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Abstract. In this paper, a framework is introduced for generating
human-interpretable structures, here called pattern sets, for short-term
prediction of financial time series. The optimization is carried out using
an evolutionary algorithm, which is able to modify both the structure
and the parameters of the evolving pattern sets. The framework has been
applied in two different modes: A tuning mode, in which the user pro-
vides a starting point in the form of loosely defined pattern set, and a
discovery mode, in which the starting points consist of random pattern
sets. The best results were obtained in the tuning mode, for which the
top-performing pattern sets gave strongly statistically significant results
in excess of one-day market returns (p-values below 0.0007 and, in many
cases, even below 0.0001) over validation data (not used during optimiza-
tion) for two data sets, involving stocks with large and small market cap-
italization, respectively. The average one-day returns ranged from 0.518
to 1.147%, with one-day Sharpe ratios ranging from 0.138 to 0.258.

Keywords: Financial prediction · Time series analysis · Evolutionary
computation

1 Introduction

On a typical day, millions of financial instruments change hands in the world’s
financial markets. In many cases, though by no means all, the decision to buy
or sell a financial instrument is based primarily on an analysis of the price time
series for the instrument in question, i.e. the sequence of preceding prices over
some time interval. In a broad sense, analysis and prediction of financial time
series occurs on all levels, from the formal analysis carried out in academic
research to the rapid, and much less formal, financial predictions continuously
available on TV and on the internet.

However, whereas many traders, fund managers, analysts, and other finan-
cial professionals typically base their predictions and actions on what is known
as technical analysis, i.e. the interpretation of stock price patterns, academic
researchers are often strongly sceptical to such approaches. This scepticism
has both a theoretical and an empirical foundation. On the theoretical side,
researchers refer to the efficient market hypothesis (EMH) (see e.g. [1,2]), which
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essentially says that all available information is reflected in the price of a finan-
cial instrument, so that nothing can be gained by analysing the price patterns as
a basis for prediction. On the other hand, the EMH has been challenged in view
of the sometimes irrational and emotional behavior of traders [3], as studied in
the field of behavioral finance.

On the empirical side, using time series analysis, a large variety of technical
trading rules have been thoroughly tested by many authors. For reviews see,
for example, [3,4]. In careful analyses, technical indicators such as, for example,
those based on (versions of) moving-average crossings, are generally found to
have very little predictive value, even though some predictability has been found
in the context of certain specific markets, as discussed at length in the reviews
just mentioned.

As an alternative to considering standard time series indicators of the kind
just mentioned, financial traders often make use of a so-called candlestick rep-
resentation, briefly described in Subsect. 2.1 below, where the price data over
a given period (for example, one day) is compressed into four numbers (open,
high, low, close) that, moreover, can be given a visual representation, also briefly
described below. Interpreting the patterns that appear when a time series is
represented in this way is a common approach in financial trading. Alas, such
patterns, whether bullish (i.e. predicting a higher future price) or bearish (pre-
dicting a lower future price) are no better at predicting prices, at least when
considered separately. However, simple patterns would not, by themselves and
in isolation, normally be used by financial traders. Instead, traders focus on a
combination of factors such as, for example, a supposedly bullish price pattern
occurring at the end of an often rather vaguely defined downtrend in prices.

For cases involving candlestick patterns indicative of a trend reversal, using
daily stock data Caginalp and Laurent [5] found a statistically significant (two-
day) predictability, albeit based on rather short time series. Many other studies
on candlestick patterns have been presented over the years, some finding predic-
tive power in certain patterns (see e.g. [6]), and others finding no such results
(see e.g. [7]). Despite the disparate findings, these studies are not necessarily
contradictory, since they generally concern different data sets and make use of
diverse approaches: In some studies, pre-defined, handcrafted patterns have been
applied to a given data set in order to test for statistically significant predictive
power, whereas in other studies (typically the ones involving optimization) a set
of trading rules has been optimized on one data set and then tested, as it should
be, on another data set. Moreover, different authors have used different holding
periods when applying stock patterns in trading and also somewhat dissimilar
definitions of the price patterns, e.g. the exact definition of a price trend. In
summary, it is probably fair to conclude that the predictive power of candlestick
patterns is unclear.

