
Visual Odometry for Pedestrians Based
on Orientation Attributes of SURF

Chadly Marouane1(B), Robert Gutschale2, and Claudia Linnhoff-Popien2

1 Ludwig Maximilian University, VIRALITY GmbH,
Rauchstraße 7, 81679 Munich, Germany

marouane@virality.de
2 Ludwig Maximilian University, Oettingenstraße 67, 80538 Munich, Germany

gutschale@cip.ifi.lmu.de, linnhoff@ifi.lmu.de

Abstract. With the decreasing size and prize of cameras, visual posi-
tioning systems for persons are becoming more attractive and feasible.
A main advantage of visual methods is that they can be independent of
any infrastructure and are therefore applicable in indoor as well as out-
door scenarios. As such, they are an attractive alternative to infrastruc-
ture based methods. This paper presents a method that uses visual
data to create a two-dimensional trajectory of the pedestrians move-
ment. A camera that is mounted on the persons upper body is used to
obtain the image data. With the SURF algorithm, feature points that
posses specific attributes are extracted from the image frames. Based on
these attributes, the method determines the pedestrians steps and esti-
mates the heading at each step. As each determination of a new position
is based on previous estimations, the method accumulates errors with
increasing distances. An extensive evaluation with different test persons
for various scenarios demonstrates that the method achieves a reason-
ably good overall accuracy for shorter distances. For distances of up to
25 m, a mean error of 5.52 m for indoor scenarios and of 7.56 m for out-
door scenarios has been determined. Furthermore, the method is also
reliably functional at increasing walking and running speeds. An addi-
tional evaluation shows the usability of one of the SURF-attributes for
the implementation of an activity detector for different movement speeds.
The method robustly detects steps with a high accuracy at an error rate
of approximately one percent. However, just like other Pedestrian Dead
Reckoning methods, the heading estimation proves to be challenging and
to be a source of errors.

Keywords: Visual odometry · Visual pedometer · Position
measurement

1 Introduction

Due to the increasing popularity and high demand of location based services,
there is a very active body of research and development of various methods,
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using many different sensors and signal data. In the last years, methods that
use visual data from a camera are gaining in popularity. Nowadays, cameras can
be built at a small scale while still being affordable. This makes them perfectly
suited to be used for tasks such as localization and navigation of smaller robots,
micro aerial vehicles and persons. A huge advantage of visual methods is, that
they can be completely independent from infrastructure. Many indoor and out-
door positioning systems use external signals, such as GPS, WIFI, or signals
from customized beacons. While there are systems that achieve a satisfactory
accuracy, their dependence on external signals makes them susceptible to failure
when that signal is not available. The most prominent example of this is GPS,
which is usually completely unusable inside of buildings. Many visual methods
exist that determine the position and orientation of the camera and its move-
ment over time. Often, a trajectory of the movement is created. This process is
called Visual Odometry. The early research in this field was motivated by Moon
and Mars rovers, but the decreasing size and prize of cameras draws a lot of
attention on methods that work on cars, small robots and micro aerial vehicles.
But also Visual Odometry systems for persons are gaining more and more atten-
tion, as virtually all mobile phones nowadays are equipped with a camera and
even additional cameras are easily and comfortable wearable, for example in the
form of Google Glass or GoPro cameras. Another well established approach to
track the movement of a person is found in the field Pedestrian Dead Reckoning.
Methods of this field consist of a pedometer, that detects when a person took a
step and a heading provider, that estimates the heading of the person. Combined
with the step length, a trajectory of the pedestrians movement is created. This
field is popular, as microelectromechanical systems - which are used to produce
the signal data - are nowadays available at small sizes and reasonable prizes,
which makes them easily wearable.

The goal of this work is to develop a localization system for pedestrians,
based on visual data. To process the visual data, the algorithm SURF - Speeded
Up Robust Features - is used. Contrary to typical Visual Odometry methods, the
recreation of the cameras movement is based on a step detection method. As the
method therefore contains elements from Pedestrian Dead Reckoning as well as
Visual Odometry systems, it is classified as a crossover of both methods, labeled
Pedestrian Visual Odometry. The main focus is to examine the behaviour of the
SURF-attributes orientation and evaluate this with respect to their usability
for the localization system. Based on the results, an algorithm is developed
and implemented that creates step-precise trajectories of the camera-wearing
pedestrian. Finally, the developed method is evaluated on visual data of indoor
and outdoor paths, created by multiple persons.

The work is structured as follows. First Sect. 2 describes the various founda-
tions, concepts and methods this work is built upon, followed by a presentation
of related work in Sect. 3. Section 4 details the basic concept, which is based on
the SURF-attribute orientation. The evaluation is presented in Sect. 5. Its main
part consists of an indoor and two outdoor scenarios, with videos recorded by
five different persons. Finally, a conclusion of this work is given in Sect. 6.
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2 Foundations

This work builds on various foundations, concepts and methods from the fields
of image processing, Visual Odometry and Pedestrian Dead Reckoning.

