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Abstract. The advent of High Throughput Sequencing (HTS) technolo-
gies raises a major concern about storage and transmission of data pro-
duced by these technologies. In particular, large-scale sequencing projects
generate an unprecedented volume of genomic sequences ranging from
tens to several thousands of genomes per species. These collections con-
tain highly similar and redundant sequences, also known as pan-genomes.
The ideal way to represent and transfer pan-genomes is through compres-
sion. A number of HTS-specific compression tools have been developed
to reduce the storage and communication costs of HTS data, yet none
of them is designed to process a pan-genome. In this paper, we present
DARRC, a new alignment-free and reference-free compression method.
It addresses the problem of pan-genome compression by encoding the
sequences of a pan-genome as a guided de Bruijn graph. The novelty
of this method is its ability to incrementally update DARRC archives
with new genome sequences without full decompression of the archive.
DARRC can compress both single-end and paired-end read sequences of
any length using all symbols of the IUPAC nucleotide code. On a large
P. aeruginosa dataset, our method outperforms all other tested tools. It
provides a 30% compression ratio improvement in single-end mode com-
pared to the best performing state-of-the-art HTS-specific compression
method in our experiments.
Availability. DARRC is available at https://github.com/Guillaume
Holley/DARRC.

1 Introduction

Motivation. High Throughput Sequencing (HTS) technologies are constantly
improving and making sequencing of genomes more affordable. The second gen-
eration of HTS technologies was introduced to the sequencing market in 2007,
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enabling higher throughput and drastically reducing the cost of sequencing per
genome [20]. As a result, the number of sequenced genomes is growing exponen-
tially [19], making storage and access to these data a problem of main importance.
For example, the Sequence Read Archive (SRA) public database was endangered
in 2011 because of budgetary constraints [30]. In order to reduce storage and trans-
mission costs, raw sequencing data are often compressed using general purpose
compression tools such as gzip (based on Lempel-Ziv-77 [36]) or bzip (based on the
Burrows-Wheeler Transform [4]). Although these classic tools compressed most
of the public data, they are not optimized for HTS compression [8,10,13,15,21].
In FASTQ format, each record has three major components: (i) unique identifier,
(ii) read sequence and (iii) quality scores. A large variety of HTS-specific compres-
sion tools were proposed [1,3,11,12,17,18,22,25–27] to compress either FASTQ
files or only the read sequences. While these tools are very efficient, they are not
adapted to the context of large-scale sequencing projects that produce tens to sev-
eral thousands of genomes per species. A pan-genome, a set of genomes belonging
to different strains of the same species, is characterized by a high degree of similar-
ity and redundancy between the genomes [31]. All HTS-specific compression tools
can only consider redundancy and similarity within a single genome and not in a
collection of genomes. Furthermore, large-scale sequencing projects such as the
1000 Genomes Project [7] may take years to complete, making the compression of
continually growing pan-genomes a challenging process.