Since the performance of price patterns certainly may depend on their exact
definition, a valid approach to finding predictability in financial time series is
to define a set of generic rules, for example a set of parameterized technical
trading rules, and then apply some form of optimization to select a suitable
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set of rules and also to set their parameters. Such studies, of which many have
been conducted, often make use of stochastic optimization methods, for example
based on the general framework of evolutionary computation and, in particular,
genetic algorithms (GAs) [8] and genetic programming (GP) [9]. In their stan-
dard form, GAs are used for carrying out parametric optimization, by artificial
evolution of strings of digits representing the parameters of a given structure.
GP, by contrast, carries out parametric and structural optimization, by search-
ing for tree-like structures involving combinations of various operators such as
standard arithmetic operators and, in the case of financial prediction, also time-
series related operators for generating, say, moving averages, as well as numerical
parameters used in the structures. A recent and thorough review of evolutionary
approaches in financial trading is available in [10].

Genetic programming (GP) provides an open-ended approach to optimiza-
tion, in which the complexity of the generated structure has no (explicit) bound
and the resulting trading rules can therefore often be beyond human inter-
pretability. This, in itself, is not necessarily a problem, but it does raise the
question whether the trading rules found in this manner really provide a test
of the predictive power of the price patterns applied by human traders [3]. By
contrast, the main aim of this paper is to introduce and describe a framework
for open-ended structural and parametric optimization of human-interpretable
structures for financial prediction (henceforth referred to as pattern sets). More-
over, with this framework, it will be possible both to extend (structurally) and
to modify (parametrically) a given pattern set, while maintaining a high degree
of interpretability. Thus, for example, the user may seed the optimizer with a
pattern set loosely defining, say, a falling trend followed by some bullish can-
dlestick pattern, and then let the optimizer modify the pattern set structurally
and parametrically, removing human bias that might have been introduced in
the original pattern set. Alternatively, one may let the optimizer generate its
own initial random population of pattern sets which are then optimized without
any restriction on the structure. A secondary aim of the paper is to analyse
the performance of such pattern sets (particularly the first kind, where the user
provides a starting point) in predicting one-day returns on daily stock data from
the US markets.

The outline of the paper is as follows: Sect. 2 gives a brief introduction to
financial time series and candlestick patterns and also describes the data used
in this study. The method is outlined in Sect. 3. Next, in Sect. 4, the results are
presented, followed by a discussion in Sect. 5. The conclusions are presented in
Sect. 6.

2 Data

2.1 Candlestick Representation of Financial Time Series

The standard way of representing a (one-dimensional) time series is, of course, as
a list of time-value pairs. However, in finance, it is common instead to use a so-
called candlestick representation, as illustrated in Fig. 1. In this representation,
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Fig. 1. The definition of candlesticks. The open price is denoted O and the close price
(at the end of the period over which the candlestick is defined) is denoted C. If the
close price is larger than the open price, the candlestick is drawn with a white body
(left part of the figure), otherwise it is drawn in black (right). The highest price is
denoted H and the lowest price is denoted L. The vertical lines emanating from the
candlestick bodies are called the upper shadow and the lower shadow, respectively. In
the figure, the upper and lower shadows have equal length, for clarity, but this is of
course not generally the case.

which traces its origins to the rice trade in Japan in the 18th century, for a given
time interval (hereafter enumerated with the index i), the price information is
compressed to only four numbers: The open price Oi at the beginning of the
interval, the maximum (high) price Hi, the minimum (low) price Li, and the
close price Ci at the end of the interval. The body of the candlestick, hereafter
called Bi, is defined as Ci − Oi. Note that Bi can thus be either positive or
negative (or zero). The body top, here denoted Bt

i is equal to max(Oi,Ci), whereas
the body bottom, here denoted Bb

i equals min(Oi,Ci). Also, the upper shadow of a
candlestick is defined as SU

i = Hi −Bt
i , and the lower shadow is defined as SL

i =
Bb

i − Li. Two additional definitions are needed for the investigation presented
here: For a given candlestick, dropping the index i for clarity, the six quantities
{O,H,L,C,Bt, Bb} are henceforth collectively referred to as candlestick values, a
set denoted Cv, whereas the three quantities {B,SU , SL} are collectively referred
to as candlestick parts, a set denoted Cp.

2.2 Data Selection

Two different data sets were generated, using daily (rather than intraday) stock
market data. The first set, D1 contained price data for 60 large US companies, in
this case with a market capitalization (in early February, 2016) of around 50 billion
USD or more, whereas the second set D2 consisted of price data for 60 (relatively)
small companies, with a market capitalization between 1.7 billion USD and
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Fig. 2. The distribution of one-day returns (measured in per cent) for each data subset.
The panels on the left correspond to the first data set (D1), with the training set (T1)
shown in the upper panel and the validation set (V1) shown in the lower panel. The
panels on the right show the distributions for the second data set (D2), again with
the training set (T2) in the upper panel and the validation set (V2) in the lower panel.
The red lines indicate the averages of the distributions, the values of which are given
in Table 1. The bin width of the histograms was set to 0.1%. The vertical scale is
somewhat arbitrary, but if the values are normalized by the total number of samples
(83640), the distributions can be seen as probability distributions.

