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Abstract. One of the key objectives of an ambient assisted living environment
is to enable elderly people to lead a healthy and independent life. These assisted
environments have the capability to capture and infer activities performed by
individuals, which can be useful for providing assistance and tracking functional
decline among the elderly community. This paper presents an activity recognition
engine based on a hierarchical structure, which allows modelling, representation
and recognition of Activities of Daily Life (ADLs), their associated tasks,
objects, relationships and dependencies. The structure of this contextual infor-
mation plays a vital role in conducting accurate ADL recognition. The recog-
nition performance of the inference engine has been validated with a series of
experiments based on object usage data collected within the home environment.

Keywords: Activity recognition � Alzheimer’s disease � Assisted living �
Elderly monitoring � Activities of daily life � Activity modelling � Inference
engine

1 Introduction

We live in an age where we are witnessing a significant demographic change, espe-
cially in the western world where it has been projected that the number of people aged
65 and over will increase by 23% from 10.3 million to 12.7 million in 2018. By 2035,
this figure will be expected to reach 16.9 million [1]. This scenario leads to a range of
challenges for the government, as it can lead to a financial burden on the National
Health Services (NHS), welfare and pension schemes. As the population ages there are
increasing numbers of elderly people in society, less carers’ available and less money to
pay for care. Therefore, we look to technological solutions to reduce the need for
human carers. One specific way to reduce the burden on the health system is to create
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an environment that promotes independent and healthy living for the aging population.
Having additional years of independence will not only help the elderly lead an inde-
pendent life, but it will also lessen the financial burden on the local authorities, NHS
and families. The ability to lead an independent life is dependent on how well an
elderly person can conduct everyday activities such as personal dressing, cooking,
bathing and cleaning [2]. These are known as Activities of Daily Living (ADL), whose
recognition plays a crucial role in observing and tracking any functional decline [3].
Useful information about the safety and healthy wellbeing of an elderly person cannot
only help them lead an independent life but can also allow the possibility of instituting
safeguards given a potential harmful scenario. The work in this paper aims to establish
a reliable inference engine for unobtrusively monitoring and identifying activities of
individuals within a home environment.

This paper makes the following contributions. Firstly, we introduce a novel concept
of modelling and recognising ADLs as a hierarchical encapsulated entity, where each
ADL has attributes that enable the inference engine to reason the internal structure and
relationships of an ADL when carrying out recognition. The remainder of the paper is
organised as follows. Section 2 provides an overview of the related literature, while
Sect. 3 describes the structure and the key characteristics of a hierarchical structured
ADL. Section 4 describes the inner workings of the inference engine and how it
manages and recognises the hierarchically structured ADLs. Section 5 describes the
experimental set up of home environment followed by the results that validate findings
about the inference system.

2 Related Work

The ability to recognise an individual’s activities within an ambient assisted living
environment is very much dependent on reliable feature detection techniques and the
construction of human activity models.

Feature detection can be carried out using visual based systems, which can be
computationally expensive when analysing video footage and can be seen as intrusive.
However, the contribution of vision-based systems should not be ignored, as there is a
large body of work within this area. In addition, the activity recognition domain can be
complex; hence, solutions based on the fusion of multiple sensors (including vision
sensors) should not be overlooked.

An alternative to visual based systems is the use of anonymous binary sensors such
as: motion detectors, break-beam sensors, pressure mats, and contact switches. These
can aid the process of tracking an individual around the home and complement the
whole activity recognition process [4]. However, these types of systems do not have
capability of remote monitoring of data. Additionally, it is not possible to have
knowledge of the context or the sequence of activities being monitored.

Wearing different types of sensors around the body is another technique for cap-
turing features related to activities or posture [5]. These types of sensors are known as
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wearable sensors and they can provide contextual information, e.g. accelerometer,
gyroscope and proximity sensor etc. Such wearable sensors can work either as indi-
vidual devices or as part of other devices [6], which have the ability to determine
physical activities such as walking, running, climbing stairs and sitting [7–9]. It is
possible that the data collected through such sensors may be useful for particular
application domain such as social relationship or health care scenarios, it is not very
useful while in isolation and complex activities are being detected.