2.1 Image Processing - Interest Points

Although there exists no universal, explicit definition of an interest point in the
literature, the underlying concept can be clearly described. The goal is to find
distinctive and reproducible points, that reduce the image to a set of certain
features. These locations can then be used to describe the characteristics of
the image. Usually, distinctive features are can be found at edges, corners and
blob-like structures. A blob is a region of pixels in an image that are distinct
from its surrounding considering certain properties such as the brightness [29].
Methods in this field typically consist of a detector and a descriptor. The detector
defines how a feature point is found, the descriptor describes the characteristics
at the location of the feature point. Typically, an image patch of a certain size
and shape around the interest point is taken and described in a specified way,
based for example on the histogram or the spatial frequency. If an interest point
should be found in another image, for example for object recognition, a matching
step is executed. In this step, corresponding feature points are calculated for
two images, based on specific similarity metrics. A selection of influential and
popular algorithms for interest point detectors and descriptors are the Canny
Edge Detector [12,13], several Corner Detectors [18,34,36,38,46,47], SIFT [25,
31,32,37], SURF [1,4–6] and the Binary Descriptors [2,9,11,19,28,45,48].

2.2 Visual Odometry

The term Visual Odometry (VO), coined by the landmark paper of Nister et
al. [40] is inspired by the concept Odometry. Where classic Odometry uses
motion sensors such as wheel encoders to estimate the movement, VO relies on
visual data obtained from a single or multiple cameras. The goal is to use image
sequences to sequentially estimate the camera-movement between image frames.
Visual Odometry is used and closely related to the tasks of SLAM (simultane-
ous localization and mapping). An inherent problem of the classic Odometry is
its dependency on favorable ground conditions. For example when using wheel
encoders on a slippery or uneven ground, wheel slippage might occur which
reduces the accuracy. Early work in the field Visual Odometry was inspired by
this problem and motivated by the development of Moon and Mars rovers, where
harsh ground conditions are to be expected. More recently, Visual Odometry is
used in autonomous cars, unmanned aerial vehicles and micro aerial vehicles.

The typical steps of a VO method are illustrated in [49]. An image sequence
is obtained, using a single or multiple cameras. On every new image of the
sequence, a feature detection and a feature matching or feature tracking needs
to be performed. In the next step, the camera motion between two frames is
estimated. Based on the matched or tracked features of two images that represent
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the same 3D feature, the relative movement of the camera is calculated and the
trajectory is updated with the current camera position. To improve the accuracy
of the created trajectory, an iterative refinement over a specified number of last
images can be done.

2.3 Pedestrian Dead Reckoning

As the name implies, Pedestrian Dead Reckoning (PDR) is the process of deter-
mining the position of a pedestrian based on previous estimations. PDR methods
typically consist of three elements: step detection, step length estimation and
heading estimation [17]. The data from these elements is then combined to con-
tinually update the position of the pedestrian. As all Dead Reckoning methods,
PDR relies on previous position estimations and therefore accumulates errors.
Step detection, the first element, is on its own a very active research and devel-
opment field with various commercially available solutions, called pedometers.
A pedometer is typically an external portable device or integrated in personal
devices such as MP3-players, mobile phones or fitness wearable devices. They are
mostly either hand-held or bodymounted, only a few approaches achieve satis-
factory results for unrestricted use [10]. Bodymounted positions are for example
on a shoe, the hip, or a helmet. The position of the device results in certain
advantages, challenges and restrictions.

Pedometers use data from one or multiple sensors from which the steps are
extracted. Nowadays, the usage of inertial measurement units (IMU), such as
an accelerometer is very popular. Due to the continuing developments of micro-
electromechanical systems (MEMS), those sensors can be produced at small scale
and relatively low costs. Often, to optimize the sensor-data, it is filtered, for
example with a lowpass filter. To identify steps, usually peaks or zero-crossings
of the accelerometer signal are detected. In the second element of PDR, step
length estimation, the covered distance of each step is estimated. It can be suffi-
cient to assume a constant step length, which can either be measured directly for
different persons or be found during a calibration phase. If more precision at the
step-level is necessary, the dynamic step length is estimated using for example
the step frequency, vertical velocity, acceleration magnitude, or a combination
of such signals. Another approach is to model the movement of the pelvis as
an inverted pendulum and estimate the step length from its vertical movement.
The third element, heading estimation, provides the orientation the pedestrian
is headed. Such a compass module is often achieved using magnetometer or
gyroscope data. The main challenge is the reliability of the data signal, as it is
influenced for example by magnetic variances due to the surrounding [16,23],
the persons movement or by the tilt of the measuring device [44].

