
Application of Cellular Genetic Algorithms
and Space Efficient Chromosomes to Wells

Placement in Oil Fields

Alexandre A.L. Cunha(B), Giulia Duncan Coutinho, Alan Porto Bontempo,
and Marco Aurélio C. Pacheco

Applied Computational Intelligence Lab - ICA - DEE,
Pontifical Catholic University, Rio de Janeiro, RJ, Brazil

ashade@ele.puc-rio.br, alexandre@ashade.com.br, giuliaduncan@gmail.com,

alanbontempo@gmail.com, marco@ele.puc-rio.br

Abstract. This work presents two new approaches to the optimum wells
placement problem in oil fields using evolutionary methods. The pre-
sented approaches are a new space-efficient chromosome and the applica-
tion of cellular genetic algorithms to guarantee healthy population diver-
sity. Usually, authors define a domain representation having wells coor-
dinates and types at any arbitrary position of the chromosome. On the
other hand, the proposed representation enforces a unique relative wells
position for each combination of wells, so, in general, there is only one
problem domain representation for every concrete solution. Therefore,
our representation reduces the search space, thus making the optimiza-
tion more efficient. Furthermore, this paper employs a cellular genetic
algorithm and presents a comparison between it and the classical genetic
algorithm usually applied to this problem. The experiments with the
UNISIM-I reservoir model indicate an enhancement of 6–10 times of the
final NPV when comparing the proposed representation and the tra-
ditional one. Furthermore, the cellular genetic algorithm with the sug-
gested chromosome performs better than the classical genetic algorithm
by a factor of 1.5. These models are valuable not only for the oil and gas
industry but also to every integer optimization problem that employs
evolutionary algorithms.

Keywords: Oil field optimization · Cellular genetic algorithm · Order-
aware representation · Space-efficient chromosome · Optimum wells
placement

1 Introduction

The problem of optimizing wells placement in oil fields is essential for oil compa-
nies. Many engineering and geological variables affect the reservoir and generate
complicated constraints. Accordingly, decision making is not a simple task and
finding solutions to minimize cost and maximize profits is an important and chal-
lenging problem. Optimizations are a way to seek solutions for a well location,
trajectory and type and automate the process.
c© Springer International Publishing AG 2018
Y. Bi et al. (eds.), Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016,
Lecture Notes in Networks and Systems 15, DOI 10.1007/978-3-319-56994-9 4



Application of Cellular Genetic Algorithms 55

This work deals with nonconventional wells, which are arbitrary wells regard-
ing shape [1]. There are several works on this matter [1–6], most of them using
commercial reservoir simulators in conjunction with proved optimization heuris-
tics to determine a suitable wells alternative.

The works [1–4] use standard genetic algorithms with chromosomes that
include the location of each well and their type. Both locations and types are
integer genes constrained to simple domain boundaries, without any direct rela-
tionship. Furthermore, the cited works also use activation bits to denote whether
a well is present in the decoded solution, thus allowing a variable number of wells.

There are possible disadvantages of these models. There is an exponential
increase in the size of the search-space as the number of wells in the solution
gets higher. As a result, the number of simulated scenarios required to achieve
a proper solution grows too large as the maximum allowed wells count rises.
Another disadvantage of the cited models is the redundancy of the chromosome
model because many distinct chromosome instances decode to the same concrete
implementation. Especially, any permutation of the wells within a given chromo-
some produces the same physical solution. Consequently, the genetic algorithm
tends to fragment its population, since many distinct solutions have the same
fitness, which, in turn, makes the convergence rate very slow.

Another limitation of standard genetic algorithms is the lack of control of their
population diversity. As the algorithm iterates, very adapted individuals rapidly
replace less adapted ones, resulting in undesirable convergence to local minima.
The literature has proposed many variations of the classical genetic algorithm to
solve this issue. In particular, the cellular genetic algorithm is an adaptation of
standard genetic algorithm that enforces diversity by defining geographic locations
of the individuals and allowing only neighbors to recombine [7].

The following sections describe a new model to solve the optimal wells place-
ment problem using evolutionary heuristics and geophysics simulations. This
model derives from the model of [3] and enforces a unique domain representation
for each physical implementation. Therefore, the proposed model has less redun-
dancy when compared to the models in the literature, and it should result in
less fragmented populations with better evolution curves. Moreover, this paper
applies a proved cellular genetic algorithm with online diversity control, and
compare it to the standard genetic algorithms.

