
S. Cenk Sahinalp (Ed.)

 123

LN
BI

 1
02

29

21st Annual International Conference, RECOMB 2017
Hong Kong, China, May 3–7, 2017
Proceedings

Research in Computational
Molecular Biology

Lecture Notes in Bioinformatics 10229

Subseries of Lecture Notes in Computer Science

LNBI Series Editors

Sorin Istrail
Brown University, Providence, RI, USA

Pavel Pevzner
University of California, San Diego, CA, USA

Michael Waterman
University of Southern California, Los Angeles, CA, USA

LNBI Editorial Board

Søren Brunak
Technical University of Denmark, Kongens Lyngby, Denmark

Mikhail S. Gelfand
IITP, Research and Training Center on Bioinformatics, Moscow, Russia

Thomas Lengauer
Max Planck Institute for Informatics, Saarbrücken, Germany

Satoru Miyano
University of Tokyo, Tokyo, Japan

Eugene Myers
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany

Marie-France Sagot
Université Lyon 1, Villeurbanne, France

David Sankoff
University of Ottawa, Ottawa, Canada

Ron Shamir
Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Terry Speed
Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

W. Eric Wong
University of Texas at Dallas, Richardson, TX, USA

More information about this series at http://www.springer.com/series/5381

http://www.springer.com/series/5381

S. Cenk Sahinalp (Ed.)

Research in Computational
Molecular Biology
21st Annual International Conference, RECOMB 2017
Hong Kong, China, May 3–7, 2017
Proceedings

123

Editor
S. Cenk Sahinalp
Indiana University Bloomington
Bloomington, IN
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Bioinformatics
ISBN 978-3-319-56969-7 ISBN 978-3-319-56970-3 (eBook)
DOI 10.1007/978-3-319-56970-3

Library of Congress Control Number: 2017936939

LNCS Sublibrary: SL8 – Bioinformatics

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

RECOMB, the Annual International Conference on Research in Computational
Molecular Biology started in 1997, under the leadership of Sorin Istrail, Pavel Pevzner,
and Michael Waterman. This year marks its 21st anniversary. RECOMB 2017 was
hosted by The University of Hong Kong and The Chinese University of Hong Kong
during May 3–7, 2017. This volume contains the 38 extended or short abstracts
selected for oral presentation at RECOMB 2017 by the Program Committee (PC). Each
of the 184 submissions consisted of a full paper, and was assigned to at least three PC
members and reviewed with the help of many external reviewers. Following the initial
reviews, final decisions were made after an extensive discussion of the submissions
among the members of the PC.

Even though RECOMB 2017 did not allow parallel submissions, authors of
accepted papers were given the option to publish short abstracts in the proceedings and
submit their full papers to a journal. The papers for which the proceedings feature short
abstracts had appeared in a journal by the time of the conference and were to be
deposited in the preprint server arxiv.org. All other papers that appear as long abstracts
in the proceedings were invited for submission to RECOMB 2017 special issues by
either Cell Systems or the Journal of Computational Biology.

In addition to the paper presentations, RECOMB 2017 featured six invited keynote
talks by leading scientists worldwide. The keynote speakers were Colin Collins
(Vancouver Prostate Centre), Joe Gray (Oregon Health Sciences University), Wang Jun
(iCarbonX), Laxmi Parida (IBM T.J. Watson Research Center), Ben Raphael
(Princeton University), and Michael Schnall Levin (10X Genomics).

Following the tradition started at RECOMB 2010, RECOMB 2017 also featured
highlight talks presenting computational biology papers that were published in journals
during the last 18 months. There were 32 highlight submissions, six of which were
selected for oral presentation at the main conference.

The success of RECOMB depends on the effort, dedication, and devotion of many
colleagues. I especially thank the Organizing Committee chair, Siu Ming Yiu (The
University of Hong Kong), and Kevin Yip (The Chinese University of Hong Kong), for
hosting RECOMB and RECOMB-Seq 2017, the RECOMB satellite meeting on
Massively Parallel Sequencing; Sumaiya Nazeen (MIT) for website design and tech-
nical support; the Steering Committee and especially its chair, Bonnie Berger (MIT),
for help, advice, and support throughout the process; Mona Singh, the Program Chair
of RECOMB 2016 (Princeton), for answering my many questions; Mathieu Blanchette
(McGill) for chairing the highlights track; Paul Medvedev (Penn State) for acting as the
publications chair; Alex Schoenhuth (CWI) for acting as the publicity chair; Fereydoun
Hormozdiari (UC Davis) and Jian Ma (CMU) for chairing RECOMB-Seq; the main
conference and RECOMB-Seq PC members and external reviewers for their timely
reviews of assigned papers despite their busy schedules; the authors of the papers,
highlights, and posters for their scientific contributions; and all the attendees for their

enthusiastic participation in the conference. We also thank the International Society of
Computational Biology (ISCB) for student support and the Croucher Foundation for
additional sponsorship.

February 2017 S. Cenk Sahinalp

VI Preface

Organization

Program Committee

Max Alekseyev George Washington University, USA
Rolf Backofen Albert Ludwigs University of Freiburg, Germany
Vineet Bafna University of California, San Diego, USA
Chris Bailey-Kellogg Dartmouth College, USA
Nuno Bandeira UCSD, USA
Ziv Bar-Joseph Carnegie Mellon University, USA
Niko Beerenwinkel ETH Zurich, Switzerland
Bonnie Berger Massachusetts Institute of Technology, USA
Mathieu Blanchette McGill University, USA
Sebastian Böcker Friedrich Schiller University of Jena, Germany
Lenore Cowen Tufts University, USA
Nadia El-Mabrouk University of Montreal, Canada
Irit Gat-Viks Tel Aviv University, Israel
David Gifford MIT, USA
Raluca Gordan Duke University, USA
Fereydoun Hormozdiari University of California, Davis, USA
Trey Ideker University of California, San Diego, USA
Tao Jiang University of California, Riverside, USA
Vladimir Jojic University of North Carolina, USA
John Kececiogu University of Arizona, USA
Manolis Kellis MIT, USA
Carl Kingsford Carnegie Mellon University, USA
Gunnar W. Klau CWI, The Netherlands
Jens Lagergren SBC and CSC, KTH
Max Leiserson Tufts University, USA
Ming Li University of Waterloo, Canada
Jian Ma Carnegie Mellon University, USA
Paul Medvedev Pennsylvania State University, USA
Bernard Moret EPFL, Switzerland
Veli Mäkinen University of Helsinki, Finland
William Stafford Noble University of Washington, USA
Laxmi Parida IBM T.J. Watson Research Center, USA
Bogdan Pasaniuc UCLA, USA
Jian Peng University of Illinois at Urbana-Champaign, USA
Yann Ponty CNRS/LIX, Polytechnique
Teresa Przytycka NIH, USA
Ben Raphael Princeton University, USA
Knut Reinert FU Berlin, Germany

S. Cenk Sahinalp Indiana University, Bloomington, USA
Alexander Schoenhuth Centrum Wiskunde and Informatica, The Netherlands
Russell Schwartz Carnegie Mellon University, USA
Roded Sharan Tel Aviv University, Israel
Mona Singh Princeton University, USA
Donna Slonim Tufts University, USA
Sagi Snir Institute of Evolution
Leen Stougie VU University
Jens Stoye Bielefeld University, Germany
Fengzhu Sun University of Southern California, USA
Wing-Kin Sung Nuational University of Singapore, Singapore
Glenn Tesler University of California, San Diego, USA
Tamir Tuller Tel Aviv University, Israel
Alfonso Valencia Spanish National Cancer Research Centre, Spain
Fabio Vandin University of Padova, Italy
Martin Vingron Max Planck Institut für molekulare Genetik, Germany
Jerome Waldispuhl McGill University, Canada
Sebastian Will University of Leipzig, Germany
Jinbo Xu Toyota Technological Institute at Chicago, USA
Noah Zaitlen University of California San Francisco, USA
Alex Zelikovsky Georgia State University, USA
Jianyang Zeng Tsinghua University, China
Louxin Zhang National University of Singapore, Singapore
Xuegong Zhang Tsinghua University, China

Additional Reviewers

Aganezov, Sergey
Aguiar, Derek
Alachiotis, Nikolaos
Alexeev, Nikita
Alkhnbashi, Omer
Andonov, Rumen
Artyomenko, Alexander
Arvestad, Lars
Avdeyev, Pavel
Backofen, Rolf
Bankevich, Anton
Bansal, Vikas
Batu, Tugkan
Berry, Vincent
Bhadra, Sahely
Bhutani, Kunal
Bielow, Chris

Biran, Hadas
Boix, Carles
Bonora, Giancarlo
Bordewich, Magnus
Bryant, David
Canzar, Stefan
Cardner, Mathias
Castillo, Omar
Chaisson, Mark
Cho, Hoon
Cho, Hyunghoon
Chor, Benny
Cichonska, Anna
Cook, Kate
Costa, Fabrizio
Crawford, Jake
Csuros, Miklos

Cunial, Fabio
Dahl, Andy
Daniels, Noah
Dao, Phuong
Deblasio, Dan
Ding, Jun
Dirmeier, Simon
Doerr, Daniel
Doty, David
Eetemadi, Ameen
El-Kebir, Mohammed
Emde, Anne-Katrin
Engler, Martin
Eslami Rasekh, Marzieh
Fallmann, Joerg
Feijao, Pedro
Frenkel, Zeev

VIII Organization

Frishberg, Amit
G. Costa, Ivan
Gagie, Travis
Gao, Tianxiang
Glynn, Eric
Golumbeanu, Monica
Gottlieb, Assaf
Gruenewald, Stefan
Gu, Jin
Guo, Yuchun
Hach, Faraz
Hajirasouliha, Iman
Halldorsson, Bjarni
Harel, Tom
Heller, David
Herman, Pawel
Hescott, Ben
Hescott, Benjamin
Hiaminen, Niina
Hobolth, Asger
Hodzic, Ermin
Holley, Guillaume
Homilius, Max
Hormozdiari, Farhad
Howbert, Jeff
Hua, Kui
Huang, Justin
Huska, Matt
Huynh-Thu, Vân Anh
Jahn, Katharina
Jain, Siddhartha
Joseph, Tyler
Jünemann, Sebastian
Kamm, John
Kehr, Birte
Keich, Uri
Kelk, Steven
Kim, Juho
Kim, Yoo-Ah
Knyazev, Sergey
Kockan, Can
Kopp, Wolfgang
Koyama, Taka
Kuipers, Jack
Kundu, Kousik
Kundu, Ritu

Käll, Lukas
Köster, Johannes
Lafond, Manuel
Langmead, Christopher
Lee, Heewook
Lei, Jinzhi
Lemaitre, Claire
Lemieux, Sebastien
Levy, Maya
Li, Wenyuan
Li, Yue
Libbrecht, Max
Limasset, Antoine
Lin, Dejun
Lin, Yen Yi
Liu, Yan
Liu, Yaping
Loh, Po-Ru
Lu, Yang
Ludwig, Marcus
Luhmann, Nina
Löytynoja, Ari
Ma, Cong
Ma, Jianzhu
Malikic, Salem
Mandric, Igor
Mann, Martin
Marcais, Guillaume
May, Damon
Mazza, Arnon
Mefford, Joel
Meuleman, Wouter
Minkin, Ilia
Mirzaei, Sajad
Munro, Daniel
Na, Seungjin
Nadimpalli, Shilpa
Navlakha, Saket
Noutahi, Emmanuel
Numanagic, Ibrahim
Nurk, Sergey
Oesper, Layla
Ohler, Uwe
Oren, Yael
Orenstein, Yaron
Ouangraoua, Aida

Palmer, Cameron
Park, Danny
Park, Yongjin
Peng, Yu
Persi, Erez
Persikov, Anton
Pham, Son
Pirkl, Martin
Pisanti, Nadia
Pittala, Srivamshi
Pockrandt, Christopher
Pons Mayol, Joan Carles
Przytycki, Pawel
Pullman, Benjamin
Rashid, Sabrina
Reinharz, Vladimir
Ren, Jie
Reyna, Matthew
Rhrissorrakrai, Kahn
Ruffalo, Matthew
Rusch, Doug
Saglam, Mert
Sahlin, Kristoffer
Salmela, Leena
Sanguinetti, Guido
Sarkar, Abhishek
Sauerwald, Natalie
Schreiber, Jacob
Schöpflin, Robert
Scott, Camille
Shao, Mingfu
Shi, Alvin
Shrestha, Raunak
Shteyman, Alan
Silberberg, Yael
Silverbush, Dana
Simmons, Sean
Sindi, Suzanne
Singer, Jochen
Siragusa, Enrico
Solomon, Brad
Stolzer, Maureen
Stoye, Jens
Sun, Chen
Sundermann, Linda
Swenson, Krister

Organization IX

Syed, Tahin
Tang, Haixu
Tang, Kujin
Thankachan, Sharma V.
Thurnherr, Thomas
Tremblay-Savard, Olivier
Utro, Filippo
Uurtio, Viivi
Valenzuela, Daniel
van Iersel, Leo
Varoquaux, Nelle
Verma, Deeptak
Viduani Martinez,

Fábio Henrique
von Kleist, Max

Wall, Timothy
Wang, Lusheng
Wang, Mingxun
Wang, Sheng
Wang, Tina
Wang, Weili
Wang, Yijie
Wang, Ying
Wetzel, Joshua
White, Tim
Wienbrandt, Lars
Wilentzik, Roni
Wise, Aaron
Wittler, Roland
Wójtowicz, Damian

Xin, Hongyi
Yang, Shuo
Yanover, Chen
Yardimci, Galip
Ye, Yuzhen
Yeo, Grace
Yilmaz, Sule
You, Xintian
Yu, Michael
Yu, Ning
Zamalloa, Jose
Zekic, Tina
Zeng, Haoyang
Zhang, Mengge
Zhang, Zhizhuo

X Organization

Contents

Boosting Alignment Accuracy by Adaptive Local Realignment. 1
Dan DeBlasio and John Kececioglu

A Concurrent Subtractive Assembly Approach for Identification of Disease
Associated Sub-metagenomes . 18

Wontack Han, Mingjie Wang, and Yuzhen Ye

A Flow Procedure for the Linearization of Genome Sequence Graphs 34
David Haussler, Maciej Smuga-Otto, Benedict Paten, Adam M. Novak,
Sergei Nikitin, Maria Zueva, and Dmitrii Miagkov

Dynamic Alignment-Free and Reference-Free Read Compression 50
Guillaume Holley, Roland Wittler, Jens Stoye, and Faraz Hach

A Fast Approximate Algorithm for Mapping Long Reads to Large
Reference Databases . 66

Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru,
and Adam M. Phillippy

Determining the Consistency of Resolved Triplets and Fan Triplets 82
Jesper Jansson, Andrzej Lingas, Ramesh Rajaby, and Wing-Kin Sung

Progressive Calibration and Averaging for Tandem Mass Spectrometry
Statistical Confidence Estimation: Why Settle for a Single Decoy? 99

Uri Keich and William Stafford Noble

Resolving Multicopy Duplications de novo Using Polyploid Phasing 117
Mark J. Chaisson, Sudipto Mukherjee, Sreeram Kannan,
and Evan E. Eichler

A Bayesian Active Learning Experimental Design for Inferring
Signaling Networks . 134

Robert Osazuwa Ness, Karen Sachs, Parag Mallick, and Olga Vitek

BBK� (Branch and Bound over K�): A Provable and Efficient
Ensemble-Based Algorithm to Optimize Stability and Binding Affinity
over Large Sequence Spaces. 157

Adegoke A. Ojewole, Jonathan D. Jou, Vance G. Fowler,
and Bruce R. Donald

Superbubbles, Ultrabubbles and Cacti . 173
Benedict Paten, Adam M. Novak, Erik Garrison, and Glenn Hickey

http://dx.doi.org/10.1007/978-3-319-56970-3_1
http://dx.doi.org/10.1007/978-3-319-56970-3_2
http://dx.doi.org/10.1007/978-3-319-56970-3_2
http://dx.doi.org/10.1007/978-3-319-56970-3_3
http://dx.doi.org/10.1007/978-3-319-56970-3_4
http://dx.doi.org/10.1007/978-3-319-56970-3_5
http://dx.doi.org/10.1007/978-3-319-56970-3_5
http://dx.doi.org/10.1007/978-3-319-56970-3_6
http://dx.doi.org/10.1007/978-3-319-56970-3_7
http://dx.doi.org/10.1007/978-3-319-56970-3_7
http://dx.doi.org/10.1007/978-3-319-56970-3_8
http://dx.doi.org/10.1007/978-3-319-56970-3_9
http://dx.doi.org/10.1007/978-3-319-56970-3_9
http://dx.doi.org/10.1007/978-3-319-56970-3_10
http://dx.doi.org/10.1007/978-3-319-56970-3_10
http://dx.doi.org/10.1007/978-3-319-56970-3_10
http://dx.doi.org/10.1007/978-3-319-56970-3_10
http://dx.doi.org/10.1007/978-3-319-56970-3_11

EPR-Dictionaries: A Practical and Fast Data Structure for Constant Time
Searches in Unidirectional and Bidirectional FM Indices 190

Christopher Pockrandt, Marcel Ehrhardt, and Knut Reinert

A Bayesian Framework for Estimating Cell Type Composition from DNA
Methylation Without the Need for Methylation Reference 207

Elior Rahmani, Regev Schweiger, Liat Shenhav, Eleazar Eskin,
and Eran Halperin

Towards Recovering Allele-Specific Cancer Genome Graphs 224
Ashok Rajaraman and Jian Ma

Using Stochastic Approximation Techniques to Efficiently Construct
Confidence Intervals for Heritability . 241

Regev Schweiger, Eyal Fisher, Elior Rahmani, Liat Shenhav,
Saharon Rosset, and Eran Halperin

Improved Search of Large Transcriptomic Sequencing Databases
Using Split Sequence Bloom Trees . 257

Brad Solomon and Carl Kingsford

AllSome Sequence Bloom Trees . 272
Chen Sun, Robert S. Harris, Rayan Chikhi, and Paul Medvedev

Longitudinal Genotype-Phenotype Association Study via Temporal
Structure Auto-learning Predictive Model . 287

Xiaoqian Wang, Jingwen Yan, Xiaohui Yao, Sungeun Kim,
Kwangsik Nho, Shannon L. Risacher, Andrew J. Saykin, Li Shen,
Heng Huang, and for the ADNI

Improving Imputation Accuracy by Inferring Causal Variants
in Genetic Studies . 303

Yue Wu, Farhad Hormozdiari, Jong Wha J. Joo, and Eleazar Eskin

The Copy-Number Tree Mixture Deconvolution Problem and Applications
to Multi-sample Bulk Sequencing Tumor Data . 318

Simone Zaccaria, Mohammed El-Kebir, Gunnar W. Klau,
and Benjamin J. Raphael

Quantifying the Impact of Non-coding Variants on Transcription
Factor-DNA Binding . 336

Jingkang Zhao, Dongshunyi Li, Jungkyun Seo, Andrew S. Allen,
and Raluca Gordân

aBayesQR: A Bayesian Method for Reconstruction of Viral Populations
Characterized by Low Diversity . 353

Soyeon Ahn and Haris Vikalo

XII Contents

http://dx.doi.org/10.1007/978-3-319-56970-3_12
http://dx.doi.org/10.1007/978-3-319-56970-3_12
http://dx.doi.org/10.1007/978-3-319-56970-3_13
http://dx.doi.org/10.1007/978-3-319-56970-3_13
http://dx.doi.org/10.1007/978-3-319-56970-3_14
http://dx.doi.org/10.1007/978-3-319-56970-3_15
http://dx.doi.org/10.1007/978-3-319-56970-3_15
http://dx.doi.org/10.1007/978-3-319-56970-3_16
http://dx.doi.org/10.1007/978-3-319-56970-3_16
http://dx.doi.org/10.1007/978-3-319-56970-3_17
http://dx.doi.org/10.1007/978-3-319-56970-3_18
http://dx.doi.org/10.1007/978-3-319-56970-3_18
http://dx.doi.org/10.1007/978-3-319-56970-3_19
http://dx.doi.org/10.1007/978-3-319-56970-3_19
http://dx.doi.org/10.1007/978-3-319-56970-3_20
http://dx.doi.org/10.1007/978-3-319-56970-3_20
http://dx.doi.org/10.1007/978-3-319-56970-3_21
http://dx.doi.org/10.1007/978-3-319-56970-3_21
http://dx.doi.org/10.1007/978-3-319-56970-3_22
http://dx.doi.org/10.1007/978-3-319-56970-3_22

BeWith: A Between-Within Method for Module Discovery in Cancer using
Integrated Analysis of Mutual Exclusivity, Co-occurrence
and Functional Interactions (Extended Abstract) . 370

Phuong Dao, Yoo-Ah Kim, Sanna Madan, Roded Sharan,
and Teresa M. Przytycka

K-mer Set Memory (KSM) Motif Representation Enables Accurate
Prediction of the Impact of Regulatory Variants . 372

Yuchun Guo, Kevin Tian, Haoyang Zeng, and David K. Gifford

Network-Based Coverage of Mutational Profiles Reveals Cancer Genes 375
Borislav H. Hristov and Mona Singh

Ultra-Accurate Complex Disorder Prediction: Case Study
of Neurodevelopmental Disorders . 377

Linh Huynh and Fereydoun Hormozdiari

Inference of the Human Polyadenylation Code . 379
Michael K.K. Leung, Andrew Delong, and Brendan J. Frey

Folding Membrane Proteins by Deep Transfer Learning 380
Zhen Li, Sheng Wang, Yizhou Yu, and Jinbo Xu

A Network Integration Approach for Drug-Target Interaction Prediction
and Computational Drug Repositioning from Heterogeneous Information 383

Yunan Luo, Xinbin Zhao, Jingtian Zhou, Jinling Yang, Yanqing Zhang,
Wenhua Kuang, Jian Peng, Ligong Chen, and Jianyang Zeng

Epistasis in Genomic and Survival Data of Cancer Patients 385
Dariusz Matlak and Ewa Szczurek

Ultra-Fast Identity by Descent Detection in Biobank-Scale Cohorts
Using Positional Burrows-Wheeler Transform. 387

Ardalan Naseri, Xiaoming Liu, Shaojie Zhang, and Degui Zhi

Joker de Bruijn: Sequence Libraries to Cover All k-mers
Using Joker Characters . 389

Yaron Orenstein, Ryan Kim, Polly Fordyce, and Bonnie Berger

GATTACA: Lightweight Metagenomic Binning Using Kmer Counting 391
Victoria Popic, Volodymyr Kuleshov, Michael Snyder,
and Serafim Batzoglou

Species Tree Estimation Using ASTRAL: How Many Genes Are Enough? . . . 393
Shubhanshu Shekhar, Sebastien Roch, and Siavash Mirarab

Contents XIII

http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3

Reconstructing Antibody Repertoires from Error-Prone
Immunosequencing Datasets . 396

Alexander Shlemov, Sergey Bankevich, Andrey Bzikadze,
Yana Safonova, and Pavel A. Pevzner

NetREX: Network Rewiring Using EXpression - Towards
Context Specific Regulatory Networks . 398

Yijie Wang, Dong-Yeon Cho, Hangnoh Lee, Brian Oliver,
and Teresa M. Przytycka

E Pluribus Unum: United States of Single Cells . 400
Joshua D. Welch, Alexander Hartemink, and Jan F. Prins

ROSE: A Deep Learning Based Framework for Predicting
Ribosome Stalling . 402

Sai Zhang, Hailin Hu, Jingtian Zhou, Xuan He, Tao Jiang,
and Jianyang Zeng

Author Index . 405

XIV Contents

http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3
http://dx.doi.org/10.1007/978-3-319-56970-3

Boosting Alignment Accuracy
by Adaptive Local Realignment

Dan DeBlasio1(B) and John Kececioglu2

1 Computational Biology Department, Carnegie Mellon University, Pittsburgh, USA
deblasio@cmu.edu

2 Department of Computer Science, The University of Arizona, Tucson, USA
kece@cs.arizona.edu

Abstract. While mutation rates can vary markedly over the residues
of a protein, multiple sequence alignment tools typically use the same
values for their scoring-function parameters across a protein’s entire
length. We present a new approach, called adaptive local realignment,
that in contrast automatically adapts to the diversity of mutation rates
along protein sequences. This builds upon a recent technique known
as parameter advising that finds global parameter settings for align-
ers, to adaptively find local settings. Our approach in essence identifies
local regions with low estimated accuracy, constructs a set of candidate
realignments using a carefully-chosen collection of parameter settings,
and replaces the region if a realignment has higher estimated accuracy.
This new method of local parameter advising, when combined with prior
methods for global advising, boosts alignment accuracy as much as 26%
over the best default setting on hard-to-align protein benchmarks, and
by 6.4% over global advising alone. Adaptive local realignment, imple-
mented within the Opal aligner using the Facet accuracy estimator, is
available at facet.cs.arizona.edu.

Keywords: Multiple sequence alignment · Iterative refinement · Local
mutation rates · Alignment accuracy · Parameter advising

1 Introduction

Ever since the 1960s, it has been known that proteins can have distinct muta-
tion rates at different locations along the molecule [11]. The amino acids at some
positions in a protein may stay unmutated for long periods of time, while other
regions change a great deal (sometimes called “hypermutable regions”). This has
led to methods in phylogeny construction that take variable mutation rates into
account when building trees from sequences [26]. In multiple sequence alignment,
however, variation in mutation rates across sequences to our knowledge has yet
to be successfully exploited to improve alignment accuracy. Multiple sequence
alignments are typically computed using a single setting of values for the para-
meters of the alignment scoring function. This single parameter setting affects

The work of both authors was performed at the University of Arizona.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 1–17, 2017.
DOI: 10.1007/978-3-319-56970-3 1

http://facet.cs.arizona.edu/

2 D. DeBlasio and J. Kececioglu

1cpt_ ... gydpMWIATKhadvmqigkqpglfs ... dkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpaLIPR------------------LVDEAVRW-Tapv ... --hmclgqhlAKLEMKIFFEELLP
1e9x_A ... gkqVVLLSGshane----------- ... adeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRL-Hppl ... --hrcvgaafAIMQIKAIFSVLLRey-ef
1oxa_ ... gqdAWLVTGydeakaal-------- ... adeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradpsALPN------------------AVEEILRY-Iapp ... --hfcmgrplAKLEGEVALRALFGrfpal
1phd_ ... dlvwtrcnggHWIATR--------- ... sdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpeRIPA------------------ACEELLRR-Fslv ... --hlclgqhlARREIIVTLKEWLTripdf
2hpd_A ... grvTRYLSSqrlikeac-------- ... deniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRL-Wpta ... --racigqqfALHEATLVLGMMLKhf-df
1izo_A ... gknFICMTGaeaak----------- ... srmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsrERE-----------------MFVQEVRRY-Ypfg ... kghrcpgegiTIEVMKASLDFLVHqi-ey
1dt6_A ... mkpTVVLHGyeavk----------- ... leslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRF-Idll ... --rmcvgeglARMELFLFLTSILQnf-kl
1n40_A ... gaeAWLVSSyalctqvl-------- ... delfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpeLIPA------------------GVEELLRINlsfa ... --hfcpgsalGRRHAQIGIEALLKkmpgv
1n97_A ... rfpLALIFDpegve----------- ... reralseavtllvaghetVASALTWsflllshrpdwqkrvaeseeAALA------------------AFQEALRL-Yppa ... --rlclgrdfALLEGPIVLRAFFRrf-rl ...

klksv ...
...
...
...
...
...
...
...

(a) Using the optimal default parameter setting

1cpt_ ... ah-iegydpMWIATKhadvmqigkq ... ddkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpa------------------LIPRLVDEAVRWTapv ... --hmclgqhlAKLEMKIFFEELLPklksv ...
1e9x_A ... fq-lagkq-VVLLSGshanefffra ... sadeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRLHppl ... --hrcvgaafAIMQIKAIFSVLLReyef- ...
1oxa_ ... vr-flgqd-AWLVTGydeakaalsd ... sadeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradps------------------ALPNAVEEILRYIapp ... --hfcmgrplAKLEGEVALRALFGrfpal ...
1phd_ ... tr-cnggH--WIATRgqlireayed ... tsdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpe------------------RIPAACEELLRRFslv ... --hlclgqhlARREIIVTLKEWLTripdf ...
2hpd_A ... fe-apgrv-TRYLSSqrlikeacde ... ddeniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRLWpta ... --racigqqfALHEATLVLGMMLKhfdfe ...
1izo_A ... ar-llgkn-FICMTGaeaakvfydt ... dsrmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsr-----------------EREMFVQEVRRYYpfg ... kghrcpgegiTIEVMKASLDFLVHqiey- ...
1dt6_A ... vy-lgmkp-TVVLHGyeavkealvd ... tleslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRFIdll ... --rmcvgeglARMELFLFLTSILQnfklq ...
1n40_A ... vrtitgae-AWLVSSyalctqvled ... sdelfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpe------------------LIPAGVEELLRINlsf ... --hfcpgsalGRRHAQIGIEALLKkmpgv ...
1n97_A ... lp-lprfp-LALIFDpegvegalla ... preralseavtllvaghetVASALTWsflllshrpdwqkrvaesee------------------AALAAFQEALRLYppa ... --rlclgrdfALLEGPIVLRAFFRrfrld ...

|

(b) After adaptive local realignment

Fig. 1. Effect of adaptive local realignment. Two alignments of the same region of
benchmark BB11007 from the BAliBASE suite, where the amino acids highlighted
in red uppercase are from the so-called core columns of the reference alignment,
which should be aligned in a correct alignment. (a) The alignment computed by
Opal using its optimal default parameter setting (VTML200, 45, 11, 42, 40) across the
sequences, with an accuracy of 89.6%. The regions of the alignment in gray boxes
are automatically selected for realignment. (b) The outcome of adaptive local realign-
ment, with an improved accuracy of 99.6%, that uses different parameters settings in
each region. The realignments of the three regions use alternate parameter settings
(BLOSUM62, 45, 2, 45, 42), (BLOSUM62, 95, 38, 40, 40), and (VTML200, 45, 18, 45, 45), respec-
tively.

how residues across a protein are aligned, and implicitly assumes uniform muta-
tion rates. In contrast, the approach of this paper identifies alignment regions
that may be misaligned under a single parameter setting, and finds alternate
settings that may more closely match the local mutation rate of the sequences.

We present a method that takes a given alignment and attempts to improve
its overall accuracy by replacing sections of it with better subalignments, as
demonstrated in Fig. 1. The top alignment of the figure was computed using a
single parameter setting: the optimal default setting of the Opal aligner [25].
The bottom alignment is obtained by our new method, taking the top align-
ment, automatically identifying the sections in gray boxes, and realigning them
using alternate parameter settings, as described later in Sect. 3. This increases
the overall alignment accuracy by 10%, as most of the misaligned core blocks
(highlighted in red uppercase) are now corrected.

Related Work. Methods that partition a set of sequences to align or realign
them can be grouped into two categories, based on the orientation of their parti-
tions. Vertical realigners cut the input sequences into substrings, and once these
shorter substrings are realigned, they stitch their alignments together. Horizon-
tal realigners split an alignment into groups of whole sequences, which are then
merged together by realigning between groups, possibly using the induced sub-
alignment of each group. Realignment is occasionally called alignment polishing.

Crumble and Prune [21] is a pair of algorithms for performing both verti-
cal (Crumble) and horizontal (Prune) splits on an input set of sequences. The
objective, however, for splitting sequences both vertically and horizontally within

Boosting Alignment Accuracy by Adaptive Local Realignment 3

Crumble and Prune is not to improve accuracy, but to reduce running time and
memory consumption, making aligning a large number of long sequences feasible.

Gotoh [12] presented several horizontal methods for heuristically aligning
two multiple sequence alignments, which he called “group-to-group” alignment.
This can be used for alignment construction in a progressive aligner, proceeding
bottom-up over the guide tree and applying group-to-group alignment at each
node, or for polishing an existing alignment by assigning sequences to two groups
and using it to realign the groups.

AlignAlign [16] is unique as a horizontal method in that it implements an
exact algorithm for optimally aligning two multiple sequence alignments under
the sum-of-pairs scoring function with affine gap costs. This optimal group-to-
group alignment algorithm, used for both alignment construction and alignment
polishing, forms the basis of the Opal aligner [25].

The standard aligners MUSCLE [10], MAFFT [14], and ProbCons [8] also include
a polishing step that performs horizontal realignment similar to Gotoh.