3 Related Work

In this section, a selection of related work and methods from the fields
Visual Odometry, Pedestrian Dead Reckoning and Visual Positioning Systems
is presented.
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3.1 Visual Odometry

Autonomous robots and especially Moon and Mars rovers have been a source of
motivation since the early Visual Odometry systems, such as [38]. Corke et al.
[14] use an omnidirectional camera to estimate the motion of the rover. Maimone
et al. [33] describe the Visual Odometry system that is used in the Mars rovers
Spirit and Opportunity. More recently, the usage of Visual Odometry in cars,
and micro aerial vehicles (MAV) gained popularity. Kitt et al. [26] estimate the
egomotion of a car in all 6 degrees of freedom, using a stereo-camera approach.
Scaramuzza et al. [50], as well as Nourani-Vatani et al. [41] reduce the complexity,
by restricting the motion model, using the Ackermann principle.

Visual Odometry systems where the camera is carried by a person, are also
developed. Oskiper et al. [42] use two stereo cameras, one facing forwards, the
other backwards, to estimate the persons egomotion.

3.2 Pedestrian Dead Reckoning

A central question for body-worn pedometers is the placement on the body,
as it can yield certain characteristics and advantages. Foot-, or shoe-mounted
pedometers are popular, as zero-velocity phases can clearly be identified. They
occur when the pedestrian is standing still or when the foot hits the ground
during walking.

Jimenez et al. [20] compared foot-mounted MEMS-based PDR algorithms
and concluded that the main error-source for positioning errors occur during the
heading estimation. In [21], they propose a PDR system with a drift correction
based on the detection of ramps, which are often found in buildings. Bebek et
al. [8] use a pressure sensor in addition to the inertial measurement unit, to
more reliably detect zero-velocity phases. Beauregard [7] uses a helmet-mounted
IMU sensor. The PDR system is calibrated and validated using GPS, while
the step length is predicted using a neural network. The usage of mobile devices
such as smartphones or MP3-players motivates the development of PDR-systems
without special hardware such as boots or helmets. Methods, where the mobile
device is held in the hand, such as Pratama et al. [43] proposed, as well as where
the device is placed at the hip and waist area. Jin et al. [22] for example placed
it inside a trouser pocket of the pedestrian. UPTIME, developed by Alzantot
and Youssef [3], uses a support vector machine to differentiate between walking,
jogging and running. It can cope with an arbitrary phone orientation and uses
a gait-based dynamic step length estimation. A different approach to acquire
sensor data for the pedometer has been investigated by Liu et al. [30]. Based on
similar work from DiVerdi and Hollerer [15], they use the image sequence of a
body-mounted camera. To produce the signal data, a matching of SIFT features
is applied and the spatial movement of the matches is extracted. Based on this
periodic data, the steps are counted.
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3.3 Visual Positioning Systems

Visual positioning systems aim to achieve localization based on visual data.
They either use a camera infrastructure to locate people, such as used in the
EasyLiving project [27]. The other approach is to determine the position based
on image data obtained from a camera-carrying person. Signpost, developed by
Mullonie et al. [39] requires the user to point the camera of their smartphone at
special markers, that encode the positioning information. Such systems can only
position a person at discrete locations, where a marker is deployed. Kawaji et al.
[24] use omnidirectional panoramic images and determine the current position
from the closest match in an image database. MoVIPS, presented in [51] and
improved upon in [35] uses SURF and a distance estimation algorithm on images
obtained from mobile phones. This method determines the position and the
orientation of the person based on the closest match of a database which is
populated with geo-referenced images.

4 Concept

This section describes the developed method for Pedestrian Visual Odometry.
The fundamental goal is to extract a step-precise trajectory of the movement of
a pedestrian from a video-input. In the following subsections, the basic workflow
and concept are first presented and then described in more detail.

4.1 Basic Workflow

The method follows a pipeline, adapted from [49]. First, an Image Sequence
needs to be obtained. In the second step, a Feature Detection is performed
on each frame of the sequence, followed by a Feature Matching, or a Feature
Tracking. The last step covers the actual Motion Estimation, which consti-
tutes the major portion of this work. The implementation of the last three steps
follows the basic concept outlined in Fig. 1. Feature Detection and Feature
Matching/Tracking of the pipeline are combined into one process, named SURF
Extraction and Matching. Before the Motion Estimation, a Preprocessing-
step is applied on the SURF-attributes. The Motion Estimation consists of two
processes, Step Detection and Heading Estimation. The former detects the
steps of the pedestrian, using the SURF-attribute orientation. The latter esti-
mates the direction in which the pedestrian is heading, using the x -attribute of
the interest points. As the final step, Trajectory Building builds the trajec-
tory, based on the step- and heading-estimation-data of the previous processes.

4.2 Image Sequence and Feature Detection

The video-data is obtained using a camera with a body mount. The camera is
statically mounted to the chest of the pedestrian, which means it always points
in the walking-direction. The described method can only detect forward-steps.
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Fig. 1. Overview of the basic concept.

Other kind of movement, such as lateral steps, where the camera-view doesn’t
point in the walking direction, or backwards steps can not be detected. For the
image processing, the SURF-algorithm is used. The image-sequence is iteratively
processed. At each frame, the interest points are detected, then described and
finally matched with the interest points of the previous frame. Resulting is a
sequence of interest point matches for all frame pairs, each containing the SURF-
attributes orientation and x, which are relevant for the next steps. Additionally
a tracking window with a size n can be applied at each frame i. If n is greater
than 1, each interest point is compared to its tracked match from frame i − n.

