
Solving MaxSAT by Successive Calls to a SAT
Solver

Mohamed El Halaby(B)

Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
halaby@sci.cu.edu.eg

Abstract. The Maximum Satisfiability (MaxSAT) is the problem of
determining the maximum number of clauses of a given Boolean for-
mula in Conjunctive Normal Form (CNF) that can be satisfied by an
assignment of truth values to the variables of the formula. Many exact
solvers for MaxSAT have been developed during recent years, and many
of them were presented in the well-known SAT Conference. Algorithms
for MaxSAT generally fall into two categories: (1) branch and bound
algorithms and (2) algorithms that use successive calls to a SAT solver
(SAT-based), which this paper in on. In practical problems, SAT-based
algorithms have been shown to be more efficient. This paper provides an
experimental investigation to compare the performance of recent SAT-
based and branch and bound algorithms on benchmarks of the MaxSAT
Evaluations.

Keywords: MaxSAT · Satisfiability · Boolean logic

1 Introduction

A Boolean variable x can take one of two possible values 0 (false) or 1 (true).
A literal l is a variable x or its negation ¬x. A clause is a disjunction of literals,
i.e.,

∨n
i=1 li. A CNF formula is a conjunction of clauses. Formally, a CNF formula

φ composed of k clauses, where each clause Ci is composed of mi is defined as
F =

∧k
i=1 Ci where Ci =

∨mi

j=1 li,j .
In this paper, a set of clauses {C1, C2, . . . , Ck} is referred to as a Boolean for-

mula. A truth assignment satisfies a Boolean formula if it satisfies every clause.
Given a CNF formula φ, the Maximum Satisfiability (MaxSAT) problem asks

for a truth assignment that maximizes the number of satisfied clauses in φ.
Let φ = {(C1, w2), . . . , (Cs, ws)}∪{(Cs+1,∞), . . . , (Cs+h,∞)} be a CNF for-

mula, where w1, . . . , ws are natural numbers. The Weighted Partial MaxSAT
problem asks for an assignment that satisfies all Cs+1, . . . , Cs+h (called hard
clauses) and maximizes the sum of the weights of the satisfied clauses in
C1, . . . , Cs (called soft clauses).

The SAT-based approach to solving MaxSAT converts the instance into a
sequence of SAT instances which can be solved using SAT solvers. One way to
do this, given an MaxSAT instance, is to check if there is an assignment that
c© Springer International Publishing AG 2018
Y. Bi et al. (eds.), Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016,
Lecture Notes in Networks and Systems 15, DOI 10.1007/978-3-319-56994-9 31

Solving MaxSAT by Successive Calls to a SAT Solver 429

falsifies no clauses. If such an assignment can not be found, we check if there
is an assignment that falsifies only one clause. This is repeated and each time
we increment the number of clauses that are allowed to be False until the SAT
solver returns True, meaning that the minimum number of falsified clauses has
been determined. Recent comprehensive surveys on SAT-based algorithms can
be found in [5,18].

The paper consists of two main parts: (1) Detailed descriptions of MaxSAT
algorithms based on calling a SAT solver (SAT-based algorithms). (2) Experi-
mental investigation and comparison between SAT-based MaxSAT solvers and
branch-and-bound solvers. In this part, solvers from both categories were run on
a wide set of benchmarks from the MaxSAT Evaluations and in each benchmark
category, a winner solver is declared. Such an investigation is crucial in order
to test the limits of MaxSAT solving techniques and to better adapt MaxSAT
technologies to practical frontiers.

2 Linear Search Algorithms

A simple way to solve MaxSAT is to augment each soft clause Ci with a new vari-
able (called a blocking variable) bi, then a constraint is added (specified in CNF)
saying that the sum of the weights of the falsified soft clauses must be less than
a given value k. Next, the formula (without the weights) together with the con-
straint is sent to a SAT solver to check whether or not it is satisfiable. If so, then
the cost of the optimal solution is found and the algorithm terminates. Other-
wise, k is decreased and the process continues until the SAT solver returns True.
The algorithm can start searching for the optimal cost from a lower bound LB

initialized with the maximum possible cost (i.e. LB =
∑|φS |

i=1 wi) and decrease it
down to the optimal cost, or it can set LB = 0 and increase it up to the opti-
mal cost. Solvers that employ the former approach is called satisfiability-based

Algorithm 1. LinearUNSAT(φ) Linear search UNSAT-based algorithm
for solving MaxSAT.
Input: A MaxSAT instance φ = φS ∪ φH

Output: A MaxSAT solution to φ
1 LB ← 0
2 foreach (Ci, wi) ∈ φS do
3 let bi be a new blocking variable
4 φS ← φS \ {(Ci, wi)} ∪ {(Ci ∨ bi, wi)}
5 while True do
6 (state, I) ← SAT ({C | (C, w) ∈

φ} ∪ CNF (
∑|φS |

i=1 wibi ≤ LB))
7 if state = True then
8 return I

9 LB ← UpdateBound({w | (C, w) ∈ φS}, LB)

430 M. El Halaby

Algorithm 2. LinearSAT(φ) Linear search SAT-based algorithm for solving
MaxSAT.
Input: A MaxSAT instance φ = φS ∪ φH

Output: A MaxSAT solution to φ
1 UB ← 1 +

∑|φS |
i=1 wi

2 foreach (Ci, wi) ∈ φS do
3 let bi be a new blocking variable φS ← φS \ {(Ci, wi)} ∪ {(Ci ∨ bi, wi)}
4 while True do
5 (state, I) ← SAT ({C | (C, w) ∈

φ} ∪ CNF (
∑|φS |

i=1 wibi ≤ UB − 1))
6 if state = False then
7 return lastI

8 lastI ← I

9 UB ←∑|φS |
i=1 wi(1 − I(Ci \ {bi}))

(not to be confused with the name of the general method) solvers, while the ones
that follow the latter are called UNSAT-based solvers. A cost of 0 means all the
soft clauses are satisfied and a cost of means all the soft clauses are falsified.
Algorithms 1 and 2 employ these techniques ti find the optimal cost.

Note that updating the upper bound to
∑|φS |

i=1 wi(1−I(Ci\{bi})) is more effi-
cient than simply decreasing the upper bound by one, because uses less iterations
and thus the problem is solved with less SAT calls.

3 Binary Search Based Algorithms

In the worst case the linear search can take
∑|φS |

i=1 wi calls to the SAT solver.
Since we are searching for a value (the optimal cost) among a set of values (from
0 to

∑|φS |
i=1 wi), then binary search can be used, which uses less iterations than

linear search. Algorithm3 searches for the cost of the optimal assignment by
using binary search.

