
Intelligent Hamilton Path: Using Artificial
Intelligent A* Algorithm and Hamilton Path

to Navigate Multiple Destinations

Hatem F. Halaoui(&)

Computer Science, Haigazian University, Beirut, Lebanon
hhalaoui@haigazian.edu.lb

Abstract. Navigation applications are becoming an essential need for travellers
holding mobile devices. Finding the best path (time and distance) from one
address to another is one of the most asked queries by travellers. A more difficult
problem is finding the best path to visit multiple destinations in a single trip,
which could be a common query for many including sales people, tourists, and
delivery drivers. Google maps, Yahoo maps, and the like are examples of
navigation mobile applications. Calculating the best driving path between
multiple addresses is subject to many factors including distance, road situation,
road traffic, speed limitations and others. This paper presents the use of smart
heuristic functions, intelligent algorithms A*, traditional graph algorithms like
Hamilton path as well as efficient data structures in finding efficient path
between multiple addresses. It presents graph algorithms and notations, existing
smart graph algorithms, heuristics in graph problems, and finally a smart
solution, A* Hamilton, to determine the best path between given multiple
destinations.

Keywords: Intelligent navigation algorithms � Smart navigation � Hamilton
path � A* algorithm

1 Introduction

This section introduces the main topics used in the proposed approach. First, the idea of
heuristics is briefly presented. Second, Spatial Databases and the main data warehouse
of our approach are briefly presented. Third, a brief introduction to Geographical
Information Systems (GIS) and driving path application is given. Finally, a briefing of
the adopted approach is also presented.

1.1 Heuristics

As an adjective, heuristic pertains to the process of gaining knowledge by intelligent
guess rather than by following some pre-established formula [2, 3]. Most of what
people do in their daily lives involves heuristic solutions. In map problems, when
moving from one point to another to reach a certain destination, there are two options:
(1) the algorithm tries all possible paths from all possible neighbours (next address on

© Springer International Publishing AG 2018
Y. Bi et al. (eds.), Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016,
Lecture Notes in Networks and Systems 15, DOI 10.1007/978-3-319-56994-9_24

the way to destination). It keeps doing this until destination is reached. Finally, it
chooses the best path among all possibilities; (2) At each location, the algorithm
chooses the next move smartly using some evaluation function (called the heuristic
function).

The first option is very time consuming and does not match with real-time problems
unless the options are little (below 10 graph vertices), hence use it after decreasing the
map (graph) vertices. A solution using heuristics is also being adopted to decrease the
map (graph) vertices.

1.2 Spatial Databases

Spatial databases are the main data warehouses used by GIS. Spatial databases are
databases used to store information about geography such as geometries, positions, and
coordinates [4, 9]. Also, they might include operations to be applied on such data.

1.3 Geographical Information Systems and Driving Path Applications

GIS is a collection of computer hardware, software for capturing, managing, analysing,
and displaying all forms of geographical information [6, 7]. Finding the direction
(driving/walking) is one of the most asked queries in GIS applications. The most
important factors influencing such criteria are distance road situation, road traffic, speed
limitations, and others.

1.4 Navigating Using Heuristic Functions and Hamilton Path

This paper presents the issue of navigating multiple destinations in any order. The main
problem is to find the fastest path starting at a given source and passing over all given
destinations in any order. The importance of the proposed approach is that existing
solutions like Google Maps [8] let the user choose his order of destinations rather than
suggesting a fast path.

Moreover, calculating the fastest path with traditional mathematical algorithms like
Hamilton path [1] has a high time complexity for real-time large graphs representing
real city maps. As a result, use heuristic algorithms like A* to incredibly minimize the
graph size and hence minimize the Hamilton algorithm running time for such navi-
gation real-time solutions. Hamilton path definition, algorithm, and examples are
presented in Sect. 2.

The paper is organized as follows Sect. 2 presents some related work including
widely used applications. Section 3 presents the main solution in this paper. Section 4
discusses some results, conclusions and future work.

Intelligent Hamilton Path 345

2 Background and Related Work

This section presents the main subject’s background including definitions, notations,
and algorithms used in the proposed approach. Some used terms like graph, vertex,
edge and others assume prior knowledge of these data structures. It also presents some
related and similar existing work.