2.0 billion USD. For each stock, the corresponding time series contained data from
January 2005 until February 2016, 2789 days in total. All time series were adjusted
for dividends and splits. The two data sets were then each further divided into
two subsets, a training set Ti, i = 1, 2, and a validation set Vi, i = 1, 2, each con-
taining data from 30 stocks, without any overlap between the two subsets. Thus,
Di = Ti ∪ Vi, where Ti ∩ Vi = ∅, i = 1, 2. Each of the four subsets thus generated
contained a total of 83670 data points. For every data subset, the one-day returns,
defined as

r1,i =
Ci+1

Ci
− 1, i = 1, 2, . . . (1)

were computed. With 30 data series and 2789 data points in each, one thus
obtains 30 × 2788 = 83640 one-day returns. These distributions, measured in
per cent (i.e. r1,i × 100) are shown as histograms in Fig. 2. The average return
for each data subset is given in Table 1. As can be seen in the table, the averages
are slightly above 0, indicating that, over the 11 years spanned by the time series,
the market prices have generally risen, albeit with many fluctuations along the
way.
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Table 1. The average and standard deviation of the one-day returns for each data
subset.

Data subset r1 (%) st. dev. (%)

T1 0.0515 1.95

V1 0.0538 1.96

T2 0.0544 2.72

V2 0.0687 3.01

3 Method

For any given situation, the pattern sets introduced here either suggest an action
or they do not, i.e. they make a binary decision. The action consists of entering
into a long position1 at the close of the current candlestick (relative index 0), and
exiting at the close of the next candlestick (relative index 1). In other words, the
pattern sets make a one-step prediction that the price will rise. Of course, the
pattern sets can easily be applied to longer predictions, but here all predictions
will involve a single step. In the representation used here, a pattern set consists
of a sequence of (candlestick) patterns, each of which is defined as a ratio between
two quantities, as described below, along with an interval [a, b] in which the ratio
should fall for the pattern to match. The pattern set as a whole will suggest an
action only if all its constituent patterns match.

3.1 Pattern Types

Three different candlestick pattern types have been defined, namely (i) the Part
pattern (PP), (ii) the Value pair pattern (VPP), and (iii) the Body pair pattern
(BPP).

The PP involves a single candlestick, with a given index relative to the current
location along the time series, where index 0 denotes the current candlestick and
where negative indices are used for preceding candlesticks. This pattern type
compares two parts (see the definition in Subsect. 2.1) of the same candlestick:
Two candlestick parts, P1 and P2, are thus selected from the set Cp for the
candlestick in question, and the ratio P1/P2 of their values is computed. If and
only if this ratio falls within a given range [ap, bp], for a given location along
the time series, the pattern is said to match. As a specific example, if P1 = SU

0 ,
P2 = B0 (thus representing the upper shadow and the body of the current
candlestick), and the range is set to [1, 2], this pattern would require that the
upper shadow of the candlestick should be at least as large as the body of the
candlestick, but no more than twice as large.

1 In a long position, a profit is made if the price rises. Short positions, where a profit
is made if the price falls, will not be considered here, but could certainly be included
in principle.
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The BPP and the VPP, by contrast, involve two candlesticks typically, but
not necessarily, with different indices. The VPP compares two candlestick values
(again, see the definition in Subsect. 2.1) V 1 and V 2. In this case, the ratio
V 1/V 2 is computed, and it is then compared with a range [av, bv]. Again, if the
ratio falls within this range, the pattern matches, otherwise it does not. As a
specific example, consider a pattern which compares the body bottom (Bb

0 ) of
the current candlestick to the body top (Bt

−1) of the previous candlestick, with
a range of [1.01, 1.10]. In this case, the pattern matches if there is a positive
gap of at least one per cent, and at most ten per cent, between the body of the
preceding candlestick and that of the current candlestick.