While realignment attempts to correct errors in existing alignments that were
made during the alignment process, several tools attempt to avoid making these
errors in the first place by adjusting parameter values along the sequences during
alignment construction. For example, PRANK [17] uses a multi-level HMM that
effectively chooses the alignment scoring function at each position. T-Coffee [19]
uses consistency between pairwise alignments to create position-specific substi-
tution scores. In fact, even the early tool ClustalW [23] adjusted positional gap-
penalties based on pairwise sequence characteristics. Nevertheless, these tools
which adjust positional alignment scores all attain lower accuracies on protein
benchmarks than the Opal aligner without positional adjustment that we com-
pare against in our experiments.

Adaptive local realignment, in contrast, is a vertical approach that aims to
improve alignment accuracy, and a meta-method that can be applied to any
aligner with tunable parameters. To our knowledge, this is the first realignment
approach that automatically adapts to varying mutation rates along a protein
and successfully achieves a demonstrable improvement in accuracy.

2 Background on Parameter Advising

To make the paper self-contained, we briefly review our prior work on parameter
advising. We first review the concept of a parameter advisor, which requires an
estimator of alignment accuracy and a set of parameter choices for the advisor,
and then summarize our prior techniques for learning both an estimator and an
advisor set. (An extensive discussion of parameter advising for multiple sequence
alignment is in [7].)

We emphasize that while this section describes how to find an accuracy esti-
mator and advisor set based on training examples, in practice a user of parameter
advising will simply apply an advisor with a precomputed accuracy estimator
and advisor set, and will not invoke the training procedures described here.

4 D. DeBlasio and J. Kececioglu

Fig. 2. The parameter advising process. For an input set of sequences, a parameter
advisor first invokes the aligner for each assignment of parameter values in a collection
of parameter choices. Each parameter choice when used with the aligner produces an
alternate alignment of the sequences. An accuracy estimator is then used to label each
of the alternate alignments with an accuracy estimate. The advisor then returns the
alignment with the highest accuracy estimate.

2.1 Global Parameter Advising

The goal of parameter advising is to find the parameter setting for an aligner
that yields the most accurate alignment of a given set of input sequences. The
accuracy of a computed alignment is measured with respect to the “correct”
alignment of the sequences (which often is not known). For special benchmark
sets of protein sequences, the gold-standard alignment of the proteins, called their
reference alignment, is usually obtained through structural alignment by finding
the best superposition of the known three-dimensional structures of the proteins.
Columns of the reference alignment that contain a residue from every protein in
the set (where a residue is the amino acid at a particular position in a protein),
and for which the residues in the column are all mutually close in space in the
superposition of the structures, are called core columns. Runs of consecutive
core columns are called core blocks, which represent the regions of the structural
alignment with the highest confidence of being correct. Given such a reference
alignment with identified core blocks, the accuracy of a different, computed
alignment is the fraction of the pairs of residues aligned in the core blocks of
the reference alignment that are also aligned in the computed alignment. (So a
computed alignment of 100% accuracy completely agrees with the reference on its
core blocks, though it may disagree elsewhere.) The best computed alignment is
one of highest accuracy, and the task of a parameter advisor is to find a setting of
the tunable parameters of an aligner that yields an accurate output alignment.

Boosting Alignment Accuracy by Adaptive Local Realignment 5

This setting can be highly input dependent, as the best choice of parameter
values for an aligner can vary for different sets of input sequences.

When aligning sequences in practice, a reference alignment is almost never
known, in which case the true accuracy of a computed alignment cannot be
measured. Instead our parameter advisor relies on an accuracy estimator E that
for an alignment A, gives a value E(A) in the range [0, 1] that estimates the
true accuracy of alignment A. An estimator should be efficiently computable
and positively correlated with true accuracy.

To choose a parameter setting, an advisor takes a set of choices P , where
each parameter choice p ∈ P is a vector that assigns values to all the tunable
parameters of an aligner, and picks the choice that yields a computed alignment
of highest estimated accuracy.

Formally, given an accuracy estimator E and a set P of parameter choices, a
parameter advisor tries each parameter choice p ∈ P , invokes an aligner to com-
pute an alignment Ap using choice p, and then selects the parameter choice p∗

that has maximum estimated accuracy: p∗ ∈ argmaxp∈P

{
E(Ap)

}
. Figure 2

shows a diagram of parameter advising. Since the advisor runs the aligner
|P | times on a given set of input sequences, a crucial aspect of parameter advising
is finding a small set P for which the true accuracy of the output alignment Ap∗

is high.
To construct a good advisor, we need to find a good estimator E and a good

set P . The estimator and advisor set are learned on training data consisting of
benchmark sets of protein sequences for which a reference alignment is known.
The learning procedure tries to find an estimator E and set P that maximize
the true accuracy of the resulting advisor on this training data, which we sub-
sequently assess on separate testing data.

Note that the process of advising is fast: for a set P of k parameter choices,
advising involves computing k alignments under these choices, which can be
done in parallel, evaluating the estimator on these k alignments, and taking a
max. The separate process of training an advisor, by learning an estimator and
advisor set as we review next, is done once, off-line, before any advising is done.

2.2 Learning an Accuracy Estimator

Our previous work [6,15] presented an efficient approach for learning an accu-
racy estimator that is a linear combination of real-valued alignment feature func-
tions, based on solving a large-scale linear programming problem. This approach
resulted in Facet (short for “feature-based accuracy estimator” [4]), which is
currently the most accurate estimator for parameter advising [5,15].

This approach assumes we have a collection of d real-valued feature func-
tions g1(A), . . . , gd(A) on alignments A, where these functions gi are positively
correlated with true accuracy. The alignment accuracy estimator E is a linear
combination of these functions, E(A) =

∑
1≤i≤d ci gi(A), where the coefficents

ci specify the estimator E. When the feature functions have range [0, 1] and
the coefficients form a convex combination, the resulting estimator E will also
have range [0, 1]. Facet uses a collection of five feature functions, many of which

6 D. DeBlasio and J. Kececioglu

Alignment Accuracy
0 0.2 0.4 0.6 0.8 1

F
ac

et
 V

al
u

e

0
0.2
0.4
0.6
0.8

1

Alignment Accuracy
0 0.2 0.4 0.6 0.8 1

T
C

S
 V

al
u

e

0
0.2
0.4
0.6
0.8

1

Fig. 3. Relationship of estimators to true accuracy. Each point in a scatterplot corre-
sponds to an alignment whose true accuracy is on the horizontal axis, and whose value
under a given estimator is on the vertical axis. Both scatterplots show the same set of
3,000 alignments under the accuracy estimators Facet [15] and TCS [3].

make use of predicted secondary structure for the protein sequences [15]. Figure 3
shows the correlation of Facet and TCS [3] (the next best estimator in our tests)
to true accuracy. To be able to distinguish good from bad alignments an esti-
mator should have a steep slope and very little spread. While the TCS estimator
has high slope, it has quite a bit of spread. In contrast, the Facet estimator
has much less spread but a less steep slope, and we have found this to be more
effective in ranking alignments for parameter advising.

The features we use in Facet are a mixture of canonical measures of align-
ment quality, such as Amino Acid Identity, and novel non-local features of an
alignment that correlate with true accuracy. Many of the most accurate features
use predicted protein secondary structure. For instance, the Secondary Struc-
ture Blockiness feature finds an optimal packing of blocks of aligned amino acids
that have the same predicted structure type. The other feature functions used
in the Facet estimator are: Secondary Structure Identity, Secondary Structure
Agreement, Gap Open Density, and Core Column Percentage. A full description
of all features is in [15].

A parameter advisor uses the estimator to effectively rank alignments, so
an estimator just needs to be monotonic in true accuracy. The difference-fitting
approach learns the coefficients of an estimator that is close to monotonic by fit-
ting the estimator to differences in true accuracy for pairs of training alignments.
We can formulate the problem of coefficient finding using difference-fitting as a
linear program; the details of this approach are in [15].

2.3 Learning an Advisor Set

The size of the parameter set used for advising should be small, since the aligner
is run for each parameter setting. We utilize the concept of an oracle [25] (a
perfect advisor that has access to the true accuracy of an alignment) to find sets
that we use in practice. For a given advisor set P , an oracle selects parameter

Boosting Alignment Accuracy by Adaptive Local Realignment 7

choice argmaxp∈P

{
F (Ap)

}
, where again function F gives the true accuracy of

an alignment. (Equivalently, an oracle is an advisor that uses the perfect esti-
mator F .) An oracle always picks the parameter choice that yields the highest
accuracy alignment.

While an oracle is impossible to construct in practice, it gives a theoretical
limit on the accuracy achievable by advising with a given set. Furthermore, if
we find the optimal advisor set for an oracle for a given cardinality bound k,
which we call an oracle set, then the performance of an oracle on an oracle set
gives a theoretical limit on how well advising can perform for a given bound k
on the number of parameter choices. In practice, oracle sets are used with Facet
to construct an advisor.

We have shown that while finding an optimal oracle set is NP-complete, it
can be formulated as an integer linear programming problem [15]. Learning an
optimal oracle set of cardinality k, for a universe of u parameter choices and
a training set of t benchmarks, involves solving an integer linear program with
Θ(ut) variables and Θ(ut) inequalities. Using the CPLEX integer linear program-
ming solver, this formulation permits finding optimal oracle sets in practice even
for cardinalities up to k = 25.

It is possible to use a greedy procedure to find advisor sets tuned to a concrete
estimator rather than the oracle [5]. While using these sets on global parame-
ter advising increased advising accuracy over oracle sets, this increase did not
transfer to adaptive local realignment. For the results in later sections, we will
construct an advisor using the Facet accuracy estimator learned using difference
fitting, along with oracle sets. Note this is not an oracle advisor, since it uses
the Facet estimator.

This prior work focused on using parameter advising to choose the parameter
setting for an entire alignment, which we call here global parameter advising. The
next section presents adaptive local realignment, which leverages these ideas to
in essence achieve local parameter advising.

3 Adaptive Local Realignment

To overcome the issue of protein sequences being non-homogeneous and hav-
ing regions that may require different alignment parameter settings we have
developed a method we call adaptive local realignment. Adaptive local realign-
ment uses some of the same basic principles that have been shown to work well
for global parameter advising. We apply the techniques described in the previ-
ous section locally to choose the best alignment parameters over an interval of
columns in an alignment.

The adaptive local realignment method can be broken down into two steps:
(1) discerning regions of the alignment that are well-aligned, which should be
retained; and (2) producing a new alignment for regions that are poorly aligned,
using parameter advising.

8 D. DeBlasio and J. Kececioglu

Fig. 4. The adaptive local realignment process. (a) Estimate the accuracy for sliding
windows across the input alignment using Facet. (b) Calculate a score for each column
as the weighted sum of the accuracies of all windows that overlap the column. (c) Label
columns that are above τS or below τB as seeds or barriers, respectively. (d) Define
realignment regions that will be extracted from the alignment by extending seeds in
both directions until they reach a barrier. (e) Use parameter advising to find a new
alignment of each realignment region. (f) Replace the original realignment region if the
new alignment is more accurate.

3.1 Identifying Local Realignment Regions

When selecting alignment columns that should be saved we cannot simply iden-
tify correctly recovered columns in a computed alignment since just as with
global alignments we do not have a known reference in practice. But we can
identify these regions using an accuracy estimator E which we defined earlier.
To partition the input alignment we first calculate the estimated accuracy of
a sliding window across the alignment (Fig. 4a). The window size is a fraction
w ≤ 1 of the total length of the alignment. The value of w must be chosen
carefully because the accuracy estimator has features that reflect global proper-
ties of an alignment. A larger sliding window will provide more context at each

Boosting Alignment Accuracy by Adaptive Local Realignment 9

position and should provide a better estimate of accuracy. At the same time, if
the window is too large there will not be fine enough granularity to identify the
transition points between correctly- and incorrectly-aligned columns. Addition-
ally, we define upper and lower bounds on the absolute window size to account
for very short and very long alignments.

A score is assigned to each column as the sum of the approximately 1
w window

scores that overlap that column weighted proportionally to the distance to the
center column of the window (Fig. 4b). A geometric distribution, with a decay
rate d < 1, centered on the middle column is used to determine the contribution
of a window to the scores of each of the columns it covers. As d approaches 1,
a column gets equal weight from all covering windows; as it approaches 0, the
score is dependent only on the window centered at that column.

From the column scores we generate a partitioning by labeling columns for
which there is the most evidence of being correctly (or incorrectly) aligned.
Given the minimum percentage of columns we would like to retain from the
input alignment, TB, and the minimum percentage of columns we would like to
replace, TS , we calculate two threshold values τB and τS such that the number of
columns with score greater than τB is at least �� TB�, and the number of columns
with score less than τS is at least �� TB�. We can then label all columns with
score at least τB as barriers—these columns are guaranteed to be retained—and
those with column score at most τS are labeled as seeds—these columns are
guaranteed to be realigned (Fig. 4c). Finally, we define realignment regions by
extending each seed in both directions until a barrier column is reached (or the
first or last column of the alignment). Note that a realignment region may contain
more than one seed column but will never include one of the barriers. Using this
method we ensure that: at least � TB columns from the original alignment will be
in the final alignment, there will always be at least one realignment region, and
there will never be a realignment region that covers all columns of the input.

3.2 Local Parameter Advising on a Region

The realignment regions defined above identify subalignments that have the
potential to be improved and we will use parameter advising to produce bet-
ter alignments of these regions and replace them in the input alignment. We
extract the subalignment from the input identified by the columns in each align-
ment region (Fig. 4d). Removing the gaps from this subalignment yields a set of
unaligned sequences which becomes the input to a slightly modified version of
the parameter advising method described earlier (Sect. 2.1, Fig. 2) which consid-
ers the location of the realignment region within the alignment scoring scheme
(Fig. 4e). The Opal aligner scores terminal and internal gaps separately but for
the case of adaptive local realignment we only apply terminal gap scores when
the terminal column in the context of the subalignment is also the terminal col-
umn in the context of the global alignment. As mentioned earlier an alignment
region will never include both terminals.

10 D. DeBlasio and J. Kececioglu

Once we have obtained the new alignment via parameter advising the final
step is to replace the original region in the input (Fig. 4f) if the Facet score is
higher than that of the original subalignment for the realignment region.

After all realignment regions have been updated by local advising we make
one last advising decision between the new alignment and the input alignment.
The more accurate global alignment of the two is returned.

3.3 Iterative Local Realignment

The adaptive local realignment process corrects misalignments in the input, but
after performing the procedure there may still be some regions of the alignment
that can be improved. These remaining regions may not have been identified
originally because they are subregions within a newly-included alignment, or
because the threshold was too low for a seed to be identified due to the very low
quality of other another region. In either case, it would be beneficial to repeat
adaptive local realignment to further increase accuracy. Therefore, we iterate
the whole process (Fig. 4) until a user-defined maximum number of iterations is
reached, or no further improvements are made.

3.4 Combining Local and Global Advising

The quality of the alignment input to the adaptive local realignment process
is critical since adaptive local realignment is only making local improvements.
Therefore, we would like to use global parameter advising, which has been shown
to improve accuracy [15], to identify the best initial alignment. Local and global
advising can then be combined in two ways:

(1) local advising on all global alignments, using adaptive local realignment on
each of the alternate alignments produced within global parameter advising,
and then choosing among all 2|P | alternate alignments (for |P | unaltered
global alignments, and |P | locally-advised alignments); and

(2) local advising on the best global alignment, which chooses the best global
alignment, and then uses adaptive local realignment to boost its accuracy.

We compare both ways of combining local and global advising, as well as local
advising on the default alignment, in the next section.

4 Assessing Adaptive Local Realignment

We evaluate the performance of adaptive local realignment and its use in com-
bination with global advising through experiments on a collection of protein
multiple sequence alignment benchmarks. A full description of the benchmarks
and universe of parameters used for parameter advising can be found in [15] and
is briefly described here.

The benchmark suites used in our experiments consist of reference alignments
of proteins that are largely induced by structurally aligning their known three-
dimensional structure. In particular, we use the BENCH suite of Edgar [9] (which

Boosting Alignment Accuracy by Adaptive Local Realignment 11

is a combination of the BAliBASE [1], PREFAB [10], OxBench [20], and SABRE [24]
databases), supplemented by a selection from the PALI suite of Balaji et al. [2].
The full benchmark collection we use consists of 861 reference alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly over-
represented in this collection. To correct for this bias towards easy to align bench-
marks when evaluating average advising accuracy, we binned the 861 benchmarks
by hardness, which we measured by the true accuracy of Opal using the default
parameter setting. We then divided the the full range [0, 1] of accuracies into 10
bins, where bin b for b = 1, ..., 10 contains hardness interval

(
(b − 1)/10, b/10

]
,

and has 12, 12, 20, 34, 26, 50, 62, 74, 137, and 434 benchmarks respectively. We
report the average accuracy across bins rather than across benchmarks. This
means that the average accuracy of alignments using the Opal default parame-
ter settings is near 50%. Even though the binning is based on the Opal default
alignments, most other standard aligners have default accuracy near 50% as
well: Clustal Omega [22], 47.3%; MUSCLE [10], 48.4%; MAFFT [14], 51.0%. The
methodology presented here is general and can be implemented for any other
aligner.

We developed a universe of alignment parameter settings by enumerating
reasonable values of each of the tunable alignment parameters for the Opal
aligner. In particular the tunable parameters for Opal are represented as a 5-tuple
(σ, λI , λT , γI , γT) which represent the replacement matrix (σ) and the internal
and terminal gap open (λ) and extension costs (γ). For the substitution matrix
we selected 3 matrices from the BLOSUM [13] and VTML [18] families, two choices
of terminal gap extension costs, and three choices each of internal gap extension,
terminal gap open and internal gap open costs. In total we generate a universe
of 162 parameter settings.

We use 12-fold cross validation to examine the increase in accuracy gained
using adaptive local realignment. We first evenly and randomly distributed
benchmarks into twelve groups for each hardness bin; the 12 independent folds
are generated by choosing one group from each bin to be in the testing set, and
the other eleven to be in the training set. Finally, we generate an alignment
for each benchmark in the training or testing set of each fold using each of the
parameters in our universe and the Opal aligner. The results we reported are
averages over these twelve folds. (Note that across twelve folds, every example
is tested on exactly once.)

We trained the estimator coefficients for Facet on the training example sets
for each fold using the difference fitting method described in Sect. 2.2. We found
that there was very little change in coefficients between the training folds so
for simplicity we use the estimator coefficients that are release with the newest
version Facet which were trained on all available benchmarks. We also use the
TCS estimator for adaptive local realignment, these results are in Sect. 4.3.

To choose the parameters for adaptive local realignment, we tested the cross
product of reasonable values for the tunable parameters. We used the perfor-
mance on training benchmarks described above to find the combination of these
settings that gave the highest improvement in accuracy when local advising was

12 D. DeBlasio and J. Kececioglu

Fig. 5. Accuracy of the default alignment, and different advising methods, within diffi-
culty bins. The horizontal axis shows all ten benchmarks bins. The vertical axis shows
the accuracy averaged over just the benchmarks in that bin using default parameter
settings, local advising only, global advising only, and the combined advising method
using an oracle set of cardinality k = 10. The bar chart on the right shows the accuracy
uniformly averaged over the bins.

applied to the default alignments from Opal. Table 1 summarizes the tunable
parameters, the range of values over which we tested and the value we selected
for use in our experiments. Details on the iteration count selection are in Sect. 4.4.

4.1 Effect of Local Realignment Within Difficulty Bins

Figure 5 shows the alignment accuracy across difficulty bins for default align-
ments from Opal, local advising on these default alignments, global advising
alone, and local combined with global alignment. Here the combination method
uses local advising on all alternate alignments within global advising. The oracle
set of cardinality k = 10 was used for both global and local advising.

The improvement gained by using adaptive local realignment over the default
parameter setting is most evident in the two most difficult benchmark bins using
local advising increases the average accuracy by 11.5% and 9.1% respectively,

Table 1. Adaptive local realignment parameter selection

Parameter Range of values Chosen

Window length fraction, w 0.05, 0.1, 0.2, 0.3, . . . , 0.7 0.3

Window length lower bound 5, 10, 20, 30 10

Window length upper bound 30, 50, 75, 100, 125 30

Barrier label percentages, TB 5%, 10%, 20%, 30%, . . . , 70% 10%

Seed label percentages, TB 5%, 10%, 20%, 30%, . . . , 70% 30%

Geometric decay rate, d 0.5, 0.66, 0.9, 0.99 0.9

Iterations 1, . . . , 5, 10, 15, 25 5

Boosting Alignment Accuracy by Adaptive Local Realignment 13

Fig. 6. Advising accuracy versus advisor set cardinality. The horizontal axis is the
cardinality of the advisor set used by the advising methods. The vertical axis shows
the advising accuracy of the default parameter setting, local advising, global advising,
and the combined advising method, averaged across difficulty bins.

but the accuracy increases on all bins. Overall using local advising increases the
accuracy of the default alignments by and average of 4.5% across bins.

Combining local and global advising substantially improves the accuracy over
either of the methods individually. This is most pronounced for the hardest to
align benchmarks. For the bottom two bins using both parameter advising and
adaptive local realignment increases the accuracy by 23.0% and 25.6% accuracy
over using just the default parameter choices. Additionally, using adaptive local
realignment increases the accuracy by 5.9% and 6.4% accuracy on the bottom
most bins over using parameter advising alone. On average thats an 8.9% increase
in accuracy over all bins by using the combined procedure over using just the
default parameter choice and a 3.1% increase over using only parameter advising.

4.2 Varying Advisor Set Cardinality

Since an alignment is produced for each region of local realignment for each
parameter choice in the advisor set, and the running time is dependent on the
size of the advisor set, it may be desirable to use a smaller set than used in
the previous section to reduce the running time of local (and global) advising.
We produced oracle advisor sets for cardinalities k = 2, . . . , 15 and used them
to test the effect of local advising both alone and in combination with global
advising. Figure 6 shows the average advising accuracies of using advisor sets of
increasing cardinalities for adaptive local realignment applied to the Opal default
alignment, global advising alone, and global combined with local advising. The
figure shows the accuracy of both combined local and global advising strategies
described in Sect. 3.4: adaptive local realignment applied to best global align-
ment found though advising and adaptive local realignment applied to all global

14 D. DeBlasio and J. Kececioglu

Fig. 7. Accuracy of the default alignment and local realignment using TCS and Facet

with various advisor set cardinalities. This figure compares the accuracy of alignments
produced by the Opal default parameter settings applying local realignment using either
the TCS or Facet estimator. The horizontal axis is the cardinality of the oracle advising
set used for local realignment. The vertical axis shows the accuracy of the alignments
produced by each of the advising methods, averaged across difficulty bins.

alignments. The cardinality of the set used for both global and local advising is
shown on the horizontal axis, while the vertical axis shows alignment accuracy
uniformly averaged across bins.

The accuracy of alignments produced by all four methods shown eventually
reaches a plateau where adding additional parameters to the advisor set no
longer increases the alignment accuracy. This plateau is reached at cardinality
k = 10 when local realignment is applied to the default alignments and at k = 6
for parameter advising with and without local realignment, but this plateau is
higher for the combined methods. Across all cardinalities using local combined
with global advising improves alignment accuracy by nearly 4% on average.
Note that when local realignment is applied to all global alignments the advisor
is now choosing from a set of alignments which have higher accuracy than their
corresponding original alignments.

The results above uniformly average advising accuracy across bins. In con-
trast, if we report advising accuracy uniformly averaged across benchmarks, Opal
on its default parameter choice achieves accuracy 80.4%, local or global advising
alone increases this accuracy to 82.1% and 81.8% respectively, and combining
both methods increases the accuracy to 83.1% (all at cardinality k=10). Other
aligners have accuracies: Clustal Omega, 77.3%; MUSCLE, 78.1%; MAFFT, 79.4%.

4.3 Comparing Estimators for Local Advising

Figure 7 shows the average accuracy of local advising on default alignments using
both Facet and TCS (the next-best estimator for advising [5,15]). These results

Boosting Alignment Accuracy by Adaptive Local Realignment 15

used only a single iteration of adaptive local realignment for both estimators,
due to the large increase in running time caused by calls to the external TCS
program. Using TCS for local advising does increase accuracy over the default
alignment, but the increase is less than half that of Facet.

4.4 Effect of Iterating Local Realignment

As discussed in Sect. 3.3, iterating local advising should eventually reach a state
where the alignment is no longer improving, or even worse, begins deteriorating
due to noise in the accuracy estimator. Table 2 shows the average accuracy of
using local adaptive realignment on the default alignment as the number of
iterations is increased. The training accuracy reaches a plateau at 5 iterations;
we use this number of iterations in Sects. 4.1 and 4.2.

4.5 Summarizing the Effect of Adaptive Local Realignment

Table 3 summarizes how adaptive local realignment behaves across difficulty bins
during the first iteration of improving Opal default alignments. The columns are
average values for each of the 10 benchmark bins, and average values across all
benchmarks. The first three rows show how many of the 861 benchmarks are in
each bin, as well as the number and percentage of those had at least one realign-
ment region in the alignment that was replaced. The last three rows summarize
how much of each alignment changed. The fourth row shows the average num-
ber of realignment regions found for each benchmark; on average about 2 regions
were realigned for each default alignment. The last two rows summarize the per-
centage of the original columns that were in realignment regions, and how many
of the columns from the original alignment were replaced. Notice that while the
percentage of columns covered by realignment regions stays roughly the same

Table 2. Accuracy of adaptive local realignment across iterations

Iterations 1 2 3 4 5 10 15 25

Testing 53.5% 53.7% 54.1% 54.4% 54.5% 54.5% 54.5% 54.5%

Training 53.5% 53.9% 54.5% 54.6% 54.8% 54.8% 54.9% 54.9%

Table 3. Summary of adaptive local realignment on default alignments

Bin 1 2 3 4 5 6 7 8 9 10 Overall

Number of benchmarks 12 12 20 34 26 50 61 74 137 434 861

Number modified 8 7 16 27 19 34 46 61 115 352 685

Percentage modified 67% 58% 80% 79% 73% 68% 74% 82% 84% 81% 80%

Regions per benchmark 1.92 2.17 2.50 1.88 2.23 2.14 2.31 2.16 2.48 2.19 2.23

Columns realigned 75% 73% 76% 70% 75% 77% 74% 73% 75% 72% 73%

Columns replaced 64% 60% 68% 60% 66% 72% 65% 63% 64% 47% 57%

16 D. DeBlasio and J. Kececioglu

in the easiest-to-align benchmark bin, only 47% of the alignment columns were
altered, while in the rest of the bins over 60% of the alignment columns improved.

4.6 Running Time

The running time of Opal with adaptive local realignment, averaged across all
benchmarks, increases to 110 seconds when using an advisor set of cardinality
k=10, and 5 iterations. This is up from 36 seconds for one iteration, and about
8 seconds for the default parameter settings. This high increase in wall-clock
time is mainly due to the fact that, as currently implemented, adaptive local
realignment does not exploit parallelism in advising. In contrast, global advising
has been parallelized, so the average running time of global advising on the
same advisor set of size k=10 is only around 33 seconds. Note that the number
of columns being repeatedly aligned by global advising is about a factor 1.25
more than for local advising. When the two methods are combined, the average
running time increases to 68 and 178 seconds for local advising on the best global
alignment, and local advising on all global alignments, respectively.

5 Conclusion

We have presented adaptive local realignment, the first approach that demonstra-
bly boosts protein multiple sequence alignment accuracy by adaptively realigning
regions with local parameter settings. Applying this to alignments initially com-
puted using an optimal default parameter setting significantly improves align-
ment accuracy; when combined with global parameter advising to select an initial
parameter setting, this new approach to local advising boosts accuracy greatly.

Acknowledgements. Research of JK and DD at Arizona was funded by NSF Grant
IIS-1217886 to JK. DD was partially supported at Carnegie Mellon by NSF Grant
CCF-1256087, NSF Grant CCF-131999, NIH Grant R01HG007104, and Gordon and
Betty Moore Foundation Grant GBMF4554, to Carl Kingsford.

References

1. Bahr, A., Thompson, J.D., Thierry, J.C., Poch, O.: BAliBASE (Benchmark Align-
ment dataBASE): enhancements for repeats, transmembrane sequences and circu-
lar permutations. Nucleic Acids Res. 29(1), 323–326 (2001)

2. Balaji, S., Sujatha, S., Kumar, S., Srinivasan, N.: PALI—a database of Phylogeny
and ALIgnment of homologous protein structures. NAR 29(1), 61–65 (2001)

3. Chang, J., Tommaso, P., Notredame, C.: A new multiple sequence alignment reli-
ability measure to estimate alignment accuracy and improve phylogenetic tree
reconstruction. Mol. Biol. Evol. 31(6), 1625–1637 (2014)

4. DeBlasio, D., Kececioglu, J.: Facet: software for accuracy estimation of protein
multiple sequence alignments (2014). facet.cs.arizona.edu

5. DeBlasio, D., Kececioglu, J.: Learning parameter-advising sets for multiple
sequence alignment. IEEE/ACM Trans. Comput. Biol. Bioinform. (2015). doi:10.
1109/TCBB.2015.2430323

http://facet.cs.arizona.edu/
http://dx.doi.org/10.1109/TCBB.2015.2430323
http://dx.doi.org/10.1109/TCBB.2015.2430323

Boosting Alignment Accuracy by Adaptive Local Realignment 17

6. DeBlasio, D.F., Wheeler, T.J., Kececioglu, J.D.: Estimating the accuracy of multi-
ple alignments and its use in parameter advising. In: Chor, B. (ed.) RECOMB
2012. LNCS, vol. 7262, pp. 45–59. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29627-7 5

7. DeBlasio, D.F.: Parameter Advising for Multiple Sequence Alignment. Ph.D. dis-
sertation, Department of Computer Science, The University of Arizona, May 2016

8. Do, C., Mahabhashyam, M., Brudno, M., Batzoglou, S.: Probabilistic consistency-
based multiple sequence alignment. Genome Res. 15(2), 330–340 (2005)

9. Edgar, R.C.: BENCH (2009). drive5.com/bench
10. Edgar, R.: MUSCLE multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)
11. Fitch, W.M., Margoliash, E.: A method for estimating the number of invariant

amino acid coding positions in a gene using cytochrome c as a model case. Biochem.
Genet. 1(1), 65–71 (1967)

12. Gotoh, O.: Optimal alignment between groups of sequences and its application to
multiple sequence alignment. Comput. Appl. Biosci. 9(3), 361–370 (1993)

13. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA 89(22), 10915–10919 (1992)

14. Katoh, K., Kuma, K.I., Toh, H., Miyata, T.: MAFFT version: 5 improvement in
accuracy of multiple sequence alignment. Nucleic Acids Res. 33(2), 511–518 (2005)

15. Kececioglu, J., DeBlasio, D.: Accuracy estimation and parameter advising for pro-
tein multiple sequence alignment. J. Comput. Biol. 20(4), 259–279 (2013)

16. Kececioglu, J., Starrett, D.: Aligning alignments exactly. In: Proceedings of the
8th Conference on Research in Computational Molecular Biology (RECOMB), pp.
85–96. ACM (2004)

17. Löytynoja, A., Goldman, N.: Phylogeny-aware gap placement prevents errors
in sequence alignment and evolutionary analysis. Science 320(5883), 1632–1635
(2008)

18. Müller, T., Spang, R., Vingron, M.: Estimating amino acid substitution models: a
comparison of Dayhoff’s estimator, the resolvent approach and a maximum likeli-
hood method. Mol. Biol. Evol. 19(1), 8–13 (2002)

19. Notredame, C., Higgins, D., Heringa, J.: T-Coffee: a novel method for fast and
accurate multiple sequence alignment. J. Mol. Biol. 302(1), 205–217 (2000)

20. Raghava, G., et al.: OXBench: a benchmark for evaluation of protein multiple
sequence alignment accuracy. BMC Bioinform. 4(1), 1–23 (2003)

21. Roskin, K.M., Paten, B., Haussler, D.: Meta-alignment with Crumbleand Prune:
partitioning very large alignment problems for performance and parallelization.
BMC Bioinform. 12(1), 1–12 (2011)

22. Sievers, F., et al.: Fast, scalable generation of high-quality protein multiple
sequence alignments using Clustal Omega. Mol. Sys. Biol. 7(1), 539 (2011)

23. Thompson, J., Higgins, D., Gibson, T.: Clustal W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680
(1994)

24. Van Walle, I., Lasters, I., Wyns, L.: SABmark: a benchmark for sequence alignment
that covers the entire known fold space. Bioinformatics 21(7), 1267–1268 (2005)

25. Wheeler, T.J., Kececioglu, J.D.: Multiple alignment by aligning alignments. Bioin-
formatics 23(13), i559–i568 (2007)

26. Yang, Z.: Maximum-likelihood estimation of phylogeny from DNA sequences when
substitution rates differ over sites. Mol. Biol. Evol. 10(6), 1396–1401 (1993)

http://dx.doi.org/10.1007/978-3-642-29627-7_5
http://dx.doi.org/10.1007/978-3-642-29627-7_5
http://drive5.com/bench/

A Concurrent Subtractive Assembly Approach
for Identification of Disease Associated

Sub-metagenomes

Wontack Han, Mingjie Wang, and Yuzhen Ye(B)

Indiana University, Bloomington, IN, USA
yye@indiana.edu

Abstract. Comparative analysis of metagenomes can be used to detect
sub-metagenomes (species or gene sets) that are associated with spe-
cific phenotypes (e.g., host status). The typical workflow is to assemble
and annotate metagenomic datasets individually or as a whole, followed
by statistical tests to identify differentially abundant species/genes. We
previously developed subtractive assembly (SA), a de novo assembly
approach for comparative metagenomics that first detects differential
reads that distinguish between two groups of metagenomes and then
only assembles these reads. Application of SA to type 2 diabetes (T2D)
microbiomes revealed new microbial genes associated with T2D. Here we
further developed a Concurrent Subtractive Assembly (CoSA) approach,
which uses a Wilcoxon rank-sum (WRS) test to detect k-mers that are
differentially abundant between two groups of microbiomes (by contrast,
SA only checks ratios of k-mer counts in one pooled sample versus the
other). It then uses identified differential k-mers to extract reads that are
likely sequenced from the sub-metagenome with consistent abundance
differences between the groups of microbiomes. Further, CoSA attempts
to reduce the redundancy of reads (from abundant common species)
by excluding reads containing abundant k-mers. Using simulated micro-
biome datasets and T2D datasets, we show that CoSA achieves strik-
ingly better performance in detecting consistent changes than SA does,
and it enables the detection and assembly of genomes and genes with
minor abundance difference. A SVM classifier built upon the microbial
genes detected by CoSA from the T2D datasets can accurately discrimi-
nates patients from healthy controls, with an AUC of 0.94 (10-fold cross-
validation), and therefore these differential genes (207 genes) may serve
as potential microbial marker genes for T2D.