Unique identification of individuals and recognition of activities performed by them
can be achieved through sensors and passive transponders on objects within the home
environment. Radio Frequency Identification (RFID) technologies have become a
common source of capturing object usage data non-intrusively [10] for activity
recognition. This type of feature detection is known as “Dense Sensing” [11, 12]. This
name comes from the concept that every individual object that can be used during
different activities, get tagged with passive wireless battery-free transponders that
transmit information to a computer via a RFID reader [13, 14] when the object is used
or touched. Unobtrusiveness and easy installation are few major advantages of using
passive transponders. In addition, these passive transponders are not reliant on battery
power; hence, they can be deployed within the home environment for a very long time.
However, “Dense Sensing” does have its share of flaws. Firstly, the capturing of object
usage data from the transponders is dependent on the end user (participants) to wear
RFID reader on their hand or finger, which is bulky and requires regular charging.
Secondly, the presence of metal or water can interfere with the signals, which can have
detrimental effect on the recognition. In addition, trying to capture object usage data for
small objects can be problematic, as the end user is likely to hold the object with their
handing covering the passive transponder, which leads to a situation where no signal is
received in order to confirm that the object has been touched [15].

Capturing noise-free reliable data only solves half of the activity recognition
problem, as a vital component is based on the construction of human activity models,
which make it possible to detect and predict activities from the captured stream of data.
The most popular models within this area of work include Hidden Markov Models
[16], Naïve Bayes classifiers [10] and Bayesian Networks [17]. Unfortunately, such
approaches are not very reliable when trying to recognise activities carried out in a
random order, which is a typical situation in typical daily life activities [16]. Another
criticism is that these approaches can sometimes suffer from a ‘cold start’, as large
datasets are required to carry out robust recognition [18].

Ontology-based approaches [19, 20] are a viable option for building robust activity
models as they exploit the semantics of an ADL, which is based on the observation of a
user’s current context such as current location, current time, and objects used to per-
form the activity.

Other challenges associated with ADL recognition approaches is scalability. One
such top-down, goal driven approach [21] addressed this by structuring activities in
hierarchical manner, which was made up of abstract sensor mappings and series of
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execution conditions. The work proposed in this paper carries out a similar function, as
it also structures ADLs as a hierarchical entity.

Two core classes in which different proposed solutions for activity recognition lays
are inductive and deductive. Potential of inductive class is to learn and generalize by
example [22, 23] whereas, deductive methods provides powerful means to encode
semantic process knowledge [24]. Both frameworks have their benefits and limitations
and the ultimate solution would be the one bringing the best of both worlds. In relation
to this, the proposed hierarchical approach aims to achieve this, as the lower task
recognition tier is based on an inductive framework, while the higher tier ADL
recognition is based on a deductive framework.

Existing approaches for ADL inference have been focused on classification tech-
niques that have been based on pattern recognition. The primary objective of these
approaches are based on designing models that are capable of recognising activities
given sequences of observable [25, 26], which can be then used to deduce behavioural
patterns.

The work proposed in this paper differs from traditional classification techniques, as
it has the ability to accommodate multi-layered contextual scenarios by proposing a
hierarchical structure for the modelling, representation and recognition of the ADLs, its
associated tasks, objects, dependencies and their relationships. The organisation of this
information in a contextual structure plays a key role in carrying out robust ADL
recognition.

3 ADL Model Structure

ADLs have been modelled in a hierarchical structure, where the lowest tier is
responsible for feature detection. Features are captured as data streams, which are
known as sensor events. Each sensor event represents the movement of an object (e.g.
Tap motion has occurred) or the presence of a person entering a zone within an
environment (e.g. John has entered the sink zone within the kitchen).

Hence, a sensor event is used to represent a person within a zone or the movement
of an object (Fig. 2).

These sensor events are then associated with actions, while zones are associated
with objects. For example, in Fig. 1, a kettle motion sensor event can be associated
with the action Kettle used.

