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Abstract. Process mining techniques focus on extracting insight in
processes from event logs. In many cases, events recorded in the event
log are too fine-grained, causing process discovery algorithms to discover
incomprehensible process models or process models that are not repre-
sentative of the event log. We show that when process discovery algo-
rithms are only able to discover an unrepresentative process model from
a low-level event log, structure in the process can in some cases still be
discovered by first abstracting the event log to a higher level of granular-
ity. This gives rise to the challenge to bridge the gap between an original
low-level event log and a desired high-level perspective on this log, such
that a more structured or more comprehensible process model can be
discovered. We show that supervised learning can be leveraged for the
event abstraction task when annotations with high-level interpretations
of the low-level events are available for a subset of the sequences (i.e.,
traces). We present a method to generate feature vector representations
of events based on XES extensions, and describe an approach to abstract
events in an event log with Condition Random Fields using these event
features. Furthermore, we propose a sequence-focused metric to evalu-
ate supervised event abstraction results that fits closely to the tasks of
process discovery and conformance checking. We conclude this paper by
demonstrating the usefulness of supervised event abstraction for obtain-
ing more structured and/or more comprehensible process models using
both real life event data and synthetic event data.

Keywords: Process mining · Event abstraction · Probabilistic graphical
models

1 Introduction

Process mining is a fast growing discipline that combines knowledge and tech-
niques from computational intelligence, data mining, process modeling and
process analysis [1]. Process mining focuses on the analysis of event logs, which
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consists of sequences of real-life events observed from process executions, origi-
nating e.g. from logs from ERP systems. An important subfield of process mining
is process discovery, which is concerned with the task of finding a process model
that is representative of the behavior seen in an event log. Many different process
discovery algorithms exist [2–6], and many different types of process models can
be discovered by process discovery methods, including BPMN models, Petri nets,
process trees, and statecharts.

Fig. 1. An excerpt of a “spaghetti”-like process model.

As event logs are often not generated specifically for the application of process
mining, events granularity of the event log at hand might be too low level. It
is vital for successful application of process discovery techniques to have event
logs at an appropriate level of abstraction. Process discovery techniques when
the input event log is too low level might result in process model with one or
more undesired properties. First of all, the resulting process model might be
“spaghetti”-like, as shown in Fig. 1, containing of an uninterpretable mess of
nodes and connections. The aim of process discovery is to discover a structured,
“lasagna”-like, process model as shown in Fig. 2, which is much more inter-
pretable than a “spaghetti”-like model. Secondly, the activities in the process
model might have too specific, non-meaningful, names. Third, as we show in
Sect. 4, process discovery algorithms are sometimes not able to discover a process
model that represents the low-level event log well, while being able to discover
to discover a representative process model from a corresponding high-level event
log. The problems mentioned illustrate the need for a method to abstract too
low-level event logs into higher level event logs.

Several methods have been explored within the process mining field that
address the challenge of abstracting low-level events to higher level events [7–9].
Existing event abstraction methods rely on unsupervised learning techniques to
abstract low-level into high-level events by clustering together groups of low-
level events into one high-level event. However, using unsupervised learning
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Fig. 2. A structured, or “lasagna”-like, process model.

introduces two new problems. First, it is unclear how to label high-level events
that are obtained by clustering low-level events. Current techniques require
the user/process analyst to provide high-level event labels themselves based on
domain knowledge, or generate long labels by concatenating the labels of all
low-level events incorporated in the cluster. However, long concatenated labels
quickly become unreadable for larger clusters, and it is far from trivial for a user
to come up with sensible labels manually. In addition, unsupervised learning
approaches for event abstraction give no guidance with respect to the desired
level of abstraction. Many existing event abstraction methods contain one or
more parameters to control the degree in which events are clustered into higher
level events. Finding the right level of abstraction providing meaningful results
is often a matter of trial-and-error.

In some cases, training data with high-level target labels of low-level events
are available, or can be obtained, for a subset of the traces. In many settings,
obtaining high-level annotations for all traces in an event log is infeasible or
too expensive. Learning a supervised learning model on the set of traces where
high-level target labels are available, and applying that model to other low-level
traces where no high-level labels are available, allows us to build a high-level
interpretation of a low-level event log, which can then be used as input for
process mining techniques.