BinS-MaxSAT begins by checking the satisfiability of the hard clauses (line 1)
before beginning the search for the solution. If the SAT solver returns False
(line 2), BinS-MaxSAT returns the empty assignment and terminates (line 3).
The algorithm updates both a lower bound LB and an upper bound UB initial-
ized respectively to −1 and one plus the sum of the weights of the soft clauses
(lines 4–5). The soft clauses are augmented with blocking variables (lines 6–8).
At each iteration of the main loop (lines 9–16), the middle value (mid) is changed
to the average of LB and UB and a constraint is added requiring the sum of
the weights of the relaxed soft clauses to be less than or equal to the middle
value. This clauses describing this constraint are sent to the SAT solver along
with the clauses of φ (line 11). If the SAT solver returns True (line 12), then
the cost of the optimal solution is less than mid, and UB is updated (line 14).
Otherwise, the algorithm looks for the optimal cost above mid, and so LB is

Solving MaxSAT by Successive Calls to a SAT Solver 431

Algorithm 3. BinS-MaxSAT(φ) Binary search based algorithm for solving
MaxSAT.
Input: A MaxSAT instance φ = φS ∪ φH

Output: A MaxSAT solution to φ
1 state ← SAT ({Ci | (Ci, ∞) ∈ φH})
2 if state = False then
3 return ∅
4 LB ← −1

5 UB ← 1 +
∑|φS |

i=1 wi

6 foreach (Ci, wi) ∈ φS do
7 let bi be a new blocking variable
8 φS ← φS \ {(Ci, wi)} ∪ {(Ci ∨ bi, wi)}
9 while LB + 1 < UB do

10 mid ← 	LB+UB
2

11 (state, I) ← SAT ({C | (C, w) ∈

φ} ∪ CNF (
∑|φS |

i=1 wibi ≤ mid))
12 if state = True then
13 lastI ← I

14 UB ←∑|φS |
i=1 wi(1 − I(Ci \ {bi}))

15 else
16 LB ← UpdateBound({wi | 1 ≤ i ≤ |φS |}, mid) − 1

17 return lastI

updated (line 16). The main loop continues until LB +1 = UB, and the number
of iterations BinS-MaxSAT executes is proportional to log(

∑|φS |
i=1 wi) which is a

considerably lower complexity than that of linear search methods.
Algorithm 4 begins by checking that the set of hard clauses is satisfiable

(line 1). If not, then the algorithm returns the empty assignment and terminates
(line 3). Next, the soft clauses are relaxed (lines 4–6) and the lower and upper
bounds are initialized respectively to −1 and one plus the sum of the weights of
the soft clauses (lines 7–8). BinLin-MaxSAT has two execution modes, binary and
linear. The mode of execution is initialized in line 9 to binary search. At each iter-
ation of the main loop (lines 10–27), the SAT solver is called on the clauses of φ

with the constraint
∑|φS |

i=1 wibi bounded by the mid point (line 12), if the current
mode is binary, or by the upper bound if the mode is linear (line 14). If the formula
is satisfiable (line 16), the upper bound is updated. Otherwise, the lower bound is
updated to the mid point. At the end of each iteration, the mode of execution is
flipped (lines 24–27).

Since the cost of the optimal solution is an integer, it can be represented
as an array of bits. Algorithm5 uses this fact to determine the solution bit by
bit. BitBased-MaxSAT starts from the most significant bit and at each iteration
it moves one bit closer to the least significant bit, at which the optimal cost if
found.

432 M. El Halaby

Algorithm 4. BinLin-MaxSAT(φ) Alternating binary and linear searches
for solving MaxSAT.
Input: A MaxSAT instance φ = φS ∪ φH

Output: A MaxSAT solution to φ
1 state ← SAT ({Ci | (Ci, ∞) ∈ φH})
2 if state = False then
3 return ∅
4 foreach (Ci, wi) ∈ φS do
5 let bi be a new blocking variable
6 φS ← φS \ {(Ci, wi)} ∪ {(Ci ∨ bi, wi)}
7 LB ← −1

8 UB ← 1 +
∑|φS |

i=1 wi

9 mode ← binary
10 while LB + 1 < UB do
11 if mode = binary then
12 mid ← 	LB+UB

2

13 else
14 mid ← UB − 1

15 (state, I) ← SAT ({C | (C, w) ∈
φ} ∪ CNF (

∑|φS |
i=1 wibi ≤ mid))

16 if state = True then
17 lastI ← I

18 UB ←∑|φS |
i=1 wi(1 − I(Ci \ {bi}))

19 else
20 if mode = binary then
21 LB ← UpdateBound({wi | 1 ≤ i ≤ |φS |}, mid) − 1

22 else
23 LB ← mid

24 if mode = binary then
25 mode ← linear

26 else
27 mode ← binary

28 return lastI

The satisfiability of the hard clauses is checked and the soft clauses are
relaxed. The sum of the weights of the soft clauses k is an upper bound on
the cost and thus it is computed to determine the number of bits needed to
represent the optimal solution (line 7). The index of the current bit being con-
sidered is initialized to k (line 7), and the value of the solution being constructed
is initialized (line 8). The main loop (lines 10–20) terminates when it reached the
least significant bit (when CurrBit = 0). At each iteration, the SAT solver is
called on φ with constraint saying that the sum of the weights of the falsified soft

Solving MaxSAT by Successive Calls to a SAT Solver 433

Algorithm 5. BitBased-MaxSAT(φ) A bit-based algorithm for solving
MaxSAT.
Input: A MaxSAT instance φ = φS ∪ φH

Output: A MaxSAT solution to φ
1 state ← SAT ({Ci | (Ci, ∞) ∈ φH})
2 if state = False then
3 return ∅
4 foreach (Ci, wi) ∈ φS do
5 let bi be a new blocking variable
6 φS ← φS \ {(Ci, wi)} ∪ {(Ci ∨ bi, wi)}
7 k ← 	lg(

∑|φS |
i=1 wi)

8 CurrBit ← k

9 cost ← 2k

10 while CurrBit ≥ 0 do
11 (state, I) ← SAT ({C | (C, w) ∈

φ} ∪ CNF (
∑|φS |

i=1 wibi < cost))
12 if state = True then
13 lastI ← I
14 let s0, . . . , sk ∈ {0, 1} be constants such that

∑|φS |
i=1 wi(1 − I(Ci \ {bi})) =

∑k
j=0 2jsj

CurrBit ← max({j | j < CurrBit and sj = 1} ∪ {−1})
15 if CurrBit ≥ 0 then

16 cost ←∑k
j=CurrBit 2jsj

17 else
18 CurrBit ← CurrBit − 1

19 cost ← cost + 2CurrBit

20 return lastI

clauses must be less than cost (line 11). If the SAT solver returns True (line 12),
the sum of the weights of the soft clauses falsified by the current assignment is
computed and the set of bits needed to represent that number are determined as
well (line 14), the index of the current bit is decreased to the next j < CurrBit
such that sj = 1 (line 15). If such an index does not exist, then CurrBit becomes
−1 and in the following iteration the algorithm terminates. On the other hand,
if the SAT solver returns False, the search continues to the most significant bit
by decrementing CurrBit (line 19) and since the optimal cost is greater than
the current value of cost, it is decreased by 2CurrBit (line 20).

4 Core-Guided Algorithms

As in the previous method, UNSAT methods use SAT solvers iteratively to solve
MaxSAT. Here, the purpose of iterative SAT calls is to identify and relax unsat-
isfiable formulas (unsatisfiable cores) in a MaxSAT instance. This method was

434 M. El Halaby

first proposed in 2006 by Fu and Malik in [9] (see Algorithm 6). The algorithms
described in this section are

(1) Fu and Malik’s algorithm [9]
(2) WPM1 [1]
(3) Improved WPM1 [2]
(4) WPM2 [4]
(5) WMSU4 [17]

Definition 4.1 (Unsatisfiable core). An unsatisfiable core of a CNF formula φ
is a subset of φ that is unsatisfiable by itself.

