifier learnt at the t-th boosting

iteration, and αt,2 is the corresponding classifier’s weight. Unlike “Boost.M2”,
feature selection is performed in the training process of weak classifier ht,2 (xi ).

For convenience, we denote our proposed approach as “BayCoBoost”. Its corre-
sponding parameter setup is T > 1, V = 2, M1 > 1, M2 > 1.

“M1” and “M2” are two naive methods for single-modal gesture recognition, and
many HMM-based recognizers can be categorized into one of these. “M1+M2” is
the late fusion result of “M1” and “M2”. Considering the weight coefficient α, we
evaluate 11 candidate values from 0 to 1 with equal step length on the training set
using cross validation, and select the optimal α which reaches the minimal error. The
approach used in Wu et al. (2013) can be regarded as a variation of the “M1+M2”
method.

In “Boost.M1” and “Boost.M2”, boosting learning is applied to enhance the recog-
nition performance. Multiple HMM-based weak classifiers are trained through itera-
tions. Foo et al. (2004) and Zhang et al. (2005) respectively used this type of approach
for the recognition of visual speech element and sign language. “Boost.Sel.M1” and
“Boost.Sel.M2” are similar to them, but feature selection is embedded into the train-
ing process of each weak classifier. Finally, our proposed method “BayCoBoost”
integrates both modalities under the Bayesian Co-Boosting framework.

14.4.2 Experiment 1: ChaLearn MMGR Dataset

In 2013, ChaLearn organized a challenge on multi-modal gesture recognition with
motion data captured by the Kinect™ sensor. This challenge provides a benchmark
dataset on the topic of multi-modal gesture recognition. Detailed information about
this dataset can be found in Escalera et al. (2013).

This dataset contains 20 gesture categories, each of which is an Italian cultural or
anthropological sign. Gestures in the dataset are performed with one or two hands
by 27 users, along with the corresponding word/phase spoken out. Data modalities
provided in this dataset include color image, depth image, skeletal model, user mask,
and audio data.

The dataset has been divided into three subsets already, namely Development,
Validation, and Evaluation. In our experiment, Development and Validation subsets
are used respectively formodel training and testing. Based on the labeled data, we can
segment out 7, 205 gesture instances from Development subset and 3,280 instances
from Validation. These two numbers are slightly smaller than the amount (7,754 and
3,362) announced in Escalera et al. (2013), since we filter out those gesture instances
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which contain invalid skeleton data (when Kinect™ fails to track the skeleton and
outputs all-zero skeleton data).

Among all featuremodalities offered in this dataset, we choose audio and skeleton
feature to perform our proposed Bayesian Co-Boosting training process. We extract
39-dimension MFCC feature (Martin et al. 2001) from audio data stream and denote
it as the first feature modality. The second modality is the 138-dimension skele-
ton feature extracted from 3D coordinates of 20 tracked joint points. The detailed
extraction process of skeleton feature is described in the appendix.

In this experiment, parameters inAlgorithm1 are chosen as follows: T = 20, V =
2, M1 = 5, andM2 = 10. ForMFCCfeature, the size of feature subset is set to be 50%
of all feature dimensions. The skeleton feature subset consists of 15% dimensions
from the original feature space. Therefore, the number of feature dimensions used to
train weak classifiers is respectively 20 for audio and 21 for skeleton. The number
of iterations to estimate parameters of hidden Markov models for weak classifiers is
set to 20. All these parameters are selected roughly using a grid search based on the
cross validation result on the training subset.

We report the recognition accuracy of each gesture category in Fig. 14.2. Also,
several statistics are computed to provide a quantitative comparison between different
methods’ average recognition performance across all categories, which are reported
in Table14.1. The recognition accuracy is defined as the ratio of the number of
correctly classified gestures against the number of all existing gestures in each class.
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Fig. 14.2 Recognition accuracy of each gesture category on ChaLearn MMGR datasets
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Table 14.1 Recognition accuracy on ChaLearn MMGR datasets

Method Mean Std Conf [Mean-Conf,
Mean+Conf]

M1 0.9326 0.0584 0.0273 [0.9052, 0.9599]

M2 0.6749 0.2223 0.1040 [0.5709, 0.7790]

M1+M2 0.9666 0.0345 0.0162 [0.9504, 0.9827]

Boost.M1 0.9364 0.0366 0.0171 [0.9192, 0.9535]

Boost.M2 0.6705 0.2276 0.1065 [0.5640, 0.7770]

Boost.Sel.M1 0.9432 0.0334 0.0156 [0.9275, 0.9588]

Boost.Sel.M2 0.6793 0.2219 0.1038 [0.5754, 0.7831]

BayCoBoost 0.9763 0.0173 0.0081 [0.9682, 0.9844]

14.4.3 Experiment 2: ChAirGest Dataset

In Ruffieux et al. (2013), a multi-modal dataset was collected to provide a benchmark
for the development and evaluation of gesture recognition methods. This dataset is
captured with a Kinect™sensor and four Xsens inertial motion units. Three data
streams are provided by the Kinect™sensor: color image, depth image, and 3D posi-
tions of upper-body joint points. Each Xsens IMU sensor can provide linear acceler-
ation, angular acceleration, magnetometer, Euler orientation, orientation quaternion,
and barometer data with a frequency of 50Hz.

This dataset contains a vocabulary of 10 one-hand gestures commonly used in
close human-computer interaction. Gestures are performed by 10 subjects, and each
gesture is repeated 12 times, including 2 lighting conditions and 3 resting postures.
The total number of gesture instances is 1200.

Similar to the previous experiment, two feature modalities are chosen to perform
our Bayesian Co-Boosting training process. The first feature modality is based on the
data captured by Xsens sensors. We use the raw data collected by four Xsens sensors
as feature vector, which is of 68-dimension. Skeleton data captured by the Kinect™ is
used as the second modality, and a 120-dimension feature vector is extracted per
frame (see the appendix for details). The number of skeleton feature dimensions is
smaller than the previous one, because the position of two joint points (hip-center
and spine) cannot be tracked since all users were performing gestures while sitting.

The parameters in this experiment are almost identical with previous experiment.
In Algorithm 1, parameters are: T = 20, V = 2, and M1 = M2 = 10. The feature
selection ratio of Xsens and skeleton are respectively 20% and 15%. Under this
setup, the feature dimension of Xsens data for weak classifier training is 14, and
this number is 18 for skeleton feature. The number of iterations for weak classifier
training is also set to 20. Similar to the previous experiment, these parameters are
also determined by cross-validation.

Since no division of training and testing subset is specified in this dataset, we per-
form leave-one-out cross validation. In each round, gesture instances of one subject
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Fig. 14.3 Recognition accuracy of each gesture category on ChAirGest datasets

Table 14.2 Recognition accuracy on ChAirGest datasets

Method Mean Std Conf [Mean−Conf,
Mean+Conf]

M1 0.8782 0.0598 0.0427 [0.8355, 0.9210]

M2 0.6884 0.1283 0.0918 [0.5966, 0.7801]

M1+M2 0.8940 0.0685 0.0490 [0.8450, 0.9430]

Boost.M1 0.8728 0.0623 0.0445 [0.8283, 0.9174]

Boost.M2 0.7003 0.1501 0.1074 [0.5929, 0.8077]

Boost.Sel.M1 0.9522 0.0564 0.0403 [0.9119, 0.9925]

Boost.Sel.M2 0.7958 0.1242 0.0889 [0.7070, 0.8847]

BayCoBoost 0.9653 0.0420 0.0300 [0.9353, 0.9953]

are used for model evaluation, and other instances are used to train the model. We
compute the average recognition accuracy for each gesture class and report them in
Fig. 14.3 and Table14.2.

14.4.4 Result Analysis

From the above experimental results, it is obvious that our proposed Bayesian Co-
Boosting training algorithm achieves the best recognition accuracy in both datasets.
Our approach’s recognition accuracy ranks first in 14 out of 20 classes on ChaLearn
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MMGRdataset and 9 out of 10 classes onChAirGest dataset. The average recognition
accuracy of our method is also superior to any other baseline methods, as shown in
Tables14.1 and 14.2. This improvement of our method mainly benefits from two
aspects: multi-modal fusion under Bayesian Co-Boosting framework, and boosting
learning with feature selection.

The improvement brought by multi-modal fusion is inevitable, since different
modalities surely can provide complementary information for each other. “M1+M2”
implements late fusion using a weight coefficient α, which requires more training
time to determine its optimal value through cross-validation. On the other hand, in
our approach, each classifier’s weight is determined during boosting process, which
avoids extra parameter tuning and is more reasonable and explainable based on the
above theoretical analysis.

Comparing the result of “M1”, “M2”, “Boost.M1”, and “Boost.M2”, we can see
that boosting learning could not necessarily improve the recognition accuracy. This
may due to the overfitting caused by the small amount of available training instances.
The overfitting problem of boostingmethods has been discussed in several literatures
(Zhang andYu 2005; Reyzin and Schapire 2006; Vezhnevets and Barinova 2007; Yao
and Doretto 2010). Considering the high feature dimension of instances, the weak
classifier may be too complex to be well trained on such few instances.

Based on the above observation, we tackle the overfitting problem from two
aspects. Firstly, feature selection is used to reduce the number of feature dimen-
sions while preserving enough discriminative information, which alleviates overfit-
ting brought by the small size sample problem. Secondly, Bayesian Co-Boosting
is employed to combine two weak classifiers together with collaborative training
strategy, and each modality can provide complementary information for the other
modality. Therefore, the amount of available training information for classifiers is
actually increased to avoid overfitting problem to some extent.

As demonstrated in Tables14.1 and 14.2, “Boost.Sel.M1” and “Boost.Sel.M2”
outperform their corresponding training methods without feature selection. On this
basis, after applying Co-Boostingmethod to fuse twomodalities, our proposed “Bay-
CoBoost” achieves superior recognition accuracy than all baseline methods.

As for the computation complexity, we compare the average classification time for
eachmethod. It takes around 0.31 s/0.11 s for our proposed “BayCoBoost” method to
label an instance in ChaLearnMMGRandChAirGest dataset, respectively. Although
non-boosting methods can operate at higher speed (for “M1+M2”, the time is about
0.037s/0.013s), we think it is worthy to spend more time since our method’s per-
formance is superior to these methods, especially for the second dataset. Another
remarkable comparison is that by using feature selection strategy, “Boost.Sel.M1”
and “Boost.Sel.M2” not only run twice as fast as “Boost.M1” and “Boost.M2”, due
to the lower classifier’s complexity, but also outperform them in the classification
performance. This also proves that the effectiveness of the feature selection strategy
in our “BayCoBoost” method.
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14.5 Conclusion

In this paper, a novel Bayesian Co-Boosting training framework for multi-modal
gesture recognition is proposed. The merits of our work are three-fold: first, the
collaborative training between multiple modalities provides complementary infor-
mation for each modality; second, the boosting learning combines weak classifiers
to construct a strong classifier of higher accuracy; third, the Bayesian perspective
theoretically ensures that the training error of our method is minimized through
iterations. Feature selection and multi-modal fusion are naturally embedded into
the training process, which bring significant improvement to the recognition accu-
racy. Experimental results on two multi-modal gesture recognition datasets prove
the effectiveness of our proposed approach. Moveover, our proposed framework can
be easily extended to other related tasks in multi-modal scenarios, such as object
detection and tracking.

Acknowledgements Thisworkwas supported in part by 973Program (GrantNo. 2010CB327905),
National Natural Science Foundation of China (Grant Nos. 61332016, 61202325), and Key Project
of Chinese Academy of Sciences (Grant No. KGZD-EW-103-5).

Appendix: Skeleton Feature Extraction

The Kinect™ sensor is able to provide 3D position information for 20 joint points of
human body. We denote the original 3D coordinates of these joints as (xi , yi , zi ) ,

i = 1, . . . , 20.
In order to extract the skeleton feature which is invariant to user’s position, ori-

entation, and body size, we perform the following transformations:

1. Select one joint point as the origin of the normalized coordinate system.
Translate all joint points to move the selected point to the origin.

2. Select three joint points to construct the reference plane.
Rotate the reference plane so that it is orthogonal to the z-axis.

3. Calculate the distance sum of 19 directly connected joint pairs.
Normalize all coordinates so that the sum is equal to 1.

After above transformations, we can obtain the normalized 3D coordinates(
x∗
i , y

∗
i , z

∗
i

)
, which are invariant to the user’s position, orientation, and body size.

Since most gestures are performed with upper body, and the lower body’s move-
ment may interfere the recognition of gestures, we only select joint points in the
upper body for feature extraction. The final feature vector consists of four parts:

1. Absolute 3D position of joint points.
2. Relative 3D position of joint points, defined on directly connected joint pairs.
3. First order difference in time of part 1 in the feature vector.
4. First order difference in time of part 2 in the feature vector.



14 Bayesian Co-Boosting for Multi-modal Gesture Recognition 439

References

I. Bayer, T. Silbermann. A multi modal approach to gesture recognition from audio and video data.
in Proceedings of the 15th ACM on International Conference on Multimodal Interaction, 2013,
pp. 461–466

K.K. Biswas, S.K. Basu. Gesture recognition using microsoft kinect. in the 5th International Con-
ference on Automation, Robotics and Applications, 2011, pp. 100–103

A. Blum, T. Mitchell. Combining labeled and unlabeled data with co-training. in Proceedings of
the 11th Annual Conference on Computational Learning Theory, 1998, pp. 92–100

A. Boyali, M. Kavakli. A robust gesture recognition algorithm based on sparse representation,
random projections and compressed sensing. in IEEE Conference on Industrial Electronics and
Applications, 2012, pp. 243–249

G.S. Chambers, S. Venkatesh, G.A.W. West, H.H. Bui. Hierarchical recognition of intentional
human gestures for sports video annotation. in Proceedings of the 16th International Conference
on Pattern Recognition, 2002, vol. 2, pp. 1082–1085

X. Chen, M. Koskela. Online rgb-d gesture recognition with extreme learning machines. in Pro-
ceedings of the 15th ACM on International Conference on Multimodal Interaction, 2013, pp.
467–474

S. Eickeler, A. Kosmala, G. Rigoll. Hidden markov model based continuous online gesture recog-
nition. in Proceedings of the 14th International Conference on Pattern Recognition, 1998, vol. 2,
pp. 1206–1208

M. Elmezain, A. Al-Hamadi, J. Appenrodt, B.Michaelis. A hiddenmarkovmodel-based continuous
gesture recognition system for hand motion trajectory. in Proceedings of the 19th International
Conference on Pattern Recognition, 2008, pp. 1–4

S. Escalera, J. Gonzàlez, X. Baró, M. Reyes, O. Lopes, I. Guyon, V. Athitsos, H. Escalante. Multi-
modal gesture recognition challenge 2013: Dataset and results. in Proceedings of the 15th ACM
on International Conference on Multimodal Interaction, 2013, pp. 445–452

F. Yoav, E.S. Robert, A decision-theoretic generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

S.W. Foo, Y. Lian, L. Dong, Recognition of visual speech elements using adaptively boosted hidden
Markov models. IEEE Trans. Circuits Syst. Video Technol. 14(5), 693–705 (2004)

Y. Freund, R.E. Schapire, A desicion-theoretic generalization of on-line learning and an application
to boosting, Computational Learning Theory (Springer, Heidelberg, 1995), pp. 23–37

Y.F.A.Gaus, F.Wong,K. Teo, R. Chin, R.R. Porle, L.P. Yi, A. Chekima. Comparison study of hidden
markov model gesture recognition using fixed state and variable state. in IEEE International
Conference on Signal and Image Processing Applications, 2013, pp. 150–155

D.M. Gavrila, The visual analysis of human movement: a survey. Comput. Vis. Image Underst.
73(1), 82–98 (1999)

I. Guyon, V. Athitsos, P. Jangyodsuk, B. Hamner, H.J. Escalante. Chalearn gesture challenge:
design and first results. in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, 2012, pp. 1–6

R.L. Kashyap, Optimal feature selection and decision rules in classification problems with time
series. IEEE Trans. Inf. Theory 24(3), 281–288 (1978)

J. Liu, L. Zhong, J. Wickramasuriya, V. Vasudevan, uWave: accelerometer-based personalized
gesture recognition and its applications. Pervasive Mob. Comput. 5(6), 657–675 (2009)

Y.M. Lui. A least squares regression framework onmanifolds and its application to gesture recogni-
tion. in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Work-
shops, 2012a, pp. 13–18

Y.M. Lui, Human gesture recognition on product manifolds. J. Mach. Learn. Res. 13(1), 3297–3321
(2012b)

Y.M. Lui, J.R. Beveridge,M. Kirby. Action classification on product manifolds. in IEEEConference
on Computer Vision and Pattern Recognition, 2010, pp. 833–839



440 J. Wu and J. Cheng

S.Malassiotis,N.Aifanti,M.G. Strintzis.Agesture recognition systemusing 3ddata. inProceedings
of the 1st International Symposium on 3DData Processing Visualization and Transmission, 2002,
pp. 190–193

M.R. Malgireddy, I. Inwogu, V. Govindaraju. A temporal bayesian model for classifying, detecting
and localizing activities in video sequences. in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, 2012, pp. 43–48

V. Mantyla, J. Mantyjarvi, T. Seppanen, E. Tuulari, Hand gesture recognition of a mobile device
user. IEEE Int. Conf. Multimed. Expo 1, 281–284 (2000)

A. Martin, D. Charlet, L. Mauuary, Robust speech/non-speech detection using IDA applied to
MFCC. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 1, 237–240 (2001)

S. Mitra, T. Acharya, Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. Part C 37(3),
311–324 (2007)

F. Mörchen. Time series feature extraction for data mining using DWT and DFT. Technical report,
Philipps-University Marburg, 2003

K.P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012
K. Nandakumar, K.W.Wan, S.M.A. Chan,W.Z.T. Ng, J.G.Wang,W.Y. Yau. Amulti-modal gesture
recognition system using audio, video, and skeletal joint data. in Proceedings of the 15th ACM
on International Conference on Multimodal Interaction, 2013, pp. 475–482

C. Oz, M.C. Leu, American sign language word recognition with a sensory glove using artificial
neural networks. Eng. Appl. Artif. Intell. 24(7), 1204–1213 (2011)

T. Pylva̋na̋inen. Accelerometer based gesture recognition using continuous HMMS. in Pattern
Recognition and Image Analysis, vol. 3522 of Lecture Notes in Computer Science, Springer,
Heidelberg, 2005, pp. 639–646

L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition.
Proc. IEEE 77(2), 257–286 (1989)

J.L. Raheja, R. Shyam, U. Kumar, P.B. Prasad. Real-time robotic hand control using hand gestures.
in the 2nd International Conference on Machine Learning and Computing, 2010, pp. 12–16

L. Reyzin, R.E. Schapire. How boosting the margin can also boost classifier complexity. in Pro-
ceedings of the 23rd International Conference on Machine Learning, 2006, pp. 753–760

M. Roccetti, G. Marfia, A. Semeraro. A fast and robust gesture recognition system for exhibit
gaming scenarios. in Proceedings of the 4th International ICST Conference on Simulation Tools
and Techniques, 2011, pp. 343–350

S. Ruffieux, D. Lalanne, E. Mugellini. Chairgest—a challenge for multimodal mid-air gesture
recognition for close HCI. in Proceedings of the 15th ACM on International Conference on
Multimodal Interaction, 2013, pp. 483–488

J. Suarez, R.R. Murphy. Hand gesture recognition with depth images: a review. in IEEE RO-MAN,
2012, pp. 411–417

A. Vezhnevets, O. Barinova, Avoiding boosting overfitting by removing confusing samples, in
Proceedings of the 18th European Conference on Machine Learning, vol. 4701 of Lecture Notes
in Computer Science (Springer, Berlin Heidelberg, 2007), pp. 430–441

P. Viola, M. Jones. Robust real-time face detection. in Proceedings of the 8th IEEE International
Conference on Computer Vision, 2001, vol. 2, pp. 747–747

P. Viola, M.J. Jones, Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
A. Wagner, J. Wright, A. Ganesh, Z. Zhou, Y. Ma. Towards a practical face recognition system:
Robust registration and illumination by sparse representation. in IEEE Conference on Computer
Vision and Pattern Recognition, 2009, pp. 597–604

D. Weinland, R. Ronfard, E. Boyer, A survey of vision-based methods for action representation,
segmentation and recognition. Comput. Vis. Image Underst. 115(2), 224–241 (2011)

J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse represen-
tation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

D.Wu, F. Zhu, L. Shao. One shot learning gesture recognition from rgbd images. in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops, 2012, pp. 7–12



14 Bayesian Co-Boosting for Multi-modal Gesture Recognition 441

J.Wu, J. Cheng, C. Zhao,H. Lu. Fusingmulti-modal features for gesture recognition. inProceedings
of the 15th ACM on International Conference on Multimodal Interaction, 2013, pp. 453–460

M. Yang, N. Ahuja, Recognizing hand gestures using motion trajectories, in Face Detection and
Gesture Recognition for Human-Computer Interaction, vol. 1 of The International Series in Video
Computing (Springer, New York, 2001), pp. 53–81

Y. Yao, G. Doretto. Boosting for transfer learning with multiple sources. in IEEE Conference on
Computer Vision and Pattern Recognition, 2010, pp. 1855–1862

M. Yeasin, S. Chaudhuri, Visual understanding of dynamic hand gestures. Pattern Recognit. 33(11),
1805–1817 (2000)

Y. Yin, R. Davis. Gesture spotting and recognition using salience detection and concatenated hidden
markov models. in Proceedings of the 15th ACM on International Conference on Multimodal
Interaction, pp. 489–494, (2013)

H. Yoon, K. Yang, C. Shahabi, Feature subset selection and feature ranking for multivariate time
series. IEEE Trans. Knowl. Data Eng. 17(9), 1186–1198 (2005)

S. Yu, B.Krishnapuram, R. Rosales, H. Steck, RB. Rao. Bayesian co-training. inAdvances in Neural
Information Processing Systems, vol. 20, (MIT Press, Cambridge, 2008), pp. 1665–1672

S. Yu, B. Krishnapuram, R. Rosales, R.B. Rao, Bayesian co-training. J. Mach. Learn. Res. 12,
2649–2680 (2011)

Z. Zafrulla, H. Brashear, T. Starner, H. Hamilton, P. Presti. American sign language recognition
with the kinect. in Proceedings of the 13th International Conference on Multimodal Interfaces,
2011, pp. 279–286

L. Zhang, X. Chen, C. Wang, Y. Chen, W. Gao. Recognition of sign language subwords based on
boosted hiddenmarkovmodels. inProceedings of the 7th InternationalConference onMultimodal
Interfaces, 2005, pp. 282–287

T. Zhang, B. Yu. Boosting with early stopping: convergence and consistency. Ann. Stat., 2005, pp.
1538–1579

Y. Zhang, W. Liang, J. Tan, Y. Li, Z. Zeng. PCA & HMM based arm gesture recognition using
inertial measurement unit. in Proceedings of the 8th International Conference on Body Area
Networks, 2013, pp. 193–196

F. Zheng, G. Zhang, Z. Song, Comparison of different implementations of MFCC. J. Comput. Sci.
Technol. 16(6), 582–589 (2001)



Chapter 15
Transfer Learning Decision Forests
for Gesture Recognition

Norberto A. Goussies, Sebastián Ubalde and Marta Mejail

Abstract Decision forests are an increasingly popular tool in computer vision
problems. Their advantages include high computational efficiency, state-of-the-art
accuracy and multi-class support. In this paper, we present a novel method for trans-
fer learning which uses decision forests, and we apply it to recognize gestures and
characters.We introduce twomechanisms into the decision forest framework in order
to transfer knowledge from the source tasks to a given target task. The first one is
mixed information gain, which is a data-based regularizer. The second one is label
propagation, which infers the manifold structure of the feature space. We show that
both of them are important to achieve higher accuracy. Our experiments demonstrate
improvements over traditional decision forests in the ChaLearn Gesture Challenge
andMNIST data set. They also compare favorably against other state-of-the-art clas-
sifiers.

Keywords Decision forests · Transfer learning · Gesture recognition

15.1 Introduction

Machine learning tools have achieved significant success in many computer vision
tasks, including face detection (Viola and Jones 2004), object recognition (Felzen-
szwalb et al. 2010), character recognition (LeCun et al. 1998) and gesture recognition
(Guyon et al. 2013). Those tasks are often posed as a classification problem, namely
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identifying to which of a set of categories a new observation belongs. Such classifiers
are usually learned from scratch using a training data set collected for the task. A
major advantage of using machine learning tools is that they tend to deal robustly
with the complexities found in real data.

However, in many cases it is difficult to create new training data sets for each
new computer vision task. Although the problem remains unsolved, some progress
has already been made in certain computer vision tasks, such as object recognition
(Fei-Fei et al. 2006) and action recognition (Seo andMilanfar 2011). The key insight
is to try to replicate the ability of the human brain, which is capable of learning new
concepts applying previously acquired knowledge.

Transfer learning aims at extracting the knowledge from one or more source tasks,
and applying that knowledge to a target task.As opposed tomulti-task learning, rather
than simultaneously learning the source and target tasks, transfer learning focusmore
on learning the target task. The roles of the source and target tasks are not symmetric
(Pan and Yang 2010). The goal is to exploit the knowledge extracted from the source
tasks so as to improve the generalization of the classifier in the target task.

Many examples can be found in computer vision where transfer learning can
be truly beneficial. One example is optical character recognition, which seeks to
classify a given image into one of the characters of a given alphabet. Most methods
have focused on recognizing characters from the English alphabet (LeCun et al.
1998). The recognition of characters from other alphabets, such as French, implies
collecting a new training data set (Grosicki and Abed 2011). In that case, it would
be helpful to transfer the classification knowledge into the new domain.

The need for transfer learning also arises in gesture recognition (Guyon et al.
2013), which aims at recognizing a gesture instance drawn from a gesture vocabulary.
For example, a gesture vocabularymay consist of Italian gestures or referee signals. In
this case, the classifier needs to predict the gesture of the vocabulary that corresponds
to a given video. Again, it would be interesting to improve the performance of a
system by exploiting the knowledge acquired from similar vocabularies.

In this paper, we present a novel method for transfer learning which extends the
decision forests framework (Breiman 2001; Criminisi et al. 2012), and we apply it to
transfer knowledge from multiple source tasks to a given target task. We introduce
two mechanisms in order to transfer knowledge from the source tasks to the target
task. The first one is mixed information gain, which is a data-based regularizer. The
second one is label propagation, which infers the manifold structure of the feature
space.

Decision forests have certain properties thatmake themparticularly interesting for
computer vision problems. First, decision forests aremulti-class classifiers; therefore
it is not necessary to train several binary classifiers for amulti-class problem. Second,
they are fast both to train and test. Finally, they can be parallelized, which makes
them ideal for GPU (Sharp 2008) and multi-core implementations.

The first key contribution is to revise the criterion for finding the parameters of
each internal node of the decision forests in the transfer learning setting. The novel
criterion exploits the knowledge from the source tasks and the target task to find the
parameters for each internal node of the decision forests. The additional information
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penalizes split functions with a high information gain in the target task and a low
information gain in the source tasks. We prove that the novel criterion is beneficial.

The second key contribution is to propagate labels through leaves in order to
infer the manifold structure of the feature space. The aim of this step is to assign a
predictive model to the leaves without training samples of the target task after the
trees of the decision forest are grown. We create a fully connected graph, for each
tree in the forest, where the nodes are the leaves of the tree and the weight of each
edge takes into account the training data reaching the leaves. An implicit assumption
of this step is that nearby leaves should have similar predictive models.

We extensively validate our approach in two challenging data sets. First, our
experiments in the ChaLearn gesture challenge data set (Guyon et al. 2012) show
that our method does not have a uniform margin of improvement over all the tasks.
However, we demonstrate that when there are source tasks related to the target task,
we obtain greater improvements. Second, our experiments in the MNIST data set
(LeCun et al. 1998) show that greater improvements are obtained, compared to
classification decision forests, when there are only a few training samples.

This paper is organized as follows. We summarize previous work on transfer
learning in Sect. 15.2. Section15.3 describes the novel transfer learning decision
forest in, illustrates its performance on some artificial data sets, and proves some
properties of the mixed information gain. In Sect. 15.4 we show how the transfer
learning decision forests can be used to recognize gestures when there is only one
training sample.Wepresent our experiments on theChaLearn data set and theMNIST
data set in Sect. 15.5. Finally, Sect. 15.6 details our conclusions.

15.2 Related Work

In the following wewill review transfer learning techniques which have been applied
to computer vision problems. A recent survey (Pan and Yang 2010) provides a com-
prehensive overviewof the developments for classification, regression and clustering.
In recent years, the computer vision community has become increasingly interested
in using transfer learning techniques, especially for object recognition (Levi et al.
2004; Sudderth et al. 2005; Fei-Fei et al. 2006; Bart and Ullman 2005; Torralba
et al. 2007; Quattoni et al. 2008; Bergamo and Torresani 2010; Gopalan et al. 2011;
Saenko et al. 2010; Tommasi et al. 2014).

A variety of methods have been proposed in the generative probabilistic setting
(Fei-Fei et al. 2006; Sudderth et al. 2005). These models consider the relationships
between different object parts during the training process. The key idea is to share
some parameters or prior distributions between object categories, using the knowl-
edge from known classes as a generic reference for newly learned models. The
association of objects with distributions over parts can scale linearly (Sudderth et al.
2005), or exponentially (Fei-Fei et al. 2006).

Moreover, discriminative models have been extended to the transfer learning set-
ting (Dai et al. 2007; Yao and Doretto 2010; Aytar and Zisserman 2011; Tommasi
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et al. 2014; Lim et al. 2011; Torralba et al. 2007). Transfer learning has been applied
to the SVM framework, during the training process of the target detector the previ-
ously learned template is introduced as a regularizer into the cost function (Tommasi
et al. 2014; Aytar and Zisserman 2011). Based on boosting (Freund and Schapire
1997) a framework that allows users to utilize a small amount of newly labeled data
has been developed (Dai et al. 2007). Later, the framework has been extended for
handling multiple sources (Yao and Doretto 2010).

More similar to our method, instance transfer approaches (Pan and Yang 2010)
consider source and target data together during the training process. A loss function
for borrowing examples from other classes in order to augment the training data
of each class has been proposed by Lim et al. (2011). A method for learning new
visual categories is described by Quattoni et al. (2008), using only a small subset
of reference prototypes for a given set of tasks. As mentioned earlier, a boosting-
based algorithm that allows knowledge to be effectively transferred from old to new
data has been proposed by Dai et al. (2007) and extended later by Yao and Doretto
(2010). The effectiveness of the novel algorithm is analyzed both theoretically and
empirically. In this paper, we develop an instance transfer approach that exploits
source and target data to find the parameters of each internal node of the decision
forest.

Few researchers have addressed the problem of transfer learning using decision
forests or trees. Leistner et al. (2009) extends random forests to semi-supervised
learning. In order to incorporate unlabeled data a maximum margin approach
is proposed, which is optimized using a deterministic annealing-style technique.
Wang et al. (2008) proposed to treat each input attribute as extra task to bias each
component decision tree in the ensemble. Pei et al. (2013) proposed a novel criterion
for node splitting to avoid the rank deficiency in learning density forests for lipread-
ing. The method proposed by won Lee and Giraud-Carrier (2007) learns a new task
by traversing and transforming a decision tree previously learned for a related task.
The transfer learning decision tree learns the target task from a partial decision tree
model induced by ID3 (Quinlan 1986). In this paper, we follow a different approach,
first we consider the source and target data when we build each tree of the decision
forest. Second, decision forests reduce the variance of the classifier aggregating the
results of multiple random decision trees.

Our approach shares some features with the work by Faddoul et al. (2012), who
propose to transfer learning with boosted C4.5 decision trees. The main difference
is that their method reduces the variance of the decision trees by means of boosting,
which has been shown to be less robust against label noise when compared with
decision forests (Breiman 2001; Leistner et al. 2009). In addition, we use label
propagation to learn the manifold structure of the feature space, and assign predictive
models only to the leaves of the trees.

There has been a growing interest in applying transfer learning techniques to
gesture recognition. A method for transfer learning in the context of sign language is
described by Farhadi et al. (2007). A set of labeled words in the source and target data
is shared so as to build a word classifier for a new signer on a set of unlabeled target
words. A transfer learning method for conditional random fields is implemented to
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exploit information in both labeled and unlabeled data to learn high-level features
for gesture recognition by Liu et al. (2010). More recently, the ChaLearn Gesture
Competition (Guyon et al. 2013) provided a benchmark ofmethods that apply transfer
learning to gesture recognition. Several approaches submitted to the competition have
been published (Malgireddy et al. 2013; Lui 2012; Wan et al. 2013).

15.3 Transfer Learning Decision Forests

We consider N + 1 classification tasks T0, . . . , TN over the instance space Rd and
label sets Y0, . . . ,YN . We are interested in solving the classification task T0 using
the knowledge of the other tasks in order to improve classification accuracy. Our
transfer learning algorithm will take as input the training set S = {(xi , yi , j)|xi ∈
R

d , yi ∈ Y j , j ∈ {0, . . . , N }, 1 ≤ i ≤ M}. The projected sets Tj S = {(xi , yi )|xi ∈
R

d , yi ∈ Y j , (xi , yi , j) ∈ S} are the training sets for each task Tj . The empirical his-
togram for a training set S of a task T is defined as p̂T S(y) = 1

|T S|
∑

(x′,y′)∈T S δy′(y)
where δy′(y) is the Kronecker delta and the empirical entropy is defined asH(T S) =
−∑

y∈Y p̂T S(y) log( p̂T S(y)), we will note p̂S(y) or H(S) to make the notation
simpler when it is convenient and unambiguous.

The goal is to find a decision forestF = {F1, . . . , FT }, defined as an ensemble of
T decision trees F , which minimizes the classification error. A decision tree F is a
strictly binary tree in which each node k represents a subset Rk in the instance space
R

d and all the leaves ∂F form a partition P ofRd . In addition, each leaf k ∈ ∂F of a
decision tree F has a predictive model associated with it: pF (y|x ∈ Rk). The internal
nodes k ∈ F◦ of a decision tree have a linear split function: h(x,θk) = x · θk , where
θk are the parameters of node k. The subset represented by the left child kL of node k
is defined as RkL = RL

k = {x ∈ R
d |x ∈ Rk ∧ h(x,θk) < 0} and, similarly, we define

RkR = RR
k = {x ∈ R

d |x ∈ Rk ∧ h(x,θk) ≥ 0} as the subset represented by the right
child kR . The training set reaching node k is defined as Sk = {(x, y, j) ∈ S|x ∈ Rk}.

15.3.1 Training

The training algorithm of a decision forest F consists in training each of the trees
F ∈ F independently, introducing a certain level of randomness in the training
process in order to de-correlate individual tree predictions and improvegeneralization.