3.1 Knowledge Base of ADL Characteristics

3.1.1 Sub-ADL and Action Attributes
Before discussing the recognition framework, it is important to highlight the key
attributes and characteristics that form the information stored in the knowledge base
(see Fig. 1). The attributes in the knowledge base are associated with the Sub-ADLs
and actions within each ADL, as these are utilised for recognising ADLs (see Table 1)
based on their characteristics.
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An ADL encompasses Sub-ADLs and actions, as each of them has attributes
associated with the ADL they belong to. For example, the action use of toilet roll will
be observed more frequently for defecation as opposed to urination ADL.

3.1.2 ADL Attributes
Like the attributes in Table 1, ADLs have attributes that are required for the recognition
process. These are based on characteristics of the relationships between all the possible
ADLs that have been modelled.

The attributes described in Tables 1 and 2 collectively form the knowledge model
necessary to bootstrap the system for initial ADL Recognition. The information in the
knowledge model can be adjusted or modified based on the location setting in order to
suit the current environment.

Fig. 1. Hierarchical structure of make breakfast ADL and make tea Sub-ADL

Fig. 2. Sensor event representation
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Table 1. Sub-ADLs and action attributes

Attributes Description

Maximum duration This is threshold of the maximum duration of performing an
action

Minimum duration This is threshold of the minimum duration of performing an
action

Maximum occurrence This is threshold of the maximum number of times that a certain
Sub-ADL or action may occur in an activity

Minimum occurrence This is threshold of the minimum number of times that a certain
Sub-ADL or action may occur in an activity. This also determines
if an action is mandatory or optional for an activity, as an
occurrence which is greater than 1 makes its mandatory that this
action should be observed in order for the activity to be
performed

Mutually exclusive
Sub-ADL or action

This states whether the Sub-ADL or action are mutually exclusive
to the ADL, hence they do not occur in any other ADL. For
example, Toothpaste used would only occur in Brush Teeth ADL

Prerequisite Sub-ADL
or action

This determines if certain Sub-ADLs and actions need to occur
before any of the Sub-ADLs and actions that will be expected to
occur when this ADL is conducted

Table 2. ADL attributes

Attributes Description

Maximum
duration

This is threshold of the maximum duration of performing the ADL

Minimum
duration

This is threshold of the minimum duration of performing the ADL

Associative
actions

This determines whether the ADL has any Sub-ADLs and actions that are
associated with other ADLs

Interweaved
ADL

This determines if the ADL can be interweaved with another ADL. For
example, a person can start brushing teeth and then start flossing, which can
then be followed by brushing teeth

Shared ADL This determines whether the ADL can be performed simultaneously with
another ADL in the same zone. For example, person x and person y using
the Tap in the sink zone at the same time, where person x is brushing teeth
and person y is washing hands

Assistive ADL This determines if two people are involved while the ADL is being
performed. For example, person x is brushing teeth, while person y passes
toothpaste to person x

Interruptible
ADL

This determines if ADL can be suspended, while another ADL is conducted

Repetitive
ADL

This determines if certain actions or Sub ADLs are likely to be repetitive
when the ADL is being carried out
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4 ADL Recognition

The recognition of the ADLs is based on recognising the patterns and occurrences of
Sub-ADLs and actions that are generated by sensor event sequences. However, there is
an issue as regarding the length of the sensor event stream that should be used for
recognition. The first option could be to use the entire sensor event stream captured.
However, this could be very inefficient as only the most recent events are of interest
within a particular time frame. The other option is to assign a sliding window of events;
however, this would raise an issue as to where the sliding window should start.
A sensible approach is to ensure that the sliding window starts when a person enters or
exits a particular zone (e.g. sink zone), as this could mark the end of one ADL and the
start of another. However, what would happen if a person moves between zones whilst
carrying out an ADL? The proposed approach has addressed by combining a series of
windows in order to accommodate interweaving ADLs that might be carried out over a
series of windows that are not structured sequentially. The proposed ADL recognition
engine is divided into a series of functions (see Fig. 3), which represent the logical
steps for recognising an ADL. A description of each function follows:

Fig. 3. ADL recognition engine
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4.1 Feature Detection – Sensor Event Detection

The feature detection for the work in this paper has been conducted by installing a
collection of Radio Frequency Identification (RFID) transponders onto household
objects (such as utensils, cups, and everyday products) around the home environment.
The motion duration of a touched object is based on the proximity the RFID reader has
with the transponders that are attached to the objects. For example, the first point of
contact with a utensil would be the start of a motion, while the final point of contact
would be end of the motion. The main components of the system and its usage within
the home environment are summarised in Table 3.

The reason for using RFID transponders is due to its low cost and its ability to
unobtrusively monitor behaviours of multiple individuals within a household via object
usage data.

4.2 Windows Segmentation

Once the data (streams of sensor events) has been captured by the feature detection
component, the next step is to determine the length of the sensor event stream that is
going to be used for inferring the activities and the individual that is conducting them.
Hence, the objective of this step is to segment the entire captured sensor event streams
into individual windows, so that each window can be used for activity inference in the
preceding step, which generates a utility for each window.

The windows segmentation function is dependent on two following parameters:

• Time intervals between observations: This is considered when the time stamps of
the sensor events indicate that there has been a significant interval between the
movements of two objects. For example, the last object (e.g. frying pan) within the
sensor event stream was captured at 19:26:05, which is then followed by another
object (e.g. Cup) at 23:12:42.

Table 3. Components for feature detection system

Components Description

RFID reader The RFID reader is a size of match box, which is worn as a ring on the
hand of the user conducting an activity. Every time a user touches an
object, this information is then transmitted by the RFID reader via
Bluetooth to a server. The reader also serves a positioning tag, so that
the users location can be tracked within the different zones

RFID object
transponders

These transponders are affixed to everyday objects within the home
environment

Zone exciters Zone within rooms (e.g. sink area within kitchen) are created by low
frequency exciters, which can be set at interval ranges between 0.15 m
and 15 m in diameter
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• Location of the observed person: This is based on the person moving from one zone
to another zone. For example, moving from sink zone to cooker/oven zone could
signify the beginning or end of an activity.

The segmentation function has two phases of segmentation. First phase is to seg-
ment the captured streams into windows given the interval length between the objects
observed. The next phase then carries out further segmentation of the generated win-
dows by segmenting based on movement of a person between zones.

Algorithm: Windows Segmentation 
Input:  S= {s1, s2, s3…sn} is a stream of sensor events. 
Output: <IWk, sk1, sk2, sk3…skn > Individual Windows of 
sensor events. 

1. For each S do
i. Observe t (time interval) between sn and sn+1

ii. if t > t*tt  
Return <Wk, sk1, sk2, sk3…skn > 

2. For each W do
i. Observe zn (zone) between skn and skn+1

ii. if zn = zn+1

Return <IWk, sk1, sk2, sk3…skn > 

4.3 Utility Function Algorithm

This component is responsible for generating an initial utility for all possible ADLs
being detected given the current window of sensor events. This function is computed
once the sensor events have been associated with an action.

The ADL that has the highest utility is considered to be the most probable ADL that
is being conducted given the sensor event stream in each window. Figure 3 shows the
structure of the utility function, which is divided into four steps that will determine the
initial utility of each ADL. The output of the four steps is used to compute the initial
utility. A brief description for each step is described as follows:

Step 1 – Duration Observation

The ability to recognise the duration of an action plays an important role in
determining the ADL being carried out. The objective of this step is to see if the
duration of the observed actions are within the maximum and minimum duration
thresholds that are stored in the ADL characteristics knowledge base. If the observed
duration is within the threshold then the output of this function would be computed as
1. However, for cases where the observed duration is not within the threshold are
computed as follows:

Case 1: Observed duration is less than the minimum duration threshold

If an observed duration for action (e.g. tap used) associated with ADL (e.g. wash
hands) is less than the minimum duration threshold that is currently stored in the
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knowledge base then a linear probability scale is computed which is based on the linear
difference between the observed start time and the minimum accepted duration.