Definition 4.2 (Minimum unsatisfiable core). A minimum unsatisfiable core
contains the smallest number of the original clauses required to still be unsatis-
fiable.

Definition 4.3 (Minimal unsatisfiable core). A minimal unsatisfiable core is an
unsatisfiable core such that any proper subset of it is not a core [7].

Modern SAT solvers provide the unsatisfiable core as a by-product of the
proof of unsatisfiability.

The idea in this paradigm is as follows: Given a MaxSAT instance φ =
{(C1, w1), . . . , (Cs, ws)} ∪ {(Cs+1,∞), . . . , (Cs+h,∞)}, let φk be a SAT instance
that is satisfiable iff φ has an assignment with cost less than or equal to k. To
encode φk, we can extend every soft clause Ci with a new (auxiliary) variable
bi and add the CNF conversion of the constraint

∑s
i=1 wibi ≤ k. So, we have

φk = {(Ci ∨ bi), . . . , (Cs ∨ bs), Cs+1, . . . , Cs+h} ∪ CNF (
∑s

i=1 wibi ≤ k).
Let kopt be the cost of the optimal assignment of φ. Thus, φk is satisfiable

for all k ≥ kopt, and unsatisfiable for all k < kopt, where k may range from 0
to

∑s
i=1 wi. Hence, the search for the optimal assignment corresponds to the

location of the transition between satisfiable and unsatisfiable φk. This encoding
guarantees that the all the satisfying assignments (if any) to φkopt

are the set of
optimal assignments to the MaxSAT instance φ.

4.1 Fu and Malik’s Algorithm

Fu and Malik implemented two PMaxSAT solvers, ChaffBS (uses binary search
to find the optimal cost) and ChaffLS (uses linear search to find the optimal cost)
on top of a SAT solver called zChaff [19]. Their PMaxSAT solvers participated
in the first and second MaxSAT Evaluations. Their method (Algorithm6 basis
for many MaxSAT solvers that came later. Notice the input to Algorithm6 is a
PMaxSAT instance since all the weights of the soft clauses are the same.

Fu and Malik (Algorithm6) (also referred to as MSU1) begins by checking
if a hard clause is falsified (line 1), and if so it terminates returning the cost ∞
(line 2). Next, unsatisfiable cores (φC) are identified by iteratively calling a SAT
solver on the soft clauses (line 6). If the working formula is satisfiable (line 7),
the algorithm halts returning the cost of the optimal assignment (line 8). If not,

Solving MaxSAT by Successive Calls to a SAT Solver 435

Algorithm 6. Fu and Malik(φ) Fu and Malik’s algorithm for solving
PMaxSAT.
Input: φ = {(C1, 1), . . . , (Cs, 1), (Cs+1, ∞), . . . , (Cs+h, ∞)}
Output: The cost of the optimal assignment to φ

1 if SAT ({Cs+1, . . . , Cs+h}) = (False,) then
2 return ∞
3 opt ← 0 f ← 0 while True do
4 (state, φC) ← SAT ({Ci | (Ci, wi) ∈ φ})
5 if state = True then
6 return opt

7 f ← f + 1
8 B ← ∅
9 foreach Ci ∈ φC such that wi �= ∞ do

10 let bi be a new blocking variable
11 φ ← φ \ {(Ci, 1)} ∪ {(Ci ∨ bi, 1)}
12 B ← B ∪ {i}
13 φ ← φ ∪ {(C, ∞) | C ∈∑i∈B bi = 1} opt ← opt + 1

then the algorithm starts its second phase by relaxing each soft clause in the
unsatisfiable core obtained earlier by adding to it a fresh variable, in addition
to saving the index of the relaxed clause in B (lines 11–14). Next, the new
working formula constraints are added indicating that exactly one of bi variables
should be True (line 15). Finally, the cost is increased by one (line 16) a clause
is falsified. This procedure continues until the SAT solver declares the formula
satisfiable.

4.2 WPM1

Ansótegui, Bonet and Levy [1] extended Fu and Malik to MaxSAT. The resulting
algorithm is called WPM1 and is described in Algorithm7.

Just as in Fu and Malik, Algorithm7 calls a SAT solver iteratively with the
working formula, but without the weights (line 5). After the SAT solver returns
an unsatisfiable core, the algorithm terminates if the core contains hard clauses
and if it does not, then the algorithm computes the minimum weight of the
clauses in the core, wmin (line 9). Next, the working formula is transformed by
duplicating the core (line 13) with one copy having the clauses associated with
the original weight minus the minimum weight and a second copy having having
the clauses augmented with blocking variables with the original weight. Finally,
the cardinality constraint on the blocking variable is added as hard clauses
(line 18) and the cost is increased by the minimum weight (line 19).

WPM1 uses blocking variables in an efficient way. That is, if an unsatisfiable
core, φC = {C1, . . . , Ck}, appears l times, all the copies get the same set of block-
ing variables. This is possible because the two formulae φ1 = φ\φC ∪{C1∨bi, . . . ,

Ci ∨ bi | Ci ∈ φC}∪CNF
(∑k

i=1 bi = 1
)

and φ2 = φ \φC ∪{Ci ∨ b1i , . . . , Ci ∨ bl
i |

436 M. El Halaby

Algorithm 7. WPM1(φ) The WPM1 algorithm for MaxSAT.
Input: A MaxSAT instance

φ = {(H1, ∞), . . . , (Hh, ∞)} ∪ {(S1, w1), . . . , (Ss, ws)}
Output: The optimal cost of the MaxSAT solution

1 if SAT ({Hi | 1 ≤ i ≤ h}) = False then
2 return ∞
3 cost ← 0
4 while True do
5 (state, φC) ← SAT ({Ci | (Ci, wi) ∈ φ})
6 if state = True then
7 return cost

8 BV ← ∅
9 wmin ← min{wi | Ci ∈ φC and wi �= ∞}

10 foreach Ci ∈ φC do
11 if wi �= ∞ then
12 Let bi be a new blocking variable
13 φ ← φ \ {(Ci, wi)} ∪ {(Ci, wi − wmin)} ∪ {(Ci ∨ bi, wmin)}
14 BV ← BV ∪ {bi}
15 if BV = ∅ then
16 return False

17 else
18 φ ← φ ∪ CNF

(∑
b∈BV b = 1

)

19 cost ← cost + wmin

Ci ∈ φC}∪CNF
(∑k

i=1 b1i = 1
)

∪· · ·∪CNF
(∑k

i=1 bl
i = 1

)
are MaxSAT equiv-

alent, meaning that the minimum number of unsatisfiable clause of φ1 and φ2 is
the same. However, the algorithm does not avoid using more than one blocking
variable per clause.

Example 4.1. Consider φ = {(x1, 1), (x2, 2), (x3, 3), (¬x1 ∨ ¬x2,∞), (x1 ∨
¬x3,∞), (x2 ∨ ¬x3,∞)}. In the following, bj

i is the relaxation variable added
to clause Ci at the jth iteration. A possible execution sequence of the algorithm
is:

(1) state = False, φC = {(¬x3), (¬x1 ∨ ¬x2), (x1 ∨ ¬x3), (x2 ∨ ¬x3)}, wmin =
3, φ = {(x1, 1), (x2, 2), (x3 ∨ b13, 3),, (¬x1 ∨ ¬x2,∞), (x1 ∨ ¬x3,∞), (x2 ∨
¬x3,∞), (b13 = 1,∞)}.