We grow each tree using an extension of the classical training algorithm (Criminisi
et al. 2012). The algorithm follows a top-down approach, optimizing the parameters
θ of the root node in the beginning and recursively processing the child nodes. The
recursion is stopped when all the items in the training set have the same labels, or the
maximum depth D is reached, or the number of points reaching the node is below
the minimum number of points allowed κ.
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In this paper, we adapt the procedure for optimizing the parameters θk for each
node k ∈ F◦ to the transfer learning setting (Pan and Yang 2010). The difference
between the classification decision forest (Criminisi et al. 2012) and the transfer
learning decision forest is the objective function. In the former, the information gain
is used to find the best parameters, taking into account only one task. By contrast, in
this paper we use the mixed information gain function as described in Sect. 15.3.1.1.

The partitionP defined by the leaves ∂F aftermaking a tree F growmight contain
regions Rwith no training samples of the target task T0. Therefore, we cannot define a
predictive model for those regions. In order to overcome this issue we infer the labels
from the regions that have training samples of task T0, as described in Sect. 15.3.1.2.

15.3.1.1 Mixed Information Gain

We believe that valuable knowledge can be transferred from the source tasks
T1, . . . , TN to the target task T0, as it happens with humans. For example, it is simpler
to learn a new sign language if another sign language has already been learned. In
other words, there is latent information that can be understood as common sense.

In our formulation, this common sense information is included in the process of
making each tree F ∈ F in the forest grow. The main idea is, therefore, to find para-
meters θk for each k ∈ F◦ in order to obtain a partitionP of the feature spaceRd such
that, in each region R ∈ P , the training samples of each task T have the same label.
This aims at improving the generalization capabilities of each tree independently,
since each region R ∈ P is found using more training samples, and is more general
because it is encouraged to split the training samples of several tasks simultaneously.

Unfortunately, this is a very difficult problem. For this reason, we use a greedy
heuristicwhich consist in recursively choosing for each internal node k ∈ F◦ the para-
meters θk of the split function h(x,θk), which makes the training samples reaching
the child nodes as “pure” as possible. The information gain achieved by splitting the
training set T Sk reaching the internal node k ∈ F◦ of a task T using parameter θk is
computed using the information gain function

I(T Sk,θk) = H(T Sk) −
∑

i∈{L ,R}

|T Sik |
|T Sk |H(T Sik)

where T SL
k = {(x, y)|(x, y) ∈ T Sk ∧ h(x,θk) < 0} and T SR

k = {(x, y)|(x, y)
∈ T Sk ∧ h(x,θk) ≥ 0}. In this paper, the parameters θk of each internal node k ∈ F◦
are foundmaximizing the information gain of all the tasks T0, . . . , TN simultaneously

θ∗
k = arg max

θk∈Tk

(1 − γ)I(T0Sk,θk) + γ

N∑

n=1

pn,kI(TnSk,θk) (15.1)



15 Transfer Learning Decision Forests for Gesture Recognition 449

where γ is a scalar parameter that weights the two terms, Tk ⊂ R
d is a small subset

of the instance space available when training the internal node k ∈ F◦, and pn,k is
the fraction of samples of the source task Tn in the samples reaching the node k,
pn,k = |Tn Sk |∑N

j=1 |Tj Sk | .
The maximization of (15.1) is achieved using randomized node optimization

(Criminisi et al. 2012).We perform an exhaustive search over subset Tk of the feature
space parametersRd . The size of the subset is a training parameter noted as ρ = |Tk |.
The randomized node optimization is a key aspect of the decision forest model, since
it helps to de-correlate individual tree predictions and to improve generalization.

The first term of the objective function in (15.1) is the information gain associated
with the training samples reaching node k for the target task T0. This term encourages
the parameters θk to find a split function h(x,θk) that decreases the entropy of the
training set of the target task T0 reaching the children nodes of k.

Additional information is introduced into the second term of the objective func-
tion in (15.1) for the purposes of increasing the generalization performance. This
information encourages the parameters θk to make the training samples of source
tasks reaching the descendant nodes of k as pure as possible. The key idea is that this
term penalizes split functions h(x,θk)with a high information gain in the target task
T0 and a low information gain in the source tasks T1, . . . , TN . Those splits might have
a high information gain in the target task T0 only because the training set for task T0
is limited, and if we choose them the generalization performance will decrease.

A key insight of our work is an alternative representation of the second term
in (15.1). It is possible to consider all the source tasks T1, . . . , TN together con-
catenating the label sets Y1, . . . ,YN , denoted by Y1...N = ⊕N

n=1Yn . The new task is
noted as T1...N and the training sample is noted as T1...N S = {(x, y)|(x, y, j) ∈ S, j ∈
{1, . . . , N }, y ∈ ⊕N

n=1Yn}. Using the generalized grouping rule of the entropy (Cover
and Thomas 2006) an alternative expression for the second term in (15.1) is found

I(T1...N Sk,θk) =
N∑

n=1

pn,kI(TnSk,θk).

This equation relates the information gain of several source tasks T1, . . . , TN to
the information gain of another source task T1...N . An important consequence of this
equation is that we can combine the training set of the simpler tasks T1, . . . , TN

to obtain a larger training set for another source task T1...N . Therefore, increasing
the number of training samples per source task or the number of source tasks has a
similar effect.

This observation has previously been made in the multi-task learning literature
(Faddoul et al. 2012). However, Faddoul et al. (2012) avoids the high variance of the
decision trees by using the boosting framework, whereas we use a different approach,
based on decision forest, for the same purpose.

We explain in more detail how the combination of the information gain of tasks
T0, . . . , TN for finding the optimal parameters θk improves the generalization proper-
ties of the decision forests. The parametersθk are found using an empirical estimation
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Fig. 15.1 Illustration of
mixed information gain on a
toy problem in which there
are two tasks, each with two
labels. The thickness of the
blue lines indicates the
mixed information gain of
the split (all the splits have
the same information gain).
Task T0 has two green labels
(Y0 = {×, ∗}) and task T1
has two red labels
(Y1 = {©, �})

of the entropy H(Sk) of the training samples Sk reaching node k and its children.
Consequently, errors in estimating entropy can result in very different trees. Tighter
bounds for the expected entropy are found by increasing the number of training
samples, as explained in Theorem 1.

Theorem 1 Let P be a probability distribution on R
d × Y such that the marginal

distribution over Y is a categorical distribution with parameters p1, . . . , p|Y|, and
suppose SK = {(x1, y1), . . . , (xK , yK )} is the set generated by sampling K times
from R

d × Y according to P. Let H(P) = −∑|Y|
y=1 py log(py) be the entropy of

distribution P. Then E(H(SK )) + ∑
y∈Y py log

(
1 + 1−py

Kpy

)
≤ H(P) ≤ E(H(SK )).

This theorem is proved in the Appendix A.
Theorem 1 shows that the empirical entropyH(SK ) is closer to the entropy of the

distribution P when the training set is larger, sincewhen K → ∞, log
(
1 + 1−py

Kpy

)
→

0. Therefore, if we assume that the source tasks are related to the target task i.e., both
have a similar distribution P , using Theorem 1 we can conclude that the mixed
information gain (15.1) finds parameters θk that achieve lower generalization errors
than the traditional information gain I(T0Sk,θk).

To gain some insight into how the mixed information gain works, Fig. 15.1 con-
siders a toy problem with two tasks, each with two labels. It is intuitively clear that
the problem of estimating the information gain of a split with only a few training
samples of the target task is that there are a lot of possible splits with the same empir-
ical information gain but different generalization capabilities. Our goal is to discover
which split to use, and we intend to choose the one with the best generalization capa-
bility. In Fig. 15.1 all the splits have the same information gain but different mixed
information gain. When, in our formulation, we use the additional training samples
from the source tasks to compute the information gain of a split, some of the splits
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Fig. 15.2 Left Output classification of a transfer learning decision forest, tested on all points in
a rectangular section of the feature space. The color associated with each test point is a linear
combination of the colors (red and green) corresponding to the two labels (�,©) in the target task.
The training data for the target task is indicated with big markers and the training data for the source
task is indicated with small markers. Right Output classification of a decision forest tested in the
same feature space section as before but trained using only data for the target task

are penalized for having a low information gain in the source task and, thus, this
allows us to find a split with increased generalization.

One of the major problems with decision trees is their high variance. A small
change in the training data can often result in a very different series of splits. The
major reason for this instability is the hierarchical nature of the process: the effect
of an error in the top split is propagated down to all the splits below it (Hastie et al.
2003). Decision forests (Breiman 2001) build a large collection of de-correlated
decision trees, and hence reduce the variance averaging the prediction of each of
them. The mixed information gain is a complementary approach for reducing their
variancewhich increases the generalization of each tree independently. It is important
to note that the mixed information preserves the diversity of the forests, which is
essential to improve the generalization error. The random nature of the random node
optimization (Criminisi et al. 2012) used to optimize (15.1) allows us to keep a high
diversity among the trees.

Figure15.2a, b compare the output classification on all the points in a rectangular
section of the feature space for a decision forest classifier and for our transfer learning
decision forest classifier. Both decision forests were trained with the same maximum
depth D = 8, and have the same number of trees |F | = 100. The data set for the
target and source task is organized in the shape of a two-arm spiral. We can see that
the classification decision forests have serious generalization problems since, even
when all the training data of the target task is correctly classified, the spiral structure
is not predicted accurately. In contrast, the spiral structure is predicted by the transfer
learning decision forests as shown in Fig. 15.2a.
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15.3.1.2 Label Propagation

For each leaf k ∈ ∂F of each tree F ∈ F , we must have a predictive model pF (y|x ∈
Rk) that estimates the probability of label y ∈ Y0 given a previously unseen test input
x ∈ Rk ⊆ R

d . This poses a problem when we make each tree grow using the mixed
information gain because we may end up with leaves k ∈ ∂F that have no training
samples of the target task T0 to estimate the predictive model pF (y|x ∈ Rk). In this
paper we use label propagation to assign a predictive model pF (y|x ∈ Rk) to those
leaves.

We are given a set of leaves U ⊆ ∂F without training samples of the target task
T0 and a set of leaves L ⊆ ∂F with training samples of the target task T0. The
goal is to obtain a predictive model pF (y|x ∈ Rk) for the leaves k ∈ U avoiding the
propagation of labels through low density regions but, at the same time, propagating
labels between nearby leaves. We construct a complete graph G = (V, E), where
V = ∂F is the vertex set and E is the edge set with each edge ei j ∈ E representing
the relationship between nodes i, j ∈ ∂F .

Edge ei j ∈ E is weighted taking into account the training samples of tasks
T0, . . . , TN . For each leaf k ∈ ∂F we define the estimated mean μk and estimated
covariance �k using the training samples reaching the node

μk = 1

|Sk |
∑

(x,y, j)∈Sk
x

�k =
∑

(x,y, j)∈Sk

∑

(x′,y′, j ′)∈Sk
(x − μk)(x

′ − μk)
T .

We use the estimated mean μk and estimated covariance �k to define the weight
between two nodes ei j ∈ E

ei j = 1

2

(
dT
i j�i di j + dT

i j� j di j
)

wheredi j = μi − μ j is the difference between the estimatedmeanof the leaves i, j ∈
∂F . Weight ei j ∈ E is the symmetric Mahalanobis distance. We use it to discourage
thepropagationof labels through lowdensity regions. For eachnode k ∈ U wefind the
shortest path in graph G to all the nodes inL. Let s∗

k ∈ L be the node with the shortest
path to node k. We assign the predictive model pF (y|x ∈ Rs∗

k
) to pF (y|x ∈ Rk).

Label propagation methods are usually at least quadratic O(n2) in terms of the
number of training samples, making them slow when a large number of training
samples is available. We avoid this problem by propagating the predictive model of
the leaves, instead of propagating the labels of the training samples.

We illustrate the behavior of label propagation in Fig. 15.3 using a 2D toy example.
We consider the same two-arm spiral problem of Fig. 15.2 which has data that follow
a complex structure. We show the predictive models for the regions of two randomly
grown trees before and after propagating labels.Weobserve that the predictivemodels
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Fig. 15.3 Illustration of the label propagation procedure between regions, as before the training
data for the target task is indicated with big markers and the training data for the source task is
indicated with small markers. The ellipses in black are the isocontours of a Gaussian distribution
learned by maximum likelihood for each region using the training samples in the region. a, b Show
the predictive model for two different trees F ∈ F before propagating labels. The color associated
with each region is a linear combination of the colors (red and green) corresponding to the two
labels (�,©) in the target task. The regions in yellow are the ones without training data of the target
task. c, d show the predictive model after the label propagation. e Output classification of the final
transfer learning decision forest

are propagated following the intrinsic structure of the data, as a consequence of taking
into account the training data of each region.

15.3.2 Testing

The predictive model of all the trees F ∈ F is combined to produce the final predic-
tion of the forest

PF (y = y|x) = 1

|F |
∑

F∈F
PF (y = y|x).

Let lF : Rd → ∂F be the function that, given a sample x ∈ R
d , returns the leaf

such that x ∈ RlF (x). The prediction for a tree F is:

PF (y = y|x) = PF
(
y = y|x ∈ RlF (x)

)
.

Finally, let k ∈ ∂F be the leaf that is reached by sample x ∈ R
d . The class distri-

bution for that leaf is:
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PF (y = y|x ∈ Rk) =
{
p̂T0Sk (y) if T0Sk �= ∅
p̂T0Ss∗k

(y) otherwise .

Thus, PF (y = y|x) is the empirical histogram of the training samples of the target
task T0 reaching node lF (x) if any.Otherwise, PF (y = y|x) is the empirical histogram
associated with the node that has the shortest path to lF (x).

15.4 Gesture Recognition

Gesture recognition is one of the open challenges in computer vision. There is a
big number of potential applications for this problem, including surveillance, smart-
homes, rehabilitation, entertainment, animation and human–robot interaction and
sign language recognition just to mention a few. The task of gesture recognition is
to determine the gesture label that best describes a gesture instance, even when per-
formed by different people, from various viewpoints and in spite of large differences
in manner and speed.

To reach that goal, many approaches combine vision and machine learning tools.
Computer vision tools are employed to extract features that provide robustness to
distracting cues and that, at the same time, are discriminative. Machine learning is
used to learn a statistical model from those features, and to classify new examples
using the models learned. This poses a problem in gesture recognition since it is
difficult to collect big data sets to learn statistical models. Therefore, in this paper
we perform experiments aimed at showing that our transfer learning decision forests
are useful to mitigate this problem.

Recently, the ChaLearn competition (Guyon et al. 2012) provided a challenging
data set to evaluate whether transfer learning algorithms can improve their classifi-
cation performance using similar gesture vocabularies. The data set is organized into
batches, with only one training example of each gesture in each batch. The goal is
to automatically predict the gesture labels for the remaining gesture sequences (test
examples). The gestures of each batch are drawn from a small vocabulary of 8–12
unique gestures, when we train a classifier to predict the labels of a target batch (or
task) T0 we use the training samples of T0 and of the other batches T1, . . . , TN .

Each batch of the ChaLearn competition includes 100 recorded gestures grouped
in sequences of 1–5 gestures performed by the same user (Guyon et al. 2012). There
is only one gesture in the training sequences, but there might be more than one
gesture in the testing sequences. Therefore in order to use the method described in
this section we need to temporally segment the testing sequences. To this end, we
use the dynamic time warping (DTW) implementation given by the organizers.

In this section, we describe the features and the classifiers used to validate our
approach, as well as their application to the ChaLearn competition (Guyon et al.
2012). First, Sect. 15.4.1 describes the features, and then, Sect. 15.4.2 describes the
classifier.
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15.4.1 Motion History Images

Given a depth video V where V (x, y, t) is the depth of the pixel with coordinates
(x, y) at the t th frame. We compute the motion history image (MHI) (Bobick and
Davis 1996, 2001; Ahad et al. 2012) for each frame using the following function:

Hτ (x, y, t) =
{

τ if |V (x, y, t) − V (x, y, t − 1)| ≥ ξ
max(0, Hτ (x, y, t − 1) − 1) otherwise

where τ defines the temporal extent of the MHI, and ξ is a threshold employed to
perform the foreground/background segmentation at frame t . The result is a scalar-
valued image for each frame of the original video V where pixels that have moved
more recently are brighter. MHI Hτ represents the motion in an image sequence in a
compact manner, the pixel intensity is a function of the temporal history of motion at
that point. A common problem when computing MHI Hτ using the color channel is
the presence of textured objects in the image sequence; here we use the depth video
V to overcome this issue. This is a relevant problem in gesture recognition, because,
as a result of the clothes texture, the MHI is noisy (Ahad et al. 2012).

An interesting property of theMHI is that it is sensitive to the direction of motion;
hence it is well suited for discriminating between gestures with an opposite direction.
An advantage of the MHI representation is that a range of times may be encoded
in a single frame, and thus, the MHI spans the time scale of human gestures. After
computingMHI Hτ we reduce the spatial resolution of each frame to ω1 × ω2 pixels.
Then, we flatten the MHI for each frame and obtain a feature xm ∈ R

ω1ω2 .
Figure15.4 contrasts the result of computing the MHI using the RGB channel

with the one obtained using the depth channel. In the first row, we see that the
clothes texture generates noise in the MHI computed using the RGB channel. In the

Fig. 15.4 Comparison of the MHI computed using the depth channel or the RGB channel for two
different training videos of the ChaLearn competition. The first two columns show the RGB channel
and the depth channel, whereas the third and fourth columns show the MHI computed using the
RGB channel and the MHI computed using the depth channel, respectively
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Table 15.1 Classification error in the test set of the devel11 batch for different combination of
MHI parameters. In all the experiments we leave the the spatial resolution of each frame fixed to
ω1 × ω2 = 16 × 12

τ \ ξ 16 (%) 24 (%) 32 (%) 40 (%)

1 32.61 ± 0.14 32.61 ± 0.24 30.35 ± 0.22 29.26 ± 0.26

4 30.43 ± 0.17 31.52 ± 0.15 29.26 ± 0.15 28.17 ± 0.19

8 30.43 ± 0.13 27.35 ± 0.16 28.09 ± 0.14 27.06 ± 0.18

12 32.12 ± 0.23 32.61 ± 0.29 34.78 ± 0.31 29.35 ± 0.33

16 33.72 ± 0.28 32.61 ± 0.29 34.78 ± 0.25 30.43 ± 0.31

second row, the MHI of the RGB channel is noisy because of the shadow from the
moving arm. Both problems are avoided using the depth channel for computing the
MHI. The parameters to compute the MHI in all the cases were τ = 15, and ξ = 30.
Table15.1 shows the classification error in the test set of the devel11 batch of the
ChaLearn competition, after training a decision forest with the following parameters
D = 8, T = 50.

15.4.2 Naive Bayes

A main research trend in gesture recognition is to train hidden Markov models
(HMMs) and theirs variants (Bowden et al. 2004; Kurakin et al. 2012), in order to
exploit the temporal relation of a gesture. A drawback of this approach is that many
training samples are required to train the large number of parameters of an HMM.
Additionally, recognition rates might not improve significantly (Li et al. 2008). This
limitation has been recognized by Bowden et al. (2004) and a two-stage classifier
was proposed to obtain one-shot learning.

Since in the ChaLearn competition (Guyon et al. 2012) there is only one labeled
training sample of each gesture, we use the naive Bayes model which has a smaller
number of parameters thanHMM.We use transfer learning decision forests to predict
the probability that each frame will be part of a given gesture. We combine the
predictions of the transfer learning decision forests for each frame using the naive
Bayes model. An advantage of the naive Bayes assumption is that it is not sensitive
to irrelevant frames (the probabilities for all the labels will be quite similar).

Given a video V of an isolated gesture, we want to find its label y ∈ Y0. Assuming
that the class prior p(y) is uniform we have:

ŷ = argmax
y∈Y0

p(y|V ) = argmax
y∈Y0

p(V |y)

Let x1, . . . , xM denote the MHI for each frame of a video V with M frames. We
assume the naive Bayes model i.e., that the features x1, . . . , xM are i.i.d. given the
label y, namely:
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p(V |y) = p(x1, . . . , xM |y) =
M∏

m=1

p(xm |y) =
M∏

m=1

p(y|xm)
p(xm)

p(y)
(15.2)

We compute the probability p(y|xm) using our proposed transfer learning decision
forest F . The data set for training the forest F consists of all the frames in each
training video in the target task T0 and source tasks T1, . . . , TN . We propose to use
the frames of the training videos in the source tasks to obtain a better classifier for
each frame.

Taking the logarithm in (15.2) and ignoring the constant terms we obtain the
following decision rule:

ŷ = argmax
y∈Y0

p(y|V ) = argmax
y∈Y0

M∑

m=1

log (pF (y|xm))

Note that we use the same forest F for computing the label distribution of all the
frames in video V . For this reason, given a frame x, we expect distribution pF (y|x)
to be multi-modal, which is an issue for several statistical methods. However, since
the transfer learning decision forest has a predictive model for each leaf of its tree,
it can deal with this type of distribution without major problems

Figure. 15.5 compares the classification error when predicting the label of a frame
p(y|x) with the classification error when predicting the label of a video p(y|V ), for
different combinations of training parameters in the devel11 batch. We observe that
the maximum depth D has a larger impact to predict the label of a video than the

Fig. 15.5 Effect of the training parameters for the frame label classification error p(y|x) (left)
and video label classification error p(y|V ) (right) in the devel11 batch using the transfer learning
decision forests
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number of trees |F |. Moreover, the classification error when predicting the label of
a frame is greater than the classification error when predicting the label of a video.
This means, as expected, that some frames are more discriminative than others, and
that the misclassification of some frames is not a decisive factor for classifying a
video correctly.

15.5 Experiments

In this section we present a series of experiments on the ChaLearn Gesture Challenge
(Guyon et al. 2012) andMNISTdata set (LeCun et al. 1998) to assess the performance
of our proposed algorithm.

15.5.1 ChaLearn Gesture Challenge

Here, we evaluate the transfer learning decision forests on the ChaLearn Gesture
Challenge. First, we compare the results obtained for different parameters of the
transfer learning decision forests, and then we compare these results with the ones
reported in related works. For the MHI computation in this section, we set the tem-
poral extent τ = 8, the threshold ξ = 25, and reduce the spatial resolution of each
frame to ω1 × ω2 = 16 × 12 pixels.

15.5.1.1 Transfer Decision Learning Parameters

To obtain a general idea of the effect of the training parameters, Fig. 15.6 evaluates
the classification error for different combinations of training parameters. We report
the average classification error obtained in the devel batches. We use the temporal
segmentation of the videos provided by the ChaLearn competition organizers. The
experiments show that when the mixing coefficient γ is between 25 and 50%, the
classification error is the smallest. This means that we obtain improvements when
transferring knowledge from related tasks but, nevertheless, we still need to make
the decision trees grow using information of the target task.

It is important to remark that when γ = 0 we are not using the training data of
the source tasks and our mixed information gain simplifies to the usual information
gain, thus, only the label propagation extension is being used. The classification
error for the case γ = 0 indicates that we achieve an improvement using the label
propagation alone. We obtain an additional improvement when γ is between 25 and
75%, therefore we can conclude that both extensions are important to reduce the
classification error.

The maximum depth of the trees is a highly relevant parameter for the trans-
fer learning decision forests, and has some influence for the classification decision
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Fig. 15.6 Comparison of the classification error using different combination of training parameters

Fig. 15.7 Comparison of the confusion matrices obtained using the DF (a–c) and TLDF (d–f)
classifiers on the devel06, devel11 and devel14 batches

forests. As expected, the greater the maximum depth, the smaller the classification
error. It is interesting to observe that the difference in the classification error between
different values of the mixing coefficients γ is reduced when the maximum depth is
increased.

Figure15.7 shows the confusionmatrices for the classifiers of the transfer learning
decision forests (TLDFs) and the decision forests (DFs) in the batches devel06,
devel11 and devel14. To train the TLDFs, we set the number of trees T = 50, the
maximum depth D = 8, the mixing coefficient γ = 25%, and the size of the subset
|T | = 50. In these batches the TLDFs classifier shows improvements over the DFs
classifier. The improvement is not uniform for all the gestures of the batches, but only
for some of them. This is because not all the gestures can benefit from the training
data of the source tasks. Only the gestures that have, at least, one similar gesture in
a source task show improvements.

The confusionmatrix for thedevel06batch inFig. 15.7 shows significant improve-
ments in the classification of the last gesture. Figure15.8 shows a representative
image of that gesture and similar gestures in the devel13 and devel15 batches. The
person in front of the camera moves the left hand to a fixed position and then shows
a similar pattern of the fingers, for all these gestures. The frames of these gestures
are usually found in the same leaf after training the decision forest.
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Fig. 15.8 Similar gestures in different batches. The first, second and third rows show a gesture in
the devel06, devel13 and devel15 batches respectively. The first column shows the RGB image
for a representative frame of the video, the second column shows the corresponding depth image
and the last column shows the MHI

15.5.1.2 Devel and Final Data

Table15.2 compares our results for the development batches of the ChaLearn Chal-
lenge with the ones previously reported by Lui (2012) and Malgireddy et al. (2013),
using the evaluation procedure of the ChaLearn competition (Guyon et al. 2012). To
train the TLDFs, we set the number of trees T = 50, the maximum depth D = 8, the
mixing coefficient γ = 25%, and the size of the search space |T | = 50. As shown in
Table15.2, for most batches, our transfer learning decision forests obtain improve-
ments over the DFs, and for some batches, they obtain the smallest errors.

Table15.3 compares our results for the final evaluation data with the final results
of the ChaLearn competition (Guyon et al. 2013). The Joewan team proposed a novel
feature which fuses RGB-D data and is invariant to scale and rotation (Wan et al.
2013). Most of the other teams have not described their approach in a publication.
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Table 15.2 Comparison of reported results using the Levenshtein distance
devel01
(%)

devel02
(%)

devel03
(%)

devel04
(%)

devel05
(%)

devel06
(%)

devel07
(%)

devel08
(%)

devel09
(%)

devel10
(%)

Principal motion 6.67 33.33 71.74 24.44 2.17 43.33 23.08 10.11 19.78 56.04

(Lui, 2012) – – – – – – – – – –

(Malgireddy et al., 2013) 13.33 35.56 71.74 10.00 9.78 37.78 18.68 8.99 13.19 50.55

DF 4.44 28.89 65.22 25.56 3.26 48.89 19.78 17.98 19.78 59.34

TLDF 3.89 25.00 62.50 13.89 4.89 45.00 14.29 10.11 15.38 60.99

devel11
(%)

devel12
(%)

devel13
(%)

devel14
(%)

devel15
(%)

devel16
(%)

devel17
(%)

devel18
(%)

devel19
(%)

devel20
(%)

Avg.
(%)

Principal motion 29.35 21.35 12.50 39.13 40.22 34.48 48.91 44.44 60.44 39.56 33.15

(Lui, 2012) – – – – – – – – – – 24.09

(Malgireddy et al., 2013) 35.87 22.47 9.09 28.26 21.74 31.03 30.43 40.00 49.45 35.16 28.73

DF 42.39 23.60 19.32 45.65 26.09 31.03 53.26 40.00 60.44 46.15 34.14

TLDF 39.13 19.10 25.00 27.71 31.52 27.01 45.11 38.33 54.95 67.22 31.55

Table 15.3 ChaLearn results of round 2

Team Private score For comparison score

set on final set #1 on final set #2

alfnie 0.0734 0.0710

Joewan 0.1680 0.1448

Turtle Tamers 0.1702 0.1098

Wayne Zhang 0.2303 0.1846

Manavender 0.2163 0.1608

HIT CS 0.2825 0.2008

Vigilant 0.2809 0.2235

Our Method 0.2834 0.2475

Baseline method 2 0.2997 0.3172

15.5.2 MNIST

The MNIST (LeCun et al. 1998) data set has been used to compare transfer learning
results (Quadrianto et al. 2010; Faddoul et al. 2012). A small sample of the training
set is used to simulate the situation when only a limited number of labeled examples
is available. For each digit 0 . . . 9, we consider a binary task where label +1 means
that the example belongs to the digit associated with the respective task, and label
−1 means the opposite. We randomly choose 100 training samples for each task and
test them on the 10,000 testing samples. The experiments are repeated ten times and
the results are summarized in Table15.4. We train the TLDFs with D = 6, T = 40,
γ = 50%, and we do not apply any preprocessing to the sample images. The exper-
iments show that our approach achieves better results than state-of-the-art methods
in terms of transfer learning.

To analyze the influence of the number of training samples, we compare the
classification error of the TLDFs with the classification error of the DFs. Figure15.9
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Table 15.4 Comparison of the accuracies on the MNIST data set

1/-1 (%) 2/-2 (%) 3/-3 (%) 4/-4 (%) 5/-5 (%) 6/-6 (%)

Adaboost (Faddoul et al. 2012) 91.77±1.89 83.14±2.35 82.96±1.24 83.98±1.41 78.42±0.69 88.95±1.60

MTL (Quadrianto et al. 2010) 96.80±1.91 69.95±2.68 74.18±5.54 71.76±5.47 57.26±2.72 80.54±4.53

MT-Adaboost (Faddoul et al.

2012)

96.80±0.56 86.87±0.68 87.68±1.04 90.38±0.71 84.25±0.73 92.88±0.90

Our approach 97.23±0.44 96.74±0.31 93.29±0.96 90.10±1.23 92.79±1.62 97.35±0.45

7/-7 (%) 8/-8 (%) 9/-9 (%) 0/-0 (%) Avg. (%)

Adaboost (Faddoul et al. 2012) 87.11±0.90 77.51±1.90 81.84±1.85 93.66±1.29 84.93

MTL (Quadrianto et al. 2010) 77.18±9.43 65.85±2.50 65.38±6.09 97.81±1.01 75.67

MT-Adaboost (Faddoul et al.

2012)

92.81±0.57 85.28±1.73 86.90±1.26 97.14±0.42 90.10

Our approach 95.55±1.39 91.99±1.30 84.76±1.67 98.05±0.28 93.78

Fig. 15.9 This figure evaluates the classification error as a function of the number of training
samples

plots the classification error as a function of the number of training samples for
each classifier. As we did previously, we compute the classification error using the
10,000 test samples of the MNIST data set. We see that the classification error of the
TLDF is smaller than that of the DF. In addition, it is interesting to note that the gap
between both classifiers is larger when the number of training samples is smaller,
thus suggesting that the TLDF is more suitable than DF for small training samples.
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15.6 Conclusions

In this paper we have introduced a novel algorithm to transfer knowledge from
multiple source tasks to a given target task. The result is a classifier that can exploit
the knowledge from similar tasks to improve the predictive performance on the target
task. Two extensions were made to the decision forest framework in order to extract
knowledge from the source tasks. We showed that both extensions are important in
order to obtain smaller classification errors. The major improvements are obtained
when there are only a few training samples.

We have applied the algorithm to two important computer vision problems and
the results show that the proposed algorithm outperforms decision forests (which are
a state-of-the-art method). We believe that transfer learning algorithms will be an
essential component of many computer vision problems.

Acknowledgements We would like to thank Zicheng Liu and Julio Jacobo-Berlles for their feed-
back and assistance.

Appendix A

We prove Theorem 1. First, we prove E(H(SK )) + ∑
y∈Y py log

(
1 + 1−py

Kpy

)
≤

H(P)

By definition of the empirical entropy and linearity of the expectation, we have:

E(H(SK )) = −E

⎡

⎣
∑

y∈Y
p̂SK (y) log( p̂SK (y))

⎤

⎦ = −
∑

y∈Y
E

[
p̂SK (y) log( p̂SK (y))

]

Using the definitions of the empirical histogram p̂SK (y) and the expectation:

−
∑

y∈Y
E

[
p̂SK (y) log( p̂SK (y))

] = −
∑

y∈Y

K∑

j=0

P

(

p̂SK (y) = j

K

)
j

K
log

j

K

Assuming that the samples are iid, then:

= −
∑

y∈Y

K∑

j=0

(
K

j

)

p j
y(1 − py)

K− j j

K
log

j

K

Note that, in this equation, py is the true probability of distribution P . After some
algebraic manipulations, we obtain the following:
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= −
∑

y∈Y
py

K−1∑

j=0

(
K − 1

j

)

p j
y(1 − py)

K−1− j log
j + 1

K

= −
∑

y∈Y
py

K−1∑

j=0

P

(

p̂SK (y) = j

K

)

log
j + 1

K

Applying Jensen’s inequality for the convex function − log(x), we obtain:

≥ −
∑

y∈Y
py log

⎛

⎝
K−1∑

j=0

P

(

p̂SK (y) = j

K

)
j + 1

K

⎞

⎠

= −
∑

y∈Y
py log

(K − 1)py + 1

K

= −
∑

y∈Y
py log

(

py + 1 − py
K

)

= −
∑

y∈Y
py log

(

py

(

1 + 1 − py
Kpy

))

= −
∑

y∈Y
py log py −

∑

y∈Y
py log

(

1 + 1 − py
Kpy

)

= H(P) −
∑

y∈Y
py log

(

1 + 1 − py
Kpy

)

Now we prove H(P) ≤ E(H(SK )).
By definition of the empirical entropy and linearity of the expectation, we have:

E(H(SK )) = −E

⎡

⎣
∑

y∈Y
p̂SK (y) log( p̂SK (y))

⎤

⎦ = −
∑

y∈Y
E

[
p̂SK (y) log( p̂SK (y))

]

Applying Jensen’s inequality for the convex function x log x , we obtain the follow-
ing:

≤ −
∑

y∈Y
E

[
p̂SK (y)

]
log(E

[
p̂SK (y)

]
)

Since E
[
p̂SK (y)

] = py, we have:

= −
∑

y∈Y
py log(py) = H(P)
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Chapter 16
Multimodal Gesture Recognition
via Multiple Hypotheses Rescoring

Vassilis Pitsikalis, Athanasios Katsamanis, Stavros Theodorakis
and Petros Maragos

Abstract We present a new framework for multimodal gesture recognition that is
based on a multiple hypotheses rescoring fusion scheme. We specifically deal with a
demanding Kinect-based multimodal dataset, introduced in a recent gesture recogni-
tion challenge (CHALEARN 2013), where multiple subjects freely perform multi-
modal gestures. We employ multiple modalities, that is, visual cues, such as skeleton
data, color and depth images, as well as audio, and we extract feature descriptors of
the hands’ movement, handshape, and audio spectral properties. Using a common
hidden Markov model framework we build single-stream gesture models based on
which we can generate multiple single stream-based hypotheses for an unknown ges-
ture sequence. Bymultimodally rescoring these hypotheses via constrained decoding
and a weighted combination scheme, we end up with a multimodally-selected best
hypothesis. This is further refined by means of parallel fusion of the monomodal
gesture models applied at a segmental level. In this setup, accurate gesture model-
ing is proven to be critical and is facilitated by an activity detection system that is
also presented. The overall approach achieves 93.3% gesture recognition accuracy in
the CHALEARN Kinect-based multimodal dataset, significantly outperforming all
recently published approaches on the same challenging multimodal gesture recog-
nition task, providing a relative error rate reduction of at least 47.6%.
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Keywords Multimodal gesture recognition · HMMs · Speech recognition ·
Mulimodal fusion · Activity detection

16.1 Introduction

Human communication and interaction takes advantage of multiple sensory inputs in
an impressive way. Despite receiving a significant flow of multimodal signals, espe-
cially in the audio and visual modalities, our cross-modal integration ability enables
us to effectively perceive the world around us. Examples span a great deal of cases.
Cross-modal illusions are indicative of lower perceptual multimodal interaction and
plasticity (Shimojo and Shams 2001): for instance, when watching a video, a sound
is perceived as coming from the speakers lips (the ventriloquism effect) while, in
addition, speech perception may be affected by whether the lips are visible or not
(the McGurk effect).

