
Chapter 11
Tailoring Performance of Polymer
Electrolytes Through Formulation Design

Wei Wang, Dmitry Bedrov and Paschalis Alexandridis

Abstract The flammable organic solvent-based electrolytes used in lithium bat-
teries impose serious safety concerns and temperature restrictions. A switch to solid
polymer electrolytes can significantly increase chemical/mechanical stability,
improve safety, reduce cost, and advance manufacturability, if only issues such as
low conductivity and transference, limited operating temperature range, and
insufficient mechanical strength can be overcome. To this end, significant research
efforts have been directed to understand the mechanism of lithium ion motion in
polymer matrices and to modify the chemistry, architecture, and morphology of the
poly(ethylene oxide) polymer typically used in polymer electrolytes. Furthermore,
the incorporation of nanoparticles into polymer electrolytes has created new
opportunities for simultaneous improvement of conductivity and of mechanical
properties. The performance of such composite polymer electrolytes can be mod-
ulated by the judicious surface chemical modification of the nanoparticles and/or by
the addition of organic solvents or ionic liquids. The examples highlighted here
point to the importance of formulation design for the improvement of the perfor-
mance characteristics of multi-component systems such as polymer electrolytes.
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11.1 Introduction

Polymer electrolytes are widely utilized in electrochemical devices such as
lithium-ion batteries, fuel cells, and supercapacitors for energy storage and con-
version [1–8]. In this chapter, we focus on different additives and their effects on
polymer electrolyte performance for lithium-ion batteries. A battery is composed of
two electrochemically active electrodes [9] separated by an ion-conductive, elec-
tronically insulating electrolyte medium [10]. Rechargeable batteries find wide-
spread use because of their repeated charge and discharge capability [11].

The electrolyte is one of the critical components of the lithium-ion battery. It
facilitates ion transport and blocks electron conduction between the two electrodes
[12]. Desirable properties of electrolytes are: high ionic conductivity and cation
mobility, low electronic conductivity, good mechanical strength, thermal and
chemical stability, and interfacial contact with electrodes, and large electrochemical
stability window [13, 14]. Organic solvent-based electrolytes and ionic liquid-based
electrolytes are two classes of electrolytes that have been well studied but they
exhibit several drawbacks [15]. Organic solvent-based electrolytes have problems
that include intrinsically poor cycling efficiency and flammability [16]. For ionic
liquid-based electrolytes, a challenge is their relatively high viscosity which limits
the attainable ionic conductivity [17–19]. Polymer electrolytes [20, 21] have thus
been considered with an aim to overcome such limitations. The archetype polymer
electrolyte is based on poly(ethylene oxide) (PEO) with lithium salt dissolved in it
[22]. However, the semi-crystalline structure of PEO presents inherent problems as
a polymer matrix for Li+: (1) not sufficiently high ionic conductivity, especially in
ambient temperature; (2) insufficient mechanical strength; and (3) dendrite growth
at the interface between electrode and electrolyte, which might cause internal short
circuits [2].

In order to overcome these limitations of polymer electrolytes, several avenues
have been explored. One promising line of investigation involves the introduction
of nano-sized additives, as shown in Fig. 11.1 [23], in order to minimize the
concentration of PEO crystalline domains without diminishing the PEO flexibility
and mechanical stability over a wide temperature range [24, 25]. Inert oxide
ceramics are the most common additives [26]. The effects of such additives have
been analyzed in terms of Lewis acid–base interactions [24] between the surface
groups of the fillers and active sites on the polymer chains.

Even though ternary systems incorporating nano-additives are promising, e.g.,
due to simultaneous improvement of conductivity and mechanical strength [24–27],
composite polymer electrolytes (CPEs) are still away from desirable performance,
e.g., room temperature conductivity higher than 10−3 S/cm [28]. For applications in
electrochemical devices such as lithium-ion batteries [4, 12], research on CPEs is
directed toward the formulation of modified ternary (polymer + lithium
salt + nanoparticle) systems.

Different schemes have been reported for modifying each component in CPEs.
Here, we focus on two avenues of modification: (1) surface chemical modification
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of nanoparticles, e.g., functionalization by oligomer groups or by ionic liquids;
(2) physical modification via the addition of components such as organic solvents
or ionic liquids. Section 11.2 discusses Li+ transport mechanisms and factors that
affect it in polymer-based electrolytes. Section 11.3 addresses the effect of
nanoparticles on CPE properties and performance. Section 11.4 discusses
nanoparticle chemical modification. Section 11.5 is concerned with the physical
addition of a fourth component to CPEs. The purpose of Sects. 11.4 and 11.5 is to
exemplify how different formulation modifications of CPEs have been designed and
implemented, and to inspire ideas on novel CPE design for further CPE perfor-
mance improvement.

11.2 Polymer-Based Electrolytes

First, we review key molecular mechanisms and phenomena influencing the motion
of Li ions (and their counter-ions) in a polymer matrix, and we outline several major
challenges that conventional polymer electrolytes are facing to become an efficient
alternative to conventional organic solvent electrolytes. We use PEO-based poly-
mer electrolytes to illustrate these issues as the overwhelming majority of polymer
electrolytes investigated to date are PEO-based. In addition to a large number of
experimental studies, PEO-based electrolytes have also been studied by molecular
simulation [29–41], and therefore these systems provide good case studies to
illustrate the full complexity of understanding and design of efficient polymer
electrolytes.

Fig. 11.1 Schematic of composite polymer electrolytes in the context of lithium-ion batteries
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11.2.1 Mechanism of Li+ Motion in PEO-Based Polymer
Electrolytes

PEO is the quintessential polymer electrolyte owing largely to its effectiveness at
dissolving lithium salts due to strong Li+-ether oxygen binding. Quantum chemistry
(QC) and molecular dynamics (MD) simulation studies [29, 42] of PEO have
revealed that Li+ cations are very strongly coordinated by an average of six ether
oxygen atoms as shown in Fig. 11.2. Coordination of Li+ usually involves a single
PEO chain, with occasional coordination by two polymer chains.