Existing Approaches. HTS-specific compression tools are divided into two
categories: reference-based and de novo. Reference-based methods generally pro-
vide high compression ratio by encoding similarities between the read sequences
(reads) and a reference sequence (reference) usually by mapping the reads to
the reference. These tools require that the reference used for compression is
provided with the compressed archive for decompression, adding extra storage
and transmission costs. Note that only a small fraction of sequenced species
that are accessible in public databases have such a reference available. On the
other hand, de novo compression tools perform similarity search within a set of
reads in order to exploit its redundancy. BARCODE [26] is a reference-based
method that makes use of cascading Bloom filters [29] to compress reads. It
inserts reads perfectly matching to a reference into a Bloom filter [2] that can
generate false positives. To reduce the number of false positives, BARCODE sub-
sequently inserts them into cascading Bloom filters to tell apart false positives
from true positives. Kpath [18] constructs a de Bruijn graph from the reference
and encodes each read as a path within the graph. The paths within the graph
are then encoded via arithmetic coding [33]. The beginnings of such paths are
stored separately in a trie and encoded with LZ-77. QUIP [17] uses a lossless
compression algorithm based on adaptive arithmetic encoding of the identifier,
read and quality score streams of the FASTQ format. A reference sequence and a
sequence alignment of the reads can be used to improve compression of the reads.
QUIP can also perform assembly-based compression. Similar methods are used
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in FASTQZ and FQZCOMP [3]. SCALCE [12] uses core substrings as a measure
of similarity in order to cluster similar reads together. Those core substrings
are generated via Locally Consistent Parsing (LCP) [28]. SCALCE compresses
the reads in each cluster with gzip. ORCOM [11] re-orders reads by similarity
as well: it creates clusters of reads that share the same minimizer [24], i.e. the
lexicographically smallest p-mer of each read with p usually between 8 to 15.
Reads of the same cluster are then merged and compressed. Similar to ORCOM,
Mince [22] uses the minimizer approach for clustering. For each read to process,
a set of candidate clusters is first established from the k-mers it is composed of.
The read is then assigned to the candidate cluster that maximizes the number
of q-mers they share. If the read has no candidate cluster, it is assigned to a
new cluster corresponding to its minimizer of length k. DSRC 2 [25] compresses
the different streams of FASTQ files with different methods: arithmetic coding,
Huffman coding [16], as well as 2 bits per base in the case of the DNA sequence
stream. Finally, LEON [1] encodes the reads as paths of a de Bruijn graph rep-
resented with a Bloom filter. The de Bruijn graph is built from solid k-mers of
the reads, i.e. k-mers occurring multiple times in the reads. A read is anchored
in the graph if it contains at least one solid k-mer and encoded as a list of graph
bifurcations from this anchor.

Contributions. In this paper, we present a new alignment-free and reference-
free method, DARRC, that compresses the sequencing reads dynamically. The
main contribution of this work is the guided de Bruijn graph (gdBG) which
allows a unique traversal to reconstruct the reads it was build from. The gdBG
is indexed using a colored de Bruijn graph succinct data structure, the Bloom
Filter Trie (BFT) [14] that enables the update of the gdBG with reads of other
similar genomes. Additional methods are presented to optimize the encoding
of the reads. On a large P. aeruginosa dataset, DARRC outperforms all other
tested tools. It provides a 30% compression ratio improvement in single-end
mode compared to the best performing state-of-the-art HTS-specific compression
method in our experiments.

2 Methods

A string x is a sequence of symbols drawn from a finite, non-empty set, called
the alphabet A. Its length is denoted by |x|. Strings are concatenated by juxtapo-
sition. If x = ps for (potentially empty) strings p and s, then p is a prefix and s
is a suffix of x. The symbol at position i is denoted by x[i], the suffix starting
at position i by x(i), the substring starting at position i and having length l by
x(i, l).

2.1 The de Bruijn Graph

A de Bruijn graph (dBG) is a directed graph G = (VG, EG) in which each vertex
v ∈ VG represents a k-mer, a string of length k over A. A directed edge e ∈ EG
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from vertex v to vertex v′ representing k-mers x and x′, respectively, exists if
and only if x(2, k − 1) = x′(1, k − 1). Each k-mer x has |A| possible successors
x(2, k − 1)c and |A| possible predecessors cx(1, k − 1) with c ∈ A. A colored de
Bruijn graph (cdBG) is a dBG G = (VG, EG, CG) in which CG is a set of colors
such that each v ∈ VG contains a subset of CG. A lightweight representation of
dBGs and cdBGs does not store edges since they are implicitly given by vertices
overlapping on k−1 symbols. However, implicit edges can falsely connect vertices
that share an overlap of k−1 but do not overlap in the sequences the graph was
built from.

The dBG is a long-studied abstract data structure used in computational
biology. It is particularly useful for the problem of read assembly [6] in which
the goal is to reconstruct a genome as a single sequence from a set of reads. For
this purpose, it is necessary to find a Hamiltonian cycle in the graph, a path
starting and ending on the same vertex that visits each vertex exactly once.
Although heuristics exist to extract Hamiltonian cycles from a graph, the read
assembly problem is yet to be solved because a Hamiltonian cycle is only one
possible reconstruction of the original genome the graph was built from.