At a higher level, multimodal integration is also regarded important for language
production and this is how the notion of multimodal gestures can be introduced.
Several authors, as (McNeill 1992), support the position that hand gestures hold a
major role, and together with speech they are considered to have a deep relationship
and to form an integrated system (Bernardis and Gentilucci 2006) by interacting
at multiple linguistic levels. This integration has been recently explored in terms
of communication by means of language comprehension (Kelly et al. 2010). For
instance, speakers pronounce words while executing hand gestures that may have
redundant or complementary nature, and even blind speakers gesture while talking to
blind listeners (Iverson and Goldin-Meadow 1998). From a developmental point of
view, see references in thework of (Bernardis andGentilucci 2006), handmovements
occur in parallel during babbling of 6–8 month children, whereas word comprehen-
sion at the age of 8–10 months goes together with deictic gestures. All the above
suffice to provide indicative evidence from various perspectives that hand gestures
and speech seem to be interwoven.

In the area of human-computer interaction gesture has been gaining increasing
attention (Turk 2014). This is attributed both to recent technological advances, such
as the wide spread of depth sensors, and to groundbreaking research since the famous
“put that there” (Bolt 1980). The natural feeling of gesture interaction can be sig-
nificantly enhanced by the availability of multiple modalities. Static and dynamic
gestures, the form of the hand, as well as speech, all together compose an appealing
set of modalities that offers significant advantages (Oviatt and Cohen 2000).

In this context, we focus on the effective detection and recognition of multi-
modally expressed gestures as performed freely by multiple users. Multimodal ges-
ture recognition (MGR) poses numerous challenging research issues, such as detec-
tion of meaningful information in audio and visual signals, extraction of appropriate
features, building of effective classifiers, and multimodal combination of multiple
information sources (Jaimes and Sebe 2007). The demanding dataset (Escalera et al.
2013b) used in our work has been recently acquired for the needs of the multi-
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modal gesture recognition challenge (Escalera et al. 2013a). It comprises multimodal
cultural-anthropological gestures of everyday life, in spontaneous realizations of both
spoken and hand-gesture articulations by multiple subjects, intermixed with other
random and irrelevant hand, body movements and spoken phrases.

A successful multimodal gesture recognition system is expected to exploit both
speech and computer vision technologies. Speech technologies and automatic speech
recognition (Rabiner and Juang 1993) have a long history of advancements and can be
consideredmaturewhen compared to the research challenges found in corresponding
computer vision tasks. The latter range from low-level tasks that deal with visual
descriptor representations (Li and Allinson 2008), to more difficult ones, such as
recognition of action (Laptev et al. 2008), of facial expressions, handshapes and
gestures, and reach higher-level tasks such as sign language recognition (Agris et al.
2008). However, recently the incorporation of depth enabled sensors has assisted
to partially overcome the burden of detection and tracking, opening the way for
addressing more challenging problems. The study of multiple modalities’ fusion is
one such case, that is linked with subjects discussed above.

Despite the progress seen in either unimodal cases such as the fusion of mul-
tiple speech cues for speech recognition (e.g., Bourlard and Dupont 1997) or the
multimodal case of audio-visual speech (Potamianos et al. 2004; Glotin et al. 2001;
Papandreou et al. 2009), the integration of dissimilar cues in MGR poses several
challenges; even when several cues are excluded such as facial ones, or the eye
gaze. This is due to the complexity of the task that involves several intra-modality
diverse cues, as the 3D hands’ shape and pose. These require different representa-
tions and may occur both sequentially and in parallel, and at different time scales
and/or rates. Most of the existing gesture-based systems have certain limitations,
for instance, either by only allowing a reduced set of symbolic commands based
on simple hand postures or 3D pointing (Jaimes and Sebe 2007), or by consider-
ing single-handed cases in controlled tasks. Such restrictions are indicative of the
task’s difficulty despite already existing work (Sharma et al. 2003) even before the
appearance of depth sensors (Weimer and Ganapathy 1989).

The fusion ofmultiple information sources can be either early, late or intermediate,
that is, either at the data/feature level, or at the stage of decisions after applying
independent unimodal models, or in-between; for further details refer to relative
reviews (Jaimes and Sebe 2007; Maragos et al. 2008). In the case of MGR late
fusion is a typical choice since involvedmodalitiesmay demonstrate synchronization
in several ways (Habets et al. 2011) and possibly at higher linguistic levels. This is
in contrast, for instance, to the case of combining lip movements with speech in
audio-visual speech where early or state-synchronous fusion can be applied, with
synchronization at the phoneme-level.

In this paper, we present a multimodal gesture recognition system that exploits
the color, depth and audio signals captured by a Kinect sensor. The system first
extracts features for the handshape configuration, the movement of the hands and the
speech signal. Based on the extracted features and statistically trained models, single
modality-based hypotheses are then generated for an unknown gesture sequence.
The underlying single-modality modeling scheme is based on gesture-level hidden
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Markovmodels (HMMs), as described inSect. 16.3.1. These are accurately initialized
by means of a model-based activity detection system for each modality, presented in
Sect. 16.3.3. The generated hypotheses are re-evaluated using a statisticalmultimodal
multiple hypotheses fusion scheme, presented in Sect. 16.3.2. The proposed scheme
builds on previouswork onN-best rescoring:N-best sentence hypotheses scoringwas
introduced for the integration of speech and natural language by Chow and Schwartz
(1989) andhas also been employed for the integration of different recognition systems
based on the same modality, e.g., by Ostendorf et al. (1991), or for audio-visual
speech recognition by Glotin et al. (2001). Given the best multimodally-selected
hypothesis, and the implied gesture temporal boundaries in all information streams,
a final segmental parallel fusion step is applied based on parallel HMMs (Vogler and
Metaxas 2001). We show in Sect. 16.5 that the proposed overall MGR framework
outperforms the approaches that participated in the recent demanding multimodal
challenge (Escalera et al. 2013a), as published in the proceedings of the workshop,
by reaching an accuracy of 93.3 and leading to a relative error rate (as Levenshtein
distance) reduction of 47% over the first-ranked team.

16.2 Related Work

Despite earlier work in multimodal gesture recognition, it is considered an open
field, related to speech recognition, computer vision, gesture recognition and human-
computer interaction. As discussed in Sect. 16.1 it is a multilevel problem posing
challenges on audio and visual processing, on multimodal stream modeling and
fusion. Next, we first consider works related to the recent advances on multimodal
recognition, including indicative works evaluated in the same CHALEARN chal-
lenge and recognition task by sharing the exact training/testing protocol and dataset.
Then, we review issues related to basic components and tasks, such as visual detec-
tion and tracking, visual representations, temporal segmentation, statistical modeling
and fusion.

There are several excellent reviews on multimodal interaction either from the
computer vision or human-computer interaction aspect (Jaimes and Sebe 2007; Turk
2014). Since earlier pioneering works (Bolt 1980; Poddar et al. 1998) there has been
an explosion ofworks in the area; this is also due to the introduction of everyday usage
depth sensors (e.g., Ren et al. 2011). Such works span a variety of applications such
as the recent case of gestures and accompanying speech integration for a problem
in geometry (Miki et al. 2014), the integration of nonverbal auditory features with
gestures for agreement recognition (Bousmalis et al. 2011), or within the aspect
of social signal analysis (Ponce-López et al. 2013; Song et al. 2013) propose a
probabilistic extension of first-order logic, integratingmultimodal speech/visual data
for recognizing complex events such as everyday kitchen activities.
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The CHALEARN task is an indicative case of the effort recently placed in the
field: Published approaches ranked in the first places of this gesture challenge,
employ multimodal signals including audio, color, depth and skeletal information;
for learning and recognition one finds approaches ranging from hiddenMarkovmod-
els (HMMs)/Gaussian mixture models (GMMs) to boosting, random forests, neural
networks and support vector machines among others. Next, we refer to indicative
approaches from therein (Escalera et al. 2013b). In Sect. 16.5 we refer to specific
details for the top-ranked approaches that we compare with. Wu et al. (2013), the
first-ranked team, are driven by the audio modality based on end-point detection, to
detect the multimodal gestures; then they combine classifiers by calculating normal-
ized confidence scores. Bayer and Thierry (2013) are also driven by the audio based
on a hand-tuned detection algorithm, then they estimate class probabilities per gesture
segment and compute their weighted average. Nandakumar et al. (2013) are driven
by both audio HMM segmentation, and skeletal points. They discard segments not
detected in both modalities while employing a temporal overlap coefficient to merge
overlappingmodalites’ segments. Finally, they recognize the gesture with the highest
combined score. Chen and Koskela (2013) employ the extreme learning machine, a
class of single-hidden layer feed-forward neural network and apply both early and
late fusion. In a late stage, they use the geometric mean to fuse the classification
outputs. Finally, Neverova et al. (2013) propose a mutliple-scale learning approach
that is applied on both temporal and spatial dimension while employing a recurrent
neural network. Our contribution in the specific area of multimodal gestures recogni-
tion concerns the employment of a late fusion scheme based on multiple hypothesis
rescoring. The proposed system, also employing multimodal activity detectors, all
in a HMM statistical framework, demonstrates improved performance over the rest
of the approaches that took part in the specific CHALEARN task.

From the visual processing aspect the first issue to be faced is hand detection
and tracking. Regardless of the boost offered after the introduction of depth sensors
there are unhandled cases as in the case of low quality video or resolution, in complex
scene backgroundswithmultiple users, and varying illumination conditions. Features
employed are related to skin color, edge information, shape and motion for hand
detection (Argyros and Lourakis 2004; Yang et al. 2002), and learning algorithms
such as boosting (Ong and Bowden 2004). Tracking is based on blobs (Starner et al.
1998; Tanibata et al. 2002; Argyros and Lourakis 2004), hand appearance (Huang
and Jeng 2001), or hand boundaries (Chen et al. 2003; Cui andWeng 2000), whereas
modeling techiques include Kalman filtering (Binh et al. 2005), the condensation
method (Isard andBlake 1998), or full upper body pose tracking (Shotton et al. 2013).
Others directly employ global image features (Bobick and Davis 2001). Finally,
Alon et al. (2009) employ a unified framework that performs spatial segmentation
simultaneously with higher level tasks. In this work, similarly to other authors, see
works presented by Escalera et al. (2013b), we take advantage of the kinect-provided
skeleton tracking.
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Visual feature extraction aims at the representation of the movement, the posi-
tion and the shape of the hands. Representative measurements include the center-of-
gravity of the hand blob (Bauer and Kraiss 2001), motion features (Yang et al. 2002),
as well as features related with the hand’s shape, such as shape moments (Starner
et al. 1998) or sizes and distances within the hand (Vogler and Metaxas 2001). The
contour of the hand is also used for invariant features, such as Fourier descriptors
(Conseil et al. 2007). Handshape representations are extracted via principal com-
ponent analysis (e.g., Du and Piater 2010), or with variants of active shape and
appearance models (Roussos et al. 2013). Other approaches (e.g. Dalal and Triggs
2005 employ general purpose features as the Histogram of Oriented Gradients
(HOG) (Buehler et al. 2009), or the scale invariant feature transform (Lowe 1999).
Li and Allinson (2008) present a review on local features. In this work, we employ
the 3D points of the articulators as extracted from the depth-based skeleton tracking
and the HOG descriptors for the handshape cue.

Temporal detection or segmentation of meaningfull information concerns another
important aspect of our approach. Often the segmentation problem is seen in terms
of gesture spotting, that is, for the detection of the meaningful gestures, as adapted
from the case of speech (Wilcox and Bush 1992) where all non-interesting pat-
terns are modeled by a single filler model. Specifically, Lee and Kim (1999) employ
in similar way an ergodic model termed as threshold model to set adaptive like-
lihood thresholds. Segmentation may be also seen in combination with recogni-
tion as by Alon et al. (2009) or Li and Allinson (2007) in the latter, start and end
points of gestures are determined by zero crossing of likelihoods’ difference between
gesture/non-gestures. There has also been substantial related work in sign language
tasks: Han et al. (2009) explicitly perform segmentation based onmotion discontinu-
ities, Kong and Ranganath (2010) segment trajectories via rule-based segmentation,
whereas others apply systematic segmentation as part of the modeling of sub-sign
components (sub-units) (Bauer and Kraiss 2001) the latter can be enhanced by an
unsupervised segmentation component (Theodorakis et al. 2014) or by employing
linguistic-phonetic information (Pitsikalis et al. 2011), leading to multiple subunit
types. In our case, regardeless of the availability of ground truth temporal gesture
annotations we employ independent monomodal model-based activity detectors that
share a commonHMM framework. These function independently of the ground truth
annotations, and are next exploited at the statistical modeling stage.

Multimodal gesture recognition concerns multiple dynamically varying streams,
requiring the handling of multiple variable time-duration diverse cues. Such require-
ments are met by approaches such as hidden Markov models that have been found to
efficiently model temporal information. The corresponding framework further pro-
vides efficient algorithms, such asBaumWelch andViterbi (Rabiner and Juang 1993),
for evaluation, learning, and decoding. For instance, Nam and Wohn (1996) apply
HMMs in gesture recognition, Lee andKim (1999) in gesture spotting, whereas para-
metric HMMs (Wilson and Bobick 1999) are employed for gestures with systematic
variation. At the same time parallel HMMs (Vogler andMetaxas 2001) accommodate
multiple cues simultaneously. Extensions include conditional random fields (CRFs)
or generalizations (Wang et al. 2006), while non-parametric methods are also present
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inMGR tasks (Celebi et al. 2013; Hernández-Vela et al. 2013). In this paper we build
word-level HMMs, which fit our overall statistical framework, both for audio and
visual modalities, while also employing parallel HMMs for late fusion.

16.3 Proposed Methodology

To better explain the proposed multimodal gesture recognition framework let us first
describe a use case. Multimodal gestures are commonly used in various settings
and cultures (Morris et al. 1979; Kendon 2004). Examples include the “Ok” gesture
expressed by creating a circle using the thumb and forefinger and holding the other
fingers straight and at the same time uttering “Okay” or “Perfect”. Similarly, the
gesture “Come here” involves the generation of the so-called beckoning sign which
in Northern America is made by sticking out and moving repeatedly the index finger
from the clenched palm, facing the gesturer, and uttering a phrase such as “Come
here” or “Here”. We specifically address automatic detection and recognition of a set
of such spontaneously generatedmultimodal gestures evenwhen these are intermixed
with other irrelevant actions, which could be verbal, nonverbal or both. The gesturer
may, for example, be walking in-between the gestures or talking to somebody else.

In this context, we focus only on gestures that are always multimodal, that is, they
are not expressed only verbally or non-verbally, without implying however strictly
synchronous realizations in all modalities or making any related assumptions apart
from expecting consecutive multimodal gestures to be sufficiently well separated
in time, namely a few milliseconds apart in all information streams. Further, no
linguistic assumptions are made regarding the sequence of gestures, namely any
gesture can follow any other.

Let G = {gi }, i = 1, . . . , |G| be the set of multimodal gestures to be possibly
detected and recognized in a recording and let S = {Oi }, i = 1, . . . , |S| be the set of
information streams that are concurrently observed for that purpose. In our exper-
iments, the latter set comprises three streams, namely audio spectral features, the
gesturer’s skeleton and handshape features. Based on these observations the pro-
posed system will generate a hypothesis for the sequence of gesture appearances in
a specific recording/session, like the following:

h = [bm, g1, sil, g5, . . . , bm, sil, g3].

The symbol sil essentially corresponds to inactivity in all modalities while bm rep-
resents any other activity, mono- or multimodal, that does not constitute any of the
target multimodal gestures. This recognized sequence is generated by exploiting
single stream-based gesture models via the proposed fusion algorithm that is sum-
marized in Fig. 16.1 and described in detail in Sect. 16.3.2. For the sake of clarity, the
single stream modeling framework is first presented in Sect. 16.3.1. Performance of
the overall algorithm is found to depend on how accurately the single stream models
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Fig. 16.1 Overview of the proposed multimodal fusion scheme for gesture recognition based on
multiple hypotheses rescoring. Single-stream models are first used to generate possible hypotheses
for the observed gesture sequence. The hypotheses are then rescored by all streams and the best
one is selected. Finally, the observed sequence is segmented at the temporal boundaries suggested
by the selected hypothesis and parallel fusion is applied to classify the resulting segments. Details
are given in Sect. 16.3.2

represent each gesture. This representation accuracy can be significantly improved by
the application of the multimodal activity detection scheme described in Sect. 16.3.3.

16.3.1 Speech, Skeleton and Handshape Modeling

The underlying single-stream modeling scheme is based on Hidden Markov Models
(HMMs) and builds on the keyword-filler paradigm that was originally introduced for
speech (Wilpon et al. 1990;Rose andPaul 1990) in applications like spokendocument
indexing and retrieval (Foote 1999) or speech surveillance (Rose 1992). The problem
of recognizing a limited number of gestures in an observed sequence comprising
other heterogeneous events as well, is seen as a keyword detection problem. The
gestures to be recognized are the keywords and all the rest is ignored. Then, for every
information stream, each gesture gi ∈ G, or, in practice, its projection on that stream,
is modeled by an HMM and there are two separate filler HMMs to represent either
silence/inactivity (sil) or all other possible events (bm) appearing in that stream.
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All these models are basically left-to-right HMMs with Gaussian mixture models
(GMMs) representing the state-dependent observationprobability distributions. They
are initialized by an iterative procedure which sets the model parameters to the
mean and covariance of the features in state-corresponding segments of the training
instances and refines the segment boundaries via the Viterbi algorithm (Young et al.
2002). Training is performed using the Baum-Welch algorithm (Rabiner and Juang
1993), and mixture components are incrementally refined.

While this is the general training procedure followed, two alternative approaches
are investigated, regarding the exact definition and the supervised training process
of all involved models. These are described in the following. We experiment with
both approaches and we show that increased modeling accuracy at the single-stream
level leads to better results overall.

Training Without Activity Detection

Single-stream models can be initialized and trained based on coarse, multimodal
temporal annotations of the gestures. These annotations are common for all streams
and given that there is no absolute synchronization across modalities they may also
include inactivity or other irrelevant events in the beginning or end of the target ges-
tural expression. In this way the gesturemodels already include, by default, inactivity
segments. As a consequence we do not train any separate inactivity (sil) model. At
the same time, the background model (bm) is trained on all training instances of all
the gestures, capturing in this way only generic gesture properties that are expected
to characterize a non-target gesture. The advantage of this approach is that it may
inherently capture cross-modal synchronicity relationships. For example, the waving
hand motion may start before speech in the waving gesture and so there is probably
some silence (or other events) to be expected before the utterance of a multimodal
gesture (e.g. “Bye bye”) which is modeled implicitly.

Training with Activity Detection

On the other hand, training of single-stream models can be performed completely
independently using stream-specific temporal boundaries of the target expressions.
In this direction, we applied an activity detection scheme, described in detail in
Sect. 16.3.3. Based on that, it is possible to obtain tighter stream-specific boundaries
for each gesture. Gesture models are now trained using these tighter boundaries,
the sil model is trained on segments of inactivity (different for each modality) and
the bm model is trained on segments of activity but outside the target areas. In this
case, single-stream gesture models can be more accurate but any possible evidence
regarding synchronicity across modalities is lost.
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Algorithm 1Multimodal Scoring and Resorting of Hypotheses
% N-best list rescoring
for all hypotheses do

% Create a constrained grammar
keep the sequence of gestures fixed
allow introduction/deletion of sil and bm occurences between gestures
for all modalities do

by applying the constrained grammar and Viterbi decoding:
1) find the best state sequence given the observations
2) save corresponding score and temporal boundaries

% Late fusion to rescore hypotheses
final hypothesis score is a weighted sum of modality-based scores

the best hypothesis of the 1st-pass is the one with the maximum score

16.3.2 Multimodal Fusion of Speech, Skeleton
and Handshape

Using the single-stream gesture models (see Sect. 16.3.1) and a gesture-loop gram-
mar as shown in Fig. 16.2a we initially generate a list of N-best possible hypotheses
for the unknown gesture sequence for each stream. Specifically, the Viterbi algo-
rithm (Rabiner and Juang 1993) is used to directly estimate the best stream-based
possible hypothesis ĥm for the unknown gesture sequence as follows:

ĥm = argmaxhm∈G log P(Om |hm,λm), m = 1, . . . , |S|

where Om is the observation1 sequence for modality m, λm is the corresponding set
of models and G is the set of alternative hypotheses allowed by the gesture loop
grammar. Instead of keeping just the best scoring sequence we apply essentially a
variation of the Viterbi algorithm, namely the lattice N-best algorithm (Shwartz and
Austin 1991), that apart from storing just the single best gesture at each node it also
records additional best-scoring gestures together with their scores. Based on these
records, a list of N-best hypotheses for the entire recording and for each modality
can finally be estimated.

TheN-best lists are generated independently for each stream and the final superset
of themultimodally generated hypothesesmay containmultiple instances of the same
gesture sequence. By removing possible duplicates we end up with L hypotheses
forming the set H = {h1, . . . ,hL}; hi is a gesture sequence (possibly including sil
and bm occurences as well). Our goal is to sort this set and identify the most likely
hypothesis this time exploiting all modalities together.

1For the case of video data an observation corresponds to a single image frame; for the case of
audio modality it corresponds to a 25 msec window.
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Fig. 16.2 Finite-state-
automaton (FSA)
representations of finite state
grammars: a an example
gesture-loop grammar with 3
gestures plus inactivity and
background labels. The
“eps” transition represents an
ε transition of the FSA, b an
example hypothesis, c a
hypothesis-dependent
grammar allowing varying
sil and bm occurences
between gestures
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Multimodal Scoring and Resorting of Hypotheses

Algorithm 2 Segmental Parallel Fusion
% Parallel scoring
for all modalities do segment observations based on given temporal boundaries

for all resulting segments do
estimate a score for each gesture given the segment observations
temporally align modality segments
for all aligned segments do

estimate weighted sum of modality-based scores for all gestures
select the best-scoring gesture (sil and bm included)

In this direction, and as summarized in Algorithm 1, we estimate a combined score
for each possible gesture sequence as a weighted sum of modality-based scores:

vi =
∑

m∈S

wmv
s
m,i , i = 1 . . . L , (16.1)

where the weights wm are determined experimentally in a left-out validation set of
multimodal recordings. The validation set is distinct from the final evaluation (test)
set; more details on the selection of weights are provided in Sect. 16.5. The modality-
based scores vs

m,i are standardized versions2 of vm,i which are estimated by means
of Viterbi decoding as follows:

2That is, transformed to have zero mean and a standard deviation of one.
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vm,i = max
h∈Ghi

log P(Om |h,λm), i = 1, . . . , L , m = 1, . . . , |S| (16.2)

whereOm is the observation sequence formodalitym andλm is the corresponding set
of models. This actually solves a constrained recognition problem in which accept-
able gesture sequences need to follow a specific hypothesis-dependent finite state
grammar Ghi . It is required that the search space of possible state sequences only
includes sequences corresponding to the hypothesis hi plus possible variations by
keeping the appearances of target gestures unaltered and only allow sil and bm labels
to be inserted, deleted and substitutedwith eachother.An example of a hypothesis and
the corresponding grammar is shown in Fig. 16.2b, c. In this way, the scoring scheme
accounts for inactivity or non-targetted activity that is not necessarily multimodal,
e.g., the gesturer is standing still but speaking or is walking silently. This is shown to
lead to additional improvements when compared to a simple forced-alignment based
approach.

It should be mentioned that hypothesis scoring via (16.2) can be skipped for the
modalities based on which the particular hypothesis was originally generated. These
scores are already available from the initial N-best list estimation described earlier.

The best hypothesis at this stage is the one with the maximum combined score
as estimated by (16.1). Together with the corresponding temporal boundaries of the
included gesture occurences, which can be different for the involved modalities, this
hypothesized gesture sequence is passed on to the segmental parallel scoring stage.
At this last stage, only local refinements are allowed by exploiting possible benefits
of a segmental classification process.

Segmental Parallel Fusion

The segmental parallel fusion algorithm is summarized in Algorithm 2. Herein we
exploit the modality-specific time boundaries for the most likely gesture sequence
determined in the previous step, to reduce the recognition problem into a segmental
classification one. First, we segment the audio, skeleton and handshape observation
streams employing these boundaries. Given that in-between gestures, i.e., for sil or
bm parts, there may not be one-to-one correspondence between segments of different
observation streams these segments are first alignedwith each other acrossmodalities
by performing an optimal symbolic stringmatch using dynamic programming. Then,
for every aligned segment t and each information stream m we compute the log
probability:

L Lt
m, j = max

q∈Q
log P(Ot

m,q|λm, j ), j = 1, . . . , |G| + 2,

where λm, j are the parameters of the model for the gesture g j ∈ G ∪ {sil, bm} and
the stream m ∈ S; q is a possible state sequence. These segmental scores are linearly
combined accross modalities to get a multimodal gestural score (left hand side) for
each segment:

L Lt
j =

∑

m∈S

w′
m L Lt

m, j , (16.3)
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where w′
m , is the stream-weight for modality m set to optimize recognition per-

formance in a validation dataset.3 Finally, the gesture with the highest score is the
recognized one for each segment t . This final stage is expected to give additional
improvements and correct false alarms by seeking loosely overlapping multimodal
evidence in support of each hypothesized gesture.

16.3.3 Multimodal Activity Detection

To achieve activity detection for each one of visual and audio modalities, we follow
a common model-based framework. This is based on two complementary models of
“activity” and “non-activity”. In practice, thesemodels, have different interpretations
for the different modalities. This is first due to the nature of each modality, and
second due to challenging data acquisition conditions. For the case of speech, the
non-activity model may correspond to noisy conditions, e.g., keyboard typing or fan
noise. For the case of the visual modality, the non-activity model refers to the rest
cases in-between the articulation of gestures. However, these rests are not strictly
defined, since the subject may not always perform a full rest and/or the hands may
not stop moving. All cases of activity, in both the audio and the skeleton streams,
such as out-of-vocabulary multimodal gestures and other spontaneous gestures are
thought to be represented by the activity model. Each modality’s activity detector is
initialized by a modality-specific front-end, as described in the following.

For the case of speech, activity and non-activity models are initialized on activity
and non-activity segments correspondingly. These are determined by taking advan-
tage for initialization of a Voice Activity Detection (VAD) method recently proposed
byTan et al. (2010). Thismethod is based on likelihood ratio tests (LRTs) and by treat-
ing the LRT’s for the voice/unvoiced frames differently it gives improved results than
conventional LRT-based and standard VADs. The activity and non-activity HMM
models are further trained using an iterative procedure employing the Baum-Welch
algorithm, better known as embedded re-estimation (Young et al. 2002). The final
boundaries of the speech activity and non-activity segments are determined by appli-
cation of the Viterbi algorithm.

For the visual modality, the goal is to detect activity concerning the dynamic
gesture movements versus the rest cases. For this purpose, we first initialize our
non-activity models on rest position segments which are determined on a recording
basis. For these segments skeletonmovement is characterized by low velocity and the
skeleton is close to the rest position xr. To identify non-active segments, we need to
estimate (a) the skeleton rest position (b) the hands velocity, and (c) the distance of the
skeleton to that position. Hands’ velocity is computed as V (x) = ‖ẋ‖ where x(t) is
the 3Dhands’ centroid coordinate vector and t is time.The rest position is estimated as

3The w′
m are different from the weights in (16.1). Their selection is similarly based on a separate

validation set that is distinct from the final evaluation set; more details on the selection of weights
are provided in Sect. 16.5.
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themedian skeleton position of all the segments for which hands’ velocity V is below
a certain threshold Vtr = 0.2 · V̄ , where V̄ is the average velocity of all segments.
The distance of the skeleton to the rest position is determined as: Dr (x) = ‖x − xr‖.
Initial non-activity segments tna are the ones for which the following two criteria
hold, namely tna = {t : Dr (x) < Dtr and V (x) < Vtr }. Taking as input these tna

segments we train a non-activity HMM model while an activity model is trained on
all remaining segments using the skeleton feature vector as described in Sect. 16.5.1.
Further, similar to the case of speech we re-train the HMMmodels using embedded
re-estimation. The final boundaries of the visual activity and non-activity segments
are determined by application of the Viterbi algorithm.

In Fig. 16.3, we illustrate an example of the activity detection for both audio and
visualmodalities for one utterance. In the first row,we depict the velocity of the hands
(V ), their distance with respect to the rest position (Dr ) and the initial estimation of
gesture non-activity (tna) segments. We observe that in tna segments both V and Dr

Fig. 16.3 Activity detection example for both audio and visual modalities for one utterance. First
row the velocity of the hands (V ), their distance with respect to the rest position (Dr ) and the
resulting initial estimation of gesture non-activity segments (tna). Second row the estimated gesture
activity depicted on the actual video images. Third row: The speech signal accompanied with the
initial VAD, the VAD+HMM and the gesture-level temporal boundaries included in the gesture
dataset (ground truth)
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are lower than the predefined thresholds (Vtr = 0.6, Dtr = 0.006)4 and correspond
to non-activity. In the second row, we illustrate the actual video frames images.
These are marked with the tracking of both hands and accompanied with the final
model-based gesture activity detection. In the bottom, we show the speech signal,
with the initial VAD boundaries, the refined HMM-based ones (VAD+HMM) and
the gesture-level boundaries included in the dataset (ground truth). As observed the
refined detection (VAD+HMM) is tighter and more precise compared to the initial
VAD and the dataset annotations.

To sumup, after applying the activity detectors for both audio andvisualmodalities
we merge the corresponding outputs with the gesture-level dataset annotations in
order to obtain refined stream-specific boundaries that align to the actual activities.
In this way, we compensate for the fact that the dataset annotations may contain
non-activity at the start/end of each gesture.

16.4 Multimodal Gestures’ Dataset

For our experiments we employ the ChaLearn multimodal gesture challenge dataset,
introduced byEscalera et al. (2013b).Other similar datasets are described byRuffieux
et al. (2013, 2014). This dataset focuses onmultiple instance, user independent learn-
ing of gestures frommulti-modal data. It provides via Kinect RGB and depth images
of face andbody, usermasks, skeleton information, joint orientation aswell as concur-
rently recorded audio including the speech utterance accompanying/describing the
gesture (see Fig. 16.4). The vocabulary contains 20 Italian cultural-anthropological
gestures. The dataset contains three separate sets, namely for development, valida-
tion and final evaluation, including 39 users and 13,858 gesture-word instances in
total. All instances have been manually transcribed and loosely end-pointed. The
corresponding temporal boundaries are also provided; these temporal boundaries are
employed during the training phase of our system.

There are several issues that render multimodal gesture recognition in this dataset
quite challenging as described by Escalera et al. (2013b), such as the recording
of continuous sequences, the presence of distracter gestures, the relatively large
number of categories, the length of the gesture sequences, and the variety of users.
Further, there is no single way to perform the included cultural gestures, e.g., “vieni
qui” is performed with repeated movements of the hand towards the user, with a
variable number of repetitions (see Fig. 16.5). Similarly, single-handed gestures may
be performed with either the left or right hand. Finally, variations in background,
lighting and resolution, occluded body parts and spoken dialects have also been
introduced.

4These parameters are set after experimentation in a single video of the validation set, that was
annotated in terms of activity.
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(a) RGB (b) Depth (c) Mask (d) Skeleton

Fig. 16.4 Sample cues of the multimodal gesture challenge 2013 dataset

Fig. 16.5 a, bArm position variation (low, high) for gesture ‘vieni qui’; c, d Left and right handed
instances of ‘vattene’

16.5 Experiments

We first provide information on the multimodal statistical modeling that includes
feature extraction and training. Then, we discuss the involved fusion parameters, the
evaluation procedure, and finally, present results and comparisons.

16.5.1 Parameters, Evaluation, Structure

Herein, we describe first the employed feature representations, and training para-
meters for each modality, such as number of states and mixture components: as
discussed in Sect. 16.3.1 we statistically train separate gesture HMMs per each infor-
mation stream: skeleton, handshape and audio. Next, we describe the stream weight
selection procedure, note the best stream weights, and present indicative results of
the procedure. After presenting the evaluationmetrics, we finally describe the overall
rational of the experimental structure.
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Multimodal Features, HMM and Fusion Parameters

The features employed for the skeleton cue include: the hands’ and elbows’ 3D
position, the hands 3D velocity, the 3D direction of the hands’ movement, and the 3D
distance of hands’ centroids. For the handshape’s representationwe employ theHOG
feature descriptors. These are extracted on both hands’ segmented images for both
RGB and depth cues. We segment the hands by performing a threshold-based depth
segmentation employing the hand’s tracking information. For the audio modality we
intend to efficiently capture the spectral properties of speech signals by estimating the
Mel Frequency Cepstral Coefficients (MFCCs). Our frontend generates 39 acoustic
features every 10 msec. Each feature vector comprises 13 MFCCs along with their
first and second derivatives. All the above feature descriptors are well known in the
related literature. The specific selections should not affect the conclusions as related
to the main fusion contributions, since these build on the level of the likelihoods.
Such an example would be the employment of other descriptors as for instance in the
case of visual (e.g., Li andAllinson 2008) or speech related features (e.g., Hermansky
1990).

For all modalities, we train separate gesture, sil and bm models as described in
Sect. 16.3.1. These models are trained either using the dataset annotations or based
on the input provided by the activity detectors. The number of states, gaussian com-
ponents per state, stream weights and the word insertion penalty in all modalities are
determined experimentally based on the recognition performance on the validation
set.5 For skeleton, we train left-right HMMs with 12 states and 2 Gaussians per state.
For handshape, the models correspondingly have 8 states and 3 Gaussians per state
while speech gesture models have 22 states and 10 Gaussians per state.

The training time is on average 1min per skeleton and handshape model and
90min per audio model. The decoding time is on average 4xRT (RT refers to real-
time).6 A significant part of the decoding time is due to the generation of the N-best
lists of hypotheses. In our experiments N is chosen to be equal to 200. We further
observed that the audio-based hypotheses were always ranked higher than those from
the other single-stream models. This motivated us to include only these hypotheses
in the set we considered for rescoring.