The nature of ether–-Li+ interactions strongly affects the mechanism of Li+

mobility in PEO-based solid polymer electrolytes (SPEs). This can be understood
by comparing the mechanism of Li+ diffusion in oligoethers with that in organic
solvents. Li+ motion in organic liquid electrolytes (typically carbonates) occurs by a
combination of vehicular (with a solvent shell) and structural (exchange of solvent
shell) diffusion [43]. In contrast, simulations reveal that Li+ diffusion in
pentaglyme + Li[bis[(trifluoromethyl) sulfonyl]imide] (TFSI) [43] salt occurs
entirely by a vehicular mechanism, i.e., a pentaglyme/Li+ complex diffuses long
distances before Li+ exchanges between complexing molecules. The residence time
of Li+ with a pentaglyme is around 50 ns, compared to *1 ns in carbonate, or 3–
10 ns in ionic liquids [44]. While the lack of an efficient structural diffusion
mechanism has relatively little influence on Li+ motion in pentaglyme because of
the fast center-of-mass diffusion of the low molecular weight (MW) solvent, the
situation is different in higher molecular weight (MW) PEO. Because the
center-of-mass diffusion of PEO is negligible, a Li+ cation must change coordi-
nating PEO chains, i.e., it will undergo “jumps” between PEO chains [45].
Compared with pentaglyme, Li+ transport is considerably slower in the PEO-based
SPE, while the diffusion of TFSI is reduced relatively little, indicative of the relative
independence of anion motion from that of the polymer. This leads to a significantly
lower transference number in the polymer electrolyte as a much greater fraction of
charge is carried by the anion due to the very slow Li+ motion. Furthermore, the
PEO chain center-of-mass motion is considerably slower than that of the cation,
intimating that the vehicular mechanism, which is so important in the oligoethers,
does not contribute significantly to Li+ motion in the SPE. Instead, Li+ motion in
the PEO-based electrolytes resembles diffusion along PEO chain contours with
occasional inter-chain jumps on a time scale of *100 ns [41].

Fig. 11.2 Representative
configurations of Li+

coordination by PEO
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Simulation [29] and experimental studies [46, 47] of linear PEO-based elec-
trolytes also showed strong dependence of the Li+ and anion motion on salt con-
centration. While the anion motion remains much faster than that of Li+ for all salt
concentrations, the translational dynamics of both ions decrease dramatically with
increasing salt concentration, suggesting strong coupling with local polymer
relaxations. The slowing of polymer segmental dynamics with increasing salt
content is due to the strong binding between ether oxygens and Li+, which greatly
restricts conformational motion. As a result, a maximum in PEO-based electrolyte
conductivity is observed for Li:EO molar ratio *1:10 due to two counter-acting
effects: Ionic conductivity increases with increasing salt concentration due to the
increase in the number of charge carriers, while increasing salt concentration slows
down polymer dynamics, thereby decreasing also the Li+ transport [29, 48].

11.2.2 Influence of Polymer Architecture

Polyethers of comb-branch chain architecture have been investigated in efforts to
develop polymer electrolytes that take advantage of the ability of oligoethers to
coordinate Li+ while, at the same time, preventing crystallinity due to use of short
side chains, and allow for separate optimization of the backbone properties from
those of the side chains [49]. The ideal comb-branch electrolyte might, for example,
use a glassy backbone polymer, thereby leading to good mechanical properties,
while Li+ transport would be carried out by flexible ether (PEO) side chains
(Fig. 11.3a). The use of relatively short side chains not only reduces/prevents PEO
crystallinity, but may also facilitate the inter-chain hopping needed for large-scale
Li+ transport, due to sharing of Li+ cations between side chains. Several polymer
electrolytes formed from comb-branch polymer have been studied experimentally
[50, 51] and in simulations [30], however, studies showed that the conductivity of
the comb-branch electrolytes is very similar to that of the linear PEO electrolytes.
Molecular simulations of the comb-branched systems revealed that Li+ motion
occurs primarily by hopping of the cation from one side chain to another [30].
However, a fraction of Li+ cations are partially coordinated by the polyether
backbone and, therefore, have very slow dynamics and do not contribute to con-
ductivity. The slow dynamics of cations that are partially coordinated by the chain
backbone can be correlated with conformational transitions of PEO segments: those
that are closer to the backbone are significantly slower due to steric crowding.
Hence, the Li+ complexed by the slower segments exhibits the lowest mobility.
Therefore, while the comb-branched PEO-based electrolytes investigated so far did
not show improved Li+ conductivity, they provided evidence of two promising
trends: (1) the Li+ that is not complexed by the backbone exhibits higher mobility
than in the linear PEO electrolyte, indicating that the short side chains do promote
inter-chain hopping, and (2) the Li+ mobility, at least for those cations not com-
plexed by the polymer backbone, is largely independent of the backbone motion.
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One disadvantage of current PEO-based electrolytes is their low transference
number due to relatively high anion mobility. Large-scale anion motion in
comb-branch electrolyte can be eliminated by attaching the anions to the polymer
(Fig. 11.3b), however, this has a deleterious effect on Li+ mobility [52], because
anions play an important role in the ability of Li+ cations to undergo inter-chain
jumps. While attaching the anion to the polymer has the advantage of improving
transference number (all charge is carried by Li+), further reducing the Li+ mobility
is a major disadvantage. Addition of a solvent/plasticizer [e.g., ethylene carbonate
(EC)] to the single-ion conductor electrolytes showed dramatic improvement in
ionic conductivity over the non-plasticized single-ion conductor. EC increases the
rate of polymer conformational transitions, yet it is not directly involved in coor-
dination and transport of Li+ [53]. An experimental investigation [54] of a
single-ion conductor made from blending PEO with a comb-branch
polystyrene-based polyanion showed a low conductivity, but depending dramati-
cally upon the polyanion structure. Such blending provides additional degrees of
freedom in terms of composition and architecture design of polymer electrolyte
[55].

Finally, there has been an interest in siloxane as a component for polymer
electrolytes due to its conformational flexibility (and hence low glass transition
temperature) and electrochemical stability. Because siloxane itself has limited
ability to solvate Li+, siloxane-based electrolytes contain ether groups for the
purpose of solvating and transporting Li+. Siloxane-ether oligomers [56–59] and
comb-branch polymers with siloxane backbones and PEO side chains [60–63]
(Fig. 11.3c) show indeed improved conductivity. However, these electrolytes do
not exhibit adequate room temperature conductivity and mechanical stability for
most applications.

11.2.3 Influence of Polymer Morphology

Microphase-separated copolymers consisting of PEO covalently linked to a dif-
ferent type polymer offer an attractive avenue to achieving both high ionic

Fig. 11.3 Representative PEO-based polymer architectures considered for SPEs
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conductivity and dimensional stability in polymer electrolytes [64]. Microphase-
separated copolymers can also prevent the formation of semi-crystalline spherulites
that reduce contact with electrodes [65]. It is important to note that added lithium
salts modulate the degree of block segregation and can alter the resulting polymer
organization and properties emanating from this [66, 67]. Copolymer electrolytes
that provide nano-scale domains ion-rich and ion-lean can be advantageous [68].
The ion-rich domains play a primary role in ion transport and, to this end, the
polymer segments localized there should be mobile, through appropriate polymer
chemistry and architecture, or through heating and/or the introduction of plasti-
cizers. The polymer segments of the ion-lean domains can be designed such that
they contribute to the mechanical rigidity of the polymer electrolyte [69].