Keywords: Metagenome · Concurrent Subtractive Assembly ·
Wilcoxon rank-sum test · Comparative metagenomics

1 Introduction

The human body is host to trillions of bacteria cells, outnumbering human cells
by 1.3 to 1 (in contrast to the widely cited 10:1 ratio), according to a recent

W. Han and M. Wang—These authors contributed equally to this work.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 18–33, 2017.
DOI: 10.1007/978-3-319-56970-3 2

Concurrent Subtractive Assembly 19

estimate [40]. Moreover, the genes encoded by human microbiome are hundreds
of times more than the human complement [47]. It has been reported that those
microorganisms are involved in ∼20% of human malignancies [6]. The gut micro-
biota has been linked to a variety of conditions including inflammatory bowel
disease [23], cardiovascular disease [19], rheumatoid arthritis [38], Parkinson’s
disease [37], autism spectrum disorder [16], colon cancer [9,39], and liver cirrhosis
[34], among others. However, only 10 microbes are designated to be carcinogenic
to human beings by the International Agency for Cancer Research (IACR) [6].
Therefore, it is intriguing to explore microbes that are directly related to the
development of human diseases.

The development of next generation sequencing has pushed the advancement
of metagenomics, which presents us a great opportunity to identify microorgan-
isms that are enriched or depleted during disease and explore possible mech-
anisms behind the association. The human microbiome project has shown the
association between the shifts in our microbiota and diseases such as obesity [17]
and periodontitis [15]. Although the change in identify of the species (or abun-
dance) does not ensure a causal role for the microbes, we can narrow down the
set of candidate genomes or genes by such studies. One new trend of microbiome
research is microbiome-wide association studies (MWAS), which are analogous
to genome-wide association studies (GWAS) [20]. MWAS may take a case-control
approach, revealing the association between microbiomes and human diseases.
However, the limitation of this approach is that it cannot distinguish whether
the microbiome drives the disease, the disease drives the microbiome, or both are
modified by confounding factors. On the other hand, longitudinal studies may
allow researchers to test whether changes in the microbiome precede or follow
the development of disease [5,11].

In the seeking of disease-associated microbes, we should note the signifi-
cant compositional variations of microbiota from individual to individual [10].
Regarding this interpatient variability, the correct strategy is to identify con-
served microbial community behaviors in microbiota-associated diseases [15].
Microbial marker gene surveys have been used extensively to reveal the associ-
ation of microbiota with diseases such as diabetes and Crohn’s disease [31]. For
instance, Qin et al. identified 15 optimal marker genes from the gut microbiome
in liver cirrhosis by comparing 98 patients and 83 healthy control individuals
[34]. Based on only the 15 biomarkers, they were able to construct a classifier
that can discriminate patients with a decent accuracy [34]. Similarly, gut micro-
biota was explored to detect colorectal cancer and a metagenomic classifier was
trained using the taxonomic abundances of 22 marker species [45]. The typical
workflow of these marker-gene surveys is to assemble the metagenomes and then
predict the genes, potential marker genes can then be identified by detecting sig-
nificant differences in their distribution across healthy and disease populations.
The analysis of differential abundance is critical for these surveys and computa-
tional tools have been developed for the analysis, including a recently developed
approach that relies on a novel normalization technique and a statistical model
accounting for undersampling [31].

20 W. Han et al.

Due to the complexity of microbial communities, the de novo partition of
metagenomic space into specific biological entities remains to be difficult. To
address this problem, researchers have utilized various features, including com-
positional features such as tetra-nucleotide statistics [13] and coverage signals
of genetic sequences [1,44]. However, the assumptions of those methods are not
universally true. For example, the methods relying on abundances of genetic
sequences are admittedly weak in segregating taxonomically related organisms
[1]. In the process of exploring other features, it has been realized that utilizing
co-abundance across multiple samples improves the resolution of genome segre-
gation from metagenomic data sets [2,29,43]. Similarly, we should also utilize
information from multiple samples for the sake of identifying conserved differ-
ential patterns.

We have previously introduced a method called subtractive assembly (SA)
[42], which is a de novo method to compare metagenomes by identifying and
assembling the differential reads. We have demonstrated that SA can recover
the differential genomes by effectively extracting the differential reads based on
sequence signatures (frequencies of k-mers). Also, SA can improve the quality
of metagenomic assembly when only a subset of closely-related genomes change
in their abundances between the groups of samples in comparison. Application
of SA to gut metagenomes from women with type 2 diabetes (T2D) [17] reveals
compositional features and a large collection of unique or abundant genes in T2D
gut metagenomes (some of the genes identified by SA were otherwise missed by
direct assembly of the original datasets). SA utilizes both the compositional and
coverage features through the composition and frequency of k-mers, contribut-
ing to its superior performance. However, the SA method pools the samples for
each group before comparison and therefore loses power in detecting minor but
consistent changes without using information from individual samples. In addi-
tion, SA picks up genes in species which only appear in a few samples but with
high abundances, as a result, many of the “differential” genes assembled are
not actually consistently abundant across samples in the same group. Therefore
additional profiling of gene abundance is required in order to search for genes
consistently more abundant in one group versus the other.

In this paper, we further developed the subtractive assembly approach for the
detection of consistently differential genomes or genes by using k-mer frequencies
in individual samples (co-abundance). We adopted KMC 2 [7] for k-mer count-
ing in our implementation, since KMC 2 is one of the fastest k-mer counting
approaches, which was claimed to be twice faster than the strongest competi-
tors such as Jellyfish 2 [26]. Differential reads extracted from individual samples
were then pooled for assembly. We call our new method Concurrent Subtrac-
tive Assembly approach (CoSA). We observed that some reads are extremely
redundant (those sampled from abundant common species across samples). We
further developed a strategy to remove redundant reads based on k-mer counts:
only some of the reads that contain highly abundant k-mers are retained for
assembly. Using simulated datasets, we showed that CoSA achieves much better
performance in detecting consistent changes than the original subtractive assem-
bly (SA) approach. Moreover, we applied it to analyzing T2D gut metagenomes

Concurrent Subtractive Assembly 21

to identify microbial marker genes, based on which we built a classifier that
accurately discriminates patients from healthy controls.

2 Materials and Methods

2.1 Overview

Concurrent Subtractive Assembly (CoSA) is designed to identify the short reads
that make up the conserved/consistent compositional differences across mul-
tiple samples based on sequence signatures (k-mer frequencies), and then to
only assemble the differential reads, aiming to reveal the consistent differences
between two groups of metagenomic samples (e.g., metagenomes from cancer
patients vs. metagenomes from healthy controls).

2.2 k-mer Counting

CoSA is a k-mer-based method, and therefore the first step is the counting of
all k-mers in metagenomic samples. For comparative metagenomic studies, the
sheer size of the datasets is a fundamental challenge. We employed KMC 2 for
k-mer counting. We specified the maximal value of a count (the cs flag) as 65,536
instead of 255 by default. On one hand this helps identify the more frequently
observed differential k-mers by using a larger cut-off value; on the other hand we
can store each count using a 16-bit unsigned integer, which demands a reasonable
amount of memory or disk space when dealing with billions of k-mers. Meanwhile,
we exclude k-mers occurring less than two times by the ci option based on the
fact that a large number of singletons are products from sequencing errors, as
previously employed by both BFCounter [28] and khmer [46].

After k-mer counting with KMC 2, CoSA goes through the outputs of
KMC by using the KMC API and stores all observed k-mers in a hash table,
implemented using the libcuckoo library (downloaded from https://github.com/
efficient/libcuckoo). Libcuckoo [25] provides a high-performance concurrent hash
table, by which we can efficiently update the hash table using multiple threads.
With the k-mers in the hash table, CoSA accesses the outputs of KMC again
and writes to disk the counts of the k-mers based on their orders in the hash
table for every sample. By storing the counts on the disk, we can load the counts
of k-mers in batches and therefore significantly reduce the memory requirement
for recording the counts of all k-mers in every sample.

2.3 Identification of Differential k-mers Using Wilcoxon
Rank-Sum Test

CoSA by default loads 107 k-mers into a two-dimensional array each time and
iteratively tests if the frequencies of each k-mer are differential between the two
groups of samples. To compare k-mers in different metagenomic samples, we
calculate the frequency of each k-mer in each metagenomic sample. In case the

https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo

22 W. Han et al.

frequency of a rare k-mer is extremely small, we compute the frequency of a
k-mer as the number of occurrences per million k-mers. Then the normalized
frequencies are used for WRS test (a nonparametric test), for which we employ
the “mannwhitneyutest” function from ALGLIB (http://www.alglib.net). The
WRS test is used to detect k-mers that have different frequencies in one group
of the samples (e.g., the patient group) than the other group of samples (e.g.,
the healthy control) with statistical significance. The k-mers that pass the test
(p-value cut-off is set to 0.05 by default) are identified as differential k-mers.

We tested different k-mer sizes empirically. Bigger k-mer size increases the
memory assumption by CoSA, but has very little impact on the results of
extracted reads and downstream application of the reads. We therefore set the
default k-mer size to 23.

2.4 Identification of Differential Reads Based on Differential k-mers

Reads that are composed of differential k-mers tend to be from differential
genomes. Thus, we extract differential reads in each sample based on the dif-
ferential k-mers using a voting strategy. With the voting threshold as 0.5, for
example, a read is considered to be differential if 50% of its k-mers belong to
differential k-mers. We empirically tested the voting threshold and found a value
in the range of 0.3–0.8 gives a good balance between the number of extracted
reads and efficiency of the differential gene assembly. However, users may change
this parameter (−v) in their own applications of CoSA.

2.5 Reduction of Reads Redundancy

We noticed that some k-mers are extremely abundant in the extracted reads
file (these k-mers are likely from the reads sampled from abundant species that
are common across many samples). When the differential reads contain these
k-mers, the distribution of k-mers is skewed and this can challenge the assembly
algorithm. To address this issue, we reduced the reads redundancy by excluding
reads that contain highly abundant k-mers. The reads redundancy removal relies
on a list of highly abundant k-mers prepared based on k-mer counts. A read is
determined to be redundant if it contains many k-mers on the abundant k-mer
list. Specifically, for each read, the fraction of abundant k-mer (over all k-mers)
is computed and used for determining the fate of the read: if the fraction is
smaller than a random number between 0 and 1 generated by the program, the
read is retained; otherwise, it is discarded. In this way, a read that has a higher
ratio of abundant k-mers will have a higher chance to be discarded.

2.6 Assembly of Extracted Reads and Downstream Annotations

Following the read extraction, any metagenomic assembler can be employed in
subtractive assembly. Here, we used MegaHIT (with meta-large presets option)
[24] (version 1.0.2) to assemble the differential reads, to illustrate the usage

http://www.alglib.net

Concurrent Subtractive Assembly 23

of CoSA. For each group (e.g., T2D patients, or healthy controls), differential
reads extracted from individual samples were pooled and assembled together
by MegaHIT. We note that we only pooled reads from multiple samples in the
same group for assembly. We used MegaHIT as it is one of the recently developed
assemblers that are memory efficient and fast. But in principle, other assemblers
such as IDBA-UD [33] and metaSPAdes [3] can be used as well. In order to
identify differential genes, protein coding genes were predicted from the contigs
using FragGeneScan [35] (version 1.30).

To estimate the abundance of the genes, all the reads from each sample were
aligned against the gene set by using Bowtie 2 [22] (version 2.2.6). We counted a
gene’s abundance based on the counts of both uniquely and multiplely mapped
reads. The contribution of multiplely mapped reads to a gene was computed
according to the proportion of the multiplely mapped read counts divided by
the gene’s unique abundance [34]. The read counts were then normalized per
kilobase of gene per million of reads in each sample.

2.7 Building Classifiers

After the gene abundance profile was built, we attempted to build a classifier that
can discriminate patients from healthy controls. We first used L1-based feature
selection method in the “scikit learn” python package [32] to select genes. After
the feature selection, we built classifiers using Random Forest (RF) and Support
Vector Machine (SVM). We used RF as it has been shown to be a suitable
model for exploiting non-normal and dependent data such as metagenomic data
[18] and it was used for prediction of T2D in [17]. On the other hand, SVMs are
widely used in computational biology due to their high accuracy and their ability
to deal with high-dimensional and large datasets [4]. We used the SVM (linear
kernal) and RF (10 trees) in the “scikit learn” python package. We evaluated
the predictive power of a model as the Area Under Curve (AUC) using a tenfold
cross-validation method.

We tested different p-value cut-offs and voting thresholds used in CoSA for
evaluating their impact on the accuracy of the classifiers built from genes derived
by CoSA.

2.8 Simulated and Real Metagenome Datasets

To test the performance of CoSA in detecting minor effects, we first gener-
ated two groups of metagenomic datasets using five bacterial genomes from the
FAMeS dataset [27] by MetaSim [36], with each group representing a unique
population structure; and for each group, we simulated 10 samples.

As a showcase for CoSA, we further applied our method to the T2D cohort.
The T2D cohort was derived from two groups of 70-year-old European women,
one group of 50 with T2D and the other a matched group of healthy controls
(NGT group; 43 participants). We did not use 3 samples of T2D datasets that
were outliers based on neighbor-joining clustering using a dS2 dissimilarity mea-
sure for k = 9 [14]. We tested our original SA approach using the T2D cohort,

24 W. Han et al.

and in this study, we focused on the comparison of CoSA with SA using the T2D
datasets. Table 1 summarizes the simulated datasets and the T2D microbiome
datasets we used for testing.

Table 1. Summary of the simulated and T2D datasets.

Simulated T2D and healthy

Number of datasets 20 93

Total bps 2.29 Gbp 225.30 Gbp

Number of k-mers 9,112,554 4,121,225,700

2.9 Availability of CoSA

We implemented CoSA in C++. Because CoSA employs k-mer frequencies from
individual samples, it introduces a new dimension for different samples and there-
fore increases the requirement of computational resources, especially for large
cohort of datasets such as the T2D datasets. To reduce the running time and
memory usage, we implemented CoSA with multiple threading. Also, counts of
k-mers are written to disk and then loaded back in batches for the detection of
differential k-mers (since it is impossible to load all k-mer counts into the mem-
ory at the same time). The software is available for download at sourceforge
(https://sourceforge.net/projects/concurrentsa/).

3 Results

We first report the results of CoSA using simulated datasets. We then report
the comparison of CoSA with our original SA method using the T2D cohort.
Finally we report the results of using CoSA for extracting and charactering
disease associated sub-microbiome using the T2D datasets.

3.1 Evaluation of CoSA Using Simulated Datasets

Instead of using fold change of k-mers, CoSA detects differential genomes by
testing k-mer frequencies with Wilcoxon rank-sum test. Also, it employs k-mer
frequencies concurrently from multiple samples for each group in comparison.
In theory CoSA has the capability of detecting minor but consistent changes
between groups of samples. To test the performance of CoSA in such case, we
simulated metagenomic samples using two population (community) structures
(Table 2). The Streptococcus thermophilus LMD-9 genome is two times more in
population one (P1) than in population two (P2) in terms of relative abundance.
Similarly, Prochlorococcus marinus NATL2A is the differential genome that is
two times more abundant in P2 than in P1. Since there is only a fold change of

https://sourceforge.net/projects/concurrentsa/

Concurrent Subtractive Assembly 25

two for the differential genomes, it is hard to detect the minor effects through
fold change of k-mers (as a result SA performed poorly on this simulated dataset;
see below).

We evaluated CoSA with different parameters, including p-value cut-off and
number of samples for each group in comparison. First, we compared the effi-
cacy of read extraction using either 5 or 10 samples for each population. The
results show that CoSA extracted more reads from the differential genomes by
using more samples (Fig. 1). For example, using a p-value cut-off of 0.005, CoSA
extracted 593,739 (99.98%) out of 593,858 short reads (expected) for the S. ther-
mophilus LMD-9 genome when 10 samples were used (see Table 2). When using

Fig. 1. CoSA effectively extracted reads from differential genomes. The upper and lower
subfigures refer to read extraction for one of the samples of population 1 and 2, respec-
tively. The x-axis shows the 5 different species; fac: Ferroplasma acidarmanus fer1, lga:
Lactobacillus gasseri ATCC 33323, ppe: Pediococcus pentosaceus ATCC 25745, pmn:
Prochlorococcus marinus NATL2A, ste: Streptococcus thermophilus LMD-9. Bars of
different colours (purple, yellow, cyan) indicate separate runs of CoSA using different
parameters or different number of samples while the grey bars indicate simulated reads
for each genome. The y-axis shows the number of reads extracted (or expected shown
in gray bars).

26 W. Han et al.

only 5 samples for each population, CoSA could only extract 471,786 (79.44%)
reads. Meanwhile, CoSA extracted very few reads from the non-differential
genomes in both cases. Using a lower p-value cut-off of 0.001 (see Table 2 for
the results) reduced the number of extracted reads from both differential and
non-differential genomes. But CoSA still extracted most of the reads from the
differential genomes. In conclusion, CoSA effectively extracted reads from dif-
ferential genomes with a minor fold change whereas a minimal number of reads
were extracted from non-differential genomes. We note that a very stringent p-
value cut-off (e.g., 0.001) works well for this simulated case; however, for real
microbiome datasets that have more complex population structure, a less strin-
gent p-value cut-off might be needed for differential reads extraction (because
of the sharing of k-mers among species) as shown in the application of CoSA to
the T2D microbiomes (see below).

Table 2. Evaluation of CoSA using simulated datasets: community structure and reads
extraction.

Population Reads extracted/simulated

P1a P2 P1 P2

Ferroplasma acidarmanus fer1 1b 1 0/38,568c 19/38,569

Lactobacillus gasseri ATCC 33323 2 2 122/75,528 77/76,152

Pediococcus pentosaceus ATCC 25745 4 4 178/146,787 25/147,199

Prochlorococcus marinus NATL2A 8 16 8/295,230 587,980/588,579

Streptococcus thermophilus LMD-9 16 8 590,820/593,858 0/297,227
a: simulated population 1; b: relative abundance of the F. acidarmanus genome in popu-
lation 1; c: 0 reads were extracted out of 38,568 reads from the F. acidarmanus genome
in P1.

We further compared the assembly quality for the differential genomes with
different number of samples, with the help of QUAST [12] and MUMer [21]. For
the S. thermophilus LMD-9 genome in the same sample as above, we recovered
95.76% of the reference genome when 10 samples per population were used;
but only 73.32% of the genome were assembled when we used 5 samples for
each group (see Fig. 2 for the comparison). Not only we assembled a higher
fraction of the genome for the differential genomes, but also we obtained fewer
but longer contigs. We produced 84 contigs with N50 of 51,061 using 10 samples
and 1,280 contigs with N50 of 1,180 using 5 samples. With more samples, CoSA
is capable of better assembling the differential genomes. By contrast, our original
SA approach relies on ratios of k-mers to detect differential reads and only a small
fraction (19.64%) of the genome can be assembled using the reads it extracted.

3.2 Evaluation of CoSA Using the T2D Microbiomes

As shown in the above, CoSA was able to detect minor, but conserved differential
genomes using the simulated datasets. Here we applied CoSA to the T2D micro-
biome cohort. As shown in Table 3, CoSA has resulted in a greater reduction of

Concurrent Subtractive Assembly 27

Fig. 2. Evaluation of the assembly quality of the differential genomes. The results indi-
cate that CoSA outperforms SA for detecting minor but consistent effect when multiple
samples are used, and that using more samples by CoSA results in better assembly of
the differential genomes (CoSA-10, 10 samples were used; CoSA-5, 5 samples were
used).

the sequencing data (retaining 8.99% of the total bases) than the original SA
reads (which retained 17.59% of the original sequencing data). Extracted reads
were then used for assembly and gene annotation. Although reads extraction by
CoSA resulted in a smaller collection of microbial genes than the SA approach
(since CoSA retained much fewer reads than SA), genes from CoSA tend to be
more consistently differential across the samples between the groups. We pooled
the genes derived from CoSA (1,008,068 genes) and SA (1,648,016 genes), result-
ing a collection of 2,656,084 genes, and further quantified the abundances of the
genes in this collection. The gene abundance profile was then used for WRS test
between the patient and the healthy control groups, with correcting for multi-
ple testing using false discovery rate (q-value) computed by the tail area-based
method of the R fdrtool package [41]. Table 3 summaries the test results, indi-
cating that CoSA produced more significantly differential genes than SA. We
note that none of the genes derived by SA had q-value less than 0.05. Sequences
and annotations of the 357,591 genes assembled by CoSA (with q-value ≤ 0.05)
are available for download at the CoSA sourceforge project page.

3.3 Prediction of T2D Using Microbial Genes

It has been shown that metagenomes can be used for classification and prediction
of diabetes status [17]. Karlssons and colleagues trained a Random Forest (RF)

28 W. Han et al.

Table 3. Summary of subtractive assembly results of the T2D datasets.

CoSA∗ SA

Total base pair in extracted reads 11.59 Gbp (8.99%) 22.68 Gbp (17.59%)

of predicted genesa 1,008,068 1,648,016

of significant genes (q-value ≤ 0.07) 563,743 285,666

of significant genes (q-value ≤ 0.05) 357,591 0
∗: p-value = 0.2 and voting threshold = 0.8 were used for reads extraction; a: only counted
genes assembled from extracted reads from patients (but not healthy individuals).

model based on a training set of the NGT and T2D subjects using the profiles
of species and MGCs (megenomic gene clusters), and evaluated its performance
using a tenfold cross-validation approach and calculated the predictive power
as the area under the ROC curve (AUC). Their results showed that T2D was
identified more accurately with MGCs (highest AUC = 0.83) than with micro-
bial species (highest AUC = 0.71), suggesting that the functional composition
of the microbiota determined by MGCs correlates better with diabetes than
the species composition. We applied CoSA to T2D datasets (including datasets
from patients and healthy individuals) using different settings of parameters and
compared the performance of classifiers built from the assembled microbial genes
(from both T2D patients and healthy-controls). Table 4 summarizes the results.
We used two different classify algorithms, one is SVM with linear kernel and the
other is RF whose forest includes 10 trees.

Using p-value of 0.05 and voting threshold of 0.3 (called Normal in Table 4)
for reads extraction in CoSA followed by assembly and abundance quantification,
we derived 296,979 genes. Our collection of genes resulted in a SVM that achieved
a prediction accuracy of 0.94 (AUC), a significant improvement in the prediction
accuracy as compared to the AUC reported in [17] (AUC = 0.83).

We also tested CoSA using more stringent parameters for reads extraction (p-
value = 0.001 and voting threshold = 0.5). The reads extraction only resulted
in a small reads file with 19.13 Mbp in total. Not surprisingly we were only
able to assemble and predict 249 genes from this small collection of sequencing
reads. Interestingly, a RF model (without using feature selection) built from this
small set of microbial genes achieved an AUC of 0.79. This accuracy is worse
than our best model (AUC = 0.94), and Karlsson’s RF model based on MGC
(AUC = 0.83), but it is much better than Karlsson’s RF model based on bacterial
species (AUC = 0.71). The advantage of using this setting (we called it Strict)
is that only a small number of reads were extracted and only a small number of
genes need to be quantified and used for building classifiers, and it still achieves
reasonable prediction accuracy.

On the other hand, a much larger collection of microbial genes may make
feature selection a more serious problem for building predictors, and therefore
compromise the accuracy of predictors trained using these microbial genes. For
example, we applied CoSA using a looser setting (p-value = 0.2 and voting-

Concurrent Subtractive Assembly 29

threshold = 0.8; called Loose in Table 4), which resulted in the extraction of many
more reads. Not surprisingly, many more genes can be assembled. However, more
genes to start with doesn’t necessarily result in a better classifier for prediction.
The best classier built using this larger collection of genes achieved an AUC of
only 0.89. Similarly, using our original subtractive assembly approach (SA), an
even greater collection of microbial genes can be assembled. However, the best
predictor built using this larger collection of genes only achieved an AUC of 0.85.

Sequences and annotations (by myRAST [30] and hmmscan [8]) of the 207
differential genes that resulted in the highest prediction accuracy (AUC = 0.94)
are available for download at the CoSA sourceforge project website. Some of
the functions and associated pathways are consistent with what we observed
based on SA [42], including murein hydrolases (protein ID: k87 534 1 134 +)
and multidrug resistance efflux pumps (protein ID: k87 34893 1 275 −).

Table 4. Comparison of the accuracy of T2D prediction using microbial genes derived
by CoSA and SA.

CoSA

Strict Normal Loose SA

Reads extraction P-value cut-off 0.001 0.05 0.2 -a

Voting threshold 0.5 0.3 0.8 0.5

Total base pair 19.13 Mbp 6.08 Gbp 19.23 Gbp 36.26 Gbp

Classification # of genes 249 296,979 1,741,472 2,098,590

of genes selectedb 249c 207 230 210

Classifier RF SVM SVM SVM

AUCd 0.79 0.94 0.89 0.85
a: SA uses ratios of k-mer counts to determine differential k-mers; b: genes were selected
using L1-based feature selection method; c: no feature selection was applied for this case;
d: average accuracy using 10-fold cross-validation.

4 Discussion

We developed a pipeline based on CoSA, which efficiently extracts reads that are
likely sequenced from differential genes across samples for the identification of
conserved microbial marker genes. Considering the heterogeneity nature of the
microbiomes across human subjects, it is important to have a method that can
detect disease-associated features that are consistent across samples. Tests of
our approach using both simulated and real microbiomes show the importance
of using multiple samples for such purposes.

The time and space complexity of CoSA is related to the number of datasets
and the size of each dataset. The running time and memory cost is small for small
datasets such as the simulated microbiome datasets. However, the computational
time and memory usage can be substantial for large cohorts of datasets such as

30 W. Han et al.

the T2D datasets. The total running time of CoSA for the simulated datasets
was 44 min (38 min for k-mer counting and 6 min for the detection of differential
k-mers and therefore differential reads), and the peak memory usage was 2G.
However, for the large T2D cohort, the running time for k-mer counting was
6.9 h and the next step of detecting differential k-mers and reads took 27.5 h.
The peak memory usage for the T2D datasets was also substantial, which was
229 Gb. Considering the increasing capacity of sequencing technologies, we will
further investigate other strategies to reduce the memory usage and running
time of CoSA.

In the current implementation of CoSA, WRS test is applied to k-mer counts
normalized by the total k-mers (which is equivalent to the total reads) in each
sample, for the detection of k-mers with differential abundances across healthy-
controls and patients. This choice is mostly driven by the practical conveniency.
Our results showed that this simple strategy of normalization worked well in
practice. However, it has been shown that such a normalization approach may
have limitations for applications in detecting metagenome-wise marker-gene sur-
veys [31]. We will explore the possibility of using other normalization techniques
such as the cumulative-sum scaling approach in CoSA.

Acknowledgement. This work was supported by the NIH grant 1R01AI108888 to
Ye.