In this paper we describe a method for supervised event abstraction that
enables process discovery from too fine-grained event logs. This method can be
applied to any event log where higher level training labels of low level events
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are available for a subset of the traces in the event log. We start by giving an
overview of related work from the activity recognition field in Sect. 2. In Sect. 3 we
introduce basic concepts and definitions used throughout the rest of the paper.
Section 4 explains the problem of not being able to mine representative process
models from low-level data in more detail. In Sect. 5 we describe a method to
automatically retrieve a feature vector representation of an event that can be
used with supervised learning techniques, making use of certain aspects of the
XES standard definition for event logs [10]. In the same section we describe a
supervised learning method to map low-level events into target high-level events.
Sections 6 and 7 respectively show the added value of the described supervised
event abstraction method for process mining on a real life event log from a smart
home environment and on a synthetic log from a digital photocopier respectively.
Section 8 concludes the paper.

2 Related Work

Supervised event abstraction is an unexplored problem in process mining.
A related field is activity recognition within the field of ubiquitous computing.
Activity recognition focuses on the task of detecting human activity from either
passive sensors [11,12], wearable sensors [13,14], or cameras [15]. Activity recog-
nition methods generally work on discrete time windows over the time series of
sensor values and aim to map each time window onto the correct type of human
activity, e.g. eating or sleeping. Activity recognition methods can be classified
into probabilistic approaches [11–14] and approaches based on ontology reason-
ing [16,17]. The strength of probabilistic system based approaches compared to
methods based on ontology reasoning is their ability to handle noise, uncertainty
and incomplete in sensor data [16].

Tapia [12] was the first to explore supervised learning methods to infer human
activity from passive sensors, using a naive Bayes classifier. More recently, prob-
abilistic graphical models started to play an important role in the activity recog-
nition field [11,18]. Van Kasteren et al. [11] explored the use Conditional Ran-
dom Fields [19] and Hidden Markov Models [20]. Van Kasteren and Kröse [18]
applied Bayesian Networks [21] on the activity recognition task. Kim et al. [22]
found Hidden Markov Models to be incapable of capturing long-range or transi-
tive dependencies between observations, which results in difficulties recognizing
multiple interacting activities (concurrent or interwoven). Conditional Random
Fields do not posses these limitations.

The main differences between existing work in activity recognition and the
approach presented in this paper are the input data on which they can be applied
and the generality of the approach. Activity recognition techniques consider the
input data to be a multidimensional time series of the sensor values over time
based on which time windows are mapped onto human activities. An appropriate
time window size is determined based on domain knowledge of the data set. In
supervised event abstraction we aim for a generic method that works for all
XES event logs in general. A time window based approach contrasts with our
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aim for generality, as no single time window size will be appropriate for all event
logs. Furthermore, the durations of the events within a single event log might
differ drastically (e.g. one event might take seconds, while another event takes
months), in which case time window based approaches will either miss short
events in case of larger time windows or resort to very large numbers of time
windows resulting in very long computational time. Therefore, we map each
individual low-level event to a high-level event and do not use time windows. In
a smart home environment context with passive sensors, each change in a binary
sensor value can be considered to be a low-level event.

3 Preliminaries

In this section we introduce basic concepts used throughout the paper.
We use the usual sequence definition, and denote a sequence by listing its

elements, e.g. we write 〈a1, a2, . . . , an〉 for a (finite) sequence s : {1, . . . , n} → S
of elements from some alphabet S, where s(i) = ai for any i ∈ {1, . . . , n}.

3.1 XES Event Logs

We use the XES standard definition of event logs, an overview of which is shown
in Fig. 3. XES defines an event log as a set of traces, which in itself is a sequence
of events. The log, traces and events can all contain one or more attributes,
which consist of a key and a value of a certain type. Event or trace attributes
may be global, which indicates that the attribute needs to be defined for each
event or trace respectively. A log contains one or more classifiers, which can
be seen as labeling functions on the events of a log, defined on global event
attributes. Extensions define a set of attributes on log, trace, or event level,
in such a way that the semantics of these attributes are clearly defined. One
can view XES extensions as a specification of attributes that events, traces, or
event logs themselves frequently contain. XES defines the following standard
extensions:

Concept Specifies the generally understood name of the event/trace/log
(attribute ‘Concept:name’).