2.1 Artificial Intelligent Heuristic Algorithm A*

A* [2] is an Artificial Intelligent graph algorithm proposed by Pearl. The main goal of A*
is to find a cheap cost (time) graph path between two vertices in a graph using a heuristic
function. The goal of the heuristic function is to minimize the selection list at each
step. In the graph example, finding the shortest path from a node to another has to be done
by getting all possible paths and choosing the best, which is very expensive when having
a huge number of nodes. On the other hand, using an evaluation function (heuristic) to
minimize the problem choices according to intelligent criterion would be much faster. In
case of A* algorithm, the heuristic function is H (S, D) is defined as follows:

Input: a source vertex S and a destination D
Task: evaluate S based on the Destination D using the following heuristic function:
Distance_So_Far + Stright_Line_Distance (S, D) Where,
Distance_So_Far = Distance taken so far to reach the vertex S
Stright_Line_Distance (S, D) = straight line distance from S to destination D cal-
culated by using their coordinates.
A* Algorithm
A*(Graph, Source, Destination)
Task: takes a Graph (Vertices and Edges), Source and Destination (Vertices) and
returns the Best path solution (stack of vertices) from Source to Destination
• If Source = Destination then return solution (stack)
• Else expand all neighbours Ni of Source
• Mark Source as Unvisited
• For each Neighbour Ni

– Get Vi = H(Ni, Destination)
– Add all (Ni, Vi) to the Fringe (list of all expanded Vertices)
– From the Fringe, Choose an Unvisited Vertex V with Least Vi
– If no more Unvisited return Failure
– Else Apply A*(V, Destination)

The time complexity of A* is O(n2) [2].
Figure 1 is an example of the A* algorithm behaviour to find a path starting from

“Arad” to “Bucharest”, cities in Romania [2]. First of all, start at Arad and go to the
next neighbour with the best heuristic function (Sibiu). Second, explore all neighbour
of Sibiu for the best heuristic function. The algorithm continues choosing the best next
step (with the least value of heuristic function) until it reaches Bucharest. The inter-
esting thing is that all vertices with values (calculated using the heuristic function) kept
in the fringe in order to be considered at each step.

346 H.F. Halaoui

2.2 Graph Definitions and Notations

This sub-section presents the graph definitions and algorithms used in the proposed
approach. The time-complexities of these algorithms is briefly stated.

Definition 1. Graph G (V, E): where V is the set of vertices and E is the Set of edges.
Figure 2 illustrates a graph with vertices: 2, 3, 5, 8, 9, and 11 and Edges: (5, 11),
(11, 2), (11, 9), (7, 11), (8, 9), (3, 8).

Fig. 1. Calculating the path from Arad to Bucharest

Intelligent Hamilton Path 347

Definition 2. Complete graph: a Graph without loops or multiple edges and every
vertex is connected to every other vertex. See Fig. 3.

Definition 3. Hamilton Path [1]: A path in the graph that passes over all vertices once.
See Fig. 4.

Definition 4. All permutations: It is how many ways to arrange different n objects out
of k objects. The Mathematical proven formula is: nPk ¼ n!

n�kð Þ! ¼ n(n� 1Þ
ðn� 2Þ. . .ðn� kþ 1Þ

Example: How many ways can 4 students from a group of 15 be lined up for a
photograph? Answer: There are 15P4 possible permutations of 4 students from a group
of 15.

15P4 ¼ 15!
11! ¼ 15:14:13:12 ¼ 32760:

Hence, the permutation of n objects out of n objects (how many different ways to
arrange n objects) will be = n!

n�nð Þ! ¼ n!.

Fig. 2. A sample graph

Fig. 3. A complete graph

Fig. 4. Examples of Hamilton paths

348 H.F. Halaoui

Algorithm 1. Hamilton Path (G (V, E)): Finds a Hamilton
path (figure 4) in graph G.

G: Graph with vertices V and Edges E.

Returns L: Ordered List of vertices that form the Hamilton
Path.

Algorithm:

1) List all permutation of n vertices in V: vi, vi+1, vi+2,
…, vn

2) Choose the valid permutation where i (vi,vi+1) E

Algorithm 1 time Complexity:

Step 1: n! Where n is the number of vertices

Step2: n*n!

Total is (n+1) n! Which is an exponential-time algorithm
O(n!) and hence time consuming for high values of n.

2.3 Related Work: Multi-destinations Using Google Maps

This subsection presents two existing solutions: Google maps [8], and a previous work
A*Multiple [10].