4.3 Preprocessing

A number of preprocessing steps are necessary on the SURF-attributes, before
Step Detection and Heading Estimation can be performed.

The preprocessing step sums up the two-dimensional lists of the SURF-
attributes orientation and x of all interest points in one frame into a one-
dimensional measure. As a measure, the mean, or the median of all values in
one frame is applicable. The medians of the SURF-orientations, which are used
by the Step Detection, are subsequently filtered using a Butterworth Lowpass
Filter.
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4.4 Motion Estimation - Step Detection

As introduced in Sect. 4.1 and illustrated in Fig. 1, the Step Detection uses
the SURF-attribute orientation to detect the pedestrians steps. Due to the
Preprocessing phase, its input is a lowpass filtered sequence of medians of the
SURF-orientations for each frame. The output is a sequence of the framenum-
bers in which a step was detected and their corresponding orientation value.
Figure 2 shows a detailed illustration of the process.

Fig. 2. Overview of the Step Detection process.

Essentially, the input sequence is searched for extrema, as they correspond
to the steps of a pedestrian. A peak-extrema with a positive value is a step
with the left leg, a valley-extrema with a negative value is a step with the
right leg. All valley-extrema with a positive value are ignored, as well as all
peak-extrema with a negative value. When a new extremum is found, a few
tests are performed to determine if it counts as a new step. First, it needs
to be decided, whether the value of the extremum is in a range that should
count as a step, or whether it can be disregarded as noise. To achieve this, two
thresholds are applied. The first threshold, δmin, is static, with a predefined
value. If the extremum has a value that is below δmin, it is considered as noise.
As the camera is mounted directly on the chest of the pedestrian, even when the
person is standing still there is some movement due to breathing, or other small
movements of the upper body. With δmin, this kind of false positives can be
significantly reduced. Although the static threshold alone can yield good results,
it is not sufficient to reliably detect all steps of the pedestrian. As different
people have different walking styles, the extrema also show variations in their
values and characteristic step patterns. Due to this effect, a second, dynamic
threshold, δdyn, is applied. If the extremum is greater than δdyn, it is considered
as a new step. When two consecutive steps are found that were made with the
same leg, i.e. two consecutive positive or two consecutive negative extrema, one
of them is disregarded. It is assumed, that steps are always taken alternately and
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therefore the extrema should also occur as such. In a case where this assumption
is violated, the extremum with the bigger value is considered as the step, the
other one is ignored. The dynamic threshold is updated, when an extremum is
found that lays outside δmin. For the update, a specified number of previous
steps are considered. For each previous step-pair (i.e. one step with the left and
one step with the right leg), the absolute value of the difference of its orientation-
values is calculated. The new value for δdyn is then taken as a ratio of the median
of those differences: ratio ∗ median(absolute differences).

Figure 3 shows two example plots of a video, processed with different δmin

settings. The pedestrian first was standing still for a few seconds, then took 30
steps - beginning with the right leg - and again stood still for a few seconds. The
figure shows one plot without the minimum threshold (3a) and one plot where
δmin is set to a value, so that the noise in the beginning is ignored (3b). It can be
observed, that due to the minimum threshold, not only the noise while standing
still is ignored, but also the dynamic threshold increases much quicker as soon
as the first step-pair is detected and is not updated as frequently. When no δmin

is used, a lot of false-positive steps with very low values are discovered in the
beginning and δdyn only reaches a reasonable value after a certain number of
correct steps are detected. In the meantime, more false steps might be found, as
it is the case in plot 3a at approximately framenumber 180. Additionally, as δdyn
is updated on every step that lays over δmin, another problem appears when no
δmin is used. Due to the too frequent updates, δdyn might decrease to a value that
leads to more falsely detected steps. This occurs in plot 3a at framenumber 200
and again at framenumber 430, where each an additional step-pair is detected.

Fig. 3. Two Step Detection plots of the same video (30 steps). The SURF-orientation
values are plotted for each frame, with the framenumber on the x-axis and the value
on the y-axis. Plot 3a shows the Step Detection without a minimum threshold δmin,
plot 3b with a minimum threshold. The orientation values are plotted with a blue line,
the detected steps are marked with green dots. The dynamic threshold δdyn is plotted
with a dashed gray line, δmin with a solid gray line.
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Those effects lead to a drastically higher number of detected steps, while the
usage of δmin in plot 3b results in the correct number.

4.5 Motion Estimation - Heading Estimation

To estimate the direction the pedestrian is heading to and its changes over
time, two methods are used. The first is a naive algorithm, the second uses the
regions, as described in Sect. 4.3. As the input, both methods use the sequence of
medians of the x -attributes over all frames, as shown in Fig. 1 and the detailed
illustration of the Heading Estimation in Fig. 4. The heading estimations are
then processed for each frame.