Finally, the BPP compares the body of one candlestick to that of another
candlestick. Once again, if that ratio falls within a given range [ab, bb] the pattern
matches. Thus, here, the ratio B1/B2 is computed, using the body sizes (which
can be negative) of two candlesticks. For example if B1 is taken as the body of
the current candlestick and B2 as the body of the preceding candlestick, a range
of [0.5, 1] would require the body size of the current candlestick to be at least
half as large as, and at most equal to, the body size of the preceding candlestick.

In general, for all pattern types, if the quantity in the denominator (of the
ratio) is equal to zero, the pattern is considered not to match. Note also that
a pattern involving the ratio between any two quantities can be replaced by a
pattern involving the inverse ratio (and, of course, then the inverse range limits),
so that one can always define a pattern requiring any particular quantity being
equal to zero.

Combining sequences of patterns selected from the three types above, one can
represent a very wide range of time series situations. As one example, among
many, see the loose definition of a downtrend described in Subsect. 4.1 below.
Importantly, in addition to a high degree of versatility, this representation also
has a high degree of interpretability.

3.2 Encoding

In order to use the patterns in optimization, one must also have a procedure for
encoding all possible patterns. This procedure, which will be described next, is
fairly straightforward, but the description below might appear somewhat daunt-
ing. Thus, a specific example that the reader may wish to consult while reading
is given at the very end of the subsection.

The three patterns described above can each be encoded as a set of numbers.
Starting with the most complex pattern, the VPP, seven numbers are necessary:
An integer defining the type of the pattern (in this case, VPP) as described in the
caption of Table 2, two integers determining the indices of the two candlesticks,
such that a value of 0 indicates the current index and negative values indicate
earlier indices, two integers determining which candlestick values to use, from the
set Cv (see Subsect. 2.1 above), and two floating-point numbers determining the
range [av, bv]. For the PP, only six parameters are needed: One integer defining
the type of the pattern, another integer defining the candlestick index relative
to the current index, two integers determining which candlestick parts to use,
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from the set Cp, and two floating-point numbers determining the range [ap, bp].
Finally, for the BPP, only five parameters are needed: Again, one integer defining
the pattern type, two integers determining the indices of the two candlesticks
and two floating-point numbers defining the range [ab, bb].

Now, when evolving pattern sequences as described below, a crucial feature
of the optimizer will be its ability not only to change parameters of existing
patterns, but also to transform a given pattern (a PP, say) to a pattern of another
kind (VPP, for example). Thus, a uniform encoding is required, such that every
pattern encoding has the same length and every number in the encoding has
the same range. If this is the case, it is possible to change the first number in
the encoding of a pattern, namely the one defining the type of pattern, and still
get a valid pattern, but of a different type. For that reason, the patterns are
all encoded using seven numbers: Five integers and two floating-point numbers.
For the VPP all numbers are used. For the PP, the third number, which for the
VPP defines the second candlestick index, is just treated as an unused dummy
parameter, since the PP requires only one candlestick index. Similarly, for the
BPP, the fourth and fifth numbers are unused dummy parameters since, for this
pattern, it is known a priori that the respective candlestick bodies are to be
used.

The pattern encoding scheme is summarized in Table 2. It should be noted
that, in order to make it possible to change the type of the pattern, the range of
any parameter must enclose the maximum possible range of that parameter for
any pattern. Thus, for example, the fourth and fifth parameters, which define
the candlestick values for the VPP and the candlestick parts for the PP take
the range [0, 5] (since there are 6 candlestick values but only 3 candlestick parts,
as explained in Subsect. 2.1 above). Thus, when used in a VPP, the number is
simply read off and the corresponding candlestick value is chosen: If the number
is 0, the open (O) is chosen, if it is 1, the high (H) is chosen etc. By contrast, in

Table 2. Encoding scheme for patterns. For the pattern type (the first parameter), a
PP is generated if the value is 0, a VPP if the value is 1, and a BPP if the value is 2.
The fourth and fifth parameters determine candlestick values in the case of a VPP and
candlestick parts for a PP. In the latter case, the numbers are taken modulo 3, to get a
value in the range [0, 2]. See the main text for a complete description of the encoding.

Parameter Usage Range

1 Pattern type definition [0, 2]

2 First index definition [−20, 0]

3 Second index definition [−20, 0]

4 First component identifier [0, 5]

5 Second component identifier [0, 5]

6 Lower range limit (a) [−10, 10]

7 Range width (b− a) [0, 20]
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a PP, the number is taken modulo 3, thus giving a value in the range [0, 2] that,
in turn, can be used for identifying the candlestick part. Moreover, the ranges
[a, b] are defined by specifying a minimum value, corresponding to a, and the
width of the interval, i.e. b−a, rather than specifying both a and b directly. Note
also that a can be either positive or negative, even though negative values are
only relevant in the case of the PP and BPP types. Negative values are simply
ignored for the VPP type, thus making the effective lower range limit equal to
0 for that particular pattern type.