The conductivity of heterogeneous polymer electrolytes involves a pre-factor
f (� 1) that accounts for the tortuosity and connectivity of the conducting domains
[68]. In the case of block copolymer electrolytes [69] with well-defined nano-scale
morphologies [70], an ideal morphology factor, fideal, can be defined based on
perfectly ordered lamellae, cylinders, etc. [68]. Experimentally determined f of
heterogeneous polymer electrolytes relevant to Li-ion batteries is typically lower
than fideal [67] indicating the importance of the resistance at grain boundaries, and
associated with it, the importance of processing history [71, 72].

The effects of morphology on the ionic conductivities of polymer electrolytes are
significant [69]. A polymer electrolyte membrane of a typical 100 lm thickness
encompasses several micro-scale grains, each with well-defined nano-scale orga-
nization of the polymer, but each with different orientation. For intra-grain ion
transport, the continuity and connectivity of the ion-conductive nano-scale domains
are important, whereas for inter-grain ion transport, the connectivity of conducting
channels across the boundary between adjacent grains is important. The mesoscopic
and macroscopic orientation/alignment of nano-structured domains are outstanding
issues in the field of microphase-separated polymers, but several methodologies
have been found effective, such as thermal or solvent annealing, epitaxy, tem-
plating, stretching, shear alignment, application magnetic or electric fields, or
combinations thereof [72–83].

While nano-scale polymer organization is driven by thermodynamics,
meso-scale grain size and alignment are typically an outcome of processing, either
deliberate or unintended consequence of sample preparation and testing [84]. An
investigation of thermal history on the ionic conductivity of LiTFSI (lithium bis
(trifluoromethanesulfonyl)imide, LiN(SO2CF3)2)-doped PEO-PS (polystyrene)
block copolymer electrolytes showed the conductivity of low MW samples to
decrease after annealing, while the conductivity of high MW samples was unaf-
fected. This was attributed to the development of well-defined nanostructure in the
annealed samples [85]. A subsequent study on the dependence of ionic conductivity
on the grain size of a lamellar PEO-PS block copolymer electrolyte showed
well-formed lamellar grains to be less conducting than poorly defined, small grains
[86]. Well-ordered solvent-cast films of polymerized ionic liquid block copolymers
(single-ion conductors) exhibited up to an order of magnitude higher conductivity
than poorly ordered melt-pressed films [87].
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11.3 Composite Polymer Electrolytes

As nanoparticles are incorporated into a PEO + salt electrolyte to form a composite
polymer electrolyte (CPE) [24, 25], the concentration of PEO crystalline domains
can be reduced without harming the PEO chain flexibility. This is a main reason for
the observed ionic conductivity enhancement in CPEs. Moreover, the cation
transference number (t+, fraction of the current carried by lithium ions) and the
mechanical strength can be improved simultaneously over a wide temperature
range. These effects of nanoparticles on polymer electrolytes are highlighted in this
section.

11.3.1 Nanoparticle Effects on Conduction
and Transference

The most critical requirement for the application of polymer electrolytes in
lithium-ion batteries is the ionic conductivity. This is commonly described by the
Vogel–Tamman–Fulcher (VTF) equation [25, 88, 89].

r ¼ AT�1=2 exp½�Ea=ðT � T0Þ� ð11:1Þ

The conductivity variation with inverse temperature for the CPEs PEO (4 � 106

g/mol)–LiTf (lithium trifluoromethanesulfonate or lithium triflate, LiCF3SO3, EO:
Li+ = 9)–xwt% TiO2 (x = 0, 5, 10, 15 and 20) is shown in Fig. 11.4. Only the 5 wt%
sample behaves differently compared to the typical VTF behavior of other elec-
trolytes. Specifically, the conductivity increases faster at temperatures T > 80 °C
due to the increased mobility of ions via Lewis acid–base interaction. The sample
with 10 wt% TiO2 exhibited the optimal ionic conductivity among those studied.
Further addition of nanoparticles (20 wt%) led to a drop in conductivity because of
nanoparticle agglomeration that hindered ion transport [90].

In addition to their effect on ionic conductivity, nanoparticles also affect the
transference number (t+) of CPEs. t+ directly describes the charge transport and thus
the current of a specific ion [91]. Specifically, t+ indicates the fraction of the current
that is carried by the cation (Li+) in the electrolytes. It is desirable to achieve a high
t+ value in order to enhance the electrode reaction kinetics and to eliminate the
concentration gradients within the battery so that the internal voltage drop could be
lowered and the output current increased [92]. t+ is most commonly calculated by
Eq. (11.2) [93, 94].

tþ ¼ lþ

lþ þ l�
¼ Dþ

Dþ þD� ð11:2Þ
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In Eq. (11.2), D+ and D− are the cation and anion self-diffusion coefficients; l+

and l− are the mobility [95, 96] of the cation and anion, respectively.
High lithium transference number (tLi þ ) at ambient temperature contributes to

efficient battery performance [97, 98]. In view of the importance of t+, the effect of
additive surface functional sites on the transference number (t+) is discussed here.
For the system PEO–LiCF3SO3 (EO:Li+ = 20)–10 wt% Al2O3 (basic, neutral, or
acidic, d = 5.8 nm), the transference number t+ increased in the sequence of
updoped (t+ = 0.46) < basic Al2O3 (t

+ = 0.48) < neutral Al2O3 (t
+ = 0.54) < acidic

Al2O3 (t+ = 0.63) [99]. As for an explanation, the hydrogens of acidic ceramic
surfaces (Lewis acid) form hydrogen bonds with the lithium salt anions and the
ether oxygens (Lewis base) [99], which promote salt dissociation and also decrease
the PEO crystallinity [98, 99]. In this way, t+ increased. As for the neutral and basic
Al2O3, the number of Lewis acid sites decreased, leading to a weaker increase in t+.
This discussion would be more interesting if the number of acidic sites on the
surface could be quantified in combination with oxygen vacancy analysis. The
efficiency of acidic sites on the t+ increase would thus be revealed.

We discuss above factors affecting the lithium transference number t+. But how
is t+ related to conductivity? Conductivity and tLi þ results have been compared for
CPEs, with the additive being ionically active or inert SiO2 particles (active SiO2

was mesoporous silica MCM-41 absorbing plasticizers of ethylene carbonate (EC)/
propylene carbonate; inert SiO2 was mesoporous silica MCM-41 without plasti-
cizers). For PEO (300,000 g/mol)–LiClO4 (EO:Li

+ = 16)–SiO2 (1000 m2 g−1), the
conductivity initially increased upon addition of active SiO2, attained a maximum
value of about 2.4 � 10−5 S cm−1 at 10 wt% active SBA-15 (even though the free
Li ion percentage was optimized at 5 wt%), followed by a mild decline with further
loading of active SBA-15 [92]. In parallel, the transference number t+ increased
from 0.42 for the undoped sample, reached a maximum value of 0.54 at 10 wt%

Fig. 11.4 Variation of
conductivity with inverse
temperature on the heating
run for composite polymer
electrolytes incorporating
TiO2 ceramic powder; PEO
(4 � 106 g/mol)–LiTf (EO:
Li+ = 9)–x wt% TiO2 (x = 0,
5, 10, 15 and 20)
(Reproduced from Ref. [90]
with kind permission of ©
2014 Elsevier)
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active SBA-15, followed by a drastic decline with further loading of active
SBA-15 (Fig. 11.5). As for the reasons, the –OH groups on the surface of SBA-15
compete with Li+ (both as Lewis acid) to interact with ether oxygens and ClO4

−

(both as Lewis base) to promote Li+ transport and thus enhance t+. When the
additive content exceeded 10 wt%, nanoparticle aggregation drastically impaired
the Li+ transference number.