Lifecycle Specifies the lifecycle phase (attribute ‘Lifecycle:transition’)
that the event represents in a transactional model of their gener-
ating activity. The Lifecycle extension also specifies a standard
transactional model for activities.

Organizational Specifies three attributes for events, which identify the actor
having caused the event (attribute ‘Organizational:resource’),
his role in the organization (attribute ‘Organizational:role’), and
the group or department within the organization where he is
located (attribute ‘Organizational:group’).

Time Specifies the date and time at which an event occurred (attribute
‘Time:timestamp’).
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Semantic Allows definition of an activity meta-model that specifies
higher-level aggregate views on events (attribute ‘Seman-
tic:modelReference’).

Fig. 3. XES event log meta-model, as defined in [10].

We introduce a special attribute of type String with key label, which rep-
resents a high-level version of the generally understood name of an event. The
concept name of a event is then considered to be a low-level name of an event.
The Semantic extension closely resembles the label attribute, however, by spec-
ifying relations between low-level and high-level events in a meta-model, the
Semantic extension assumes that all instances of a low-level event type belong
to the same high-level event type. The label attribute specifies the high-level
label for each event individually, allowing for example one low-level event of
low-level type Dishes & cups cabinet to be of high-level type Taking medicine,
and another low-level event of the same type to be of high-level type Eating. Note
that for some traces high-level annotations might be available, in which case its
events contain the label attribute, while other traces might not be annotated.
High-level interpretations of unannotated traces, by inferring the label attribute
based on information that is present in the annotated traces, allow the use of
unannotated traces for process discovery and conformance checking on a high
level.
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3.2 Petri Nets

A process modeling notation frequently used as output of process discovery tech-
niques is the Petri net. Petri nets are directed bipartite graphs consisting of
transitions and places, connected by arcs. Transitions represent activities, while
places represent the status of the system before and after execution of a transi-
tion. Labels are assigned to transitions to indicate the type of activity that they
represent. A special label τ is used to represent invisible transitions, which are
only used for routing purposes and do not represent any real activity.

Definition 1 (Labeled Petri net). A labeled Petri net is a tuple N =
(P, T, F,R, �) where P is a finite set of places, T is a finite set of transitions
such that P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs,
called the flow relation, R is a finite set of labels representing event types, with
τ /∈ R is a label representing an invisible action, and � : T → R ∪ τ is a labeling
function that assigns a label to each transition.

The state of a Petri net is defined w.r.t. the state that a process instance can
be in during its execution. A state of a Petri net is captured by the marking of
its places with tokens. In a given state, each place is either empty, or it contains
a certain number of tokens. A transition is enabled in a given marking if all
places with an outgoing arc to this transitions contain at least one token. Once a
transition fires (i.e. is executed), a token is removed from all places with outgoing
arcs to the firing transition and a token is put to all places with incoming arcs
from the firing transition, leading to a new state.

Definition 2 (Marking, Enabled transitions, and Firing). A marked Petri net
is a pair (N,M), where N = (P, T, F, L, �) is a labeled Petri net and where
M ∈ B(P ) denotes the marking of N . For n ∈ (P ∪ T ) we use •n and n• to
denote the set of inputs and outputs of n respectively. Let C(s, e) indicate the
number of occurrences (count) of element e in multiset s. A transition t ∈ T is
enabled in a marking M of net N if ∀p ∈ •t : C(M,p) > 0. An enabled transition
t may fire, removing one token from each of the input places •t and producing
one token for each of the output places t•.

Figure 4 shows three Petri nets, with the circles representing places, the
squares representing transitions. The black squares represent invisible transi-
tions, or, τ transitions. Places annotated with an f belong to the final marking,
indicating that the process execution can terminate in this marking.