As a specific example, consider the parameter sequence 1,−2,−5, 3, 1, 1.0, 0.2.
This sequence would be decoded as follows: The first parameter (1) identifies the
pattern as a VPP; see also Table 2. The second and third parameters identify
the candlestick indices (−2 and −5) relative to the current index. The fourth
parameter determines which candlestick value to use for the first candlestick in
the pattern. In this example, the number is 3, so that the fourth element in the
set Cv should be used, i.e. the close C of the corresponding candlestick. Similarly,
the fifth parameter in the sequence (1) identifies the candlestick value for the
second candlestick as the second element in Cv, namely the high value H. The
two last parameters determine the allowed range as [1.0, 1.2], noting that the
last parameter defines the width of the interval (b − a). Thus, to summarize,
this pattern would compute the ratio C−2/H−5, i.e. the ratio between the close
value two steps before the current index and the high value five steps before
the current index. If, for a given current index, the ratio falls within the range
[1.0, 1.2], the pattern would match, otherwise it would not.

3.3 Evaluation

The evaluation of a pattern set is very straightforward: For every index in each
of the time series in the data subset in question, the evaluation function runs
through the pattern set, checking each pattern for a match. Note that, in the
first steps of a time series, some patterns cannot be computed. For instance, the
pattern defined in the example at the end of the previous section can only be
computed from index 5 in the time series, and onwards, since it requires the
value H−5 etc.

For any index i such that all the patterns in the set provide a match (referred
to as a matching index for the pattern set in question), the one-day return r1,i is
computed and added to a list. Thus, at the end of a pattern set evaluation, the
evaluation function will contain a distribution of one-day returns. The objective
function used in optimization (see below) is taken as the Sharpe ratio (S) of the
distribution of one-day returns, defined as

S =
r1 − ρ1

σ
, (2)

where r1 is the average over the distribution of one-day returns, ρ1 is the return
of a risk-free asset, typically taken as the 3-month US Treasury bill rate, and σ is
the standard deviation of the distribution of one-day returns. This commonly
used metric thus computes the excess return over a risk-free asset, in relation to
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its variability. The risk-free return is currently near 0, but has of course varied
over the years. Here, a value of 2% per annum, corresponding to 0.00786% per
(trading) day, was chosen.

3.4 Evolutionary Algorithm

The optimization of pattern sets has been carried out using an evolutionary
algorithm (EA), implemented in C# .NET. As in any EA, this algorithm main-
tains a population of M (here usually 100) individuals, in this case each defining
a pattern set. The individuals are encoded in chromosomes (strings of digits)
consisting of sequences of length K = 7N , where N is the number of patterns
in a given pattern set, remembering that each pattern is defined using 7 num-
bers. For a given individual, the decoding procedure thus results in a set of N
patterns, which is then evaluated over the data subset in question, resulting in
a single number, namely the Sharpe ratio, which is taken as the fitness value.
However, for pattern sets that yield only a small number of matching indices, a
multiplicative penalty term is applied. This term is equal to 1 for an evaluation
resulting in a pre-specified minimum number of matching indices (here taken as
500) or above, and smaller than 1 otherwise.

Selection is carried out using standard tournament selection, with a given
tournament size St (typically 5–10) and a tournament selection parameter pt
(around 0.7–0.8). Crossover is applied with probability pc (around 0.7–0.9) to a
pair of selected individuals. Two different crossover procedures have been defined,
namely a length-preserving crossover applied to chromosomes of equal length, and
a non-length-preserving crossover resulting in chromosomes of unequal length.
The use of each crossover method is described in Sect. 4 below, and the two meth-
ods are also illustrated in Fig. 3. Note that crossover points are always (randomly)
selected between pattern encodings, i.e. at positions 7, 14, 21 etc. along a chromo-
some. Once two new, offspring individuals have been formed, they are subjected to

Fig. 3. The two crossover methods used here. Top panel: Length-preserving crossover,
using a single crossover point applied to chromosomes of equal length. Bottom panel:
Non-length-preserving two-point crossover that generally, but not always, results in
chromosomes of different length.
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random mutation, using a mutation rate of prel/K, where prel, the relative muta-
tion rate, is normally around 1 so that, on average, one mutation occurs per chro-
mosome.