For example in Fig. 4, the minimum duration for Tap used is 00:00:50, while the
observed duration is 00:00:25. In this instance the linear probability scale will be
computed based on the observed action and the associated threshold data stored in
knowledge base, in this case it would be 0.5.

This can be simplified as,

xt
yt
¼ p ð1Þ

where x is the observed duration, y is the minimum duration in the knowledge base and
t represents the unit of time. For example:

25sec
50sec

¼ 0:5

Case 2: Observed duration is greater than the maximum duration threshold

If an observed duration for action (e.g. using kettle) associated with ADL (e.g.
make tea) is greater than the maximum duration threshold that is currently stored in the
knowledge base then another linear probability scale is computed as;

1� xt � yt
zt þ 2zt

� �
¼ p ð2Þ

where x is the observed duration, y is the minimum duration, z is the maximum
duration while tt represents the unit of time. For example:

1� 240sec � 60sec
120sec þ 240sec

� �
¼ 0:5

Fig. 4. Observed duration less than the minimum duration threshold
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In Fig. 5, the minimum duration is 00:01:00, maximum duration is 00:02:00, while
the observed duration is 00:04:00. The output of this function (2) based on the
observation and the data in knowledge base would 0.5.

Step 2 – Key Events Observation

2a. Exclusive Action/Sub-ADL
This step determines the proportion of actions and Sub-ADLs that are exclusive to the
possible ADLs given the window of sensor events. For example, Toothpaste used
would only occur in Brush Teeth ADL, hence this action would also be considered
mandatory for this ADL to be recognised. This would be computed as:

xP
y1; y2. . .yn

¼ p ð3Þ

where x is the observed exclusive action and
P

y1; y2. . .yn are the total number of
associated exclusive actions with possible ADLs given the window of sensor events.

2b. Frequency of Exclusive Actions/Sub-ADLs
The objective of this step is to determine the frequency of observed exclusive actions
and Sub-ADLs, where the frequency is above the expected mandatory threshold of
actions and Sub-ADLs for the possible ADLs given the window of events. For
example, the ADL characteristics knowledge would identify the frequency of the action
loo roll used to be in the range of 1–5 for the ADL defecation, which would be
considered mandatory. However if the captured frequency event for this action were
greater than 5 then this action would be considered optional. This is computed as the in
Function (3), where x is the observed optional exclusive action and

P
y1; y2. . .yn are

the total number of optional exclusive actions that are associated with the all possible
ADLs given the window of sensor events.

2c. Mandatory Actions/Sub-ADLs Occurred
This step determines the proportion of mandatory actions and Sub-ADLs that have
been observed given all the possible ADLs that could occur within the current window
of sensor events. This is computed as in Function (3), where x is the observed
mandatory actions and Sub-ADLs and

P
y1; y2. . .yn are the total number of actions

and Sub-ADLs that are associated with all possible ADLs within the current window of
sensor events.

Fig. 5. Observed duration greater than the maximum duration threshold
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Optional ADLs
This step determines the proportional of optional actions and Sub-ADLs that have been
observed given all the possible ADLs that could occur within the current window of
sensor events.

ADL Relevance
This step determines the proportion of unrelated actions and Sub-ADLs that have been
observed given all the possible ADLs that could occur within the current window of
events.

The outputs of the four steps described are used to compute the utility of all the
possible ADLs given the current window of events. The computation of the utility uð Þ
is based on the average of the outputs of the 4 steps sð Þ, which is as follows:

Pn
i¼1 si
n

¼ u ð4Þ

Based on the recognition environment the ratio of importance for each step can be
changed, however for the following example (Table 4) the ratios are considered all
equal.

This utility function is applied in two phases, where the first phase is for individual
windows to determine the ADLs given each window of events. While the second phase
is applied to aggregate windows in order to determine ADLs that are interweaved. For
example if window 1 is ADL x, window 2 is ADL y, and window 3 is ADL x, then this
implies that ADL x is interweaved with ADL y.