References

1. Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen, K.L., Tyson, G.W.,
Nielsen, P.H.: Genome sequences of rare, uncultured bacteria obtained by differ-
ential coverage binning of multiple metagenomes. Nat. Biotechnol. 31(6), 533–538
(2013)

2. Alneberg, J., Bjarnason, B.S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z.,
Lahti, L., Loman, N.J., Andersson, A.F., Quince, C.: Binning metagenomic contigs
by coverage and composition. Nat. Methods 11(11), 1144–1146 (2014)

3. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S.,
Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V.,
Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A.: SPAdes: a
new genome assembly algorithm and its applications to single-cell sequencing. J.
Comput. Biol. 19(5), 455–477 (2012)

4. Ben-Hur, A., Ong, C.S., Sonnenburg, S., Scholkopf, B., Ratsch, G.: Support vec-
tor machines and kernels for computational biology. PLoS Comput. Biol. 4(10),
e1000173 (2008)

5. Cho, I., Blaser, M.J.: The human microbiome: at the interface of health and disease.
Nat. Rev. Genet. 13(4), 260–270 (2012)

6. de Martel, C., Ferlay, J., Franceschi, S., Vignat, J., Bray, F., Forman, D.,
Plummer, M.: Global burden of cancers attributable to infections in 2008: a review
and synthetic analysis. Lancet Oncol. 13(6), 607–615 (2012)

7. Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics 31(10), 1569–1576 (2015)

8. Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence
similarity searching. Nucleic Acids Res. 39(Web Server issue), 29–37 (2011)

Concurrent Subtractive Assembly 31

9. Garrett, W.S.: Cancer and the microbiota. Science 348(6230), 80–86 (2015)
10. Ge, X., Rodriguez, R., Trinh, M., Gunsolley, J., Xu, P.: Oral microbiome of deep

and shallow dental pockets in chronic periodontitis. PLoS One 8(6), e65520 (2013)
11. Gilbert, J.A., Quinn, R.A., Debelius, J., Xu, Z.Z., Morton, J., Garg, N.,

Jansson, J.K., Dorrestein, P.C., Knight, R.: Microbiome-wide association studies
link dynamic microbial consortia to disease. Nature 535(7610), 94–103 (2016)

12. Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: QUAST: quality assessment tool
for genome assemblies. Bioinformatics 29(8), 1072–1075 (2013)

13. Iverson, V., Morris, R.M., Frazar, C.D., Berthiaume, C.T., Morales, R.L.,
Armbrust, E.V.: Untangling genomes from metagenomes: revealing an uncultured
class of marine Euryarchaeota. Science 335(6068), 587–590 (2012)

14. Jiang, B., Song, K., Ren, J., Deng, M., Sun, F., Zhang, X.: Comparison of metage-
nomic samples using sequence signatures. BMC Genomics 13, 730 (2012)

15. Jorth, P., Turner, K.H., Gumus, P., Nizam, N., Buduneli, N., Whiteley, M.: Meta-
transcriptomics of the human oral microbiome during health and disease. MBio
5(2), e01012–e01014 (2014)

16. Kang, D.W., Park, J.G., Ilhan, Z.E., Wallstrom, G., Labaer, J., Adams, J.B.,
Krajmalnik-Brown, R.: Reduced incidence of Prevotella and other fermenters in
intestinal microflora of autistic children. PLoS One 8(7), e68322 (2013)

17. Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergstrom, G., Behre, C.J.,
Fagerberg, B., Nielsen, J., Backhed, F.: Gut metagenome in European women with
normal, impaired and diabetic glucose control. Nature 498(7452), 99–103 (2013)

18. Knights, D., Costello, E.K., Knight, R.: Supervised classification of human micro-
biota. FEMS Microbiol. Rev. 35(2), 343–359 (2011)

19. Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T.,
Britt, E.B., Fu, X., Wu, Y., Li, L., Smith, J.D., DiDonato, J.A., Chen, J., Li,
H., Wu, G.D., Lewis, J.D., Warrier, M., Brown, J.M., Krauss, R.M., Tang, W.H.,
Bushman, F.D., Lusis, A.J., Hazen, S.L.: Intestinal microbiota metabolism of L-
carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19(5), 576–
585 (2013)

20. Kostic, A.D., Howitt, M.R., Garrett, W.S.: Exploring host-microbiota interactions
in animal models and humans. Genes Dev. 27(7), 701–718 (2013)

21. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.,
Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome
Biol. 5(2), R12 (2004)

22. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9(4), 357–359 (2012)

23. Lewis, J.D., Chen, E.Z., Baldassano, R.N., Otley, A.R., Griffiths, A.M., Lee, D.,
Bittinger, K., Bailey, A., Friedman, E.S., Hoffmann, C., Albenberg, L., Sinha, R.,
Compher, C., Gilroy, E., Nessel, L., Grant, A., Chehoud, C., Li, H., Wu, G.D.,
Bushman, F.D.: Inflammation, antibiotics, and diet as environmental stressors of
the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18(4), 489–500
(2015)

24. Li, D., Luo, R., Liu, C.M., Leung, C.M., Ting, H.F., Sadakane, K., Yamashita, H.,
Lam, T.W.: Megahit v1.0: a fast and scalable metagenome assembler driven by
advanced methodologies and community practices. Methods 102, 3–11 (2016)

25. Li, X., Andersen, D.G., Kaminsky, M., Freedman, M.J.: Algorithmic improvements
for fast concurrent cuckoo hashing. In: Proceedings of the 9th ACM European
Conference on Computer Systems (EuroSys), April 2014

26. Marcais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011)

32 W. Han et al.

27. Mavromatis, K., Ivanova, N., Barry, K., Shapiro, H., Goltsman, E., McHardy, A.C.,
Rigoutsos, I., Salamov, A., Korzeniewski, F., Land, M., Lapidus, A., Grigoriev, I.,
Richardson, P., Hugenholtz, P., Kyrpides, N.C.: Use of simulated data sets to
evaluate the fidelity of metagenomic processing methods. Nat. Methods 4(6), 495–
500 (2007)

28. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in DNA sequences using
a bloom filter. BMC Bioinform. 12, 333 (2011)

29. Nielsen, H.B., Almeida, M., Juncker, A.S., Rasmussen, S., Li, J., Sunagawa, S.,
Plichta, D.R., Gautier, L., Pedersen, A.G., Le Chatelier, E., et al.: Identification
and assembly of genomes and genetic elements in complex metagenomic samples
without using reference genomes. Nat. Biotechnol. 32(8), 822–828 (2014)

30. Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T.,
Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A.R.,
Xia, F., Stevens, R.: The SEED and the Rapid Annotation of microbial genomes
using Subsystems Technology (RAST). Nucleic Acids Res. 42(Database issue),
D206–D214 (2014)

31. Paulson, J.N., Stine, O.C., Bravo, H.C., Pop, M.: Differential abundance analysis
for microbial marker-gene surveys. Nat. Methods 10(12), 1200–1202 (2013)

32. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

33. Peng, Y., Leung, H.C., Yiu, S.M., Chin, F.Y.: IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth. Bioinfor-
matics 28(11), 1420–1428 (2012)

34. Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., Guo, J., Le Chatelier, E.,
Yao, J., Wu, L., Zhou, J., Ni, S., Liu, L., Pons, N., Batto, J.M., Kennedy, S.P.,
Leonard, P., Yuan, C., Ding, W., Chen, Y., Hu, X., Zheng, B., Qian, G., Xu, W.,
Ehrlich, S.D., Zheng, S., Li, L.: Alterations of the human gut microbiome in liver
cirrhosis. Nature 513(7516), 59–64 (2014)

35. Rho, M., Tang, H., Ye, Y.: FragGeneScan: predicting genes in short and error-prone
reads. Nucleic Acids Res. 38(20), e191 (2010)

36. Richter, D.C., Ott, F., Auch, A.F., Schmid, R., Huson, D.H.: MetaSim: a sequenc-
ing simulator for genomics and metagenomics. PLoS One 3(10), e3373 (2008)

37. Scheperjans, F., Aho, V., Pereira, P.A., Koskinen, K., Paulin, L., Pekkonen,
E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., Kinnunen, E.,
Murros, K., Auvinen, P.: Gut microbiota are related to Parkinson’s disease and
clinical phenotype. Mov. Disord. 30(3), 350–358 (2015)

38. Scher, J.U., Sczesnak, A., Longman, R.S., Segata, N., Ubeda, C., Bielski, C., Ros-
tron, T., Cerundolo, V., Pamer, E.G., Abramson, S.B., Huttenhower, C., Littman,
D.R.: Expansion of intestinal Prevotella copri correlates with enhanced suscepti-
bility to arthritis. Elife 2, e01202 (2013)

39. Sears, C.L., Garrett, W.S.: Microbes, microbiota, and colon cancer. Cell Host
Microbe 15(3), 317–328 (2014)

40. Sender, R., Fuchs, S., Milo, R.: Revised estimates for the number of human and
bacteria cells in the body. PLoS Biol. 14(8), e1002533 (2016)

41. Strimmer, K.: fdrtool: a versatile R package for estimating local and tail area-based
false discovery rates. Bioinformatics 24(12), 1461–1462 (2008)

42. Wang, M., Doak, T.G., Ye, Y.: Subtractive assembly for comparative metage-
nomics, and its application to type 2 diabetes metagenomes. Genome Biol. 16, 243
(2015)

Concurrent Subtractive Assembly 33

43. Wu, Y.W., Simmons, B.A., Singer, S.W.: MaxBin 2.0: an automated binning algo-
rithm to recover genomes from multiple metagenomic datasets. Bioinformatics
32(4), 605–607 (2016)

44. Wu, Y.W., Ye, Y.: A novel abundance-based algorithm for binning metagenomic
sequences using l-tuples. J. Comput. Biol. 18(3), 523–534 (2011)

45. Zeller, G., Tap, J., Voigt, A.Y., Sunagawa, S., Kultima, J.R., Costea, P.I.,
Amiot, A., Bohm, J., Brunetti, F., Habermann, N., Hercog, R., Koch, M.,
Luciani, A., Mende, D.R., Schneider, M.A., Schrotz-King, P., Tournigand, C., Tran
Van Nhieu, J., Yamada, T., Zimmermann, J., Benes, V., Kloor, M., Ulrich, C.M.,
von Knebel Doeberitz, M., Sobhani, I., Bork, P.: Potential of fecal microbiota for
early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014)

46. Zhang, Q., Pell, J., Canino-Koning, R., Howe, A.C., Brown, C.T.: These are not
the k-mers you are looking for: efficient online k-mer counting using a probabilistic
data structure. PLoS One 9(7), e101271 (2014)

47. Zhu, B., Wang, X., Li, L.: Human gut microbiome: the second genome of human
body. Protein Cell 1(8), 718–725 (2010)

A Flow Procedure for the Linearization
of Genome Sequence Graphs

David Haussler1, Maciej Smuga-Otto1, Benedict Paten1(&),
Adam M. Novak1, Sergei Nikitin2, Maria Zueva2,

and Dmitrii Miagkov2

1 UC Santa Cruz Genomics Institute, University of California,
Santa Cruz, CA, USA

benedict@soe.ucsc.edu
2 Life Sciences Business Unit, EPAM Systems, Inc., Newtown, PA, USA

dmitrii.miagkov@epam.com

Abstract. Efforts to incorporate human genetic variation into the reference
human genome have converged on the idea of a graph representation of genetic
variation within a species, a genome sequence graph. A sequence graph rep-
resents a set of individual haploid reference genomes as paths in a single graph.
When that set of reference genomes is sufficiently diverse, the sequence graph
implicitly contains all frequent human genetic variations, including transloca-
tions, inversions, deletions, and insertions.
In representing a set of genomes as a sequence graph one encounters certain

challenges. One of the most important is the problem of graph linearization,
essential both for efficiency of storage and access, as well as for natural graph
visualization and compatibility with other tools. The goal of graph linearization
is to order nodes of the graph in such a way that operations such as access,
traversal and visualization are as efficient and effective as possible.
A new algorithm for the linearization of sequence graphs, called the flow

procedure, is proposed in this paper. Comparative experimental evaluation of
the flow procedure against other algorithms shows that it outperforms its rivals
in the metrics most relevant to sequence graphs.

Keywords: Sequence graph � Linearization � Flow procedure � Feedback arcs �
Cut width � Backbone � Grooming

1 Motivation

The current human reference genome consists essentially of a single representative of
each of the human chromosomes. In essence, an arbitrary person’s genome is chosen to
represent all of humanity. This leads to loss of information and bias. Efforts to
incorporate human genetic variation into the reference human genome have converged
on the idea of a graph representation of genetic variation within a species, a genome
sequence graph [1].

In its mathematically most simple form, each node of a sequence graph contains a
single DNA base that occurs at an orthologous locus in one or more of the haploid

© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 34–49, 2017.
DOI: 10.1007/978-3-319-56970-3_3

genomes represented in the graph. Each arc represents an adjacency (chemically, a
covalent bond) that occurs between consecutive instances of bases in those genomes.
Excluding reversing joins (see below) each arc is directed according to the default
strand direction of the DNA sequence used to build the graph, connecting the 3’ side of
the previous base (the tail of the edge) with the 5’ side of the next base (the head of the
edge). At points where the individual genomes differ to the right (i.e., 3’, downstream)
of an orthologous base, the node representing that base will have two or more outgoing
arcs. For example, the graph in Fig. 2 was built from the DNA strands CATCGCT,
CATCGT, CAGCGAT and CATCGAGAGAGCT aligned at orthologous bases as shown
in Fig. 1.

Representing a genome as a graph requires building a number of tools to work with
it efficiently. In particular, one needs to linearize the graph, that is order the nodes from
left to right in a straight line. Linearization facilitates visual perception of a graph,
allows software to index the nodes in a familiar manner, and imposes natural order of
bases useful in storage, search and analysis, for example enabling traversal from left to
right with minimum feedback runs. Figures 3 and 4 show examples of a linearized
graph and individual genomes in it. Here we have also added a new feature to the
graphs in the form of arc weights. An arc weight is used to signify the importance of
an arc in typical applications running on the graph. Normally we set the arc weight to
the number of times that the arc is traversed in the reference genomes used to build the
graph, under the assumption that arcs used frequently in the reference genomes will

Fig. 1. Alignment of CATCGCT, CAGCGAT, CATCGAGAGAGCT DNA strands.

Fig. 2. An example of a sequence graph reflecting SNP (T/G), tandem duplication GA->
GAGAGA, and deletion/SNP (A/C/-).

A Flow Procedure for the Linearization of Genome Sequence Graphs 35

also be used frequently in the applications of the sequence graph built from them. Some
reference genomes may be weighted more than others.

2 Problem Statement

A linearization of a sequence graph aims to make the total weight of all feedback arcs,
called the weighted feedback (see Fig. 3), small, along with the “width” (number of
arcs) crossing any vertical line in the layout (called a “cut”, see Fig. 5). Unnecessary

Fig. 3. An example of a linearized sequence graph with weighted arcs. The arc in red is directed
from the right to the left and is called feedback arc.

Fig. 5. Examples of cuts and cut widths. Three cuts are shown with green vertical lines. Their
widths are, from left to right, 3, 4, and 2 respectively.

Fig. 4. Three individual genomes as paths in the linearized graph, shown in green. The first and
second genomes are ATCAGGCA and ATCAGACTCA, respectively. The third one is
AAGACTAGACTCA where the arc between T and A is a feedback arc.

36 D. Haussler et al.

feedback arcs make many types of genetic analysis more inefficient, as these typically
proceed left-to-right on a conventional reference genome. An arc crossing a cut is
considered to be part of an allele spanning that cut (see [2]), so a graph with smaller cut
width at a cut has fewer alleles at that cut. The mean of the cut width over all cuts in the
graph is called the average cut width.

In light of their importance for genetic analysis, we will evaluate a linearization
based on its average cut width and either the weighted feedback or the number of
feedback arcs it contains.

Unfortunately, the problems of minimizing weighted feedback, and of minimizing
the average cut width, are each separately difficult. The simpler problem of minimizing
the number of feedback arcs is known in literature as the feedback arc set problem, or
FAS for short [3]. This is an NP-hard problem [4], but there are a number of various
heuristic approaches to approximating a solution to it [5]. The problem of minimizing
the average cut width [6] is also known to be NP-hard. A good heuristic [7] is necessary
for good results. In our case, starting our procedure with the “primary path” taken by the
reference genome is a natural choice. This is the first time to our knowledge that a
heuristic algorithm to minimize both metrics at the same time has been proposed.

3 Algorithm Description

We propose here a simple heuristic divide-and-conquer approach to linearly order the
bases of a graph that tries to achieve either small weighted feedback (or small number
of feedback arcs) and small average cut width. The key algorithmic tool is
max-flow/min-cut in a directed graph [8], so we call it the flow procedure. Prior to
applying the flow procedure, the sequence graph is “groomed” as described at the end
of this section.

3.1 First Step: Determine the Backbone

Following grooming, the flow procedure starts with a connected graph with directed
arcs and a designated linear ordering of a subset of the bases called the backbone. Arcs
leading from the backbone to nodes not on the backbone are called out-arcs, and arcs
directed into the backbone from nodes not on the backbone are called in-arcs.
Grooming guarantees such the first base of the backbone has no in-arcs and the last has
no out-arcs. Extra dummy bases are added at either end if necessary. Normally the
initial backbone is a biologically determined primary path of the graph, e.g. from a
selected haploid reference genome in the set of genomes used to build the graph,
perhaps the existing haploid reference human genome. The flow procedure creates a
backbone using its internal heuristics if none is given a priori. In linearizing the
sequence graph by creating a total ordering of the bases, the relative order of the bases
in backbone will not change. The rest of the bases in the graph will be inserted either
between bases of the backbone, before the backbone, or after the backbone. Thus, any
feedback arcs already in the backbone ordering, called initial feedback arcs, will
remain as feedback arcs in the final ordering.

A Flow Procedure for the Linearization of Genome Sequence Graphs 37

Consider the graph depictured in Fig. 6. The backbone is CGATC horizontally
across the middle (highlighted by dark blue color). The three out-arcs of the backbone
are shown with thick green arrows. The two in-arcs are shown with thick purple
arrows. The weights are assumed to reflect usage, but we also assume the usage
statistics may be partial. Hence the weight coming into a base does not always match
the weight coming out.

3.2 Second Step: Add Source and Sink

We set up a max flow/min cut network as follows. The nodes and arcs of the network
are nodes and arcs of the graph. The capacity of the arc is its weight. In addition, there
is a special source node and a special sink node. The network arcs for these are defined
as follows: we let N be the maximum of the sum of the weights of the outgoing arcs for
any node in the graph and we add an arc of capacity N + 1 from the source node to
each base on the backbone that has an out-arc. Then each in-arc on the backbone is
redirected to the sink node with no change in capacity.

3.3 Third Step: Determine the Minimum Cut and Delete It

The maximum flow in our example is easily seen to be 3, and it maximizes the capacity
of the two arcs that are cut by the green bars (Fig. 7). Therefore, these form a minimum
cut. Since the capacities of the arcs connecting the source to the backbone are too high
to be achieved by any flow, none of these are in the cut. Therefore, the cut must split
the flow network into an out-component containing the source and its outgoing arcs,
and an in-component containing the sink. In Fig. 7 the in-component consists of the
uppermost nodes C, G, C and the sink, and the out-component is the remainder.

Fig. 6. An initial directed graph with weights on the arcs.

38 D. Haussler et al.

We remove the cut arcs from the graph. Essentially, in doing this we decide to give
up worrying about these arcs and try to minimize the weighted feedback and average
cut width as if they were not there. Since capacity equals weight, by choosing a
minimum capacity cut, we ignore the arcs that cost us the least in weight.

Excluding any initial feedback arcs on the backbone itself, we classify all bases not
on the backbone into a sequence of out-growths and in-growths as follows. Starting at
the last base on the backbone that has an out-arc, we define its out-growth to be all
bases reachable by a forward directed path from that base. Then we move backwards
along the backbone, defining out-growths consisting of all the bases reachable by a
forward directed path from the base on the backbone with an out-arc that were not
already included in previously defined out-growths. We define in-growths in a similar
fashion, moving forward from the start of the backbone and using backward-directed
paths. Figure 8 shows in-growth and out-growths for the example under consideration.
There are two outgrowths, the first from the node G on the backbone (contains nodes
G, G, C), and the second from its predecessor, the first node on the backbone (labeled
“C”, contains nodes C, T, C, A). The dotted green arc is not a proper part of either
outgrowth; it is discovered when exploring the outgrowth from C, and found to lead
into the previous outgrowth found from G. The one in-growth enters the node A of
backbone and contains nodes C, G, C, A, shown in purple.

3.4 Fourth Step: Repeat Procedure for In- and Out-Growths

Finally, we apply the entire procedure recursively to each out-growth and in-growth,
using a heuristic that uses the backbone’s base as the first base for an out-growth or as
the last base for an in-growth, respectively. When the recursive call completes, the
bases from it are inserted into the backbone of the calling procedure in the specified

Fig. 7. The flow network corresponding to the above weighted graph and its designated
backbone.

A Flow Procedure for the Linearization of Genome Sequence Graphs 39

order immediately following an out-growth or immediately preceding an in-growth,
respectively. The final ordering for the example above is shown in Fig. 9.

Normally the out-growths and in-growths together comprise the whole. However, if
not, the entire procedure can just be repeated, each time using the linear order estab-
lished from the previous cycle as a new backbone. Grooming a connected graph (see
below) assures that these repetitions will eventually reach every node in the graph.

It remains to specify a heuristic for determining the backbone when it is not
explicitly given. When the first base of the backbone is given, we extend it into a path
using a greedy algorithm: in each step, we add to the existing path the base with the
highest forward directed arc weight, breaking ties arbitrarily, and we do so until no
more bases can be added. A complementary procedure is run in reverse if we are
instead given the last base of the backbone.

3.5 Grooming

Finally, we explain the preprocessing step of grooming the graph. The base in each
node in a sequence graph has two sides (3’ and 5’). The directed arcs we have been
using are edges of the sequence graph that connect the 3’ side of one node to the 5’ side

Fig. 8. Out-growths (green) and in-growth (purple) of the graph.

Fig. 9. The final sorted graph with the bases totally ordered.

40 D. Haussler et al.

of another (possibly the same) node. The arcs are directed in the 3’ to 5’ side direction.
There are also additional edges in a sequence graph that here we will refer to as
reversing joins, which we have not discussed up until this point (see [1 and 9] for an
introduction). A reversing join is an undirected edge connecting the 3’ sides of two
nodes, or connecting the 5’ sides of two nodes. As a preprocessing step to the flow
procedure, and all other heuristic algorithms we examine for linearization of a directed
graph, we first eliminate as many of the reversing joins as possible by replacing the
graph with an equivalent graph that has fewer reversing joins. Then if there are still
reversing joins left we just ignore them. This way we are always working with graphs
that only contain directed arcs. The process we use to minimize the number of
reversing joins is called grooming (Fig. 10).

Grooming works as follows. A given connected component (a set of nodes such that
one can travel between any two nodes in it along the standard arcs, in both direction, and
reversing joins) may fall apart if the reversing joins are removed. This indicates that
some of reversing joins were unnecessary. Let one connected component be called the
primary component (shown in dark blue in Fig. 10), and the others be called the
secondary components (shown in light blue in Fig. 10). We obtain an isomorphic
graph that will have fewer components after removal of reversing joins by simply
reverse-complementing the secondary component, i.e., reverse-complementing every
base in it and inverting the direction of the arcs between these secondary bases. The 3’
reversing joins connecting this secondary component to the main graph are replaced by
directed arcs pointing into the secondary component, and the 5’ reversing joins are
replaced by directed arcs back to the primary component. This has the effect of changing
every 3’ side in the secondary component into a 5’ side, and vice versa. On the right side
of Fig. 10 nodes and arcs which were changed during grooming are shown in red. By
repeating this procedure on any connected sequence graph we eventually reach an
isomorphic graph that has just one connected component even after removing the
reversing joins.

Fig. 10. Grooming procedure. Reversing joins are shown in brown on the upper left. Bottom
one shows the graph on the upper right as directed graph.

A Flow Procedure for the Linearization of Genome Sequence Graphs 41

Since we will not be reducing the number of reversing joins further, and being
undirected they cannot be considered feedback arcs, from here on, we will stop paying
attention to the reversing joins and consider only graphs that are fully directed.

4 Complexity Estimation

The max flow/min cut sorting algorithm described above can be broken into four steps:

1. Find the backbone (if it is not given)
2. Create the flow graph by adding the source and sink and connecting them to the

graph
3. Find the maximum flow and minimal cut and delete the minimal cut, using the

Ford-Fulkerson algorithm
4. Find the in-growth and out-growth and repeat steps 1 through 4 for them

Let us consider the complexity of each step separately.
In the preparation step, we perform a greedy depth-first search to find the backbone

if it is not given (in practice we only find the backbone on recursive calls, as the whole
graph’s backbone is given). We do not visit any arc more than once, so the time
complexity is O(|A|), where A is the number of arcs.

In creating the flow, we add 2 nodes to the graph (the source and sink) and draw
several arcs from the source to those nodes in the backbone that have an outgoing arc,
and also reroute the arcs going into the backbone to the sink. We do not examine any
arc more than once, so the time complexity is O(|A|).

The Ford-Fulkerson algorithm works in O(|A|*|max-flow|) [10]. In the worst case,
|max-flow|*O(|A|), in which case the time complexity becomes O(|A|2).

Every recursive call decreases the number of nodes in the graph, so the number of
recursive calls is O(|V|).

These estimations are shown in the Table 1.

The final complexity estimate is thus O(|A|*|max-flow|) * |recursion depth|.
The best-case complexity (if the max flow is constant and there are a constant

number of recursive calls) is O(|A|), again, assuming at least one arc per node. In the
worst case, it is O((|A|2) * |V|) as the max flow may be proportional to |A| and the
recursion depth proportional to |V|.

Table 1. Complexity estimation of the flow procedure algorithm.

Step Complexity

1. Find the backbone O(|A|)
2. Add source and sink, draw the arcs with

required weights
|V| + |out- and in-arcs| = O(|A|) assuming
at least one arc per node

3. Determine the maximum flow and remove the
arcs from the minimum cut

O(|A|*|max flow|)

4. Repeat steps 1 through 4 recursion depth � |V|

42 D. Haussler et al.

The Ford-Fulkerson algorithm and the recursion contribute the most to the final
algorithm’s complexity. Depth of recursion is not a problem in practice. However, the
maximum flow will often be approximately O(|A|) due to how the flow is constructed:
each variation increases it by creating a new path from the source to the sink. Because
the flow becomes so large, the Ford-Fulkerson algorithm will work in quadratic time
(O(|A|2)). Improvements to the algorithm that reduce the typical max flow so that it is
polylogarithmic in |A| would improve its speed.

5 Experimental Evaluation

5.1 Data Modeling

The flow procedure was tested on data that was artificially generated by taking a 37
kilobase piece of the GRCh38 assembly and adding artificial structural variations to it
using the RSVSim [11] from Bioconductor. This package lets one simulate any given
set of structural variations to a reference, producing a modified FASTA file. The
positions of the variations were distributed uniformly, while their lengths were fixed.
After fixing a specified set of variations, a series of FASTA files were created and
passed on to a vg [12] tool, which generated the graph using a multiple sequence graph
alignment algorithm.

Four types of structural variation were simulated: insertions, deletions, duplica-
tions, and inversions. Tandem duplications were limited to one copy.

Two different test data sets, each consisting of a series of graphs, were generated in
this way. The first was created to investigate the effect of the overall amount of
variation on the number of feedback arcs and the cut width achievable by each algo-
rithm. This data set–consisted of graphs each having equal numbers of all four kinds of
variations (i.e., there were as many insertions as there were deletions, inversions and
duplications), with only the total number of variations changing between graphs. The
variations’ sizes are given in Table 2. More details on data modelling could be found in
the Appendix.

The second set of graphs was created to investigate the relationship between the
relative frequencies of each type of variation and the number of feedback arcs and the
cut width achievable by each algorithm ([13], Tables 1–4).

The third data set was created in order to test algorithm’s time performance. The
graphs in this data set were created from scratch and have structure similar to those
graphs above with doubling of the number of nodes from one to another.

Table 2. The lengths of the variations in the testing data.

Deletion Insertion Inversion Duplication

Length 20 20 200 500

A Flow Procedure for the Linearization of Genome Sequence Graphs 43

5.2 Results and Discussion

In order to comparatively analyze the quality and speed of our algorithm, we took
Kahn’s well-known topological sorting algorithm [14], as well as Eades’ [15] modified
version thereof that guarantees a low number of feedback arcs while still working in
linear time. We were not able to find competitor for cut width minimization problem to
measure against, because all the algorithms we have found are focused on exact
solution of the problem, thus having high complexity (cubic and higher) and thus
working only with graphs of 200 nodes or less. Note that neither Kahn’s nor Eades’
algorithm uses the backbone as a heuristic. All three algorithms were tested on the
same data (see [13] and Sect. 5.1 for details on the modeling). Their outputs were
compared on two metrics – the number of feedback arcs and the average cut width.
Kahn’s algorithm, Eades’ algorithm, and flow procedure are all implemented in the vg
tool [12].

Figures 11 and 12 depict the main quantitative outputs of the three algorithms,
Kahn, Eades, and the flow procedure (FP), for the first set of testing data. The same
results for the second set are given in [13]. From Fig. 11 it is fairly obvious that in
terms of the number of feedback arcs, the FP algorithm vastly outperforms Kahn’s,
doing only slightly worse than Eades’ algorithm. The difference between FP and Eades
is much smaller than between FP and Kahn. It is clear from Fig. 12 that FP’s average
cut width is an order of magnitude lower than that of Eades [15] or Kahn [14].

0

200

400

600

800

1000

1200

1400

5 6 7 8 9 10 11

N
um

be
r o

f f
ee

db
ac

k
ar

cs

Number of varia ons of one type

Number of feedback arcs vs number of
varia ons

Kahn Eades flow procedure

Fig. 11. The relationship between the number of feedback arcs and variations.

44 D. Haussler et al.

0

10

20

30

40

50

60

70

5 6 7 8 9 10 11

Av
er

ag
e

cu
t w

id
th

Number of varia ons of one type

Average cut width vs number of varia ons

Kahn Eades flow procedure

Fig. 12. The relationship between the ACW and number of variations.

17386 34784 69545 139041 278315
flow procedure 0.52 1.506 3.77 13.168 51.58
Eades 0.326 0.733 1.683 4.909 19.096
Kahn 0.26 0.505 1.273 2.727 5.875

0

10

20

30

40

50

60

Ru
n

m
e,

 se
co

nd
s

Number of arcs

Run me vs number of arcs

flow procedure Eades Kahn

Fig. 13. The relationship between the runtime and the number of arcs in the graph.

A Flow Procedure for the Linearization of Genome Sequence Graphs 45

To use the FP algorithm in practice, one must estimate the time it takes the algo-
rithm to run on large amounts of data. In order to use the algorithm on large graphs in
practice, we would split the graph into pieces using a graph decomposition scheme as
described in [2]. In practice the time complexity of the FP is O(|A|2). On the other hand,
both Kahn’s and Eades’ algorithms have complexity O(|A| + |V|), since they do not
pass any node more than twice. The relationship between the number of nodes in the
graph and the algorithms’ runtimes on our test data is shown in Fig. 13.

The relationship matches the one predicted theoretically. It shows that despite
quadratic complexity estimation, it is clearly seen from Fig. 13 the algorithm can be
used on big graphs.

In addition to these tests on synthetic data, the algorithms were tested on a graph
created from MHC region of chromosome 6 with 251297 nodes. Flow procedure
running time was about 40 min.

6 Conclusion

We have proposed a new sequence graph linearization algorithm that outperforms
standard methods on the criteria that are important for storing, traversing, analyzing
and visualizing genome sequence graphs. The quantitative results thus obtained suggest
that this algorithm will prove useful in genome exploration. Earlier work on sequence
graph linearization [16] focused on minimizing feedback arcs, here we additionally
introduce cut-width as an important measure of a linearization that effectively measures
contiguity between elements that are connected. Future effort to lower the computa-
tional complexity of the algorithm using graph decomposition (see [2]) will allow us to
apply a modified form of the presented algorithm to complete human scale sequence
graphs of hundreds of millions of nodes.

Acknowledgements. We’d like to thank Erik Garrison and Glenn Hickey for helpful conver-
sations. This work was supported by the National Human Genome Research Institute of the
National Institutes of Health under Award Number 5U54HG007990 and grants from the W.M.
Keck foundation and the Simons Foundation. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National Institutes of Health.

Appendix

Some Details of the FP Algorithm

Noteworthy is the order in which we find the in- and outgrowths. First, we traverse the
backbone from end to start, finding the outgrowth for each node, then we traverse it
from start to end, finding the ingrowth. We include in the in- and outgrowths only those
nodes that did not end up in any of the previous out- or ingrowths (see Fig. 14).

46 D. Haussler et al.

Step-by-Step Algorithm Run

Let’s start from the moment when we have already found and removed the minimum
cut. We go from the beginning to the end over the backbone (CGATC) and find the
in-growth CCGA (upper 3 nodes and A from the backbone). For this in-growth we run
the entire flow procedure recursively. Looking for the backbone, we start from A and
search for incoming max weight arcs. We get CCA, then run the min cut search and
remove the CG arc. Then we recursively go to the CCA backbone from the beginning
to the end; we are looking for the in-growth. We find GC. For it we run the procedure,
which arranges these two nodes in the obvious way. We insert the result into the
backbone CCA with the G before the second C (the one that had the in-arc). Thus, we
get CGCA. All nodes of this part are sorted, so the recursion is finished and we insert
the resulting in-growth into the backbone of the source graph. Inserting to the backbone
we get CGCGCATC. There are no other in-growths, so we turn to search for
out-growths. We go from the end to the beginning. We find the GGC out-growth. It
includes 3 consecutive nodes, so the recursive procedure for it throws out a natural
GGC order. We insert to the backbone and get CGGCCGCATC. Then we look for the
next out-growth. We find the CTCA starting from the first node of the backbone. For it,
we run the procedure recursively. It finds the backbone CTA, then removes the min cut,
finds the in-growth CA and inserts its C before the A: CTCA. There are no other in- or
out-growths, so this part of the algorithm is finished and we insert nodes to the original
backbone, finally getting CTCAGGCCGCATC .

Fig. 14. An example of the in-growths and out-growths for a graph.

A Flow Procedure for the Linearization of Genome Sequence Graphs 47

Test Data Set Modeling

In order to simulate the test data, we used the RSVSim package (version 1.14.0) from
the Bioconductor software (Release 3.4). As a reference genome, we took BSgenome.
Hsapiens.UCSC.hg38 (version 1.4.1), alternative branch chr13_KI270842v1_alt,
which is 37287 nucleotides long. Using the simulateSV command of the RSVSim
package, we modeled genome fragments of 10 individuals with a given set of varia-
tions. Resulting FASTA files were submitted to the entry of the msga command of the
vg utility [12]. As a result, we got a sequence graph (*.gfa format). This graph is an
input to the commands vg sort-f (Eades) and vg sort (Flow procedure) of the vg utility
[12]. Finally, we got text files with graph nodes ordered by linearization using the
Kahn, Eades, and flow procedure algorithms respectively. To analyze the algorithm, we
created the original software to get the number of feedback arcs and the cut width in
abovementioned sorts. To reduce the impact of accidents, we repeated the procedure 20
times for each set of variations and average the results.

We created variation sets as follows. In the modelled genome fragments, we added
5 variation types: insertions, deletions, duplications, inversions, and translocations. The
positions of all variations were uniformly distributed over the simulation section of the
genome. Twenty percent of the insertions were duplicating sections of the DNA.
Translocations were modelled using the shoulder exchange mechanism. The lengths of
insertions and deletions were 20 nucleotides; the length of inversion was 200
nucleotides; the length of duplications was 500. The number of variations of each type
was equal to 5 in the first set, 6 in the second, 7 in the third, and so on up to 11 in the
latest set of variations. The [13] provides a dependence of the number of feedback arcs
and cut widths of number of variations of the same type. For this study, the number of
variations of all types, except the examined, were fixed at level 7, and the number of
investigated variations were changing according to the following list: 7, 9, 11, 13, 15,
17, 19, 21, 23, 25, 27, 29, and 31.