Stream Weight Configuration

Herein, we describe the experimental procedure for the selection of the stream
weights wm, w

′
m,m ∈ S of (16.1) and (16.3), for the components of multimodal

hypothesis rescoring (MHS) and segmental parallel fusion (SPF). The final weight
value selection is based on the optimization of recognition performance in the vali-
dation dataset which is completely distinct from the final evaluation (test) dataset.

Specifically, the wm’s are first selected from a set of alternative combinations to
optimize gesture accuracy at the output of the MHS component. The SPF weights

5Parameter ranges in the experiments for each modality are as follows. Audio: States 10–28, Gaus-
sians: 2–32; Skeleton/Handshape: States 7–15, Gaussians: 2–10.
6For the measurements we employed an AMD Opteron(tm) Processor 6386 at 2.80 GHz with 32
GB RAM.
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Fig. 16.6 Gesture recognition accuracy of the Multiple hypothesis rescoring component for var-
ious weight-pair combinations. From left to right, the handshape-audio, skeleton-audio, skeleton-
handshape weight pairs are varied. The remaining weight is set to its optimal value, namely 63.6
for skeleton, 9.1 for handshape and 27.3 for audio

w′
m’s are subsequently set to optimize the performance of the overall framework.

The best weight combination for the multimodal hypothesis rescoring component
is found to be w∗

SK ,H S,AU = [63.6, 9.1, 27.3], where SK, HS and AU correspond to
skeleton, handshape and audio respectively.7 This leads to the best possible accuracy
ofMHS in the validation set, namely 95.84%. Correspondingly, the best combination
of weights for the segmental fusion component is [0.6, 0.6, 98.8]. Overall, the best
achieved gesture recognition accuracy is 96.76% in the validation set.

In Figs. 16.6a–c we show the recognition accuracy of the MHS component for
the various combinations of the wm’s. For visualization purposes we show accuracy
when the weights vary in pairs and the remaining weight is set to its optimal value.
For example, Fig. 16.6a shows recognition accuracy for various combinations of
handshape and audio weights when the skeleton weight is equal to 63.6. Overall, we
should comment that the skeleton’s contribution appears to be the most significant in
the rescoring phase. This is of course a first interpretation, since the list of original
hypotheses is already audio-based only, and the audio contribution cannot be directly
inferred. As a consequence these results should be seen under this viewpoint. In any
case, given that audio-based recognition leads to 94.1% recognition accuracy (in the
validation set) it appears that both skeleton and handshape contribute in properly
reranking the hypotheses and improve performance (which is again confirmed by
the results in the test set presented in the following sections).

Evaluation

The presented evaluation metrics include the Levensthein distance (LD)8 which is
employed in the CHALEARN publications (Escalera et al. 2013b) and the gesture
recognition accuracy. The Levenshtein distance L D(R, T ), also known as “edit dis-
tance”, is the minimum number of edit operations that one has to perform to go
from symbol sequence R to T , or vice versa; edit operations include substitutions

7The weights take values in [0, 1] while their sum across the modalities adds to one; these values
are then scaled by 100 for the sake of numerical presentation. For thew stream weights we sampled
the [0, 1] with 12 samples for each modality, resulting to 1728 combinations. For the w′ case, we
sampled the [0, 1] space by employing 5, 5 and 21 samples for the gesture, handshape and speech
modalities respectively, resulting on 525 combinations.
8Note that the Levensthein distance takes values in [0, 1] and is equivalent to the word error rate.
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Table 16.1 Single modalities recognition accuracy %, including Audio (Aud.), Skeleton (Skel.),
and Handshape (HS). AD refers to activity detection

AD Single Modalities
Aud. Skel. HS

✗ 78.4 47.6 13.3

� 87.2 49.1 20.2

(S), insertions (I), or deletions (D). The overall score is the sum of the Levenshtein
distances for all instances compared to the corresponding ground truth instances,
divided by the total number of gestures. At the same time we report the standard
word recognition accuracy Acc = 1 − L D = N−S−D−I

N , where N is the total num-
ber of instances of words.

Finally, we emphasize that all reported results have been generated by strictly
following the original CHALEARN challenge protocol which means that they are
directly comparable with the results reported by the challenge organizers and other
participating teams (Escalera et al. 2013b; Wu et al. 2013; Bayer and Thierry 2013).

Structure of Experiments

For the evaluation of the proposed approach we examine the following experimental
aspects:

1. First, we present results on the performance of the single modality results; for
these the only parameter that we switch on/off is the activity detection, which
can be applied on each separate modality; see Sect. 16.5.2 and Table16.1.

2. Second, we examine the performance in the multimodal cases. This main axis of
experiments has as its main reference Table16.2 and concerns several aspects, as
follows:

(a) Focus on the basic components of the proposed approach.
(b) Focus on two streammodality combinations; this serves for both the analysis

of our approach, but also provides a more focused comparison with other
methods that employ the specific pairs of modalities.

(c) Finally, we provide several fusion based variation experiments, as compet-
itive approaches.

3. Third, we show an indicative example from the actual data, together with its
decoding results after applying the proposed approach, compared to the applica-
tion of a couple of subcomponents.

4. Fourth, we specifically focus on comparisons within the gesture challenge com-
petition. From the list of 17 teams/methods that submitted their results (54 teams
participated in total) we review the top-ranked ones, and list their results for
comparison. Moreover, we describe the components that each of the top-ranked
participants employ, providing also focused comparisons to both our complete
approach, and specific cases that match the employed modalities of the other
methods. Some cases of our competitive variations can be seen as resembling
cases of the other teams’ approaches.
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16.5.2 Recognition Results: Single Modalities

In Table16.1 we show the recognition results for each independent modality with and
without the employment of activity detection (AD). Note that AD is employed for
model training, as described in Sects. 16.3.1, 16.3.3, for each modality. In both cases
the audio appears to be the dominant modality in terms of recognition performance.
For all modalities, the model-based integration of the activity detectors during train-
ing appears to be crucial: they lead to refined temporal boundaries that better align
to the actual single-stream activity. In this way we compensate for the fact that the
dataset annotations may contain non-activity at the start/end of a gesture. By tighten-
ing these boundaries we achieve to model in more detail gesture articulation leading
to more robustly trained HMMs. This is also projected on the recognition experi-
ments: In all modalities the recognition performance increases, by 8.8%, 1.5% and
6.9% in absolute for the audio, the skeleton and the handshape streams respectively.

16.5.3 Recognition Results: Multimodal Fusion

For the evaluation of the proposed fusion scheme we focus on several of its basic
components. For these we refer to the experiments with codes D1-3,9 and E1-3 as
shown in Table16.2. These experiments correspond to the employment of all three
modalities, while altering a single component each time, wherever this makes sense.

Main Components and Comparisons

First comes theMHS component (seeD1-3), which rescores themultimodal hypothe-
ses list employing all three information streams and linearly combining their scores.
Comparing with Table16.1 the MHS component results in improved performance
compared to the monomodal cases, by leading to 38% relative Levenshtein distance
reduction (LDR)10 on average. This improvement is statistically significant, when
employing the McNemar’s test (Gillick and Cox 1989), with p < 0.001.11

Further, the employment of the activity detectors for eachmodality during training
also affects the recognition performance after employing the MHS component, lead-
ing to a relative LDR of 38% which is statistically significant (p < 0.001); compare
D1-D2, E1-E2.

For theN-bestmultimodal hypothesis rescoringwe can either enforce eachmodal-
ity to rescore the exact hypothesis (forced alignment), or allow certain degrees of
freedom by employing a specific grammar (GRAM) which allows insertions or
deletions of either bm or sil models: By use of the aforementioned grammar during

9D1-3 notation refers to D1, D2 and D3 cases.
10All relative percentages, unless stated otherwise, refer to relative LD reduction (LDR). LDR is
equivalent to the known relative word error rate reduction.
11Statistical significance tests are computed on the raw recognition values and not on the relative
improvement scores.



488 V. Pitsikalis et al.

Fig. 16.7 A gesture sequence decoding example. The audio signal is plotted in the top row the
and visual modalities (second row) are illustrated via a sequence of images for a gesture sequence.
Ground truth transcriptions are denoted by “REF”. Decoding results are given for the single-audio
modality (AUDIO) and the proposed fusion scheme employing or not the activity detection (AD) or
the grammar (GRAM). In nAD-nGRAMwedo not employ neitherADnorGRAMduring rescoring,
in AD-nGRAM we only employ AD but not GRAM and in AD-GRAM both AD and GRAM are
employed. Errors are highlighted as: deletions, in blue color, and insertions in green. A background
model (bm) models the out-of-vocabulary (OOV) gestures

rescoring (see D2–D3, E2–E3) we get an additional 14% of relative Levenshtein
distance reduction, which is statistically significant (p < 0.001). This is due to the
fact that the specific grammar accounts for activity or non-activity that does not
necessarily occur simultaneously across all different modalities.

In addition, by employing the SPF component (E1-3) we further refine the gesture
sequence hypothesis by fusing the single-stream models at the segmental level. By
comparing corresponding pairs: D1-E1,D2-E2 andD3-E3,we observe that the appli-
cation of the SPF component increases the recognition performance only slightly;
this increase was not found to be statistically significant. The best recognition per-
formance, that is, 93.33%, is obtained after employing the SPF component on top of
MHS, together with AD and GRAM (see E3).

On the side, we additionally provide results that account for pairs of modalities;
see s2-B1 (AU+SK) and s2-B2 (AU+HS), and for the case of the MHS component.
These two stream pair results, are comparable with the corresponding 3-stream case
of D1 (plus D2-3 for additional components). The rest of the results and pairs are
discussed in Sect. 16.5.4, where comparisons with other approaches are presented.

Example from the Results

A decoding example is shown in Fig. 16.7. Herein we illustrate both audio and visual
modalities for a word sequence accompanied with the ground truth gesture-level
transcriptions (row: “REF”). In addition we show the decoding output employing
the single-audio modality (AUDIO) and the proposed fusion scheme employing or
not two of its basic components: activity detection (AD) and the above mentioned
grammar (GRAM). In the row denoted by nAD-nGRAM we do not employ either
AD or GRAM during rescoring, in the row AD-nGRAM we only employ AD but
not G and in AD-GRAM both AD and grammar are used. As we observe there are
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several cases where the subject articulates an out-of-vocabulary (OOV) gesture. This
indicates the difficulty of the task as these cases should be ignored. By focusing on
the recognized word sequence that employs the single-audio modality we notice two
insertions (‘PREDERE’ and ‘FAME’). When employing either the nAD-nGRAM
or AD-nGRAM the above word insertions are corrected as the visual modality is
integrated and helps identifying that these segments correspond to OOV gestures.
Finally, both nAD-nGRAM and AD-nGRAM lead to errors which our final pro-
posed approach manages to deal with: nAD-nGRAM causes insertion of “OK”,
AD-nGRAM of a word deletion “BM”. On the contrary, the proposed approach
recognizes the whole sentence correctly.

16.5.4 Comparisons

Next, we first briefly describe the main components of the top-ranked approaches in
CHALEARN. This description aims at allowing for focused and fair comparisons
between (1) the first-ranked approaches, and (2) variations of our approach.

CHALEARN First-Ranked Approaches

The first-ranked team (IV AMM) (Wu et al. 2013; Escalera et al. 2013b) uses a
feature vector based on audio and skeletal information. A simple time-domain end-
point detection algorithm based on joint coordinates is applied to segment contin-
uous data sequences into candidate gesture intervals. A HMM is trained with 39-
dimensionMFCC features and generates confidence scores for each gesture category.
ADynamic TimeWarping based skeletal feature classifier is applied to provide com-
plementary information. The confidence scores generated by the two classifiers are
firstly normalized and then combined to produce a weighted sum for late fusion. A
single threshold approach is employed to classify meaningful gesture intervals from
meaningless intervals caused by false detection of speech intervals.

The second-ranked team (WWEIGHT) (Escalera et al. 2013b) combines audio and
skeletal information, using both joint spatial distribution and joint orientation. They
first search for regions of time with high audio-energy to define time windows that
potentially contained a gesture. Feature vectors are defined using a log-spaced audio
spectrogram and the joint positions and orientations above the hips. At each time
sample the method subtracts the average 3D position of the left and right shoulders
from each 3D joint position. Data is down-sampled onto a 5Hz grid. There were
1593 features total (9 time samples × 177 features per time sample). Since some of
the detected windows contain distracter gestures, an extra 21st label is introduced,
defining the “not in the dictionary” gesture category. For the training of the models
they employed an ensemble of randomized decision trees, referred to as random
forests (RF), (Escalera et al. 2013b), and a k-nearest neighbor (KNN) model. The
posteriors from these models are averaged with equal weight. Finally, a heuristic is
used (12 gestures maximum, no repeats) to convert posteriors to a prediction for the
sequence of gestures.
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Table 16.3 Our approach in comparison with the first 5 places of the Challenge. We include
recognition accuracy (Acc.) %, Levenshtein distance (Lev. Dist., see also text) and relative Leven-
shtein distance reduction (LDR) (equivalent to the known relative error reduction) compared to the
proposed approach (Our)

Rank Approach Lev. Dist. Acc.% LDR

– Our 0.0667 93.33 –

1 iva.mm (Wu
et al., 2013)

0.12756 87.244 +47.6

2 wweight 0.15387 84.613 +56.6

3 E.T. (Bayer and
Thierry, 2013)

0.17105 82.895 +60.9

4 MmM 0.17215 82.785 +61.2

5 pptk 0.17325 82.675 +61.4

The third-ranked team (ET) (Bayer and Thierry 2013; Escalera et al. 2013b)
combine the output decisions of two approaches. The features considered are based
on the skeleton information and the audio signal. First, they look for gesture intervals
(unsupervised) using the audio and extract features from these intervals (MFCC).
Using these features, they train a randomforest (RF) and agradient boosting classifier.
The second approach uses simple statistics (median, var, min, max) on the first 40
frames for each gesture to build the training samples. The prediction phase uses a
sliding window. The authors late fuse the two models by creating a weighted average
of the outputs.

Comparisons with Other Approaches and Variations

Herein we compare the recognition results of our proposed multimodal recognition
and multiple hypotheses fusion framework with other approaches (Escalera et al.
2013b) which have been evaluated in the exact recognition task.12

First, let us briefly present an overview of the results (Table16.3): Among the
numerous groups and approaches that participated we list the first four ones as well
as the one we submitted during the challenge, that is “pptk”. As shown in Table16.3
the proposed approach leads to superior performance with relative LD reduction of
at least 47.6%. We note that our updated approach compared to the one submitted
during the challenge leads to an improvement of 61.4%,measured in terms of relative
LD reduction (LDR). Compared to the approach we submitted during the challenge,
the currently proposed scheme: (1) employs activity detection to train single-stream
models, (2) applies the SPF on top of the MHS step, (3) introduces the grammar-
constrained decoding during hypothesis rescoring and further (4) incorporates both
validation and training data for the final estimation of the model parameters.

12In all results presented we follow the same blind testing rules that hold in the challenge, in which
we have participated (pptk team). In Table16.3 we include for common reference the Levenshtein
distance (LD) which was also used in the challenge results (Escalera et al. 2013b).
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Now let us zoom into the details of the comparisons by viewing once again
Table16.2. In the first three rows, with side label “Others” (O1-3), we summarize the
main components of each of the top-ranked approaches. These employ only the two
modalities (SK+AU). The experiments with pairs of modalities s2-A1, s2-B1 can be
directly comparedwithO1-3, since they all take advantage of the SK+AUmodalities.
Their differential concerns (1) the segmentation component, which is explicit for the
O1-3; note that the segmentation of s2-A1 is implicit, as a by-product of the HMM
recognition. (2) The modeling and recognition/classification component. (3) The
fusion component. At the same time, s2-A1/s2-B1 refer to the employment of the
proposed components, that is, either SPForMHS.Specifically, s2-A1and s2-B1 leads
to at least 5 and 43.5% relative LD reduction respectively. Of course our complete
system (see rest of variations) leads to even higher improvements.

Other comparisons to our proposed approach and variations are provided after
comparing with the SPF-only case, by taking out the contribution of the rescoring
component. In the case of allmodalities, 3 streamcase, (seeC1) this is compared to the
corresponding matching experiment E2; this (E2) only adds the MHS resulting to an
improvement of 32.9% LDR. The GRAM component offers an improvement of 42%
LDR (C1 vs. E3). Reduced versions compared to C1, with two-stream combinations
can be found by comparing C1 with s2-A1 or s2-A2.

16.6 Conclusions

We have presented a complete framework for multimodal gesture recognition based
on multiple hypotheses fusion, with application in automatic recognition of multi-
modal gestures. In this we exploit multiple cues in the visual and audio modalities,
namelymovement, hands’ shape and speech.After employing state-of-the-art feature
respresentations, each modality is treated under a common statistical HMM frame-
work: this includes model-based multimodal activity detection, HMM training of
gesture-words, and information fusion. Fusion is performed by generating multiple
unimodal hypotheses, which after constrained rescoring and weighted combination
result in the multimodally best hypothesis. Then, segmental parallel fusion across all
modalities refines the final result. On the way, we employ gesture/speech background
(bm) and silence (sil)models, which are initialized during the activity detection stage.
This procedure allows us to train our HMMs more accurately by getting tighter tem-
poral segmentation boundaries.

The recognition task we dealt with contains parallel gestures and spoken words,
articulated freely, containing multiple sources of multimodal variability, and with on
purpose false alarms. The overall framework is evaluated in a demandingmultimodal
dataset (Escalera et al. 2013b) achieving 93.3% word accuracy. The results are com-
pared with several approaches that participated in the related challenge (Escalera
et al. 2013a), under the same blind testing conditions, leading to at least 47.6% rela-
tive Levenshtein distance reduction (equivalent to relative word error rate reduction)
compared to the first-ranked team (Wu et al. 2013).
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The power of the proposed fusion scheme stems from both its uniform across
modalities probabilistic nature and its late character together with themultiple passes
of monomodal decoding, fusion of the hypotheses, and then parallel fusion. Apart
from the experimental evidence, these features render it appealing for extensions and
exploitation in multiple directions: First, the method itself can be advanced by gener-
alizing the approach towards an iterative fusion scheme, that gives feedback back to
the training/refinement stage of the statistical models. Moreover in the current gen-
erative framework, we ignore statistical dependencies across cues/modalities. These
could further be examined. Second, it can be advanced by incorporating in the com-
putational modeling specific gesture theories, e.g., from linguistics, for the gesture
per se or in its multimodal version; taxonomies of gestures, e.g., that describe deictic,
motor, iconic and metaphoric cases. Such varieties of cases can be systematically
studied with respect to their role. This could be achieved via automatic processing of
multitudes of existing datasets, which elaboratemore complex speech-gesture issues,
leading to valuable analysis results. Then, apart from the linguistic role of gesture, its
relation to other aspects, such as, psychological, behavioral socio-cultural, or com-
municative, to name but a few, could further be exploited. To conclude, given the
potential of the proposed approach, the acute interdisciplinary interest in multimodal
gesture calls for further exploration and advancements.

Acknowledgements This research work was supported by the European Union under the project
“MOBOT” with grant FP7-ICT-2011-9 2.1 - 600796. The authors want to gratefully thank
G. Pavlakos for his contribution in previous, earlier stages, of this work. This work was done
while V. Pitsikalis and S. Theodorakis were both with the National Technical University of Athens;
they are now with deeplab.ai, Athens, GR.

References

U. Agris, J. Zieren, U. Canzler, B. Bauer, K.-F. Kraiss, Recent developments in visual sign language
recognition. Univers. Access Inf. Soc. 6, 323–362 (2008)

J. Alon, V. Athitsos, O. Yuan, S. Sclaroff, A unified framework for gesture recognition and spa-
tiotemporal gesture segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1685–1699
(2009)

A.Argyros,M. Lourakis, Real time tracking ofmultiple skin-colored objectswith a possiblymoving
camera, in Proceedings of the European Conference on Computer Vision, 2004

B. Bauer, K.F. Kraiss, Towards an automatic sign language recognition system using subunits. in
Proceedings of International Gesture Workshop, vol. 2298, 2001, pp. 64–75

I. Bayer, S. Thierry, A multi modal approach to gesture recognition from audio and video data, in
Proceedings of the 15th ACM International Conference on Multimodal Interaction (ACM, 2013),
pp. 461–466

P. Bernardis, M. Gentilucci, Speech and gesture share the same communication system. Neuropsy-
chologia 44(2), 178–190 (2006)

N.D. Binh, E. Shuichi, T. Ejima, Real-time hand tracking and gesture recognition system, in Pro-
ceedings of International Conference on Graphics, Vision and Image Processing (GVIP), 2005,
pp. 19–21

A.F. Bobick, J.W. Davis, The recognition of human movement using temporal templates. IEEE
Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)

http://deeplab.ai


16 Multimodal Gesture Recognition via Multiple Hypotheses Rescoring 493

R. A. Bolt, “Put-that-there”: voice and gesture at the graphics interface, in Proceedings of the 7th
Annual Conference on Computer Graphics and Interactive Techniques, vol. 14 ( ACM, 1980)

H. Bourlard, S. Dupont, Subband-based speech recognition, in Proceedings of the International
Conference on Acoustics, Speech and Signal Processings, vol. 2 (IEEE, Piscataway, 1997), pp.
1251–1254

K. Bousmalis, L. Morency, M. Pantic, Modeling hidden dynamics of multimodal cues for sponta-
neous agreement and disagreement recognition, in Proceedings of the International Conference
on Automatic Face and Gesture Recognition (IEEE, Piscataway, 2011), pp. 746–752

P. Buehler, M. Everingham, A. Zisserman, Learning sign language by watching TV (using weakly
aligned subtitles), inProceedings of the International Conference on Computer Vision and Pattern
Recognition, 2009

S. Celebi, A.S. Aydin, T.T. Temiz, T. Arici, Gesture recognition using skeleton data with weighted
dynamic time warping. Comput. Vis. Theory Appl. 1, 620–625 (2013)

F.-S. Chen, C.-M. Fu, C.-L. Huang, Hand gesture recognition using a real-time tracking method
and hidden markov models. Image Vis. Comput. 21(8), 745–758 (2003)

X. Chen, M. Koskela, Online rgb-d gesture recognition with extreme learning machines, in Pro-
ceedings of the 15th ACM International Conference on Multimodal Interaction (ACM, 2013),
pp. 467–474

Y. L. Chow, R. Schwartz, The n-best algorithm: An efficient procedure for finding top n sentence
hypotheses, in Proceedings of the Workshop on Speech and Natural Language (Association for
Computational Linguistics, 1989), pp. 199–202

S. Conseil, S. Bourennane, L. Martin, Comparison of Fourier descriptors and Hu moments for hand
posture recognition, in Proceedings of the European Conference on Signal Processing, 2007

Y. Cui, J. Weng, Appearance-based hand sign recognition from intensity image sequences. Comput.
Vis. Image Underst. 78(2), 157–176 (2000)

N. Dalal, B. Triggs, Histogram of oriented gradients for human detection, in Proceedins Interna-
tional Conference on Computer Vision and Pattern Recognition, 2005

W. Du, J. Piater, Hand modeling and tracking for video-based sign language recognition by robust
principal component analysis, in Proceedings of the ECCV Workshop on Sign, Gesture and
Activity, September 2010

S.Escalera, J.Gonzàlez,X.Baró,M.Reyes, I.Guyon,V.Athitsos,H.Escalante,L. Sigal,A.Argyros,
C. Sminchisescu, R. Bowden, S. Sclaroff, Chalearn multi-modal gesture recognition 2013: grand
challenge and workshop summary, in Proceedings of the 15th ACM on International Conference
on Multimodal Interaction (ACM, 2013a), pp. 365–368

S. Escalera, J. Gonzlez, X. Bar, M. Reyes, O. Lopes, I. Guyon, V. Athitsos, H.J. Escalante. Multi-
modal Gesture Recognition Challenge 2013: Dataset and Results, in 15th ACM International
Conference on Multimodal Interaction (ICMI), ChaLearn Challenge and Workshop on Multi-
modal Gesture Recognition (ACM, 2013b)

J. Foote, An overview of audio information retrieval. Multimedia Syst. 7(1):2–10 (1999), http://
link.springer.com/article/10.1007/s005300050106

L. Gillick, S.J. Cox, Some statistical issues in the comparison of speech recognition algorithms, in
Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol. 1,
May 1989, pp. 532–535

H. Glotin, D. Vergyr, C. Neti, G. Potamianos, J. Luettin, Weighting schemes for audio-visual fusion
in speech recognition, in Proceedings of the International Conference on Acoustics, Speech and
Signal Processing, vol. 1 (IEEE, Piscataway, 2001), pp. 173–176

B. Habets, S. Kita, Z. Shao, A. Özyurek, P. Hagoort, The role of synchrony and ambiguity in
speech-gesture integration during comprehension. J. Cogn. Neurosci. 23(8), 1845–1854 (2011)

J. Han, G. Awad, A. Sutherland, Modelling and segmenting subunits for sign language recognition
based on hand motion analysis. Pattern Recognit. Lett. 30, 623–633 (2009)

H. Hermansky, Perceptual linear predictive (PLP) analysis of speech. J. Acoust. Soc. Am. 87(4),
1738–1752 (1990)

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s005300050106
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s005300050106


494 V. Pitsikalis et al.

A.Hernández-Vela,M.Á.Bautista,X. Perez-Sala,V. Ponce-López, S. Escalera,X.Baró,O. Pujol, C.
Angulo, Probability-based dynamic time warping and bag-of-visual-and-depth-words for human
gesture recognition in rgb-d. Pattern Recognit. Lett. (2013)

C.-L. Huang, S.-H. Jeng, A model-based hand gesture recognition system. Mach. Vis. Appl. 12(5),
243–258 (2001)

M. Isard,A.Blake,Condensation-conditional density propagation for visual tracking. Int. J.Comput.
Vis. 29(1), 5–28 (1998)

J.M. Iverson, S. Goldin-Meadow, Why people gesture when they speak. Nature 396(6708), 228
(1998)

A. Jaimes,N.Sebe,Multimodal human-computer interaction: a survey.Comput.Vis. ImageUnderst.
108(1), 116–134 (2007)

S.D. Kelly, A. Özyürek, E. Maris, Two sides of the same coin speech and gesture mutually interact
to enhance comprehension. Psychol. Sci. 21(2), 260–267 (2010)

A. Kendon, Gesture: Visible Action as Utterance (Cambridge University Press, New York, 2004)
W. Kong, S. Ranganath, Sign language phoneme transcription with rule-based hand trajectory
segmentation. J. Signal Process. Syst. 59, 211–222 (2010)

I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, Learning realistic human actions from movies,
in Proceedings of the International Conference on Computer Vision and Pattern Recognition
(IEEE, Piscataway, 2008), pp. 1–8

H.-K. Lee, J.-H. Kim, An HMM-based threshold model approach for gesture recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 21(10), 961–973 (1999)

J. Li, N.M. Allinson, Simultaneous gesture segmentation and recognition based on forward spotting
accumulative hmms. Pattern Recognit. 40(11), 3012–3026 (2007)

J. Li, N.M. Allinson, A comprehensive review of current local features for computer vision. Neu-
rocomputing 71(10), 1771–1787 (2008)

D. G. Lowe, Object recognition from local scale-invariant features, in Proceedings of the Interna-
tional Conference on Computer Vision, 1999, pp. 1150–1157

P. Maragos, P. Gros, A. Katsamanis, G. Papandreou, Cross-modal integration for performance
improving in multimedia: a review, in Multimodal Processing and Interaction: Audio, Video, Text
ed. by P. Maragos, A. Potamianos, and P. Gros, chapter 1 (Springer, New York, 2008), pp. 3–48

D. McNeill, Hand and Mind: What Gestures Reveal About Thought (University of Chicago Press,
Chicago, 1992)

M. Miki, N. Kitaoka, C. Miyajima, T. Nishino, K. Takeda, Improvement of multimodal gesture
and speech recognition performance using time intervals between gestures and accompanying
speech. EURASIP J. Audio SpeechMusic Process. 2014(1), 17 (2014). doi:10.1186/1687-4722-
2014-2

d Morris, p Collett, p Marsh, M. O’Shaughnessy, Gestures: Their Origins and Distribution (Stein
and Day, New York, 1979)

Y. Nam, K. Wohn, Recognition of space-time hand-gestures using hidden Markov model, in ACM
Symposium on Virtual Reality Software and Technology, 1996, pp. 51–58

K. Nandakumar, K. W. Wan, S. Chan, W. Ng, J. G. Wang, and W. Y. Yau. A multi-modal gesture
recognition system using audio, video, and skeletal joint data. in Proceedings of the 15th ACM
Int’l Conf. on Multimodal Interaction (ACM, 2013), pages 475–482

N. Neverova, C. Wolf, G. Paci, G. Sommavilla, G. Taylor, F. Nebout, A multi-scale approach
to gesture detection and recognition, in Proceedings of the IEEE International Conference on
Computer Vision Workshop, 2013, pp. 484–491

E.-J. Ong, R. Bowden, A boosted classifier tree for hand shape detection, in Proceedings of the
International Conference on Automation Face Gest Recognition (IEEE, Piscataway, 2004), pp.
889–894

M. Ostendorf, A. Kannan, S. Austin, O. Kimball, R. M. Schwartz, J. R. Rohlicek, Integration of
diverse recognition methodologies through reevaluation of N-best sentence hypotheses, in HLT,
1991

http://dx.doi.org/10.1186/1687-4722-2014-2
http://dx.doi.org/10.1186/1687-4722-2014-2


16 Multimodal Gesture Recognition via Multiple Hypotheses Rescoring 495

S. Oviatt, P. Cohen, Perceptual user interfaces: multimodal interfaces that process what comes
naturally. Commun. ACM 43(3), 45–53 (2000)

G. Papandreou,A.Katsamanis, V. Pitsikalis, P.Maragos,Adaptivemultimodal fusion by uncertainty
compensation with application to audiovisual speech recognition. IEEE Trans. Audio Speech
Lang. Process. 17(3), 423–435 (2009)

V. Pitsikalis, S. Theodorakis, C.Vogler, P.Maragos, Advances in phonetics-based sub-unitmodeling
for transcription alignment and sign language recognition, in IEEE CVPR Workshop on Gesture
Recognition, 2011

I. Poddar, Y. Sethi, E. Ozyildiz, R. Sharma, Toward natural gesture/speech HCI: A case study of
weather narration, in Proceedings of the Workshop on Perceptual User Interfaces, 1998

V. Ponce-López, S. Escalera, X. Baró, Multi-modal social signal analysis for predicting agreement
in conversation settings, inProceedings of the 15th ACM International Conference on Multimodal
Interaction (ACM, 2013), pp. 495–502

G. Potamianos, C. Neti, J. Luettin, I. Matthews, Audio-visual automatic speech recognition: an
overview. Issues Vis. Audio Vis Speech Process. 22, 23 (2004)

L.R. Rabiner, B.H. Juang, Fundamentals of Speech Recognition (Prentice Hall, Upper Saddle River,
1993)

Z. Ren, J. Yuan, Z. Zhang, Robust hand gesture recognition based on finger-earth mover’s distance
with a commodity depth camera, in Proceedings of the 19th ACM International Conference on
Multimedia (ACM, 2011), pp. 1093–1096

R. C. Rose, Discriminantwordspotting techniques for rejecting non-vocabulary utterances in uncon-
strained speech, in Proceedings of the International Conference on Acoustics, Speech and Signal
Processing, vol. 2 (IEEE, Piscataway, 1992), pp. 105–108, http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=226109

R. C. Rose, D. B. Paul, A hiddenMarkov model based keyword recognition system, in Proceedings
of the International Conference on Acoustics, Speech and Signal Processing, 1990, pp. 129–132,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=115555

A. Roussos, S. Theodorakis, V. Pitsikalis, P. Maragos, Dynamic affine-invariant shape-appearance
handshape features and classification in sign language videos. J. Mach. Learn. Res. 14(1), 1627–
1663 (2013)

S. Ruffieux,D. Lalanne, E.Mugellini, ChAirGest: a challenge formultimodalmid-air gesture recog-
nition for close HCI, in Proceedings of the 15th ACM International Conference on Multimodal
Interaction, ICMI ’13 (ACM, New York, NY, USA, 2013), pp. 483–488

S. Ruffieux, D. Lalanne, E. Mugellini, O. A. Khaled, A survey of datasets for human gesture
recognition, in Human-Computer Interaction. Advanced Interaction Modalities and Techniques
(Springer, 2014), pp. 337–348

R. Sharma, M. Yeasin, N. Krahnstoever, I. Rauschert, G. Cai, I. Brewer, A.M. MacEachren, K.
Sengupta, Speech-gesture drivenmultimodal interfaces for crisis management. Proc. IEEE 91(9),
1327–1354 (2003)

S. Shimojo, L. Shams, Sensory modalities are not separate modalities: plasticity and interactions.
Curr. Opin. Neurobiol. 11(4), 505–509 (2001)

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook, R. Moore, Real-
time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124
(2013)

R. Shwartz, S. Austin, A comparison of several approximate algorithms for finding multiple N-Best
sentence hypotheses, in Proceedings of the International Conference on Acoustics, Speech and
Signal Processing, 1991

Y. C. Song, H. Kautz, J. Allen, M. Swift, Y. Li, J. Luo, C. Zhang, A markov logic framework for
recognizing complex events frommultimodal data, in Proceedings of the 15th ACM International
Conference on Multimodal Interaction (ACM, 2013), pp. 141–148

T. Starner, J. Weaver, A. Pentland, Real-time american sign language recognition using desk and
wearable computer based video. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1371–1375
(1998)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=226109
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=226109
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=115555


496 V. Pitsikalis et al.

L.N.Tan,B. J.Borgstrom,A.Alwan,Voice activity detectionusingharmonic frequency components
in likelihood ratio test, in Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (IEEE, Piscataway, 2010), pp. 4466–4469

N. Tanibata, N. Shimada, Y. Shirai, Extraction of hand features for recognition of sign language
words, in Proceedings of the International Conference on Vision, Interface, 2002, pp. 391–398

S. Theodorakis, V. Pitsikalis, P. Maragos, Dynamic-static unsupervised sequentiality, statistical
subunits and lexicon for sign language recognition. Imave Vis. Comput. 32(8), 533549 (2014)

M. Turk, Multimodal interaction: a review. Pattern. Recognit. Lett. 36, 189–195 (2014)
C. Vogler, D. Metaxas, A framework for recognizing the simultaneous aspects of american sign
language. Comput. Vis. Image Underst. 81, 358 (2001)

S. B. Wang, A. Quattoni, L. Morency, D. Demirdjian, T. Darrell, Hidden conditional random fields
for gesture recognition, in Proceedings of the International Conference on Computer Vision and
Pattern Recognition, vol. 2 (IEEE, Piscataway, 2006), pp. 1521–1527

D. Weimer, S. Ganapathy, A synthetic visual environment with hand gesturing and voice input, in
ACM SIGCHI Bulletin, vol. 20 (ACM, 1989), pp. 235–240

L. D Wilcox, M. Bush, Training and search algorithms for an interactive wordspotting system, in
Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol. 2
(IEEE, Piscataway, 1992), pp. 97–100

J. Wilpon, L.R. Rabiner, C.-H. Lee, E.R. Goldman, Automatic recognition of keywords in uncon-
strained speech using hidden Markov models. IEEE Trans. Acoustics Speech Signal Process.
38(11), 1870–1878 (1990)

A. Wilson, A. Bobick, Parametric hidden markov models for gesture recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 21, 884–900 (1999)

J.Wu, J. Cheng, C. Zhao,H. Lu. Fusingmulti-modal features for gesture recognition, inProceedings
of the 15th ACM International Conference on Multimodal Interaction (ACM, 2013), pp. 453–460

M.-H. Yang, N. Ahuja, M. Tabb, Extraction of 2d motion trajectories and its application to hand
gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1061–1074 (2002)

S. Young, G. Evermann, T. Hain, D. Kershaw, G.Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev,
P. Woodland, The HTK Book (Entropic Cambridge Research Laboratory, Cambridge, 2002)



Chapter 17
The Gesture Recognition Toolkit

Nicholas Gillian and Joseph A. Paradiso

Abstract The Gesture Recognition Toolkit is a cross-platform open-source C++
library designed to make real-time machine learning and gesture recognition more
accessible for non-specialists. Emphasis is placed on ease of use, with a consis-
tent, minimalist design that promotes accessibility while supporting flexibility and
customization for advanced users. The toolkit features a broad range of classification
and regression algorithms and has extensive support for building real-time systems.
This includes algorithms for signal processing, feature extraction and automatic ges-
ture spotting.