4.4 Aggregate Windows Algorithm

There can be many instances where an activity can be carried out in parallel with
another activity. For example, a person could be making tea while they put bread in the
toaster to make toast. The recognition of these types of interweaving instances is made
possible by grouping the detected windows into aggregate of related windows, which
reflect the interweaved activities.

Table 4. Initial utility for ADL X given window of events

Steps Ratio Output

s1ð Þ Duration observation 1:4 1
s2ð Þ Key events observation 1:4 0.8
s3ð Þ Optional ADLs 1:4 0.3
s4ð Þ ADL relevance 1:4 0.7

Initial utility uð Þ 0.7
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Algorithm: Aggregate Windows
Input:  W= {w1, w2, w3…wn} is a stream of individual 
windows. 
Output: <ak, Wk1, Wk2, Wk3…Wkn > Aggregate Windows of 
individual windows. 

1. Initialize a1 = w1

2. For each W do
i. Observe t (time interval) between wn and 

wn+1 

ii. if t > t*tt  
Return  <ak, Wk1, Wk2, Wk3…Wkn > 

Construction of the related aggregate windows is carried out by assigning the first
recognised window w1 as a starting point for the newly constructed aggregate window
a1. A linear search is then performed on the rest of detected windows to see if it is
possible to add a related window wn. to the current aggregate window a1. The con-
struction of the aggregate window is dependent on timing interval between the indi-
vidual windows, because if the timing interval between two individual windows is over
a certain threshold (e.g. 15 min) then the current aggregate window a1 can be finalised
(Fig. 6).

Once all of the aggregate windows a1. . .an. have been constructed, the utility
function is then applied in order to carry out the second phase of classification based on
the new constructed aggregate windows.

Fig. 6. Construction of aggregate windows

Inference Engine Based on a Hierarchical Structure 981



5 Experimental Setup

The objective of the conducted experiments was to validate the performance of the
inference engine given collected object usage data. The effectiveness of the proposed
inference engine was measured by calculating the precision and recall rates of the
ADLs recognised given the aggregate windows.

The precision (P) and recall (R) for this experiment has been calculated as follows:

P ¼ True Positive
True PositiveþFalse Positive

R ¼ True Positive
True PositiveþFalse Negative

ð5Þ

The feature detection approach deployed for these experiments was based on a
dense sensing [12] approach, where household objects (e.g. cup) are tagged with RFID
transponders. Data based on the usage of these objects is collected by ring-link portable
RFID reader, which transmits usage information to the server whenever the objects are
touched or are within close proximity of the RFID reader. Intentionally there were
many instance where the RFID reader captured noise and unrelated objects, which will
validate the robustness of the proposed inference engine.

For this particular dataset, ten adult volunteers were recruited from the community
to carry out a series of experiments. Table 5 describes the objective of each experiment.

For each experiment, the subjects were asked to record the ADLs they conducted,
which was used a ground truth to validate the system output. The experiments were
based around 12 ADLs, which were made up of a series of Sub-ADLs that belonged to
more than one ADL (see Table 6). This was done intentionally to test the robustness of
the inference engine when trying to recognise similar ADLs.

Table 5. Experiment description

No. Experiment

1. Each subject was asked to conduct a sequential sequence of ADLs using a predefined
order of objects

2. Each subject was asked to perform a sequential sequence of ADLs using a non
prescribed order of objects. The objective was to assess how well ADLs are recognised
with different orderings of objects

3. Each subject was asked to perform a set of Sub-ADLs in a parallel sequence, for
example making tea while making toast. The objective was to assess how well the
inference engine recognizes interweaved activities as an aggregate ADL
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6 Results

The results for experiment 1 in Fig. 7 show that the precision rates ranged from 83% to
98%, which is based on the subjects conducting a sequential sequence of ADLs using a
predefined order of objects.