In another study, mSBA-15 (silane-functionalized silica of SBA-15,
1000 m2 g−1) was added into PEO (300,000 g/mol)–LiClO4 (EO:Li+ = 16). The
ionic conductivity (r) and t+ presented a similar increasing trend and achieved their
peak values simultaneously at a level of 5 wt% doping. This mSBA-15 additive has
been proposed to promote lithium salt dissociation and produce more free lithium
ion, and to lower the activation for ion transport [100]. Following the peak values, r
decreased gradually and t+ decreased steeper upon further nanoparticle addition.

11.3.2 Nanoparticle Effects on Mechanical Properties

Polymer electrolytes are promising to avoid drawbacks of the liquid-state elec-
trolytes and help to expand the operating conditions, even in harsh conditions, e.g.,
high temperature. However, the mechanical strength of neat PEO is not satisfactory,
especially at a high working temperature due to its low-melting temperature
66–75 °C. The binary systems of PEO with lithium salt do not exhibit an obvious
improvement of mechanical strength despite the transient crosslinks [101] formed
between lithium ions and ether oxygens. Thus, the mechanical properties of
polymer electrolytes with nano-additives became of interest. In this section, we
discuss how nanoparticles can improve CPE mechanical properties such as tensile
strength, yield strength, elastic and viscous modulus.

Silane (KH550)-modified silica was added for simultaneous enhancement of the
ionic conductivity and mechanical strength of PEO (MW = 300,000 g/mol)–

Fig. 11.5 Ionic conductivity
r and lithium transference
number t+ as a function of
a active SBA-15 and
b inert SBA-15 content for
PEO (300,000 g/mol)–
LiClO4–SiO2 (1000 m2 g−1)
CPE at 25 °C. Solid lines
correspond to the Y axis on
the left. The dashed line
corresponds to the Y axis on
the right (Data from Wang
et al. Ref. [92])
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LiClO4 (EO:Li
+ = 16) [102]. Less than 10 wt% nanoparticles caused the formation

of an amorphous interface region around the nanoparticles and an increase in the
polymer amorphous fraction [103], which led to an increase of the ionic conduc-
tivity as shown in Fig. 11.6. Further addition (>10 wt%) of nanoparticles led to
agglomeration that impaired the ionic conductivity. In contrast, the CPE tensile
strength kept increasing upon addition of nanoparticles to 15 wt% [102].

In another study, the tensile modulus and yield strength of PEO
(300,000 g/mol)–LiClO4–(mSBA-15: silane-functionalized mesoporous silica)
increased with increasing mSBA-15 amount in the 0–15 wt% range [100]. This
enhancement is due to the addition of ceramic fillers which acted as crosslinking
media inside the polymer matrix by their surface interactions [104]. However, the
enhancement was not always monotonic. For PEO (100,000 g/mol)–LiClO4–

(montmorillonite–CNT), the optimized tensile strength was achieved upon 5 wt%
clay–CNT incorporation into the hybrid. The tensile strength increased by 160%
compared to the PEO electrolyte [105]. This reinforcement has been ascribed to the
large aspect ratio and surface roughness of the clay–CNT hybrid filler, which lead
to strong interactions between nano-fillers and polymer [105]. The different surface
roughness may also explain the difference in the optimal nano-additive amount for
maximized tensile strength between these two systems. In combination with the
knowledge that the maximum conductivity occurred at 10 wt% nano-additive [92,
106, 107], the incorporation of 10 wt% nano-additive appears to offer an optimal
combination of improved mechanical properties as well as optimized ion conduc-
tivity. Very likely, a CPE composition involving around 10 wt% additive would
also correspond to minimized Tg, Tm, and crystallinity. Of course, the surface
conditions, e.g., roughness, functionalization, and possible surface defects of the
nanoparticle additives may cause the final result to deviate.

Fig. 11.6 Ionic conductivity
and tensile strength for PEO
(MW = 300,000 g/mol)–
LiClO4 (EO:Li

+ = 16) with
various contents of SiO2 and
KH550-modified SiO2

(mSiO2) at 30 °C. Solid lines
correspond to the Y axis on
the left. Dashed lines
correspond to the Y axis on
the right (Data from Fan et al.
[102])
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11.4 Ternary Polymer Electrolytes

With an aim to further improve the CPE performance, Sect. 11.3 discusses the silica
nanoparticle modification by plasticizers treatment or by silane compound to tune
the interactions between polymer, nanoparticles, and Li+ ions (the notion of tuning
interactions also applies to the physical modification of CPEs that is discussed in
Sect. 11.4). The compatibility of nanoparticles with the polymer matrix can be
improved in this way. We discuss here pseudo-ternary systems consisting of
polymer, salt, and surface-modified nanoparticles. Typical methods of nanoparticle
chemical modification with polymers and ionic liquids are addressed in
Sects. 11.4.1 and 11.4.2, respectively.

11.4.1 Polymer-Functionalized Nanoparticles

In order to improve the compatibility of nanoparticles with the polymer matrix for a
better performance of CPEs, surface grafting of nanoparticles with oligomers (short
chain polymers) that share the same repeating unit as the polymer matrix has been
actively investigated. One example involves polyhedral oligomeric silsesquioxane
(POSS) nanoparticles functionalized by poly(ethylene glycol) (PEG) [108, 109],
and another example concerns silica functionalized by PEO [110]. POSS is an
organic–inorganic hybrid compound typically formed by inorganic cubic core
(siloxane cage) and outer organic groups (pendant arms), with a general formula of
(RSiO1.5)n = 6, 8, or 10 [111]. POSS are of interest for their broad applications [73,
83], inlcuding in connection to CPEs [112–115].