The topmost Petri net in Fig. 4 initially has one token in the place p1, indi-
cated by the dot. Firing of silent transition t1 takes the token from p1 and puts
a token in both p2 and p3, enabling both t2 and t3. When t2 fires, it takes the
token from p2 and puts a token in p4. When t3 fires, it takes the token from p3
and puts a token in p5. After t2 and t3 have both fired, resulting in a token in
both p4 and p5, t4 is enabled. Executing t4 takes the token from both p4 and
p5, and puts a token in p6. The f indicates that the process execution can stop
in the marking consisting of this place. Alternatively, it can fire t5, taking the
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token from p6 and placing a token in p2 and p5, which allows for execution of
MC and W to reach the marking consisting of p6 again. We refer the interested
reader to [23] for an extensive review of Petri nets.

3.3 Conditional Random Field

We view the recognition of high-level event labels as a sequence labeling task in
which each event is classified as one of the higher-level events from a high-level
event alphabet. Conditional Random Fields (CRFs) [19] are a type of probabilis-
tic graphical model which has become popular in the fields of language processing
and computer vision for the task of sequence labeling. A Conditional Random
Field models the conditional probability distribution of the label sequence given
an observation sequence using a log-linear model. We use Linear-chain Condi-
tional Random Fields, a subclass of Conditional Random Fields that has been
widely used for sequence labeling tasks, which takes the following form:

p(y|x) =
1

Z(x)
exp(

∑
t=1

∑
k
λkfk(t, yt−1, yt, x))

where Z(x) is the normalization factor, X = 〈x1, . . . , xn〉 is an observation
sequence, Y = 〈y1, . . . , yn〉 is the associated label sequence, fk and λk respec-
tively are feature functions and their weights. Feature functions, which can be
binary or real valued, are defined on the observations and are used to compute
label probabilities. In contrast to Hidden Markov Models [20], feature functions
are not assumed to be mutually independent.

4 Motivating Example

Figure 4 shows on a simple example how a process can be structured at a high
level while this structure is not discoverable from a low-level log of this process.
The bottom right Petri net shows the example process at a high-level. The high-
level process model allows for any finite length alternating sequence of Tak-
ing medicine and Eating activities. The Taking medicine high-level activity is
defined as a subprocess, corresponding to the topmost Petri net, which consists
of low-level events Medicine cabinet (MC), Dishes & cups cabinet (DCC), and
Water (W). The Eating high-level event is also defined as a subprocess, shown
in the bottom left Petri net, which consists of low-level events Dishes & cups
cabinet (DCC) and Cutlery drawer (CD) that can occur an arbitrary number
of times in any order and low-level event Dishwasher (D) which occurs exactly
once, but at an arbitrary point in the Eating process.

When we apply the Inductive Miner process discovery Algorithm [6] to low-
level traces generated by the hierarchical process of Fig. 4, we obtain the process
model shown in Fig. 5. The obtained process model allows for almost all possi-
ble sequences over the alphabet {CD,D,DCC,MC,W}, as the only constraint
introduced by the model is that DCC and D are required to be executed starting
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p1 t1

p2

p3

MC

t2

DCC

t3

p4

p5

W

t4

fp6

t5

(a)Process of taking medicine.

f

CDDCC

D

(b)Process of eating.

TakingMedicine

Eating

f

(c)High-level process.

Fig. 4. A high-level process consisting of two unstructured subprocesses that overlap
in event types.

from the initial marking to end up with the same marking. Firing of all other
transitions in the model can be skipped. Behaviorally this model is very close to
the so called “flower” model [1], the model that allows for all behavior over its
alphabet. The alternating structure between Taking medicine and Eating that
was present in the high-level process in Fig. 4 cannot be observed in the process
model in Fig. 5. This is caused by high variance in start and end events of the
high-level event subprocesses of Taking medicine and Eating as well as by the
overlap in event types between these two subprocesses.