2.2 The Guided de Bruijn Graph

The read assembly problem shows that different traversals of dBGs are possible.
In the worst case, the number of possible paths between two vertices in a graph is
infinite if the graph is cyclic, and exponential otherwise. Given a dBG built from
a sequence and a starting vertex for the traversal, the dBG must be supplemented
with information to guide its traversal in order to reconstruct the sequence it
was built from.

Definition 1. Given a de Bruijn graph G built from a sequence S, a partition
part(G,S) is a subgraph G′ of G such that G′ is a path graph that reconstructs
a subsequence of S.

A guided de Bruijn graph (gdBG) built from a sequence S is a cdBG G =
(VG, EG, PG) in which the set of colors, now denoted as PG, represents partitions
guiding the traversal of G to reconstruct S. Self-overlapping k-mers, for which
the prefix of length k − 1 is equal to the suffix of length k − 1, require a special
treatment to avoid looping on themselves within the same partition. Algorithm1
creates a gdBG G from a sequence S using vertices of length k. It returns all
information necessary to reconstruct S: the gdBG encoding S and the k − 1
length prefix of the first k-mer of S starting the graph traversal for decoding.
Note that self-overlapping k-mers terminate their partition such that the next
inserted k-mers start a new one (line 9). The algorithm requires O(|S|) time and
O(|G|) space where |G| = |VG|+ |PG| if the gdBG uses an implicit representation
of edges.

Algorithm 2 decodes a sequence S from a gdBG G using vertices of length k
starting with k-mer prefix x. Algorithm 1 guarantees that for any k-mer and one
of its partitions, this k-mer can only have zero or one successor in the graph with
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Algorithm 1. Encode(S, k)
1: p ← 1 � partition index
2: G ← the empty graph
3: for i ← 1, . . . , |S| − k + 1 do
4: x ← S(i, k)
5: Y ← {y | y successor of x in G with p ∈ G[y]}
6: if Y �= ∅ then p ← p + 1
7: if x ∈ G then G[x].add(p) � add p to vertex x in G
8: else G.add(x, p) � insert vertex x with p in G
9: if x(2, k − 1) = x(1, k − 1) then p ← p + 1

10: return (G, S(1, k − 1))

the same partition. Therefore, Algorithm 2 traverses the graph by searching, for
each traversed vertex, the successor with the same partition. If it is not found, the
partition index is incremented and the traversal continues. As for Algorithm1,
the algorithm requires O(|S|) time and O(|G|) space.

Algorithm 2. Decode(G, x, k)
1: p ← 1
2: z ← k-mer y in G with y(1, k − 1) = x and p ∈ G[y]
3: x ← z
4: S ← z
5: Z ← {z}
6: if z(2, k − 1) = z(1, k − 1) then p ← p + 1
7: while Z �= ∅ and p ∈ PG do
8: Z ← {z | z successor of x in G with p ∈ G[z]}
9: if Z contains exactly one element z then

10: S ← Sz[k]
11: x ← z
12: if x(2, k − 1) = x(1, k − 1) then p ← p + 1
13: else
14: p ← p + 1
15: Z ← {x}
16: return S

Figure 1 represents a simple cyclic dBG built from a sequence containing
a repetition. An infinite number of sequences could be extracted from the
dBG because of the cycle. However, by augmenting the dBG with partitions,
Algorithm 2 will traverse the cycle only once during the reconstruction of the
sequence. Indeed, when Algorithm 1 tries to insert k-mer agt with partition 1, a
successor with the same partition is found. Therefore, k-mer agt is inserted with
partition 2 such that the cycle is not contained in one partition.
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cgt
{1}

gta
{1,2}

taa
{1,2}

aat
{2}

agt
{2}

aag
{1}

Fig. 1. The guided de Bruijn graph of sequence S = cgtaagtaat as constructed by
Algorithm 1 with k = 3.

An important property of gdBGs using implicit edges is that no false implicit
edge can be traversed during the decoding.

