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Abstract. Available methods for calculating frequency in cantilever beams
have much complexity. In this study we present a new method for calculating
natural frequencies in cantilever beams. For this purpose, we use the finite
element method (FEM), dynamic analysis and artificial neural network
(ANN) techniques to calculate the natural frequency. Finite element software
was used to analyze 100 samples of cantilever beams, and the results were used
as training and testing data sets in artificial neural networks. For the ANN. the
multilayer feed-forward network and back-propagation algorithms were used.
We made use of different transfer functions and built 45 different networks in
order to find the best network performance. Mean squared error (MSE) was used
to evaluate the network performance. Finally, the natural frequencies which
were predicted by the ANN techniques were compared to the natural frequencies
calculated from theoretical formulation, as well as to those obtained from FEM
methods. The results obtained show that the error was quite small.

Keywords: Natural frequency � Artificial neural networks � Mean squared
error � Cantilever beams � Finite elements

1 Introduction

Nowadays, consideration of vibration in the design of structures is a significant issue.
We can see much difference in the structure design methods used today compared to
those used in the past. These days, in structure design, vibration control has become
more important than deflection control. The American Institute of Steel Construction
(AISC) and the Canadian Standards Association (CSA) have presented some formu-
lations for the determination of the natural frequency in building structures. Other
researchers have also presented methods to calculate the natural frequency in beams
and plates, but these methods tend to be complex, making their use in vibration control
of structures difficult and time consuming, with increased probability of errors. In this
study we propose a method, using dynamic analysis, finite element analysis and arti-
ficial neural networks for the calculation of the natural frequency in cantilever beams.

There have been many studies on determining the natural frequency in beams and
on vibration control in structures. Hamdan and Jubran [1], calculated the natural fre-
quency of a cantilever beam with an intermediate concentrated load, where the effects
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of concentrated mass on natural frequency, and the effects of natural frequency on the
beam vibration were shown.

Bokaian [2], presented the effects of a constant axial tensile force on the natural
frequencies and mode shapes of a uniform single-span beam, having different com-
binations of end conditions. Liu and Haung [3], used the Laplace transform method to
study the free vibration of a beam with one concentrated mass at the tip of the beam and
another at an intermediate point. Liu and Yeh [4], used the Rayleigh-Ritz method to
study the free vibration of restrained non-uniform and cantilever beams with inter-
mediate loads. Goel [5], studied the free vibration of a cantilever beam carrying a
concentrated mass at an arbitrary intermediate location. Kounadis [6], studied the free
and forced vibrations of a restrained cantilever beam with attached masses. Kojima
et al. [7], derived the equations of motion and presented solutions satisfying all
boundary conditions at the beam ends. They then used this to investigate the forced
response of a cantilever beam having a tip mass and a magnetic vibration absorber at
the middle of the beam. Al-Ansari [8], studied two methods for calculating the natural
frequency in a stepped cantilever beam; one by using finite element modeling, and the
other, using the Rayleigh method. To improve the accuracy in using the Rayleigh
method, a new method for calculating the equivalent moment of inertia of the stepped
beam was used. He used four different types of beam cross-sections, which were
circular, square, rectangular with step in the width only and rectangular with step in the
height only. The results using the Rayleigh method was then compared with those from
the FEM analysis. Mutra [9], presented an application of artificial neural networks
(ANN) in predicting the natural frequency of laminated composite plates. The natural
frequencies were calculated by FEM. For training and testing of the ANN model, a
number of finite element analyses were carried out and the back propagation algorithm
was used to create the network. Hornik et al. [10], showed that the number of hidden
layers and neurons will affect the optimum results in each try of a network. He showed
that increasing the number of hidden layers can improve the generalization capacity.

2 Dynamic Analysis

To determine the natural frequency in cantilever beams, we first used dynamic analysis
to find the governing equations. We define Eq. (1) as the governing differential
equation for the cantilever beam shown in Fig. 1.
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In Eq. (1), E is the elastic modulus, I is the moment of inertia and m is the mass per
unit length of the beam. If we ignore the effects of the lateral forces and assume that the
moment of inertia is constant along the beam, Eq. (1) can be written as Eq. (2).
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Here, q is density and A is the cross section area of the beam. To solve Eq. (3) in
the free vibration mode, we used the method of separation of variables of the differ-
ential equations, assuming homogeneous mass and constant flexural rigidity throughout
the beam. Hence, Eq. (3) can be written as Eq. (4), with v x; tð Þ ¼ B xð ÞT tð Þ.
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Where B xð Þ is the displacement function and T tð Þ is the time function. Then, the
solution for displacement is

BðxÞ ¼ C1cosðxkÞ þ C2sinðxkÞþC3coshðxkÞþC4sinhðxkÞ ð5Þ

where
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and C1;C2;C3 and C4 are constants that can be found from the boundary conditions.
For a cantilever beam, at the fixed end, the displacement and slope are zero, but at the
free end, the moment and shear are zero. Therefore,

x ¼ 0; B 0ð Þ ¼ 0
dB xð Þ
dx

¼ 0 ð7Þ

x ¼ L;
d2X
dx2

¼ 0;
d3X
dx3

¼ 0 ð8Þ

These boundary conditions give C2 ¼ �C4 and C1 ¼ �C3.