When the event log would have consisted of the high-level Eating and
Taking medicine events, process discovery techniques have no problems to dis-
cover the alternating structure in the bottom right Petri net of Fig. 4. To discover
the high-level alternating structure from a low-level event log it is necessary to
first abstract the events in the event log. Through supervised learning tech-
niques the mapping from low-level events to high-level events can be learned
from examples, without requiring a hand-made ontology. Similar approaches
have been explored in activity recognition in the field of ubiquitous comput-
ing, where low-level sensor signals are mapped to high-level activities from a
human behavior perspective. The input data in this setting are continuous time
series from sensors. Change points in these time series are triggered by low-level
activities like opening/closing the fridge door, and the annotations of the higher
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Fig. 5. Result of the Inductive Miner on the low-level traces, reduced using Murata
reduction rules [24].

level events (e.g. cooking) are often obtained through manual activity diaries. In
contrast to unsupervised event abstraction, the annotations in supervised event
abstraction provide guidance on how to label higher level events and guidance
for the target level of abstraction.

5 Event Abstraction as a Sequence Labeling Task

In this section we describe an approach to supervised abstraction of events based
on Conditional Random Fields. Additionally, we describe feature functions on
XES event logs in a general way by using XES extensions. Figure 6 provides a
conceptual overview of the supervised event abstraction method. The approach
takes two inputs, (1) a set of annotated traces, which are traces where the high-
level event that a low-level event belongs to (the label attribute of the low-level
event) is known for all low-level events in the trace, and (2) a set of unannotated
traces, which are traces where the low-level events are not mapped to high-level
events. Conditional Random Fields are trained of the annotated traces to create
a probabilistic mapping from low-level events to high-level events. This mapping,
once obtained, can be applied to the unannotated traces in order to estimate
the corresponding high-level event for each low-level event (its label attribute).
Often sequences of low-level events in the traces with high-level annotations will
have the same label attribute. We make the working assumption that multiple
high-level events are executed in parallel. This enables us to interpret a sequence
of identical label attribute values as a single instance of a high-level event. To
obtain a true high-level log, we collapse sequences of events with the same value
for the label attribute into two events with this value as concept name, where
the first event has a lifecycle ‘start’ and the second has the lifecycle ‘complete’.
Table 1 illustrates this collapsing procedure through an input and output event
log.

The method described in this section is implemented and available for use as
a plugin for the ProM 6 [25] process mining toolkit and is based on the GRMM
[26] implementation of Conditional Random Fields.



Event Abstraction for Process Mining 261

Fig. 6. Conceptual overview of supervised event abstraction.

Table 1. Left: a trace with predicted high-level annotations (label) and, Right: the
resulting high-level log after collapsing subsequent identical label values.

Case Time:timestamp Concept:name label

1 03/11/2015 08:45:23 Medicine cabinet Taking medicine
1 03/11/2015 08:46:11 Dishes & cups cabinet Taking medicine
1 03/11/2015 08:46:45 Water Taking medicine
1 03/11/2015 08:47:59 Dishes & cups cabinet Eating
1 03/11/2015 08:47:89 Dishwasher Eating
1 03/11/2015 17:10:58 Dishes & cups cabinet Taking medicine
1 03/11/2015 17:10:69 Medicine cabinet Taking medicine
1 03/11/2015 17:11:18 Water Taking medicine

Case Time:timestamp Concept:name Lifecycle:transition

1 03/11/2015 08:45:23 Taking medicine Start
1 03/11/2015 08:46:45 Taking medicine Complete
1 03/11/2015 08:47:59 Eating Start
1 03/11/2015 08:47:89 Eating Complete
1 03/11/2015 17:10:58 Taking medicine Start
1 03/11/2015 17:11:18 Taking medicine Complete

We now show for each XES extension how it can be translated into useful
feature functions for event abstraction. Note that we do not limit ourselves to
XES logs that contain all XES extensions; when a log contains a subset of the
extensions, a subset of the feature functions will be available for the supervised
learning step. This approach leads to a feature space of unknown size, potentially
causing problems related to the curse of dimensionality, therefore we use L1-
regularized Conditional Random Fields. L1 regularization causes the vector of
feature weights to be sparse, meaning that only a small fraction of the features
have a non-zero weight and are actually used by the prediction model. Since the
L1-norm is non-differentiable, we use OWL-QN [27] to optimize the model.