Different ways of POSS [116–118] application in combination with
ion-conductive polymers (e.g., PEO) for electrolytes in lithium-ion batteries have
been reported [73, 108, 109, 111–118]. In the first case, the outer organic groups of
POSS are ion-conductive PEO chains, and the organic–inorganic hybrid compound
(generally denoted as POSS–PEO) itself acts as an electrolyte with the grafted PEO
serving as conducting media. In this case, the POSS–PEO is the matrix. In the
second case, POSS–PEO can also be used as an additive for binary PEO + salt
polymer electrolytes; with the help of grafted PEO chains, compatibility with the
PEO matrix can be improved. A comparison of these two cases is presented next.

For the first case of POSS–R as matrix, POSS–PEO8 (n = 4, where n denotes the
number of PEO-repeating units attached to POSS, while the subscript 8 of PEO
denotes octa-functionalization on POSS) and PEO 600 K were compared as ion
conduction medium upon addition of LiClO4 at a fixed amount of EO:Li+ = 12. As
shown in Fig. 11.7a, the POSS–PEO8 (n = 4)-based electrolyte exhibited higher
conductivity than that of PEO (600 K)-based electrolyte over the whole temperature
range. In contrast, in Fig. 11.7b, PEO (600 K)–LiClO4 (O/Li = 12:1) exhibited an
abrupt conductivity change [108] at the PEO-melting temperature of around 327 K.
At low temperatures (T < Tm), neat POSS–PEO8 (n = 4, O/Li = 12:1) presented a
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higher conductivity than that of PEO (600 K)–LiClO4 (O/Li = 12:1) because of the
low viscosity of POSS–PEO8 and the crystallization of PEO. At high temperatures
(T > Tm), it is the opposite case because of the inert SiO1.5 core of POSS–PEO.

For the second case of POSS–R as additive, at low temperatures, the mixture of
POSS–PEO8 (n = 4) /PEO (600 K) exhibited a conductivity between that of
POSS–PEO8 (n = 4)- and PEO (600 K)-based electrolytes. This was attributed to
the crystallinity decrease by addition of POSS–PEO8 into PEO (600 K); at high
temperatures, the mixture of POSS–PEO8 (n = 4) /PEO (600 K) exhibited lower
conductivity than PEO (600 K)–LiClO4 (O/Li = 12:1) because of the presence of
the inert SiO1.5 core [108].

Fumed silica (FS) (d = 12 nm, surface area = 200 m2/g) functionalized by
non-polar alkyl moieties (FS-C8) or by polar PEO oligomers with
MW = 200 g/mol (FS-C3EG3ME) has been used in oligomer-based electrolytes
with two different lithium salts, respectively: polyethylene glycol dimethyl ether
(PEGDME, Mw = 250 g/mol)–LiN(CF3SO3)2/LiCF3SO3 (Li:O = 1:20) [110]. The
conductivity was not improved but rather dropped marginally with the addition of
fumed silica at a doping amount of 10 and 20 wt%. FS-C3EG3ME even brought
down the conductivity to a larger extent compared to FC-C8. High conductivities of
over 10−3 S/cm at the 295–400 K temperature range were reported [110]. This high
conductivity was attributed to the low molecular weight matrix of PEGDME with
MW = 250 g/mol. In this case of low molecular weight oligomer electrolyte, the
conductivity benefited from the liquid state of the matrix, while the addition of
nanoparticles increased the viscosity to impair the ionic conductivity to some
degree. This is opposite to the nanoparticle effect in SPEs to improve ion con-
duction. However, when it comes to a solid polymer matrix, it is possible that

Fig. 11.7 a Conductivities of (i) POSS–PEO (n = 3)8 (filled triangle); (ii) POSS–PEO (n = <8>)8
(filled circle); (iii) PEGDME (MW = 500 g/mol) (filled square); and PEO (MW = 600 K) (filled
diamond). All samples are prepared using LiClO4 with O/Li = 8:1. Reproduced from Ref. [109]
with kind permission of © 2006 The Electrochemical Society; b conductivity plots of (i) POSS–
PEO8 (n = 4) (filled square); (ii) PEO (MW = 600 K) (filled diamond); (iii) blend of 50 wt%
POSS–PEO8 (n = 4) with 50% PEO (600 K) (filled triangle); and (iv) blend of 60 wt% POSS–
PEO(n = 4)8 with 40 wt% PEO (600 K) (filled circle); all samples are prepared using LiClO4 with
O/Li = 12:1 (Reproduced from Ref. [108] with kind permission of © 2007 American Chemical
Society)

11 Tailoring Performance of Polymer Electrolytes Through … 493



FC-C3EG3ME would act more effectively to facilitate ion transport for its lithium
ion coordination sites of EO units [114, 117]. Therefore, the incorporation of these
differently grafted fumed silica into solid polymer electrolytes awaits to be inves-
tigated for comparison.

Other studies of polymer-functionalized nanoparticles include silica grafted
with: [119] (1) homopolymer of poly(ethylene glycol) methyl ether methacrylate
(PEGMA) of different molecular weight, or (2) poly(ethylene glycol) methyl ether
methacrylate (PEGMA) copolymer, as additive for matrix of poly(ethylene glycol)
dimethyl ether (PEGDME, Mw = 500 g/mol)–LiI/I2 (EO:Li = 10:1). This system
was reported to achieve room temperature conductivity 10−4 S/cm, but this result
was around a threefold decrease from the undoped binary samples [119]. Thus, it
can be concluded that the effectiveness of modified nanoparticle on properties of
CPEs differs depending on the liquid or solid state of the polymer matrix, and it is
not always the case that chemically functionalized nanoparticles can help improve
the performance of the electrolytes. Similar work has been published, e.g.,
PEO-grafted silica was used in the matrix of PEO/sulfoisophthalate ionomers to
improve the room temperature ionic conductivity by an order of magnitude [120].

11.4.2 Ionic Liquid-Modified Nanoparticles

In addition to PEO oligomer grafting on POSS surfaces, ionic liquids have also
been introduced for nanoparticle chemical functionalization. The application of
ionic liquids in polymer electrolytes has been motivated by their good chemical and
electrochemical stability, low flammability, and negligible vapor pressure [18, 121–
126]. Researchers then considered nanoparticles and ionic liquids chemically
combined together as additives for CPEs. For example, studies have been reported
on 1-methyl-3-[(triethoxysilyl)propyl]imidazolium chloride (TMICl) tethered to
TiO2 nanoparticles (20 nm in size) used in electrolytes for dye-sensitized solar cells
(DSSC) [127], and on 1-undecyltrimethoxysilane-3-butyl imidazolium bis
(trifluoromethylsulfonyl) imide tethered to ZrO2 (average particle size 86 ± 2 nm)
as hybrid electrolytes for lithium-ion batteries [128].