(2) state = False, φC = {(x1), (x2), (¬x1 ∨ ¬x2)}, wmin = 1, φ =
{(x1 ∨ b21), (x2, 1), (x2 ∨ b22), (x3 ∨ b13), (¬x1 ∨ ¬x2,∞), (x1 ∨ ¬x3,∞), (x2 ∨
¬x3,∞), (b13 = 1,∞), (b21 + b22 = 1,∞).

(3) state = True, A = {x1 = 0, x2 = 1, x3 = 0} is an optimal assignment.

If the SAT solver returns a different unsatisfiable core in the first iteration, a
different execution sequence is going to take place.

Solving MaxSAT by Successive Calls to a SAT Solver 437

4.3 Improved WPM1

In 2012, Ansótegui, Bonet and Levy presented a modification to WPM1
(Algorithm 7) [2]. In WPM1, the clauses of the core are duplicated after
computing their minimum weight wmin. Each clause Ci in the core, the
(Ci, wi − wmin) and (Ci ∨ bi, wmin) are added to the working formula and
(Ci, wi) is removed. This process of duplication can be inefficient because a
clause with weight w can be converted into w copies with weight 1. The
authors provided the following example to illustrate this issue: consider φ =
{(x1, 1), (x2, w), (¬x2,∞)}. If the SAT solver always includes the first clause
in the identified core, the working formula after the first iteration will be
{(x1 ∨ b11, 1), (x2 ∨ b12, 1), (x2, w − 1), (¬x2,∞), (b11 + b12 = 1,∞)}. If at each itera-
tion i, the SAT solver includes the first clause and with {(x2, w−i+1), (¬x2,∞)}
in the unsatisfiable core, then after i iterations the formula would be {(x1 ∨
b11 ∨ · · · ∨ bi

1, 1), (x2 ∨ b2 ∗ 1, 1), . . . , (x2 ∨ bi
2, 1), (x2, w − i), (¬x2,∞), (b11 + b12 =

1,∞), . . . , (bi
1 + bi

2 = 1,∞)}. In this case, WPM1 would need w iterations to
solve the problem.

Algorithm 8. ImprovedWPM1(φ) The stratified approach for WPM1
algorithm.
Input: A MaxSAT instance

φ = {(C1, w1), . . . , (Cm, wm), (Cm+1, ∞), . . . , (Cm+m′ , wm+m′)}
Output: The cost of the optimal MaxSAT solution to φ

1 if SAT ({Ci | wi = ∞}) = (False,) then
2 return ∞
3 cost ← 0
4 wmax ← max{wi | (Ci, wi) ∈ φ and wi < wmax}
5 while True do
6 (state, φC) ← SAT ({Ci | (Ci, wi) ∈ φ and wi ≥ wmax})
7 if state = True and wmax = 0 then
8 return cost

9 else
10 if state = True then
11 wnax = max{wi | (Ci, wi) ∈ φ and wi < wmax}
12 else
13 BV ← ∅ wmin ← min{wi | Ci ∈ φC and wi �= ∞}

foreach Ci ∈ φC do
14 if wi �= ∞ then
15 Let b be a new variable

φ ← φ \ {(Ci, wi)} ∪ {(Ci, wi − wmin), (Ci ∨ b, wmin)}
16 BV ← BV ∪ {b}
17 φ ← φ ∪ {(C, ∞) | C ∈ CNF (

∑
b∈BV b = 1)} cost ← cost + wmin

438 M. El Halaby

Algorithm 8 overcomes this problem by utilizing a stratified approach. The
aim is to restrict the clauses sent to the SAT solver to force it to concentrate
on those with higher weights, which leads the SAT solver to return unsatisfiable
cores with clauses having larger weights. Cores with clauses having larger weight
are better because they contribute to increasing the cost faster. Clauses with
lower weights are used after the SAT solver returns True. The algorithm starts
by initializing wmax to the largest weight smaller than ∞, then in line 6 only
the clauses having weight greater than or equal to wmax are sent to the SAT
solver. The algorithm terminates if the SAT solver returns True and wmax is
zero (lines 7–8), but if wmax is not zero and the formula is satisfiable then wmax

is decreased to the largest weight smaller than wmax (lines 10–11). When the
SAT solver returns False, the algorithm proceeds as the regular WPM1.

A potential problem with the stratified approach is that in the worst case the
algorithm could use more calls to the SAT solver than the regular WPM1. This
is because there is no contribution made to the cost when the SAT solver returns
True and at the same time wmax > 0. The authors apply the diversity heuristic
which decreases wmax faster when there is a big variety of distinct weights and
assigns wmax to the next value of wi when there is a low diversity among the
weights.

4.4 WPM2

In 2007, Marques-Silva and Planes [16] discussed important properties of Fu
and Malik that were not mentioned in [9]. If m is the number of clauses in the
input formula, they proved that the algorithm performs O(m) iterations and the
number of relaxation variables used in the worst case is O(m2). Marques-Silva
and Planes also tried to improve the work of Fu and Malik. Fu and Malik use the
pairwise encoding [10] for the constraints on the relaxation variables, which use a
quadratic number of clauses. This becomes impractical when solving real-world
instances. Instead, Marques-Silva and Planes suggested several other encodings
all of which are linear in the number of variables in the constraint [8,10,22].

Another drawback of Fu and Malik is that there can be several blocking
variables associated with a given clause. This is due to the fact that a clause C
can participate in more than one unsatisfiable core. Each time C is a part of a
computed unsatisfiable core, a new blocking variable is added to C. Although
the number of blocking variables per clause is possibly large (but still linear), at
most one of these variables can be used to prevent the clause from participating
in an unsatisfiable core. A simple solution to reduce the search space associated
with blocking variables is to require that at most one of the blocking variables
belonging to a given clause can be assigned True. For a clause Ci, let bi,j , (1 ≤
j ≤ ti) be the blocking variables associated with Ci. The condition

∑ti
j=1 bi,j ≤ 1

assures that at most one of the blocking variables of Ci is assigned True. This
is useful when executing a large number of iterations, and many clauses are
involved in a significant number of unsatisfiable cores. The resulting algorithm
that incorporated these improvements is called MSU2.

Solving MaxSAT by Successive Calls to a SAT Solver 439

Ansótegui, Bonet and Levy also developed an algorithm for MaxSAT in 2010,
called WPM2 [4], where every soft clause Ci is extended with a unique fresh
blocking variable bi. Note that a SAT solver will assign bi True if Ci is False.
At every iteration, the algorithm modifies two sets of at-most and at-least con-
straints on the blocking variables, called AL and AM respectively. The algorithm
relies of the notion of covers.

Definition 4.4 (Cover). Given a set of cores L, its set of covers Covers(L) is
defined as the minimal partition of {1, . . . , m} such that for every A ∈ L and
B ∈ Covers(L), if A ∩ B
= ∅, then A ⊆ B.

The constraints in AL give lower bounds on the optimal cost of φ, while the
ones in AM ensure that all solutions of the set AM ∪AL are the solutions of AL
of minimal cost. This in turn ensures that any solution of φe ∪CNF (AL∪AM)
(if there is any) is an optimal assignment of φ.

The authors use the following definition of cores and introduced a new notion
called covers to show how AM is computed given AL.