5.1 From a XES Log to a Feature Space

Concept Extension
The low-level labels of the preceding events in a trace can contain useful con-
textual information for high-level label classification. Based on the n-gram of
n last-seen events in a trace, we can calculate the probability that the current
event has a label l. A multinoulli distribution is estimated for each n-gram of n
consecutive events, based on the training data. The Conditional Random Field
model requires feature functions with numerical range. A concept extension based
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feature function with two parameters, n and l, is valued with the multinoulli-
estimated probability of the current event having high-level label l given the n-
gram of the last n low-level event labels.

Organizational Extension
Similar to the concept extension feature functions, multinoulli distributions can
be estimated on the training set for n-grams of resource, role, or group attributes
of the last n events. Likewise, an organizational extension based feature function
with three parameters, n-gram size n, o ∈ {resource, role, group}, and label l,
is valued with the multinoulli-estimated probability of label l given the n-gram
of the last n event resources/roles/groups.

Time Extension
In terms of time, there are several potentially existing patterns. A certain high-
level event might for example be concentrated in a certain parts of a day, of a
week, or of a month. This concentration can however not be modeled with a
single Gaussian distribution, as it might be the case that a high-level event has
high probability to occur in the morning or in the evening, but low probability to
occur in the afternoon in-between. Therefore we use a Gaussian Mixture Model
(GMM) to model the probability of a high-level label l given the timestamp.
Bayesian Information Criterion (BIC) [28] is used to determine the number of
components of the GMM, which gives the model an incentive to not combine
more Gaussians in the mixture than needed. A GMM is estimated on training
data, modeling the probabilities of each label based on the time passed since
the start of the day, week or month. A time extension based feature function
with two parameters, t ∈ {day,week,month, . . . } and label l, is valued with the
GMM-estimated probability of label l given the t view on the event timestamp.

Lifecycle Extension and Time Extension
The XES standard [10] defines several lifecycle stages of a process. When an event
log possesses both the lifecycle extension and the time extension, time differences
can be calculated between different stages of the life cycle of a single activity. For
a complete event for example, one could calculate the time difference with the
associated start event of the same activity. Finding the associated start event
becomes nontrivial when multiple instances of the same activity are in parallel,
as it is then unknown which complete event belongs to which start event. We
assume consecutive lifecycle steps of activities running in parallel to occur in the
same order as the preceding lifecycle step. For example, when we observe two
start events of an activity of type A in a row, followed by two complete events of
type A, we assume the first complete to belong to the first start, and the second
complete to belong to the second start.

We estimate a Gaussian Mixture Model (GMM) for each tuple of two lifecy-
cle steps for a certain activity on the time differences between those two lifecycle
steps for this activity. A feature based on both the lifecycle and the time extension,
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with a label parameter l and lifecycle c, is valued with the GMM-estimated prob-
ability of label l given the time between the current event and lifecycle c. Bayesian
Information Criterion (BIC) [28] is again used to determine the number of com-
ponents of the GMM.

5.2 Evaluating High-Level Event Predictions for Process Mining
Applications

Existing approaches in the field of activity recognition take as input time win-
dows where each time window is represented by a feature vector that describes
the sensor activity or status during that time window. Hence, evaluation meth-
ods in the activity recognition field are window-based, using evaluation metrics
like the percentage of correctly classified time slices [11,12,18]. There are two
reasons to deviate from this evaluation methodology in a process mining set-
ting. First, our method operates on events instead of time windows. Second, the
accuracy of the resulting high level sequences is much more important for many
process mining techniques (e.g. process discovery, conformance checking) than
the accuracy of predicting each individual minute of the day.

We use Levenshtein similarity that expresses the degree in which two traces
are similar using a metric based on the Levenshtein distance (also known as
edit distance) [29], which is defined as Levenshtein similarity(a, b) = 1 −
Levenshtein distance(a,b)

max(|a|,|b|) . The division of the Levenshtein distance by max(|a|, |b|),
which is the worst case number of edit operations needed to transform any
sequence of length |a| into any sequence of length |b|, causes the result to be a
number between 0 (completely different traces) and 1 (identical traces).