4 Results

The method described above has been applied in two different ways, namely
(i) a tuning mode, in which the user provides a rather vaguely defined starting
point for the optimization and (ii) a discovery mode in which the starting point
is random and the size of the evolved pattern sets has no upper limit.

4.1 Tuning an Existing Pattern Set

The tuning mode is suitable in cases where one wants to investigate whether a
particular situation, such as a downtrend interrupted by a supposedly bullish
pattern, yields positive results above market returns. In this mode, the user
specifies a set of k patterns defining some particular situation. Then another
N − k patterns are added such that, at the starting point of optimization, those
added patterns trivially match. Such patterns can easily be defined: For example,
a VPP in which the values are taken as V 1 = V 2 = C0, so that the computed
ratio is equal to C0/C0 ≡ 1, will always match if the range is set, for example, to
[1 − ε, 1 + ε], for any ε ≥ 0. Thus, since the added patterns trivially match, they
will not influence the computation while, at the same time, giving the optimizer
the possibility of making use of those patterns later on, if needed. This is so since,
through mutation, an initially trivially matching pattern can be modified into
a pattern that only matches a very specific set of situations. Moreover, in the
tuning mode, length-preserving crossover (defined in Subsect. 3.4) is used since,
otherwise, the initial patterns provided by the user would quickly be destroyed
through crossover.

As a specific application example, consider a situation in which a user believes
that a short-term (a few days) downtrend, interrupted by some as yet unspecified
pattern, will predict a subsequent price increase. In this case, the user can set
up a pattern set with a few patterns loosely defining a downtrend, then add a
few trivially matching patterns as just described, and start the optimizer, which
will then be able to both fine-tune the trend definition and find a set of suitable
bullish patterns (possibly a single pattern) marking the end of the trend. Here, as
an example, a five-day trend was defined using three VPPs, computing the ratios
C−3/C−1, C−4/C−2, and C−5/C−3, respectively, and giving a match if those
ratios all fell in the range [1.003, 2]. As shown in Fig. 4, those three patterns
generally define a short-term downtrend, even though one can certainly find
situations in which all patterns match even if the downtrend is barely discernible,
as can be seen in the lower right panel of the figure. Moreover, the trend may
of course extend further back in time, beyond relative index −5, since the three
defined patterns do not involve such indices. Next, a few (typically 2–6) trivially
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Fig. 4. A few examples of five-day downtrends found in the data subset T1. The trends
were defined using three patterns, as described in the main text. The arrows indicate
the current index (relative index 0). The trends cover relative indices −5 to −1. Note
that, initially, the pattern ending the trend (at relative index 0) is unspecified, and
may thus take any form.

matching patterns were added, and M identical copies of the resulting pattern
set were made, forming the initial population.

Here, the user thus only provided a starting point for the optimizer: The
fact that the downtrend is initially loosely defined is precisely the point, since
it is the task of the optimization method to determine a detailed definition of
the downtrend and also to find suitable pattern(s) that should mark the end of
the trend, in order for the resulting pattern set to generate a profitable one-step
prediction. Note that the optimizer can also use the added patterns to extend the
trend. Thus, for example, one of the added initially matching patterns could be
modified into a VPP defining the ratio C−6/C−4, thus (with proper range limits)
extending the trend one more step backwards. The optimizer can of course also
tune the definition of the trend by changing, for example, the range limits or
indeed the values used. For example, it may be found that L−3/C−1 gives better
results than C−3/C−1 etc.

Several optimization runs were carried out, using slightly different EA parame-
ters and different random number generator seed values. In order to generate some
initial diversity, all but the first individual were also subjected to a mutation step
(with probability 1) before starting the actual optimization. A summary of the
results obtained for the best pattern set in five different runs is given in Table 3. In
all cases, only the training sets (T1 or T2) were used during optimization. The best
pattern set found was then also applied to the corresponding validation set (V1 or
V2). In order to determine whether the distribution of results obtained over pre-
viously unseen data represented a statistically significant improvement over the
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Table 3. Results obtained for the tuning runs, starting from a downtrend defined by
the user as described in the main text. The first two columns indicate the pattern set
ID and the data subsets used (training and validation). The next three columns show
the number of instances found (#), the average one-day return (r1), and the Sharpe
ratio (S) for the training set. The next three columns show the same quantities for the
validation set. The final two columns give the results of the Wilcoxon test described in
the main text.