Google Maps
Google Maps [8] is a Web-based service that provides detailed information about
geographical regions and sites around the world. In addition to conventional road
maps, Google Maps offers aerial and satellite views of many places. Figure 5 shows
an example of driving directions query using Google Maps [8]. The query is to get
driving directions over multiple destinations in London: Paddington station, Harrods,
House of Commons, and London Eye. It also offers Real-time Traffic information.
However, Google Maps [8] does not suggest any order of visits. The user has to
provide Google Maps with the order and he has to make multiple trials and look for
the best sequence of destinations to be visited.

A*Multiple
The main idea behind A*Multiple [10] is to find the best path (shortest in time) to visit
multiple destinations in one tour. The algorithm uses a heuristic function to find the
next destination and then uses the A*Traffic (which also use the same heuristic
function) to travel to that destination.

Intelligent Hamilton Path 349

Algorithm 2. A*Multiple (Source, Destinations)

Task: find an efficient path from source passing over all
members in Destinations array.

Returns: 2 Lists

VSL: The Vertices Solution List VSL, which is an ordered
list vertices that path follows in the trip.

PSL: Path Solution List PSL, which is the list of paths to
take each time to each destination (vertex) from a vertex in the
list VSL to another in the same list.

Pseudo code

If Destination is Empty return “done”.

For all Vertices Vi in Destinations

Di=H(source, Vi)

Get the Vs with the Minimum Di

Remove Vs from Destinations

Add Vs to the Vertices Solution List VSL

Add A*Traffic (Source, Vs) to the Path Solution List PSL

Fig. 5. A multi-destination path by Google Maps where order is chosen by the user

350 H.F. Halaoui

If A*Traffic fails return Failure.
A*Multiple (Vs, Destinations).

• It is time complexity is O(n2) [10]
• How does A*Multiple Work? [10]

This section presents the execution of A*Multiple. To present the proposed
approach better, consider the following problem: Suppose I am at Paddington station
and want to visit the following destinations in London: “Eye of London”, “House of
Commons”, and “Harrods”. If my only priority is time, means that I can visit them in
any order with efficient time. In this case, I have to choose my next destination (at each
step) smartly.

After creating the Time-Weighted graph (vertices shown in black in Fig. 7, over
5000 vertices) over the map of London (from Google Maps), the A*Multiple will
return the following:

VSL: Harrods, House of Commons, Eye of London.
PSL: Path1, Path2, Path3.
Where VSL is the ordered list of destinations to be visited, PSL is the list of paths

from each destination in VSL to the next one, Path1: Paddington – Harrods, Path2:
Harrods – House of Commons, and Path3: House of Commons – Eye of London.

Figure 6 shows these solutions in different colours: orange (Path1), Blue (Path2)
and Pink (Path3). It also gives estimated time of each path according to current (at time
of calculation) traffic situation.

3 Proposed Approach: A*Hamilton

This section presents the approach to navigate a multi-destination path starting from a
certain source. The main idea behind this approach is the following.

Fig. 6. Paths for multiple destinations (Paddington, Harrods, House of Commons)

Intelligent Hamilton Path 351

• Given: Graph G representing the Map, destination list L repressing the destinations,
and Source S the start point.

• Create a new virtual complete Graph G1 with vertices V1 = L + S and edges
E1 = {(ai, bi),..} where edge (ai, bi) is a path calculated using A* algorithm.

• Find all Hamilton paths in G1 starting at S
• Choose the shortest

The main idea behind building the virtual graph is to dramatically minimize the
number of vertices of the graph where Hamilton path algorithm is to be applied. In
order to present a formal pseudo-code algorithm of the proposed approach,
A*Hamilton, the following algorithms are presented: StartHamilton, BuildA*Graph,
and finally the main solution algorithm A*Hamilton.

Algorithm 3. StartHamilton (S, G(V,E)): The algorithm
finds all Hamilton paths staring from S passing over all
vertices in V.

G: Graph with vertices V and Edges E

S: Start Vertex that belong to V

Returns L: a list of ordered Lists of vertices (Hamilton
paths) starting from S

1) List all permutation of n vertices in V: vi, vi+1, vi+2,
…, vn.

2) Choose all valid permutations VPj where i (vi,vi+1)
 E

3) For each valid permutation VPj: Choose the ones that
start with S and Add them to L

4) Return L
Time Complexity:
Step 1: n! where n is the number of vertices

Step 2: n*n!

Step 3: n!

Step 4: Constant

Total is (n+2) n! Which is an exponential-time algorithm
O (n!) and hence time consuming for high values of n.