cos bLð Þ cosh bLð Þ ¼ �1 ð9Þ

Solving Eq. (5) for C2 and C1, gives

Fig. 1. Cantilever beam with non-uniform loading
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Then, the roots of Eq. (9) are

bnL ¼ 2n� 1ð Þp
2

ð10Þ

Now Eq. (4) can be solved for the time function, giving

TðtÞ ¼ k1 sin b2n
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The frequency in rad/s same can be written a
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Converting Eq. (12) into Hz gives:
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Now, using n ¼ 1 gives the natural frequency as

f ¼ b
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In Eq. (14), f is the natural frequency, I is the moment of inertia, P is dead load per
length of beam, L is the length of the beam, and b is a constant that, in this article, will
be determined through the use of neural networks. In this study, the beam material is
steel, whose elasticity modulus, E is taken to be 2� 106 kg/cm2.

3 Prediction of Natural Frequency Using Artificial Neural
Networks

Figure 2, shows the network architecture of the ANN used in this study. The input
layer consists of 3 items; moment of inertia Ið Þ, length of beam Lð Þ and dead load along
the beam Pð Þ, while the output layer is the natural frequency of the beam fð Þ. For the
hidden layers, one and two layer architectures were used.

The transfer functions used were Tangent-sigmoid (Tansis) and Purelin for the
hidden layer, and Purelin, Log-sigmoid (Logsis) and Tangent-sigmoid for the output
layer.
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Carpenter and Barthelemy [11] presented Eq. (15) as a guide for finding the
minimum number of neurons in each hidden layer.

hn ¼ in þ 1 ð15Þ

Here, hn is the number of nodes in the hidden layers and in is the number of nodes
in the input layer. Hence, in this study the minimum number of nodes in the hidden
layer was four.

The next important step in creating a neural network is to determine the number of
training data. Increasing the number of training data increases the total training time
required, but a larger number of training data improves training performance.

Calculating the needed number of training data depends on the hidden layer nodes,
input nodes and output layer nodes. The number of training data used in this work is
given by Eq. (16).

Tn ¼ hn in þ 1ð Þþ onðhn þ 1Þ ð16Þ

Where Tn is the minimum number of training data, hn is the number of hidden layer
nodes, in is the number of input layer nodes and on is the number of output layer nodes.
In this study we used 15 nodes for the hidden layer, 3 nodes for input layer (length of
beam, moment inertia and dead load) and 1 output layer node (natural frequency of
beam), giving

Tn ¼ 15 3þ 1ð Þþ 1 15þ 1ð Þ ¼ 76 ð17Þ

To improve results of the network, all data were normalized in the range of [0, 1],

Xn ¼ Xi=Xmax ð18Þ

Where Xn is the normalized data, Xi is the original data, and Xmax is the maximum
value of all data.

Evaluation of the network performance was based on the Mean Squared Error
(MSE) as shown in Eq. (19), where Rs is the estimated value and Ra is the actual value.

Fig. 2. Network architecture
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The best performance would be given by the lowest MSE value. Table 1 shows the
details of the neural network used.

MSE ¼ 1
n

Xn
i¼1

ðRs � RaÞ2 ð19Þ

In this study we generated 45 different networks, where the details of the networks
are shown in Tables 2, 3 and 4. Table 2 shows the MSE and the coefficient of
determination (R2) results for the network with one hidden layer and Purelin and Tansis

Table 1. Details of the neural networks used in this study

Number of data 100 data: 80 training, 15 validation, 5 testing
Input layer Length of beam, Moment of inertia, Load
Number of neurons in hidden layers 5, 10, 15, 20
Output layer Natural frequency of beam
Net architecture 3-h1-1 and 3-h1-h2-1
Network type Multilayer feed-forward
Net algorithm Back-propagation
Training function Trainbr and Trainlm
Learning function Learngd and Learngdm
Output transfer function Tangent Sigmoid and Purelin
Hidden transfer function Log-Sigmoid, Tangent Sigmoid, Purelin
Performance function MSE

Table 2. MSE and R2 results - one hidden layer and Purelin as output transfer function

Train
function

Learn
function

Transfer
function

MSE
& R2

The number of neurons in hidden layer

5 10 15 20

Train Test Train Test Train Test Train Test

Trainlm Learngd Purelin MSE 0.163 0.169 0.157 0.171 0.131 0.129 0.178 0.195

R2 0.841 0.845 0.848 0.855 0.869 0.872 0.837 0.835
Tansis MSE 0.165 0.188 0.15 0.154 0.156 0.164 0.177 0.168

R2 0.869 0.883 0.863 0.864 0.868 0.871 0.868 0.874

Learngdm Purelin MSE 0.174 0.191 0.178 0.182 0.173 0.192 0.176 0.181
R2 0.875 0.839 0.842 0.834 0.866 0.868 0.843 0.853