6 Case Study 1: Smart Home Environment

We use the smart home environment log described by Van Kasteren et al. [11]
to evaluate our supervised event log abstraction method. The Van Kasteren log
consists of multidimensional time series data with all dimensions binary, where
each binary dimension represents the state of an in-home sensor. These sensors
include motion sensors, open/close sensors, and power sensors (discretized to
0/1 states).

6.1 Experimental Setup

We transform the multidimensional time series data from sensors into events by
regarding each sensor change point as an event. Cases are created by grouping
events together that occurred in the same day, with a cut-off point at midnight.
High-level labels are provided for the Van Kasteren data set.

The generated event log based on the Van Kasteren data set has the following
XES extensions:
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Concept The sensor that generated the event.
Time The time stamp of the sensor change point.

Lifecycle Start when the event represents a sensor value change from 0 to 1 and
Complete when it represents a sensor value change from 1 to 0.

Note that annotations are provided for all traces in the obtained event log.
To evaluate how well the supervised event abstraction method generalized to
unannotated traces, we artificially use a part of the traces to train the abstraction
model and apply them on a test set where we regard the annotations to be non-
existent. We evaluate the obtained high-level labels against the ground truth
labels. We use a variation on Leave-One-Out-Cross-Validation where we leave
out one trace to evaluate how well this mapping generalizes to unseen events
and cases.

6.2 Results

Figure 7a shows the result of the Inductive Miner [6] for the low-level events in the
Van Kasteren data set. The resulting process model starts with many parallel
activities that can be executed in any order and contains many unobservable
transitions back. This closely resembles the flower model, which allows for any
behavior in any arbitrary order. From the process model we can learn that toilet
flush and cups cupboard frequently co-exists. Furthermore, the process model
indicates that groceries cupboard is often followed by dishwasher. There seems
to be very little structure on this level of event granularity.

The average Levenshtein similarity between the predicted high-level traces in
the Leave-One-Trace-Out-Cross-Validation experimental setup and the ground
truth high-level traces is 0.7042, which shows that the supervised event abstrac-
tion method produces traces which are fairly similar to the ground truth.

Figure 7b shows the result of the Inductive Miner on the aggregated set of
predicted test traces. Figure 7b shows that the process discovered at the high
level of granularity is more structured than the process discovered at the original
level of granularity (Fig. 7a). In Fig. 7b, we can see that the main daily routine
starts with breakfast, followed by a shower, after which the subject leaves the
house to go to work. After work the subject prepares dinner and has a drink. The
subject mainstream behavior is to go to the toilet before going to bed, but he
can then wake up later to go to the toilet and then continue sleeping. Note that
the day can also start with going to bed. This is related to the case cut-off point
of a trace at midnight. Days when the subject went to bed after midnight result
in a case where going to bed occurs at the start of the trace. On these days, the
subject might have breakfast and then perform the activity sequence use toilet,
take shower, and leave house, possibly multiple times. Another possibility on
days when the subject went to bed after midnight is that he starts by using the
toilet, then has breakfast, then has the possibility to leave the house, then takes
a shower, after which he always leaves the house. Prepare dinner activity is not
performed on these days.

This case study shows that we can find a structured high-level process from a
low-level event log where the low-level process is unstructured, using supervised
event abstraction and process discovery.
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(a) Inductive Miner result on the low-level events from the low-level Van Kasteren event log.

(b) Inductive Miner result on the high-level events discovered from the low-level van Kasteren
event log

Fig. 7. Comparison of process models discovered from the low-level and high-level Van
Kasteren event log.