References

1. Paten, B., Novak, A., Haussler, D.: Mapping to a Reference Genome Structure eprint arXiv:
1404.5010

2. Paten, B., Novak, A.M., Garrison, E., Hickey, G.: Superbubbles, ultrabubbles and cacti. In:
Proceedings of RECOMB 2017 (2017)

3. Baharev, A., Schichl, H., Neumaer, A., Achterberg, T.: An exact method for the minimum
feedback arc set problem (2016)

4. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W.,
Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia
Series, pp. 85–103. Springer US, New York (1972)

5. Brandenburg, F., Hanauer, K.: Sorting heuristics for the feedback arc set problem. Technical
report. Number MIP-1104 (2011)

6. Gavril, F.: Some NP-complete problems on graphs. In: Proceedings of the 11th conference
on Information Sciences and Systems, pp. 91–95 (1977)

48 D. Haussler et al.

http://arxiv.org/abs/1404.5010
http://arxiv.org/abs/1404.5010

7. Martí, R., Pantrigo, J., Duarte, A., Pardo, E.: Branch and bound for the cutwidth minimization
problem. Comput. Oper. Res. 40, 137–149 (2013). doi:10.1016/j.cor.2012.05.016

8. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms. Mit Press,
Cambridge (Inglaterra) (2009)

9. Medvedev, P., Brudno, M.: Maximum likelihood genome assembly. J. Comput. Biol. 16,
1101–1116 (2009). doi:10.1089/cmb.2009.0047

10. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton
(1962)

11. https://www.bioconductor.org/packages/release/bioc/html/RSVSim.html
12. https://github.com/vgteam/vg
13. http://biorxiv.org/content/early/2017/01/18/101501
14. Kahn, A.: Topological sorting of large networks. Commun. ACM 5, 558–562 (1962).

doi:10.1145/368996.369025
15. Eades, P., Lin, X., Smyth, W.: A fast and effective heuristic for the feedback arc set problem.

Inf. Process. Lett. 47, 319–323 (1993). doi:10.1016/0020-0190(93)90079-O
16. Nguyen, N., Hickey, G., Zerbino, D., Raney, B., Earl, D., Armstrong, J., Kent,W., Haussler, D.,

Paten, B.: Building a pan-genome reference for a population. J. Comput. Biol. 22, 387–401
(2015). doi:10.1089/cmb.2014.0146

A Flow Procedure for the Linearization of Genome Sequence Graphs 49

http://dx.doi.org/10.1016/j.cor.2012.05.016
http://dx.doi.org/10.1089/cmb.2009.0047
https://www.bioconductor.org/packages/release/bioc/html/RSVSim.html
https://github.com/vgteam/vg
http://biorxiv.org/content/early/2017/01/18/101501
http://dx.doi.org/10.1145/368996.369025
http://dx.doi.org/10.1016/0020-0190(93)90079-O
http://dx.doi.org/10.1089/cmb.2014.0146

Dynamic Alignment-Free and Reference-Free
Read Compression

Guillaume Holley1,2(B), Roland Wittler1,2, Jens Stoye1, and Faraz Hach3,4,5(B)

1 Genome Informatics, Faculty of Technology and Center for Biotechnology,
Bielefeld University, Bielefeld, Germany

guillaume.holley@gmail.com
2 International Research Training Group 1906

“Computational Methods for the Analysis of the Diversity
and Dynamics of Genomes”, Bielefeld University, Bielefeld, Germany

3 School of Computing Science, Simon Fraser University, Burnaby, Canada
fhach@sfu.ca

4 Department of Urologic Sciences, University of British Columbia,
Vancouver, Canada

5 Vancouver Prostate Centre, Vancouver, Canada

Abstract. The advent of High Throughput Sequencing (HTS) technolo-
gies raises a major concern about storage and transmission of data pro-
duced by these technologies. In particular, large-scale sequencing projects
generate an unprecedented volume of genomic sequences ranging from
tens to several thousands of genomes per species. These collections con-
tain highly similar and redundant sequences, also known as pan-genomes.
The ideal way to represent and transfer pan-genomes is through compres-
sion. A number of HTS-specific compression tools have been developed
to reduce the storage and communication costs of HTS data, yet none
of them is designed to process a pan-genome. In this paper, we present
DARRC, a new alignment-free and reference-free compression method.
It addresses the problem of pan-genome compression by encoding the
sequences of a pan-genome as a guided de Bruijn graph. The novelty
of this method is its ability to incrementally update DARRC archives
with new genome sequences without full decompression of the archive.
DARRC can compress both single-end and paired-end read sequences of
any length using all symbols of the IUPAC nucleotide code. On a large
P. aeruginosa dataset, our method outperforms all other tested tools. It
provides a 30% compression ratio improvement in single-end mode com-
pared to the best performing state-of-the-art HTS-specific compression
method in our experiments.
Availability. DARRC is available at https://github.com/Guillaume
Holley/DARRC.

1 Introduction

Motivation. High Throughput Sequencing (HTS) technologies are constantly
improving and making sequencing of genomes more affordable. The second gen-
eration of HTS technologies was introduced to the sequencing market in 2007,
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 50–65, 2017.
DOI: 10.1007/978-3-319-56970-3 4

https://github.com/GuillaumeHolley/DARRC
https://github.com/GuillaumeHolley/DARRC

Dynamic Alignment-Free and Reference-Free Read Compression 51

enabling higher throughput and drastically reducing the cost of sequencing per
genome [20]. As a result, the number of sequenced genomes is growing exponen-
tially [19], making storage and access to these data a problem of main importance.
For example, the Sequence Read Archive (SRA) public database was endangered
in 2011 because of budgetary constraints [30]. In order to reduce storage and trans-
mission costs, raw sequencing data are often compressed using general purpose
compression tools such as gzip (based on Lempel-Ziv-77 [36]) or bzip (based on the
Burrows-Wheeler Transform [4]). Although these classic tools compressed most
of the public data, they are not optimized for HTS compression [8,10,13,15,21].
In FASTQ format, each record has three major components: (i) unique identifier,
(ii) read sequence and (iii) quality scores. A large variety of HTS-specific compres-
sion tools were proposed [1,3,11,12,17,18,22,25–27] to compress either FASTQ
files or only the read sequences. While these tools are very efficient, they are not
adapted to the context of large-scale sequencing projects that produce tens to sev-
eral thousands of genomes per species. A pan-genome, a set of genomes belonging
to different strains of the same species, is characterized by a high degree of similar-
ity and redundancy between the genomes [31]. All HTS-specific compression tools
can only consider redundancy and similarity within a single genome and not in a
collection of genomes. Furthermore, large-scale sequencing projects such as the
1000 Genomes Project [7] may take years to complete, making the compression of
continually growing pan-genomes a challenging process.

Existing Approaches. HTS-specific compression tools are divided into two
categories: reference-based and de novo. Reference-based methods generally pro-
vide high compression ratio by encoding similarities between the read sequences
(reads) and a reference sequence (reference) usually by mapping the reads to
the reference. These tools require that the reference used for compression is
provided with the compressed archive for decompression, adding extra storage
and transmission costs. Note that only a small fraction of sequenced species
that are accessible in public databases have such a reference available. On the
other hand, de novo compression tools perform similarity search within a set of
reads in order to exploit its redundancy. BARCODE [26] is a reference-based
method that makes use of cascading Bloom filters [29] to compress reads. It
inserts reads perfectly matching to a reference into a Bloom filter [2] that can
generate false positives. To reduce the number of false positives, BARCODE sub-
sequently inserts them into cascading Bloom filters to tell apart false positives
from true positives. Kpath [18] constructs a de Bruijn graph from the reference
and encodes each read as a path within the graph. The paths within the graph
are then encoded via arithmetic coding [33]. The beginnings of such paths are
stored separately in a trie and encoded with LZ-77. QUIP [17] uses a lossless
compression algorithm based on adaptive arithmetic encoding of the identifier,
read and quality score streams of the FASTQ format. A reference sequence and a
sequence alignment of the reads can be used to improve compression of the reads.
QUIP can also perform assembly-based compression. Similar methods are used

52 G. Holley et al.

in FASTQZ and FQZCOMP [3]. SCALCE [12] uses core substrings as a measure
of similarity in order to cluster similar reads together. Those core substrings
are generated via Locally Consistent Parsing (LCP) [28]. SCALCE compresses
the reads in each cluster with gzip. ORCOM [11] re-orders reads by similarity
as well: it creates clusters of reads that share the same minimizer [24], i.e. the
lexicographically smallest p-mer of each read with p usually between 8 to 15.
Reads of the same cluster are then merged and compressed. Similar to ORCOM,
Mince [22] uses the minimizer approach for clustering. For each read to process,
a set of candidate clusters is first established from the k-mers it is composed of.
The read is then assigned to the candidate cluster that maximizes the number
of q-mers they share. If the read has no candidate cluster, it is assigned to a
new cluster corresponding to its minimizer of length k. DSRC 2 [25] compresses
the different streams of FASTQ files with different methods: arithmetic coding,
Huffman coding [16], as well as 2 bits per base in the case of the DNA sequence
stream. Finally, LEON [1] encodes the reads as paths of a de Bruijn graph rep-
resented with a Bloom filter. The de Bruijn graph is built from solid k-mers of
the reads, i.e. k-mers occurring multiple times in the reads. A read is anchored
in the graph if it contains at least one solid k-mer and encoded as a list of graph
bifurcations from this anchor.

Contributions. In this paper, we present a new alignment-free and reference-
free method, DARRC, that compresses the sequencing reads dynamically. The
main contribution of this work is the guided de Bruijn graph (gdBG) which
allows a unique traversal to reconstruct the reads it was build from. The gdBG
is indexed using a colored de Bruijn graph succinct data structure, the Bloom
Filter Trie (BFT) [14] that enables the update of the gdBG with reads of other
similar genomes. Additional methods are presented to optimize the encoding
of the reads. On a large P. aeruginosa dataset, DARRC outperforms all other
tested tools. It provides a 30% compression ratio improvement in single-end
mode compared to the best performing state-of-the-art HTS-specific compression
method in our experiments.

2 Methods

A string x is a sequence of symbols drawn from a finite, non-empty set, called
the alphabet A. Its length is denoted by |x|. Strings are concatenated by juxtapo-
sition. If x = ps for (potentially empty) strings p and s, then p is a prefix and s
is a suffix of x. The symbol at position i is denoted by x[i], the suffix starting
at position i by x(i), the substring starting at position i and having length l by
x(i, l).

2.1 The de Bruijn Graph

A de Bruijn graph (dBG) is a directed graph G = (VG, EG) in which each vertex
v ∈ VG represents a k-mer, a string of length k over A. A directed edge e ∈ EG

Dynamic Alignment-Free and Reference-Free Read Compression 53

from vertex v to vertex v′ representing k-mers x and x′, respectively, exists if
and only if x(2, k − 1) = x′(1, k − 1). Each k-mer x has |A| possible successors
x(2, k − 1)c and |A| possible predecessors cx(1, k − 1) with c ∈ A. A colored de
Bruijn graph (cdBG) is a dBG G = (VG, EG, CG) in which CG is a set of colors
such that each v ∈ VG contains a subset of CG. A lightweight representation of
dBGs and cdBGs does not store edges since they are implicitly given by vertices
overlapping on k−1 symbols. However, implicit edges can falsely connect vertices
that share an overlap of k−1 but do not overlap in the sequences the graph was
built from.

The dBG is a long-studied abstract data structure used in computational
biology. It is particularly useful for the problem of read assembly [6] in which
the goal is to reconstruct a genome as a single sequence from a set of reads. For
this purpose, it is necessary to find a Hamiltonian cycle in the graph, a path
starting and ending on the same vertex that visits each vertex exactly once.
Although heuristics exist to extract Hamiltonian cycles from a graph, the read
assembly problem is yet to be solved because a Hamiltonian cycle is only one
possible reconstruction of the original genome the graph was built from.

2.2 The Guided de Bruijn Graph

The read assembly problem shows that different traversals of dBGs are possible.
In the worst case, the number of possible paths between two vertices in a graph is
infinite if the graph is cyclic, and exponential otherwise. Given a dBG built from
a sequence and a starting vertex for the traversal, the dBG must be supplemented
with information to guide its traversal in order to reconstruct the sequence it
was built from.

Definition 1. Given a de Bruijn graph G built from a sequence S, a partition
part(G,S) is a subgraph G′ of G such that G′ is a path graph that reconstructs
a subsequence of S.

A guided de Bruijn graph (gdBG) built from a sequence S is a cdBG G =
(VG, EG, PG) in which the set of colors, now denoted as PG, represents partitions
guiding the traversal of G to reconstruct S. Self-overlapping k-mers, for which
the prefix of length k − 1 is equal to the suffix of length k − 1, require a special
treatment to avoid looping on themselves within the same partition. Algorithm1
creates a gdBG G from a sequence S using vertices of length k. It returns all
information necessary to reconstruct S: the gdBG encoding S and the k − 1
length prefix of the first k-mer of S starting the graph traversal for decoding.
Note that self-overlapping k-mers terminate their partition such that the next
inserted k-mers start a new one (line 9). The algorithm requires O(|S|) time and
O(|G|) space where |G| = |VG|+ |PG| if the gdBG uses an implicit representation
of edges.

Algorithm 2 decodes a sequence S from a gdBG G using vertices of length k
starting with k-mer prefix x. Algorithm 1 guarantees that for any k-mer and one
of its partitions, this k-mer can only have zero or one successor in the graph with

54 G. Holley et al.

Algorithm 1. Encode(S, k)
1: p ← 1 � partition index
2: G ← the empty graph
3: for i ← 1, . . . , |S| − k + 1 do
4: x ← S(i, k)
5: Y ← {y | y successor of x in G with p ∈ G[y]}
6: if Y �= ∅ then p ← p + 1
7: if x ∈ G then G[x].add(p) � add p to vertex x in G
8: else G.add(x, p) � insert vertex x with p in G
9: if x(2, k − 1) = x(1, k − 1) then p ← p + 1

10: return (G, S(1, k − 1))

the same partition. Therefore, Algorithm 2 traverses the graph by searching, for
each traversed vertex, the successor with the same partition. If it is not found, the
partition index is incremented and the traversal continues. As for Algorithm1,
the algorithm requires O(|S|) time and O(|G|) space.

Algorithm 2. Decode(G, x, k)
1: p ← 1
2: z ← k-mer y in G with y(1, k − 1) = x and p ∈ G[y]
3: x ← z
4: S ← z
5: Z ← {z}
6: if z(2, k − 1) = z(1, k − 1) then p ← p + 1
7: while Z �= ∅ and p ∈ PG do
8: Z ← {z | z successor of x in G with p ∈ G[z]}
9: if Z contains exactly one element z then

10: S ← Sz[k]
11: x ← z
12: if x(2, k − 1) = x(1, k − 1) then p ← p + 1
13: else
14: p ← p + 1
15: Z ← {x}
16: return S

Figure 1 represents a simple cyclic dBG built from a sequence containing
a repetition. An infinite number of sequences could be extracted from the
dBG because of the cycle. However, by augmenting the dBG with partitions,
Algorithm 2 will traverse the cycle only once during the reconstruction of the
sequence. Indeed, when Algorithm 1 tries to insert k-mer agt with partition 1, a
successor with the same partition is found. Therefore, k-mer agt is inserted with
partition 2 such that the cycle is not contained in one partition.

Dynamic Alignment-Free and Reference-Free Read Compression 55

cgt
{1}

gta
{1,2}

taa
{1,2}

aat
{2}

agt
{2}

aag
{1}

Fig. 1. The guided de Bruijn graph of sequence S = cgtaagtaat as constructed by
Algorithm 1 with k = 3.

An important property of gdBGs using implicit edges is that no false implicit
edge can be traversed during the decoding.

Proposition 1. Let G be a gdBG built from a sequence S using an implicit
representation of edges. An edge between vertices v and v′ corresponding to
k-mers x and x′ respectively, such that x(2, k − 1) = x′(1, k − 1) but xx′[k] is
not a substring of S is called a false implicit edge. Algorithm2 does not consider
any false implicit edge when traversing G to reconstruct S.

Proof. If a false implicit edge connects vertices not sharing a partition,
Algorithm 2 will not consider this edge as only successors with the same par-
tition are traversed. If a false implicit edge connects vertices v and v′ which
share a partition, the edge out-degree of v is at least 2 and the edge in-degree of
v′ is at least 2: one true implicit edge each and at least one false implicit edge
each. As these vertices are branching, Definition 1 guarantees that v and v′ are
not in the same partition. ��

Algorithm 1 does not distinguish true implicit edges from false implicit edges,
ensuring that Definition 1 is always respected during the encoding.

Furthermore, partitions allow to apply the following generalized definition of
edges in dBGs to gdBGs:

Definition 2. In a de Bruijn graph, a directed edge from vertex v to vertex v′

representing k-mers x and x′, respectively, exists if and only if x(l + 1, k − l) =
x′(1, k − l) with l ≥ 1.

For a sequence S to encode in a gdBG and l > 1, � |S|−k+1
l � k-mers will be

inserted instead of |S| − k + 1. However, the graph can contain more partitions
as each vertex has now |A|l possible successors and predecessors. Figure 2 gives
the gdBG encoding the same sequence as in Fig. 1 using a k-mer overlap of k−2
instead of k − 1. The resulting gdBG contains only half the number of vertices
than the one in Fig. 1.

56 G. Holley et al.

cgt
{1}

taa
{1,3}

agt
{2}

Fig. 2. The guided de Bruijn graph of sequence S = cgtaagtaat using 3-mers overlap-
ping on k − l = 1. The last symbol of S is not encoded in the gdBG as it cannot be
part of a k-mer.

3 Compression

Section 2 presented methods to encode a sequence as a gdBG and to decode it.
In this section, we describe how to use this methodology to compress reads. To
improve compression efficiency, we preprocess the reads.

3.1 Read Clustering and Merging

A simple form of read assembly extended from ORCOM [11] is performed to
reduce the input data. It clusters reads according to their minimizer, then merges
reads sharing an overlap within each cluster and finally merges reads sharing an
overlap but originating from different clusters. These three steps are described
in the following.

Clustering. The minimizer [24] of a read r is the lexicographically smallest of
its p-mers with p � |r|. The canonical minimizer of r is the lexicographically
smallest minimizer of r and its reverse-complement r. The following method
is based on the simple assumption that reads sharing a minimizer are likely to
share a longer overlap and therefore be similar. Thus, the canonical minimizer m
is computed for each read r such that r or r is assigned to its cluster m.

Intra-cluster Merging. Within each cluster, the reads are sorted by decreasing
position of their minimizer, in which reads sharing the same minimizer position
are sorted lexicographically. For each read r and its minimizer m at position pm,
all reads r′ with minimizers at positions p′

m ≤ pm are considered for merging, in
decreasing order of positions p′

m to maximize the overlap lengths. To merge reads
r and r′, they are first anchored at the position of their minimizers such that
they overlap on o = p′

m + min(|r| − pm, |r′| − p′
m) symbols. Reads are merged

into a super read [35] if r(pm − p′
m, o) = r′(1, o) with at most d mismatches.

The same process is applied to the created super read in order to merge it with
the remaining reads of the cluster. For each super read, we encode all of its read
meta data in separate streams: position, length, reverse-complement information
and mismatches.

Dynamic Alignment-Free and Reference-Free Read Compression 57

Inter-cluster Merging. As an extension of the previous steps used by
ORCOM, we additionally perform a process similar to the intra-cluster read
merging described previously to merge super reads from multiple clusters. For
each super read sr and its minimizer m at position pm, a new minimizer m′ is
computed in sr(pm + 1) and sr. All super reads of cluster m′ are considered for
a merging with sr or sr. Merging two or more super reads creates a spanning
super read (SSR). The same process is applied to the created SSR until no super
reads can merge with it.

Paired-End Reads. Each mate of a pair is considered as a single read that
is clustered and merged using the previously described methods. However, the
clustering and merging steps keep track of the position of the mates in the SSRs.
This information is used afterwards to store in each read meta data whether the
read is the first mate of its pair. In such case, the position of its corresponding
mate in the SSRs is stored as well.

3.2 Spanning Super Read Encoding

Encoding a set of SSRs using a gdBG requires to extract k-mers from the SSRs.
If edges represent overlaps of length k − 1, all k-mers of the SSRs are extracted.
If edges represent overlaps of length k− l with l > 1, k-mers are extracted every
l positions. As a consequence, similar SSRs can have different sets of k-mers.
An example is given in Fig. 3, in which two similar SSRs, ssr1 and ssr2, do
not share any k-mers because they are extracted every l = 2 positions from the
first position of each SSR. By shifting the k-mer extraction start position by
one position in the second SSR, as shown with ssr2

′, two extracted k-mers are
shared with the first SSR.

ssr1 = a c g t c c t g a a t

a c g t
g t c c

c c t g
t g a a

ssr2 = g a c g t c c g g a a

g a c g
c g t c

t c c g
c g g a

ssr2 = g a c g t c c g g a a

a c g t
g t c c

c c g g
g g a a

Fig. 3. Extraction of 4-mers overlapping on k − l = 2 from two similar SSRs, ssr1 and
ssr2.

In order to keep the growth of the gdBG small when inserting a new SSR,
we determine the k-mer extraction start position, called start position in the
following, that maximizes the number of k-mers already stored in the gdBG. To
this end, we maintain in memory a k-mer index recording all k-mers extracted.
As the cost in time and memory of such an index is prohibitive, we use a Bloom
filter instead.

58 G. Holley et al.

Introduced by Bloom, a Bloom filter (BF) [2] records the presence of elements
in a set. Based on the hash table principle, look-up and insertion times are
constant. The BF is composed of an array B of b bits, initialized with 0 s, in
which the presence of n elements is recorded. A set of f hash functions h1, ..., hf

is used, such that for an element e, hi(e) : e → {1, .., b}. Inserting an element
into B and testing for its presence are then

Insert(e,B) : B[hi(e)] ← 1 for all i = 1, ..., f

and

MayContain(e,B) :
f∧

i=1

B[hi(e)],

respectively, in which
∧

is the logical conjunction operator. The BF does not
generate false negatives but may generate false positives, as MayContain can
report the presence of elements which are not present but a result of independent
insertions.

We propose a greedy approach making use of the BF to iteratively detect for
each SSR of a set its optimal start position and updating the BF with all novel
k-mers. The optimal start position of an SSR is a position from 1 to l maximizing
the number of k-mers extracted that are already present in the BF compared to
the other possible start positions. Once the optimal start position of an SSR is
determined, the BF is updated with the k-mers extracted and the next SSR of
the set is processed. To encode all SSRs completely, this approach does not only
returns the k-mers to insert into a gdBG, because these do not necessarily cover
the entire SSRs. It also returns the head and tail of each SSR, which are the
uncovered prefix and suffix, respectively, not encoded in the gdBG. Additionally,
to provide an entry point into the gdBG for the decoding, it returns the starting
overlap of each SSR, which is the k − l length prefix of the first k-mer. More
precisely, we denote by x and y the first and last k-mers extracted, respectively,
from an SSR ssr with posx and posy as their respective occurrence positions in
ssr. Then, the head of ssr is the prefix ssr(1, posx−1), the tail of ssr is the suffix
ssr(posy +k), and the starting overlap of ssr is ssr(posx, k− l). SSR heads, tails
and starting overlaps are encoded in separate streams and compressed separately
from the gdBG.

3.3 Partition Encoding

Encoding. Partition sets associated with k-mers in gdBGs are represented as
lists of sorted integers. A naive way to store a partition set is to use a fixed
number of bytes for each partition. For example, 4 bytes is a standard size for
integers on current computer architectures. In order to decrease the memory
footprint while keeping the lists indexed, partitions are first delta encoded by
storing the difference between each integer and its predecessor in the list (or 0 if
the integer is in first position). The resulting values are called deltas. However,
it only decreases the minimum number of bits necessary to encode the partitions

Dynamic Alignment-Free and Reference-Free Read Compression 59

but not their final representation. Consequently, deltas are Vbyte encoded [32]:
each byte used to encode a delta has one bit indicating whether the byte starts
a new delta or not, allowing to remove unnecessary bytes from each delta. Thus,
partitions use a variable number of bytes proportional to the minimum number
of bits necessary to encode their deltas.

Recycling. As a small delta produces a small encoding, partition integers are
recycled instead of naively using the next higher integer for every new partition
as, for the sake of convenience, described in Algorithm 1. Partition sets a and b
can share the same partition integer if they are not neighbors in the graph, i.e.,
no k-mer suffix or prefix of a overlaps a k-mer prefix or suffix of b, for suffixes
and prefixes of length k − l. A trivial example is provided in Fig. 4 in which
k-mer cttc uses the same partition integer as k-mer acgt because they are not
neighbors in the graph.

acgt
{1}

gtac
{2}

tcct
{2}

cttc
{1}

tc

Fig. 4. The guided de Bruijn graph of SSRs ssr1 = acgtac and ssr2 = tccttc using
4-mers (l = 2). Dotted gray edges are false implicit edges. The solid gray edge exists by
using the starting overlap of ssr2 after the traversal of ssr1, as described in Sect. 3.2.

As there can be a large number of partitions in the graph, verifying the
connectivity of one partition to all other partitions is often impractical. We pro-
pose instead a heuristic that verifies the connectivity only to the last t partitions
inserted, t being a user-defined threshold, such that these t partitions are the only
candidates for recycling. Using partition recycling requires to save the partitions
traversal order which cannot be incremental anymore as shown in Algorithms 1
and 2.

3.4 Meta Data and GdBG Compression

Steps described previously generate meta data specific to one input file such as
read lengths and positions in SSRs. These meta data are first encoded in separate
streams and are then compressed using an LZ-type algorithm, LZMA [23]. After
all k-mers and partitions are inserted in the gdBG, the latter is written to disk.
As it must be loaded in memory for every update and decompression, the gdBG is
compressed with Zstd [5], a compression method based on Huffman coding and
Asymmetric Numeral Systems [9] that favors compression and decompression
speed over compression ratio.

60 G. Holley et al.

4 Update and Decompression

In order to update a compressed archive with a new input file, only the gdBG
previously created is decompressed and loaded in memory, as meta data are not
used for the update. A fast procedure iterates over all k-mers of the gdBG and
inserts them into the BF proposed in Sect. 3.2 instead of starting with an empty
BF in order to optimize the choice of the k-mer extraction start positions in
the SSRs. The gdBG is then updated with the new k-mers and partitions. The
starting partition index is greater than the partition indexes already present in
the gdBG, ensuring that each input file is encoded with a unique set of partitions.

Decompressing a read file starts with decompressing its meta data and the
gdBG it is encoded in. The gdBG is then loaded in memory and Algorithm2 is
used to traverse the gdBG, but only following those partitions that are specific
to the read file to decompress. This way, single files can be decompressed sepa-
rately. As Algorithm 2 decodes SSRs, meta data are used afterwards to extract
the actual reads. If reads are paired-end, meta data are also used to reorga-
nize them such that corresponding mates of the same pair are together in the
decompressed file.

5 Results

DARRC is implemented in C and uses the Bloom Filter Trie (BFT) library [14]
for its gdBG. The BFT provides time and space efficient functionalities that are
required by DARRC. These functionalities include: (i) the ability to update the
BFT with new k-mers and colors without recomputing the index, (ii) k-mers
extraction from the BFT and (iii) prefix search over the set of k-mers within
the BFT. The software is available at https://github.com/GuillaumeHolley/
DARRC. We compared DARRC to three state-of-the-art de novo DNA sequence
compression tools: ORCOM [11], LEON [1] and Mince [22]. DARRC was also
compared to the same LZ-type algorithm used to compress its meta data,
LZMA [23]. Experiments were carried out on a server with 378 GB of RAM
and two 8-core Intel Xeon E5-2630 v3 2.4 GHz processors. All input files were
placed on mechanical hard drives. Compressed archives and decompressed files,
during compression and decompression respectively, together with temporary
files such as read clusters were written to a RAM-based partition when the tools
allowed to specify an output directory. As the current version of DARRC does
not take advantage of parallelism, all software were run using a single thread,
except Mince which requires a minimum of four threads. All de novo DNA
sequence compression tools were run using their default parameters. LZMA was
run with the same compression level as the one used to compress DARRC meta
data. DARRC default parameters are minimizers of length 9 for the clustering,
5 mismatches allowed per read merging and 36-mers overlapping on 11 sym-
bols for the gdBG. ORCOM, LEON, Mince and LZMA compressed all files in
separate archives while DARRC updated the same archive iteratively with the
files to compress: each iteration decompressed and reloaded the necessary data

https://github.com/GuillaumeHolley/DARRC
https://github.com/GuillaumeHolley/DARRC

Dynamic Alignment-Free and Reference-Free Read Compression 61

from the data written to disk in the previous iteration. The dataset used for the
experiment consists of 473 clinical isolates of Pseudomonas aeruginosa sampled
from 34 patients (NCBI BioProject PRJEB5438), resulting in 338.61 Gbp of high
coverage sequences. Reads are 100 bp paired-end reads generated by Illumina
HiSeq 2000. Pair mates were placed in different files for every isolate. The exper-
iment was run in single-end mode and paired-end mode for all tools such that in
the single-end mode, every mate file is considered as a single-end read file. The
appropriate single-end and paired-end modes were used for DARRC and Mince.
The mates were concatenated for the paired-end experiment of ORCOM as the
tool neither preserves the order of the reads nor stores the paired-end informa-
tion. LEON and LZMA do not have an explicit paired-end mode but keep the
original order of the reads, thus for the paired-end experiment of LEON and
LZMA, the mate files of every isolate were concatenated.

Compression ratios in paired-end mode and single-end mode are shown in
Fig. 5. DARRC clearly outperforms all the other tested tools in both modes.
In paired-end mode and single-end mode, DARRC uses about 0.261 bits per
base and 0.204 bits per base, corresponding to a 57% and 30% compression
ratio improvement compared to the second best results, respectively. The paired-
end compression ratio of ORCOM compared to its single-end compression ratio
shows that the tool is not adapted to paired-end read compression. The gdBG
represents about 10% and 13% of the data written to disk by DARRC in paired-
end mode and single-end mode, respectively.

0 100 200 300 400

0
1
0

2
0

3
0

4
0

5
0

Number of isolates

C
o
m

p
re

ss
io

n
ra

ti
o

DARRC
Mince
LEON

ORCOM
LZMA

0 100 200 300 400

0
1
0

2
0

3
0

4
0

5
0

Number of isolates

DARRC
Mince
LEON

ORCOM
LZMA

Fig. 5. Compression ratios in paired-end mode (left) and single-end mode (right).

DARRC compressed more than two times faster than LZMA but used the
most time to decompress, as shown in Figs. 6 and 7, respectively. DARRC’s
compression time overhead is explained by the fact that at each iteration, the

62 G. Holley et al.

0 100 200 300 400

0
2
0
0
0

4
0
0
0

6
0
0
0

Number of isolates

T
im

e
(m

in
)

DARRC
Mince - 4 threads
LEON
ORCOM
LZMA

0 100 200 300 400

0
2
0
0
0

4
0
0
0

6
0
0
0

Number of isolates

DARRC
Mince - 4 threads
LEON
ORCOM
LZMA

Fig. 6. Compression times in paired-end mode (left) and single-end mode (right).

0 100 200 300 400

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Number of isolates

T
im

e
(m

in
)

DARRC
Mince - 4 threads
LEON
ORCOM
LZMA

0 100 200 300 400

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Number of isolates

DARRC
Mince - 4 threads
LEON
ORCOM
LZMA

Fig. 7. Decompression times in paired-end mode (left) and single-end mode (right).

gdBG must be decompressed, loaded in memory and updated with new k-mers
and partitions.

All tools performed compression and decompression using a maximum of
four gigabytes of main memory, an amount nowadays available on most desktop
computers and laptops. Even by updating the same archive iteratively, DARRC
compression used less than two gigabytes of main memory.

Dynamic Alignment-Free and Reference-Free Read Compression 63

6 Conclusions and Future Work

We presented DARRC, a dynamic alignment-free and reference-free read com-
pression method that can incrementally update compressed archives with new
genome sequences without full decompression of the archives. DARRC uses a
new abstract data structure, the guided de Bruijn graph, that allows a unique
traversal of the de Bruijn graph to reconstruct the sequences it is built from. We
showed that, on a large pan-genome dataset, our method outperforms several
state-of-the-art DNA sequence compression methods and a general purpose com-
pression tool regarding the compression ratio while achieving reasonable running
time and main memory usage. Furthermore, we showed that the compression
ratio of DARRC is attractive even with only few files compressed. Future work
concerns the parallelization of the software, particularly the read clustering and
merging phase which offers a lot of potential for multi-threading. Additionally,
a logical evolution of DARRC is the introduction of a pattern matching func-
tionality within the compressed data as in [34], leading to large scale complex
methods such as read alignment and variant calling using multiple genomes.