Proposition 1. Let G be a gdBG built from a sequence S using an implicit
representation of edges. An edge between vertices v and v′ corresponding to
k-mers x and x′ respectively, such that x(2, k − 1) = x′(1, k − 1) but xx′[k] is
not a substring of S is called a false implicit edge. Algorithm2 does not consider
any false implicit edge when traversing G to reconstruct S.

Proof. If a false implicit edge connects vertices not sharing a partition,
Algorithm 2 will not consider this edge as only successors with the same par-
tition are traversed. If a false implicit edge connects vertices v and v′ which
share a partition, the edge out-degree of v is at least 2 and the edge in-degree of
v′ is at least 2: one true implicit edge each and at least one false implicit edge
each. As these vertices are branching, Definition 1 guarantees that v and v′ are
not in the same partition. ��

Algorithm 1 does not distinguish true implicit edges from false implicit edges,
ensuring that Definition 1 is always respected during the encoding.

Furthermore, partitions allow to apply the following generalized definition of
edges in dBGs to gdBGs:

Definition 2. In a de Bruijn graph, a directed edge from vertex v to vertex v′

representing k-mers x and x′, respectively, exists if and only if x(l + 1, k − l) =
x′(1, k − l) with l ≥ 1.

For a sequence S to encode in a gdBG and l > 1, � |S|−k+1
l � k-mers will be

inserted instead of |S| − k + 1. However, the graph can contain more partitions
as each vertex has now |A|l possible successors and predecessors. Figure 2 gives
the gdBG encoding the same sequence as in Fig. 1 using a k-mer overlap of k−2
instead of k − 1. The resulting gdBG contains only half the number of vertices
than the one in Fig. 1.
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cgt
{1}

taa
{1,3}

agt
{2}

Fig. 2. The guided de Bruijn graph of sequence S = cgtaagtaat using 3-mers overlap-
ping on k − l = 1. The last symbol of S is not encoded in the gdBG as it cannot be
part of a k-mer.

3 Compression

Section 2 presented methods to encode a sequence as a gdBG and to decode it.
In this section, we describe how to use this methodology to compress reads. To
improve compression efficiency, we preprocess the reads.

3.1 Read Clustering and Merging

A simple form of read assembly extended from ORCOM [11] is performed to
reduce the input data. It clusters reads according to their minimizer, then merges
reads sharing an overlap within each cluster and finally merges reads sharing an
overlap but originating from different clusters. These three steps are described
in the following.

Clustering. The minimizer [24] of a read r is the lexicographically smallest of
its p-mers with p � |r|. The canonical minimizer of r is the lexicographically
smallest minimizer of r and its reverse-complement r. The following method
is based on the simple assumption that reads sharing a minimizer are likely to
share a longer overlap and therefore be similar. Thus, the canonical minimizer m
is computed for each read r such that r or r is assigned to its cluster m.

Intra-cluster Merging. Within each cluster, the reads are sorted by decreasing
position of their minimizer, in which reads sharing the same minimizer position
are sorted lexicographically. For each read r and its minimizer m at position pm,
all reads r′ with minimizers at positions p′

m ≤ pm are considered for merging, in
decreasing order of positions p′

m to maximize the overlap lengths. To merge reads
r and r′, they are first anchored at the position of their minimizers such that
they overlap on o = p′

m + min(|r| − pm, |r′| − p′
m) symbols. Reads are merged

into a super read [35] if r(pm − p′
m, o) = r′(1, o) with at most d mismatches.

The same process is applied to the created super read in order to merge it with
the remaining reads of the cluster. For each super read, we encode all of its read
meta data in separate streams: position, length, reverse-complement information
and mismatches.
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Inter-cluster Merging. As an extension of the previous steps used by
ORCOM, we additionally perform a process similar to the intra-cluster read
merging described previously to merge super reads from multiple clusters. For
each super read sr and its minimizer m at position pm, a new minimizer m′ is
computed in sr(pm + 1) and sr. All super reads of cluster m′ are considered for
a merging with sr or sr. Merging two or more super reads creates a spanning
super read (SSR). The same process is applied to the created SSR until no super
reads can merge with it.