Training Validation

ID Tr., Val # r1 S # r1 S z p

PS1 T1, V1 641 0.758 0.243 609 0.775 0.258 6.93 <0.0001

PS2 T1, V1 518 0.626 0.201 456 0.518 0.174 3.74 <0.0001

PS3 T1, V1 491 0.667 0.207 484 0.781 0.201 6.86 <0.0001

PS4 T2, V2 657 1.038 0.187 599 1.147 0.184 4.21 <0.0001

PS5 T2, V2 602 0.916 0.186 547 0.550 0.138 3.21 <0.0007

one-day returns obtained by the market as a whole, a standard Wilcoxon rank-sum
test was carried out, comparing the distribution of one-day validation results for
the evolved pattern set to the distribution of all one-day returns for the validation
set in question (see also the two lower panels in Fig. 2). The rightmost two columns
in Table 3 give the corresponding z-scores and p-values, the null hypothesis being
that the two distributions are equal, and the alternative hypothesis being that
the distribution for the evolved pattern set is shifted to the right (positive values)
relative to the distribution of all one-day returns.

As an example, Fig. 5 shows the distribution obtained for PS1 from Table 3
over the validation set V1. In this particular case, a comparison with the market
return for the validation set, i.e. the distribution shown in the lower left panel of
Fig. 2, indicated that the pattern set gives a strongly significant positive result,
with an average one-day return of 0.775% and a p-value of 2.1 × 10−12. Even
though it might not be immediately evident from the rather noisy plot shown
in Fig. 5, the distribution is, in fact, rather strongly skewed towards positive
values, with a total of 11 instances giving one-day returns above 10% and the
best instance having a one-day return of 23.4%. The pattern set (PS1) still used
three patterns to define the downtrend. However the trend was extended to
cover relative indices −6 to −1. Moreover, the limits were somewhat modified,
as were the candlestick values used to define the trend. For example, one of the
constituent patterns compares L−4 to C−2 rather than comparing C−4 to C−2

as in the initial pattern set. Interestingly, the optimizer also defined a specific
pattern to mark the end of the trend, requiring that SU

0 /SL
0 should fall in the

range [5.01, 24.1]. This pattern is reminiscent of what a trader would refer to
as an inverted hammer. A few of the 609 instances (for the validation set) are
shown in Fig. 6.
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Fig. 5. The distribution of one-day returns obtained over the validation set for PS1.
The average one-day return, indicated by a red vertical line, is equal to 0.775%. Note
that the 11 most positive instances (returns above 10%) are not shown in the figure. The
most negative instance (with a return of −9.16%) does appear in the figure, however.

Fig. 6. A few examples of the instances found by the pattern set PS1; see also Table 3
and the main text. Three positive instances are shown, and one negative instance
(lower right panel). As can be seen, this pattern set requires that, in addition to the
downtrend (whose definition also was modified by the optimizer), a candlestick with a
strong upper shadow should occur for relative index 0, indicated by the vertical arrow.

As can be seen in Table 3, similar results were obtained for the other runs but,
of course, with different pattern sets. For example, PS2 extended the trend to cover
indices −14 to −1. Regarding the pattern sets evolved over the second training
set (T2), PS4, for example, used a slightly modified five-day trend, but also added
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two conditions that, together, required the current candlestick (relative index 0) to
have a negative body with a large upper shadow. For all the presented pattern sets,
the null hypothesis can be strongly rejected, with p−values smaller than 0.0007,
meaning that the patterns sets give one-day returns in excess of market returns,
over their respective validation sets. In general, the pattern sets evolved using T2,
i.e. PS4 and PS5, give higher average returns over the training set than the pat-
terns set PS1–PS3 evolved with T1. However, PS4 and PS5 also have lower Sharpe
ratios over the training set. PS4 has a rather high Sharpe ratio over the validation
set, albeit lower than those of PS1 and PS3.

4.2 Discovering New Pattern Sets

In the discovery mode, the starting point is a population of randomly generated
pattern sets (with an initial maximum number of constituent patterns, here
equal to 10). During optimization, two-point crossover is used, meaning that
there is no restriction on the structure of the generated pattern sets. Also in
this case, several runs were carried out, and some of the results are summarized
briefly in Table 4. In these runs, the results were generally less good than for the
tuning runs presented above: Both the average one-day returns and the Sharpe
ratios were lower, especially over the validation set; see also the discussion below.
In fact, for PS7, the results over the validation set are just barely statistically
significant. A detailed description of the pattern sets will not be given here.
Suffice it to say that the structures obtained were generally more complex than
for the tuning runs, but still interpretable.