Acknowledgments. This research is funded by the International DFG Research
Training Group GRK 1906/1 for GH and RW, the NSERC Discovery Frontiers grant
on “Cancer Genome Collaboratory” to FH.

References

1. Benoit, G., Lemaitre, C., Lavenier, D., Drezen, E., Dayris, T., Uricaru, R., Rizk, G.:
Reference-free compression of high throughput sequencing data with a probabilistic
de Bruijn graph. BMC Bioinform. 16, 288 (2015)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Comm.
ACM 13(7), 422–426 (1970)

3. Bonfield, J.K., Mahoney, M.V.: Compression of FASTQ and SAM format sequenc-
ing data. PloS One 8(3), e59190 (2013)

4. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Digital SRC Research Report 124 (1994)

5. Collet, Y.: ZSTD. https://github.com/facebook/zstd, 20 December 2016
6. Compeau, P.E.C., Pevzner, P.A., Tesler, G.: How to apply de Bruijn graphs to

genome assembly. Nat. Biotechnol. 29(11), 987–991 (2011)
7. 1000 Genomes Project Consortium: A global reference for human genetic variation.

Nature 526(7571), 68–74 (2015)
8. Deorowicz, S., Grabowski, S.: Data compression for sequencing data. Algorithms

Mol. Biol. 8, 25 (2013)
9. Duda, J.: Asymmetric numeral systems: entropy coding combining speed of Huff-

man coding with compression rate of arithmetic coding (2013). arXiv:1311.2540
10. Giancarlo, R., Rombo, S.E., Utro, F.: Compressive biological sequence analysis and

archival in the era of high-throughput sequencing technologies. Brief. Bioinform.
15(3), 390–406 (2014)

11. Grabowski, S., Deorowicz, S., Roguski, L.: Disk-based compression of data from
genome sequencing. Bioinformatics 31(9), 1389–1395 (2014)

https://github.com/facebook/zstd
http://arxiv.org/abs/1311.2540

64 G. Holley et al.

12. Hach, F., Numanagić, I., Alkan, C., Sahinalp, S.C.: SCALCE: boosting sequence
compression algorithms using locally consistent encoding. Bioinformatics 28(23),
3051–3057 (2012)

13. Holland, R.C.G., Nick, L.: Sequence squeeze: an open contest for sequence com-
pression. GigaScience 2(1), 5 (2013)

14. Holley, G., Roland, W., Stoye, J.: Bloom Filter Trie: an alignment-free and
reference-free data structure for pan-genome storage. Algorithms Mol. Biol. 11,
3 (2016)

15. Hosseini, M., Pratas, D., Pinho, A.J.: A survey on data compression methods for
biological sequences. Information 7(4), 56 (2016)

16. Huffman, D.A.: A method for the construction of minimum-redundancy codes. In:
Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101 (1952)

17. Jones, D.C., Ruzzo, W.L., Peng, X., Katze, M.G.: Compression of next-generation
sequencing reads aided by highly efficient de novo assembly. Nucleic Acids Res.
40(22), e171 (2012)

18. Kingsford, C., Patro, R.: Reference-based compression of short-read sequences
using path encoding. Bioinformatics 31(12), 1920–1928 (2015)

19. Land, M., Hauser, L., Jun, S.-R., Nookaew, I., Leuze, M.R., Ahn, T.-H., Karpinets,
T., Lund, O., Kora, G., Wassenaar, T., et al.: Insights from 20 years of bacterial
genome sequencing. Funct. Integr. Genomics 15(2), 141–161 (2015)

20. Loh, P.-R., Baym, M., Berger, B.: Compressive genomics. Nat. Biotechnol. 30,
627–630 (2012)

21. Numanagić, I., Bonfield, J.K., Hach, F., Voges, J., Ostermann, J., Alberti, C.,
Mattavelli, M., Sahinalp, S.C.: Comparison of high-throughput sequencing data
compression tools. Nat. Methods 13(12), 1005–1008 (2016)

22. Patro, R., Kingsford, C.: Data-dependent bucketing improves reference-free com-
pression of sequencing reads. Bioinformatics 31(17), 2770–2777 (2015)

23. Pavlov, I.: LZMA. http://www.7-zip.org, 20 December 2016
24. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage

requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369
(2004)

25. Roguski, L., Deorowicz, S.: DSRC 2-Industry-oriented compression of FASTQ files.
Bioinformatics 30(15), 2213–2215 (2014)

26. Rozov, R., Shamir, R., Halperin, E.: Fast lossless compression via cascading Bloom
filters. BMC Bioinform. 15(9), S7 (2014)

27. Saha, S., Rajasekaran, S.: Efficient algorithms for the compression of FASTQ files.
In: Proceedings of the International Conference on Bioinformatics and Biomedicine
(BIBM 2014), pp. 82–85 (2014)

28. Sahinalp, S.C., Vishkin, U.: Efficient approximate and dynamic matching of pat-
terns using a labeling paradigm. In: FOCS, pp. 320–328 (1996)

29. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading Bloom filters to improve
the memory usage for de Brujin graphs. Algorithm. Mol. Biol. 9(1), 2 (2014)

30. Genome Biology Editorial Team: Closure of the NCBI SRA and implications for
the long-term future of genomics data storage. Genome Biol. 12(3), 402 (2011)

31. Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L.,
Angiuoli, S.V., Crabtree, J., Jones, A.L., Durkin, A.S., et al.: Genome analysis
of multiple pathogenic isolates of Streptococcus agalactiae: implications for the
microbial pan-genome. Proc. Natl. Acad. Sci. USA 102(39), 13950–13955 (2005)

32. Williams, H.E., Zobel, J.: Compressing integers for fast file access. Comput. J.
42(3), 193–201 (1999)

http://www.7-zip.org

Dynamic Alignment-Free and Reference-Free Read Compression 65

33. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression.
Commun. ACM 30(6), 520–540 (1987)

34. Yu, Y.W., Daniels, N.M., Danko, D.C., Berger, B.: Entropy-scaling search of mas-
sive biological data. Cell Syst. 1(2), 130–140 (2015)

35. Zimin, A.V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S.L., Yorke, J.A.: The
MaSuRCA genome assembler. Bioinformatics 29(21), 2669–2677 (2013)

36. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

A Fast Approximate Algorithm for Mapping
Long Reads to Large Reference Databases

Chirag Jain1,2, Alexander Dilthey2, Sergey Koren2, Srinivas Aluru1,
and Adam M. Phillippy2(B)

1 Georgia Institute of Technology, Atlanta, GA 30332, USA
aluru@cc.gatech.edu

2 National Institutes of Health, Bethesda, MD 20894, USA
adam.phillippy@nih.gov

Abstract. Emerging single-molecule sequencing technologies from
Pacific Biosciences and Oxford Nanopore have revived interest in long
read mapping algorithms. Alignment-based seed-and-extend methods
demonstrate good accuracy, but face limited scalability, while faster
alignment-free methods typically trade decreased precision for efficiency.
In this paper, we combine a fast approximate read mapping algorithm
based on minimizers with a novel MinHash identity estimation technique
to achieve both scalability and precision. In contrast to prior methods,
we develop a mathematical framework that defines the types of mapping
targets we uncover, establish probabilistic estimates of p-value and sen-
sitivity, and demonstrate tolerance for alignment error rates up to 20%.
With this framework, our algorithm automatically adapts to different
minimum length and identity requirements and provides both positional
and identity estimates for each mapping reported. For mapping human
PacBio reads to the hg38 reference, our method is 290x faster than BWA-
MEM with a lower memory footprint and recall rate of 96%. We further
demonstrate the scalability of our method by mapping noisy PacBio
reads (each ≥ 5 kbp in length) to the complete NCBI RefSeq database
containing 838 Gbp of sequence and > 60, 000 genomes.

Keywords: Long read mapping · Jaccard · MinHash · Winnowing ·
Minimizers · Sketching · Nanopore · PacBio

1 Introduction

Mapping reads generated by high-throughput DNA sequencers to reference
genomes is a fundamental and widely studied problem [16,24]. The problem
is particularly well studied for short read sequences, for which effective mapping
algorithms and widely used software such as BWA [15] and Bowtie [12] have
been developed. The increasing popularity of single-molecule sequencers from
Pacific Biosciences and Oxford Nanopore, and their continually improving read
lengths (10 kbp and up), is generating renewed interest in long read mapping
algorithms. However, the benefit of long read lengths is currently accompanied

The rights of this work are transferred to the extent transferable according to title
17 § 105 U.S.C.

c© Springer International Publishing AG 2017 (outside the US)
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 66–81, 2017.
DOI: 10.1007/978-3-319-56970-3 5

Algorithm for Mapping Long Reads 67

by much higher error rates (up to 15–20%). Despite their high error rates, long
reads have proved advantageous in many applications including de novo genome
assembly [7,10] and real time pathogen identification [2,22].

Sequence data from nanopore devices is available just minutes after intro-
ducing the sample. This can enable real-time genomic analysis when coupled
with fast computational methods that can map the data stream against large
reference databases. However, mapping raw sequences continues to be a bot-
tleneck for many applications. The problem is only going to worsen as Oxford
Nanopore’s PromethION is projected to generate multiple tera-bases of sequence
per day. In parallel, reference databases are continually growing in size, with the
non-redundant NCBI RefSeq database close to exceeding a tera-base in size. The
high error rate of raw single-molecule sequences further adds to the computa-
tional complexity.

Read mapping problems can be solved exactly by designing appropriate vari-
ants of the Smith-Waterman alignment algorithm [27]; however, it is computa-
tionally prohibitive when mapping reads from a high throughput sequencer to
large reference genomes. Seed-and-extend mapping heuristics address this limi-
tation for both long and short reads by limiting the search to locations where
exact short word or maximal common substring matches occur before executing
an alignment algorithm at these locations [1,5,8]. Accurate alignment-based long
read mappers include BLASR [5] and BWA-MEM [13]. However, repetitive seeds
that do not translate to correct mappings combined with high sequencing error
rates limit their scalability. Additionally, alignment-based mapping algorithms
preserve the complete reference sequence in the index, and hence, cannot scale to
tera-base scale reference databases. Many genomics applications do not require
detailed base-to-base alignment information, and instead use only the alignment
boundary and identity summaries. Such applications include depth-of-coverage
analysis, metagenomic read assignment, structural variant detection, and selec-
tive sequencing [18]. Efficient algorithms for these problems, combined with
nanopore sequencing, could enable the real-time genomic analysis of patients,
pathogens, cancers, and microbiomes.

One class of algorithms for fast, approximate mapping relies on ideas orig-
inally developed for finding similarities between web documents. Broder [4]
proved that an unbiased estimate of the Jaccard similarity coefficient between
two sets can be computed efficiently using a subset of hashed elements called a
sketch. Schleimer et al. [25] proposed the winnowing algorithm, which picks a
minimum hashed item (also known as a minimizer [23]) from each consecutive
window of text as a means to more quickly estimate local similarity between web
documents. These ideas have been used to develop new mapping and assembly
algorithms for long reads such as the MinHash Alignment Process [3], min-
imap [14], and BALAUR [21]. To date, the effectiveness of these approaches has
only been demonstrated empirically.

In this paper, we propose a fast approximate algorithm for mapping long
reads that scales to large reference databases with sufficient theoretical guaran-
tees and practical validation on the quality of results reported. We propose a

68 C. Jain et al.

problem formulation that mathematically characterizes desired mapping targets
by linking the Jaccard coefficient between the k-mer spectra of the read and its
mapping region to a sequence error rate assuming a Poisson error model. We
then provide an efficient algorithm to estimate the Jaccard coefficient through a
combination of MinHash and winnowing techniques that characterizes and guar-
antees the types of mapping regions we find. On the quality side, we provide
probabilistic bounds on sensitivity. We present techniques for choosing algorith-
mic parameters as a function of error rate and sequence lengths that guarantees
the desired statistical significance. The theory is validated using PacBio and Min-
ION datasets, and we demonstrate the scalability of our approach by mapping
PacBio metagenomic reads to the entire RefSeq database. The speed and space
efficiency of our algorithm enables real-time mapping, and compared to minimap,
our method maintains high sensitivity with better precision for large, repetitive
genomes. The implementation is available at github.com/MarBL/MashMap.

2 Preliminaries

Read Error Model: We assume errors occur independently at the read posi-
tions, and use a Poisson error model as in previous works [9,19]. A binomial
model would also be appropriate, but is not discussed here for brevity. Let
ε ∈ [0, 1] be the per-base error rate. The expected number of errors in a k-mer is
k · ε, and the probability of no errors within each k-mer, assumed independent,
is e−εk. We assume the statement is valid irrespective of error type.

Jaccard Similarity: Assuming X ,Y are the sets of k-mers in sequences X and
Y respectively, their Jaccard similarity is defined as J(X,Y) = |X ∩Y|/|X ∪Y|.
The Poisson error model is used to compute the relationship between Jaccard
similarity and alignment error rate [19]. We approximate the length of a read
alignment to be the read length. Let A be a read derived from Bi, where Bi

denotes the length |A| substring of reference B starting at position i. If c and
n denote the number of error-free and total k-mers in A, respectively, then the
expected value of c/n, termed k-mer survival probability, is e−εk. This equation
assumes k is large enough such that k-mers in A or Bi are unique. Because
|A| = |Bi|, J(A,Bi), abbreviated as J , equals c/(2n−c). Using the two equations,
we derive the following functions G and F to estimate J and ε:

G(ε, k) =
1

2eεk − 1
and F(J, k) =

−1
k

× log
(

2J

1 + J

)
, (1)

where G(ε, k) serves as an estimate of the Jaccard similarity given an error
rate and F(J, k) estimates the converse. Note E(J) ≥ G(ε, k) (using Jensen’s
inequality).

MinHash Approximation: The MinHash algorithm is a fast and space-
efficient approximation technique to compute an unbiased estimate of Jaccard
similarity [4], without explicitly computing the underlying set intersection and
union. Let s be a fixed parameter. Assuming universe U is the totally ordered

http://github.com/MarBL/MashMap

Algorithm for Mapping Long Reads 69

set of all possible items, and Ω : U → U is a permutation chosen uniformly at
random, Broder [4] proved that P

(
min
x∈A

Ω(x) = min
x∈Bi

Ω(x)
)

= J(A,Bi), and that

|S(A ∪ Bi) ∩ S(A) ∩ S(Bi)| / |S(A ∪ Bi)| (2)

is an unbiased estimate of J(A,Bi), where S(A) (called the sketch of A) is the
set of the smallest s hashed items in A, i.e., S(A) = mins{Ω(x) : x ∈ A}.
Typically, the denominator |S(A ∪ Bi)| is referred as the MinHash sketch size
and the numerator as the count of shared sketch elements. This estimate is
unbiased provided S(A) is a simple random sample of A. Increasing the sketch
size improves the accuracy of the estimate.

Assuming s is fixed and the true Jaccard similarity j = J(A,Bi) is known,
the count of shared sketch elements between S(A) and S(Bi) follows a hyperge-
ometric distribution. Since s is much smaller than |A|, it can be approximated
by the binomial distribution.

p
(|S(A ∪ Bi) ∩ S(A) ∩ S(Bi)| = x|s, j)

=
(

s

x

)
jx(1 − j)s−x (3)

As an example, Fig. 1 illustrates this distribution for a read with known
Jaccard similarity j = G(ε = 0.15, k = 16) (using Eq. 1) and sketch size s
varying from 200 to 500.

0.00

0.05

0.10

0 10 20 30 40 50
Count of shared sketch elements

P
ro

ba
bi

lit
y

Sketch size

200

300

400

500

Fig. 1. Probability distributions of
count of shared sketch elements for a
read with 15% alignment error (ε =
0.15) and k-mer size of 16, with varying
sketch sizes. Estimated Jaccard simi-
larity computed using Eq. 1 is 0.0475.

Fig. 2. Illustration of the winnowing
method on a sequence of hashed k-mers
in A. W (A) represents the minimizers
sampled from the sequence with win-
dow size w = 5.

Winnowing: Winnowing is a local fingerprinting algorithm, proposed to mea-
sure similarity between documents by using a subset of hashed words [25]. Unlike
MinHash sketching, it bounds the maximum positional gap between any two
consecutive selected hashes. It works by sampling the smallest hashed item in
every consecutive fixed size sliding window (Fig. 2). Formal description of this
algorithm in the context of genomic sequences follows.

Let A0 denote the set of all k-mer tuples 〈ki, i〉 in sequence A, i denoting the
k-mer position. Let w be the window-size used for winnowing, and Kj be the

70 C. Jain et al.

set of w consecutive k-mer tuples starting at position j in A, i.e., Kj = {〈ki, i〉 :
j ≤ i < j + w}. Assume Ω is a hash function defined as a random permutation.
Then, the set of minimizers sampled by the winnowing algorithm in sequence A
is W (A) = { min

〈k,i〉∈Kj

〈Ω(k), i〉 : 0 ≤ j ≤ |A0| − w}, where

min(〈k1, i1〉, 〈k2, i2〉) =

{
〈k1, i1〉 k1 < k2 or (k1 = k2 and i1 > i2);
〈k2, i2〉 otherwise;

Schleimer et al. [25] prove that the expected set count of minimizers selected
from a random sequence A is 2|A0|/w. Moreover, W (A) can be computed effi-
ciently in O(|A|) time and O(w) space using a double-ended queue, as sequence
A is read in a streaming fashion [26].

3 Problem Formulation

Given a read A and the maximum per base error rate εmax, our goal is to identify
target positions in reference B where A aligns with ≤ εmax per-base error rate.
This problem can be exactly solved in O(|A| · |B|) time by designing a suitable
quadratic time alignment algorithm. When mapping to a large database of ref-
erence sequences, solving this problem exactly is computationally prohibitive.
Hence, we define an approximate version of this problem using the Jaccard coef-
ficient as a proxy for the alignment as follows: Let Bi denote the substring of
size |A| in B starting at position i (0 ≤ i ≤ |B| − |A|). For a given k, we seek
all mapping positions i in B such that

J(A,Bi) ≥ G(εmax, k) − δ (4)

Note that if A aligns with Bi with per-base error rate ≤ εmax, then E(J(A,Bi)) ≥
G(εmax, k) (using Eq. 1). As this equation applies only to the expected value of
J(A,Bi), we lower this threshold by δ to account for variation in the estimate.
The parameter δ is defined as the margin of error in Jaccard estimation using a
90% confidence interval.

4 The Proposed Algorithm

Directly computing J(A,Bi) for all positions i is as asymptotically expensive as
the alignment algorithm. The rationale for reformulating the problem in terms
of Jaccard coefficients is that it enables the design of fast heuristic algorithms.
We present an algorithm to estimate J(A,Bi) efficiently using a combination
of MinHash and winnowing techniques. In addition, we compute an estimate
of the alignment error rate ε for each mapping reported. Our method relies on
an indexing and search strategy we developed to prune the incorrect mapping
positions efficiently.

Algorithm for Mapping Long Reads 71

4.1 Definitions

Let W (A) be the set of minimizers computed for read A using the winnow-
ing method with window-size w. We sketch W (A) instead of sketching A itself.
Assuming s is a fixed parameter, we define S

(
W (A)

)
as the set of the s small-

est hashed k-mers that were sampled using winnowing of A, i.e., S
(
W (A)

)
=

mins{h : 〈h, pos〉 ∈ W (A)}. To estimate J(A,Bi), we define winnowed-minhash
estimate J (A,Bi) for J(A,Bi) as

J (A,Bi) =
|S(

W (A) ∪ W (Bi)
) ∩ S

(
W (A)

) ∩ S
(
W (Bi)

)|
|S(

W (A) ∪ W (Bi)
)| (5)

In contrast to the MinHash approximation (Eq. 2), our estimator J (A,Bi) uses
winnowing to reduce the sampling frame before picking the minimum hash val-
ues. Even though S(W (A)) is no longer a simple random sample of the k-mers
in A, we empirically show in Sect. 8.1 that the quality of the Jaccard estimation
using J (A,Bi) is as good as the MinHash estimation. We use Wh(A) to denote
the set of hashed k-mers in W (A), i.e., Wh(A) = {h : 〈h, pos〉 ∈ W (A)}.

4.2 Indexing the Reference

Retaining the minimizers W (Bi) is sufficient for Jaccard similarity estimation
J (A,Bi) (Eq. 5). Since W (Bi) ⊆ W (B) (Sect. 2), we compute W (B) from the
reference sequence B in order to be able to extract W (Bi) efficiently for any
i. The set W (B) can be computed from B in a linear scan in O(|B|) time.
We store W (B) as an array M of tuples 〈h, pos〉. When created, the set is
naturally in ascending sorted order of the positions. Further, to enable O(1)
look-up of all the occurrences of a particular minimizer’s hashed value h, we
also replicate W (B) as a hash table H with h as the key and an array of its
positions {pos : 〈h, pos〉 ∈ W (B)} as the mapped value. The expected space
requirements for M and H are 2|B|/w (Sect. 2). We postpone our discussion on
how to compute an appropriate window-size w to Sect. 5. Besides low memory
requirements, a key advantage of this indexing strategy is that a new reference
sequence can be incrementally added to the existing data structure in time linear
to its length, which is not feasible for suffix array or Burrows-Wheeler transform
based indices, typically used in most mapping software.

4.3 Searching the Reference

The goal of the search phase is to identify for each read A, positions i such that
J(A,Bi) ≥ G(εmax, k)− δ. We instead compute the winnowed-minhash estimate
J (A,Bi). Let τ = G(εmax, k)− δ. To avoid directly evaluating J (A,Bi) for each
Bi, we state and prove the following theorem:

Theorem 1. Assuming sketch size s ≤ |Wh(A)|,

J (A,Bi) ≥ τ ⇒ |Wh(A) ∩ Wh(Bi)| ≥ s · τ ∀i 0 ≤ i ≤ |B| − |A|.

72 C. Jain et al.

Proof.
s ≤ |Wh(A)| =⇒ |S(

W (A) ∪ W (Bi)
)| = s (6)

From Eq. 5.

J (A,Bi) ≥ τ =⇒ |S(
W (A) ∪ W (Bi)

) ∩ S(W (A)) ∩ S(W (Bi))|
|S(

W (A) ∪ W (Bi)
)| ≥ τ

=⇒ |S(
W (A) ∪ W (Bi)

) ∩ S(W (A)) ∩ S(W (Bi))|
s

≥ τ (using Eq. 6)

Note that S
(
W (A) ∪ W (Bi)

) ⊆ S(W (A)) ∪ S(W (Bi)). Therefore,

|(S(W (A)) ∪ S(W (Bi))
) ∩ S(W (A)) ∩ S(W (Bi))|
s

≥ τ

=⇒ |S(W (A)) ∩ S(W (Bi))| ≥ s · τ

But, S(W (A)) ⊆ Wh(A) and S(W (Bi)) ⊆ Wh(Bi)
Therefore, |Wh(A) ∩ Wh(Bi)| ≥ s · τ �

We use the above condition as a filter and only consider positions in B which
satisfy |Wh(A) ∩ Wh(Bi)| ≥ s · τ . To maximize effectiveness of the filter, we
set the sketch size s = |Wh(A)|. The search proceeds in two successive stages.
The first stage identifies candidate positions i using Theorem 1, and the second
stage computes J (A,Bi) at each candidate position i. The position is retained
as output if J (A,Bi) ≥ τ , and discarded otherwise.

Stage 1: Algorithm 1 outlines the first stage of our mapping procedure. It
calculates all offset positions i in B such that |Wh(A)∩Wh(Bi)| ≥ s·τ� = m. The
output list T is created in the form of one or more tuple ranges 〈x, y〉, implying
that the criterion holds true for all Bi, x ≤ i ≤ y. We begin by computing the
minimizer hashed values Wh(A) by winnowing the read A, and compute the
positions of their occurrence in the reference (line 4). Accordingly, L = {pos :
h ∈ Wh(A) ∧ 〈h, pos〉 ∈ W (B)}. Next, we sort the array L to process all the
positions in ascending order. If Bi satisfies the filtering criterion, there should
be at least m entries in L with values between [i, i + |A|). It also implies that
m consecutive entries should exist in L with positional difference between the
first and mth entry being < |A|. This criterion is efficiently evaluated for all Bi

using a linear scan on L (lines 6–9). If satisfied, we push the associated candidate
range into T . To avoid reporting Bi more than once, we merge two consecutive
overlapping tuple ranges into one.

Stage 2: Evaluation of each tuple 〈x, y〉 in the Stage 1 output array T requires
computing J (A,Bi) ∀i, x ≤ i ≤ y. Accordingly, we compute the minimum s
unique sketch elements within Wh(A) ∪ Wh(Bi), and count the ones shared

Algorithm for Mapping Long Reads 73

Algorithm 1. Stage 1 of map-
ping read
Input: read A, reference index

map H (hash k-mer
→ pos[]), s, τ

Output: list T of candidate
regions in the reference

1 m = �s · τ�
2 T = L = []
3 for e ∈ Wh(A) do
4 L.append(H(e))

5 sort(L)
6 for i ← 0 to |L| − m do
7 j ← i + (m − 1)
8 if (L[j] − L[i]) < |A| then
9 T .append(

〈L[j] − |A| + 1, L[i]〉)

Algorithm 2. Stage 2 of map-
ping read
Input: index M, Stage 1 output

T , s, τ
Output: P

1 L0 = L = {}, L0.insert
(
Wh(A)

)

2 for 〈x, y〉 ∈ T do
3 i ← x, j ← x + |A|, L ← L0

4 L.insert
(
getMinimizers(i, j)

)

5 if J =
solveJaccard(L) ≥ τ then

6 P.append〈i, J 〉
7 while i ≤ y do
8 L.delete

(
getMinimizers(i, i+

1)
)

9 L.insert
(
getMinimizers(j, j+

1)
)

10 if J =
solveJaccard(L) ≥ τ
then

11 P.append〈i, J 〉
12 i ← i + 1, j ← j + 1

13 Function getMinimizers (p, q)
14 return {h : 〈h, pos〉 ∈

W (B), p ≤ pos < q}
15 Function solveJaccard (L)

16 shared sketch =
∑s−1

k=0 L[k]
17 return J = shared sketch/s

between A and Bi. We show the step-by-step procedure in Algorithm 2. We
use L to contain the minimizer hashed values {h ∈ Wh(A) ∪ Wh(Bi)}. To
implement L, we make use of the C++ ordered map data structure that sup-
ports logarithmic time insertion, deletion and linear time iteration over unique
ordered keys. We keep the hashed value as the map’s key, and map it to 1 if
it appears in both the reference and the read, and 0 otherwise. For each tuple
〈x, y〉, we begin by saving the hashed values Wh(A) in read A into map L (lines
1, 3). Two loops (lines 2, 7) evaluate each tuple 〈x, y〉 in T , and consider each
Bi, x ≤ i ≤ y for Jaccard estimation J (A,Bi). The function getMinimizers
gathers the reference minimizer hashes Wh(Bi) by sequentially iterating over M
in the required position range and populating the minimizers associated with
each Bi into the map L (lines 4, 8-9). Note that a few incorrect corner minimiz-
ers {h : 〈h, pos〉 ∈ W (B), i ≤ pos ≤ i + |A|} \ Wh(Bi) can appear in L that were
winnowed from windows overlapping with Bi. However, these can be discarded
by recomputing the minimum of the first and last window of Bi. Finally, func-
tion solveJaccard computes |S(

W (A) ∪ W (Bi)
) ∩ S(W (A)) ∩ S(W (Bi))| by

74 C. Jain et al.

iterating over s minimum unique sketch elements and counting the ones shared
between A and Bi. If J (A,Bi) ≥ τ , then the position i and Jaccard estimate
J (A,Bi) are saved into the output P as pair 〈i,J (A,Bi)〉. The corresponding
estimate of the alignment error rate ε in this case, computed using Eq. 1, would
be F(J (A,Bi), k

)
.

5 Selecting Window and Sketch Sizes

The sketch size for Jaccard similarity estimation is inversely proportional to the
window size w (Sect. 4.3). A larger window size improves the runtime and space
requirement during the search but also negatively affects the statistical signif-
icance and accuracy of our estimate. To achieve the right balance, we analyze
the p-value of a mapping location being reported under the null hypothesis that
both query and reference sequences are random. For the subsequent analysis, we
will assume the sketch size is s, the count of shared sketch elements is a discrete
random variable Z, the k-mer size is k, the alphabet set is Σ, and the read and
reference sequence sizes are q and r respectively.

Location i is reported if J (A,Bi) ≥ τ , i.e., at least s ·τ� sketch elements are
shared. Following [19], consider two random sequences of length q with k-mer
sets X and Y respectively. The probability of a random k-mer α appearing in X
or Y , assuming q � k, is P (α ∈ X) = P (α ∈ Y) = 1 − (1 − |Σ|−k)q. Therefore,
the expected Jaccard similarity Jnull = J(X,Y) is given by

Jnull =
P (α ∈ X ∩ Y)
P (α ∈ X ∪ Y)

=
P (α ∈ X) · P (α ∈ Y)

P (α ∈ X) + P (α ∈ Y) − P (α ∈ X) · P (α ∈ Y)

For sketch size s, the probability that x or more sketch elements are shared
is P (Z ≥ x|Jnull, s) =

∑s
j=x

(
s
j

)
(Jnull)j(1 − Jnull)s−j . Using this equation, we

compute the probability of a random sequence of length q mapping to at least
one substring in a random reference sequence of size r � q as 1 − (

1 − P (Z ≥
x|Jnull, s)

)r. For a minimum read length l0 and x = s · τ�, we wish to ensure
that this probability is kept below a user-specified threshold pmax. As reported
mapping locations i must satisfy J (A,Bi) ≥ τ and q ≥ l0, a mapping with
J (A,Bi) = τ, q = l0, in general, will have the highest probability of generating
a random match. Therefore, we compute the maximum value of w that satisfies
the pmax constraint for this instance. Sketch size s is set to |Wh(A)|, which from
Sect. 4.3 is expected to be q·2/w. Since x, s, and w have a circular dependency, we
iteratively solve for w, starting from the maximum value l0, until the probability
of a random mapping is ≤ pmax. Influence of different parameters on window
size is shown in Fig. 3. The window size w increases with increasing pmax or l0,
but has an inverse relationship with εmax. These plots also highlight that as read
length and error rate improve, our algorithm automatically adapts to a larger
window size, greatly improving efficiency.

Algorithm for Mapping Long Reads 75

50
60
70
80
90

1e−18 1e−10 1e−02
P−value threshold

pmax

W
in

do
w

 s
iz

e

100
200
300
400
500

0.20 0.15 0.10 0.05
Per−base error rate

εmax

W
in

do
w

 s
iz

e

0

200

400

600

800

1K 20K 40K
Min. query length

l0

W
in

do
w

 s
iz

e

Fig. 3. Illustration of how w varies with pmax, εmax, and l0, respectively. The default
values are set as l0 = 5000, εmax = 0.15, pmax = 0.001, k = 16, and r = 109. Steps
appear in the first two curves because Z is a discrete variable.

6 Proof of Sensitivity

We analyze the sensitivity exhibited by our algorithm in identifying correct map-
ping locations as a function of the read alignment error rate. Let i be a correct
mapping location for read A. If εtrue is the true error rate in aligning A with
Bi, then Jtrue ≈ G(εtrue, k). Our algorithm reports this mapping location if
the Jaccard estimate J (A,Bi) ≥ τ , i.e., the count of shared sketch elements
Z ≥ s · τ . The associated probability is given by P (Z ≥ s · τ | Jtrue, s) ≈∑s

j=�s·τ�
(
s
j

)
(Jtrue)j(1−Jtrue)s−j . We report the corresponding values in Table 1

while varying εmax and εtrue from 0.04 to 0.20 error rate, for two sketch sizes
s = 200 and 500, respectively. In an ideal scenario, a mapping should be reported
only if εtrue ≤ εmax, i.e., a perfect algorithm would have “1” in each of the entries
at or above the diagonal, and “0” in all other positions. From the table, it is
evident our algorithm achieves close to ideal sensitivity for alignment error rates
up to 20%.

Table 1. Probability of a mapping location being reported by our algorithm for differ-
ent values of εtrue and εmax. True mapping locations correspond to εtrue ≤ εmax, i.e.,
entries at or above the diagonal in the tables. Sketch sizes are set to 200 and 500 for
the left and right tables, respectively. The k-mer size k is set to 16.