Paired-End Reads. Each mate of a pair is considered as a single read that
is clustered and merged using the previously described methods. However, the
clustering and merging steps keep track of the position of the mates in the SSRs.
This information is used afterwards to store in each read meta data whether the
read is the first mate of its pair. In such case, the position of its corresponding
mate in the SSRs is stored as well.

3.2 Spanning Super Read Encoding

Encoding a set of SSRs using a gdBG requires to extract k-mers from the SSRs.
If edges represent overlaps of length k − 1, all k-mers of the SSRs are extracted.
If edges represent overlaps of length k− l with l > 1, k-mers are extracted every
l positions. As a consequence, similar SSRs can have different sets of k-mers.
An example is given in Fig. 3, in which two similar SSRs, ssr1 and ssr2, do
not share any k-mers because they are extracted every l = 2 positions from the
first position of each SSR. By shifting the k-mer extraction start position by
one position in the second SSR, as shown with ssr2

′, two extracted k-mers are
shared with the first SSR.

ssr1 = a c g t c c t g a a t

a c g t
g t c c

c c t g
t g a a

ssr2 = g a c g t c c g g a a

g a c g
c g t c

t c c g
c g g a

ssr2 = g a c g t c c g g a a

a c g t
g t c c

c c g g
g g a a

Fig. 3. Extraction of 4-mers overlapping on k − l = 2 from two similar SSRs, ssr1 and
ssr2.

In order to keep the growth of the gdBG small when inserting a new SSR,
we determine the k-mer extraction start position, called start position in the
following, that maximizes the number of k-mers already stored in the gdBG. To
this end, we maintain in memory a k-mer index recording all k-mers extracted.
As the cost in time and memory of such an index is prohibitive, we use a Bloom
filter instead.
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Introduced by Bloom, a Bloom filter (BF) [2] records the presence of elements
in a set. Based on the hash table principle, look-up and insertion times are
constant. The BF is composed of an array B of b bits, initialized with 0 s, in
which the presence of n elements is recorded. A set of f hash functions h1, ..., hf

is used, such that for an element e, hi(e) : e → {1, .., b}. Inserting an element
into B and testing for its presence are then

Insert(e,B) : B[hi(e)] ← 1 for all i = 1, ..., f

and

MayContain(e,B) :
f∧

i=1

B[hi(e)],

respectively, in which
∧

is the logical conjunction operator. The BF does not
generate false negatives but may generate false positives, as MayContain can
report the presence of elements which are not present but a result of independent
insertions.

We propose a greedy approach making use of the BF to iteratively detect for
each SSR of a set its optimal start position and updating the BF with all novel
k-mers. The optimal start position of an SSR is a position from 1 to l maximizing
the number of k-mers extracted that are already present in the BF compared to
the other possible start positions. Once the optimal start position of an SSR is
determined, the BF is updated with the k-mers extracted and the next SSR of
the set is processed. To encode all SSRs completely, this approach does not only
returns the k-mers to insert into a gdBG, because these do not necessarily cover
the entire SSRs. It also returns the head and tail of each SSR, which are the
uncovered prefix and suffix, respectively, not encoded in the gdBG. Additionally,
to provide an entry point into the gdBG for the decoding, it returns the starting
overlap of each SSR, which is the k − l length prefix of the first k-mer. More
precisely, we denote by x and y the first and last k-mers extracted, respectively,
from an SSR ssr with posx and posy as their respective occurrence positions in
ssr. Then, the head of ssr is the prefix ssr(1, posx−1), the tail of ssr is the suffix
ssr(posy +k), and the starting overlap of ssr is ssr(posx, k− l). SSR heads, tails
and starting overlaps are encoded in separate streams and compressed separately
from the gdBG.

3.3 Partition Encoding

Encoding. Partition sets associated with k-mers in gdBGs are represented as
lists of sorted integers. A naive way to store a partition set is to use a fixed
number of bytes for each partition. For example, 4 bytes is a standard size for
integers on current computer architectures. In order to decrease the memory
footprint while keeping the lists indexed, partitions are first delta encoded by
storing the difference between each integer and its predecessor in the list (or 0 if
the integer is in first position). The resulting values are called deltas. However,
it only decreases the minimum number of bits necessary to encode the partitions
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but not their final representation. Consequently, deltas are Vbyte encoded [32]:
each byte used to encode a delta has one bit indicating whether the byte starts
a new delta or not, allowing to remove unnecessary bytes from each delta. Thus,
partitions use a variable number of bytes proportional to the minimum number
of bits necessary to encode their deltas.