Fig. 4. Overview of the Heading Estimation process.

The usage of the x -attribute follows a basic assumption. As the camera is
body-mounted to the chest of the pedestrian, its coordinate system is coupled
to the upper-body movement of the person. When walking, the upper-body
also swings to a certain degree to the sides. When walking a curve, the camera
changes its direction at the same rate as the person. Both are movements that
are mainly parallel to the ground. This means, that the principal motion of the
interest points between two successive image-frames is occurring in the direction
of the x-axis. When walking a straight line, the thusly occurring small changes in
x -direction ideally cancel each other out every two steps. A change of direction
from the pedestrian – either while standing or while walking – produces mainly
a prolonged increase or decrease in the x -attributes of the interest points. This
motivates the assumption, that it is sufficient to only use the x -attribute for a
reliable heading estimation. The naive Heading Estimation uses the median of
x -differences. It is then divided by the heading calibration, which is depen-
dent on the camera and the resolution of the image-frame. This parameter spec-
ifies how many pixels of movement in the x-direction correspond to a turn of
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one degree. If the horizontal field of view of the camera is known, the value of
the heading calibration can be directly calculated by dividing the horizontal
resolution for the frame by that value. Section 5.3 provides more details on this.

4.6 Motion Estimation - Trajectory Building

The last step is to combine the results of the Step Detection and Heading
Estimation steps into a trajectory. It receives two input data sequences, one
containing the framenumbers where a step was detected and the other containing
the heading estimation at each framenumber. Additionally, the step-length of
the pedestrian needs to be specified. This is a fixed parameter, which should be
adjusted for each person. Section 5.3 details how this parameter was determined
for the test-persons of the evaluation. The sequence of steps is now iterated.
At each step, the corresponding heading estimation is taken from the heading
estimations sequence. The coordinates for the detected step are calculated using
the sinus- and cosinus-functions:

xstepi = xstepi−1 + step length ∗ sin(heading estimationstepi)

ystepi = ystepi−1 + step length ∗ cos(heading estimationstepi)

5 Evaluation

In this section, the developed method for Pedestrian Visual Odometry is eval-
uated. On the basis of three scenarios, where the paths were recorded multiple
times with different people, the accuracy is determined in terms of spatial- and
heading-differences.

5.1 General Set-Up

To record the videos, a GoPro Hero3+ camera was used. Its video capture mode
was set to a format of 16 × 9, with a resolution of 1920× 1080 and a narrow field
of view. This results in minimal fisheye distortion effects. With this setting, the
camera captures videos at 25 frames per second. A GoPro camera was chosen,
as it can easily be carried by a person with the use of a body mount. The resolu-
tion has been changed to 640× 360 during the SURF Extraction and Matching
step. A resolution below that value often resulted in significantly decreased accu-
racy. The three scenarios of the evaluation are one indoor and two outdoor paths.
These paths are described and illustrated in Sect. 5.4. The video-data for those
scenarios was created with five persons - one female and four males - differing in
body height. The test data-set consists of 29 videos for the indoor and outdoor
path. The ground truth data for the steps was counted with a manual counter.
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5.2 Evaluation Method

To evaluate the developed method for Pedestrian Visual Odometry, the accuracy
of the step detector and the accuracy of the trajectory needs to be compared with
the ground truth data. The real steps were counted with the help of a mechanical
tally counter. As the person who is recording the video should be influenced as
less as possible, the steps were counted by another person. The ground truth data
for the trajectories was created with the help of map data of the building, for the
indoor path and map data provided by OpenStreetMap for the outdoor paths.
Each map is stored as a size-fixed image with a corresponding calibration value
that encodes how many pixels represent one meter. Each ground truth trajectory
consists of a series of (x, y)-coordinates, based on its map image. For the accuracy
evaluation of the step detector, the resulting value for each video can simply be
compared to the hand counted ground truth data. The aforementioned videos
where no ground truth data for the steps exists are ignored during this step.
To evaluate the accuracy of the resulting trajectory, a more complex method
has been employed. For each video, 25 measurements are calculated, that each
analyses a segment with a specified length of the trajectory. Each measurement
determines the euclidean difference and the difference in heading at a number
of points, compared with the ground truth trajectory. For the indoor path, a
segment length of 50 m was chosen, with measurement points at a distance of 5,
10, 25 and 50 m from the start of the trajectory segment. As the outdoor paths
are longer, a segment length of 100 m was chosen, with measurement points at a
distance of 5, 10, 25, 50, 75 and 100 m from the start of the trajectory segment.
To ignore accumulated errors, the resulting trajectory is reset to the ground
truth at the start of the trajectory segment. This reset point for a measurement
is chosen randomly, with the only restriction being that its distance to the end of
the trajectory must be at least 50 m for the indoor path and 100 m for the outdoor
paths. As the developed method for Pedestrian Visual Odometry determines the
current position based on previous position estimates, it accumulates an error,
called drift. The evaluation method was chosen, as it independently evaluates
trajectory segments of a fixed length and at fixed distances. On the one hand,
this makes it possible to evaluate various segments of one trajectory without
previously accumulated drift and on the other hand, it makes it easy to compare
the accuracy for different paths and scenarios.