Table 4. Results obtained for the discovery runs. The columns are the same as in
Table 3.

Training Validation

ID Tr., Val # r1 S # r1 S z p

PS6 T1, V1 531 0.309 0.182 590 0.199 0.135 2.75 <0.003

PS7 T2, V2 512 0.424 0.173 483 0.250 0.087 1.65 0.0499

5 Discussion

The results presented above indicate that the framework introduced here is capa-
ble of generating pattern sets giving statistically significant results above (one-
day) market returns over previously unseen validation data. The best-performing
pattern set, based on Sharpe ratios, was PS1. Its daily Sharpe ratio over the val-
idation set of around 0.258 corresponds to a respectable annualized Sharpe ratio
of 0.258

√
252 = 4.1 that, for example, is at the high end of the performance of

trading rules reviewed by Bajgrowicz and Scaillet [4]. However, one should be
careful not to directly extrapolate the results obtained here to an actual trading
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situation, partly because trade execution (buying very near the close of the cur-
rent day) and trading costs have not been considered here, and partly because
obtaining such an annualized Sharpe ratio would require trades occurring every
day, which might not be the case, given the number of instances found.

For both data sets, the results obtained over the validation sets were in
excess of market returns, with a high degree of statistical significance. One may,
however, be concerned that the tests of statistical significance considered above
are in fact likely to give such results, since the stocks in the two pairs of training
and validation sets (T1 vs. V1 and T2 vs. V2) do behave rather similarly, especially
in the case of larger companies. Thus, as an additional test, the PS1 pattern set
was applied to the other validation set, i.e. V2. Somewhat surprisingly, even in
this case, a strongly positive result was obtained, namely an average one-day
return (r1) of 0.647% and a Sharpe ratio of 0.152, and with a p-value for the
Wilcoxon test smaller than 0.0001. Similarly, the PS4 pattern set was applied
to V1. Also in this case, excellent results were obtained: r1 was equal to 1.73%,
with a Sharpe ratio as high as 0.307, and a p-value smaller than 0.0001. However,
for PS4, the number of instances was rather small (329). Still, these two tests
indicate that the best pattern sets obtained in the tuning mode, PS1 and PS4,
are indeed able to capture important aspects of the time series for making one-
day predictions.

The results presented here were obtained in runs lasting up to a few hours. An
interesting avenue for further work would be to increase the size of the data sets
by one or two powers of ten, by adding more stocks and by extending the length
of the time series. With such large data sets a faster optimization process would
be needed. Therefore, research is underway to generate a parallel, asynchronous,
client-server version of the EA, with the aim of speeding up the optimization
process.

A crucial aspect of the optimization framework or, rather, the encoding pro-
cedure, is the fact that the optimizer is allowed to modify both the parameters
and the structure of the evolving pattern sets. This applies to both running
modes: Even in the case of the tuning mode, where the resulting pattern sets
kept aspects of the original, user-defined pattern set they also contained new
aspects, generated during optimization by changing the identity of some pat-
terns (e.g. from a PP to a VPP). The fact that the tuning mode generally gave
better results than the discovery mode does not imply that the latter should
not be used. Instead, the difference follows as a rather natural consequence of
the very much larger size of the search space when running in discovery mode.
In fact, the range of possible structures for the tuning mode is a subset of the
complete range of structures available in the discovery mode. A deeper analysis
is underway, which will make use of the faster optimization process described
above to carry out more thorough runs in discovery mode. Another relevant
topic for future work would be to consider multi-day returns. A brief analysis,
again using PS1, showed that k-day returns, with k ranging from 2 to 7, are
larger than r1 and show a monotonous increase as k goes from 2 to 7. However,
the annualized Sharpe ratios are smaller than for the one-day returns.



32 M. Wahde

6 Conclusion

In conclusion, the main result of the work presented above is that candlestick
pattern sets can indeed be used for short-term (one-day, in this case) prediction
of financial time series, and that the optimization framework presented here is
able to find such pattern sets, particularly in the tuning mode, where a user
provides a starting point in the form of a loosely defined pattern set. A crucial
feature is the possibility of modifying both the structure and the parameters
of the patterns sets during optimization. However, the usual caveats of course
apply, namely that other data sets may yield different results. Still, the fact that
the pattern sets perform well over previously unseen validation data, and even
on validation data from a completely different class of stocks (as shown for two
of the patterns sets in the discussion above) indicates that those pattern sets
indeed capture important aspects of the time series in question.
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