Fig. 7. An example of Hamilton path starting at v1

352 H.F. Halaoui

Figure 7 shows one result out of many (24 in this case) of the execution of the
StartHamilton algorithm starting from vertex v1 all the way to v5.

Algorithm 4. BuildA*Graph (G(V, E), L): Build a
complete virtual graph using the smart A* algorithm

G: Graph with vertices V and Edges E

L: List of destinations (L V)

Returns G1(V1, E1): a virtual complete graph with list of
vertices V1 (equal to L) and set of virtual edges E1 where
each edge in E1 refer to a path (list of real edges from E)
computed using A*.

1) For each Vertex Vi in the Destinations List L
2) Using A*, find all paths from Vi to all other

destinations and them to E1.
a) Using these Paths build the Virtual Complete Graph

G1(V1,E1) with v1= L as set of Vertices and E1 calculated in
step i.

Step1: O (m*n2), where m is the number of vertices in the
destinations list L and n2 is A* time complexity.

Step2: O (m2) (since G1 has m vertices and maximum of
m2 edges.

As a result, it will be O (n2) since m will be considered a constant compared to n
(assume between 0 and 10 destinations).

Figure 9 shows the actual graph. Figure 10 presents the extraction (using algorithm
BuildA*Graph) of the virtual graph. The edges in Fig. 9 are built using A*. Each of the
edges represent a path with multiple vertices. Each of these paths will be used as a
single edge when applying Hamilton path algorithm on the virtual graph. Examples:
The path from v1 to v5 is p1, the path from v5 to v2 is p2, the path from v2 to v3 is p3,
the path from v3 to v4 is p5, the path from v5 to v3 is p7, the path from v5 to v4 is p6,
and so on where all paths from each vertex in the destinations list to each other vertex
in the same list is calculated and considered as an edge is the virtual graph. The virtual
graph will look like the one in Fig. 11 where each edge is a calculated path. Example
edge (v1, v5) with weight 45 in Fig. 11 will be the real path p1 in Fig. 10 calculated
using A* algorithm. The weight of these edges are the weight of the calculated path.
Hence 45, the edge weight of (v1, v5) is the weight of p1 calculated using A*. Note
that for simplicity of examples, graph in Fig. 8 is used as un-directed graph whereas
real-time graphs are directed and edges in opposite direction could have different
weights.

Intelligent Hamilton Path 353

Looking at Fig. 9, examples of paths starting from v1 (using StartHamilton algo-
rithm) are:

Path1 = v1, v2, v3, v4, v5 with weight = 120 +124 +112 + 135 = 491
Path2 = v1, v3, v4, v5, v2 with weight = 114 + 112 + 134 + 221 = 581
Path3 = v1, v5, v4, v3, v2 with weight = 45 + 134 + 112 + 124 = 415

There will be another 24 options. The option with the lowest weight (shortest) will
be chosen. Figure 10 shows the virtual graph output of Algorithm 4.

Fig. 8. Initial actual graph

Fig. 9. Paths between vertices calculated using A8

Fig. 10. The complete virtual graph extracted from graph is Fig. 9

354 H.F. Halaoui

Algorithm 5. A*Hamilton (Graph G (V, E), L, S): Finds
the shortest Path from a source passing all desired
destinations. It uses algorithms 4 and 5 to build a new virtual
graph and apply Hamilton algorithm on it.

G: Graph with vertices V and Edges E

S: Start Vertex that belong to V#

L: List of destinations (L V)

1) G1(V1,E1) = BuildA*Graph (G, L)
2) HP = StartHamilton (S, G1) (Find all Hamilton Paths

(Set HP) in G1 that start with S V1)
3) Choose the shortest in HP

Time complexity

Step1: O (n2), where n is the number of vertices in the
destinations list

Step2: O (m!), finding all permutations (possible paths) of
m vertices out of m vertices.

Step3: O (m!) (Choosing the best from the m!)

The total will be in O (n2 + m!)

If m is a relatively a small number (<= 10), its maximum
time will be around 3 seconds. Example: 10! = 3,628,800
steps (around 3 seconds to compute), then A*Hamilton will be
acceptable.

4 Results, Conclusions and Future Work

Section 4 discusses results of sample executions, some conclusion, and future ideas.

4.1 Results

A testing tool is developed (to test the proposed approach) where 100 samples were tested
in 2 groups: Group 1 (Between 7 and 11 destinations Over 5321 vertices), Group 2
(less than 7 destinations Over 5321 vertices) Results showed that the proposed solution is
optimal in 88.5%. Table 1 presents the gathered results in each group/each case where:

• Optimal solution: Absolute best solution.
• Good solution: takes maximum of 20% more time than optimal solution.
• Bad solution: Takes more than 20% more time than optimal solution.