Algorithm 9. WPM2(φ) The WPM2 algorithm for MaxSAT
Input: A MaxSAT instance

φ = {(C1, w1), . . . , (Cm, wm), (Cm+1, ∞), . . . , (Cm+m′ , ∞)}
Output: The optimal MaxSAT solution to φ

1 if SAT ({Ci ∈ φ | wi = ∞}) = (False,) then
2 return ∞
3 φe ← {C1 ∨ b1, . . . , Cm ∨ bm, Cm+1, . . . , Cm+m′}
4 Covers ← {{1}, . . . , {m}}
5 AL ← ∅
6 AM ← {w1b1 ≤ 0, . . . , wmbm ≤ 0}
7 while True do
8 (state, φC , I) ← SAT (φe ∪ CNF (AL ∪ AM))
9 if state = True then

10 return I

11 Remove the hard clauses from φC

12 if φC = ∅ then
13 return ∅
14 A ← ∅
15 foreach Ci ∨ bi ∈ φC do
16 A ← A ∪ {i}
17 RC ← {B ∈ Covers | B ∩ A �= ∅}
18 B ← ⋃B′∈RC B′

19 k ← NewBound(AL, B)
20 Covers ← Covers \ RC ∪ B
21 AL ← AL ∪ {∑i∈B wibi ≥ k}
22 AM ← AM \ {∑i∈B′ wibi ≤ k′ | B′ ∈ RC} ∪ {∑i∈B wibi ≤ k}

440 M. El Halaby

Definition 4.5 (Core). A core is a set of indices A such that
(∑

i∈A wibi ≥ k
) ∈

AL. The function Core
(∑

i∈A wibi ≥ k
)

returns the core A, and Cores(AL)
returns {Core(al) | al ∈ AL}.
Definition 4.6 (Disjoint cores). Let U = {U1, . . . , Uk} be a set of unsatisfiable
cores, each with a set of blocking variables Bi, (1 ≤ i ≤ k). A core Ui ∈ U is
disjoint if for all Uj ∈ U we have (Ri ∩ Rj = ∅ and i
= j).

Given a set of AL constraints, AM is the set of at-most constraints∑
i∈A wibi ≤ k such that A ∈ Cover(Cores(AL)) and k is the solution

minimizing
∑

i∈A wibi subject to AL and bi ∈ {True, False}. At the begin-
ning, AL = {w1b1 ≥ 0, . . . , wmbm ≥ 0} and the corresponding AM =
{w1b1 ≤ 0, . . . , wmbm ≤ 0} which ensures that the solution to AL ∪ AM is
b1 = False, . . . , bm = False. At every iteration, when an unsatisfiable core
φC is identified by the SAT solver, the set of indices of soft clauses in φC

A ⊆ {1, . . . , m} is computed, which is also called a core. Next, the set of covers
RC = {B′ ∈ Covers | B′ ∩ A
= ∅} that intersect with A is computed, as well as
their union B =

⋃
B′∈RC B′. The new set of covers is Covers = Covers\RC∪B.

The set of at-least constraints AL is enlarged by adding a new constraint∑
i∈B wibi ≥ NewBound(AL,B), where NewBound(AL,B) correspond to

minimize
∑

i∈A wibi subject to the set of constraints {∑wibi≥k} ∪ AL where
k = 1 +

∑{k′ | ∑
i∈A′ wibi ≤ k′ ∈ AM and A′ ⊆ A}. Given AL and B,

the computation of NewBound can be difficult since it can be reduced to
the subset sum problem in the following way: given {w1, . . . , wn} and k, min-
imize

∑n
j=1 wjxj subject to

∑n
j=1 wjxj > k and xj ∈ {0, 1}. This is equiv-

alent to NewBound(AL,B), where the weights are wj , B = {1, . . . , n} and
AL = {∑n

j=1 wjxj ≥ k}. In the authors’ implementation, NewBound is com-
puted by Algorithm10.

Algorithm 10. NewBound(AL,B)
1 k ←∑{k′ |∑i∈B′ wibi ≤ k′ ∈ AM and B′ ⊆ B

}

2 repeat
3 k ← SubsetSum({wi | i ∈ B}, k)
4 until SAT

(
CNF

(
AL ∪ {∑i∈B wibi = k}))

5 return k

The SubsetSum function (called in line 3) is an optimization version of the
decision subset sum problem. It returns the largest integer d ≤ k such that there
is a subset of {wi | i ∈ B} that sums to d. To sum up, the WPM2 algorithm
groups the identified cores in covers, which are a decomposition of the cores into
disjoint sets. Constraints are added so that the relaxation variables in each cover
relax a particular weight of clauses k, which is changed to the next largest value
the weights of the clauses can sum up to. Computing the next k can be expensive
since it relies on the subset sum problem, which is NP-hard.

Solving MaxSAT by Successive Calls to a SAT Solver 441

In [3], Ansótegui et al. invented three improvements to WPM2. First, they
applied the stratification technique [2]. Second, they introduced a new criteria to
decide when soft clauses can be hardened. Finally, they showed that by focusing
search on solving to optimality subformulae of the original MaxSAT instance,
they efficiency of WPM2 is increased. This allows to combine the strength of
exploiting the information extracted from unsatisfiable cores and other opti-
mization approaches. By solving these smaller optimization problems the authors
obtained the most significant boost in their new WPM2 version.

4.5 WMSU4

WMSU4 [17] (Algorithm 11) adds at most one blocking variable to each soft
clause. Thought, it maintains an upper bound (UB) as well as a lower bound
(LB). If the current working formula is satisfiable (line 9), UB is changed to the
sum of the weights of the falsified clauses by the solution (I) returned from the
SAT solver. On the other hand, if the working formula is unsatisfiable, the SAT
solver returns an unsatisfiable core, and the algorithm adds a blocking variable
to each clause that has not yet been relaxed in that core. If all the soft clauses in
the unsatisfiable core have been relaxed (line 16), then the algorithm updates the
lower bound (line 17) and exists the main loop. The following example illustrates
how the algorithm works.

Algorithm 11. WMSU4(φ) The WMSU4 algorithm for MaxSAT.
Input: A MaxSAT instance φ = φS ∪ φH

Output: The cost of the optimal MaxSAT solution to φ
1 if SAT ({C | (C, ∞) ∈ φH}) = False then
2 return ∞
3 B ← ∅ φW ← φ LB ← −1 UB ← 1 +

∑|φS |
i=1 wi while UB > LB + 1 do

4 (state, φC , I) ← SAT ({C | (C, w) ∈ φW } ∪ CNF (
∑

bi∈B wibi ≤ UB − 1))

5 if state = True then
6 UB ←∑bi∈B wi(1 − I(Ci \ bi))

7 else
8 foreach (Ci, wi) ∈ φC ∩ φS do
9 if w �= ∞ then

10 B′ ← B′ ∪ {bi}
11 φW ← φW \ {(Ci, wi)} ∪ {(Ci ∨ bi, wi)}
12 if B′ = ∅ then
13 LB ← UB − 1

14 else
15 B ← B ∪ B′

16 LB ← UpdateBound({wi | bi ∈ B}, LB)

17 return UB

442 M. El Halaby

5 Core-Guided Binary Search Algorithms

Core-guided binary search algorithms are similar to binary search algorithms
except that they do not augment all the soft clauses with blocking variables
before the beginning of the main loop. Heras, Morgado and Marques-Silva pro-
posed this technique in [11] (see Algorithm 12).