2 Problem Description

This work approaches the problem of optimizing the reservoir exploration alter-
native by deciding its wells locations, trajectories, and types to maximize the
NPV (net present value) of the reservoir. This approach computes the NPV
using the per well oil production and costs, which it obtains using a commercial
reservoir simulator.

The simulations require a 3-dimensional discrete geological model of the reser-
voir. Therefore, the wells are placed in discrete positions, represented by the
coordinates of the grid blocks. Moreover, this model represent the wells using
line segments. Therefore, only the start and end blocks of the well are required.



56 A.A.L. Cunha et al.

The possible well types are injector and producer. The first type represents
a well that injects water into the reservoir, whereas the latter type accounts for
a well that extracts a mixture of oil, gas, and water. Additionally, the optimizer
should also be able to define the optimal number of wells.

The NPV function is computed using an economic scenario specified before-
hand. The simulation output is a time-step based function, having oil production
and water injection amounts per time-step. Hence, for each time-step, a discount
ratio is applied to calculate the NPV of that particular time-step, and finally, all
the net present values are accumulated to generate the NPV of that particular
wells alternative.

In addition to maximizing the NPV, we must attend to a number of restric-
tions involving the wells placed in the reservoir. Each well should have a length
not bigger than a pre-specified value. Additionally, every pair of wells should
obey a minimal separation distance. Finally, there are regions of the reservoir
that should not have any wells. This work will call them no-well regions.

3 Methodology

This section presents a formulation of the optimization as an integer program-
ming problem. It presents two algorithms to solve this problem: a conventional
genetic algorithm and a cellular genetic algorithm.

3.1 Mathematical Formulation

This model uses six integer variables to represent the discrete coordinates of two
blocks wherein the well ends reside. Furthermore, the model also has one binary
integer to indicate that a specific well exists and another binary integer to define
the well type.

Let ī, j̄, k̄, i, j, k denote, respectively, the (i, j, k) coordinates of the initial
block and the (i, j, k) coordinates of the final block of the well. Let a denote the
activation bit and τ denote the well type. If N is the maximum allowed wells
count, then the decision vector x is:

x =
(
a1, a2, . . . , aN ,

ī1, j̄1, k̄1, i1, j1, k1, τ1,

ī2, j̄2, k̄2, i2, j2, k2, τ2, . . . ,

īN , j̄N , k̄N , iN , j
N

, kN , τN
)

(1)

where the numeric subscripts indicate the index of the well. For simplicity, we
write wk = (̄ik, j̄k, k̄k, ik, jk, kk, τk) and then the Eq. (1) reads:

x =
(
a1, a2, . . . , aN , w1, w2, wN

)
. (2)

The objective function is defined over all values of x. The relative order of
the wells in Eq. (1) is not relevant, that is, the NPV depends only on the values



Application of Cellular Genetic Algorithms 57

Algorithm 1. Boolean function ≤ (w1, w2).
1: procedure ≤ (w1, w2)
2: � wk = (̄ik, j̄k, k̄k, ik, j

k
, kk, τk)

3: if ī1 < ī2 then
4: return true
5: else if ī1 > ī2 then
6: return false
7: if j̄1 < j̄2 then
8: return true
9: else if j̄1 > j̄2 then

10: return false

11:
...

12: if k1 < k2 then
13: return true
14: else if k1 > k2 then
15: return false
16: if τ1 ≤ τ2 then
17: return true
18: else
19: return false

of the wells position, its types, and activation bits. Therefore, if, for example,
x′ = (a2, a1, . . . , aN , w2, w1, . . . , wN ) and f is the objective function, then f(x) =
f(x′). Hence, there is a large number of points in the problem domain with
the same evaluation, which might lead to many different optimal solutions that
actually represent the same physical solution. Moreover, since it is interesting
to apply genetic algorithms, the redundancy in the problem domain makes the
search space unnecessarily large, so the algorithm tends to converge much slower
to a relevant solution.