5.3 Parameter Settings

(1) SURF-Parameters: The SURF algorithm provides a few parameters that
may be configured. With the exception of the threshold, all other parame-
ters were left at their default value of the OpenSURF implementation. With
the SURF-threshold, the number of extracted interest points can directly
be manipulated. While a lower threshold-value yields to the extraction of
more interest points, they are also more noisy and therefore may be less
descriptive. Although the accuracy of the indoor trajectories were improved
up to a certain point by reducing the threshold, a more thorough evaluation
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is necessary. The used indoor test data is a very specific environment with
a narrow corridor, a lot of white walls and only a small part inside a larger
room. It should be evaluated whether the conclusion that a reduced SURF-
threshold produces a higher accuracy holds true for a variety of indoor
environments. For the outdoor test data the reduction of threshold has no
influence.

(2) Lowpass Filter Cutoff Frequency: The cutoff frequency was evaluated begin-
ning at a value of 0.5 Hz, with increments of 0.5 Hz. A small cutoff frequency
of around 1.5 Hz yields extremely smooth plots. Additionally, at that fre-
quency the step plot doesn’t show any characteristic local extrema at the
peaks and valleys and is a sinus-like curve with varying amplitudes. While
this would simplify the step detection, it also cuts away too much informa-
tion, leading to falsely suppressed steps. Therefore a higher cutoff frequency
of 4 Hz was chosen, as it is a good compromise of filtering while preserving
the characteristic step data.

(3) Thresholds for the Step Detection: The minimum threshold is set to a low
value, to reduce falsely detected steps where δdyn is less than δmin. This
usually only occurs at the beginning of a video, before the person took any
steps. To eliminate the maximum of false positives, while also not suppress-
ing real steps, an individual value for δmin should be set for each person.
A good value for δmin has been found at a quarter of the orientation-value
of an average step. At each newly detected step, δdyn is then updated using
the following formula: δnewdyn = 0.25 ∗ median(Δ5), with Δ5 being the pair-
wise differences in the orientation-attribute of the last 5 steps. This method
produced good results for all five persons.

(4) Step Length: As the step length is not dynamically estimated, it was stati-
cally measured. Each of the five persons was asked to take a number of steps
at their normal walking speed. The distance of 10 steps was measured, from
which the average step length was calculated. This process was repeated so
that at least three measurements were obtained for each person. From these,
the final estimation of the average step length for each person was calculated
by a proposed formula from Pratama et al. [43].

(5) Tracking-Window: Early on, a tracking window of size 3 or 4 yielded visi-
ble accuracy improvements of the trajectories. A more thorough evaluation
confirmed those results. The videos were processed with increasing track-
ing windows of size 2 to 5, a window size of 1 equals a regular matching.
Table 1 shows the average improvements of different tracking window sizes,
evaluated on trajectory segments with a length of 50 and 100 m. It can be
seen, that higher tracking windows greatly increase the euclidean error and
its standard deviation at shorter distances. Improvements of up to 12.3%
for the error and 23.1% can be observed. Although the mean error is only
slightly improved at a distance of 100 m, still its standard deviation is greatly
improved. The heading estimation generally is also improved by up to 3°,
while its standard deviation gets worse for shorter, but then increases for
larger distances.
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Table 1. Improvements for various tracking windows at distances of 50 m and 100 m.
E-P lists the improvement in percentage of the euclidean error, E-STD lists the improve-
ments of the euclidean errors standard deviation. H-D lists the difference in the heading
estimation, H-STD lists the difference of the heading estimations standard deviation,
negative values indicate an improvement. Values for a tracking window of size 1 are
not listed, as this corresponds to a regular matching.

Tracking window 50 m 100 m

E-P E-STD H-D H-STD E-P E-STD H-D H-STD

2 −2,5 5,4 6,7 1,4 3,2 1.1 9.2 −2,6

3 10,9 10,6 −0,1 0,8 2.6 13.3 −2,3 −3,3

4 9,8 19,8 −2,25 2,75 1.6 21,8 −3,0 −4,9

5 12,3 23,1 −2,1 2,9 −3.8 43,4 −2,0 −6,2

For the developed method, a tracking window of size 3 was chosen. This
results in great improvements, while also maintaining about 40% of the orig-
inal interest point matches. A tracking window of size 4 only contains about
28% of the original matches. As a higher number of matches principally
results in more robustness of the developed method, a tracking window of
size 3 was preferred over higher ones.

(6) Heading Estimation: The horizontal field of view (FOV) of the camera is
used. The specified mode of the GoPro Hero3+ records videos with a hori-
zontal FOV of 64.4°. The heading calibration is calculated with the following
formula: heading calibration = horizontal resolution/64.4.