Algorithm 12. CoreGuided-BS(φ) Core-guided binary search algorithm
for solving MaxSAT.
Input: A MaxSAT instance φ = φS ∪ φH

Output: The cost of the optimal MaxSAT solution to φ
1 state ← SAT ({Ci | (Ci, ∞) ∈ φH})
2 if state = False then
3 return ∅
4 φW ← φ
5 LB ← −1

6 UB ← 1 +
∑|φS |

i=1 wi

7 B ← ∅
8 while LB + 1 < UB do
9 mid ← 	LB+UB

2

10 (state, φC , I) ← SAT ({C | (C, w) ∈
φW } ∪ CNF (

∑
bi∈B wibi ≤ mid))

11 if state = True then

12 UB ←∑|φS |
i=1 wi(1 − I(Ci \ {bi}))

13 lastI ← I

14 else
15 if φC ∩ φS = ∅ then
16 LB ← UpdateBound({wi | bi ∈ B}, mid) − 1

17 else
18 foreach (Ci, wi) ∈ φC ∩ φS do
19 let bi be a new blocking variable
20 B ← B ∪ {bi}
21 φW ← φW \ {(Ci, wi)} ∪ {(Ci ∨ bi, wi)}

22 return lastI

Similar to other algorithms, CoreGuided-BS begins by checking the satisfia-
bility of the hard clauses (lines 1–3). Then it initializes the lower bound (line 4),
the upper bound (line 5) and the set of blocking variables (line 6) respectively to
−1, one plus the sum of the weights of the soft clauses and ∅. At each iteration
of the main loop (lines 7–21) a SAT solver is called on the working formula with
a constraint ensuring that the sum of the weights of the relaxed soft clauses is
less than or equal the middle value (line 9). If the formula is satisfiable (line 10),

Solving MaxSAT by Successive Calls to a SAT Solver 443

Algorithm 13. DisjointCoreGuided-BS(φ) Core-guided binary search
extended with disjoint cores for solving MaxSAT.
Input: A MaxSAT instance φ = φS ∪ φH

Output: A MaxSAT solution to φ
1 if SAT ({C | (C, ∞) ∈ φH}) = False then
2 return ∅
3 φW ← φ
4 C ← ∅
5 repeat
6 foreach Ci ∈ C do
7 if LBi + 1 = UBi then
8 midi ← UBi

9 else

10 midi ← 	LBi+UBi
2

11 (state, φC , I) ← SAT ({C | (C, w) ∈

φW } ∪⋃Ci∈C CNF (
∑

bi∈B wibi ≤ midi))

12 if state = True then
13 lastI ← I
14 foreach Ci ∈ C do
15 UBi ←∑br∈B wr(1 − I(Cr \ {br})))

16 else
17 subC ← IntersectingCores(φC , C)
18 if φC ∩ φS = ∅ and |subC| = 1 then
19 LB ← mid

20 else
21 foreach (Ci, wi) ∈ φC ∩ φS do
22 let bi be a new blocking variable
23 B ← B ∪ {bi}
24 φW ← φW \ {(Ci, wi)} ∪ {(Ci ∨ bi, wi)}
25 LB ← 0
26 UB ← 1 +

∑
bi∈B wi

27 foreach (Bi, LBi, midi, UBi) ∈ subC do
28 B ← B ∪ Bi

29 LB ← LB + LBi

30 UB ← UB + UBi

31 C ← C \ subC ∪ {(B, LB, 0, UB)}

32 until ∀Ci∈CUBi ≤ LBi + 1
33 return lastI

the upper bound is updated to the sum of the falsified soft clauses by the cur-
rent assignment (line 11). Otherwise, if all the soft clauses have been relaxed (line
14), then the lower bound is updated (line 15), and if not, non-relaxed sot clauses

444 M. El Halaby

belonging to the core are relaxed (lines 17–19). The main loop continues as long
as LB + 1 < UB.

The core-guided binary search approach was improved by Heras [11] et al.
with disjoint cores (see Definition 4.6).

Core-guided binary search methods with disjoint unsatisfiable cores maintain
smaller lower and upper bounds for each disjoint core instead of just one global
lower bound and one global upper bound. Thus, the algorithm will add multiple
smaller cardinality constraints on the sum of the weights of the soft clauses
rather than just one global constraint.

To maintain the smaller constraints, the algorithm keep information about
the previous cores in a set called C initialized to ∅ (line 4) before the main loop.
Whenever the SAT solver returns False (line 12) it also provides a new core
and a new entry Ci = (Bi, LBi,midi, UBi) is added in C for Ui, where Bi is the
set of blocking variables associated with the soft clauses in Ui, LBi is a lower
bound, midi is the current middle value and UBi is an upper bound. The main
loop terminates when for each Ci ∈ C, LBi + 1 ≥ UBi (line 33). For each entry
in C, its middle value is calculated (lines 6–10) and a constraint for each entry is
added to the working formula before calling the SAT solver on it (line 11). If the
working formula is unsatisfiable (line 16), then, using IntersectingCores, every
core that intersects the current core is identified and its corresponding entry is
added to subC (line 17). If the core does not contain soft clauses that need to be
relaxed and |subC| = 1 (line 18), then LB is assigned the value of the midpoint
(line 19). On the other hand, if there exists clauses that has not been relaxed yet
then the algorithm relaxes them (lines 21–24) and a new entry for the current
core is added to C which accumulates the information of the previous cores in
subC (lines 25–31).

SAT-based MaxSAT solvers rely heavily on the hardness of the SAT formu-
lae returned by the underlying SAT solver used. Obviously, the location of the
optimum solution depends on the structure of the instances returned and the
number of iterations it takes to switch from True to False (or from False to
True).

6 Portfolio MaxSAT Techniques

The results of the MaxSAT Evaluations suggest there is no absolute best
algorithm for solving MaxSAT. This is because the most efficient solver often
depends on the type of instance. Having an oracle able to predict the most suit-
able MaxSAT solver for a given instance would result in the most robust solver.
The success of SATzilla for SAT was due to a regression function which was
trained to predict the performance of every solver in the given set of solvers
based on the features of an instance. When faced with a new instance, the
solver with the best predicted runtime is run on the given instance. The result-
ing SAT portfolios excelled in the SAT Competitions in 2007 and in 2009 and
pushed the state-of-the-art in SAT solving. When this approach is extended
to (WP)MaxSAT, the resulting portfolio can achieve significant performance
improvements on a representative set of instances.

Solving MaxSAT by Successive Calls to a SAT Solver 445

ISAC [6] (Instance-Specific Algorithm Configuration) is one of the most suc-
cessful MaxSAT portfolio algorithms. It works by computing a representative
feature vector that characterizes the given input instance in order to identify
clusters of similar instances. The data is therefore clustered into non-overlapping
groups and a single solver is selected for each group based on some performance
characteristic. Given a new instance, its features are computed and it is assigned
to the nearest cluster. The instance is then solved by the solver assigned to that
cluster.

7 Experimental Investigation

This experimental investigation has been done of the following solvers:

(1) WMiFuMax is an unsatisfiability-based WPMaxSAT solver based on the
technique of Fu and Malik. It which works by identifying unsatisfiable sub-
formulae. MiFuMax placed third in the WPMaxSAT industrial category
of the 2013 MaxSAT evaluation. The SAT solver used is called MiniSAT.
Author: Mikoláš Janota.