While the recall rates ranged from 91% to 100%, indicating that the inference
engine was able to consider all possible relevant sub-ADLs and actions when carrying
out ADL recognition, which demonstrates the robustness of the inference engine even
where there is noise. The inference engine was able to recognise ADLs that were
carried out using a prescribed order of objects. As expected, ADLs that consisted of
sub-ADLs that belong to more than one ADL had a slight drop in the recognition rates.

The precision rates for experiment 2 (Fig. 8) ranged from 81% to 95% and the
recall rates ranged from 88% to 97%, which is based on the subjects performing a
sequential sequence of ADLs using a non-prescribed order of objects.

Table 6. ADL, Sub ADLS carried out by subjects for experiments

ADLs Sub-ADLs

Prepare Breakfast ! Make Tea, Make Coffee, Make Toast
Eat Breakfast ! Drink Tea, Drink Coffee, Eat Toast
Cleaning after Breakfast ! Clean Table, Clean Dishes
Prepare Lunch ! Make Sandwich, Make Wrap
Cleaning after Lunch ! Clean Table, Clean Dishes
Put Shopping Away ! Fridge Shopping Away Cupboard Shopping Away
Prepare Snack ! Make Tea, Make Coffee, Get Biscuits
Eat Snack ! Drink Tea, Drink Coffee, Eat Biscuits
Clean Kitchen Floor ! Sweep Floor
Clean Kitchen Worktop ! Wipe Countertop with Wipes
Laundry - Wash Clothes ! Wash Clothes - Washing Machine

Dry Clothes using Tumble Dryer
Warm up Ready Meal ! Heat up food in Microwave
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Fig. 7. Experiment 1 ADL precision and recall rates
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The results for experiment 3 in Fig. 9 show that the precision rates ranged from
79% to 93%, while the recall rates ranged from 87% to 96%. This is a slight decrease
from the other experiments, as each subject performed a set of sub-ADLs in parallel
sequence. Taking into consideration issues related to noise and similar sub-ADLs, the
inference engine was still able to recognise interweaved activities as aggregate ADLs.

Overall the results indicate that the proposed inference engine was able to recognise
and consider all sub-ADLs and actions when inferring a range of ADLs in different
experimental scenarios (e.g. sequential and parallel ADLs performed using ordered and
unordered objects). The precision and recall rates suggest that the proposed inference
engine was able to recognise more relevant instances of an ADL made up of sub-ADLs
and actions as opposed to irrelevant instances. This is made possible by the hierarchical
modelling of the ADL, which takes into consideration the actual ADL, its associated
sub-ADLs, actions and objects.

The results from these three experiments is comparable in terms of the recognition
rates achieved with existing ADL recognition approaches [27, 28]. Though the other
approaches deployed feature detection techniques that captured richer data (e.g.
ambient temperature readings, acceleration data for movement and pressure sensors).
While the approach proposed in this work is based on object usage data collected by
simple RFID transponders. In order to improve the recognition rates in this paper, we
could deploy similar feature detection techniques that provide richer data for analysis.
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984 U. Naeem et al.



7 Conclusion

The work described in this paper looked at how everyday ADLs have been modeled
and recognised as a hierarchical encapsulated entity, where each ADL has attributes
that enable the inference engine to reason the internal structure and relationships of an
ADL when carrying out recognition. A series of experiments based on object usage
data were conducted, which indicated that the hierarchical structure of the ADLs and
inference engine made it possible to recognise ADLs given different recognition sce-
narios. The feature detection technique used was based on low cost simple RFID
transponders, hence the inference engine had to be robust in terms of dealing with noise
and missing data.

The work presented in this paper has the potential to be used for intention analysis
for the elderly community. As the hierarchical modelling of ADLs can enable recog-
nition to be more pre-emptive in terms predicting ADLs of the elderly person being
monitored. This enables the possibility to initiate safeguards given a particular situation.

Further work will be carried out, as the current engine has the potential to be
adapted for real time recognition. This will be done by deploying a learning mechanism
to populate the knowledge base given the changes that take place in the individual’s
activity patterns associated with the attributes in the model.
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