Recycling. As a small delta produces a small encoding, partition integers are
recycled instead of naively using the next higher integer for every new partition
as, for the sake of convenience, described in Algorithm 1. Partition sets a and b
can share the same partition integer if they are not neighbors in the graph, i.e.,
no k-mer suffix or prefix of a overlaps a k-mer prefix or suffix of b, for suffixes
and prefixes of length k − l. A trivial example is provided in Fig. 4 in which
k-mer cttc uses the same partition integer as k-mer acgt because they are not
neighbors in the graph.

acgt
{1}

gtac
{2}

tcct
{2}

cttc
{1}

tc

Fig. 4. The guided de Bruijn graph of SSRs ssr1 = acgtac and ssr2 = tccttc using
4-mers (l = 2). Dotted gray edges are false implicit edges. The solid gray edge exists by
using the starting overlap of ssr2 after the traversal of ssr1, as described in Sect. 3.2.

As there can be a large number of partitions in the graph, verifying the
connectivity of one partition to all other partitions is often impractical. We pro-
pose instead a heuristic that verifies the connectivity only to the last t partitions
inserted, t being a user-defined threshold, such that these t partitions are the only
candidates for recycling. Using partition recycling requires to save the partitions
traversal order which cannot be incremental anymore as shown in Algorithms 1
and 2.

3.4 Meta Data and GdBG Compression

Steps described previously generate meta data specific to one input file such as
read lengths and positions in SSRs. These meta data are first encoded in separate
streams and are then compressed using an LZ-type algorithm, LZMA [23]. After
all k-mers and partitions are inserted in the gdBG, the latter is written to disk.
As it must be loaded in memory for every update and decompression, the gdBG is
compressed with Zstd [5], a compression method based on Huffman coding and
Asymmetric Numeral Systems [9] that favors compression and decompression
speed over compression ratio.
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4 Update and Decompression

In order to update a compressed archive with a new input file, only the gdBG
previously created is decompressed and loaded in memory, as meta data are not
used for the update. A fast procedure iterates over all k-mers of the gdBG and
inserts them into the BF proposed in Sect. 3.2 instead of starting with an empty
BF in order to optimize the choice of the k-mer extraction start positions in
the SSRs. The gdBG is then updated with the new k-mers and partitions. The
starting partition index is greater than the partition indexes already present in
the gdBG, ensuring that each input file is encoded with a unique set of partitions.

Decompressing a read file starts with decompressing its meta data and the
gdBG it is encoded in. The gdBG is then loaded in memory and Algorithm2 is
used to traverse the gdBG, but only following those partitions that are specific
to the read file to decompress. This way, single files can be decompressed sepa-
rately. As Algorithm 2 decodes SSRs, meta data are used afterwards to extract
the actual reads. If reads are paired-end, meta data are also used to reorga-
nize them such that corresponding mates of the same pair are together in the
decompressed file.

5 Results

DARRC is implemented in C and uses the Bloom Filter Trie (BFT) library [14]
for its gdBG. The BFT provides time and space efficient functionalities that are
required by DARRC. These functionalities include: (i) the ability to update the
BFT with new k-mers and colors without recomputing the index, (ii) k-mers
extraction from the BFT and (iii) prefix search over the set of k-mers within
the BFT. The software is available at https://github.com/GuillaumeHolley/
DARRC. We compared DARRC to three state-of-the-art de novo DNA sequence
compression tools: ORCOM [11], LEON [1] and Mince [22]. DARRC was also
compared to the same LZ-type algorithm used to compress its meta data,
LZMA [23]. Experiments were carried out on a server with 378 GB of RAM
and two 8-core Intel Xeon E5-2630 v3 2.4 GHz processors. All input files were
placed on mechanical hard drives. Compressed archives and decompressed files,
during compression and decompression respectively, together with temporary
files such as read clusters were written to a RAM-based partition when the tools
allowed to specify an output directory. As the current version of DARRC does
not take advantage of parallelism, all software were run using a single thread,
except Mince which requires a minimum of four threads. All de novo DNA
sequence compression tools were run using their default parameters. LZMA was
run with the same compression level as the one used to compress DARRC meta
data. DARRC default parameters are minimizers of length 9 for the clustering,
5 mismatches allowed per read merging and 36-mers overlapping on 11 sym-
bols for the gdBG. ORCOM, LEON, Mince and LZMA compressed all files in
separate archives while DARRC updated the same archive iteratively with the
files to compress: each iteration decompressed and reloaded the necessary data