To solve this issue, the present work proposes a new strategy for representing
the decision vector x, where the order of the vectors w1, w2, . . . , wN is unique.
Therefore, for a given set of distinct wells, there is only one representation of x
having

w1 ≤ w2 ≤ . . . ≤ wN . (3)

We specify the relation “≤” for any pair of wells in the Algorithm1.
The Algorithm 1 works by sequentially comparing the coordinates of the vec-

tors w1 and w2 until they differ or all the coordinates are compared. This model
first compares the initial i coordinate, namely ī, and if ī1 < ī2 then w1 < w2.
Clearly, if ī1 > ī2, then w2 < w1, Finally, if the coordinates are equal, then it
repeats the comparison on the next coordinate. Hence, for instance, the wells
w1 = (1, 0, 2, 2, 2, 2, injector) and w2 = (1, 0, 3, 2, 2, 2, injector) satisfy w1 ≤ w2.
The presented model defines injector < producer.



58 A.A.L. Cunha et al.

The objective function to maximize is the NPV of the platform. This model
assumes there is only one platform, and it has all the active wells. There are some
models in the literature for calculating the NPV. The model from [1] uses discrete
time-steps from the simulator outputs, which reports the total production of oil
or gas and the total injection of water for each well and each period. After that,
the authors of [1] calculate the well profits per produced or injected volumes
and multiply them by the outputs of the simulator to determine the total profit
of each time-step. Ultimately, the NPV is the sum of all discounted time-step
profits. This model, however, considers only vertical or horizontal wells, which is
an oversimplification of the problem in question. Furthermore, the problem takes
into account other costs associated with the wells, as the abandonment costs,
the costs depending on the wells length, the flowline costs, drilling complexity
costs, and others.

The model is based in this paper in the work of [3], which models the NPV
as the sum of the NPV of all wells minus the platform cost. The platform cost
is the total expense of building a platform on the reservoir and it is a constant
specified beforehand. Conversely, the NPV of the well is dependent upon the
decision variable x and considers many aspects. The Eq. (4) depicts this model.

NPV =
N∑

k=1

NPVw(k) − CP (4)

In the Eq. (4), NPV and NPVw(k) are, respectively, the platform NPV and
the NPV of the kth well. Additionally, CP is the total platform cost. The NPV
of the well is the difference between the total present value of the income and
the well costs:

NPVw(k) = (1 − I) ·
T∑

t=1

R(k, t) − Co(k, t)
(1 + D)yt

− Cw(k), (5)

where t is the discrete time, T is the number of time-steps, R(k, t) is the revenue
between times t − 1 and t, Co(k, t) is the operational cost of the well between
times t − 1 and t, D is the annual discount rate and yt is the number of years
measured from the start of the reservoir operation to time t. Furthermore, I is
the tax rate, and Cw(k) is the cost of the kth well.

The revenue between times t − 1 and t is:

R(k, t) = Op(k, t) · Po(t) + Gp(k, t) · Pg(t) (6)

where Op(t), Po(t), Gp(t), and Pg(t) are, respectively, the oil production, the oil
price, the gas production and the gas price between times t − 1 and t. The pro-
ductions are a simulation output, whereas the prices are pre-specified quantities.



Application of Cellular Genetic Algorithms 59

The operational costs include the fixed costs of the well, the maintenance
costs in the time-step, the variable costs in the time-step, the royalties, and the
costs associated with the amount of fluid production or injection. The Eq. (7)
shows the general equation.

Co(k, t) =
[
CM · (yt − yt−1)

]

+ Cvf + Ry · R(k, t)

+
(

Op(k, t) · Opc + Gp(k, t) · Gpc

+ Wp(k, t) · Wpc + Gi(k, t) · Gic

+ Wi(k, t) · Wic

)
(7)

In the Eq. (7), CM is the maintenance cost per year, Cvf is a constant cost,
and Ry is the royalties percentage. Moreover, Opc is the oil production cost per
volume of oil, Gpc is the gas production cost per volume of gas, Wp(k, t) is the
water production of the kth well between times t−1 and t, and Wpc is the water
production cost per volume of water. Finally, Gi(k, t) is the gas injected between
times t − 1 and t, Gic is the gas injection cost per unit of gas volume, Wi(k, t)
is the volume of water injected into the kth well between times t − 1 and t, and
Wic is the water injection cost per unit of water volume.