Keywords Gesture recognition · Machine learning · C++ · Open source · Classi-
fication · Regression · Clustering · Gesture spotting · Feature extraction · Signal
processing

17.1 Introduction

Gesture recognition is a powerful tool for human-computer interaction. It is increas-
ingly redefining how we interact with our smartphones, wearable devices,
televisions and gaming consoles. In addition to the increasing prevalence of gesture-
based interactions in consumer devices, a diverse range of individuals are gaining
access to affordable sensor technology and rapid-prototyping tools that facilitate non-
specialists to build custom gesture-based applications. Commercial
sensors such as theMicrosoft Kinect or easy-to-use hardware platforms like Arduino
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(Mellis et al. 2007), combinedwith prototyping environments, such as Processing1 or
Openframeworks,2 are empowering professional developers, students, researchers,
hobbyists, creative coders, interaction designers, musicians and artists to create
novel-interactive systems that are playful, poignant, and expressive.

Nevertheless, while a diverse range of individuals now have access to
powerful sensors and rapid-prototyping tools, performing real-time gesture recog-
nition can pose a challenge, even to accomplished developers and engineers (Patel
et al. 2010). This is despite the large number of sophisticated machine-learning
applications currently available, such as WEKA (Hall et al. 2009), MATLAB and R
(Team et al. 2010). Many of these applications are primarily designed for offline
analysis of prerecorded datasets by domain experts, and require substantial effort to
recognize real-time signals. There are accessible machine-learning libraries in Java
Abeel et al. (2009) and Python (Pedregosa et al. 2011) that can be used to prototype
real-time systems. However, many users need to build their systems in C++ due
to the computational overhead of the sensor data and interactive visualizations and
therefore benefit from C++ tools for real-time machine learning. While there are a
number of powerful C++ libraries that can be adapted for gesture recognition (King
2009; Sonnenburg et al. 2010; Gashler 2011), these tools still require the user to
develop the supporting infrastructure needed to build real-time systems and can have
steep learning curves for non-specialists. This leaves C++ users with a sizable gulf
of execution, specifically the gap between their goals and the actions needed to attain
those goals with the system (Hutchins et al. 1985). This gap can significantly impede
the process of building novel gesture-based interfaces for technologists, researchers,
artists and beyond.

17.2 Gesture Recognition Toolkit

To address this issue, we have created theGesture Recognition Toolkit (GRT), a cross
platformopen sourceC++machine-learning library for real-time gesture recognition.
The toolkit was developed with the following core design principles:

Accessibility: The GRT is a general-purpose tool for facilitating non-specialists
to create their own machine-learning based systems. Emphasis is placed on ease of
use, with a clear and consistent coding convention applied throughout the toolkit. The
GRT provides a minimal code footprint for the user, reducing the need for arduous
and error-prone boilerplate code to perform common functionality, such as passing
data between algorithms or to preprocess datasets. This consistent, minimalist design
significantly lowers the entry barrier for a new user because the same subset of core
functions apply throughout the toolkit.

Flexibility: To support flexibility while maintaining consistency, the GRT uses
an object-oriented modular architecture. This architecture is built around a set of

1Processing website: http://processing.org.
2Openframeworks website: http://www.openframeworks.cc.
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core modules and a central gesture-recognition pipeline. The input to both the
modules and pipeline consists of an N -dimensional double-precision vector, making
the toolkit flexible to the type of input signal. The algorithms in each module can
be used as stand-alone classes; alternatively a gesture-recognition pipeline can be
used to chain modules together to create a more sophisticated gesture-recognition
system. The GRT includes modules for preprocessing, feature extraction, clustering,
classification, regression and post processing.

Choice: To date, there is no single machine-learning algorithm that can be used to
recognize all gestures. It is therefore crucial for a user to be able to choose from, and
quickly experiment with, a number of algorithms to see which might work best for
their particular task. The GRT features a broad range of machine-learning algorithms
such as AdaBoost, Decision Trees, Dynamic Time Warping, Hidden Markov Mod-
els, K-Nearest Neighbor, Linear and Logistic Regression, Naïve Bayes, Multilayer
Perceptrons, Random Forests, Support Vector Machines3 and more. In addition to
supporting a broad range of algorithms, the toolkit’s architecture facilities a user to
seamlessly switch between different algorithms with minimal modifications to the
user’s code.

Supporting Infrastructure: Building sophisticated machine-learning based sys-
tems requires more than just a state-of-the-art classifier. In many real-world sce-
narios, the input to a classification algorithm must first be preprocessed and have
salient features extracted. Preprocessing and feature extraction are important because
they can significantly improve the predictive performance of a classifier, and also
provide faster and more cost-effective predictors (Guyon and Elisseeff 2003). The
GRT therefore supports a wide range of pre/post processing, feature extraction and
feature selection algorithms, including popular preprocessing filters (e.g. Moving
Average Filter), embedded feature extraction algorithms (e.g. AdaBoost), dimen-
sionality reduction techniques (e.g. Principal Component Analysis), and unsuper-
vised quantizers (e.g. K -Means Quantizer, Self-Organizing Map Quantizer). Accu-
rate labeling of datasets is also critical for building robust machine-learning based
systems. The toolkit therefore contains extensive support for recording, labeling and
managing supervised and unsupervised datasets for classification, regression and
timeseries analysis.4

Customizability: In addition to using the wide range of existing GRT algorithms,
more advanced users commonly want to test or deploy their own algorithms when
building novel recognition systems, such as using a custom feature-extraction algo-
rithm. The GRT is therefore designed to facilitate users to easily incorporate their
own algorithms within the toolkit’s framework by inheriting from one of the GRT
base classes. The toolkit leverages advanced object-orientated concepts, such as

3For Support Vector Machines, we provide an easy-to-use wrapper for LibSVM (Chang and Lin
2011). All other algorithms are custom implementations unless otherwise stated in the source
documentation.
4A detailed description of the data structures can be found at http://www.nickgillian.com/wiki/
pmwiki.php/GRT/Reference.
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polymorphism and abstract base-class pointers, facilitating custom algorithms to be
used alongside any of the existing GRT algorithms.

Real-time Support: The GRT supports common techniques for performing
offline analysis on pre-recorded datasets, such as partitioning data into validation
and test datasets, running cross validation and computing accuracy metrics. In addi-
tion to these offline techniques, the toolkit is designed to enable a user to seamlessly
move from the offline analysis phase to the real-time recognition phase. One signif-
icant challenge involved in moving from offline analysis to real-time gesture recog-
nition is automatically segmenting valid gestures from a continuous stream of data
(Junker et al. 2008). This is a nontrivial task because the input data might consist
of generic movements that are not valid gestures in the model. To support real-time
gesture recognition, the GRT features algorithms that automatically perform gesture
spotting. These algorithms, such as the Adaptive Naïve Bayes Classifier (Gillian
et al. 2011a) and N -Dimensional Dynamic Time Warping (Gillian et al. 2011b),
learn rejection thresholds from the training data, which are then used to automati-
cally recognize valid gestures from a continuous stream of real-time data.

17.3 Code Example

The code example below demonstrates the core design principles of the GRT. This
example shows how to setup a custom gesture-recognition system consisting of a
moving-average filter preprocessing module, a fast Fourier transform and custom
feature extraction modules, an AdaBoost classifier and a timeout-filter post process-
ing module. The example also illustrates how to load some training data from a CSV
file, train a classification model, and use this model to predict the class label of a new
data sample.

//Setup a custom recognition pipeline.
1: GestureRecognitionPipeline pipeline;
2: pipeline << MovingAverageFilter(5);
3: pipeline << FFT(512);
4: pipeline << MyCustomFeatureAlgorithm();
5: pipeline << Adaboost(DecisionStump());
6: pipeline << ClassLabelTimeoutFilter(1000);

// Load some labeled data from a CSV file,
// indicating the class label is the 1st column.

7: ClassificationData trainingData;
8: trainingData.load("TrainingData.csv", 0);

// Train a classification model.
9: bool success = pipeline.train(trainingData);

// The following lines would be called each time
// the user gets a new sample from the sensor.

10: vector< double > sample = //Data from sensor
11: bool success = pipeline.predict(sample);
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12: UINT predictedClassLabel = pipeline.getPredictedClassLabel();
13: double maxLikelihood = pipeline.getMaximumLikelihood();

Lines 1 through 6 show how a GestureRecognitionPipeline can be used to link
several modules together to build a more complex recognition system. Note that the
customization of the recognition system is achieved with a minimal code footprint,
as the pipeline will automatically connect the output of one module to next module’s
input; propagating signals through the entire pipeline at both the training, testing
and real-time prediction phases. These six lines also illustrate the flexibility of the
toolkit’s modular design, and demonstrate how a user can easily experiment with
different algorithms from existing modules, or insert a custom algorithm into the
pipeline as illustrated on line 4. Line 10 demonstrates how real-time sensor data from
a variety of devices can be incorporated; input can consist of something as simple as
the three-dimensional data from an accelerometer connected to an Arduino, to more
complex inputs, such as the high-dimensional skeleton data from a Kinect.

This example also demonstrates one of the key designs of the GRT that make
it more accessible: clean and consistent coding through abstraction. For instance,
lines 9 and 11 show respectively how a user can train a model and then predict the
class label of a new sample using that model. These key functions are the same,
regardless of which algorithms are used. This abstraction significantly reduces the
learning curve for new users, because the same key functions are consistent across
all the GRT algorithms.

17.4 Conclusion

The gesture recognition toolkit is open source under the MIT license and has been
publicly available since 2012, receiving over 130K hits on the main website.5 It has
been downloaded several thousand times and has built up a community of over 300
users on the toolkit’s forum. To support a diverse range of users, we have established
a number of online resources, including detailed examples for each module6 and a
wide range of tutorials and references. Future work includes an interactive graphical
user interface, in which a user can record and label training data; configure; train and
test a gesture-recognition model; perform real-time prediction and then export their
model and pipeline configuration so it can be loaded directly into the user’s program,
using the C++ API.

5Gesture Recognition Toolkit Website: http://www.nickgillian.com/grt.
6Gesture Recognition Toolkit Wiki: http://www.nickgillian.com/wiki.

http://www.nickgillian.com/grt
http://www.nickgillian.com/wiki
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Chapter 18
Robust Online Gesture Recognition
with Crowdsourced Annotations

Long-Van Nguyen-Dinh, Alberto Calatroni and Gerhard Tröster

Abstract Crowdsourcing is a promising way to reduce the effort of collecting
annotations for training gesture recognition systems. Crowdsourced annotations
suffer from “noise” such as mislabeling, or inaccurate identification of start and
end time of gesture instances. In this paper we present SegmentedLCSS and Warp-
ingLCSS, two template-matching methods offering robustness when trained with
noisy crowdsourced annotations to spot gestures from wearable motion sensors. The
methods quantize signals into strings of characters and then apply variations of the
longest common subsequence algorithm (LCSS) to spot gestures. We compare the
noise robustness of our methods against baselines which use dynamic time warp-
ing (DTW) and support vector machines (SVM). The experiments are performed
on data sets with various gesture classes (10–17 classes) recorded from accelerome-
ters on arms, with both real and synthetic crowdsourced annotations. WarpingLCSS
has similar or better performance than baselines in absence of noisy annotations. In
presence of 60% mislabeled instances, WarpingLCSS outperformed SVM by 22%
F1-score and outperformed DTW-based methods by 36% F1-score on average. Seg-
mentedLCSS yields similar performance as WarpingLCSS, however it performs one
order of magnitude slower. Additionally, we show to use our methods to filter out
the noise in the crowdsourced annotation before training a traditional classifier. The
filtering increases the performance of SVM by 20% F1-score and of DTW-based
methods by 8% F1-score on average in the noisy real crowdsourced annotations.
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18.1 Introduction

Wearable computing is gaining momentum through the availability of an increas-
ing choice of devices, like smart watches, glasses and sensor-equipped garments.
A core component to allow these devices to understand our context is online ges-
ture recognition (spotting) in which types of gestures and their temporal boundaries
must be recognized in the incoming streaming sensor data. This is carried out using
machine learning approaches on different sensing modalities, like acceleration (Bao
and Intille 2004) and video (Elmezain et al. 2009; Yoon et al. 2001).

Training a gesture recognition system requires an annotated training data set that
is used to perform supervised learning (Bao and Intille 2004; Ravi et al. (2005);
Aggarwal and Ryoo 2011; Chen et al. 2012). Specifically, the annotations comprise
the start and end times (i.e., temporal boundaries) of gestures of interest and their
corresponding labels. Reference data sets are usually annotated by a small number
of experts to be as accurate as possible. However, the labeling process is extremely
time-consuming: it may take up to 7–10 h to annotate gestures in a 30-min video
(Roggen et al. 2010). Moreover, it is also costly to hire experts to annotate data
corpora.

Crowdsourcing has been emerged recently to address these issues (Howe 2006;
Doan et al. 2011). Crowdsourcing is defined as a model that outsources tasks which
are traditionally performed by experts to a crowd of ordinary people. Thus, crowd-
sourcing is promising to reduce the cost and time of labeling. Recently, crowdsourc-
ing has been exploited to get labeling for training data sets for gesture recognition
(Nguyen-Dinh et al. 2013c). However, labels obtained from crowdsourcing are pro-
vided by low-commitment anonymous workers, thus they are commonly unreliable
and noisy (Sheng et al. 2008). In gesture annotation from crowdsourcing, the chal-
lenge is to obtain labels matching ground truth, attaining both correct labels and
correct temporal boundaries.

Using multiple annotators for the same annotation task by watching videos or
audios is a popular strategy to get a good annotation from crowdsourcing (Yuen
et al. 2011; Nguyen-Dinh et al. 2013c). However, multiple annotators may not be
applicable in some cases, either due to the higher cost or because of some privacy
concerns. This latter case occurs when the annotation involves some personal context
information, including for example location or other sensitive data. Hence, the anno-
tation is often provided and relied on the crowdsourced user for his recorded data.
Moreover, it is very difficult to ask the anonymous low-commitment user to clean his
annotation because it is time consuming and he may not remember exactly what he
has done. In these cases, the large presence of noise in the training data annotation
can degrade significantly the performance.

While other research is focusing on how to improve the quality of crowdsourced
annotations, we here point out the need for algorithms that can cope with the kinds of
annotation errors that will anyway remain. In this work, we show that our proposed
template matching methods (TMMs) based on the longest common subsequence
algorithm (known as LCSS or LCS in the literature) are suitable for online gesture
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recognition in a settingwhere trainingdata are affected significantly by labelingnoise.
Additionally, the work targets the recognition of gestures based on acceleration data
recorded from only one accelerometer mounted on the user’s arm. The reason to just
use one sensor is that this setting will be the most common one with smart watches
in the close future. Recognizing gestures with just motion data from one sensor is
challenging due to the ambiguities in the sensor data, especially with high percentage
of null class (no gesture of interest).

18.1.1 Contributions

In this paper, we make the following contributions:

1. We discuss how gesture recognition systems can leverage crowdsourcing to col-
lect annotated data. We address the challenges that arise and then propose a
taxonomy of annotation noise which occur in a crowdsourcing setting. We also
give analysis on annotation noise in the real crowdsourced annotated data set.

2. We propose SegmentedLCSS and WarpingLCSS as TMMs for online gesture
recognition. These methods were first presented in our previous work (Nguyen-
Dinh et al. 2012) and have been shown to perform well in clean annotated gesture
data sets both in terms of computational complexity and accuracy. In this work,
we show their robustness to the labeling noise from crowdsourcing.

3. We compare the robustness of our gesture recognitionmethods against three base-
lines using two variations of dynamic time warping and support vector machines.
The algorithms are tested with annotations collected in real crowdsourcing
scenarios as well as the synthetic crowdsourced annotations in three data sets
recorded from accelerometers on arms. We also investigate the impact of differ-
ent kinds of noises in crowdsourced annotation on the performance of the gesture
recognition methods.

4. We investigate the property of LCSS of being able to select clean templates, which
makes it suitable also as a filtering component to select good training examples
despite noisy annotations. This filter can be used in combination with other clas-
sifiers. We show how inserting this filtering step improves the performance of
SVMs and TMMs based on dynamic time warping.

The rest of the paper is organized as follows. In Sect. 18.2, we first review exist-
ing work in online gesture recognition and crowdsourcing. In Sect. 18.3, we discuss
crowdsourcing in gesture recognition and propose a taxonomy of annotation noise in
gesture labeling by crowdsourcing. Then, in Sect. 18.4, we present our proposed Seg-
mentedLCSS and WarpingLCSS methods. The experiments are described in Sect.
18.5.We present quantitative results evaluating the robustness of our proposed meth-
ods against the baselines in Sect. 18.6. Finally, Sect. 18.7 concludes our work and
gives some potential research directions.
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18.2 Related Work

In this section we discuss related work in the fields of gesture recognition and
crowdsourcing, pointing out the lack of an analysis of how noise present in typical
crowdsourced annotations impacts gesture recognition algorithms.

18.2.1 Annotation Techniques

Supervised learning techniques require a set of annotated training samples to build
gesturemodels. Therefore,many annotation techniques have been proposed to collect
annotated data. There are offline annotation techniques which rely on video and
audio recordings (Roggen et al. 2010), subject self-report of activities at the end of
the day (Van Laerhoven et al. 2008). Online annotation (i.e., real-time) techniques
perform the annotation during execution of the activities, like experience sampling
(Froehlich et al. 2007) which prompts periodically to a user to ask information about
his current activities, or direct annotation in which users responsibly provide a label
before an activity begins and indicate when the activity ends (Rossi et al. 2012).
There is a trade-off between accuracy of an annotation technique and the amount of
time required for annotation (Stikic et al. 2011). For example, offline annotation on
video recordings by experts can provide accurate annotations, however it is extremely
time consuming (Roggen et al. 2010), and non-scalable to large number of users.
In contrast, the self-report of the subject may require less time but the accuracy
depends on the subject’s ability to recall activities. Therefore, most of the existing
works require video annotation by experts to obtain clean and correct annotated data
sets (Roggen et al. 2010) or provide a course to teach subjects carefully how they
should record and annotate their data correctly (Bao and Intille 2004).

18.2.2 Crowdsourcing

Crowdsourcing services, like Amazon Mechanical Turk (AMT)1 and Crowdflower,2

have emerged recently as a new cheap labor pool to distribute annotation tasks to
a large number of workers (Yuen et al. 2011). Crowdsourcing tasks are performed
by low-commitment anonymous workers, thus acquired data is commonly unreliable
andnoisy (Shenget al. 2008).Therefore, the same task is often redundantly performed
by multiple workers and majority voting is a popular decision making method used
to identify the correct answers (Yuen et al. 2011). Moreover, in crowdsourcing,
malicious workers often take advantage of the verification difficulty (the ground
truth is unknown) and submit low-quality answers.

1The home page for AMT is http://www.mturk.com.
2The home page for Crowdflower is http://crowdflower.com.

http://www.mturk.com
http://crowdflower.com
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Due to the error-prone nature of crowdsourcing, several strategies were proposed
to estimate the quality of workers, in order to reject low-performing and malicious
workers. Verifiable questions or pilot tasks for which the requester knows the cor-
rect answers is a common empirical strategy to screen workers from crowdsourcing
(Kittur et al. 2008; Yuen et al. 2011). Another way to ensure quality is to check the
agreement in annotations among workers to detect non-serious workers (Nguyen-
Dinh et al. 2013c). Dawid and Skene (1979) proposed a theoretical model that used
the redundancy in acquiring answers (i.e., the same task is completed by multi-
ple workers) to measure the labeling quality of the workers. Recently, Raykar et al.
(2010) proposed Bayesian versions of worker quality inference. Ipeirotis et al. (2010)
improved the method by separating spammers who provide low-quality answers
intentionally from biased workers who are careful but biased.

Recently, crowdsourcing has been exploited also in the field of activity recog-
nition to collect annotated training data sets (Rossi et al. 2012; Nguyen-Dinh et al.
2013a, b, c; Lasecki et al. 2013). These works showed that crowdsourced data is erro-
neous, therefore, filtering strategies such as multiple labelers and outlier removal
should be used to reduce labeling noise.

Although many strategies are used to reduce noise in crowdsourced data anno-
tation, there is no guarantee to have a perfect annotation, especially when using
multiple labelers can not be applied. Until now, the impact of the noisy annotations
in crowdsourcing on the training of gesture recognitionmethodswas not investigated.
Furthermore, the nature of the noise that affects the annotations in a crowdsourcing
scenario for gesture recognition has not been analyzed yet. These two latter topics
are subject of the present paper.

18.2.3 Online Gesture Recognition Methods

Signals from body-worn sensors belong to the category of time series data. Suitable
machine learning and pattern recognition techniques for online gesture recognition
include Hidden Markov Models (HMM) (Lee and Kim 1999; Deng and Tsui 2000;
Junker et al. 2008; Schlömer et al. 2008), template matching methods (TMM) using
mostly dynamic time warping—in short DTW (Ko et al. 2005; Stiefmeier et al. 2008;
Hartmann and Link 2010) and support vector machines (Ravi et al. (2005); He et al.
2008; Wu et al. 2009).

HMMs are not appealing since a large amount of training data is required to get
results comparable to other TMMs and SVM. In Vogler and Metaxas (1999) for
example, about 1300 instances for 22 classes (i.e., about 60 instances per class) are
used to train theHMM,whereasTMMscanworkwith as little as one training instance
per class. The issue of the amount of training data is mentioned also in Cooper et al.
(2012), where the authors state, referring toHMMs: “While they have been employed
for sign recognition, they have issues due to the large training requirements”. In
Alon et al. (2009), a variation of HMMs is selected but the parameters could not be
learnt because of the scarcity of training data: “We fix the transition probabilities to
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simplify the learning task, because we do not have sufficient training data to learn
more parameters”. HMMs remain nevertheless an interesting approach for cases
where a large data corpus is available, which is often the case in the field of video-
based gesture or sign language recognition, see for example (Wilson and Bobick
1999; Lee and Kim 1999; Keskin et al. 2011).

Segmented DTW (Ko et al. 2005; Hartmann and Link 2010) performs online ges-
ture recognition by first buffering the streaming signals into an observation window.
A test segment is a sequence that is examined to classify whether it is an instance of
a gesture class. The start and end boundaries of a test segment can vary inside the
window. A DTW distance is computed between all templates which represents ges-
ture classes and the test segment, and the class of the closest template is eventually
selected as label for the test segment if the distance falls below a certain rejection
threshold. As the sensor delivers a new reading, the window is shifted by one sam-
ple and the process is repeated. Segmented DTW is time consuming since DTW is
recomputed to find the best boundaries for the test segment inside the window and
it is also recomputed every time the window shifts by one sample. A nonsegmented
DTW variation was proposed by Stiefmeier et al. (2008) to reuse the computation
of previous readings, recognize gestures and determine their boundaries without
segmenting the stream.

Along with DTW, the other commonly used similarity measure for matching
two time series is LCSS (Fu 2011). In previous work (Nguyen-Dinh et al. 2012),
we introduced two variations of LCSS-based template matching for online gesture
spotting and recognition.Weapplied themethods to accelerometer data.TheseLCSS-
based classifiers (SegmentedLCSS and WarpingLCSS) proved to outperform DTW-
basedTMMs, both in terms of computational complexity and accuracy (especially for
data sets containing high variability in gesture execution as shown in Nguyen-Dinh
et al. (2012)). Furthermore, our methods were designed with the goal of being robust
in case of noisy annotations. The validation of this aspect is the main topic of the
present article. The impact of the various kinds of noise occurring in crowdsourced
annotations on TMMs has not been investigated in previous literature, to the best of
our knowledge.

In sign language recognition literature, we find two other works proposing the use
of LCSS as a classifier, applied to video data (Frolova et al. 2013; Stern et al. 2013).
In both cases, the methods use a sliding window to set temporal boundaries of a
gesture inside the window, similarly to our SegmentedLCSS. With our Warp-
ingLCSS, this need of using a window is removed, reducing the computational com-
plexity. It is interesting to note how Stern et al. (2013) states that “It can then be said
that the MDSLCS algorithm can outperform the HMM classifier for both pre-cut
and streaming gestures”, which supports the idea of using TMMs instead of HMMs
to make best use of the available training data. TMMs are competitive with HMMs
also with respect to null-class rejection, meaning the ability to spot a gesture within
a continuous stream.

Some algorithms present in the literature rely on k-means or spatio-temporal
clustering to transform the raw signals into so-called “fenemes”, or subunits (Bauer
and Karl-Friedrich 2002; Fang et al. 2004), which allows to reduce the amount of
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training data, due to the fact that more gestures can contain the same feneme, so that
a critical mass can be achieved in terms of amount of training data. We use a similar
approach based on k-means clustering to find a quantization of the signals which
gives good results.

A large body of literature focuses on a recognition performed on video data, for
example for the recognition of sign language (see for example Wilson and Bobick
1999; Bowden et al. 2004; Alon et al. 2009; Keskin et al. 2011). However, gesture
recognition from wearable sensors, e.g., one accelerometer at the wrist, would allow
to scale up the recognition system to many users immediately because the system
can be deployed easily wherever a user goes with the motion sensor mounted on
hand. It does not need any other infrastructure like cameras, which do not follow us
everywhere in practice. Of the video-based approaches, the one of Hao and Shibata
(2009) captures the videos directly by a moving camera, which could be easily wear-
able. However, from the practical point of view, such an option has some limitations:
first, such a device would be quite costly; second, processing signals from a camera
is more computationally intensive than processing those from a motion sensor; third,
capturing video data is much more intrusive due to privacy concerns.

18.2.4 Robustness Against Annotation Noise

The impact of noise in annotations on the performance of classifiers has been inves-
tigated in the literature (Angluin and Laird 1988; Amini and Gallinari 2005; Gayar
et al. 2006; Lawrence and Schölkopf 2001; Stikic et al. 2011). The above cited studies
do not concern template matching methods. Moreover, they conducted experiments
on synthetic noisy data. Additionally, under “annotation noise”, or “class noise”,
only the case of having wrong labels (i.e., labels are substituted as other classes) was
considered. Noise in gestures annotation can nevertheless alsomean having labelings
with temporal boundaries differing from the ground truth, e.g., a gesture marked as
starting earlier and ending later than the ground truth. These other kinds of noise
were neglected until now, and they are investigated in this paper in both synthetic
and real crowdsourced annotated data.

18.3 Crowdsourcing in Gesture Recognition

In this section we discuss how gesture recognition systems can leverage crowdsourc-
ing. We outline the challenges that arise and provide a taxonomy of the annotation
noises, i.e., the mistakes that affect crowdsourced annotations. We then measure
these annotation noises in a real crowdsourced data set.
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Gesture recognition systems can take advantages of crowdsourcing in three ways:

1. Crowdsourcing can be used to acquire annotations for an existing gesture data set
by asking crowdsourced workers to watch video footage synchronized with the
sensor data (Nguyen-Dinh et al. 2013c; Lasecki et al. 2013).

2. Berchtold et al. (2010) proposed a system that asks users to both record and
annotate activities. This system can be deployed in a crowdsourcing manner.
Users can sporadically select gestures theywant to perform and record themwith a
device (e.g, smartwatch, smart phone, etc.). Thisway,multiple annotated gestures
provided by a large user base could contribute to a central repository which grows
in time. The data set would capture the variability in gesture execution due to the
different people contributing.

3. A more obtrusive crowdsourcing task would ask users to record and annotate as
many activities and gestures as possible over a long time span (e.g., weeks). This
type of crowdsourced data collection would be useful to gather data for long-term
health care monitoring systems.

In any of the previous scenarios, the outcome would be an annotated training data
set, with which algorithms can be trained. The benefit of the crowdsourcing setting
is that a large data set can be collected quickly, if the crowdsourced user base is large
enough.

18.3.1 Taxonomy of Sources of Annotation Noises

The major challenge in any of the settings outlined above is the quality of the labels
obtained, which are unreliable for many reasons. We define the following taxonomy
of annotation noises along with examples:

• Some gestures or activities can be understood differently with respect to when they
actually start and end. The temporal boundaries of the gesture drink can be set from
the time when the user picks up a glass to when he or she puts it back to the table.
Another variation is that the gesture is annotated only when the person is actually
drinking. Both annotations are valid, but this uncertainty of temporal boundaries
has an impact on the algorithms that will be trained with the collected annotated
data. However, even when we assume the definition of gesture boundary is given,
the errors in gesture boundary still happen due to the carelessness of crowdsourced
labelers. We call this form of noise boundary jitter. We define boundary jitter as
the presence of a shift in the annotation boundaries, while the label matches the
actual gesture (ground truth).

• Some instances of gestures can be wrongly annotated or missed altogether. This
can occur for example if the video footage does not have enough resolution to spot
subtle manipulative gestures, or more simply if the labeler does not annotate all
gestures that are occurring. We use the term label noise to denote instances where
gestures are associated to wrong labels or to no label at all.
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Fig. 18.1 Illustrations of boundary jitter and label noise in crowdsourcing annotation. GT stands
for ground truth. The blue dash-dotted lines indicate the correct boundary of a gesture

We further categorize boundary jitter into four error types, namely extend, shrink,
shift left and shift right according to how the temporal boundary of a gesture is shifted
compared to the ground truth. Figure 18.1a illustrates the subclasses of boundary
jitter.

• Extend: The starting boundary is set earlier and the ending boundary is set later.
The information of the gesture instance is preserved, but noise is attached to the
gesture instance in the form of samples which belong actually to another gesture
class or to no class of interest at all (i.e., null class).

• Shrink: The starting boundary is set later and the ending boundary is set earlier.
In this case, some information of the gesture instance is missed.

• Shift left: Both starting and ending boundaries are set earlier. In this case, some
information of the gesture instance is missed and noise is added at the end of the
gesture.

• Shift right: Both starting and ending boundaries are set later. In this case, some
information of the gesture instance is missed and noise is added at the beginning
of the gesture.

We also categorize label noise into three error types, namely delete, substitute
and insert.

• Delete: A gesture instance is not annotated. It is automaticallymarked as null class.
• Substitute: A gesture instance is labeled as another gesture class.
• Insert: A gesture instance is labeled where no gesture of interest actually occurs.

Figure 18.1b illustrates the subclasses of label noise. The subclasses of label noise
are similar to the definition of classification errors evaluated in performance metrics
proposed by Ward et al. (2011). However, in this work, we consider those errors
existing in annotations of training data set.
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18.3.2 Annotation Noise Parameters

Along with the taxonomy provided in the previous section, we here list the parame-
ters that quantify the amount of noise in the annotation. Given a gesture instance,
let start and end be the start time and end time of the crowdsourced annotation.
Let GT_start and GT_end be the corresponding ground truth boundaries. Let N
denote the time length of the gesture (N = |GT_end − GT_start|). We define �s as
the time difference between the crowdsourced start time and the correct start time
(�s = |start − GT_start|). Similarly, we define �e as the time difference between
the crowdsourced end time and the correct end time (�e = |end − GT_end|). �s
and �e are illustrated in Fig. 18.1a for the different boundary jitter noises.

For boundary jitter and for the corresponding subclasses, we define a jitter level
to quantify the proportion of time that is wrongly annotated in a gesture due to the
jitter. The jitter level also indicates how much the boundaries stray from the correct
annotation. These jitter parameters are calculated as follows:

extend level = proportion of time noisy samples added
= �s+�e

N .
shrink level = proportion of time good samples missed

= �s+�e
N .

shift-left level = proportion of time noisy samples added and good samples missed / 2
= �s+�e

2∗N .
shift-right level = proportion of time noisy samples added and good samples missed / 2

= �s+�e
2∗N .

18.3.3 Annotation Noise Statistics from A Real
Crowdsourcing Experiment

To give a flavor of typical values encountered for the annotation noise levels, we
report these levels measured in a real crowdsourcing experiment that we conducted
in a previous study (Nguyen-Dinh et al. 2013c). In the crowdsourcing experiment
we used video footage belonging to the Opportunity data set (Roggen et al. 2010),
which contains gestures of normal daily routines (e.g., drink, open or close doors).
We showed each short video to ten workers in Amazon Mechanical Turk (AMT),
described the task and collected their annotations. The AMT labelers must annotate
the start, end boundaries and the label of all occurrences of gestures of interest in
the videos. We applied two strategies to detect and filter non-serious labelers and
erroneous labeling (Nguyen-Dinh et al. 2013c). Individual filtering checks the cor-
rectness in the answers of each labeler for qualification questions whose answers
are known in advance. Collaborative filtering checks the agreement in annotations
among workers to detect non-serious labelers. Specifically, the labeler X who has a
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Fig. 18.2 An illustration of the collaborative filtering technique to calculate the disagreement score
of each labeler against the majority. The last two labelers are spammers and then their annotations
will be removed

disagreement score d(X)= Annotation times of X disagree with majority
Total annotation times of X > threshold is a spam-

mer. We chose a threshold = 0.3, it means if the disagreement score d ≥ 0.3 (i.e.,
less than 70% of annotation of a labeler agrees with the majority), the labeler is a
spammer and his annotations are removed. The collaborative filtering is illustrated
in Fig. 18.2. After filtering, the majority voting among qualified annotations is per-
formed to generate a final crowdsourced gesture annotation. A more detail on the
crowdsourcing experiment is given in Nguyen-Dinh et al. (2013c).