(2) QWMaxSAT is a weighted version of QMaxSAT [12] and is available freely
online. This solver is a satisfiability-based solver built on top of version 2.0
of MiniSAT.

(3) Sat4j [13] is a satisfiability-based WPMaxSAT solver. The solver works by
translating WPMaxSAT instances into pseudo-Boolean optimization ones.
Sat4j avoids adding blocking variables to both hard and unit clauses.

(4) MSUnCore [15] is an unsatisfiability-based WPMaxSAT solver built on
top the SAT solver PicoSAT. Clauses in identified cores are then relaxed
by adding a relaxation variable to each clause. Cardinality constraints are
encoded using several encodings, such as the pairwise and bitwise encodings
[20,21].

(5) Maxsatz2013f is a branch and bound solver that placed first in the
WPMaxSAT random category of the 2013 MaxSAT evaluation. It is based on
an earlier solver called Maxsatz [14], which incorporates the technique devel-
oped for the famous SAT solver Satz. At each node, it transforms the instance
into an equivalent one by applying efficient refinements of unit resolution
((A∨B) and (¬B) yield A) which replaces {(x), (y), (¬x∨¬y)} with {�, (x∨
y)} and {(x), (¬x∨y), (¬x∨z), (¬y∨¬z)} with {�, (¬x∨y∨z), (x∨¬y∨¬z)},
where � is the empty clause. It implements a lower bound method (enhanced
with failed literal detection) that increments the lower bound by one for every
disjoint inconsistent subset that is detected by unit propagation.

(6) WMaxSatz-2009 and WMaxSatz+ are branch and bound solvers that
use transformation rules [14] which can be implemented efficiently as a by-
product of unit propagation or failed literal detection. This means that the
transformation rules can be applied at each node of the search tree. Authors:
Josep Argelich, Chu Min Li, Jordi Planes and Felip Manyà.

446 M. El Halaby

ISAC+ [6] (Instance-Specific Algorithm Configuration) is a portfolio
of algorithm which, given a WPMaxSAT instance, selects the solver better
suited for that instance. A regression function is trained to predict the per-
formance of every solver in the given set of solvers based on the features of an
instance. When faced with a new instance, the solver with the best predicted
runtime is run on the given instance. ISAC+ uses a number of branch and
bound solvers as well as SAT-based, including QMaxSAT, WMaxSatz-2009
and WMaxSatz+. Authors: Carlos Ansótegui, Joel Gabas, Yuri Malitsky
and Meinolf Sellmann.

The solvers were run on a machine with an Intel� CoreTMi5 CPU clocked
at 2.4 GHz with 5.7 GB of RAM running elementary OS Linux and a timeout
was set to 1000 s. We picked elementary OS because it does not consume too
many resources to run and thus giving enough room for the solvers to run.
The benchmarks we used are the WPMaxSAT instances (http://www.maxsat.
udl.cat/13/benchmarks/index.html) of the 2013 MaxSAT Evaluation and are
divided into three categories: (1) random, (2) crafted and (3) industrial. For
each category, we present the constituting sets of instances and their sizes, the
number of instances solved by each solver and the amount of time it took each
solver to work on each set of instances.

7.1 Random Category

The three sets of instances in the random category are mentioned in Table 1.
Tables 2 and 3 summarize the results of the random benchmarks.

Table 1. Benchmark instances of the Random category

Name Abbreviation # of instances

wpmax2sat-lo lo 30

wpmax2sat-me me 30

wpmax2sat-hi hi 30

wpmax3sat-hi 3hi 30

The branch and bound solvers MaxSatz2013f, WMaxSatz-2009 and
WMaxSatz+ performed considerably better than the SAT-based solvers in the
random category. In particular, MaxSatz2013f finished the four benchmarks
under 16 min, while WMiFuMax, MSUnCore and Sat4j timedout on most
instances. MaxSatz2013f placed first in the random category in the 2013 MaxSAT
Evaluation. The top non branch and bound solver is ISAC+, which placed third
in the random category in 2014 (Fig. 1).

http://www.maxsat.udl.cat/13/benchmarks/index.html
http://www.maxsat.udl.cat/13/benchmarks/index.html

Solving MaxSAT by Successive Calls to a SAT Solver 447

Table 2. Number of instances solved in the random category

Solver lo me hi 3hi

MiFuMax 0 0 0 0

QWMaxSAT 0 0 0 0

Sat4j 0 0 0 0

MSUnCore 0 0 0 0

MaxSatz2013f 30 30 29 30

WMaxSatz-2009 30 30 29 30

WMaxSatz+ 30 30 29 30

ISAC+ 29 8 1 10

Table 3. Percentages of instances solved in the random category

Solver lo (%) me (%) hi (%) 3hi (%) Total (%)

WMiFuMax 0 0 0 0 0

QWMaxSAT 0 0 0 0 0

Sat4j 0 0 0 0 0

MSUnCore 0 0 0 0 0

MaxSatz2013f 100 100 96.7 100 99.2

WMaxSatz-2009 100 100 96.7 100 99.2

WMaxSatz+ 100 100 96.7 100 99.2

ISAC+ 96.7 26.7 3.3 33.3 40

Fig. 1. Time results for the random category

448 M. El Halaby

7.2 Crafted Category

The seven sets of instances in the crafted category are mentioned in Table 4.
Tables 5, 6 and 7 summarize the results of the crafted benchmarks.

Table 4. Benchmark instances of the Crafted category

Name Abbreviation # of instances

Auctions/auc-paths Auc/paths 86

Auctions/auc-scheduling Auc/sch 84

CSG csg 10

Min-enc/planning Planning 56

Min-enc/warehouses Warehouses 18

Pseudo/miplib miplib 12

Random-net rnd-net 74

Table 5. Number of instances solved by each solver

Solver Auc/paths Auc/sch csg Planning Warehouses miplib rnd-net

WMiFuMax 84 84 5 23 0 1 8

QWMaxSAT 84 84 10 56 2 4 1

Sat4j 55 55 10 56 1 4 0

MSUnCore 84 84 6 53 0 0 0

MaxSatz2013f 81 81 1 41 6 4 1

WMaxSatz-2009 67 67 1 45 6 3 0

WMaxSatz+ 66 66 1 45 6 2 0

ISAC+ 84 84 4 53 18 3 55

Table 6. Percentages of instances solved in the crafted category

Solver Auc/paths (%) Auc/sch (%) csg (%) Planning (%)

WMiFuMax 2.3 100 50 41.1

QWMaxSAT 52.3 100 100 100

Sat4j 31.4 65.5 100 100

MSUnCore 16.3 100 60 94.6

MaxSatz2013f 100 96.4 10 73.2

WMaxSatz-2009 100 79.8 10 80.4

WMaxSatz+ 100 78.6 10 80.4

ISAC+ 100 100 40 94.6

Solving MaxSAT by Successive Calls to a SAT Solver 449

The following two tables summarize the time results on the benchmarks of
the crafted category and the total number of instances solved by each solver in
each set.