The well development cost, Cw(k), is a complicated non-linear function of
the well length, the well position, the well inclination, and the well type. This
function includes the drilling costs, the distance between the kth well and the
platform, and the cost of shutting down the kth well. For simplicity, we choose
to omit this function herein.

To guarantee the physical meaning of the solution x, we should define suitable
restrictions involving the wells length, the wells pairwise distances and the total
well count. The positive integer constant N specifies the maximum number of
wells the platform could handle. Since this solution use activation bits, ak, to
indicate whether the kth well exists or not, the decision variable x always have
N wells and the solution may have any number of wells from 0 to N .

For operational reasons, the length of each well should not exceed a maximum
constant length, L. This problem models the wells as line segments whose ends
are the center points of the wells start and end blocks. Therefore, the well length
l(k) is simply the Euclidean distance between the line segments ends and, for
each well k, 1 ≤ k ≤ N , we have:

l(k) ≤ L (8)

Similarly, there is a minimum wells distance, that is, it is not possible to
place two wells closer than a minimum distance dmin. Hence, for each pair of
wells k1 and k2, k1 �= k2, we enforce the restriction:

d(wk1 , wk2) ≥ dmin. (9)



60 A.A.L. Cunha et al.

Start Block
Start Point

Well Segment
End Block

End Point

Fig. 1. Representation of well in a grid.

Since the problem models the wells as line segments (Fig. 1), the distance
between two wells, d(wk1 , wk2), is the minimum distance between the two line
segments that geometrically represent the wells wk1 and wk2 . In [8], the author
explains this problem in detail.

In conclusion, this problem seeks the solution x, as in the Eq. (2), that
maximizes the value of the NPV in Eq. (4), subject to the nonlinear restrictions
(8) and (9). The following section describes the algorithm this paper employs
for solving this problem efficiently on a digital computer.

3.2 Solution to the Optimization Problem

The present work uses evolutionary algorithms to solve the optimization problem
of the Sect. 2. In particular, this paper uses a classical genetic algorithm and a
more modern approach, the cellular genetic algorithm, as the author describes
in [9]. The main goal is comparing the performance of these two methods using
two possible chromosomes, one that does not enforce the wells order in the
representation and the proposed model that reduces the search space by ensuring
a certain wells order.

The current work employs the chromosome of the Eq. (2). The fitness function
is the NPV of the platform, as the Eq. (4) exhibits.

Both the cellular and classical genetic algorithms require mutation and
recombination operators. Since there are use two possible chromosome repre-
sentations, the model needs to develop these operators according to each repre-
sentation.



Application of Cellular Genetic Algorithms 61

Algorithm 2. Activation mutation.
1: procedure Act Mutate(x, p)
2: � x = (a1, . . . , aN , w1, . . . , wN ).
3: � p is the gene mutation probability.
4: xnew ← x
5: for k ← 1 . . . N do
6: r ←Random(0, 1)
7: if r ≤ p then
8: Flip ak of xnew

9: return xnew

Algorithm 3. Uniform mutation.
1: procedure Unif Mutate(x)
2: � x = (a1, . . . , aN , w1, . . . , wN ).
3: k ←RandomInt(1, N)
4: i ←RandomInt(1, 7)
5: xnew ← x
6: min ← minimum of the ith gene of the kth well.
7: max ← maximum of the ith gene of the kth well.
8: r ←Random(min, max)� new gene value.
9: Replace the ith gene of the kth well of xnew by r.

10: return xnew

(1) Mutation Operators: Mutation operates on a single individual, possibly gen-
erating a new (mutated) individual. The present model utilizes two types of
mutation: the activation mutation and the uniform mutation. The former
operates on the activation bits, thereby not changing the relative order of the
wells in the chromosome. The latter influences the position and type genes.
Hence, it is possible that a solution satisfying the order criterion Eq. (3) do
not keep satisfying it after mutation.

The activation mutation is a simple random bit mutation. It samples a ran-
dom number between 0 and 1 using a uniform distribution and, if this sample is
less than or equal to a mutation probability, then it flips the bit. We apply this
process to all activation genes of the individual, as the Algorithm2 shows.