7 Case Study 2: Artificial Digital Photocopier

Bose et al. [30,31] created a synthetic event log based on a digital photocopier
to evaluate his unsupervised methods of event abstraction. In this case study
we show that the described supervised event abstraction method can accurately
abstract to high-level labels.
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7.1 Experimental Setup

We annotated each low-level event with the correct high-level event using domain
knowledge from the actual process model as described by Bose et al. [30,31].
This event log is generated by a hierarchical process, where high-level events
Capture Image, Rasterize Image, Image Processing and Print Image are defined
in terms of a process model. The Print Image subprocess amongst others contains
the events Writing, Developing and Fusing, which are themselves defined as a
subprocess. In this case study we set the task to transform the log such that
subprocesses Capture Image, Rasterize Image and Image Processing, Writing,
Fusing and Developing. Subprocesses Writing and Developing both contain the
low-level event types Drum Spin Start and Drum Spin Stop. In this case study
we focus in particular on the Drum Spin Start and Drum Spin Stop events,
as they make the abstraction task non-trivial in the sense that no one-to-one
mapping from low-level to high-level events exists.

The artificial digital photocopier data set has the concept, time and lifecycle
XES extensions. On this event log annotations are available for all traces. On this
data set we use a 10-Fold Cross-Validation setting on the traces to evaluate how
well the supervised event abstraction method abstracts low-level events to high-
level events on unannotated traces, as this data set is larger than the Van Kasteren
data set and Leave-One-Out-Cross Validation would take too much time.

7.2 Results

The confusion matrix in Table 2 shows the aggregated results of the mapping
of low-level events Drum Spin Start and Drum Spin Stop to high-level events
Developing and Writing. The results show that the supervised event abstrac-
tion method is capable of detecting the many-to-many mappings between the
low-level and high-level labels, as it maps these low-level events to the correct
high-level event without making errors. The Levenshtein similarity between the
aggregated set of test fold high-level traces and the ground truth high-level traces
is close to perfect: 0.9667.

Table 2. Confusion matrix for classification of Drum Spin Start and Drum Spin Stop
low-level events into high-level events Writing and Developing.

Developing Writing

Developing 6653 0

Writing 0 917

Figure 8a shows the process model obtained with the Inductive Miner on the
low-level events in the artificial digital photocopier dataset. The two sections
in the process model that are surrounded by dashed lines are examples of high-
level events within the low-level process model. Even though the low-level process
contains structure, the size of the process model makes it hard to comprehend.
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(a) Inductive Miner result on the low-level Artificial Digital Photo Copier event log.

(b) Inductive Miner result on the discovered high-level events on the Artificial Digital Photo Copier event log.

Fig. 8. Comparison of process models discovered from the low-level and high-level
Artificial Digital Photo Copier event log.

Figure 8b shows the process model obtained with the same process discovery
algorithm on the aggregated high-level test traces of the 10-fold cross validation
setting. This model is in line with the official artificial digital photocopier model
specification, with the Print Image subprocess unfolded, as provided in [30,31].
In contrast to the event abstraction method described by Bose et al. [31] which
found the high-level events that match specification, supervised event abstraction
is also able to find suitable event labels for the generated high-level events. This
allows us to discover human-readable process models on the abstracted events
without performing manual labeling, which can be a tedious task and requires
domain knowledge.

Instead of event abstraction on the level of the event log, unsupervised
abstraction methods that work on the level of a model (e.g. [32]) can also be
applied to make large complex models more comprehensible. Note that such
methods also do not give guidance on how to label resulting transitions in the
process model. Furthermore, such methods do not help in cases where the process
on a low-level is unstructured, like in the case study as described in Sect. 6.

This case study shows that supervised event abstraction can help generating
a comprehensible high-level process model from a low-level event log, when a
low-level process model would be too large to be understandable.
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8 Conclusion

In this paper we described a method to abstract events in a XES event log
that is too low-level, based on supervised learning. The method consists of an
approach to generate a feature representation of a XES event, and of a Con-
ditional Random Field based learning step. An implementation of the method
described has been made available as a plugin to the ProM 6 process mining
toolkit. We introduced an evaluation metric for predicted high-level traces that
is closer to process mining than time-window based methods that are often used
in the sequence labeling field. Using a real life event log from a smart home
domain, we showed that supervised event abstraction can be used to enable
process discovery techniques to generate high-level process insights even when
process models discovered by process mining techniques on the original low-level
events are unstructured. Finally, we showed on a synthetic event log that super-
vised event abstraction can be used to discover smaller, more comprehensible,
high-level process models when the process model discovered on low level events
is too large to be interpretable.
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