In a recent study, 1-methyl-3-propyl-imidazolium bromide ionic liquid attached
on silica (MPIm-AS or AS-IL, size not given) was reported to improve the ionic
conductivity of PEO (MW = 106 g/mol)/poly(ethylene imine) (PEI,
MW = 1.2 � 105 g/mol)–LiClO4 [129]. (PEO:PEI = 10:1, lithium salt, and
nanoparticle amount not specified.) The novelties included: (1) physical mixing of
PEI with PEO as polymer matrix, PEI itself providing alternative coordination sites
to complex with lithium ions by its nitrogens on polymer chains; (2) blending with
PEI makes the electrolyte formation easier due to its lower viscosity, and thus
unnecessary to use plasticizers.

The impedance became much smaller upon the introduction of MPIm-AS, with
the optimal content observed at 6 wt% and the corresponding conductivity at
9.1 � 10−5 S/cm as shown in Fig. 11.8 [129]. In contrast to the Sect. 11.3
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discussion of optimal doping at 10 wt%, [92, 106, 107], the optimal doping con-
centration of AS-IL is decreased in this case to 6 wt%. The difference may be due to
the different composition of the polymer matrix. The different electron-donating
ability of oxygen and nitrogen led to a different solvating ability for the lithium ions
and interactions with AS-IL [129]. When the amount of AS-IL exceeded 6 wt%,
particle aggregation hindered the ion transport and decreased the ionic conductivity.

Decreasing melting temperature Tm and heat of fusion DHm values are reported
in Table 11.1. It is worth noting that the optimal conductivity point, at 6 wt%
MPIm-AS, is not the point of lowest PEO crystallinity. This was explained by a
greater amount of additive that aggregated and impaired the ion transport within the
matrix [129].

Another report of this type concerns 1-methylimidazole chloride (ImCl) ionic
liquid-tethered TiO2 (size not provided) as additives for plasticized polymer elec-
trolytes: PEO (Mw = 106 g/mol) /PMMA (Mw = 1.2 � 105 g/mol)–LiClO4–

propylene carbonate–(3–12 wt%) IL-TiO2 [130]. This study also followed the idea
of “tuning the recipe” for CPEs by blending polymers as co-matrix, and also by the
addition of plasticizer. The maximum conductivity was 1.05 � 10−4 S/cm at 9 wt%
IL-TiO2 [130]. Further addition of IL-TiO2 led to conductivity drop due to
immiscibility or aggregation of IL-TiO2. For this type of IL-tethered nanoparti-
cles, the topic of how the two counterparts, i.e., ionic liquid and nanoparticle, work
in tandem with the CPEs remains of interest to this field.

To sum up Sect. 11.4, chemical modification of ternary CPEs is seeking to
improve the compatibility of nanoparticles with the polymer matrix or to improve
the “solubility” of the nano-additives in the polymer matrix. One common method
is to graft functional groups onto the nanoparticle surface to interact with ether
oxygens of the PEO matrix. Following the chemical modification of the nanopar-
ticles, pre-existing Lewis acid–base interactions have been disturbed. The optimum
doping (for optimal ionic conductivity) is no longer the typical 10 wt% for
untreated nanoparticles [92, 106, 107]. For different studies, either the polymer
matrix can accommodate more nanoparticles [108, 109] for a higher performance,
or a smaller amount of nanoparticle doping [129] can function as well as the

Fig. 11.8 Ionic conductivity
of poly(ethylene oxide)
(MW = 106 g/mol)/poly
(ethylene imine)
(MW = 1.2 � 105 g/mol)–
LiClO4 (PEO:PEI = 10:1)
containing 0, 2, 4, 6, and 8 wt
% of AS-IL at room
temperature (Data from Kim
et al. [129])
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unmodified ternary CPEs. Moreover, in CPE studies with modified nanoparticles,
the observation that “the sample with nanoparticle doping amount for lowest
crystallinity point did not exhibit highest conductivity” [129] has not been thor-
oughly explained, even though the ion transport is believed to be facilitated in the
amorphous state of the polymer matrix.

11.5 Quaternary Polymer Electrolytes

After the discussion in Sect. 11.4 concerning chemically modified nanoparticles in
CPEs, we discuss here an alternative for CPE formulation, which is the physical
addition of a fourth component in order to improve the performance. The advan-
tages of this approach are the vast choice of co-additives and its ease of imple-
mentation (blending as opposed to organic/inorganic chemistry). We discuss here
pseudo-quaternary systems consisting of polymer, salt, nanoparticles, and solvent.
Two typical classes of the fourth CPE component are organic solvents as plasti-
cizers and ionic liquids. These are highlighted in Sects. 11.5.1 and 11.5.2,
respectively.

11.5.1 Organic Solvent Additives

Organic solvent-based electrolytes have been traditionally employed to obtain a
high ionic conductivity such as 10−2 S/cm [16, 131, 132]. Organic solvents have
also been added to polymer electrolytes to produce gel polymer electrolytes
(GPE) [133–135]. Given the organic solvent contribution to a high conductivity,
organic solvents have been employed as co-additives together with nanoparticles in
CPEs. This is a popular approach due to a wide range of additive choices. Selected
examples of such quaternary CPEs are discussed in this section.

Conductivity results of plasticized PEO–16 wt% LiCF3SO3–20 wt% EC
incorporating 3–18 wt% of Al2O3 (d = 11.8 nm) [136] are shown in Fig. 11.9.

Table 11.1 Melting point (Tm), melting enthalpy (DH) and crystallinity (vc) of for poly (ethylene
oxide) (MW = 106 g/mol)/poly(ethylene imine) (MW = 1.2 � 105 g/mol)–LiClO4 (PEO:
PEI = 10:1) CPEs containing 0, 2, 4, 6 and 8 wt% AS-IL [129]

Content of AS-IL Tm (°C) DHm (J/g) vc (%)

a (0 wt%) 60.67 32.1 46.5

b (2 wt%) 55.23 31.7 45.8

c (4 wt%) 53.66 28.7 41.5

d (6 wt%) 51.89 27.8 40.2

e (8 wt%) 46.29 27.2 39.6
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The addition of 15 wt% Al2O3 fillers maximized the ionic conductivity to
5.07 � 10−4 S/cm. For plasticized PEO (600,000 g/mol)–LiCF3SO3 (LiTf, Lithium
triflate)–dibutyl phthalate (DBP) (20 wt%) incorporating MnO2 (d = 12–15 nm), a
maximum conductivity of 4.3 � 10−4 S/cm was achieved at 12 wt% MnO2 [137].
Noticeably, the organic solvent-plasticized CPEs tend to accommodate more
nanoparticles for optimized ionic conductivity.