The case of the uniform mutation needs to distinct between the two chromo-
some representations. The case where the relative order of the wells is simpler,
and we show it in the Algorithm 3.

The Algorithm 3 first selects the gene to mutate. This gene can be a position
or a type gene. After that, it samples a random integer in the range of possible
values for the selected gene. Finally, it returns a copy of the original individual,
but having the new mutated gene. This algorithm, however, does not enforce
the relative order of the wells of the individual, as in the equation Eq. (3).
Therefore, it takes a small modification to render this algorithm useful for the
order-sensitive representation.



62 A.A.L. Cunha et al.

Algorithm 4. Uniform mutation.
1: procedure Unif Mutate Order(x)
2: repeat
3: xnew ←Unif Mutate(x)
4: until xnew satisfies the eq. (3)
5: return xnew

Algorithm 5. Single Point Crossover
1: procedure Single Cross(x1,x2)
2: Randomly choose an index i, 1 ≤ i ≤ 8N
3: left(x1) ← genes of x1 having index ≤ i.
4: left(x2) ← genes of x2 having index ≤ i.
5: right(x1) ← genes of x1 having index > i.
6: right(x2) ← genes of x2 having index > i.
7: x′

new ← left(x1) concatenated with right(x2).

8: x
′′
new ← right(x1) concatenated with left(x2).

9: return (x′
new,x

′′
new)

The Algorithm 4 shows how to guarantee that the mutated individual satisfies
the criterion (3) provided the original individual satisfy it. First, it tries to mutate
using the Algorithm3. If the mutation result does not meet the order, then it
attempts to mutate again. By doing so, it guarantees that all ordered individuals
have approximately equal probability of generation.

(2) Recombination Operator: recombination operates on two inputs and gener-
ates two more individuals. There are two types of recombination employed in
the present work: the single point crossover and the arithmetical crossover.
The Algorithms 5 and 6 describe these two methods.

The function Round(v) rounds each element of the vector v to its nearest
integer. The authors of [3] explain the single point crossover and the arithmetic
crossover in detail. These operators are valid only for the representation that
does not emphasize the relative order of the wells in the chromosome.

The case of the order-aware representation modifies the arithmetical
crossover in a similar the uniform mutation does: it applies the crossover until
it finds a pair of individuals that satisfy Eq. (3). The Algorithm 7 displays this
procedure.

(3) The Optimization Algorithms: The article [3] explains the classical GA
(genetic algorithm) applied. The algorithm uses the Genocop III technique
of [10] to handle the nonlinear constraints. To generate a viable initial pop-
ulation, we randomly generate individuals until we obtain the number of
required individuals.



Application of Cellular Genetic Algorithms 63

Algorithm 6. Arithmetic Crossover
1: procedure Arith Cross(x1,x2)
2: α ← Random(0, 1)
3: x′

new ← Round(αx1 + (1 − α)x2)

4: x
′′
new ← Round((1 − α)x1 + αx2)

5: return (x′
new,x

′′
new)

Algorithm 7. Arithmetical Crossover for order-aware representation.
1: procedure Arith Cross Order(x1,x2)
2: repeat
3: (x′

new,x
′′
new) ←Arith Cross(x1,x2)

4: until x′
new and x

′′
new satisfy the eq. (3)

5: return (x′
new,x

′′
new)

On the other hand, the cellular genetic algorithm (cGA) is a variation of the
conventional GA that enforces a geographic location for each individual. As a
result, the selection operation takes the individuals locations into account, so
the algorithm restricts the recombination to neighbor individuals. Moreover, the
substitution operates only on individuals with the same geographic location, so a
solution is replaced by a new one only if the new individual is better and has the
same geographic position. The authors of [9] make a comparison between classi-
cal genetic algorithms and cellular genetic algorithms. Additionally, [7] explains
in detail how cGA works. The Fig. 2 and the Algorithm 8 illustrates the cGA
workflow.

The next section details our experiments and compare the results of the
optimization for both GA and cGA.

Fig. 2. Sketch of the cGA algorithm.