5.4 Scenarios

To determine the accuracy of the method, the three scenarios have been eval-
uated. The videos for all three scenarios were inside or outside an university
building. The following sections detail the results for the indoor and the two
outdoor scenarios. Each section describes the evaluated path and presents, as
well as discusses the result. The same parameter settings were used for all sce-
narios, the results were obtained using a tracking window of size 3.

(1) Path1- an Indoor Path: The indoor path is shown in Fig. 5. It is located at
the basement level of the building and is mostly a narrow path with white
walls. Its length is 148.50 m. No closed doors or other such obstacles are
passed, although the person recording the video sometimes has to evade
other people or obstacles on the ground. The middle of the path - curves 2
to 6 in Fig. 5 - lays inside the cafeteria. This is a contrasting environment, as
it is a large room, with different objects such as tables, chairs and vending
machines. On some videos path1 has a small variation, illustrated by the
dotted line in Fig. 5, as some parts of the cafeteria were closed during the
filming of those videos.



Visual Odometry for Pedestrians Based on Orientation Attributes of SURF 167

Fig. 5. Overview of path1. In some videos path1 has a small variation, as some parts
of the cafeteria were closed, illustrated with the dotted line between curves 5 and 6.
The walking direction is indicated by the arrows, the curves are numbered.

For the first part up to curve 1, it can be observed that all test videos
accumulate a drift error to the left at approximately the same rate. The huge
difference of the total accuracy is because of a higher drift between curves 5 and
6 and because of heading errors at curves 6 and 7. Curve 7 produces a huge
error on all test videos, even at the good trajectory a turn of only about 45°
was recognized instead of 90°. For the step detection, a mean absolute error over
all videos of 8.86 with a standard deviation of 21.75 has been calculated. This
means, that on average nearly 9 steps over the ground truth data are detected,
which corresponds to 5 percent of the total steps. Most of the falsely detected
steps occur during prolonged sections where just a few interest point matches
are found. During such sections, the orientation-signal isn’t as periodically and
often doesn’t show the usual characteristics, leading to a significant number of
falsely detected steps. This is shown in Fig. 6, where after a prolonged sequence
of an irregular orientation-signal and resulting falsely detected steps - especially
around frame 1700 -, the characteristic step pattern resumes at frame 1800.

Fig. 6. Exemplary orientation-plot of falsely detected steps of path1.

The statistical results for path1 are shown in Fig. 7. It can be observed, that
the euclidean errors are relatively small for short distances. At a distance of
5 m it is 0.77 m with a standard deviation of 0.17. Those errors grow to 5.52 m
with a standard deviation of 1.19 at a distance of 25 m and to 11.31 m with a
standard deviation of 3.72 at 50 m. The mean heading error is overall relatively
small, although a significant standard deviation can be observed even for short
distances. The mean error steadily increases, which means that mainly drift to
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Fig. 7. Results for path1. The left plot shows the mean euclidean errors in meter and
the standard deviation at the specified distances for all measurements, the right plot
shows the mean heading error in degree and the standard deviation at the specified
distances for all measurements.

the left occurred. At 5 m the heading error is 2.25°, at a distance of 50 m it is
21.56°. For larger distances, a huge increase in the standard deviation can be
observed from 7.14° at 5 m and 3.66° at 10 m, to 27,97° at 50 m.

For this indoor scenario, it can be concluded that the method can produce
reasonably good results under certain circumstances. The major challenge seems
to be the white walls of the corridor. When walking a straight line, a drift to the
left occurs, that accumulates to a large and steadily increasing error. On curves,
the effect can be drastically more significant. If the pedestrian is heading towards
a white wall at the curve, this often leads to only few or even no interest point
matches for individual framepairs. When this happens for prolonged sequences,
a low accuracy of the curve results, as can be observed at curve 7 of path1. On
areas, where the indoor environment has more structure, more interest point
matches are found for each framepair. Therefore, the resulting trajectory has a
higher accuracy. This can be observed at the cafeteria part of path1 - curves
2 to 6.

(2) Path2- an Outdoor Path: Path2, as shown in Fig. 8, is a symmetrical round-
trip path outside the building, with a length of 387.5 m. The first part -
between curves 1 and 2 in Fig. 8 - resembles a street with parked cars. The
rest resembles a park-like environment, although the building is always on
the right, or respectively left side. Only few other people were present during
the filming of the videos, usually before curve 1 - a main entrance of the
building-, or at curve 3 - the outside area of the cafeteria.

For the step detection, a mean absolute error over all videos of 3.8 with a
standard deviation of 13.89 has been calculated. This means, that on average
nearly 4 steps over the ground truth data are detected, which corresponds to 0.84
percent of the total steps. Figure 9 shows the statistical results for path2. Similar
to path1, it can be observed that for short distances of up to 10 m only relatively
small euclidean errors (0.89 and 2.26 m) with small standard deviations occur
(0.22 and 0.47 m). At 25 m the mean error grows to 7.95 m, with a standard
deviation of 2.41 and steadily increases to 32.43 m with a standard deviation
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Fig. 8. Overview of path2. The walking direction is indicated by the arrows, the curves
are numbered.

of 4.26 at 100 m. The mean heading errors are all positive, which means that
mainly drift to the left occurred. It can be observed, that the heading error is
relatively small for all distances and range from 5.06° to 9.67°. The standard
deviation ranges from 7.06° to 10.28° for distances of up to 75 m and increases
to 20.36° at a distance of 100 m.