https://github.com/GuillaumeHolley/DARRC
https://github.com/GuillaumeHolley/DARRC
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from the data written to disk in the previous iteration. The dataset used for the
experiment consists of 473 clinical isolates of Pseudomonas aeruginosa sampled
from 34 patients (NCBI BioProject PRJEB5438), resulting in 338.61 Gbp of high
coverage sequences. Reads are 100 bp paired-end reads generated by Illumina
HiSeq 2000. Pair mates were placed in different files for every isolate. The exper-
iment was run in single-end mode and paired-end mode for all tools such that in
the single-end mode, every mate file is considered as a single-end read file. The
appropriate single-end and paired-end modes were used for DARRC and Mince.
The mates were concatenated for the paired-end experiment of ORCOM as the
tool neither preserves the order of the reads nor stores the paired-end informa-
tion. LEON and LZMA do not have an explicit paired-end mode but keep the
original order of the reads, thus for the paired-end experiment of LEON and
LZMA, the mate files of every isolate were concatenated.

Compression ratios in paired-end mode and single-end mode are shown in
Fig. 5. DARRC clearly outperforms all the other tested tools in both modes.
In paired-end mode and single-end mode, DARRC uses about 0.261 bits per
base and 0.204 bits per base, corresponding to a 57% and 30% compression
ratio improvement compared to the second best results, respectively. The paired-
end compression ratio of ORCOM compared to its single-end compression ratio
shows that the tool is not adapted to paired-end read compression. The gdBG
represents about 10% and 13% of the data written to disk by DARRC in paired-
end mode and single-end mode, respectively.
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Fig. 5. Compression ratios in paired-end mode (left) and single-end mode (right).

DARRC compressed more than two times faster than LZMA but used the
most time to decompress, as shown in Figs. 6 and 7, respectively. DARRC’s
compression time overhead is explained by the fact that at each iteration, the
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Fig. 6. Compression times in paired-end mode (left) and single-end mode (right).
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Fig. 7. Decompression times in paired-end mode (left) and single-end mode (right).

gdBG must be decompressed, loaded in memory and updated with new k-mers
and partitions.

All tools performed compression and decompression using a maximum of
four gigabytes of main memory, an amount nowadays available on most desktop
computers and laptops. Even by updating the same archive iteratively, DARRC
compression used less than two gigabytes of main memory.
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6 Conclusions and Future Work

We presented DARRC, a dynamic alignment-free and reference-free read com-
pression method that can incrementally update compressed archives with new
genome sequences without full decompression of the archives. DARRC uses a
new abstract data structure, the guided de Bruijn graph, that allows a unique
traversal of the de Bruijn graph to reconstruct the sequences it is built from. We
showed that, on a large pan-genome dataset, our method outperforms several
state-of-the-art DNA sequence compression methods and a general purpose com-
pression tool regarding the compression ratio while achieving reasonable running
time and main memory usage. Furthermore, we showed that the compression
ratio of DARRC is attractive even with only few files compressed. Future work
concerns the parallelization of the software, particularly the read clustering and
merging phase which offers a lot of potential for multi-threading. Additionally,
a logical evolution of DARRC is the introduction of a pattern matching func-
tionality within the compressed data as in [34], leading to large scale complex
methods such as read alignment and variant calling using multiple genomes.
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