64 A.A.L. Cunha et al.

Algorithm 8. Description of the cGA algorithm.
1: procedure Evolve cGA(gen)
2: repeat
3: pop ← random feasible population
4: for each individual ind in pop do
5: parent1 ← random neighbor of ind
6: parent2 ← random neighbor of ind
7: child ← Recombinate(parent1, parent2)
8: indnew ← Mutate(child)
9: Evaluate(indnew)

10: if indnew evaluation ¿ ind evaluation then
11: Replace ind by indnew

12: until gen ≥ genmax

13: return Best Solution

4 Results

The experiments were divided into three classes: classical GA with orderless rep-
resentation, classical GA with order-aware representation and cGA with order-
aware representation. Since the orderless chromosome implies a bigger search
space due to increased redundancy, it is expected better results with the order-
aware chromosome.

The experiments aimed to maximize the NPV of exploring the UNISIM syn-
thetic reservoir model [11]. This model simulates in the IMEX simulator [12],
and a typical simulation time ranges from 2 to 20 min. Therefore, practical opti-
mizations cannot have much more than a thousand fitness function evaluations,
or it would take too long to complete.

This work placed the experiments in the OCTOPUS 2 reservoir management
platform [2], by developing a new optimization plugin. This way, we were able to
focus solely on the scientific aspects of the experiments, namely the evolutionary
algorithms and the optimization results.

Both the classical GA and the cGA used binary tournament selection, where
the winning probability is proportional to the fitness value. Further, the algo-
rithms utilized the appropriate arithmetic crossover for the chromosome and,
more specifically, the classical GA with orderless representation also adopted
the single point crossover. Finally, both algorithms employed a “replace if bet-
ter” substitution principle, where the new individuals replace the older ones only
if they have a better fitness.

Additionally, the cGA algorithm employed an adaptive grid scheme to main-
tain a healthy population diversity. This paper uses the technique of [7] to con-
trol the entropy of the population. Whenever the entropy is decaying too fast,
it changes the grid to a more narrow shape, thus making it harder to propagate
the best individuals. Conversely, whenever the entropy is decaying too slowly (or
decaying at all), it reshaped the grid to make it more square, thus allowing a faster



Application of Cellular Genetic Algorithms 65

convergence rate. Hence, it avoids convergence to local maxima and maximized
the chances of finding the global maximum of the problem.

Table 1 summarizes the parameters used in each experiment. In particular,
the cGA needs the threshold ε, which controls the grid shape switching proce-
dure. As we show, we tried to make the experiments as even as possible, so we
believe the comparisons among their results are fair.

Table 1. Summary of the optimization parameters

Classical GA Cellular GA

Population size 24 48

Generations 50 25

Mutation rate 10%–70% 10%–70%

Mutation Uniform and activation Uniform and activation

Recombination Single Pt. and Arithmetic Arithmetic

Threshold ε – 0.05

Max. wells (N) 20 20

Wells radii 0.0762 m 0.0762 m

In addition to the optimization parameters, a typical economic scenario is
shared for all experiments. Specifying herein all the constants of the Eqs. (4)–(6)
would be impractical, so Table 2 exhibits only a few of them.

Table 2. Economic scenario parameters

Platform cost (Cp) US$ 1476451065.25

Oil price (Po) US$/m3 250.00

Gas price (Pg) US$/m3 0.05

Oil prod. cost (Opc) US$/m3 40.00

Water prod. cost (Wpc) US$/m3 2.00

Water inj. cost (Wic) US$/m3 2.00

Gas inj. cost (Gic) US$/m3 0.002

Gas prod. cost (Gpc) US$/m3 0.002

Tax rate (I) % 34.00

Discount rate (D) % 9.00

The Figs. 3, 4 and 5 illustrate the preliminary results, respectively, of the
classical GA with orderless and ordered chromosomes and the cGA with ordered



66 A.A.L. Cunha et al.

Generation
0 5 10 15 20 25

N
PV

 (
U

S$
 #

 1
09 )

0

0.5

1

1.5

2

2.5

3

3.5

best

average

E
n
tr

o
p
y
 /
 g

e
n
e

0

0.5

1

1.5

2

2.5

Entropy

Fig. 3. Average of 10 runs of the cGA algorithm using the order-aware representation.

chromosome. All experiments executed 10 times, and the figures display the
averaged NPV. Moreover, all three experiments had about 800 evaluations of
the fitness function, and thus they took about the same total time to complete.
Since the cGA method used an entropy based control of diversity, the entropy
is a secondary axis in the plot in Fig. 3.