εtrue
εmax

0.04 0.08 0.12 0.16 0.20

0.04 0.951 1 1 1 1
0.08 0 0.937 1 1 1
0.12 0 0.016 0.925 1 1
0.16 0 0 0.184 0.907 0.997
0.20 0 0 0.003 0.403 0.922

εtrue
εmax

0.04 0.08 0.12 0.16 0.20

0.04 0.939 1 1 1 1
0.08 0 0.949 1 1 1
0.12 0 0 0.937 1 1
0.16 0 0 0.013 0.904 1
0.20 0 0 0 0.104 0.896

76 C. Jain et al.

7 Other Implementation Details

Optimizing for Variable Read Lengths: In contrast to cyclic short-
read sequencing, single-molecule technologies can generate highly variable read
lengths (e.g. 102–105 bases). Previously, we discussed how the window size w is
determined using the minimum read length l0 in Sect. 5. From Fig. 3(c), notice
that we can further reduce the sampling rate (i.e. use a larger window size) for
reads longer than l0 while still satisfying the p-value constraint. However, to
realize this, the sampling scheme for indexing the reference sequence B needs to
be consistent with that of query. We propose the idea of multilevel winnowing to
further optimize the runtime of our algorithm by choosing custom window size
for each input read. Suppose Ww(B) denotes the set of winnowed fingerprints
in the reference computed using window size w, then W2w(B) ⊆ Ww(B) [25].
We exploit this property to construct a multilevel reference index with multiple
window sizes {w, 2w, 4w . . . } recursively. This optimization yields us faster map-
ping time per base pair for reads longer than l0 as we independently compute
the window size for a given read length l ≥ l0, and round it to the closest smaller
reference window size {w, 2w, 4w . . . }. The expected time and space complexity
to index the reference using multiple levels is unaffected because the expected
size of W2x+1w(B) is half of W2xw(B) and W2x+1w(B) can be determined in lin-
ear time from W2xw(B).

Strand Prediction: To account for the reads sequenced from the reverse strand
relative to the reference genome, we compute and store only canonical k-mers,
i.e. the lexicographically smaller of the forward and reverse-complemented k-
mer. For each k-mer tuple 〈k, i〉 in W (A) and W (B), we append a strand bit
1 if the forward k-mer is lexicographically smaller and −1 otherwise. While
evaluating the read mappings in Stage 2, we compute the mapping strand of the
read through a consensus vote among the shared sketches using sum of pairwise
products of the strand bits.

8 Experimental Results

8.1 Quality of Jaccard Estimation

We first show that the accuracy of the winnowed-minhash estimator J to esti-
mate the Jaccard similarity is as good as the direct MinHash approximation,
which is an unbiased statistical estimator. We construct a random sequence of
length 5 kbp with each character having equal probability of being either A,C,G
or T. We generate reads while introducing substitution errors at each position
with probability 0.15. Note that both substitutions and indels have a similar
effect of altering the k-mers containing them, and a uniform distribution of errors
alters more k-mers than a clustering of errors. Figure 4 shows the estimation dif-
ference against the true Jaccard similarity using MinHash and our estimator for
two different sketch sizes s = 100 and s = 200. Based on these results, we con-
clude that the bias in our estimation is practically negligible as the mean error

Algorithm for Mapping Long Reads 77

s = 100

−0.10

−0.05

0.00

0.05

0.10

MinHash winnowed
MinHash

Method

Tr
ue

 J
ac

ca
rd

 −

E
st

im
at

ed
 J

ac
ca

rd s = 200

−0.10

−0.05

0.00

0.05

0.10

MinHash winnowed
MinHash

Method

Tr
ue

 J
ac

ca
rd

 −

E
st

im
at

ed
 J

ac
ca

rd

Fig. 4. Jaccard similarity estimation using MinHash and winnowed-minhash estimator
J (A, Bi) over simulated reads, with sketch sizes s = 100 and s = 200. Red bar indicates
the average estimation difference over all reads.

by our method in estimating Jaccard similarity is < 0.003 for both sketch sizes.
Similar to MinHash approximation, we note that the magnitude of estimation
error reduces with increasing sketch size.

8.2 Mapping MinION and PacBio Reads

We refer the C++ implementation of our algorithm as mashmap and compare
its run-time performance and memory usage against alignment based long-read
mappers BWA-MEM (v0.7.15-r114) [13], BLASR (vSMRTportal 2.3.0) [5], and
minimap (v0.2) [14]. We also perform a comparison of the approximate mapping
targets generated by mashmap and minimap. Like mashmap, minimap uses win-
nowing to index the reference, but does not use the MinHash approximation to
estimate Jaccard similarity or nucleotide identity. Instead, minimap seeks clus-
ters of minimizer matches to identify regions of local similarity. Importantly,
minimap approximates a local alignment process, which is useful for split-read
mapping. However, because mashmap is currently designed to find complete read
mappings, we only consider this case for the following comparisons.

Datasets and Methodology: We evaluated the algorithms by mapping long
read datasets generated using single-molecule sequencers from Pacific Biosciences
and Oxford Nanopore, and report single-threaded execution timings on an AMD
Opteron 2376 CPU with 64 GB RAM. We use two datasets, labeled N1 and P1
respectively, both containing reads of length ≥ 5 kbp. Dataset N1 is a random
sample of 30,000 reads from the MinION (R9/1D) sequencing dataset of the
Escherichia coli K12 genome [17]. Dataset P1 contains 18,000 reads generated
through a single SMRT cell from PacBio’s (P6/C4) sequencing of the human
genome (CHM1) [6]. We map N1 to E. coli K12 (4.6 Mbp) and P1 to the
human reference (3.2 Gbp). For mashmap, we use the following parameters:
l0 = 5000, εmax = 0.15, and pmax = 0.001. When a read maps to multiple
locations, mashmap only reports locations where mapping error rate is no more
than 1% above the minimum of error rate over all such locations.

Run-Time Performance: Run-times for the index building and mapping
stages, and memory used, for the four methods are compared in Table 2.

78 C. Jain et al.

Table 2. Runtime and memory usage comparison of mashmap against minimap, BWA-
MEM and BLASR for N1, P1 datasets. BWA-MEM was executed with long read
mapping parameters -x pacbio/ont2d.

Method N1 (MinION-K12) P1 (Pacbio-CHM1)

Index Map Memory (MB) Index Map Memory (GB)

mashmap 0.5 s 54 s 17 5m 52 s 1m 24 s 3.7

minimap 0.7 s 37 s 232 3m 7 s 1 m 56 s 6.8

BWA-MEM 2.6 s 5 h 39m 72 1 h 19m 6 h 46m 5.5

BLASR 1.3 s 10 h 17m 697 40m 36 s 20 h 40m 17.6

As both BWA-MEM and BLASR are alignment based methods, we expect their
run-times to be significantly higher. Indeed, they take several hours in compari-
son to seconds (N1) or a few minutes (P1) taken by mashmap and minimap. The
principal challenge is whether the latter methods can retain the quality obtain-
able through alignment based methods. We note that mashmap has the lowest
memory footprint for both datasets, and its run-time compares favorably with
minimap. The ability to compute the sampling rate at runtime gives mashmap
its edge in terms of memory usage.

Quality of Mapping: As there is no standard benchmark using real datasets,
we assess sensitivity/recall using BWA-MEM’s starting read mapping positions,
and precision by computing Smith-Waterman (SW) alignments of the reported
mappings (Table 3). Since both minimap and BWA-MEM also report split-read
alignments, we post-filter their results to only keep alignments with ≥ 80% read
coverage. Recall is measured against BWA-MEM alignments which satisfy the
εmax = 0.15 cutoff (≥ 85% identity). Because both minimap and mashmap esti-
mate mapping positions, the reported mapping is assumed equivalent to BWA-
MEM if the predicted starting position of a read is within ±50% of its length.
Precision was directly validated using Smith-Waterman (SW) alignment (with
scoring matrix: match = 1, mismatch = −1, gapopen = −2, gapextend = −1).
For minimap’s and our results, we allow SW-identity ≥ 75% and query coverage
≥ 80%. Results in Table 3 show that both mashmap and minimap have close to
ideal sensitivity/recall, demonstrating their ability to uncover the right target
locations.

Table 3. Precision and recall statistics of mashmap and minimap using datasets N1
and P1.

Id Recall statistics Precision statistics

mashmap minimap #BWA mappings mashmap minimap

N1 100% 99.87% 10,823 94.39% 94.32%

P1 96.8% 98.7% 10,115 84.59% 30.34%

Algorithm for Mapping Long Reads 79

Mashmap also achieves high precision, avoiding false positives on the repeti-
tive human genome. Minimap’s low precision on human is largely driven by false-
positive mappings to repetitive sequence, which could potentially be resolved
with alternative clustering parameters. Mashmap false positives are dominated
by reported mappings with a SW query coverage less than 80% of the read length.
It may be possible to avoid such mappings by considering the positional distri-
bution of shared sketch elements during the second stage filter, or by adopting
a local alignment reporting strategy like minimap.

P1

70

80

90

100

70 80 90 100
Estimated identity

S
m

ith
−W

at
er

m
an

 id
en

tit
y N1

70

80

90

100

70 80 90 100
Estimated identity

S
m

ith
−W

at
er

m
an

 id
en

tit
y

Fig. 5. Correlation between Smith-Waterman identity and the identity estimated by
mashmap using datasets P1 (PacBio) and N1 (MinION). Red dotted line corresponds
to the error cut-off εmax = 0.15.

We compare our identity estimates (1 − ε) × 100 against the SW alignment
identities in Fig. 5. For the PacBio reads, we observe that most of the points are
aligned close to y = x. However, for the nanopore reads, our approach overesti-
mates the identity. This is because PacBio sequencing produces mostly random
errors, whereas current nanopore errors are more clustered and systematic [11].

8.3 Mapping to RefSeq

We perform mapping of a publicly available PacBio read set consisting of 127,565
reads (each ≥ 5 kbp) sequenced from a mock microbial community containing 20
strains [20]. To demonstrate the scalability of our algorithm, we map these reads
against the complete NCBI RefSeq database (838 Gbp) containing sequences
from 60,892 organisms. This experiment was executed using default parameters
(l0 = 5000, εmax = 0.15, pmax = 0.001) on an Intel Xeon CPU E7-8837 with 1 TB
memory. BWA-MEM and minimap could not index the entire RefSeq database
at once with this memory limitation. Mashmap took 29 CPU hours to index
the reference and 16 CPU hours for mapping, with a peak memory usage of 660
GB. Note that the same index can be repeatedly used for mapping sequences,
conferring our method the ability to process data in real-time. To check the
accuracy of our results, we ran BWA-MEM against the 20 known genomes of
the mock community. The recall of mashmap against BWA-MEM mappings
ranged from 97.7% to 99.1% for all the 20 genomes in the mock community.

80 C. Jain et al.

9 Conclusions

We have presented a fast approximate algorithm for mapping long reads to large
reference genomes. Instead of reporting base-level alignments, mashmap reports
all reference intervals with sufficient Jaccard similarity compared to the k-mer
spectrum of the read. In contrast to earlier techniques based on MinHash and
winnowing, we provide a formal characterization of the mappings the algorithm
is intended to uncover, and provide a provably good algorithm for computing
them. In addition, we report an estimate of the alignment error rate tailored
to each mapping under an assumed error model. Mashmap provides significant
benefits in run-time, memory usage, and scalability, while achieving precision
and recall similar to alignment-based methods. Future work aims to extend this
method to split-read mapping, compressed reference databases, and additional
error models. For example, the winnowed-minhash operation could be applied
to paths within a de Bruijn graph to recover identity estimates and identify
the database sequences most similar to a query sequence. Such approximate
algorithms promise to help address the ever increasing scale of genomic data.

Acknowledgments. This research was supported in part by the Intramural Research
Program of the National Human Genome Research Institute, National Institutes of
Health, and the U.S. National Science Foundation under IIS-1416259.

References

1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

2. Ashton, P.M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., Mwaigwisya, S.,
Wain, J., O’Grady, J.: MinION nanopore sequencing identifies the position and
structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33(3), 296–
300 (2015)

3. Berlin, K., Koren, S., Chin, C.S., Drake, J.P., Landolin, J.M., Phillippy, A.M.:
Assembling large genomes with single-molecule sequencing and locality-sensitive
hashing. Nat. Biotechnol. 33(6), 623–630 (2015)

4. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings
of Compression and Complexity of Sequences 1997, pp. 21–29. IEEE (1997)

5. Chaisson, M.J., Tesler, G.: Mapping single molecule sequencing reads using basic
local alignment with successive refinement (BLASR): application and theory. BMC
Bioinf. 13(1), 238 (2012)

6. Chaisson, M.J., Huddleston, J., Dennis, M.Y., Sudmant, P.H., Malig, M., Hormoz-
diari, F., Antonacci, F., Surti, U., Sandstrom, R., Boitano, M., et al.: Resolving
the complexity of the human genome using single-molecule sequencing. Nature
517(7536), 608–611 (2015)

7. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C.,
Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al.: Nonhybrid, finished
microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods
10(6), 563–569 (2013)

Algorithm for Mapping Long Reads 81

8. Delcher, A.L., Phillippy, A., Carlton, J., Salzberg, S.L.: Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Res. 30(11), 2478–2483
(2002)

9. Fan, H., Ives, A.R., Surget-Groba, Y., Cannon, C.H.: An assembly and alignment-
free method of phylogeny reconstruction from next-generation sequencing data.
BMC Genomics 16(1), 1 (2015)

10. Koren, S., Harhay, G.P., Smith, T.P., Bono, J.L., Harhay, D.M., Mcvey, S.D.,
Radune, D., Bergman, N.H., Phillippy, A.M.: Reducing assembly complexity of
microbial genomes with single-molecule sequencing. Genome Biol. 14(9), 1 (2013)

11. Laehnemann, D., Borkhardt, A., McHardy, A.C.: Denoising DNA deep sequencing
data-high-throughput sequencing errors and their correction. Brief. Bioinf. 17(1),
154–179 (2016)

12. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with bowtie 2. Nat.
Methods 9(4), 357–359 (2012)

13. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. arxiv preprint arXiv:1303.3997 (2013)

14. Li, H.: Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics 32, btw152 (2016)

15. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

16. Li, H., Homer, N.: A survey of sequence alignment algorithms for next-generation
sequencing. Brief. Bioinf. 11(5), 473–483 (2010)

17. Loman, N.J.: Nanopore R9 rapid run data release (2016). https://goo.gl/UlHVtL.
Accessed 8 Sept 2016

18. Loose, M., Malla, S., Stout, M.: Real time selective sequencing using nanopore
technology. Nat. Methods 13(9), 751–754 (2016)

19. Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren,
S., Phillippy, A.M.: Mash: fast genome and metagenome distance estimation using
MinHash. Genome Biol. 17, 132 (2016)

20. Pacific Biosciences: Human microbiome mock community shotgun sequencing data
(2014). https://goo.gl/kjRcLb. Accessed 8 Sept 2016

21. Popic, V., Batzoglou, S.: Privacy-preserving read mapping using locality sensitive
hashing and secure kmer voting. bioRxiv, 046920 (2016)

22. Quick, J., Loman, N.J., Duraffour, S., Simpson, J.T., Severi, E., Cowley, L., Bore,
J.A., Koundouno, R., Dudas, G., Mikhail, A., et al.: Real-time, portable genome
sequencing for Ebola surveillance. Nature 530(7589), 228–232 (2016)

23. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage
requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369
(2004)

24. Ruffalo, M., LaFramboise, T., Koyutürk, M.: Comparative analysis of algorithms
for next-generation sequencing read alignment. Bioinformatics 27(20), 2790–2796
(2011)

25. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for doc-
ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 76–85. ACM (2003)

26. Smith, K.C.: Sliding window minimum implementations (2016). https://goo.gl/
8RC54b. Accessed 8 Sept 2016

27. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

http://arxiv.org/abs/1303.3997
https://goo.gl/UlHVtL
https://goo.gl/kjRcLb
https://goo.gl/8RC54b
https://goo.gl/8RC54b

Determining the Consistency of Resolved
Triplets and Fan Triplets

Jesper Jansson1,2(B), Andrzej Lingas3, Ramesh Rajaby4,5,
and Wing-Kin Sung4,6

1 Laboratory of Mathematical Bioinformatics, ICR, Kyoto University,
Gokasho, Uji, Kyoto 611-0011, Japan

jj@kuicr.kyoto-u.ac.jp
2 Department of Computing, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, China
3 Department of Computer Science, Lund University, 22100 Lund, Sweden

Andrzej.Lingas@cs.lth.se
4 School of Computing, National University of Singapore,

13 Computing Drive, Singapore 117417, Singapore
ramesh.rajaby@gmail.com, ksung@comp.nus.edu.sg

5 NUS Graduate School for Integrative Sciences and Engineering, National
University of Singapore, 28 Medical Drive, Singapore 117456, Singapore

6 Genome Institute of Singapore, 60 Biopolis Street, Genome,
Singapore 138672, Singapore

Abstract. The R+−F+− Consistency problem takes as input two
sets R+ and R− of resolved triplets and two sets F+ and F− of fan
triplets, and asks for a distinctly leaf-labeled tree that contains all ele-
ments in R+ ∪ F+ and no elements in R− ∪ F− as embedded subtrees,
if such a tree exists. This paper presents a detailed characterization of
how the computational complexity of the problem changes under vari-
ous restrictions. Our main result is an efficient algorithm for dense inputs
satisfying R− = ∅ whose running time is linear in the size of the input
and therefore optimal.

Keywords: Phylogenetic tree · Rooted triplets consistency ·
Algorithm · Computational complexity

1 Introduction

Phylogenetic trees have been used by biologists for more than 150 years to
describe evolutionary history. In the last 50 years, many methods for systemat-
ically reconstructing phylogenetic trees from different kinds of data have been
proposed [10,23]. In general, inferring a reliable phylogenetic tree is a time-
consuming task for large data sets, but the supertree approach (see, e.g., [2,3])
may in many cases provide a reasonable compromise between accuracy and com-
putational efficiency by way of divide-and-conquer: first, infer a set of trees
for small, overlapping subsets of the species using a computationally expensive
method such as maximum likelihood [7,10], and then merge all the small trees
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 82–98, 2017.
DOI: 10.1007/978-3-319-56970-3 6

Determining the Consistency of Resolved Triplets and Fan Triplets 83

into one big tree with some combinatorial algorithm. In this context, the funda-
mental problem of determining if a given set of resolved triplets (rooted, binary
phylogenetic trees with exactly three leaf labels each) can be combined without
conflicts, and if so, constructing such a tree can be solved efficiently by Aho
et al.’s BUILD algorithm from [1]. BUILD has therefore been extended in vari-
ous ways [8,12,13,16,18–21,24], for example, to also allow fan triplets (rooted,
non-binary phylogenetic trees with three leaf labels each) or forbidden resolved
triplets in the input, and to handle related optimization problems where the
input may contain errors and the objective is to find a tree that satisfies as
much of the input as possible (for details, see [6,9] and the references therein).

Below, we investigate how the computational complexity of the basic decision
problem varies according to which types of inputs are allowed and present some
new results that expose the boundary between efficiently solvable and intractable
versions of the problem.

1.1 Problem Definitions

A phylogenetic tree is a rooted, unordered, distinctly leaf-labeled tree in which
every internal node has at least two children. (From here on, phylogenetic trees
are simply referred to as “trees” and every leaf in a tree is identified with its cor-
responding leaf label.) For any tree T , the set of all nodes in T is denoted by V (T)
and the set of all leaf labels occurring in T is denoted by Λ(T). The degree of
a node u ∈ V (T) is the number of children of u, and the degree of T is the
maximum degree of all nodes in V (T). For any u, v ∈ V (T), lcaT (u, v) denotes
the lowest common ancestor in T of u and v.

A rooted triplet is a tree with precisely three leaves. Let t be any rooted
triplet and suppose that Λ(t) = {x, y, z}. If t is binary then t is called a resolved
triplet and we write t = xy|z, where lcat(x, y) is a proper descendant of lcat(x, z)
= lcat(y, z). On the other hand, if t is not binary then t is called a fan triplet and
we write t = x|y|z. Note that there are four different rooted triplets leaf-labeled
by {x, y, z}, namely xy|z, xz|y, yz|x, and x|y|z.

For any tree T and {x, y, z} ⊆ Λ(T), the resolved triplet xy|z is consis-
tent with T if lcaT (x, y) is a proper descendant of lcaT (x, z) = lcaT (y, z). Sim-
ilarly, the fan triplet x|y|z is consistent with T if lcaT (x, y) = lcaT (x, z) =
lcaT (y, z). Finally, for any tree T , let T ||{x,y,z} be the rooted triplet with leaf
label set {x, y, z} that is consistent with T , and let t(T) be the set of all rooted
triplets (resolved triplets as well as fan triplets) consistent with T , i.e., define
t(T) = {T ||{x,y,z} : {x, y, z} ⊆ Λ(T)}.

The problem studied in this paper is:

The R+−F+− Consistency problem:
Given two sets R+ and R− of resolved triplets and two sets F+ and F− of
fan triplets over a leaf label set L, output a tree T with Λ(T) = L such that
R+ ∪ F+ ⊆ t(T) and (R− ∪ F−) ∩ t(T) = ∅, if such a tree exists; otherwise,
output null.

84 J. Jansson et al.

In other words, R+ and F+ specify rooted triplets that are required to be
embedded in the output tree, while R− and F− are forbidden rooted triplets.
See Fig. 1 for two examples. Throughout the paper, we use n to denote the
cardinality of the input leaf label set L.

db

ca

T:

Fig. 1. As an example, consider the following instance of the R+−F+− Consistency
problem: L = {a, b, c, d}, R+ = ∅, R− = {cd|a}, F+ = {a|b|c}, and F− = {b|c|d}.
The shown tree T satisfies t(T) = {a|b|c, bd|a, a|c|d, bd|c}, so R+ ∪ F+ ⊆ t(T) and
(R− ∪F−) ∩ t(T) = ∅ hold. Thus, T is a valid solution. As another example, if L, R+,
R−, and F− are the same as above but F+ is changed to F+ = {a|b|c|, a|b|d} then the
answer is null.

The special cases of the R+−F+− Consistency problem where one or more
of the four input sets R+, R−, F+, F− are empty will also be denoted by remov-
ing the corresponding “+” and “−” symbols from the problem name. For exam-
ple, the R−F+ Consistency problem requires that R+ = F− = ∅. To simplify
the notation, if R+ = R− = ∅ then we omit the “R”, and analogously for “F”;
e.g., R− means R+ = F+ = F− = ∅. Ignoring the trivial case where all of
R+, R−, F+, F− are empty, this yields exactly 14 problem variants in addition
to the original problem. Our goal is to establish the computational complexity of
all these problem variants as well as some other potentially useful special cases.
Because of space constraints, the proofs of Lemmas 5 and 6 have been deferred
to the journal version.

1.2 Overview of Old and New Results

Aho et al. [1] presented a polynomial-time algorithm named BUILD that solves
the R+ Consistency problem, and Ng and Wormald [18] extended BUILD
to solve R+F+ Consistency in polynomial time. Using a similar approach,
He et al. [13] showed how to solve R+− Consistency in polynomial time. As
for negative results, Bryant [4, Theorem 2.20] proved that R− Consistency is
NP-hard under the additional constraint that the output tree is binary. Three
direct consequences of these known results are given in Sect. 2 (Lemmas 1, 2,
and 3). In Sect. 3, we shall prove that the F+− Consistency problem is NP-
hard (Theorem1). Significantly, Lemmas 1, 2, and 3 together with Theorem 1
then provide a complete characterization of the polynomial-time solvability of

Determining the Consistency of Resolved Triplets and Fan Triplets 85

all 15 variants of the R+−F+− Consistency problem defined in Sect. 1.1 since
each of the remaining problem variants is either a special case of a polynomial-
time solvable problem variant or a generalization of an NP-hard one. See Table 1.

Table 1. Overview of the computational complexity of the 15 different variants of the
R+−F+− Consistency problem. “P” means solvable in polynomial time. The results
written in bold text are due to [1,13,18].

Consistency ∅ F+ F− F+−

∅ × P P NP-hard (Theorem 1)

R+ P P P (Lemma 2) NP-hard

R− P P NP-hard (Lemma 3) NP-hard

R+− P P (Lemma 1) NP-hard NP-hard

Motivated by these observations, we then try to identify some way of restrict-
ing the R+−F+− Consistency problem that leads to more efficiently solvable
problem variants. One natural restriction is to require the degree of the output
tree to be at most D for some integer D ≥ 2; unfortunately, Sect. 4 demon-
strates that this generally makes the problems harder. See Table 2 for a sum-
mary. In particular, Theorem2 proves that even F+ Consistency is NP-hard
when restricted to degree-D trees for every fixed D ≥ 4. Furthermore, by Corol-
lary 2, D-bounded degree R− Consistency becomes NP-hard for every fixed
D ≥ 2. The only efficiently solvable problem variants that we know of are covered
by Corollary 1, stating that D-bounded degree R+F− Consistency remains
polynomial-time solvable for every D ≥ 2.

Table 2. The complexity of R+−F+− Consistency when the output tree is required
to have degree at most D. “NP-hard∗” (with an asterisk) means NP-hard for every
fixed D ≥ 4 and trivially polynomial-time solvable for D = 2 while the complexity for
D = 3 is still open.

Bounded degree
Consistency

∅ F+ F− F+−

∅ × NP-hard∗ (Theorem 2) P NP-hard∗

R+ P NP-hard∗ P (Corollary 1) NP-hard∗

R− NP-hard
(Corollary 2)

NP-hard NP-hard NP-hard

R+− NP-hard NP-hard NP-hard NP-hard

Therefore, we need to find another way to restrict the problem. For this
purpose, Sect. 5 considers inputs that are dense in the sense that for each L′ ⊆ L

86 J. Jansson et al.

with |L′| = 3, at least one rooted triplet t with Λ(t) = L′ is specified in R+, R−,
F+, or F−. As shown in [9], the maximization version of R+−F+− Consistency
(whose objective is to output a tree T with Λ(T) = L maximizing the value
of |T (R+ ∪ F+)| + |(R− ∪ F−) \ T (R− ∪ F−)|, where T (X) for any set X of
rooted triplets denotes the subset of X consistent with T) admits a polynomial-
time approximation scheme (PTAS) when restricted to dense inputs, whereas no
such PTAS is known for the non-dense case; in fact, the non-dense case of the
maximization problem is APX-complete [5, Proposition 2]. This gives us some
hope that R+−F+− Consistency may be easier for dense inputs. Although
R−F− Consistency turns out to be NP-hard in the dense case by Lemma 3,
R+F+− Consistency restricted to dense inputs indeed admits a polynomial-
time algorithm (Theorem 4), and moreover, its time complexity is O(n3) which
is optimal because the size of a dense input is Ω(n3). The situation for dense
inputs is summarized in Table 3.

Table 3. The complexity of R+−F+− Consistency restricted to dense inputs. The
results written in bold text are due to [1,13,18].

Dense Consistency ∅ F+ F− F+−

∅ × P P P

R+ P P P P (Theorem 4)

R− P P NP-hard (Lemma 3) NP-hard

R+− P P (Lemma 1) NP-hard NP-hard

2 Preliminaries

This section lists some simple results that follow immediately from previous
work.

Lemma 1. The R+−F+ Consistency problem is solvable in polynomial time.

Proof. For any instance of R+−F+ Consistency, by removing each fan triplet
of the form x|y|z from F+ and inserting the three resolved triplets xy|z, xz|y,
yz|x into R−, one obtains an equivalent instance of R+− Consistency to which
the MTT algorithm in [13] can be applied. By [13], the running time becomes
O(|R+| · n + (|R−| + |F+|) · n log n + n2 log n). �	
Lemma 2. The R+F− Consistency problem is solvable in polynomial time.

Proof. For any instance of R+F− Consistency, run the BUILD algorithm [1]
with input R+ and let T be its output. If T is not null then, as long as T
is non-binary, select any internal node u with degree larger than two and any
two children c1 and c2 of u, remove the edges {u, c1} and {u, c2}, create a new
child v of u, and insert the edges {v, c1} and {v, c2}. Finally, output T . Using a

Determining the Consistency of Resolved Triplets and Fan Triplets 87

fast implementation of BUILD from [14] along with an improved data structure
for supporting dynamic graph connectivity queries [15] (see [17] for details), the
R+F− Consistency problem becomes solvable in min{O(|R+| · log2 n+ |F−|+
n), O(|R+| + |F−| + n2 log n)} time. �	
Lemma 3. The R−F− Consistency problem is NP-hard, even if restricted to
dense inputs.

Proof. According to Bryant [4, Theorem 2.20], the R− Consistency problem
is NP-hard when the output tree is constrained to be binary. Given any instance
of Bryant’s version of the problem consisting of a set R of (forbidden) resolved
triplets, construct an equivalent instance of the R−F− Consistency problem
by letting R− = R and letting F− be the set of all

(|L|
3

)
fan triplets over the

leaf label set L =
⋃

t∈R Λ(t) (note that F− is dense). Since the reduction is a
polynomial-time reduction, the latter problem is also NP-hard. �	

3 F+− CONSISTENCY is NP-Hard

Here, we prove that the F+− Consistency problem is NP-hard by giving
a polynomial-time reduction from the NP-hard problem Set Splitting (see,
e.g., [11]):

Set Splitting:
Given a set S = {s1, s2, . . . , sn} and a collection C = {C1, C2, . . . , Cm} of
subsets of S where |Cj | = 3 for every Cj ∈ C, does (S, C) have a set splitting,
i.e., can S be partitioned into two disjoint subsets S′ and S′′ such that for
every Cj ∈ C it holds that Cj is not a subset of S′ and Cj is not a subset
of S′′?

We now describe the reduction. Given an instance (S, C) of Set Splitting,
where we assume w.l.o.g. that

⋃
Cj∈C Cj = S, construct an instance of F+−

Consistency as follows:

• Let L = S ∪ {x, y, z′, z′′} ∪ {αj , βj , γj : 1 ≤ j ≤ m} be the leaf label set.
• For 1 ≤ j ≤ m, denote Cj = {c1j , c

2
j , c

3
j}, where c1j , c

2
j , c

3
j ∈ S. Define

F+ = {x|y|z′, x|y|z′′, x|z′|z′′} ∪ {x|y|si : si ∈ S} ∪ {x|c1j |αj , c2j |c3j |αj , x|c2j |βj ,

c1j |c3j |βj , x|c3j |γj , c1j |c2j |γj : 1 ≤ j ≤ m}.
• Define F− = {si|z′|z′′ : si ∈ S}.

The next lemma ensures the correctness of the reduction:

Lemma 4. (S, C) has a set splitting if and only if there exists a tree T with
Λ(T) = L such that F+ ⊆ t(T) and F− ∩ t(T) = ∅.

88 J. Jansson et al.

Proof. ⇒) Suppose that (S′, S′′) is a set splitting of (S, C). Create a tree T with
Λ(T) = L whose root has 4 + 2m children in the following way. First, let two
leaves labeled by x and y as well as two internal nodes u′ and u′′ be children
of the root of T , and attach 1 + |S′| leaves labeled by {z′} ∪ S′ and 1 + |S′′|
leaves labeled by {z′′} ∪ S′′ as children of u′ and u′′, respectively. Next, for each
Cj ∈ C, exactly two of the three elements c1j , c

2
j , c

3
j have the same parent in T

because (S′, S′′) is a set splitting; let uj be this common parent. By definition,
uj ∈ {u′, u′′}. The three leaves αj , βj , γj are inserted into T according to which
one of these cases holds:
• c1j and c2j have the same parent uj : Attach a leaf labeled by γj as a child of uj

and two leaves labeled by αj , βj as children of the root of T .
• c1j and c3j have the same parent uj : Attach a leaf labeled by βj as a child of uj

and two leaves labeled by αj , γj as children of the root of T .
• c2j and c3j have the same parent uj : Attach a leaf labeled by αj as a child of uj

and two leaves labeled by βj , γj as children of the root of T .

It is straightforward to verify that F+ ⊆ t(T) and F− ∩ t(T) = ∅.

⇐) Suppose that T is a tree with Λ(T) = L such that F+ ⊆ t(T) and F−∩t(T) =
∅. Let r = lcaT (x, y). The node r must be the root of T because (1) x|y|q ∈ t(T)
for all q ∈ {z′, z′′} ∪ S and (2) for each δj ∈ {αj , βj , γj}, 1 ≤ j ≤ m, there exists
an si ∈ S such that x|si|δj ∈ t(T). Let T ′ (resp. T ′′) be the subtree of T rooted
at a child of r which contains z′ (resp. z′′); then, T ′ = T ′′ since x|z′|z′′ ∈ t(T)
and x cannot belong to T ′ due to x|y|z′ ∈ t(T). Furthermore, each si ∈ S belongs
to either T ′ or T ′′ since si|z′|z′′ ∈ t(T).