Intelligent Hamilton Path 355

Comparing these results with the previous results (81% average) [10] shows a very
good progress. Note that existing online solutions like Google Maps do not offer such
options and hence comparison is not applicable.

4.2 Conclusions

The approach proposed in this paper offers the user a full path solution for a multiple
destination trip with an order of destinations claiming an efficient time. To find a
solution, the following was done:

• Build a real graph G (V, E) that represents the map where V is the set of vertices
(real addresses) and E set of edges (real directed pieces of the roads)

• Build a complete virtual graph G1 (V1, E1) where V1 is the set of destinations and
E1 is the edges between these destination. Each of these edges represent a path
intelligently calculated with the smart algorithm A*[].

• Find all possible paths from a selected source (vertex) using StartHamilton Algo-
rithm. Then choose the best.

The following are the two main concerns:

(1) Even though StartHamilton is exponential, however its effect is null when applied
on small number of destinations.

(2) When building the complete virtual graph, the weight between edges is not
guaranteed to be the best. The reason for such thing is that A* does not guarantee
an optimal path between two edges.

4.3 Future Work

The main concern is that heuristic functions used in A* does not guarantee an optimal
(best) solution. For this reason, choosing the heuristic function is an important factor
for getting good results. Choosing a good heuristic function in order to choose the
series of destination is an open research question and highly dependent on the geog-
raphy of surface in query.

Table 1. Percentages of quality of solutions

Distances Optimal solution Good solution Bad solution

More than 7 destinations 81% 13% 6%
Less than 11 destinations
Over 5321 vertices
Less than 7 destinations 96% 3% 1%
Over 5321 vertices
Average 88.50%

356 H.F. Halaoui

References

1. Ross, K., Wright, C.: Discrete Mathematics. Prentice Hall, Upper Saddle River (2003)
2. Russell, S., Norving, P.: Artificial Intelligence a Modern Approach. Prentice Hall, Upper

Saddle River (2003)
3. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison

Wesley, Reading (1984)
4. Halaoui, H.: Smart Traffic Online System (STOS): presenting road networks with

time-weighted graphs. In: IEEE International Conference on Information Society
(i-Society 2010), London, UK, pp. 349–356, June 2010

5. Google Earth Blog Google Earth Data Size, Live Local, New languages coming. http://
whatis.techtarget.com/definition/Google-Maps. Accessed Sep 2015

6. Halaoui, H.: Smart traffic systems: dynamic A*Traffic in GIS driving paths applications. In:
Proceeding of IEEE CSIE 2009, pp. 626–630. IEEE, Los Angeles, March 2009

7. Halaoui, H.: Intelligent traffic system: road networks with time-weighted graphs. Int.
J. Infonomics (IJI) 3(4), 350–359 (2009)

8. Google Maps. https://Maps.google.com. Accessed Sep 2015
9. Halaoui, H.: Spatial and spatio-temporal databases modeling. In: Approaches for Modeling

and Indexing Spatial and Spatio-Temporal Databases. VDM Verlag (2009)
10. Halaoui, H.: Smart navigation: using artificial intelligent heuristics in navigating multiple

destinations. In: Proceedings of SOTICS 2015 (The Fifth International Conference on Social
Media Technologies, Communication, and Informatics), Barcelona, Spain, November 2015

Intelligent Hamilton Path 357

http://whatis.techtarget.com/definition/Google-Maps
http://whatis.techtarget.com/definition/Google-Maps
https://Maps.google.com

	Intelligent Hamilton Path: Using Artificial Intelligent A* Algorithm and Hamilton Path to Navigate Multiple Destinations
	Abstract
	1 Introduction
	1.1 Heuristics
	1.2 Spatial Databases
	1.3 Geographical Information Systems and Driving Path Applications
	1.4 Navigating Using Heuristic Functions and Hamilton Path

	2 Background and Related Work
	2.1 Artificial Intelligent Heuristic Algorithm A*
	2.2 Graph Definitions and Notations
	2.3 Related Work: Multi-destinations Using Google Maps

	3 Proposed Approach: A*Hamilton
	4 Results, Conclusions and Future Work
	4.1 Results
	4.2 Conclusions
	4.3 Future Work

	References