Each video footage of the Opportunity data set was already examined and anno-
tated carefully by one expert (Roggen et al. 2010) and the expert’s annotations are
used as a ground truth to evaluate our crowdsourced annotation. Here we report
the sample-based accuracy (i.e., fraction of correctly labeled samples compared to
expert’s annotation) for a one-labeler annotation scenario where only one crowd-
sourced labeler is selected, and for a multiple-labeler scenario where the filterings
and majority voting are applied for the ten workers. For a one-labeler annotation, the
sample-based accuracy gets as low as 55%. In the multiple-labeler annotation, the
accuracy reaches 80%. A breakdown of the types of annotation mistakes, according
to the taxonomy introduced in Sect. 18.3.1, is shown in Fig. 18.3a. The values for
label noise and for the boundary jitter are shown for one and for multiple labelers.
In the scenario of only one labeler, about 52% of the instances are affected by label
noises, comprising mostly substitute and delete errors. In the multiple-labeler sce-
nario, label noise decreases to 18%. In Fig. 18.3b, we give the average, the min and
the max values of jitter level of boundary jitters for one and for multiple labelers.
On average, jitter levels ranges from 27 to 60%. However, there are good annotated
instances with very low jitter levels (only 2%).

It can be seen that requesting multiple labelers for an annotation task can reduce
labeling errors. However, the result from a one-labeler annotation represents for
the scenarios where multiple labelers cannot be applied. Our experiment belongs to
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Fig. 18.3 Analysis of crowdsourcing annotation from AMT. Blue lines in the figure a separate
boundary jitter part and label noise part.Black lines in the figure b show theminimum andmaximum
level of jitter in each type of noise

the first crowdsourcing category described at the beginning of the present section,
i.e., crowdsourcing labeling of data which were previously recorded. The amount
and distribution of annotation noises will change depending on the crowdsourcing
scenario and on the kind of gesture data, but there is no reason to think that some
scenarios will achieve much lower noise levels. On the contrary, in real-time anno-
tation (i.e., providing labels while recording data) , it is more likely that the level of
noise increases: more gestures could be forgotten and others would be labeled only
after they really occurred, leading to imprecise time boundaries. We therefore argue
that annotation noise is a fact that cannot be completely removed and that calls the
attention of robust methods when designing gesture recognition systems which use
noisy crowdsourced annotations.

In the next sections we present our SegmentedLCSS and WarpingLCSS TMMs
which are designed with the aim of being robust to annotation noise for gesture
recognition.

18.4 SegmentedLCSS and WarpingLCSS Gesture
Recognition Methods

In this section, we describe in details our proposed methods, Segmented LCSS and
WarpingLCSS for online gesture recognition using signals obtained from body-worn
sensors.
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Fig. 18.4 Data processing flowof the proposedLCSS-based templatematchingmethods for gesture
recognition

The methods proposed to recognize gestures are based on template matching
(TM). The training phase uses a set of labeled signals to train the gesture recognition
algorithm. In the training phase, the sensor signals are quantized and converted into
sequences of symbols (strings); furthermore, one template is created for each gesture
of interest. When deploying the recognition algorithm, the quantization scheme is
again applied to the streaming signals. The strings obtained are then compared with
the learned templates by either using the longest common subsequence (LCSS) algo-
rithm in segmented windows (SegmentedLCSS) or using our faster variant of LCSS
(namely WarpingLCSS). Figure 18.4 shows the data flow through different process-
ing components in the training phase and the recognition phase of our proposed
system.

The rationale usingLCSS is that it gives ameasure of similarity between templates
and signals to be recognized. Moreover, LCSS is robust to the high variability in
gesture execution as shown in our previous work (Nguyen-Dinh et al. 2012) because
LCSS can ignore the dissimilarity and accumulate the similarity between two gesture
instances.

In the following, we first briefly review LCSS, then we describe the different
processing components of the recognition system in Fig. 18.4.

18.4.1 The Longest Common Subsequence Algorithm (LCSS)

Let sA and sB be two strings comprising lA and lB symbols respectively. Let s(i)
denote the i-th symbol within a string s. For each pair of positions 0 ≤ i ≤ lA and
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0 ≤ j ≤ lB within the strings, we call LCSS(A,B)(i, j) the length of the longest
symbol subsequence in common between the first i symbols of sA and the first j
symbols of sB . The LCSS between the complete strings is then denoted as L(A,B) or,
when the strings are clear from the context, just with L .

L(A,B)(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 , if i = 0 or j = 0

L(A,B)(i − 1, j − 1) + 1 , if sA(i) = sB( j)

max

{
L(A,B)(i − 1, j)
L(A,B)(i, j − 1)

, otherwise.

(18.1)

Let �A and �B be the sets of indices corresponding to the longest subsequences of
sA and sB that are matching. The sets�A = ω

(0)
A . . . ω

(L−1)
A and�B = ω

(0)
B . . . ω

(L−1)
B

contain then L(A,B) indices. L(A,B) and the corresponding matching subsequences,
hence the sets �A and �B , can be found using dynamic programming
(see Cormen et al. 2001).

18.4.2 Training Phase: Quantization Step

Let n denote the number of signal channels provided by the body-worn sensors (e.g.,
n = 3 for one triaxial accelerometer). Let N be the number of available samples.
Let xi be the time series corresponding to the i-th signal channel, with 1 ≤ i ≤ n
and xi (t) be the value of the time series xi at time t, with 1 ≤ t ≤ N . Let the n-
dimensional vector x(t) = [x1(t) . . . xn(t)] denote one sample from all channels at
time t .

The quantization step converts the vectors x(t) into a sequence of symbols (string)
s(t). This is done by performing k-means clustering on the set of n-dimensional
vectors x(t), ∀t, 1 ≤ t ≤ N . The choice of k is performed through cross-validation
or empirically. For the gesture data sets used in this paper, k = 20 provided a good
tradeoff between complexity (k-means’ complexity scales linearlywith k) and perfor-
mance. The output of k-means is a set of k n-dimensional cluster centers, ζ0 . . . ζk−1,
to which k symbols α0 . . . αk−1 are assigned. The quantization procedure then oper-
ates on each sample x(t) to obtain the symbols s(t) as follows:

s(t) = αi |i = argmin
i

||x(t) − ζi||2 .

Let us denote with d(αl , αm) the distance between two symbols, given by the
correspondent distance between their assigned cluster centers, normalized to fall in
the interval [0, 1].

d(αi , α j ) = ||ζi − ζj||2
maxi, j ||ζi − ζj||2 . (18.2)
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18.4.3 Training Phase: Template Construction

For each labeled gesture in the training data set, a corresponding string is derived used
the quantization described in Sect. 18.4.2. Denote with s(c)

i the i-th string belonging
to class c. The template s̄(c) that represents a gesture class c is then chosen as the
string that has the highest average LCSS to all other strings of the same class.

s̄(c) = argmax
s(c)
i

∑

j �=i

L
(s(c)

i ,s(c)
j )

.

18.4.4 Training Phase: Calculation of Rejection Thresholds

In order to be able to reject signals not belonging to a gesture class upon deployment,
a threshold needs to be calculated in the training phase. We define one rejection
threshold εc for each class c. Let μ(c) and and σ (c) be the mean and the standard
deviation, respectively, of LCSS values between the template of a class c and any
string belonging to the same class. We calculate the rejection threshold to be below
μ(c) by some standard deviations.

εc = μ(c) − h ∗ σ(c),

with h = 0, 1, 2, . . .
The rationale is that the good instances belonging to a class should have the

similarity with the template around the mean value. εc is also chosen to be robust
with the existence of noisy training instances in gesture class. In our experiments,
h = 1 provided a good performance.

18.4.5 Recognition Phase: Quantization Step

In the online recognition, streamingdata fromabody-worn sensor are quantized to the
k-means centroids (i.e., symbols) identified during training, then come to template
matching module (TM) which uses either Segmented LCSS or WarpingLCSS to
recognize gestures.

18.4.6 Recognition Phase: SegmentedLCSS

In the SegmentedLCSS approach, the sensor readings x(t) are first quantized into
a string s through the quantization step described in Sect. 18.4.5. For each gesture
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(a) (b)

Fig. 18.5 The SegmentedLCSS recognition process. The shaded part represents the observation
window OWc. For each class c, the LCSS is computed between the gesture template s̄(c) and the
quantized signal in the window. If the LCSS exceeds the rejection threshold, the samples between
the first and the last matching symbols are assigned to class c. The next observation window will
start at the first matched point of the previous calculation as illustrated in b

class c, the string s is then segmented into a sliding observation window OWc. The
length of OWc is chosen as the length of the template s̄(c). A substring of s in OWc

is denoted as scOW . Each substring is compared to the template s̄(c) for class c.
The LCSS algorithm is used to calculate L(scOW ,s̄(c)) and the set �s of reference

indices of the symbols of scOW in the string s matching with symbols in the template.
Because the LCSS algorithm can findmatching points, the boundaries of the detected
gesture can be decided easily. Specifically, if L(scOW ,s̄(c)) ≥ εc, the symbols ranging
from s(ω(0)

s ) and sc(ω(L−1)
s ) are marked as belonging to class c.

In order to reduce the computational complexity, the next observation window
is started at the index ω(0)

s of the first matching symbol of the previous observation
window. In case the set �s is empty, the next observation window is shifted quickly
by the window length. Figure 18.5 illustrates the SegmentedLCSS.

18.4.6.1 Computational Complexity of SegmentedLCSS

Let Tc denote the length of a gesture template of class c (|OWc| = Tc). The worst
case computational complexity of SegmentedLCSS occurs when new observation
windows are shifted by just one sample compared to the preceding ones. In this case,
for each class c, the time complexity of SegmentedLCSS isO(T 2

c ). The overall time

complexity is thenO(C ∗ T
2
), whereC is the number of classes and T stands for the

average template length across the classes. The memory usage in SegmentedLCSS
is at most O(T 2), where T is the length of the longest template.

18.4.7 Recognition Phase: WarpingLCSS

In the SegmentedLCSS, the LCSS must be recomputed every time the observation
window shifts, in order to find the beginning and end of each gesture. WarpingLCSS
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is our variant of LCSS that can find the gesture boundaries without the need of sliding
windows, thereby reducing the computational complexity.

InWarpingLCSS, after each new sample of x(t) is available, the string s is updated
by appending the symbol obtained through the quantization of the sample and the
LCSS value is recomputed accordingly, relying on the previous values.

Given the gesture template for class c, s̄(c), the WarpingLCSS score W(s̄(c),s)(i, j)
between the first i symbols of the template s̄(c) and the first j symbols of the string
s is obtained through a modified version of Eq. 18.1 as follows.

W(s̄(c),s)(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , if i = 0 or j = 0

W(s̄(c),s)(i − 1, j − 1) + 1 , if s̄(c)(i) = s( j)

max

⎧
⎨

⎩

W(s̄(c),s)(i − 1, j − 1) − p ∗ d(s̄(c)(i), s( j))
W(s̄(c),s)(i − 1, j) − p ∗ d(s̄(c)(i), s̄(c)(i − 1))
W(s̄(c),s)(i, j − 1) − p ∗ d(s( j), s( j − 1))

, otherwise,

(18.3)

where p is a penalty parameter of the dissimilarity and d(·, ·) is the distance between
two symbols as defined in Eq. 18.2. The rationale of theWarpingLCSS is the follow-
ing: if the WarpingLCSS algorithm encounters the same symbol in a template and in
the current string, W is increased by a reward of 1. Otherwise, W is decreased by a
penalty which depends on the parameter p and on the distance between the symbols.
Furthermore, if the string s is “warped”, that is, it contains contiguous repetitions of
a symbol due to a slower execution of a gesture, the penalty is counted only once.

The algorithm starts with an empty string s andW (0, 0) = 0. As new symbols are
appended,W is updated according to Eq. 18.3. If a gesture of a class is performed, it
symbolsmatching the corresponding template are found andW grows, until reaching
a local maximum and eventually decreasing again, as soon as the gesture is over. A
gesture of class c is recognized for each local maximum of W that also exceeds the
rejection threshold εc. The end point of the gesture is set to the local maximum itself.
The start point is found by tracing back the matching path. The LCSS between the
template and the matched gesture is accumulated during the trace-back process if
necessary (i.e., when a gesture is spotted as belonging to multiple classes) to make
a decision (discussed in next section).

When gestures differ from those encoded by the stored templates, W drops sig-
nificantly due to the penalty terms. The value of the penalty parameter p depends on
the application and can be chosen by cross-validation to maximize the recognition
accuracy.

Figure 18.6 illustrates an example of behavior ofW . Figure 18.7 shows a close-up
ofW where a gesturewasmatched to a template. It also shows how theWarpingLCSS
detects the temporal boundaries of matched gestures.
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Fig. 18.6 WarpingLCSS between a template of the gesture “open door” (OD) and a streaming
string s, p = 3. The value W is updated for each new sample. The line on the top shows the ground
truth. The small circles show gesture detection at spotting time
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Fig. 18.7 Close-up of the first detected “open door” gesture (OD) in the string s (see Fig. 18.6).
The local maximum (LM) marks the end of the gesture, while the start is traced back through the
matching symbols

18.4.7.1 Computational Complexity of WarpingLCSS

WarpingLCSS only needs to update the value of W for each new sample. Thus, the
time complexity of WarpingLCSS is O(T ). WarpingLCSS has a linear complexity
in T compared to SegmentedLCSS, whose complexity grows quadratically in T .
The WarpingLCSS maintains at most O(T 2) memory for the need to trace back the
starting boundary of detected gestures.
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18.4.8 Decision Making and Solving Conflicts

The incoming streaming string is concurrently “compared” with templates of all
concerned gesture classes in TM module. If a gesture is spotted as belonging to
multiple classes (i.e., boundaries of spotted instances are overlapping), the decision
making module (DM) will resolve conflicts (as discussed below) by deciding which
class is the best match. If a gesture is classified into only one gesture class, the DM
will output the class. Otherwise, if no gesture class is spotted, the DM will output
null.
Resolving spotting conflicts:We define the normalized similarity between two strings
A andB asNormSim(A,B)= LCSS(A, B)/max(‖A‖, ‖B‖), with ‖A‖ and ‖B‖ are
the lengths of the strings A and B, respectively. The NormSim between the template
and the matched gesture is output to the decision making module (DM). The class
with highest NormSim is chosen as the best match. This process is the same for both
SegmentedLCSS and WarpingLCSS.

18.5 Experiments

To analyze the effect of annotation noise in terms of performance of gesture recogni-
tion algorithms, we compare our SegmentedLCSS andWarpingLCSS TMMs against
state-of-the-art recognition methods to assess their robustness. We first present three
gesture data sets used to evaluate the recognition systems.We then describe how syn-
thetic crowdsourced annotations are obtained. Finally, we discuss baseline methods
and evaluation metrics.

18.5.1 Description of Data Sets

We used three data sets including various gestures which have been labeled manually
by experts. The experts’ annotation is the ground truth of the data sets. The data sets
used also include null class, data which do not correspond to any of the gestures
of interest. The list of gestures of these data sets are shown in Table 18.1. In each
data set, we use a 3D accelerometer at a subject’ dominant (right) lower arm for the
evaluations (30Hz sampling rate). Following, we describe briefly each data set.3

3Skoda and Opportunity data sets can be downloaded from http://www.wearable.ethz.ch/resources/
Dataset.

http://www.wearable.ethz.ch/resources/Dataset
http://www.wearable.ethz.ch/resources/Dataset
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Table 18.1 Gestures in Opportunity, Skoda, and HCI data sets

HCI Gestures

Circle Triangle Square Infinity Slider

Their Speculars Null

Opportunity Gestures

Null clean Table open Drawer 1-2-3

close Drawer 1-2-3 open Door 1-2 close Door 1-2

open Fridge close Fridge open Dishwasher

close Dishwasher drink Cup toggle Switch

Skoda Gestures

write on notepad check gaps on the front door open hood close hood

open left front door close left front door close both left door check trunk gaps

check steering wheel open and close trunk Null

18.5.1.1 Skoda

The Skoda data set (Zappi et al. 2008) contains 10 manipulative gestures performed
in a car maintenance scenario by one subject. The null class takes 23%. Each gesture
class has about 70 instances. This data set is characterized as low variant in execu-
tion because the subject performed carefully each manipulative gesture in the same
manner.

18.5.1.2 HCI

TheHCI data set (Banos et al. 2012) contains 10 gestures executed by a single person.
The gestures are geometric shapes executed with the arm in the vertical plane. This
data set has a low variability in the execution of gestures and well-defined labeling.
The null class takes 57% and each gesture class has about 50 instances.

18.5.1.3 Opportunity

The Opportunity data set (Roggen et al. 2010) is a rich multi-modal data set collected
in a naturalistic environment akin to an apartment, where users execute 16 daily
gestures. The data set is characterized by a predominance of null class (37%) and
a large variability in the execution of the daily activities. Each gesture class has 20
instances excepts “Drink Cup” and “Toggle Switch” each having 40 instances. Note
that in Opportunity data set, there are three drawers at different heights which makes
the recognition more challenging.
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18.5.2 Experiments on Synthesized Crowdsourced
Annotation

To analyze how much noise in annotation the gesture recognition methods can toler-
ate, we conduct experiments with synthesized annotations. We modify clean annota-
tions from the three data sets described above by emulating label noise and boundary
jitter as discussed in the taxonomy in Sect. 18.3.1. In order to evaluate the effect of
the different types of noise, we run simulations for each type of noise separately.

18.5.2.1 Label Noise Simulation

In the label noise simulation, we assume the label boundaries are perfect. Let α be the
label noise percentage in each class. This means that α percent of the instances are
selected and their labels are randomly flipped to other classes (including null class).
Consequently, each gesture class will have (1 − α) percent of clean instances.

18.5.2.2 Boundary Jitter Simulation

We run different simulations for different error types in boundary jitter. We assume
that all gesture instances get affected from boundary jitter. Let β be the jitter level
defined in Sect. 18.3.2. In the extend simulation, each gesture instance will have
an extend level of β, with boundaries extended at both ends equally (β/2 per side).
Similarly, in the shrink simulation, each gesture instance will be shrunk at both ends
equally by β/2. In the shift left and shift right simulations, each gesture instance is
shifted to the left or to the right respectively by β compared to the correct starting
point.

We assume that all gesture instances have the same jitter level β. This assumption
is not realistic however it can show how much jitter level in the training data set
the spotting methods can tolerate given the same style of annotation (for example,
a labeler always extends all his annotation 20% level). For a more realistic scenario
where jitter levels vary from one instance to another instance, the experiment on the
real crowdsourced annotation is presented in Sect. 18.6.2.

18.5.3 Evaluation with Baseline Methods

To investigate the effect of noisy crowdsourced data sets on gesture recognition, we
compare the performance of recognition methods trained with ground truth anno-
tations against those trained with crowdsourced annotations. With crowdsourcing-
based experiments, the recognition system is trained on crowdsourced annotations
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and tested on clean data (i.e., annotated by experts). For each data set, we perform a
5-fold cross-validation.

We compare our proposed LCSS-based TMMs with three baselines approaches:
the Segmented DTW (Ko et al. 2005; Hartmann and Link 2010), Nonsegmented
DTW (Stiefmeier et al. 2008) and support vector machines (SVM). For all TMM
methods, we use the same strategy to select templates, i.e., the maximum similarity
average for our LCSS-based methods and the minimum distance average for DTW-
based ones. They all have the same quantization preprocessing step as presented in
Sect. 18.4.2. The rejection thresholds are selected as discussed in Sect. 18.4.4. For
SegmentedLCSS and Segmented DTW, the window length is chosen as the template
length.

For SVM, the signals are passed through a sliding window, with 50% overlap.
For each window, mean and variance of the signals are calculated and the obtained
feature vectors are fed into a SVM classifier. We use RBF kernels and the two RBF
parameters are selected by using cross-validation. In this work, we use the LIBSVM
library (Chang and Lin 2011) for training SVM.

18.5.3.1 Complexity of Baseline Methods

Segmented DTW belongs, like Segmented LCSS, to the category of sliding window
based template matching algorithms. Therefore, roughly, they have the same compu-
tational cost. However, unlike SegmentedLCSS, in SegmentedDTW the boundaries
of the gestures must be swept exhaustively in the observation window and DTW
must be recomputed for each choice to find the best match (Ko et al. 2005; Hart-
mann and Link 2010). Therefore, when one new sample arrives, the complexity of
the SegmentedDTW isO(T 3) in the worst case. Meanwhile, in SegmentedLCSS the
boundary of gesture inside the window can be found easily via matching points and
the observationwindow is shifted to thefirstmatchedpoint in the previous recognition
process instead of being shifted forward by only one sample. Thus, SegmentedLCSS
has one order of magnitude lower than SegmentedDTW.

Nonsegmented DTW and WarpingLCSS determine gesture occurrences without
segmenting the stream. Therefore, they achieve the same computational cost and
they are faster than SegmentedLCSS by one order of magnitude.

In the recognition phase, the running time of SVM grows linearly with the length
of thewindow.Hence, SVMhas roughly the same computation cost asWarpingLCSS
in the recognition phase.

18.5.4 Evaluation Metrics

The distribution of the gesture classes may be highly unbalanced in real-life data
sets. Especially, in our data sets, null class is predominant. Therefore, we assess
the performance of gesture recognition with the weighted average F1 score. The
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weighted average F1 score is the sum of the F1 scores of all classes, each weighted
according to the proportion of samples of that particular class. Specifically,

F1score =
∑

c

2 ∗ wc
precisionc ∗ recallc
precisionc + recallc

,

where c is the class index and wc is the proportion of samples of class c; precisionc
is the proportion of samples of class c predicted correctly over the total samples
predicted as class c; recallc is the proportion of samples of class c predicted correctly
over the total samples of class c.

We present two ways of computing the F1 score, either including (F1-Null) or
excluding the null class (F1-NoNull). F1-NoNull does not consider the null class, but
still takes into account false predictions of gesture samples or instances misclassified
as null class. The recognition system that has high values of both F1-Null and F1-
NoNull predicts well both gesture classes and null class.

18.6 Results and Discussion

In this section we present and discuss the results of the experiments conducted with
synthesized and real crowdsourced annotations.

18.6.1 Results on Synthesized Crowdsourced Annotations

Wefirst present the results with synthesized crowdsourced annotations, sweeping the
noise levels as described in Sect. 18.5. The results show that F1-Null and F1-NoNull
have a similar trend of performance as the noise levels increase, therefore we report
F1-Null score only.

18.6.1.1 Label Noise Simulation

Figure 18.8 shows the results of label noise simulations on the three data sets. Warp-
ingLCSS and SegmentedLCSS aremore robust against label noise compared to SVM
and DTW-based methods. The performance of LCSS-based methods is stable until
a label noise percentage (α) in each class exceeding 70% in Opportunity and HCI
data sets and 50% in the Skoda data set. On average, WarpingLCSS outperforms
SVM by 22% F1-Null and outperforms DTW-based methods by 36% F1-Null in
presence of 60% mislabeled instances. SegmentedLCSS yields similar performance
as WarpingLCSS.
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Fig. 18.8 Performance of label noise simulation for the three data sets

SVM performs worse than our LCSS-based methods when α increases. As more
label substitutions are added to each class, SVM gets more confused and its per-
formance decreases quickly. The degradation of SVM in performance is expected,
since each instance contributes equally to themodel building.Hence,wrongly labeled
instances can induce the model to choose incorrect support vectors, which severely
degrades the performance. Moreover, since the SVM method models null class
explicitly, it is very sensitive to delete noise. Meanwhile, TMMs examine patterns
of gesture classes and ignore null class in the training phase, thus, TMMs are not
influenced with the delete noise at all.

The reason why LCSS-based TMMs outperform the ones based on DTW lies in
the distancemetrics used when selecting the template for each class. Each template is
chosen as the one with the highest average similarity to the other instances belonging
to the same class. This translates into choosing respectively highest average LCSS
and lowest average DTW distance. While LCSS values between a template and an
instance of the same class are bounded between 0 and the length of the template,DTW
can grow indefinitely. For this reason, when calculating averageDTWdistances, mis-
labeled instances bias the average towards high values, regardless whether correctly
labeled instances have a low DTW distance. Consequently, DTW-based TMMs are
more likely to pick wrong templates, leading to poor performance when α increases.

The difference between LCSS and DTW in choosing templates can be illustrated
with a toy-example. Consider three instances A1, A2 and B which are all labeled as
belonging to class cA but let B be mislabeled, that is, B actually belongs to class
cB . To simplify matters, let us assume LCSS(A1, A2) = 1, LCSS(A1, B) = 0 and
LCSS(A2, B) = 0. Similarly, let us assume DTW (A1, A2) = 0, DTW (A1, B)=∞
and DTW (A2, B) = ∞. With LCSS, A1 would have an average similarity of 0.5 to
A2 and B; A2 would have an average similarity of 0.5 to A1 and B; B would have
an average similarity of 0 to A1 and A2. Thus, LCSS would pick either A1 or A2 as
template for the class cA: both choices would be reasonable. With DTW, A1 would
have an average distance of∞ to A2 and B; A2 would have an average distance of∞
to A1 and B; B would have an average distance of ∞ to A1 and A2. In this case, the
algorithm would not prefer A1 or A2 over B, which can lead to choosing as template



18 Robust Online Gesture Recognition with Crowdsourced Annotations 527

the mislabeled instance B to represent class cA. Of course in practice the values of
the DTW distance are not infinity, in fact the degradation of DTW-based approaches
is not occurring already for a small amount of label noise.

The illustration explains the capability of our LCSS-based methods to pick a good
template among noisy instances for a gesture class as long as the number of good
instances in a gesture class is still predominant.

By analyzing the starting points of the curves of Fig. 18.8, obtained with α = 0
(no noise), we can conclude that our LCSS-based methods have a similar or better
performance compared to the baselines also for the case of clean training data sets.

18.6.1.2 Extend Jitter Simulation

When temporal boundaries are extended, data belonging to the null class (before and
after the gesture) are labeled as belonging to the gesture class. This impacts SVM and
TMMs differently. In the case of SVM, the null class is modeled explicitly. The noisy
feature vectors extracted from extended parts are added into the feature space of each
gesture class. Besides that, the data really belonging to the gesture are preserved,
thus the models of gesture classes maintain good feature spaces correctly. Therefore,
the performance of SVM depends on how much the noisy feature vectors added into
the model of each gesture class. Accordingly, it relies on the levels of variability
of the signals belonging to the null class. If the variability of the signals belong to
the null class is low, even when the extend level is large, the noisy feature vectors
in each gesture class does not grow, leading to the stable of SVM performance. In
the converse case, the noisy feature vectors in each gesture class will explode as the
extend level increases, causing the decrease in the performance of SVM.

For TMMs instead the null class is recognized in the test data by means of the
rejection threshold εc and no template is built for it. Thus, if symbols belonging to
the null class are present in a test sequence, these will be matched to the symbols
present in the extended gesture instances, inducing the TMMs to recognize gestures
instead of null class.

This is confirmed by an analysis of the results, as shown in Fig. 18.9. TMMs can
tolerate up to about 40% extend level in the Opportunity and HCI data sets and about
10% extend level in the Skoda data set. As the extend level is high, the performance
of SVM is stable in HCI and Skoda data sets, but degrades quickly in Opportunity
data set. As explained above, the reason of the differences among data sets lie in the
different levels of variability of the signals belonging to the null class in the different
data sets.

18.6.1.3 Shrink Jitter Simulation

Whenhaving a shrink jitter noise, the effect is that themethods lose information about
the gesture data, since only parts of the gestures are labeled. This has a stronger effect
inSVM, since themodel is corrupted. ForTMMs, subsequences arematched,with the
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Fig. 18.10 Performance of shrink jitter simulation

effect that shrunk instances still contain information in form of shorter subsequences
that can still be matched to the test data. This is confirmed by the results, shown in
Fig. 18.10.

Our proposed LCSS-basedmethods achieve the best performance in the three data
sets. All methods can tolerate about 30% shrink level before a degradation compared
to trainingwith cleandata occurs. TheSegmentedDTWhas a similar results asLCSS-
based methods in low-variability data sets (HCI and Skoda). However, Segmented
DTW takes a higher computational cost. Moreover, in our experiments, all gesture
instances have the same shrink level, i.e., after shrinking, instances of a gesture class
are still aligned well and DTW can still achieve a reasonable performance. In a
real crowdsourcing annotation setting, different instances may have different shrink
levels (see Fig. 18.3b). In that case, DTW will accumulate higher distances due to
data misalignment at the beginning and the end of instances (see Nguyen-Dinh et al.
2012 for a more thorough discussion of the weakness of DTWwith misalignment in
temporal boundaries).
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Fig. 18.11 Performance of shift-right jitter simulation

18.6.1.4 Shift-Left and Shift-Right Jitter Simulation

When annotations are shifted, a mixture of the effects described in Sects. 18.6.1.2
and 18.6.1.3 are present. Some samples belonging to gestures are lost and some null
class samples are labeled as belonging to a gesture. Figure 18.11 shows the results
of shift-right jitter simulations (the shift-left simulations yield similar results). All
methods can sustain about 20% shift level before the performance degrades compared
to a clean training data set. LCSS-based methods perform often better, or as good
as DTW-based methods on the data sets that we examined. TMMs outperform SVM
with up to 30% shift level.

18.6.2 Results on Real Crowdsourced Annotation

To further validate the outcome of the previous experiments, we use the real crowd-
sourced annotations discussed in Sect. 18.3.3. The annotations were performed by
AMT workers on the Opportunity data set. We use both the annotations obtained in
the one-labeler and in the multiple-labeler scenarios. In these annotations, mixtures
of all kinds of the errors listed in the taxonomy (Sect. 18.3.1) are present and jitter
levels are varied from one instance to another instance (see Fig. 18.3).

Figure 18.12 reports the performance of the different recognition methods on
our real crowdsourced annotation. In the clean annotated Opportunity data set, the
performance of SVM is slightly lower than that of LCSS-based TMMs (only lower
by 3% for F1-Null and by 7% for F1-NoNull). Two DTW approaches underperform
the others. The reason is that DTW is very sensitive to high variation in gesture
execution (Nguyen-Dinh et al. 2012) and the Opportunity data set contains large
variability in the executions of the daily activities.

In the multiple-labeler annotation, labels of 80% of the data samples match the
ground truth.Moreover, only 18% of gesture instances are labeled incorrectly and the
remainder are correctly labeled with a jitter level of at least 2% (see Fig. 18.3). The
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Fig. 18.12 Performance of real crowdsourcing annotation on Opportunity data set

results show that the performances of all recognition methods are slightly decreased
by up to 4% for F1-Null and 6% for F1-NoNull compared to the training with clean
training sets. Our LCSS-based TMMs yield the best performance. As stated also in
Sect. 18.6.1.1, the reason for the robustness of LCSS-based methods lies in their
ability to select clean templates also in presence of annotation noise.

In the AMT one-labeler annotation, only 55% samples are annotated correctly.
Additionally, about 50% of gesture instances are affected by label noise, with many
deletions and substitutions. In each gesture class, instances which are labeled cor-
rectly are still themajority. The result shows that our LCSS-based TMMs still achieve
the best performance. The F1-Null measure decreases by 10% and the F1-NoNull
by 16% compared to training with clean annotations.

In the one-labeler annotation, there is a significant difference in performance
between TMMs and SVM. The performance of SVM decreases dramatically, down
to a F1-NoNull of 5%, which is less than random guessing (which would be around
6% in a 16-class data set like Opportunity). This result confirms what was already
measured with the synthetic annotations and discussed in Sect. 18.6.1.1.

Additionally, we conduct a 2-sided hypothesis test at the 0.01 level of significance
as inGuyon et al. (1998) among the performance of themethods in the three scenarios.
The tests showed that the performance differences among themethods are statistically
significant except the comparison of the F1-Null between SVM and WarpingLCSS
and the comparison of the F1-NoNull between WarpingLCSS and SegmentedLCSS
in the multiple-labeler annotation.

The results on the real crowdsourcing annotation confirm that our proposedWarp-
ingLCSS and SegmentedLCSS are robust to noise and yield better performance on
crowdsourcing data set. WarpingLCSS is preferable in online recognition, since it
has a lower computational cost.
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18.6.3 A LCSS-Based Filtering Component

The results have shown that SVM is very sensitive to the high label noise in the
training data set. Therefore, a preprocessing component to clean the noisy anno-
tation would be beneficial before using SVM. Given the robustness of our LCSS
approaches in selecting templates among noisy instances, as well as in spotting, we
further propose a LCSS-based filtering component to filter out noise in crowdsourced
annotations before training a SVM. We call this approach FSVM. For each gesture
class, the LCSS-based filtering component first computes a LCSS similarity matrix
among all pairs of instances in the class. It then keeps only the instances that have
an average similarity to other instances of the same class exceeding the average of
all the average similarities of all instances in the class. To clean noise inside the null
instances (e.g., delete noise), the filtering component runs the WarpingLCSS on the
data annotated as null and discards any parts which get classified as any gestures of
interest.

For DTW-based TMMs, the performance degrades quickly when the label noise
percentage in the training data set increases (see Fig. 18.8) because DTW cannot
pick a good template among noisy instances. It is interesting to know how templates
selected by LCSS perform in the DTW spotting methods. Therefore, we conduct
experiments for Segmented DTW and Nonsegmented DTW with templates trained
byLCSS.Wecall these approachesLCSS-SegDTWandLCSS-NonSegDTWrespec-
tively. Note that the algorithm running time when the system is deployed remains
unchanged: only the training phase is affected.

The performances of FSVM, LCSS-SegDTWandLCSS-NonSegDTWare shown
in Fig. 18.13 for the real crowdsourced annotation and in Fig. 18.14 for the synthetic
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Fig. 18.14 Performance of label noise simulation for the methods with and without filtering

label noise simulation. We present again the performances of the other methods that
we discuss above for the sake of comparison.

In the real crowdsourced annotation, the filtering increases the performance of
SVM by 20% F1-score and of DTW-based methods by 8% F1-score on average in
the one-labeler annotation scenario where high label noise exists (see Fig. 18.3). In
the clean annotation and multiple-labeler annotation, FSVM performs just slightly
worse than SVM (only 2%). This slight decrease can be explained with the fact
that the FSVM method decreases the amount training data compared to pure SVM,
because the LCSS-based filtering component in the FSVM removes some part of
training data, considered noisy. Our proposed LCSS-based methods still outperform
FSVM.

The LCSS-NonSegDTW outperforms Nonsegmented DTW in all three scenarios
(expert’s annotation, AMT multiple-labeler annotation and AMT one-labeler anno-
tation). Similarly, LCSS-SegDTW outperforms SegmentedDTW. The result clarifies
that LCSS is capable of picking a better template among noisy instances, compared to
DTW. However, LCSS-NonSegDTW and LCSS-SegDTW still underperform com-
pared to our LCSS-basedTMMs. The rationale is the same as discussed before. LCSS
is more robust to high variation in daily gesture execution, therefore LCSS-based
spotting approaches have a better performance than DTW-based ones even with the
same templates.