On average, the proposed representation using order-aware chromosomes
reaches an optimum with roughly 6–10 times bigger NPV. In particular, the cGA
version performs better than the GA with order-aware chromosome by a factor of
2, which was concluded by comparing the curves “best” of Figs. 3 and 5. Also, its is
possible to note that the average individual of the cGA with the ordered represen-
tation reaches an 1 billion NPV in generation 3, whereas the best solution of the
classical GA with orderless representation does not find this value at all. Hence,
we tend to think that the chromosome representation that enforces the relative
wells order is more efficient than the traditional orderless representation.

Table 3 compares the final results of the three optimization models. The
“relative” results use the formula [NPV(end)−NPV(1)]/|NPV(1)|, where NPV(end) is
the final NPV and NPV(1) is the initial NPV. As it can be checked from the row
“Best NPV”, the cellular GA gives the higher final result, with over 3 billion US$
NPV for the best individual and the average population fitness. On the other
hand, traditional GA with orderless representation yields the worst result of the
three models. Additionally, it can be observed that the relative improvements
are also bigger whenever we employed the proposed order-aware chromosome.
Hence, although these findings are still preliminary, we believe that they reflect
the consequences of integer optimization with smaller search spaces.



Application of Cellular Genetic Algorithms 67

Generation
0 10 20 30 40 50

N
PV

 (
U

S$
 #

 1
09 )

-0.4

-0.2

0

0.2

0.4

0.6

best

average

Fig. 4. Average of 10 runs of the GA algorithm using the orderless representation.

Generation
0 10 20 30 40 50

N
PV

 (
U

S$
 #

 1
09 )

-0.5

0

0.5

1

1.5

2

best

average

Fig. 5. Average of 10 runs of the GA algorithm using the order-aware representation.

When comparing conventional and cellular GA with the proposed represen-
tation, we concluded that the cGA is generally better than the conventional GA,
for the cGA finds more adapted individuals on an average of 10 experiments.
This fact is observable by comparing the “average” curves of Figs. 3 and 5.
In theory, this behavior relates to the controlled diversity nature of the cGA.
In our experiment, the population entropy is controlled during the evolution,
thereby avoiding local maxima, which is a weakness of the classical GA.



68 A.A.L. Cunha et al.

Table 3. Comparison among the three models after 10 runs. The rows “relative” show
the relative improvement of the algorithm

GA (orderless) GA (ordered) cGA (ordered)

Best NPV (US$) 0.45786 × 109 1.7747 × 109 3.2341 × 109

Relative best 377% 462% 15%

Average NPV 0.39411 × 109 1.7137 × 109 3.1861 × 109

Relative average 280% 879% 760%

5 Conclusions

This work presented two new approaches for the wells placement and type opti-
mization problem using evolutionary algorithms. These are the cGA algorithm
and the order-aware chromosome model.

The Sect. 2 depicted the fundamental problem approached, explaining its
discrete nature, the need for a reservoir simulator and the adopted idea of max-
imizing the net present value of the reservoir under analysis. Then, the Sect. 3
proposed the order-aware representation, in contrast to the classical chromo-
some utilized for representing the wells alternatives. Next, the text describes
the conventional and cellular genetic algorithms, emphasizing the cGA is a new
approach to this kind of optimization problem. Finally, the Sect. 4 presented
three experiments: classical GA with the traditional and the order-aware repre-
sentations and the cGA with the order-aware representation. The preliminary
findings showed that the order-aware chromosome proposed is generally better,
for the experiments that used it converged to higher NPV. We believe that this
better behavior is due to reduced search space since the proposed order-aware
chromosome reduces the redundancy of individuals because, in general, there
is only one possible representation for each decoded physical implementation.
Moreover, we also observed that the cGA performed better than the traditional
GA, for the average population and the best individual of the cGA evolved to
a higher NPV. We credit it to the population diversity control that is a natural
part of the cGA algorithm, and that is absent on the classical GA. Hence, the
cGA features a smaller probability of hanging in local maxima of the fitness
function than the standard GA.