Fig. 9. Results for path2. The mean euclidean and heading errors, as well as the stan-
dard deviations for all measurements are shown.

For this outdoor scenario, the developed method for Pedestrian Visual Odom-
etry produces good results, that can be extremely close to the ground truth
trajectory. The main error source are inaccurately detected curves. Usually the
number of interest point matches is very high for each frame-pair. Additionally,
there was very little noise in the form of other moving persons, bicycles or cars.
These two aspects seem to have a direct effect on the drift of the heading estima-
tion which is constantly low with also a small standard deviation for distances
of up to 75 m. Compared with the results of path1, the mean euclidean error is
significantly higher at a distance of 50 m (17.57 m, compared to 11.31).

(3) Path3- an Outdoor Path With Noise: In some cases the trajectories accumu-
lates a slight drift to the right between curves 2 and 3. Additionally, curve
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5 isn’t mostly recognized to its full degree. The low accuracy in some bad
trajectories is explained due to multiple curves that aren’t recognized with
their real degree and more drift to the left. Curve 2 is recognized with a too
large degree. Between curves 3 and 4, an increasing drift to the left can be
observed. Curves 4 and 5 on the other hand aren’t recognized to their full
degree. For the step detection, a mean absolute error over all videos of 3.6
with a standard deviation of 13.02 has been calculated. This means, that on
average nearly 4 steps over the ground truth data are detected, which corre-
sponds to 0.9 percent of the total steps. The statistical results for path3 are
shown in Fig. 10. For short distances, the euclidean errors are very similar
to those of path2. Up to a distance of 50 m, the mean euclidean errors and
standard deviations are practically the same. For distances of 75 and 100 m,
the errors increase at a higher rate up to a maximum of 44.24 m with a stan-
dard deviation of 9.93. The heading error is relatively small for distances of
up to 25 m (−0.36°, 5.57° and 3.31°), with small standard deviations at 5 m
(4.55°) and 10 m (5.41°) and a larger one at 25 m (12.89°). For increasing
distances, the heading errors also increase up to a value of 44.09° with a
standard deviation of 32.28°.

Fig. 10. Results for path3. The mean euclidean and heading errors, as well as the
standard deviations for all measurements are shown.

Compared with the results of path2, the mean euclidean errors and the mean
heading errors are significantly higher for increasing distances. This should not
be surprising. Path3 is more challenging, as it is an environment where a large
degree of noise in the form of other moving persons, bicycles and cars occurs, that
sometimes pass close to the camera or move in front of it. It also contains two
challenging curves. The first, curve 4, is a 180° curve during which the pedestrian
passes a narrow, but open gate of a white wall and immediately steps onto the
sidewalk of a street. It can be observed that on most of the test videos, this curve
is detected with a lower degree. The second, curve 5, has a larger radius than
other curves and lies directly at the intersection of a street. This results in a lower
detected degree for many test videos, probably due to the movement of other
persons or cars on the street. Additionally, as the camera view is not obstructed
for example by a wall, more interest points are detected that are far away and
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don’t move much between succeeding frame-pairs, which also contributes to a
lower degree.

6 Conclusion

This work describes a method for Pedestrian Visual Odometry that tracks the
position of a person based on visual data. The person carries a camera, mounted
to its chest, which produces a video stream. The image data is processed using the
SURF-algorithm. Based on the SURF-attributes orientation and x, the pedes-
trians steps and the heading at the steps are estimated. The evaluation of the
method with three scenarios has shown that it can produce reasonably accurate
results for indoor and outdoor scenarios, especially for shorter distances. Just
like other Pedestrian Dead Reckoning or Visual Odometry systems, the errors
accumulate with increasing distance from a known position. The heading esti-
mation proved to be a great challenge, as the camera is permanently swinging
from left to right and as its accuracy additionally depends on the environment.
For indoor scenarios, an environment with mostly white walls contributes to a
high error of the heading estimation, as well as the step detection. The method
is a good candidate to extend existing visual positioning systems, while such
systems could also be used to reset the position of the pedestrian, therefore
negating the effect of accumulating errors for long distances. The overall quality
of the trajectory could be improved by implementing a loop-closure procedure,
that finds locations the pedestrian has been before for a retroactive trajectory-
and parameter-optimization. Overall it has been shown that a visual pedometer
based on the SURF-attribute orientation very reliably detects the pedestrians
steps. The heading estimation using solely the SURF-attribute x on the other
hand is not as accurate. Nonetheless, this method is capable to produce trajec-
tories corresponding to the pedestrians movement with a cumulating error drift
at increasing distances.
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