In the synthetic label noise simulation, the FSVM, LCSS-NonSegDTW and
LCSS-SegDTW methods outperform SVM, Nonsegmented DTW and Segmented
DTW respectively and keep the performance stable much longer when α increases.
Our proposed LCSS-based TMMs have similar or better performance than the other
methods. Interestingly, with the same templates picked by LCSS, LCSS-SegDTW
and LCSS-NonSegDTW have a performance which is similar to our LCSS-based
methods in the HCI and Skoda data sets. In the Opportunity data set, the LCSS-
NonSegDTW still performs worse than our SegmentedLCSS and WarpingLCSS
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methods because LCSS is more robust than DTW to high variability in daily ges-
tures (Nguyen-Dinh et al. 2012).

The results show that our LCSS approaches can be used in a preprocessing step
for cleaning noisy annotation in the training data for SVM or for selecting templates
for DTW-based TMMs.

18.6.4 Wrapping Up

Our LCSS-based TMMs are robust to labeling noise in crowdsourced gesture data
sets. Moreover, the LCSS-based TMMs also offer other advantages. (1) They are
easy to deploy in online gesture recognition system due to low time complexity. (2)
In our systems, signals are converted into symbols, thus SegmentedLCSS lends itself
even to embedded implementations. Specifically, string matching in the deployment
phase does not involve floating-point operations, thus it can be deployed easily in
cheap entry-level microcontroller units. (3) The deployed TMM-based systems are
scalable to new gesture classes of interest. After collecting a training data set for
a new class, the training phase only works with this class to find a template and
the rejection threshold for the class. The template is then integrated directly into
the deployed system. Thus, the whole process works smoothly with the new class
without interfering with other existing gesture classes.

Our LCSS-based TMMs have been investigated in online gesture recognitionwith
accelerometer data only. Their ability to work with other sensor modalities (e.g.,
gyroscopes, sound) has been investigated and it has shown promising preliminary
results in Nguyen-Dinh et al. (2014).

18.7 Conclusion and Future Work

In this paper, we investigated the robustness of our proposed LCSS-based TMMs for
online gesture recognition on crowdsourced annotated data sets. The results show that
SegmentedLCSS andWarpingLCSS are robust to crowdsourced annotation noise and
yield better performance than DTW-based methods and SVM. We also introduced a
taxonomyof annotation noise in crowdsourcing settings and analyzed the distribution
of that noise in real crowdsourced scenarios. Our LCSS-based methods are very
robust to label noise because they are capable of selecting a good template among
noisy instances for a class. In presence of 60% mislabeled instances, LCSS-based
methods outperform SVM by 22% F1-score and outperform DTW-based methods
by 36% F1-score on average.

With boundary jitter, the performance of the proposed approaches is comparable
to that on clean data sets if annotations can keep most of the information indicating
gestures (at most 30–40% jitter level). In extreme cases when jitter levels go beyond
that limit, our LCSS-based TMMS and the other machine learning techniques fail
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to recognize the complete segment of gestures. This can be the case for example
in real-time labeling, where labelers tend to indicate quickly when a gesture occurs
with only one time point, without providing the start and end time of the gesture
(e.g., the boundary shrinks to a point). Other techniques (e.g., active learning) are
necessary to acquire more labels and improve label quality in such cases.

We showed that our LCSS-based methods can be also used as a preprocessing
filtering component to clean crowdsourced training data set with severe label noise
before feeding the training sets into other learning techniques such as SVM or select
templates forDTW.Thefiltering increases the performance of SVMby20%F1-score
and DTW-based methods by 8% F1-score on average in the noisy real crowdsourced
annotations.

In future work, we plan to deploy the system that crowdsources annotated data to
a large number of users who record and contribute gestures. Our methods will then
be tested on such real large crowdsourced data sets, with the ultimate goal of having
a collaborative database of gestures and associated models with direct applications
with wearable sensors.
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Deep Learning for Action and Gesture
Recognition in Image Sequences: A Survey
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Shohreh Kasaei and Sergio Escalera

Abstract Interest in automatic action and gesture recognition has grown consid-
erably in the last few years. This is due in part to the large number of application
domains for this type of technology. As in many other computer vision areas, deep
learning based methods have quickly become a reference methodology for obtain-
ing state-of-the-art performance in both tasks. This chapter is a survey of current
deep learning based methodologies for action and gesture recognition in sequences
of images. The survey reviews both fundamental and cutting edge methodologies
reported in the last few years. We introduce a taxonomy that summarizes impor-
tant aspects of deep learning for approaching both tasks. Details of the proposed
architectures, fusion strategies, main datasets, and competitions are reviewed. Also,
we summarize and discuss the main works proposed so far with particular interest
on how they treat the temporal dimension of data, their highlighting features, and
opportunities and challenges for future research. To the best of our knowledge this
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is the first survey in the topic. We foresee this survey will become a reference in this
ever dynamic field of research.

Keywords Action recognition ·Gesture recognition ·Deep learning architectures ·
Fusion strategies

19.1 Introduction

Automatic human behavior analysis has grown in interest in the last few years. This
is due in part to the large number of application domains for this technology, from
any kind of human-computer interaction scenario (e.g. affective robotics Wilson and
Lewandowska-Tomaszczyk 2014), to security (e.g. video surveillance Vishwakarma
and Agrawal 2013), e-Health (e.g. therapy Mousavi Hondori and Khademi 2014 or
automatic diagnosis Scharcanski and Celebi 2014), language/communication (e.g.
sign language recognition Pigou et al. 2015a), or entertainment (e.g. interactive gam-
ing Marks 2011). Because of this, we can find, in the specialized literature, research
works dealing with different aspects of human behavior analysis: action/gesture
recognition (Feichtenhofer et al. 2016b; Simonyan and Zisserman 2014), social
interaction modeling (Deng et al. 2016; Ibrahim et al. 2016), facial emotion analy-
sis (Araujo and Kamel 2014), and personality traits identification (Joo et al. 2014),
just to mention some of them.

Two key tasks for human behavior understanding that have an impact in many
application scenarios are action and gesture recognition. The former is focused on
recognizing generic human actions (e.g. “walking”, “eating”, “answering phone”,
etc.) performed by one or more subjects, whereas the latter is focused on recognizing
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more fine-grained upper body movements performed by a user that have a meaning
within a particular context (e.g. “come”, “hi”, “thumbs up”, etc.). While both tasks
present different complications, they are interrelated in that both are based on ana-
lyzing the posture and movement of body across video sequences.

Action and gesture recognition have been studied for a while within the fields
of computer vision and pattern recognition. Since the earliest works two decades
ago (Kuniyoshi et al. 1990; Yamato et al. 1992), researchers have reported substan-
tial progress for both tasks. As in the case of several computer vision tasks (e.g. object
or face recognition), deep learning has also recently irrupted in action/gesture recog-
nition, achieving outstanding results and outperforming “non-deep"state-of-the-art
methods (Simonyan and Zisserman 2014; Wang et al. 2015b; Feichtenhofer et al.
2016a).

The extra (temporal) dimension in sequences typically turned action/gesture
recognition into a challenging problem in terms of both amounts of data to be
processed and model complexity–which in particular are crucial aspects for training
large parametric deep learning networks. In this context, authors proposed several
strategies, such as frame sub-sampling, aggregation of local frame-level features
into mid-level video representations, or temporal sequence modeling, just to name
a few. For the latter, researchers tried to exploit recurrent neural networks (RNN)
in the past (Waibel et al. 1990). However, these models typically faced some major
mathematical difficulties identified by Hochreiter (1991) and Bengio et al. (1994).
In 1997, authors’ effort led to the development of the long short-term memory
(LSTM) (Hochreiter and Schmidhuber 1997) cells for RNNs. Today, LSTMs are an
important part of deepmodels for image sequencemodeling for human action/gesture
recognition (Singh et al. 2016a; Liu et al. 2016a). These, along with implicit mod-
eling of spatiotemporal features using 3D convolutional nets (Ji et al. 2010; Tran
et al. 2015), pre-computed motion-based features (Simonyan and Zisserman 2014;
Feichtenhofer et al. 2016a), or the combination ofmultiple visual (Singh et al. 2016b),
resulted in fast and reliable state-of-the-art methods for action/gesture recognition.

Although the application of deep learning to action and gesture recognition is
relatively new, the amount of research that has been generated in these topics within
the last few years is astounding. Because of this overwhelming amount of work and
because of the race for getting the best model/performance in these tasks for which
the use of deep learning is still in its infancy, we think it is critical to compile the
recent advances and, in general, the historical state of the art on action and gesture
recognition with deep learning solutions. In this direction, this chapter aims to collect
and reviewall of the existentwork ondeep learning for action andgesture recognition.
To the best of our knowledge, there is no previous survey that collects and reviews all
of the existent work on deep learning for those tasks. This chapter aims at capturing a
snapshot of current trends in this direction, including an in depth analysis of different
deep models, with special interest on how they treat the temporal dimension of the
data.

The remainder of this chapter is organized as follows. Section19.2 presents a
taxonomy in this field of research. Next, Sect. 19.3 reviews the literature on human
action/activity recognition with deep learning models. Section19.4 summarizes the
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state-of-the-art on deep learning for gesture recognition. Finally, Sect. 19.5 discusses
the main features of the reviewed deep learning for the both studied problems.

19.2 Taxonomy

We present a taxonomy that summarizes the main concepts related to deep learning
in action and gesture recognition. The taxonomy is shown in Fig. 19.1. The reader
should note that with recognition we refer to either classification of pre-segmented
video segments or localization of actions in long untrimmed videos.

The rest of this section elaborates on the main aspects and findings derived from
the taxonomy. We first explain the categorized architectures, and then explore the
fusion strategies used in deep learning-based models for action/gesture recognition.
We also include a summary of datasets used for such tasks. Finally, we report main
challenges have been held for human action and gesture recognition.

19.2.1 Architectures

The most crucial challenge in deep-based human action and gesture recognition is
how to dealwith the temporal dimension. Based on theway it is dealt with, we catego-
rize approaches into four non-mutually exclusive groups. The first group consists in
2DCNNs,which are basically able to exploit appearance (spatial) information. These
approaches (Sun et al. 2015; Wang et al. 2016g) sample one or more frames from the
whole video and then apply a pre-trained 2D models on each of these frames, sepa-
rately. They finally label the actions by averaging the result of the sampled frames.
The main advantage of this kind of models is possibility to use pre-trained mod-
els on larger image datasets, such as ImageNet (Krizhevsky et al. 2012). Gesture

Action and
gesture recognition

approaches

2D models
Zha et al. (2015);

Wang et al. (2016c)

Motion-based input features
Simonyan and Zisserman

(2014); Singh et al. (2016a)

3D models (3D
conv. & pooling)
Ji et al. (2010);

Tran et al. (2015)

Temporal methods

2D Models + RNN + LSTM Gers et al. (2002);
)6102(neggoRdnazeñódrO

2D Models + B-RNN + LSTM Pigou et al.
(2015b); Singh et al. (2016a)

2D Models + H-RNN+ LSTM Du et al. (2015)

2D Models + D-RNN + LSTM Veeriah et al.
(2015)

2D Models + HMM Wu et al. (2016a)

2D/3D Models + Auxiliary outputs Ji et al. (2013)

2D/3D Models + Hand-crafted features Wang
et al. (2015b)

Fig. 19.1 Taxonomy of deep learning approaches for gesture and action recognition
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recognition methods mainly fall into this category (Jain et al. 2014a; Li et al. 2015b;
Liang et al. 2016).

Methods in the second group, first extract 2Dmotion features like optical flow and
then utilize these features as a different input channel of 2D convolutional networks
(Simonyan and Zisserman 2014; Wang et al. 2015b; Gkioxari and Malik 2015; Sun
et al. 2015;Weinzaepfel et al. 2015). In other words, these methods take into account
the temporal information from the pre-computed motion features. Third group uses
3D filters in the convolutional layers (Baccouche et al. 2011; Ji et al. 2013; Liu
et al. 2016b; Varol et al. 2016). The 3D convolution and 3D pooling allow to capture
discriminative features alongboth spatial and temporal dimensionswhilemaintaining
the temporal structure in contrast to 2D convolutional layers. The spatiotemoral
features extracted by this kind of models proven to surpass 2D models trained on the
same video frames. Figure19.2a–b illustrate these first three groups.

Finally, the fourth group combines 2D (or 3D) convolutional nets, which are
applied at individual (or stacks of) frames, with a temporal sequence modeling.
Recurrent Neural Network (RNN) (Elman 1990) is one of themost used networks for
this task,which can take into account the temporal data using recurrent connections in
hidden layers. The drawback of this network is its short memory which is insufficient
for real world actions. To solve this problem Long Short-Term Memory (LSTM)
networks (Gers et al. 2002) were proposed, and they are usually used as a hidden
layer of RNN. Bidirectional RNN (B-RRN) (Pigou et al. 2015b), Hierarchical RNN
(H-RNN) (Du et al. 2015), and Differential RNN (D-RNN) (Veeriah et al. 2015) are
some successful extensions of RNN in recognizing human actions. Other temporal
modeling tools like HMMare also applied (Wu et al. 2016a) in this context. We show
an example of this fourth approach on Fig. 19.2c.

For allmethods in the four groups, their performance can be boosted by combining
its output with auxiliary hand-crafted features (Ji et al. 2013), e.g. improved dense
trajectories (iDT) (Wang et al. 2015b).

19.2.2 Fusion Strategies

Information fusion is common in deep learningmethods for action and gesture recog-
nition. The goal of the fusion is, inmost cases, to exploit information complementari-
ness and redundancy for improving the recognition performance. At times, fusion is
used to combine the information from different parts in a segmented video sequence
(i.e., temporal dimension) (Wang et al. 2016c). Although, it is more common to fuse
information from multiple modalities (e.g. RGB, depth, and/or audio cues), where
often, information from the same modality, but processed differently is combined as
well. Another variant of information fusion widely used in action and gesture recog-
nition consist of combining models trained with different data samples and learning
parameters (Neverova et al. 2014).

In general terms, there are several variants in which information can be fused
(see e.g. Escalante et al. 2008). Most notably, early (fusing information before the
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Fig. 19.2 Illustrative examples of the different architectures and fusion strategies
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data is fed into the model, or the model is used to fuse information directly from
multiple sources), late (where the outputs of deep learning models are combined,
with another layer of a deep network, a classifier or even by majority voting), and
middle (in which intermediate layers fuse information, not directly form the differ-
ent modalities) fusion. An excellent illustration of the effective use of these three
traditional fusion schemes is described byNeverova et al. (2015b).Modifications and
variants of these schemes have been proposed as well, for instance, see the variants
introduced in Karpathy et al. (2014) for fusing information in the temporal dimen-
sion. Ensembles or stacked networks are also common strategies for information
fusion in deep learning based approaches for action and gesture recognition (Wang
et al. 2016c; Varol et al. 2016; Neverova et al. 2014). In Fig. 19.2d, we illustrate an
example of middle fusion of temporal information into a spatiotemporal stream.

19.2.3 Datasets

We list themost relevant datasets according to action/activity and gesture recognition
in Tables19.1 and 19.2, respectively. For each dataset, we specify year of creation;
problems for which the dataset was defined action classification (AC), temporal
localization (TL), spatio-temporal localization (STL), and gesture recognition (GR);
involved body parts (U for upper body, L for lower body, F for full body, and H for
hands); data modalities available; number of classes and the state-of-the-art result.
The last column provides a hint of how difficult the dataset is.

Figures19.3 and 19.4 show some frames for each of the aforementioned datasets.
From these few examples it is possible to understand the main differences: con-
strained/controlled environment (IXMAS, KTH, MPII Cooling, Berkeley MHAD,
etc.), unconstrained condition of the scene (ActivityNet, CollectiveActivity, High-
five, HMDB51, etc.). Some frames also reveal the high complexity of the dataset,
with regard to scene diversity (ActivityNet), low image quality (KTH), to mention
few.

Tables19.3 and 19.4 summarize the most recent approaches that obtained remark-
able results against two of the most well-known and challenging datasets in action
recognition, UCF-101 and THUMOS-14. Reviewing top ranked methods at UCF-
101 dataset, we find that themost significant difference among them is the strategy for
splitting video data and combine sub-sequence results. Wang et al. (2016g) encodes
the changes in the environment by dividing the input sequence into two parts, precon-
dition and effect states, and then look for a matrix transformation between these two
states. Li et al. (2016a) processes the input video as a hierarchical structure over the
time in 3 levels, i.e., short-term, medium-range and long-range. Varol et al. (2016)
achieve the best performance by using different temporal resolutions of RGB and
optical flow.

Looking at the top ranked deep models on the THUMOS 2014 challenge, almost
all thewinners in 2015 use different combinations of appearance andmotion features.
For the appearance ones, most of the methods extract frame-level CNN descriptors,
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Table 19.1 Action datasets. Notation: In the Modality column: Depth, Skeleton, Audio, grayscale
Intensity, InfraRed. In Performance column: Accuracy, mean Average Precision, Intersection over
Union

Year Database Problem Body
parts

Modality No.
classes

Performance

2004 KTH AC F I 6 98.67% Acc (Zhou
et al. 2016)

2006 IXMAS AC F RGB, A 13 98.79% Acc (Turaga
et al. 2008)

2007 HDM05 AC F S 100 98.17% Acc
(Chaudhry et al.
2013)

2008 HOHA
(Hollywood 1)

AC, TL F, U, L RGB 8 71.90% Acc (Saha
et al. 2016),
0.787@0.5 mAP
(Mettes et al. 2016)

2008 UCF Sports AC, STL F RGB 10 95.80% Acc (Shao
et al. 2016),
0.789@0.5 mAP
(Mettes et al. 2016)

2009 Hollywood 2 AC F, U, L RGB 12 78.50 mAP (Liu
et al. 2017)

2009 UCF11 (YouTube
Action)

AC, STL F RGB 11 93.77% Acc (Peng
et al. 2014), –

2010 Highfive AC, STL F,U RGB 4 69.40 mAP (Wang
et al. 2015a), 0.466
IoU (Avgerinakis
et al. 2015)

2010 MSRAction3D AC F D, S 20 97.30% Acc (Luo
et al. 2013)

2010 MSRAction II STL F RGB 3 85.00@0.125%
mAP (Chen and
Corso 2015)

2010 Olympic Sports AC F RGB 16 96.60% Acc (Li
et al. 2016a)

2011 Collective Activity
(Extended)

AC F RGB 6 90.23% Acc (Amer
et al. 2013)

2011 HMDB51 AC F, U, L RGB 51 73.60% Acc (Wang
et al. 2016a)

2012 MPII Cooking AC, TL F, U RGB 65 72.40 mAP (Zhou
et al. 2015), –

2012 MSRDaily
Activity3D

AC F,U RGB, D,
S

16 97.50% Acc
(Shahroudy et al.
2016b)

(continued)
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Table 19.1 (continued)

Year Database Problem Body
parts

Modality No.
classes

Performance

2012 UCF101 AC,TL F, U, L RGB 101 94.20% Acc (Wang
et al. 2016c),
46.77@0.2 mAP
(split 1)
(Weinzaepfel et al.
2015)

2012 UCF50 AC F, U, L RGB 50 97.90% Acc (Duta
et al. 2017)

2012 UTKinect-Action3D AC F RGB, D,
S

10 98.80% Acc (Kerola
et al. 2017)

2013 J-HMDB AC, STL F, U, L RGB, S 21 71.08 Acc (Peng and
Schmid 2016),
73.1@0.5
mAP (Saha et al.
2016)

2013 Berkeley MHAD AC F RGB, D,
S, A

11 100.00% Acc
(Chaudhry et al.
2013)

2014 N-UCLA Multiview
Action3D

AC F RGB, D,
S

10 90.80% Acc (Kerola
et al. 2017)

2014 Sports 1-Million AC F, U, L RGB 487 73.10% Acc
(Yue-Hei Ng et al.
2015)

2014 THUMOS-14 AC, TL F, U, L RGB 101, 20 * 71.60 mAP (Jain
et al. 2015c),
0.190@0.5 mAP
(Shou et al. 2016a)

2015 THUMOS-15 AC, TL F, U, L RGB 101, 20 * 80.80 mAP (Li et al.
2016a), 0.183@0.5
mAP (a)

2015 ActivityNet AC, TL F, U, L RGB 200 93.23 mAP (b),
0.594@0.5 mAP
(Montes et al. 2016)

2016 NTU RGB+D AC F RGB, D,
S, IR

60 {69.20, 77.70}1 Acc
(Liu et al. 2016a)

∗A different number of classes is used for different problems. For TL/STL, “@” indicates amount
overlap with groundtruth considered for positive localization. For instance, @0.5 indicates a 50%
of overlap
(a) Winner method from (http://activity-net.org/challenges/2016/program.html#leaderboard)
(b) Winner method from http://www.thumos.info/results.html
1{cross-subject accuracy, cross-view accuracy}

http://activity-net.org/challenges/2016/program.html#leaderboard
http://www.thumos.info/results.html
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Table 19.2 Gesture datasets. Notation: In the Modality column: Depth, Skeleton. In the Perfor-
mance column: Accuracy, Intersection over Union

Year Database Problem Body
parts

Modality No. class Performance

2011 ChaLearn Gesture GC F, U RGB, D 15 –

2012 MSR-Gesture3D GC F, H RGB, D 12 98.50% Acc (Chen
et al. 2016)

2014 ChaLearn (Track 3) GC, TL U RGB, D,
S

20 98.20 Acc
(Molchanov et al.
2016), 0.870 IoU
(Neverova et al.
2015b)

2015 VIVA Hand Gesture GC H RGB 19 77.50% Acc
(Molchanov et al.
2015)

2016 ChaLearn conGD TL U RGB, D 249 0.315 IoU (Camgoz
et al. 2016)

ChaLearn isoGD GC 67.19% Acc (Duan
et al. 2016)

and video representation is generated using a pooling method over the sequence.
The motion-based features used by the top ranked methods can be divided into three
groups, FlowNet, 3D CNN, and iDTs. In Qiu et al. (2015), we provide a comparison
of those showing 3D CNN achieves the best result.

19.2.4 Challenges

Every year computer vision organizations arrange competitions providing useful
datasets with annotations carefully designed according to the problem to face.
Table19.5 shows 5main challenges in computer vision. For each challenge we report
the year in which it took place, the dataset provided to the participant along with the
task to be faced, the associated event, the winner of the challenge, and a list of top
results obtained against the competition dataset.

19.3 Action Recognition

This section reviews deep methods for action (or activity) recognition according to
the way they treat the temporal dimension: using 3D convolutions, pre-computed
motion-based features, and temporal sequence models.
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Table 19.3 UCF-101 dataset results

Ref. Year Features Architecture Score (%)

Feichtenhofer et al.
(2016a)

2016 ST-ResNet + iDT 2-stream ConvNet
and ResNet

94.6

Lev et al. (2016) 2016 RNN Fisher Vector C3D + VGG-CCA +
iDT

94.1

Varol et al. (2016) 2016 Opt. Flow, RGB,
iDT

LTC-CNN 92.7

Wang et al. (2016h) 2016 conv5 2-Stream SR-CNN 92.6

Feichtenhofer et al.
(2016b)

2016 conv5, 3D pool VGG-16, VGG-M,
3D CNN

92.5

Wang et al. (2016g) 2016 CNN Siamese VGG-16 92.4

Li et al. (2016a) 2016 CNN fc7 2 CNNs (spatial +
temporal)

92.2

Wang et al. (2016b) 2016 3D CNN + RNN
hierarchical local

Volumetric R-CNN
(DANN)

91.6

Wang et al. (2015b) 2015 CNN, Hog/Hof/Mbh 2-stream CNN 91.5

Mansimov et al.
(2015)

2015 CNN feat 3D CNN 89.7

Bilen et al. (2016) 2016 Dynamic feat maps BVLC CaffeNet 89.1

Jain et al. (2015c) 2015 H/H/M, iDT,
FV+PCA+GMM

8-layer CNN 88.5

Sun et al. (2015) 2015 CNN FSTCN: 2 CNNs
(spat + temp)

88.1

Simonyan and
Zisserman (2014)

2014 CNN Two-stream CNN
(CNN-M-2048)

88.0

Mahasseni and
Todorovic (2016)

2016 eLSTM, DCNN fc7 eLSTM,
DCNN+LSTM

86.9

Zhang et al. (2016) 2016 CNN 2 CNNs (spatial +
temporal)

86.4

Ye and Tian (2016) 2016 dense trajectory,
C3D

RNN, LSTM,
3DCNN

85.4

Peng and Schmid
(2015)

2015 CNN fc6,
HOG/HOF/MBH

VGG19 Conv5 79.52 ± 1.1 (tr2)

66.64 (tr1)

Karpathy et al.
(2014)

2014 CNN features 2 CNN converge to 2
fc layers

65.4, 68 mAP

Jain et al. (2015b) 2015 ImageNet CNN,
word2vec GMM

CNN 63.9

Weinzaepfel et al.
(2015)

2015 CNN Spatial + motion
CNN

54.28 mAP



550 M. Asadi-Aghbolaghi et al.

Fig. 19.3 Action datasets: sample images
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Fig. 19.4 Gesture datasets: sample images

19.3.1 2D Convolutional Neural Networks

In these kind of approaches, action recognition is often performed at frame-level
and then somehow aggregated (averaging the class score predictions on individual
frames). Some works further explore the possibility of using several frames as input.
In particular, Karpathy et al. (2014) studied the different alternatives for considering
multiple frames in a 2D model; however they concluded there was not a gain in
performance using multiple video frames over averaging single frame predictions.
Instead, Wang et al. (2016c) randomly sample video frames from K equal width
temporal segments, obtain K class score predictions, compute the consensus scores,
and use these in the loss function to learn from video representations directly, instead
from one frame or one stack of frames. Zha et al. (2015) convolve each frame of
the video sequence to obtain frame-level CNN features. They then perform spatio-
temporal pooling on pre-defined spatial regions over the set of randomly sampled
frames (50–120 depending on the sequence) in order to construct a video-level repre-
sentation, which is later l2-normalized and classified using SVM. Wu et al. (2016d)
model scene, object, and more generic feature representations using separate convo-
lutional streams. For each frame, the three obtained representations are averaged and
input to a three-layer fully connected network which provides the final output. Bilen
et al. (2016) collapse the videos into dynamic images, that can be fed into CNNs for
image classification, by using rank pooling (Fernando et al. 2016). Dynamic images
represent are simply the parameters of a ranking function that learned to order the
video frames. In Rahmani and Mian (2016), the authors propose a CNN, not to
classify actions in depth data directly, but to model poses in a view-invariant high-
dimensional space. For this purpose, they generate a synthetic dataset of 3D poses
frommotion capture data that are later fit with a puppet model and projected to depth
maps. The network is first trained to differentiate among hundreds of poses to, then,
use the features of the penultimate fully-connected layer for action classification in
a non-deep action recognition approach. Ni et al. (2016) exploit the combination of
CNNs and LSTM for interactional object parsing on individual frames. Note LSTMs
are not used for temporal sequence modeling but for refining object detections. For
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Table 19.4 THUMOS-14 dataset results

Ref. Year Features Architecture Score%

Jain et al. (2015c) 2015 H/H/M, IDT,
FV+PCA+GMM.

8-layer CNN 71.6

Zhang et al. (2016) 2016 CNN 2 CNNs (spatial +
temporal)

61.5

Jain et al. (2015b) 2015 ImageNet CNN,
word2vec GMM

CNN 56.3

Shou et al. (2016b) 2016 CNN fc6, fc7, fc8 3D CNN,
Segment-CNN

19 mAP

Yeung et al. (2016) 2015 CNN fc7 VGG-16, 3-layer
LSTM

17.1 mAP

Escorcia et al.
(2016)

2016 fc7 3D CNN C3D CNN net 0.084 mAP@50

0.121 mAP@100

0.139 mAP@200

0.125 mAP@500

the action detection task, they then use object detections for pooling improved dense
trajectories extracted on temporal segments.

Note that, independently from the discussed method, 2D convolutional filters
in 2D CNNs only consider spatial inter-relations of pixels, ignoring their temporal
neighborhood. Next we explore the more effective ways of exploiting spatiotemporal
information in image sequences, which consist in either using pre-computed motion-
based to include implicit temporal information in 2D CNNs or explicitly modeling
temporal information with 3D CNNs or temporal sequence modeling methods.

19.3.2 Motion-Based Features

Researchers found that motion based features, such as optical flow, were a rich cue
that could be fed directly as a network input. There are accurate and efficient methods
to compute these kind of features, some of them by exploiting GPU capabilities
(Fortun et al. 2015). The use of optical flow demonstrated to boost the performance
of CNNs on action recognition-related tasks (Simonyan and Zisserman 2014; Park
et al. 2016; Zhang et al. 2016; Gkioxari and Malik 2015).

Simonyan andZisserman (2014) presented a two-streamCNNwhich incorporated
both spatial (video frames) and temporal networks (pre-computed optical flow), and
showed that the temporal networks trained on dense optical flow are able to obtain
very good performance in spite of having limited training data. Along the same lines,
Wang andHoai (2016) propose a two-stream (spatial and temporal) net for non-action
classification in temporal action localization. Similarly, Zhu et al. (2016b) use the
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Table 19.5 Challenges

Year Challenge Database Task Event Winner Results

2011 Opportunity Opportunity AR – CSTAR Sagha et al. (2011b),
Chavarriaga et al.
(2011), Sagha et al.
(2011a)

2012 HARL LIRIS AR ICPR Ni et al.
(2013)

Wolf et al. (2014),
Gu et al. (2016)*

2012 VIRAT VIRAT DB AR CVPR – Vondrick and
Ramanan (2011), Oh
(2011)

2012 ChaLearn CGD GR – Alfnie Konecny and Hagara
(2014)* Escalante
et al. (2015)

2013 Montalbano GR – Wu et al.
(2013)

Bayer and
Silbermann (2013)

2014 HuPBA 8K+ AR ECCV Peng et al.
(2015)

–

Montalbano GR Neverova
et al. (2014)

Pigou et al. (2015b),
Neverova et al.
(2015b), Shu et al.
(2015)

2015 HuPBA 8K+ AR CVPR Wang et al.
(2015e)

–

2016 isoGD,
conGD

GR ICPR Chai et al.
(2016)

Karpathy et al.
(2014), Wang et al.
(2017)

2013 Thumos UCF101 AR ICCV Jiang et al.
(2013)

Sultani and Shah
(2016), Soomro et al.
(2015), Peng et al.
(2013), Karaman
et al. (2013)

2014 Thumos-14 AR ECCV Jain et al.
(2014b)

Jain et al. (2015c),
Shou et al. (2016a),
Richard and Gall
(2016)

2015 Thumos-15 AR CVPR Xu et al.
(2015a)

Wang et al. (2015c),
Yuan et al. (2016)

2015 VIVA VIVA GR CVPR Molchanov
et al. (2015)

Ohn-Bar and Trivedi
(2014)

2016 ROSE NTU RGB+D AR ACCV SEARCH Shahroudy et al.
(2016a)

*Non-deep learning method
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same architecture for key-volume mining and classification in this case for spatio-
temporal localization of actions. Chéron et al. (2015) extract both appearance and
motion deep features from body part detections instead of whole video frames. They
then compute for each body part themin/max aggregation their descriptors over time.
The final representation consists of the concatenation of pooled body part descriptors
on both appearance and motion cues, which is comparable to the size of a Fisher
vector. Park et al. (2016) used themagnitude of optical flowvectors as amultiplicative
factor for the features from the last convolutional layer. This reinforces the attention
of the network on the moving objects when fine-tuning the fully connected layers.
Zhang et al. (2016) explored motion vectors (obtained from video compression) to
replace dense optical flow. They adopted a knowledge transfer strategy from optical
flow CNN to the motion vector CNN to compensate the lack of detail and noisiness
of motion vectors.

Singh et al. (2016a) use a multi-stream network to obtain frame-level features.
To the full-frame spatial and motion streams from Simonyan and Zisserman (2014),
they add two other actor-centered (spatial and motion) streams that compute the
features in the actor’s surrounding bounding box obtained by a human detector algo-
rithm. Moreover, motion features are not stacks of optical flow maps between pairs
of consecutive frames, but among a central frame and neighboring ones (avoiding
object’s displacement along the stacked flow maps). Gkioxari and Malik (2015) and
Weinzaepfel et al. (2015) propose a similar an approach for action localization. They
first generate action region proposals from RGB frames using, respectively, selective
search (Uijlings et al. 2013) on and EdgeBoxes (Zitnick and Dollár 2014). Regions
are then linked and described with static and motion CNN features. However, high
quality proposals can be obtained from motion. Peng and Schmid (2016) show a
region proposals generated by a region proposal network (RPN) (Ren et al. 2015)
from motion (optical flow) were complementary to the ones generated by an appear-
ance RPN. Note some of the works in Sect. 19.3.3 were using pre-computed motion
features, which is not mutually exclusive with using motion features approaches.
Varol et al. (2016) uses stacks of 60 pre-computed optical flow maps as inputs for
the 3D convolutions, largely improving results obtained using raw video frames.
Wang et al. (2016d) compute motion-like image representations from depth data by
accumulating absolute depth differences of contiguous frames, namely hierarchical
depth motion maps (HDMM).

In the literature there exist several methods which extend the deep-based methods
with the popular dense trajectory features. Wang et al. (2015b) introduce a video rep-
resentation called Trajectory-pooled Deep-convolutional Descriptor (TDD), which
consists on extending the state-of-the-art descriptors along the trajectories with deep
descriptors pooled from normalized CNN feature maps. Peng and Schmid (2015)
propose a method based on a concatenation of iDT feature (HOG, HOF, MBHx,
MBHy descriptors) and Fisher vector encoding and CNN features (VGG19). For
CNN features they use VGG19 CNN to capture appearance features and VLAD
encoding to encore/pool convolutional feature maps. Rahmani et al. (2016) utilize
dense trajectories, and hence motion-based features, in order to learn view-invariant
representations of actions. In order to model this variance, they generate a synthetic



19 Deep Learning for Action and Gesture Recognition … 555

dataset of actions with 3D puppets from MoCap data that are projected to multiple
2D viewpoints from which fisher vectors of dense trajectories are used for learning
a CNN model. During its training, an output layer is placed with as many neu-
rons as training sequences so fisher vectors from different 2D viewpoints give same
response. Afterwards, the concatenation of responses in intermediate layers (except
for last one) provide the view-invariant representation for actions.

Differently from other works, Ng et al. (2016) jointly estimate optical flow and
recognize actions in a multi-task learning setup. Their models consists in a residual
network based on FlowNet He et al. (2016a) with extra additional classification
layers, which learns to do both estimate optical flow and perform the classification
task.