The next steps of this work are analyzing the solution itself that the presented
models deliver. It needs to analyze the best individuals in the context of oil
field engineering, to guarantee that the outputted wells alternative is indeed a
valid and implementable physical solution. Besides, it is necessary to replicate
the experiments to other oil fields and check whether the present conclusions
still hold. On the other hand, we should improve the crossover and mutation
operators of the order-aware representation, to remove the need of reapplying
the operator if its output did not satisfy the order of Eq. (3).

The presented model is widely applicable beyond the area of oil field opti-
mization. In particular, the concept of an order-aware chromosome that is space



Application of Cellular Genetic Algorithms 69

efficient is relevant for any integer optimization problem using evolutionary algo-
rithms. Moreover, any improvement in the area of oil field optimization increases
the economic viability of reservoirs and is of particular concern to top oil com-
panies in the world.

Acknowledgment. The authors would like to thank the support of CENPES—
PETROBRAS throughout all the research steps.

References

1. Yeten, B., Durlofsky, L.J., Aziz, K., et al.: Optimization of nonconventional well
type, location and trajectory. In: SPE Annual Technical Conference and Exhibi-
tion. Society of Petroleum Engineers (2002)

2. Lima, R., Abreu, A.C., Pacheco, M.A., et al.: Optimization of reservoir develop-
ment plan using the system octopus. In: Offshore Technology Conference. OTC
Brasil (2015)

3. Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco,
M.A.C., Vellasco, M.M.B.R., et al.: Well placement optimization using a genetic
algorithm with nonlinear constraints. In: SPE Reservoir Simulation Symposium.
Society of Petroleum Engineers (2009)

4. Morales, A.N., Gibbs, T.H., Nasrabadi, H., Zhu, D., et al.: Using genetic
algorithm to optimize well placement in gas condensate reservoirs. In: SPE
EUROPEC/EAGE Annual Conference and Exhibition. Society of Petroleum Engi-
neers (2010)

5. Bittencourt, A.C., Horne, R.N., et al.: Reservoir development and design optimiza-
tion. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum
Engineers (1997)

6. Nasrabadi, H., Morales, A., Zhu, D.: Well placement optimization: a survey with
special focus on application for gas/gas-condensate reservoirs. J. Nat. Gas Sci. Eng.
5, 6–16 (2012)

7. Dorronsoro, B., Alba, E.: Cellular Genetic Algorithms. Springer, New York (2008)
8. Eberly, D.: Robust computation of distance between line segments. Technical

report, Geometric Tools, LLC (2015)
9. Gong, Y.-J., Chen, W.-N., Zhan, Z.-H., Zhang, J., Li, Y., Zhang, Q., Li, J.-J.:

Distributed evolutionary algorithms and their models: a survey of the state-of-the-
art. Appl. Soft Comput. 34, 286–300 (2015)

10. Michalewicz, Z., Nazhiyath, G.: Genocop III: a co-evolutionary algorithm for
numerical optimization problems with nonlinear constraints. In: IEEE Interna-
tional Conference on Evolutionary Computation, vol. 2, pp. 647–651. IEEE (1995)

11. Avansi, G.D., Schiozer, D.J.: UNISIM-I: synthetic model for reservoir development
and management applications. Int. J. Model. Simul. Pet. Ind. 9(1), 21–30 (2015)

12. Three-Phase, black-oil reservoir simulator, CMG (Computer Modeling Group
Ltd.). http://www.cmgl.ca/uploads/files/pdf/SOFTWARE/2015ProductSheets/
IMEX Technical Specs 15-IM-04.pdf (2015)

http://www.cmgl.ca/uploads/files/pdf/SOFTWARE/2015ProductSheets/IMEX_Technical_Specs_15-IM-04.pdf
http://www.cmgl.ca/uploads/files/pdf/SOFTWARE/2015ProductSheets/IMEX_Technical_Specs_15-IM-04.pdf

	Application of Cellular Genetic Algorithms and Space Efficient Chromosomes to Wells Placement in Oil Fields
	1 Introduction
	2 Problem Description
	3 Methodology
	3.1 Mathematical Formulation
	3.2 Solution to the Optimization Problem

	4 Results
	5 Conclusions
	References