The ionic conductivity of systems comprising PEO (4 � 106 g/mol)–LiCF3SO3

(EO:Li+ = 9)–EC–Al2O3 (5.8 nm pore size, 150 mesh, neutral) is shown in
Fig. 11.10 [138]. The observed conductivity enhancement originated from the
structural modifications caused by the plasticizer and the nanoparticles. A sample
consisting of PEO (4 � 106 g/mol)–LiCF3SO3 (EO:Li

+ = 9)–50 wt% EC–15 wt%
Al2O3 (5.8 nm pore size, 150 mesh, neutral) exhibited the lowest Tg and Tm values
together with the highest conductivity. However, in the case where EC was not
added, the conductivity versus nanoparticle amount revealed that the highest con-
ductivity occurred at 13 wt% Al2O3, which is lower than that at 15 wt% observed in
the presence of EC. Compared to results from other ternary systems which usually
present optimal conductivity at 10 wt% nanoparticle doping [92, 106, 107], the
plasticized polymer electrolytes can accommodate higher amounts of
nano-additives, with the assistance of organic solvent.

In parallel with the conductivity results, the thermal properties of polymer
electrolytes incorporating co-additives reflect the conductivity trend to some extent,
and thus can be employed to explain the conductivity changes. The Tg and Tm
values for the binary PEO (4 � 106 g/mol)–LiCF3SO3 (Lithium triflate, LiTf, EO:
Li+ = 9) electrolytes were −44 and 58 °C, respectively [138]. Both Tg and Tm
decreased with the addition of either Al2O3 filler or EC plasticizer. A quaternary
system containing both nanoparticle and plasticizer further brought down both Tm
and Tg as shown by samples 1–6 in Table 11.2 [138]. Follow-up work with TiO2

(particle size not provided [90]) together with EC plasticizer added to the same
binary system of PEO (4 � 106 g/mol)–Lithium triflate (LiTf) (EO:Li+ = 9)
exhibited a similar trend of Tm and Tg drop [90]. For samples 7–9 in Table 11.2, the
activation energy (Ea) decreased from 120.6 to 78.8 kJ/mol with the addition of 10

Fig. 11.9 Conductivity for
PEO–LiCF3SO3–EC CPEs at
different wt% Al2O3, and for
PEO–LiCF3SO3–DBP CPEs
as a function of MnO2 content
at room temperature (Data
from Johan et al. [136, 137])
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wt% TiO2, and further decreased to 57.5 kJ/mol with addition of both 10 wt% TiO2

and 50 wt% EC at temperatures below 60 °C. This activation energy decrease
suggested an improved mobility of ions within the polymer matrix, and hence
increased conductivity. Whereas at temperatures above 60 °C, nearly equal Ea

values were obtained for binary, ternary, and quaternary samples [138]. The con-
ductivity increase could be explained by the improved ion mobility in the melted
matrix above Tm, which overwhelmed the effect from added nanoparticles or
plasticizer. For the plasticized CPE of PEO–LiTf (EO:Li+ = 9)–50 wt% EC,
addition of 15 wt% Al2O3 exhibited the lowest Tg and Tm (Tg decreased to −56 °C
and Tm to 49 °C, respectively). The doping amount of 15 wt% differs from that
reported to give optimal thermal property in ternary CPEs (without EC) at 10 wt%
nanoparticles [92, 106, 107]. The difference originated from the plasticizing effect
to accommodate more nanoparticles before aggregation would take place. As a
result, the optimal content of nanoparticle doping increased from 10 to 15 wt%.

A similar trend was obtained for a system of the same components but with
different formulation for optimal properties [136]. PEO (MW not provided)–16 wt
% LiCF3SO3–20 wt% EC–15 wt% Al2O3 (d = 11.8 nm) gave the lowest Tg and Tm

Fig. 11.10 Variation of the ionic conductivity with inverse temperature for the composite
polymer electrolyte systems: PEO–LiTf, PEO–LiTf–50 wt% EC, PEO–LiTf–10 wt% Al2O3,
PEO–LiTf–15 wt% Al2O3, PEO–LiTf–50 wt% EC–10 wt% Al2O3, PEO–LiTf–50 wt% EC–15 wt
% Al2O3. EO:Li

+ = 9 for all samples (Reproduced from Ref. [138] with kind permission of ©
2007 Elsevier)
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values, resulting from increased amorphous percentage and segmental flexibility
caused by the EC plasticizer and the nano-filler [139–141]. However, the PEO
(600,000 g/mol)–LiCF3SO3–dibutyl phthalate (DBP)–MnO2 (12–15 nm) CPE
exhibited a different change of Tg. As related to the polymer chain segmental
movement, Tg increased marginally to −70 ºC when MnO2 was added to the
plasticized system (Tg = −74 ºC) and to the binary system (Tg = −71 ºC).

From a comparison of these quaternary CPE systems with binary polymer + salt
electrolytes and ternary CPE systems, we can see that for binary systems, Tg
increased from neat PEO to binary PEO–Li+ mixtures due to the transient crosslink
formation between Li+ and ether oxygens [98, 142, 143]. In ternary CPEs,
nanoparticles tended to further decrease Tg, by different extent as different types of
nanoparticles were used, while this is not always the case for quaternary systems.
Organic solvent and nanoparticle co-additives make it more complicated to draw a
general rule to predict property change upon additive incorporation. Further
knowledge [144] on this promising direction would be desirable.

11.5.2 Ionic Liquid Additives

Ionic liquids have been extensively studied as additives for polymer electrolytes
due to the unique properties of low-melting temperature and low vapor pressure
[122, 145–147]. Reviews and research papers on ionic liquids as additives for
polymer electrolytes have been published [148–151]. Here, we focus on physical
co-doping of ionic liquids together with nanoparticles in CPEs.

Table 11.2 Crystallite melting temperatures (Tm), glass transition temperatures (Tg), and
conductivity of different PEO (4 � 106 g/mol)–LiCF3SO3 (LiTf: Lithium triflate, EO:Li+ = 9)–
Al2O3/TiO2 samples from [138] and [90]

Sample
number

Polymer electrolyte Tm (°
C)

Tg (°
C)

r at 25 oC
(Scm-1)

1 a(PEO)9LiTf 58 −44 3.5�10-7

2 a(PEO)9LiTf–50 wt% ECa 57 −48 1.6�10-6

3 a(PEO)9LiTf–10 wt% Al2O3 54 −49 1.5�10-5

4 a(PEO)9LiTf–15 wt% Al2O3 51 −50 2.1�10-5

5 a(PEO)9LiTf–50 wt% EC–10 wt%
Al2O3

50 −53 8.2�10-5

6 a(PEO)9LiTf–50 wt% EC–15 wt%
Al2O3

49 −56 1.5�10-4

7 b(PEO)9LiTf 64 −39 c1.4�10-6

8 b(PEO)9LiTf–10 wt% TiO2 60 −46 c4.9�10-5

9 b(PEO)9LiTf–10 wt% TiO2–50 wt
% EC

50 −50 c1.6�10-4

aResults from Pitawala’s work [138]
bResults from Vignarooban’s work [90]
c: r at 30 °C
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Ternary systems of PEO–lithium bis (trifluoromethanesulfonyl) imide (LiTFSI,
EO:Li+ = 18)–10 wt%–nano-sized SiO2 [152] and PEO–LiTFSI (EO:Li+ = 18)–N-
methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (1.44 PP13TFSI)
have been reported [153]. In the discussion of quaternary systems of this subsec-
tion, nanoparticles and ionic liquids are doped together for the system of PEO
(6 � 105 g/mol)–LiTFSI (EO:Li+ = 18)–10 wt% SiO2 (d = 50 nm)–PP13TFSI
(Li+/PP13