19.3.3 3D Convolutional Neural Networks

The early work of Ji et al. (2010) introduced the novelty of inferring temporal infor-
mation from raw RGB data directly by performing 3D convolutions on stacks of
multiple adjacent video frames, namely 3D ConvNets. Since then, many authors
tried to either further improve this kind of models (Tran et al. 2015; Mansimov et al.
2015; Sun et al. 2015; Shou et al. 2016b; Poleg et al. 2016; Liu et al. 2016b) or
used them in combination with other hybrid deep-oriented models (Escorcia et al.
2016; Baccouche et al. 2011; Ye and Tian 2016; Feichtenhofer et al. 2016b;Wu et al.
2016c; Li et al. 2016a).

In particular, Tran et al. (2015) proposed 3D convolutions with more modern deep
architectures and fixed 3× 3× 3 convolution kernel size for all layers, that made 3D
convnets more suitable for large-scale video classification. In general, 3D ConvNets
can be expensive to train because of the large number of parameters, especially when
trainingwith bigger datasets such as 1-M sports dataset (Karpathy et al. 2014) (which
can take up to one month). Sun et al. (2015) factorized the 3D convolutional ker-
nel learning into a sequential process of learning 2D spatial convolutions in lower
convolutional layers followed by learning 1D temporal convolutions in upper lay-
ers. Mansimov et al. (2015) proposed initializing 3D convolutional weights using
2D convolutional weights from spatial CNN trained on ImageNET. This not only
speeds up the training but also alleviates the overfitting problem on small datasets.
Varol et al. (2016) extended the length of input clips from 16 to 60 frames in order
model more long-term temporal information during 3D convolutions, but reduced
the input’s spatial resolution to maintain the model complexity. Poleg et al. (2016)
introduced a more compact 3D ConvNet for egocentric action recognition by apply-
ing 3D convolutions and 3D pooling only at the first layer. However, they do not use
raw RGB frames, but stacked optical flow. In the context of depth data, Liu et al.
(2016b) propose re-scaling depth image sequences to a 3D cuboid and the use of 3D
convolutions to extract spatio-temporal features. The network consists of two pairs
of convolutional and 3D max-pooling followed by a two-layer fully-connected layer
net.
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3D convolutions are often used in more cumbersome hybrid deep-based
approaches. Shou et al. (2016b) propose a multi-stage CNN, in this case for temporal
action localization, consisting of three 3D convnets (Tran et al. 2015): a proposal
generation network that learns to differentiate background from action segments, a
classification network that aims at discriminating among actions and serves as initial-
ization for a third network, the localization networkwith a loss function that considers
temporal overlap with the ground truth annotations. Wang et al. (2016d) applied 3D
ConvNets to action recognition from depth data. The authors train a separate 3D
ConvNet for each Cartesian plane each of which fed with a stack of depth images
constructed from different 3D rotations and temporal scales. Singh et al. (2016b)
prove the combination of both 2D and 3D ConvNet can leverage the performance
when performing egocentric action recognition. Li et al. (2016a) uses 3D convolu-
tions from Tran et al. (2015) to model short-term action features on a hierarchical
framework in which linear dynamic systems (LDS) and VLAD descriptors are used
to, respectively, model/represent medium- and long-range dynamics.

19.3.4 Temporal Deep Learning Models: RNN and LSTM

The application of temporal sequence modeling techniques, such as LSTM, to action
recognition showed promising results in the past (Baccouche et al. 2010; Grushin
et al. 2013). Earlierworks did not try to explicitlymodel the temporal information, but
aggregated the class predictions got from individual frame predictions. For instance,
in Simonyan and Zisserman (2014), sample 25 equally spaced frames (and their
crops and flips) from each video and then average their predicted scores.

Today, we find the combination of recurrent networks, mostly LSTM, with CNN
models for the task of action recognition. Veeriah et al. (2015) propose a new gating
scheme for LSTM that takes into account abrupt changes in the internal cell states,
namely differential RNN. They use different order derivatives to model the poten-
tial saliency of observed motion patterns in actions sequences. Singh et al. (2016a)
presented a bi-directional LSTM, which demonstrated to improve the simpler uni-
directional LSTMs. Yeung et al. (2016) introduce a fully end-to-end approach on a
RNNagentwhich interactswith a video over time. The agent observe a frame and pro-
vides a detection decision (confidence and begin-end), to whether or not emit a pre-
diction, and where to look next.While back-propagation is used to train the detection
decision outputs, REINFORCE is required to train the other two (non-differentiable)
agent policies. Mahasseni and Todorovic (2016) propose a deep architecture which
uses 3D skeleton sequences to regularize an LSTM network (LSTM+CNN) on the
video. The regularization process is done by using the output of the encoder LSTM
(grounded on 3Dhuman-skeleton training data) and bymodifying the standardBPTT
algorithm in order to address the constraint optimization in the joint learning of
LSTM+CNN. In their most recent work, Wang et al. (2016b) explore contexts as
early as possible and leverage evolution of hierarchical local features. For this, they
introduce a novel architecture called deep alternative neural network (DANN) stack-
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ing alternative layers, where each alternative layer consists of a volumetric convolu-
tional layer followed by a recurrent layer. Lev et al. (2016) introduce a novel Fisher
Vector representation for sequences derived from RNNs. Features are extracted from
input data via VGG/C3D CNN. Then a PCA/CCA dimension reduction and L2 nor-
malization are applied and sequential feature are extracted via RNN. Finally, another
PCA+L2-norm step is applied before the final classification.

Liu et al. (2016a) extend the traditional LSTM into two concurrent domains,
i.e., spatio-temporal long short-term memory (ST-LSTM). In this tree structure each
joint of the network receive contextual information from both neighboring joints and
previous frame. Shahroudy et al. (2016a) propose a part aware extension of LSTM
for action recognition by splitting the memory cell of the LSTM into part-based sub-
cells. These sub-cells can yield the models learn the long-term patterns specifically
for each part. Finally, the output of each unit is the combination of all sub-cells.

19.3.5 Deep Learning with Fusion Strategies

Somemethods have used diverse fusion schemes to improve recognition performance
of action recognition. In Simonyan and Zisserman (2014), in order to fuse the class-
level predictions of two streams (spatial and temporal), the authors train a multi-class
linear SVM on stacked L2-normalized softmax scores, which showed to improve the
fusion by simply averaging scores. Wang et al. (2015d), which improves the former
work by making the networks deeper and improved data augmentation techniques,
simply perform a linear combination of the prediction scores (2 for temporal net and
1 for the spatial net). Similarly, Wang et al. (2016c) combine RGB, RGB difference,
flow, and warped flow assigning equal weight to each channel. Feichtenhofer et al.
(2016b) fuse a spatial and temporal convnets at the last convolutional layer (after
ReLU) to turn it into a spatio-temporal stream by using 3D Conv fusion followed by
3D pooling. The temporal stream is kept and both loss functions are used for training
and testing.

Deng et al. (2015) present a deep neural-network-based hierarchical graphical
model that recognizes individual and group activity in surveillance scenes. Different
CNNs produce action, pose, and scene scores. Then, the model refines the predicted
labels for each activity via multi-step Message Passing Neural Network which cap-
tures the dependencies between action, poses, and scene predicted labels. Du et al.
(2015) propose an end-to-end hierarchical RNN for skeleton based action recogni-
tion. The skeleton is divided into five parts, each of which is feed into a different
RNN network, the output of which are fused into higher-layer RNNs. The highest
level representations are feed into a single-layer perceptron for the final decision.
Singh et al. (2016b) face the problem of first person action recognition using a
multi-stream CNN (ego-CNN, temporal, and spatial), which are fused by combining
weighted classifier scores. The proposed ego-CNN captures hand-crafted cues such
as hand poses, head motion, and saliency map. Wang et al. (2016h) incorporate a
region-of-interest pooling layer after the standard convolutional and pooling layers
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that separates CNN features for three semantic cues (scene, person, and objects) into
parallel fully connected layers. They propose four different cue fusion schemes at
class prediction level (max, sum, and two weighted fusions).

He et al. (2016b) attempt to investigate human action recognition without the
humanpresence in input video frames.They considerwhether a background sequence
alone can classify human actions.

Peng and Schmid (2016) perform action localization in space and time by linking
via dynamic time warping the action bounding box detections on single frames. For
bounding box classification, they concatenate the representations of multiple regions
derived from the original detection bounding box. Feichtenhofer et al. (2016a) pro-
pose a two stream architecture (appearance and motion) based on residual networks.
In order to model spatiotemporal information, they inject 4 residual connections
(namely “skip-streams”) from motion to the appearance stream (i.e., middle fusion)
and also transform the dimensionality reduction layers fromResNet’s original model
to temporal convolution layers. Wang et al. (2016g) train two Siamese networks
modeling, respectively, action’s precondition and effect on the observed environ-
ment. Each net learns a high-dimensional representation of either precondition or
effect frames along with the linear transformation per class that transforms precon-
dition to effect. The nets are connected via their outputs and not sharing weights;
i.e., late fusion.

19.4 Gesture Recognition

In this section we review recent deep-learning based approaches for gesture recog-
nition in videos, mainly driven by the areas of human computer, machine, and robot
interaction.

19.4.1 2D Convolutional Neural Networks

Thefirstmethod that comes tomind for recognizing a sequence of images, is applying
2D CNNs on individual frames and then averaging the result for classification. Jain
et al. (2014a) present a CNN deep learning architecture for human pose estimation
and develop a spatial-contextual model that aims at making joint predictions by con-
sidering related joints positions. They trainmultiple convnets to perform independent
binary body-part classification (i.e., presence or absence of that body part). These
networks are applied as sliding windows to overlapping regions of the input which
results in smaller networks and better performance. For human pose estimation, Li
et al. (2015a) propose a CNN-based multi-tasking model. The authors use a CNN to
extract features from the input image. These features are then used as the input of
both joint point regression tasks and body-part detection tasks. Kang et al. (2015)
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exploit a CNN to extract features from the fully connected layer for sign language
gesture recognition (finger spelling of ASL) from depth images.

Neverova et al. (2015a) propose a deep learning model for hand pose estimation
that leverages both unlabeled and synthetically generated data for training. The key
of the proposed model is that the authors encode structural information into the
training objective by segmenting hands into parts, as opposed to including structure
in the model architecture. Oyedotun and Khashman (2016) use CNN and stacked
denoising autoencoder (SDAE) for recognizing 24 American Sign Language (ASL)
hand gestures. Liang et al. (2016) propose a multi-view framework for hand pose
recognition from point cloud. They form the view image by projecting hand point
cloud to different view planes, and then using CNN to extract features from these
views. Lin et al. (2015) propose a CNN that first detect hands using a GMM-skin
detector and align them to themain axes. Then they apply a CNN comprising pooling
and sampling layers, and on top a standard feed-forward NN that acted as classifier
(heuristic rules on top of the output of the NN were defined).

In terms of hand pose estimation, Tompson et al. (2014) propose a CNN that
recovers 3D joints based on synthetic training data. On top of the last layer a neural
network transforms the outputs of the conv layers into heat maps (one per joint),
indicating the probability-position for each joint. Poses are recovered from the set
of heatmaps by solving an optimization problem.

19.4.2 Motion-Based Features

Neural networks and CNNs based on hand and body pose estimation as well as
motion features have been widely applied for gesture recognition. If one wants to
obtain better performance, temporal information rather than spatial data must be
included in the models. For gesture style recognition in biometrics, Wu et al. (2016b)
proposes a two-stream (spatio-temporal) CNN which learns from a set of training
gestures. The authors use raw depth data as the input of spatial network and optical
flow as the input of temporal one. For articulated human pose estimation in videos
Jain et al. (2015a) exploit both color and motion features. The authors propose a
Convolutional Network (ConvNet) architecture for estimating the 2D location of
human joints in video, with an RGB image and a set of motion features as the input
data of this network. The motion features used in this methods are the perspective
projection of the 3D velocity-field of moving surfaces.

Wang et al. (2017) use three representations of dynamic depth image (DDI),
dynamic depth normal image (DDNI) and dynamic depth motion normal image
(DDMNI) as the input data of 2D networks for gesture recognition from depth data.
The authors construct these dynamic images by using bidirectional rank pooling
from a sequence of depth images. These representations can effectively capture the
spatio-temporal information. Wang et al. (2016e) propose a similar formulation
for gesture recognition in continuous depth video. They first identify the start and
end frames of each gesture based on quantity of movement (QOM), and then they
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construct Improved Depth Motion Map (IDMM) by calculating the absolute depth
difference between current frame and the start frame for each gesture segment which
is a kind of motion features as the input data of deep learning network.

19.4.3 3D Convolutional Neural Networks

Several 3D CNNs have been proposed for gesture recognition, most notably
(Molchanov et al. 2016; Huang et al. 2015; Molchanov et al. 2015). Molchanov
et al. (2015) proposes a 3D CNN for driver hand gesture recognition from depth
and intensity data. The authors combine information from multiple spatial scales for
final prediction. It also employs spatio-temporal data augmentation for more effec-
tive training and to reduce potential overfitting. Molchanov et al. (2016) extend the
3D CNN with a recurrent mechanism for detection and classification of dynamic
hand gestures. The architecture consists of a 3D-CNN for spatio-temporal feature
extraction, a recurrent layer for global temporal modeling and a softmax layer for
predicting class-conditional gesture probabilities.

Huang et al. (2015) proposes 3D CNN for sign language recognition which
extracts discriminative spatio-temporal features from raw video stream. To boost the
performances, multi-channels (RGB-D and Skeleton data) of video streams, includ-
ing color information, depth clue and body joint positions are used as input to the 3D
CNN. Li et al. (2016b) proposes a 3D CNN model for large scale gesture recogni-
tion by combining depth and RGB video. The proposed architecture is based on the
model proposed by Tran et al. (2015). In a similar way, Zhu et al. (2016a) adopted
the same architecture, but this time under a pyramidal for the same problem. In the
same line, the work by Camgoz et al. (2016) builds an end to end 3D CNN using as
basis the model of Tran et al. (2015) and applies it to large scale gesture spotting.

19.4.4 Temporal Deep Learning Models: RNN and LSTM

Interestingly, temporal deep learning models have not been widely used for gesture
recognition, despite this is a promising venue for research.We are aware of Neverova
et al. (2013), where they propose a multimodal (depth, skeleton, and speech) human
gesture recognition systembased onRNN.Eachmodality is first processed separately
in short spatio-temporal blocks, where discriminative data-specific features are either
manually extracted or learned. Then, RNN is employed for modeling large-scale
temporal dependencies, data fusion and ultimately gesture classification. A multi
stream RNN is also proposed by Chai et al. (2016) for large scale gesture spotting.

Eleni (2015) propose a Convolutional Long Short-Term Memory Recurrent
Neural Network (CNNLSTM) able to successfully learn gesture varying in duration
and complexity. Facing the same problem, Nishida and Nakayama (2016) propose
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a multi-stream model, called MRNN, which extends RNN capabilities with LSTM
cells in order to facilitate the handling of variable-length gestures.

Wang et al. (2016f) propose sequentially supervised long short-term Memory
(SS-LSTM), in which instead of assigning class label to the output layer of RNNs,
auxiliary knowledge is used at every time step as sequential supervision. John et al.
(2016) uses a deep learning framework to extract the representative frames from
the video sequence and classify the gesture. They utilize a tiled image, created by
sampling the whole video, as the input of a deconvenet to generates the tiled binary
pattern. Then, These representative frames are given as input to the trained long-term
recurrent convolution network. Koller et al. (2016) propose an EM-based algorithm
integrating CNNs with Hidden-Markov-Models (HMMs) for weak supervision.

19.4.5 Deep Learning with Fusion Strategies

Multimodality in deep learning models has been widely exploited for gesture recog-
nition.Wu et al. (2016a) propose a semi-supervised hierarchical dynamic framework
by integrating deep neural networks within an HMM temporal framework, for simul-
taneous gesture segmentation and recognition using skeleton joint information, depth
and RGB images. The authors utilize a Gaussian-Bernoulli Deep Belief Network to
extract high-level skeletal joint features by, and 3D CNN to extract features from
depth and RGB data. Finally, they applied intermediate (middle) and late fusion to
get the final result. Neverova et al. (2015b) propose a multimodal multi-stream CNN
for gesture spotting. The whole system operates at three temporal scales. Separate
CNNs are considered for each modality at the beginning of the model structure with
increasingly shared layers and a final prediction layer. Then, they fuse the result of
each network by a meta-classifier independently at each scale; i.e., late fusion.

Pigou et al. (2015b) demonstrate that simple temporal feature pooling strategy (to
take into account the temporal aspect of video) is not sufficient for gesture recogni-
tion, where temporal information is more discriminative compared to general video
classification tasks. They explore deep architectures for gesture recognition in video
and propose a new end-to-end trainable neural network architecture incorporating
temporal convolutions andbidirectional recurrence. The authors test late anddifferent
kinds ofmiddle fusions, to combine the result of CNNapplied on each frame.Ouyang
et al. (2014) present a deep learning model to fuse multiple information sources (i.e.,
appearance score, deformation and appearance mixture type) for human pose esti-
mation. Three deep models take as input the output the information source from a
state-of-the-art human pose estimator. The authors exploited early and middle fusion
methods to integrate the models.

Li et al. (2015b) propose a CNN that learns to score pairs of input images and
human poses (joints). The model is formed by two sub-networks: a CNN learns
a feature embedding for the input images, and a two layer sub-network learns an
embedding for the humanpose. These twokinds of features are separately fed through
fully-connected layers, and then mapped into two embedding spaces. The authors
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then calculate score function by dot-product between the two embeddings; i.e., late
fusion. Similarly, Jain et al. (2015a) propose a CNN for estimating 2D joints location.
The CNN incorporates RGB image and motion features. The authors utilize early
fusion to integrate these two kinds of features. For gesture recognition from RGB-D
data Duan et al. (2016) use two general deep-based network; i.e., convolutional two
stream consensus voting network (2SCVN) for modeling the RGB and optical flow
and 3d depth-saliency ConvNet stream for processing saliency and depth data. Then,
they use late fusion to fuse the result of these networks.

19.5 Discussion

In recent years deep learningmethods have continued to be a thriving area of research
in computer vision. These methods are end-to-end approaches for automatically
learning semantic and discriminative feature representations directly from raw obser-
vations inmany computer vision tasks. Thanks to themassive ImageNet dataset, CNN
models overcome other hand-crafted features and achieve the best results on many
recognition tasks. These achievements encourage researchers to design deep based
models for learning an appropriate representation of image sequences.

In the following sections, the state of the art methods and deep-based platforms
are summarized and then compared. We point out some tricks used for improving
the result, and also address some limitations for future work.

19.5.1 Summary

As the recent success of deep learningmodels, many researchers have extended deep-
basedmodels representationof the sequences of images for humanaction recognition.
Tables19.6 and 19.7 list a summary of all methods on human action and gesture
recognition respectively. A very simple extension consists in applying the existing
2D networks on individual video frames and then aggregating the predictions over
the entire sequence for video classification (hereinafter referred as 2D convolutional
models). Since they do not model temporal information of any kind, some methods
(the second category) propose utilizing pre-computed motion features as input data
for those pre-trained 2D networks. In the third group, different 3D extensions of 2D
deep models have been proposed. Methods in the fourth group exploited temporal
models (e.g. RNN and LSTM) for processing the temporal dimension.
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Table 19.6 Summary of all deep-based action recognition methods. Notations: In the Modality
column: Depth, Skeleton. In the Fusion column: Late, Early, Slow, and Middle

Year Reference Model Modality Fusion

2D Motion 3D Temporal

2010 Ji et al. (2010) – – � – RGB –

2011 Baccouche et al. (2011) – – � � RGB –

2014 Karpathy et al. (2014) � – – – RGB E-L-S

2014 Simonyan and Zisserman
(2014)

� � – – RGB L

2015 Chéron et al. (2015) � � – – RGB L

2015 Deng et al. (2015) � – – – RGB L–S

2015 Du et al. (2015) – – – � S S

2015 Gkioxari and Malik (2015) � � – – RGB L

2015 Mansimov et al. (2015) – – � – RGB –

2015 Peng and Schmid (2015) � – – – RGB –

2015 Sun et al. (2015) � – – – RGB –

2015 Tran et al. (2015) – – � – RGB –

2015 Wang et al. (2015b) – � – – RGB L

2015 Wang et al. (2015d) – � – – RGB L

2015 Weinzaepfel et al. (2015) – � – – RGB L

2015 Zha et al. (2015) � – – – RGB L

2016 Bilen et al. (2016) � – – – RGB –

2016 Feichtenhofer et al. (2016b) � � - - RGB S

2016 He et al. (2016b) � � – – RGB L

2016 Lev et al. (2016) – � � � RGB –

2016 Li et al. (2016a) � – – – RGB –

2016 Liu et al. (2016b) – – � – D, S L

2016 Mahasseni and Todorovic
(2016)

� – – – RGB –

2016 Ng et al. (2016) – � – – RGB –

2016 Ni et al. (2016) � – – � RGB –

2016 Park et al. (2016) � � – – RGB S–L

2016 Peng and Schmid (2016) � � – – RGB L

2016 Poleg et al. (2016) � � � – RGB –

2016 Rahmani and Mian (2016) � – – – D –

2016 Rahmani et al. (2016) � � – – RGB E

2016 Shou et al. (2016b) – – � – RGB –

2016 Singh et al. (2016b) � � � – RGB L

2016 Singh et al. (2016a) � � – � RGB L

2016 Varol et al. (2016) – � � – RGB –

2016 Escorcia et al. (2016) – – � – RGB –

(continued)
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Table 19.6 (continued)

Year Reference Model Modality Fusion

2D Motion 3D Temporal

2016 Wang et al. (2016d) – – � – D L

2016 Wang et al. (2016g) � � – – RGB L

2016 Wang et al. (2016b) � – – � RGB –

2016 Wang and Hoai (2016) � � – – RGB L

2016 Wang et al. (2016c) � � – – RGB L

2016 Wang et al. (2016h) � � – – RGB L

2016 Wu et al. (2016c) – – � � RGB –

2016 Wu et al. (2016d) � – – – RGB L

2016 Yeung et al. (2016) � – – � RGB –

2016 Ye and Tian (2016) – � � � RGB –

2016 Zhang et al. (2016) � � – – RGB L

2016 Zhu et al. (2016b) – � – – RGB L

19.5.2 Comparison

The most crucial challenge in deep-based human action and gesture recognition
is temporal analysis, for which many architectures have been proposed. These
approaches have been classified into four groups; i.e., 2D models, motion-based
input model, 3D models, and temporal models. Generally, there are two main issues
for comparing the methods; i.e., how does the method deal with the temporal infor-
mation? and how can such a large network be trained with small datasets?

As discussed, methods in the first category only use the appearance (spatial) infor-
mation to extract features. In other words, there is no temporal processing for these
methods. However, because of the availability of large annotated datasets (e.g. Ima-
geNet), it is easier for these methods to be fine tuned on pre-trained models. In the
second group, motion features such as optical flow, computed from data before their
usage, are fed to the deep models. It has been shown that using training networks on
pre-computed motion features is an effective way to save them from implicit learn-
ing of motion features. Moreover, fine-tuning motion-based networks with spatial
data (ImageNet) proved to be effective. Allowing networks which are fine-tuned on
stacked optical flow frames to achieve good performance in spite of having lim-
ited training data. However, these models can only exploit limited (local) temporal
information.

Methods in the third category, learn spatio-temporal features by 3D filters in
their 3D convolutional and pooling layers. It has been shown 3D networks over a
long sequence are able to learn more complex temporal patterns (Varol et al. 2016).
Because of the amount of parameters to learn, training these networks is a challenging
task, specially compared to motion-based methods (Simonyan and Zisserman 2014).
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Table 19.7 Summary of all deep-based gesture recognition methods. Notations: In the Modality
column: Depth, Skeleton, Audio, InfraRed. In the Fusion column: Early, Middle, Late, Slow

Year Reference Model Modality Fusion

2D Motion 3D Temporal

2013 Neverova et al. (2013) – – � � D-S-A L

2014 Tompson et al. (2014) � – – – RGB-D –

2014 Jain et al. (2014a) � – – – RGB –

2014 Ouyang et al. (2014) � – – – RGB E-M

2015 Molchanov et al. (2015) – – � – RGB-D L

2015 Huang et al. (2015) – – � – RGB-D-S L

2015 Lin et al. (2015) � – – – RGB –

2015 Li et al. (2015a) � – – – RGB –

2015 Eleni (2015) � – – � RGB –

2015 Kang et al. (2015) � – – – D –

2015 Li et al. (2015b) � – – – RGB-S L

2015 Jain et al. (2015a) – � – – RGB E

2015 Neverova et al. (2015a) � – – – D –

2015 Neverova et al. (2015b) – – � – RGB-S-A L

2015 Pigou et al. (2015b) � – – � RGB-D L-S

2016 Molchanov et al. (2016) – � � � RGB-D-
IR

L

2016 Wu et al. (2016b) – � – – D L

2016 Nishida and Nakayama
(2016)

� – – � RGB-D L

2016 Wu et al. (2016a) – � � � RGB-D M-L

2016 Wang et al. (2016f) � – – � RGB –

2016 Duan et al. (2016) � � � – RGB-D L

2016 John et al. (2016) � – – � RGB –

2016 Oyedotun and Khashman
(2016)

� – – – RGB –

2016 Liang et al. (2016) � – – – D L

2016 Wang et al. (2016e) – � – – D –

2016 Li et al. (2016b) – – � – RGB-D L

2016 Zhu et al. (2016a) – – � – RGB-D E

2016 Camgoz et al. (2016) – – � – RGB L

2016 Chai et al. (2016) – – – � RGB-D M

2016 Koller et al. (2016) � – – � RGB –

2017 Wang et al. (2017) – � – – D L
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Because of the required amount of data, the problemofweights initialization has been
investigated. The transformation of 2D Convolutional Weights into 3D ones yield
models to achieve better accuracy than training scratch (Mansimov et al. 2015). The
most crucial advantage of approaches in the fourth group (i.e., temporal models like
RNN and LSTM) is that they are able to cope with longer-range temporal relations.
These models are preferred when dealing with skeletal data. Since skeleton features
are low-dimensional, these networks have fewer weights, and thus, can be trained
with fewer data.

We find from Tables19.3 and 19.4, the methods that achieved the best results
on two of the most well-known datasets, still using hand-crafted features alongside
deep-based features. In other words, action and gesture recognition has not gained
a high performance from deep networks compared with other research areas (like
image classification). These fields of research still needs to be grown.

Based on the influence of millions of network parameters, in addition to the
different strategies for data augmentation, and the current allowed procedure of the
usage of pre-trained models, current comparison among method performances for
action and gesture recognition is a difficult task. In this sense, we expect in a near
future the definition of protocols that will allow for a more accurate comparison of
deep-based action and gesture recognition models. More precisely, we refer to Xu
et al. (2015b) as the winner of THUMOS 2015 with the best result. This approach
used VGG16 to extract frame-level features from the fully connected layers such as
fc6 and fc7. Then, using Fisher vector and VLAD, they aggregated all the frames
into single video-level representation. They also extracted latent concept descriptors
(LCD) extracted by a GoogLeNet with Batch Normalization. An enhanced version
of improved dense trajectories (iDT), acoustic features MFCC and ASR were also
used in this work.

Recently, new deep architectures have started to be used for action/gesture recog-
nition, such as gate-recurrent-unit RNNs (Ballas et al. 2016) (sparse GRU-RNNs that
reduce the number of parameters of the network) and siamese architectures (Wang
et al. 2016g) (that allow multi-task learning). More insights into these architectures,
and, of course, the use of more recent ones (like Radford et al. 2016) are promising
venues for research.

19.5.3 Tricks

Regardless of the model, performance is dependent on a large number of para-
meters that have to be learned from limited data. Strategies for data augmentation
and pre-training are common. Likewise, training mechanisms to avoid overfitting
(e.g. dropout) and to control the learning rate (e.g. extensions to SGD and Nesterov
momentum) have been proposed. Improvements on those strategies are expected in
the next few years. The community is nowadays putting efforts on building larger
data sets that can cope with huge-parametric deep models (Abu-El-Haija et al. 2016;
Heilbron et al. 2015) and on challenge organization (with novel data sets and well
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defined evaluation protocols) that can advance the state-of-the-art in the field and
make easier the comparison among deep learning architectures (Shahroudy et al.
2016a; Escalante et al. 2016b).

Taking into account the full temporal scale, results in a huge amount of weights
for learning. To address this problem and decrease the number of weights, a good
trick is to decrease the spatial resolution while increasing the temporal length.

Another trick to improve the result of deep-based models is data fusion. There
could be separated networks, trained on different kinds of input data, different kinds
of primary features, different portions of input data, and so on. It is well-known
that ensemble learning is a powerful way to boost the performance of any machine
learning approach. It proved to reduce the bias and variance errors of the learn-
ing algorithm (Neverova et al. 2014). We find new methodologies that ensemble
several deep models for action and gesture recognition, not necessarily combining
different datamodalities, butwith different sampling of the data and learning parame-
ters (Wang et al. 2016c; Varol et al. 2016). This provides complementary information
learned by the different deep models, being able to recover from uncorrelated errors
of individual models (Neverova et al. 2014). Recently it is common to see this kind
of strategies in action/gesture recognition competitions, where a minor improvement
of the model can make the difference to achieve the best performance (Varol et al.
2016).

It has been proved that the result of the temporal models (e.g. RNN) on skeletal
data can be improved by extending these models to learn two domains, i.e., spatial
and temporal, simultaneously (Liu et al. 2016a). In other words, each state of the
network receives contextual information from neighboring joints in human skeleton
(spatial information) and also from previous frames (temporal information).

Finally, a common way to improve the performance of action or gesture recogni-
tion is the combination of deep learning-based features and hand-crafted ones. This
combination could be performed in different layers of the deep models.

19.5.4 Platforms

One of the reasons that supports the applicability of deep learning in several areas
is code sharing. In fact, there are many open source libraries implementing standard
deep learning models. Many authors have published deep-based toolkits that make
the research progress easier for the community. Among the most popular ones are
Caffe (Jia et al. 2014), CNTK (Yu et al. 2014), Matlab (Rahmani et al. 2016), Ten-
sorFlow (Abadi et al. 2015b), Theano (Al-Rfou et al. 2016), and Torch (Liu et al.
2016b).

Caffe (Jia et al. 2014), is the first deep learning toolkit developed by the Berkeley
Vision and Learning Center. It is a Python Library primary focused on CNN, with
a poor support of RNN. Caffe is useful for performing image analysis and benefits
fromhaving a large repository of pre-trained neural networkmodels. It includes state-
of-the-art models (mostly 2D networks) that achieve world class results on standard
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computer vision datasets. Caffe has been also used to implement 3D-CNN for action
recognition (Tran et al. 2015; Poleg et al. 2016; Shou et al. 2016b;Wang et al. 2016d;
Singh et al. 2016b), and motion-based approaches for both action (Simonyan and
Zisserman 2014; Zhang et al. 2016; Singh et al. 2016a; Gkioxari andMalik 2015) and
gesture recognition (Wu et al. 2016b; Wang et al. 2017, 2016e). Caffe is preferred
to other frameworks for its speed and efficiency, especially in"fused" architectures
for action recognition (Singh et al. 2016b; Deng et al. 2015; Diba et al. 2016; Peng
and Schmid 2016). Popular network types like FNN, CNN, LSTM, and RNN are
fully supported by CNTK (Yu et al. 2014), which was started by speech processing
researchers. On the other hand, TensorFlow (Abadi et al. 2015a) is an C++ toolkit in
deep learning under an open source Apache 2.0 License by Google. It fully supports
2D CNNs and RNNs implementations, but not 3D CNNs.

Torch (Collobert et al. 2002) is a script language based on the Lua program-
ming language that provides a rich set of RNN functions. For this reason it has
been efficiently used for temporal models in action recognition (Liu et al. 2016a;
Shahroudy et al. 2016a). Moreover, most of the 3D CNN-based methods utilized
Torch to implement their networks. CUDA is a parallel computing platform and
application programming interface (API) model created by Nvidia in order to use
GPU. Cuda-convnet andCuDNN support all themainstream softwares such as Caffe,
Torch, Theano. Few methods also use MATLAB, e.g. Rahmani et al. (2016); one of
the easiest and most productive software environment for engineers and scientists,
widely used also in machine learning, signal and image processing, and computer
vision.

19.5.5 Future Work

Deep learning methods emerged not so long ago in the fields of human action and
gesture recognition. Even when there is already too much work on deep learning in
these topics, there are still several directions in which we foresee deep learning can
have a broad impact in the forthcoming years. We briefly review these possible line
of research that will be fruitful in the short term future.

Regarding applications, deep learning techniques have been successfully used in
surveillance (Ahmed et al. 2015), health care (Liang et al. 2014), robotics (Yu et al.
2013), human–computer interaction (Mnih et al. 2015), and so on.We anticipate deep
learning will prevail in emerging applications/areas like fine grained action recog-
nition, action description generation, social signal processing, affective computing,
and personality analysis, among others.

Another important trend of current deep-based models for action and gesture
recognition is the inclusion of contextual cues. While it has been partially consid-
ered for gesture recognition (e.g. part-based human-models and scene understand-
ing in combination with depth maps), until recent years very few works considered
robust contextual cues for action recognition. We anticipate context information will
be critical for developing explanatory deep learning models for action and gesture
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recognition. Classical action recognition tasks weremainly addressed by the descrip-
tion of spatio-temporal local patches. Nowadays we can find strategies that incor-
porate environment recognition, and articulated human body (Wang et al. 2016g),
places (Zhou et al. 2014), and objects (Jain et al. 2015c). Moreover, we expect novel
architectures and fusion schemes to exploit context and enhanced articulated human
body pose estimation to keep progressing in the next few years. It is also expected
that there will be advances in hybrid models combining handcrafted and learned
descriptors (Neverova et al. 2014; Wang et al. 2015b; Ji et al. 2013). Similarly, we
think the community will pay attention to deep learning solutions for large scale and
real time action and gesture recognition (Han et al. 2016; Zhang et al. 2016). Finally,
it is important to mention that most of the surveyed methods targeted merely recog-
nition/classification on already pre-segmented action/gesture clips. Additional effort
is expected to advance in the research of methods able to simultaneously perform
both detection and recognition tasks in long, realistic videos (Gkioxari and Malik
2015; Shou et al. 2016b). As such, we envision other related problems like early
recognition (Escalante et al. 2016a), multi task learning (Xu et al. 2016), captioning,
recognition from low resolution sequences (Nasrollahi et al. 2015) and from lifelog
devices (Rhinehart and Kitani 2016) will receive special attention within the next
few years.

These days, we need to solve the problem of action recognition in more realistic
long untrimmed videos. There are some other challenges in human action recognition
with deep-based models that have been addressed by few researchers so far, like
simultaneous detection and localization (Gkioxari and Malik 2015). Another venue
for research is early recognition of actions and gestures (Escalante et al. 2016a).
We need to know if the input video contains an action or not and then localizing
temporally and spatially the action by finding the frames and regions in those frames,
in which action is performed. Then after detection and localization, the action will
be classified. It is anticipated that in the near future research will expand on both
action detection and localization.
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