Tansis MSE 0.185 0.159 0.161 0.172 0.148 0.176 0.153 0.144
R2 0.866 0.904 0.783 0.883 0.846 0.889 0.888 0.862

Trainbr Learngd Purelin MSE 0.168 0.146 0.158 0.163 0.168 0.173 0.157 0.176

R2 0.870 0.890 0.848 0.856 0.863 0.836 0.856 0.867
Tansis MSE 0.110 0.121 0.098 0.087 0.073 0.075 0.119 0.121

R2 0.921 0.902 0.940 0.951 0.963 0.961 0.913 0.902
Learngdm Purelin MSE 0.116 0.180 0.189 0.174 0.147 0.163 0.151 0.179

R2 0.912 0.885 0.876 0.843 0.883 0.877 0.838 0.866

Tansis MSE 0.154 0.174 0.189 0.136 0.168 0.148 0.167 0.152
R2 0.877 0.845 0.839 0.868 0.853 0.829 0.875 0.860
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as the output transfer functions. Here, the numbers of nodes used in the hidden layer
were 5, 10, 15 and 20, the training functions used were Trainbr (Bayesian Regular-
ization) and Trainlm (Levenberg Marquart), the learning functions were Learngd
(Gradient descent) and Learngdm (Gradient descent with momentum). Table 3 gives
the MSE and R2 results for networks with one hidden layer and Tansis as the output
transfer function, where fixed training and learning functions (Trainbr and Learngdm)
were used. The hidden layer transfer function and number of neurons were varied to
find the combination that gives the best network performance. Table 4 shows the
results for networks with two hidden layers where the output transfer function was
Purelin, and the fixed training and learning functions were Trainbr and Learngdm.
Here, the hidden layers had 5, 10 or 15 neurons, and the hidden layer transfer functions
were combinations of Tansis, Purelin and Lonsig.

The performance of the neural networks depends on many factors such as the
training and testing parameters, and the range of data values. From all the created
networks, we selected two that gave the best performances. The selection was based on
the MSE and R2 results from the whole range of networks. Table 5 shows the
parameter values for the two selected networks, denoted Net 1 and Net 2.

Table 4. MSE and R2 results - two hidden layers and purelin as output transfer function

Neurons in hidden
layer

Training and learning function: TRAINBR
and LEARNGDM

Hidden layer transfer
function

R2 Training
MSEHidden

layer 1
Hidden
layer 2

Training Validation Testing Hidden
layer 1

Hidden
layer 2

10 10 0.981 0.975 0.977 0.0272 Purelin Logsis
0.992 0.984 0.988 0.0247 Logsis Purelin
0.974 0.964 0.961 0.0301 Purelin Purelin

5 5 0.999 0.999 0.999 0.0173 Tangsis Tangsis
0.994 0.991 0.990 0.0231 Tangsis Logsis

15 10 0.941 0.932 0.920 0.0342 Purelin Tangsis
0.959 0.967 0.973 0.0328 Logsis Logsis

Table 3. MSE and R2 results - one hidden layer and tansis as output transfer function

Neurons in
hidden layer

Training and learning function: TRAINBR and
LEARNGDM

Hidden layer
transfer function

R2 Training
MSETraining Validation Testing

10 0.989 0.992 0.971 0.0263 Purelin
0.979 0.964 0.952 0.0313 Logsis

15 0.999 0.997 0.999 0.0161 Purelin
0.982 0.976 0.948 0.0286 Logsis

20 0.915 0.931 0.909 0.0387 Purelin
0.938 0.929 0.925 0.0351 Logsis
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Figure 3 shows the R2 results for Net 2. The horizontal axis is the target frequency
obtained from FEM analysis and the vertical axis is the predicted frequency obtained
from ANN. The regression analysis graph gives a straight line, which means low error

Table 5. MSE, R2 and other parameters of Net 1 and Net 2 - the best performance between all
45 networks

No. Net
architecture

Neurons and
transfer function
in hidden layer

Training
function

Learning
function

Output transfer
function

R2

(All)
MSE

Train Test

1st 2nd

Net
1

3-15-1 15
Purelin

– Trainbr Learngdm Tangsis 0.999 0.0161 0.0168

Net
2

3-5-5-1 5
Tangsis

5
Tangsis

Trainbr Learngdm Purelin 0.999 0.0173 0.0177

Fig. 3. Regression analysis for Net 2

Fig. 4. Comparison of natural frequency from 5 test data between 3 methods
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and good performance. A comparison of the predicted frequency from generated neural
networks to the frequencies obtained from theory and FEM analysis is shown in Fig. 4.
A close correlation is clearly evident.

4 Conclusion

There are many different methods for the calculation of the natural frequency of
cantilever beams. However, these methods tend to be complex. Here, a simple method
to predict the natural frequency using artificial neural networks has been presented.
Both generated networks used in this study were found to be trustworthy and can be
used as references for natural frequency calculation in steel cantilever beams of any
length and any cross section, and subjected to any lateral load. While this work has
concentrated on steel cantilever beams, it is envisaged that in future, the method can be
extended to beams made from other materials as well.
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