+ = 1:1.44) [154]. The conductivity exhibited an Arrhenius behavior as
shown in Fig. 11.11. Conductivity enhancement in the melt state (T > Tm) by
co-doping is not obvious, but at temperatures below the melting point (T < Tm), the
enhancement is significant as explained by the activation energy decrease. From the
Arrhenius plots of conductivity, with the addition to PEO18LiTFSI of
(1) nano-SiO2, (2) PP13TFSI, or (3) both nano-SiO2 and PP13TFSI, the activation
energy (Ea) decreased from 115.3 kJ/mol for the binary PEO18LiTFSI to
(1) 105.0 kJ/mol, (2) 97.6 kJ/mol, and (3) 82.9 kJ/mol, respectively. The lower Ea

value implies a higher mobility of the lithium cations within the polymer matrix; the
lowest Ea and highest r values were achieved by the co-doped sample at the
low-temperature region. In contrast, in the high-temperature region, Ea remained
almost constant for all samples (35.1–37.2 kJ/mol) [154].

In closing Sect. 11.5, the physical modification of ternary CPEs can be sum-
marized as “tuning the recipe” of binary polymer electrolytes (polymer + Li+) by
adding more ingredients to modulate interactions among nanoparticles, PEO (ether
oxygens), and lithium ions within the system, and to affect properties such as
crystallinity, glass transition temperature, and dielectric. The property changes
favor an improvement of the ionic conductivity performance.

Fig. 11.11 Temperature
dependence of the
conductivity for PEO–
LiTFSI, PEO–LiTFSI–SiO2,
PEO–LiTFSI–PP13TFSI and
PEO–LiTFSI–SiO2–

PP13TFSI (EO:Li
+ = 18 for

all samples) (Reproduced
from Ref. [154] with kind
permission of © 2011
Elsevier)
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11.6 Summary and Outlook

Polymer electrolytes typically based on poly(ethylene oxide) and a lithium salt are
being considered to improve the mechanical strength, thermal stability, and safety
over traditional organic solvent-based electrolytes. The development of polymer
electrolytes involves the simultaneous improvement of desirable properties for
lithium-ion batteries.

For binary systems (polymer + lithium salt) [21], given the knowledge of Li+

motion mechanism in PEO-based polymer electrolytes, controlling the polymer
architecture and morphology are effective methods to improve the polymer elec-
trolyte performance. However, it is difficult in binary polymer + salt systems to meet
the performance required in practical applications. A breakthrough occurred when
nano-additives were incorporated into binary systems for conductivity improvement
[24–27]. This conductivity improvement can be explained by functions affected by
nanoparticle: creating more amorphous domains, promoting lithium salt dissolution.
Generally, samples with 5–12 wt% nanoparticle (depending on the type of additive
and its surface, typically at 10 wt%) and molar ratio EO:Li+ = 6–20 (typically at
8–10) yield the optimal ionic conductivity together with lowest degree of poly-
mer crystallinity (vc), decreased glass transition temperature (Tg) and melting tem-
perature (Tm), and improved mechanical strength [92, 103, 106, 155].

However, CPEs also suffer from possible nanoparticle agglomeration within the
polymer matrix. This can limit the performance enhancement due to nanoparticles.
The room temperature ionic conductivity, a critical performance indicator of ternary
CPEs, remains below the desired level of 10−3 S/cm. In order to further improve the
CPE performance, modified CPEs (PEO + salt +-modified nanoparticle and
PEO + salt + nanoparticle + solvent) are being considered aiming to tune
pre-existing interactions within polymer matrix.

Section 11.4 discusses nanoparticles that are chemically modified for an
improved compatibility within CPEs. POSS–PEO8 can be accommodated up to 30
wt% in high molecular weight polymer matrix due to the improved compatibility
conferred by the PEO end groups. The conductivity improvement ranged from a
few times in temperatures above Tm to almost two orders of magnitude in the
low-temperature range. However, the conductivity dropped marginally when add-
ing 10 and 20 wt% [110]. PEO–silica into PEGDME (200 g/mol) matrix due to the
increased viscosity. Incorporation of PEO–silica in high molecular weight polymer
electrolyte has not been reported yet; as for non-polymer modification of silica, the
best conductivity that can be achieved in this case is a little higher than 10−5 S/cm at
room temperature, which is less effective than that reported for the quaternary
(polymer + salt + nanoparticle + solvent) polymer electrolytes discussed in
Sect. 11.5.

Section 11.5 discusses the doping of CPEs with a fourth component in order to
further modulate interactions. In the case of nanoparticle doping with an ionic liquid,
the optimal room temperature conductivity can be in the range 10−4.5–10−4 S/cm.
This approach did not always increase the conductivity over the whole temperature
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range studied when compared to ternary systems of polymer + Li+ + ionic liquid. In
comparison, co-doping with nanoparticles and organic solvents for CPEs led to an
obvious degree of crystallinity drop and marginal Tg and Tm decreases compared to
ternary plasticized system (polymer + Li+ + organic plasticizer). The conductivity
enhancement is less than one order of magnitude (about 2–8 times) and presented an
optimal conductivity a little lower than 10−4 S/cm at room temperature. It becomes
apparent from the above that for quaternary polymer electrolytes, a level of 10−4

S/cm room temperature ionic conductivity is still difficult to achieve, and co-doping
has shown limited contribution toward conductivity enhancement.

The research in CPEs is experiencing a bottleneck in that the highest ionic
conductivity reported for solid-state CPEs just got close to 10−3 S/cm at room
temperature [156–158], still not high enough to compete effectively with traditional
organic solvent-based electrolytes. Future research in this field could fall into two
broad directions. The first direction encompasses three-dimensional nano-scale
ordered structure fabrication [105], such as ion tunnels [159] or ion paths [160], to
facilitate ion conduction. Grafting side chains [161, 162] or a block of different
chemistry [163–165] on the PEO polymer backbone can also be viewed as a
nano-scale fabrication if further ordered structure can be obtained. The second
direction is to adjust the CPE composition, with addition of certain other additives
conferring special functions [90, 92, 137, 138, 166]. Sections 11.4 and 11.5
exemplify the current status of these two directions. The discussion in this chapter
of various formulation strategies for electrolyte performance enhancement is
intended to further stimulate the design of novel CPEs.
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