Table 7. Percentages of instances solved in the crafted category and the total number
of instances solved

Solver Warehouses (%) miplib (%) rnd-net (%) Total (%)

WMiFuMax 0 8.3 10.8 30.1

QWMaxSAT 11.1 33.3 1.4 57

Sat4j 5.6 33.3 0 48

MSUnCore 0 0 0 38.7

MaxSatz2013f 33.3 33.3 1.4 49.7

WMaxSatz-2009 33.3 25 0 47

WMaxSatz+ 33.3 16.7 0 45.6

ISAC+ 100 25 74.3 76.3

As it can be noticed from the results, ISAC+ is the winner of the crafted
category. Indeed, the winner of this category in the 2014 MaxSAT Evaluation is
ISAC+, and in the 2013 evaluation it placed second. Generally, SAT-based and
branch and bound solvers perform nearly equally on crafted instances (Fig. 2).

Fig. 2. Time results for the crafted category

7.3 Industrial Category

The seven sets of instances in the industrial category are mentioned in Table 8.
Tables 9 and 10 summarize the results of the industrial benchmarks.

It is clear that SAT-based solvers outperform branch and bound ones on
industrial instances. The winner solver of this category in the 2013 MaxSAT

450 M. El Halaby

Table 8. Benchmark instances of the Industrial category

Name Abbreviation # of instances

wcsp/spot5/dir wcsp-dir 21

wcsp/spot5/log wcsp-log 21

Haplotyping-pedigrees HT 100

Upgradeability-problem UP 100

Preference planning PP 29

Packup-wpms PWPMS 99

Timetabling TT 26

Table 9. Number of instances solved in the industrial category

Solver wcsp-dir wcsp-log HT UP PP PWPMS TT

WMiFuMax 6 6 85 100 11 46 0

QWMaxSAT 14 13 20 0 29 17 8

Sat4j 3 3 15 37 28 2 8

MSUnCore 14 14 89 100 25 0 0

MaxSatz2013f 4 4 0 0 5 25 0

WMaxSatz-2009 4 3 0 41 5 12 0

WMaxSatz+ 4 3 0 41 5 12 0

ISAC+ 17 7 15 100 9 99 9

Table 10. Percentages of instances solved in the industrial category

Solver wcsp-dir (%) wcsp-log (%) HT (%) UP (%) PP (%) PWPMS (%) TT (%) Total (%)

WMiFuMax 28.6 28.6 85 100 15.2 46 0 43.3

QWMaxSAT 66.7 61.9 20 0 40 17 30.8 34.5

Sat4j 14.3 14.3 15 37 38.7 2 30.8 21.7

MSUnCore 66.7 66.7 89 100 34.5 0 0 51

MaxSatz2013f 19 19 0 0 6.9 25 0 10

WMaxSatz-2009 19 14.3 0 41 5 12 0 13

WMaxSatz+ 19 14.3 0 41 6.9 12 0 13

ISAC+ 81 33.3 15 100 12.4 100 34.6 53.8

evaluation is ISAC+ and the same solver placed second in the 2014 evaluation
(Fig. 3).

Generally, we can notice that on industrial instances, SAT-based solvers are
performed considerably better than branch and bound solvers which performed
poorly. On the other hand, branch and bound solvers outperformed SAT-based
ones on random instances.

Solving MaxSAT by Successive Calls to a SAT Solver 451

Fig. 3. Time results for the industrial category

8 Conclusion

This paper discusses solving the MaxSAT problem by iteratively calling a
SAT solver on the input formula. It consists of two main parts: (1) Describ-
ing several SAT-based algorithms which competed in the MaxSAT evaluations.
(2) An experimental investigation and comparison between a number of SAT-
based solvers and branch-and-bound solvers.

The results show that, in general, SAT-based solvers are best suited for
instances arising from practical applications. This is apparent from the time
results on the “Industrial” benchmark instances. In addition, SAT-based solvers
showed moderate to good results on “Crafted” instances. Branch-and-bound
solvers have been found to be efficient for solving “Random” instances and some
crafted ones.

Acknowledgments. I would like to thank Dr. Hassan Aly (Department of Math-
ematics, Cairo University), Dr. Rasha Shaheen (Department of Mathematics, Cairo
University) and Dr. Carlos Ansótegui (University of Lleida) for helping me throughout
this research.

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through
satisfiability testing. In: Theory and Applications of Satisfiability Testing-SAT
2009, pp. 427–440 (2009)

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving sat-based weighted
maxSAT solvers. In: Principles and Practice of Constraint Programming, pp. 86–
101. Springer (2012)

3. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (weighted)
partial maxSAT. In: Principles and Practice of Constraint Programming, pp. 117–
132. Springer (2013)

452 M. El Halaby

4. Ansótegui, C., Bonet, M.L., Levy, J.: A New Algorithm for Weighted Partial
maxSAT (2010)

5. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based maxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

6. Ansótegui, C., Malitsky, Y., Sellmann, M.: MaxSAT by Improved Instance-Specific
Algorithm Configuration (2014)

7. Davies, J., Bacchus, F.: Postponing optimization to speed up maxSAT solving. In:
Principles and Practice of Constraint Programming, pp. 247–262. Springer (2013)

8. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

9. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Theory and Appli-
cations of Satisfiability Testing-SAT 2006, pp. 252–265 (2006)

10. Gent, I.P.: Arc consistency in sat. In: ECAI, vol. 2, pp. 121–125 (2002)
11. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms

for maximum satisfiability. In: Proceedings of the AAAI National Conference
(AAAI) (2011)

12. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-
SAT solver system description. J. Satisfiability Boolean Model. Comput. 8, 95–100
(2012)

13. Le Berre, D., Parrain, A.: The SAT4J library, release 2.2 system description. J.
Satisfiability Boolean Model. Comput. 7, 59–64 (2010)

14. Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures in
Max-SAT. In: Theory and Applications of Satisfiability Testing-SAT 2009, pp.
467–480 (2009)

15. Marques-Silva, J.: The MSUNCORE MaxSAT solver. In: SAT 2009 Competitive
Events Booklet: Preliminary Version, p. 151 (2009)

16. Marques-Silva, J., Planes, J.: On Using Unsatisfiability for Solving Maximum Sat-
isfiability. arXiv preprint arXiv:0712.1097 (2007)

17. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsat-
isfiable cores. In: Proceedings of the Conference on Design, Automation and Test
in Europe, pp. 408–413. ACM (2008)

18. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

19. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, pp. 530–535. ACM (2001)

20. Prestwich, S.: Variable dependency in local search: Prevention is better than
cure. In: Theory and Applications of Satisfiability Testing-SAT 2007, pp. 107–120.
Springer (2007)

21. Prestwich, S.D.: CNF encodings. In: Handbook of Satisfiability, vol. 185, pp. 75–97
(2009)

22. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinalityconstraints. In:
Principles and Practice of Constraint Programming-CP 2005, pp. 827–831 (2005)

http://arxiv.org/abs/0712.1097

	Solving MaxSAT by Successive Calls to a SAT Solver
	1 Introduction
	2 Linear Search Algorithms
	3 Binary Search Based Algorithms
	4 Core-Guided Algorithms
	4.1 Fu and Malik's Algorithm
	4.2 WPM1
	4.3 Improved WPM1
	4.4 WPM2
	4.5 WMSU4

	5 Core-Guided Binary Search Algorithms
	6 Portfolio MaxSAT Techniques
	7 Experimental Investigation
	7.1 Random Category
	7.2 Crafted Category
	7.3 Industrial Category

	8 Conclusion
	References