Next, we show by contradiction that for every Cj ∈ C, exactly one or two
of the three elements c1j , c

2
j , c

3
j belong to T ′ (and hence, that exactly one or

two of the three elements belong to T ′′). Suppose that all three elements belong
to T ′. The condition c1j |c2j |γj , c1j |c3j |βj , c2j |c3j |αj ∈ t(T) implies that αj , βj , γj also
belong to T ′. But then x|c1j |αj , x|c2j |βj , x|c3j |γj cannot be consistent with T ,
which is impossible. In the same way, all three elements cannot belong to T ′′.

In summary, selecting S′ = Λ(T ′) ∩ S and S′′ = Λ(T ′′) ∩ S yields a set
splitting of (S, C). �	

Since the reduction can be carried out in polynomial time, Lemma4 gives:

Theorem 1. The F+− Consistency problem is NP-hard.

4 D-Bounded Degree R+−F+− CONSISTENCY

We now consider the computational complexity of D-bounded degree R+−F+−

Consistency, i.e., where the degree of the output tree is constrained to be at
most D for some integer D ≥ 2. First, by noting that the method in the proof
of Lemma 2 always outputs a binary tree, we have:

Corollary 1. For every fixed D ≥ 2, the D-bounded degree R+F− Consis-
tency problem is solvable in polynomial time.

In contrast, many other variants become NP-hard, as shown in the rest of
this section.

Determining the Consistency of Resolved Triplets and Fan Triplets 89

4.1 D-Bounded Degree F+ CONSISTENCY is NP-Hard

This subsection proves that for every fixed integer D ≥ 4, the D-bounded degree
F+ Consistency problem is NP-hard. The proof relies on a simple polynomial-
time reduction from the K-Coloring problem, which is NP-hard for every
fixed K ≥ 3 (see [11]):

K-Coloring:
Given an undirected, connected graph G = (V,E) and a positive integer K,
does G have a K-coloring, i.e., can V be partitioned into K (possibly empty)
disjoint subsets V1, V2, . . . , VK such that for every {u, v} ∈ E it holds that
i = j where u ∈ Vi and v ∈ Vj?

The reduction is as follows. Given an instance of (D − 1)-Coloring, create
an instance of D-bounded degree F+ Consistency by setting L = V ∪{x} and
F+ =

{
x|u|v : {u, v} ∈ E

}
.

Lemma 5. G has a (D − 1)-coloring if and only if there exists a tree T with
degree at most D and Λ(T) = L such that F+ ⊆ t(T).

Theorem 2. For every fixed D ≥ 4, the D-bounded degree F+ Consistency
problem is NP-hard.

4.2 D-Bounded Degree R− CONSISTENCY is NP-Hard

Bryant [4, Theorem 2.20] proved that the D-bounded degree R− Consistency
problem is NP-hard for D = 2 by reducing from the following NP-hard problem
(see, e.g., [11]):

3SAT:
Given a set U of Boolean variables and a collection C = {C1, C2, . . . , Cm} of
disjunctive clauses over U , each containing exactly 3 literals, is there a truth
assignment for U that makes every clause in C true?

The main idea in Bryant’s reduction is to represent every literal by a leaf
label and define the forbidden resolved triplets so that in any valid tree, assigning
true to all literals contained in one particular subtree rooted at a child of the
root (and assigning false to the rest) results in a valid truth assignment. In this
subsection, we adapt Bryant’s proof to obtain an analogous result for the case
D = 3 by introducing an additional leaf label x and defining a slightly more
involved set of forbidden resolved triplets. More precisely, given an instance of
3SAT, we construct an instance of 3-bounded degree R− Consistency with
L = U∪U∪C∪C ′∪{x, t, f} and R− = R1∪R2∪R3∪R4, where U = {u : u ∈ U},
C ′ = {C ′

j : Cj ∈ C}, and:

• R1 = {tf |x, tx|f, fx|t},
• R2 = {uu|x, ux|u, ux|u, uu|t, uu|f : u ∈ U},

90 J. Jansson et al.

• R3 = {CjC
′
j |x, Cjx|C ′

j , C ′
jx|Cj , CjC

′
j |t, CjC

′
j |f : Cj ∈ C}, and

• R4 = {ujvj |Cj , wjCj |t : Cj ∈ C}, where we write Cj = (uj ∨ vj ∨ wj) with
uj , vj , wj ∈ U ∪ U .

Note that R4 is defined asymmetrically.

Lemma 6. There is a truth assignment for U making every clause in C true if
and only if there exists a tree T with degree at most 3 and Λ(T) = L such that
R− ∩ t(T) = ∅.
Theorem 3. For D = 3, the D-bounded degree R− Consistency problem is
NP-hard.

Corollary 2. For every fixed D ≥ 2, the D-bounded degree R− Consistency
problem is NP-hard.

Proof. For D ∈ {2, 3}, see above. For D ≥ 4, the NP-hardness follows from
Theorem 2 and the polynomial-time reduction which, for each fan triplet of the
form x|y|z in F+ in any given instance of the D-bounded degree F+ Consis-
tency problem, includes three resolved triplets xy|z, xz|y, yz|x in R−. �	

5 An Optimal Algorithm for Dense R+F+− CONSISTENCY

Recall from Sect. 1.2 that an input to R+−F+− Consistency is called dense
if, for every L′ ⊆ L with |L′| = 3, at least one rooted triplet t with Λ(t) = L′ is
in R+, R−, F+, or F−. In this section, we present the main result of the paper,
namely an algorithm called DenseBuild that solves the special case R+F+−

Consistency (i.e., where R− = ∅) restricted to dense inputs, and show that
its running time is O(n3), which is optimal. Two tools used by DenseBuild
are the fan graph and the clique graph, defined and studied in Sect. 5.1. Algo-
rithm DenseBuild is presented in Sect. 5.2.

According to Sect. 1.2, R+F+− Consistency is NP-hard. Intuitively, the
problem becomes easier for dense inputs because if T is a tree consistent with
the input then the set Z = {x|y|z : x, y, z ∈ L and x, y, z belong to three
different subtrees attached to the root of T} forms a subset of F+, in which
case F+ contains enough information to partition L into the leaf label sets of
the subtrees rooted at the children of the root of T (see Lemma 7). Moreover,
such a partition can be computed in polynomial time using Lemmas 8–10. In
contrast, when the input is not dense or when one considers dense R+−F+−

Consistency, not all of Z may appear in the input F+.

5.1 The Fan Graph and the Clique Graph

Consider any L′ ⊆ L. Define R+|L′ = {t ∈ R+ : Λ(t) ⊆ L′}, F+|L′ = {t ∈
F+ : Λ(t) ⊆ L′}, and F−|L′ = {t ∈ F− : Λ(t) ⊆ L′}. The fan graph GL′ is the
undirected graph (L′, E′), where for any x, y ∈ L′, it holds that {x, y} ∈ E′ if
and only if x|y|z ∈ F+|L′ for some z ∈ L′.

If T is a tree that is consistent with the input then the degree of the root
of T can be determined from GL as follows:

Determining the Consistency of Resolved Triplets and Fan Triplets 91

Lemma 7. Suppose |L| ≥ 3 and that there exists a tree T that is consistent with
the input. Let p be the degree of the root of T , let C1, C2, . . . , Cm be the connected
components of GL, and let Λ(Ci) for each i ∈ {1, 2, . . . ,m} be the set of vertices
in Ci. The following holds:

1. If m ≥ 2 then p = 2. Furthermore, if S′ is any binary tree with m leaves
and for each i ∈ {1, 2, . . . ,m}, Si is a tree with Λ(Si) = Λ(Ci) such that
(F+|Λ(Ci)) ⊆ t(Si) and (F−|Λ(Ci)) ∩ t(Si) = ∅, then the tree S obtained
by replacing the m leaves in S′ by the trees in {Si : 1 ≤ i ≤ m} satisfies
F+ ⊆ t(S) and F− ∩ t(S) = ∅.

2. If m = 1 then p ≥ 3. Furthermore, the value of p and the partition of L
into subsets L1, L2, . . . , Lp are unique, where each Li is the leaf label set of a
subtree rooted at a child of the root of T .

Proof.

1. First we show that p = 2 by contradiction. Suppose p ≥ 3 and let x, y, and z
be any three leaves from three different subtrees rooted at the children of
the root of T . Since the input is dense, at least one rooted triplet t with
Λ(t) = {x, y, z} is specified in R+, F+, or F−; by the choice of x, y, z, it
has to be x|y|z. But then the edges {x, y}, {x, z}, and {y, z} are in GL so
x, y, and z belong to the same connected component Ci. By repeating the
argument, every leaf in L belongs to Ci, which contradicts m ≥ 2.
Next, consider any two connected components Ci and Cj in GL. By the
definition of GL, there is no fan triplet in F+ with leaves belonging to
both Ci and Cj . Hence, F+ equals

⋃m
i=1(F

+|Λ(Ci)). By the definition
of S,

⋃m
i=1(F

+|Λ(Ci)) ⊆ t(S). Finally, since S is binary, F− ∩ t(S) =
F− ∩ (

⋃m
i=1 t(Si)) =

⋃m
i=1((F

−|Λ(Ci)) ∩ t(Si)) = ∅.
2. To prove that p ≥ 3, suppose on the contrary that p = 2. Let A and B be

the two sets of leaves in the subtrees rooted at the two children of the root
of T . Since GL is connected, there exists some a ∈ A and b ∈ B such that
{a, b} is an edge of GL. By the definition of GL, there exists some c ∈ L where
a|b|c ∈ F+. However, this is impossible since p = 2. This gives p ≥ 3.
Next, we prove the uniqueness of the partition of L by contradiction. Suppose
that T1 and T2 are two trees with F+ ⊆ t(T1), F+ ⊆ t(T2), and F− ∩ t(T1) =
F− ∩ t(T2) = ∅ and that the partitions of L induced by the children of the
root of Ti are different for i = 1 and i = 2. For i ∈ {1, 2}, denote the
root of Ti by ri. We claim that there exist x, y, z ∈ L such that for some
i ∈ {1, 2}: (1) x, y appear in the same subtree rooted at a child of ri and z
in another such subtree; and (2) x, y, z appear in three different subtrees
rooted at the children of r3−i. To prove the claim, for some i ∈ {1, 2}, take
any two leaves x and y in the same subtree Di rooted at a child of ri but
in different subtrees D3−i,D

′
3−i rooted at a child of r3−i. Without loss of

generality, assume i = 1. If there exists a leaf z in another subtree D′
1 rooted

at a child of r1 and z belongs to a subtree D′′
2 rooted at a child of r2 different

from D2 and D′
2 then we are done. Otherwise, all leaves not in D2 or D′

2 also
appear in D1 and we let a be any such leaf; moreover, all leaves not in D1

92 J. Jansson et al.

appear in either D2 or D′
2 and we let b be any such leaf, and then define w

as follows: (i) w = x if b and y are in the same subtree rooted at a child
of r2, and (ii) w = y if b and x are in the same subtree. The three leaves a,
b, and w then satisfy the claim. Since the claim is true, x|y|z ∈ t(Ti) while
x|y|z ∈ t(T3−i). This means that if x|y|z ∈ F+ then F+ ⊆ t(Ti) is false, if
x|y|z ∈ F− then F− ∩ t(T3−i) is false, and if one of xy|z, xz|y, and yz|x is
in R+ then R+ ⊆ t(T3−i) is false, giving a contradiction in every case. �	
The three lemmas below will be used by DenseBuild in Sect. 5.2 to con-

struct the partition in Lemma 7.2. In the rest of this subsection, assume that
GL contains a single connected component and that there exists a tree T that is
consistent with the input. For every a, b ∈ L, define f(a, b) =

∣
∣{z : a|b|z ∈ F+}∣

∣.

Lemma 8. If a, b ∈ L are any two leaves that maximize the value of f(a, b),
i.e., f(a, b) = maxx,y∈L f(x, y), then a and b belong to the smallest and second
smallest subtrees Ta and Tb rooted at children of the root of T (with ties broken
arbitrarily). Also, f(a, b) = |Λ(T)| − |Λ(Ta)| − |Λ(Tb)|.
Proof. Consider any x, y ∈ L and define s = lcaT (x, y). For any x|y|z ∈ F+, we
have lcaT (x, y) = lcaT (x, z) = lcaT (y, z) = s, which means that z ∈ Λ(T [s]) \
(Λ(T [sx]) ∪ Λ(T [sy])), where T [u] for any node u in T denotes the subtree of T
rooted at u and sx (resp., sy) is the child of s that is an ancestor of x (resp., y).
Thus, f(x, y) = |Λ(T [s])| − |Λ(T [sx])| − |Λ(T [sy])|.

Next, according to Lemma 7.2, since GL consists of one connected compo-
nent, T has at least three subtrees attached to the root. To maximize the value
of f(x, y), we therefore choose s to be the root of T and T [sx] and T [sy] to be
the smallest and second smallest subtrees attached to s. The lemma follows. �	
Lemma 9. Let a, b ∈ L be two leaves that maximize the value of f(a, b). Define
L′ = {a, b} ∪ {x ∈ L : a|b|x ∈ F+} and take any z ∈ L′. Then the leaf label sets
of the two smallest subtrees attached to the root of T are A = {a} ∪ {x ∈ L′ :
a|x|z ∈ F+} and B = L′ \ A = {b} ∪ {x ∈ L′ : b|x|z ∈ F+}.
Proof. By Lemma 8, a and b appear in the two smallest subtrees Ta and Tb

attached to the root of T . For every leaf label x in Ta or Tb, a|b|x ∈ F+. Thus,
L′ = Λ(Ta)∪Λ(Tb). Since z ∈ L′, z is not in the subtrees containing a and b. On
the other hand, for every leaf x in Ta with x = a, we have x ∈ L′ and therefore
a|x|z ∈ F+. Hence, Λ(Ta) = {a} ∪ {x ∈ L′ : a|x|z ∈ F+}. In the same way,
Λ(Tb) = {b} ∪ {x ∈ L′ : b|x|z ∈ F+}. �	

Finally, suppose that a, b, and L′ are defined as in Lemma 9. Let c be either
one of a and b. The clique graph QL is the undirected graph (L′′, E′′), where
L′′ = L \ L′ and {x, y} ∈ E′′ if and only if c|x|y ∈ F+. The clique graph has the
following useful properties:

Lemma 10. Let C be any connected component in QL. Then C forms a com-
plete graph. Also, the set of vertices in C equals the set of leaves in some subtree
attached to the root of T .

Determining the Consistency of Resolved Triplets and Fan Triplets 93

Proof. Let Tc be the subtree rooted at a child of the root of T that contains c.
Consider any x ∈ L\L′ and note that x cannot appear in Tc. For any y ∈ L\L′,
if c|x|y ∈ F+ then x and y have to be in two different subtrees attached to the
root of T . Conversely, for any x, y ∈ L \ L′ in the same subtree attached to
the root of T , we have c|x|y ∈ F+. Therefore, the set of leaves in each subtree
attached to the root of T induce a complete subgraph in QL. �	

5.2 Algorithm DenseBuild

We now develop an efficient algorithm for R+F+− Consistency restricted
to dense inputs. The algorithm is named DenseBuild and its pseudocode is
summarized in Fig. 2. (Refer to Sect. 5.1 for the notation defined there.) The basic
strategy is to use the information contained in R+, F+, and F− to partition the
leaf label set L into subsets corresponding to the leaf label sets of the subtrees
rooted at the children of the root of the solution, and then construct each such
subtree recursively. On a high level, this is similar to the BUILD algorithm of
Aho et al. [1] which also uses top-down recursion, but DenseBuild has to do the
leaf partitioning in a different way to take the fan triplets into account. Also,
DenseBuild needs to distinguish between when the root has degree 2 and degree
strictly larger than 2 (cf., Lemma7).

As a preprocessing step, DenseBuild constructs the fan graph GL and assigns
a weight w(x, y) to each edge {x, y} in GL equal to

∣
∣{x|y|z ∈ F+ : z ∈ L}∣∣. In

the preprocessing step, the algorithm also computes and stores the value f(a, b)
for every a, b ∈ L. The next lemma shows that when the algorithm calls itself
recursively, it does not have to recompute any f(a, b)-values. For any L′ ⊆ L
and a, b ∈ L′, define fL′(a, b) =

∣
∣{z : a|b|z ∈ F+|L′}∣

∣.

Lemma 11. Suppose that T is a tree with Λ(T) = L and that T is consistent
with the input. Let L′ ⊆ L be the set of leaves in a subtree rooted at any child of
the root of T . Then fL′(a, b) = fL(a, b) = f(a, b) for every a, b ∈ L′.

Proof. Fix a, b ∈ L′. For any fan triplet of the form a|b|z ∈ F+, z also has to
belong to L′, and therefore a|b|z ∈ F+|L′. Conversely, a|b|z ∈ F+|L′ implies
a|b|z ∈ F+ by definition. Hence, {z : a|b|z ∈ F+} = {z : a|b|z ∈ F+|L′}. �	

After the preprocessing step is complete, DenseBuild proceeds as follows. It
computes the connected components C1, C2, . . . , Cm of GL in step 1. According to
Lemma 7, there are two main cases: if m ≥ 2 then the root of any tree consistent
with the input must have degree two, but if m = 1 then the root must have
degree at least three.

In the former case (steps 2.1–2.3), the algorithm recursively constructs a
tree Ti for the leaves in Ci for each i ∈ {1, 2, . . . ,m}, thus handling the input
rooted triplets over leaves within each connected component. To handle the rest,
i.e., those whose leaves belong to more than one connected component in GL,
the algorithm constructs an instance of non-dense R+ Consistency whose leaf
label set represents the set of connected components in GL and whose set of

94 J. Jansson et al.

Algorithm DenseBuild

Input: Three sets R+, F+, F − of rooted triplets over a leaf label set L forming
a dense instance of R+F+− Consistency.
The algorithm assumes the following preprocessing: GL has been con-
structed and edge-weighted, and f(a, b) for all a, b ∈ L have been pre-
computed.
When making recursive calls, the algorithm passes L ⊆ L and GL as
parameters.

Output: A tree T with Λ(T) = L such that R+ ∪ F+ ⊆ t(T) and F − ∩ t(T) = ∅,
if such a tree exists; otherwise, null.

1 Let C1, C2, . . . , Cm be the connected components of GL;

2 if (m > 1) then

2.1 For i ∈ {1, 2, . . . , m}, extract GLi from GL and compute Ti =
DenseBuild(Li, GLi), where Li is the set of leaf labels in Ci;

2.2 Let R = {CiCj |Ck : ∃xy|z ∈ R+ with x ∈ Ci, y ∈ Cj , z ∈ Ck} and let T
be the output of the BUILD algorithm on input R ;

2.3 if T = null or Ti = null for any i ∈ {1, 2, . . . , m} then return null ;
else let T be the tree obtained by arbitrarily refining T to a binary tree
and replacing each leaf Ci in T by the tree Ti, and return T ;

else

3 /* (m = 1) */

3.1 Find a, b ∈ L that maximize f(a, b);

3.2 Let L = {a, b} ∪ {x : a|b|x F+}, z L , L1 = {a} ∪ {x ∈ L : a|x|z
F+}, and L2 = L \ L1;

3.3 Build the clique graph QL and let L3, . . . , Lp be the leaf labels in the dif-
ferent connected components in QL;

3.4 if ({x|y|z : x ∈ Li, y ∈ Lj , z ∈ Lk, where i, j, k are different} ⊆ F+) and
{xy|z ∈ R+ : x ∈ Li, y ∈ Lj , z ∈ Lk, where i, j, k are different} = ∅ then

3.4.1 Decrement w(x, y), w(x, z), and w(y, z) by one for every x|y|z ∈ F+ such
that x ∈ Li, y ∈ Lj , z ∈ Lk, and i, j, k are different;

3.4.2 For i ∈ {1, 2, . . . , p}, extract GLi from GL and compute Ti =
DenseBuild(Li, GLi);

3.4.3 if Ti = null for any i ∈ {1, 2, . . . , p} then return null ;
else create a tree T by attaching the root of Ti for every i ∈ {1, 2, . . . , p}
to a common root node and return T ;

else

3.4.4 return null ;

endif

endif

End DenseBuild

Fig. 2. Algorithm DenseBuild.

Determining the Consistency of Resolved Triplets and Fan Triplets 95

resolved triplets is {CiCj |Ck : ∃xy|z ∈ R+ with x ∈ Ci, y ∈ Cj , z ∈ Ck}. It then
applies the BUILD algorithm from [1] to obtain a tree T ′ (if one exists) consistent
with all resolved triplets in R+ involving leaves from more than one connected
component. (If no such T ′ exists or if some Ti-tree is null, DenseBuild will
return null and give up.) Then, DenseBuild arbitrarily refines T ′ into a binary
tree as in the proof of Lemma 2 above. Finally, the output tree T is obtained by
replacing each Ci-leaf in T ′ by the corresponding Ti-tree. By Lemma 7.1, T is
consistent with all fan triplets in F+ and no fan triplets in F−.

In the latter case (steps 3.1–3.4.4), Lemma 7.2 ensures that the partition
of L into leaf label sets of the subtrees rooted at the children of the root is
uniquely defined. This partition is recovered in steps 3.1–3.3 in accordance with
Lemmas 8–10. Next, step 3.4 verifies that the resulting partition L1, L2, . . . , Lp

is valid by checking if x|y|z ∈ F+ and xy|z ∈ R+ hold for every x ∈ Li,
y ∈ Lj , z ∈ Lk where i, j, k are different. If the partition is valid then, for each
i ∈ {1, 2, . . . , p}, the algorithm first constructs GLi

(to avoid building GLi
from

scratch, the weight w(x, y) of each edge {x, y} in GLi
is updated by subtract-

ing 1 for every fan triplet x|y|z ∈ F+ that contributed to w(x, y) in GL but no
longer exists on subsequent recursion levels; any edge whose weight reaches 0
is removed). Then, it recursively builds a tree Ti with Λ(Ti) = Li. The output
tree T is formed by attaching the roots of all the Ti-trees to a common root
node.

Theorem 4. Algorithm DenseBuild solves the dense version of the R+F+−

Consistency problem in O(n3) time.

Proof. The preprocessing step constructs GL, assigns weights to the edges in GL,
and computes all values of f(a, b) where a, b ∈ L, which takes TA(n) = O(n3)
time in total. We now bound the time needed to execute DenseBuild(L,GL)
assuming that the preprocessing has been taken care of.

Let TB(n) be the total time used by the calls to BUILD in step 2.2 on all
recursion levels, and let TC(n) be the total time for all other computations.
To analyze TB(n), let n1, n2, . . . , nk be the cardinalities of the leaf label sets
of the constructed sets R′ of resolved triplets in the successive calls to BUILD
in step 2.2. By applying Henzinger et al. fast implementation of BUILD (Algo-
rithm B’ in [14]), we get TB(n) =

∑k
i=1 O(n3

i + n2
i log ni) = O(

∑k
i=1 n3

i). Also,
n1 + n2 + · · · + nk = O(n) because every leaf in each such constructed instance
of R+ Consistency corresponds to either an internal node or a leaf in the tree
output by DenseBuild, which has O(n) nodes. Thus, TB(n) = O(n3). Next, we
derive an upper bound on TC(n). For any partition of L into L1, L2, . . . , Lm,
let c(L1, L2, . . . , Lm) denote the number of possible fan triplets of the form
x|y|z such that x ∈ Li, y ∈ Lj , z ∈ Lk and i, j, k are different. Observe that
c(L1, L2, . . . , Lm) = O

((|L|
3

) − ∑m
i=1

(|Li|
3

))
. Then TC(n) consists of the time

needed to find the m connected components in GL, which is O(|L|2), plus the
time to:

96 J. Jansson et al.

– If m ≥ 2:
(a) build GLi

for all i ∈ {1, 2, . . . ,m} (O(c(L1, L2, . . . , Lm)) time);
(b) construct R′ (also O(c(L1, L2, . . . , Lm)) time); and
(c) handle the recursive calls (

∑m
i=1 TC(|Li|) time).

– If m = 1:
(a) find the partition of L into L1, L2, . . . , Lp in steps 3.1–3.3 (O(|L|2) time);
(b) verify that the partition is valid in step 3.4 (O(c(L1, L2, . . . , Lp)) time);

and
(c) handle the recursive calls (

∑p
i=1 TC(|Li|) time).

Define q = max{m, p}. In total, TC(n) = O(|L|2) + O(c(L1, L2, . . . , Lq)) +∑q
i=1 TC(|Li|), which gives TC(n) = O(n3) by induction.
Finally, TA(n) + TB(n) + TC(n) = O(n3). �	

6 Concluding Remarks

The newly derived results (see Tables 1, 2, 3 for a summary) highlight the fol-
lowing open problems:

• What is the computational complexity of the D-bounded degree F+ Con-
sistency problem when D = 3? I.e., is the following problem solvable in
polynomial time: Given a set F+ of fan triplets, does there exist a degree-3
tree consistent with all of F+?

• For the special case of D = 3, do the following problems have the same compu-
tational complexity or not: D-bounded degree F+ Consistency, D-bounded
degree F+− Consistency, D-bounded degree R+F+ Consistency, and D-
bounded degree R+F+− Consistency?

• How does the complexity of R+−F+− Consistency and its problem vari-
ants change when other parameters such as the height of the output tree are
restricted or if one requires the output tree to be ordered in such a way that its
left-to-right sequence of leaves must equal a prespecified sequence? Note that
the analogue of R+ Consistency in the unrooted setting where the input
is a set of “quartets” (unrooted, distinctly leaf-labeled trees with four leaves
where every internal node has three neighbors) is already NP-hard [22].

• Can fixed-parameter tractable algorithms be developed for any of the NP-hard
variants of R+−F+− Consistency?

One may also consider a minimization version of the D-bounded degree
F+ Consistency problem, in which the input is a set F+ of fan triplets and the
objective is to construct a tree with as small degree as possible that is consistent
with all fan triplets in F+. However, this is a difficult problem since Lemma 5
and the polynomial-time inapproximability result for the minimization version
of K-Coloring by Zuckerman [25, Theorem 1.2] imply that the problem cannot
be approximated within a ratio of n1−ε for any constant ε > 0 in polynomial
time, unless P = NP.

Determining the Consistency of Resolved Triplets and Fan Triplets 97

Acknowledgments. The authors would like to thank Sylvain Guillemot and
Avraham Melkman for some discussions related to the topic of this paper. J.J. was
partially funded by The Hakubi Project at Kyoto University and KAKENHI grant
number 26330014.

References

1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM J. Comput. 10(3), 405–421 (1981)

2. Bininda-Emonds, O.R.P.: The evolution of supertrees. TRENDS Ecol. Evol. 19(6),
315–322 (2004)

3. Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E.,
Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., Purvis, A.:
The delayed rise of present-day mammals. Nature 446(7135), 507–512 (2007)

4. Bryant, D.: Building trees, hunting for trees, and comparing trees: theory and meth-
ods in phylogenetic analysis. Ph.D. thesis, University of Canterbury, Christchurch,
New Zealand (1997)

5. Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case optimal approxima-
tion algorithms for maximizing triplet consistency within phylogenetic networks.
J. Discrete Algorithms 8(1), 65–75 (2010)

6. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets
consistency. Discrete Appl. Math. 158(11), 1136–1147 (2010)

7. Chor, B., Hendy, M., Penny, D.: Analytic solutions for three taxon ML trees with
variable rates across sites. Discrete Appl. Math. 155(6–7), 750–758 (2007)

8. Constantinescu, M., Sankoff, D.: An efficient algorithm for supertrees. J. Classif.
12(1), 101–112 (1995)

9. Jansson, J., Lingas, A., Lundell, E.-M.: The approximability of maximum rooted
triplets consistency with fan triplets and forbidden triplets. In: Cicalese, F.,
Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 272–283. Springer,
Cham (2015). doi:10.1007/978-3-319-19929-0 23

10. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)
11. Garey, M., Johnson, D.: Computers and Intractability - A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, New York (1979)
12. Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing

evolutionary trees. J. Comb. Optim. 3(2–3), 183–197 (1999)
13. He, Y.J., Huynh, T.N.D., Jansson, J., Sung, W.-K.: Inferring phylogenetic relation-

ships avoiding forbidden rooted triplets. J. Bioinform. Comput. Biol. 4(1), 59–74
(2006)

14. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. Algorithmica
24(1), 1–13 (1999)

15. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. ACM 48(4), 723–760 (2001)

16. Jansson, J., Lemence, R.S., Lingas, A.: The complexity of inferring a minimally
resolved phylogenetic supertree. SIAM J. Comput. 41(1), 272–291 (2012)

17. Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement
supertrees. Algorithmica 43(4), 293–307 (2005)

http://dx.doi.org/10.1007/978-3-319-19929-0_23

98 J. Jansson et al.

18. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete
Appl. Math. 69(1–2), 19–31 (1996)

19. Semple, C.: Reconstructing minimal rooted trees. Discrete Appl. Math. 127(3),
489–503 (2003)

20. Semple, C., Daniel, P., Hordijk, W., Page, R.D.M., Steel, M.: Supertree algorithms
for ancestral divergence dates and nested taxa. Bioinformatics 20(15), 2355–2360
(2004)

21. Snir, S., Rao, S.: Using max cut to enhance rooted trees consistency. IEEE/ACM
Trans. Comput. Biol. Bioinform. 3(4), 323–333 (2006)

22. Steel, M.: The complexity of reconstructing trees from qualitative characters and
subtrees. J. Classif. 9(1), 91–116 (1992)

23. Sung, W.: Algorithms in Bioinformatics: A Practical Introduction. Chapman &
Hall/CRC, Boca Raton (2010)

24. Willson, S.J.: Constructing rooted supertrees using distances. Bull. Math. Biol.
66(6), 1755–1783 (2004)

25. Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique
and Chromatic Number. Theory Comput. 3(1), 103–128 (2007)

Progressive Calibration and Averaging
for Tandem Mass Spectrometry Statistical

Confidence Estimation: Why Settle
for a Single Decoy?

Uri Keich1(B) and William Stafford Noble2

1 School of Mathematics and Statistics F07, University of Sydney,
Sydney, Australia

uri@maths.usyd.edu.au
2 Department of Genome Sciences, Department of Computer Science and

Engineering, University of Washington, Seattle, USA
william-noble@uw.edu

Abstract. Estimating the false discovery rate (FDR) among a list of
tandem mass spectrum identifications is mostly done through target-
decoy competition (TDC). Here we offer two new methods that can
use an arbitrarily small number of additional randomly drawn decoy
databases to improve TDC. Specifically, “Partial Calibration” utilizes
a new meta-scoring scheme that allows us to gradually benefit from the
increase in the number of identifications calibration yields and “Averaged
TDC” (a-TDC) reduces the liberal bias of TDC for small FDR values and
its variability throughout. Combining a-TDC with “Progressive Calibra-
tion” (PC), which attempts to find the “right” number of decoys required
for calibration we see substantial impact in real datasets: when analyz-
ing the Plasmodium falciparum data it typically yields almost the entire
17% increase in discoveries that “full calibration” yields (at FDR level
0.05) using 60 times fewer decoys. Our methods are further validated
using a novel realistic simulation scheme and importantly, they apply
more generally to the problem of controlling the FDR among discoveries
from searching an incomplete database.

Keywords: Tandem mass spectrometry · Spectrum identification ·
False discovery rate · Calibration

1 Introduction

In tandem mass spectrometry analysis, the problem of inferring which peptide
was responsible for generating an observed fragmentation spectrum is crucial to

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-56970-3 7) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 99–116, 2017.
DOI: 10.1007/978-3-319-56970-3 7

http://dx.doi.org/10.1007/978-3-319-56970-3_7
http://dx.doi.org/10.1007/978-3-319-56970-3_7

100 U. Keich and W.S. Noble

any subsequent analysis about the presence or quantity of peptides and proteins
in the complex mixture being analyzed. Unfortunately, this spectrum identifica-
tion problem is difficult to solve because, for any given spectrum, many expected
fragment ions will not be observed, and the spectrum is also likely to contain a
variety of additional, unexplained peaks.

The most common approach to the spectrum identification problem is peptide
database search. Pioneered by SEQUEST [7], the search engine extracts from
the peptide database all “candidate peptides” defined by having their mass lie
within a pre-specified tolerance of the measured mass of the intact peptide (the
“precursor mass”). The quality of the match between each of these candidate
peptides and the observed fragmentation spectrum is then evaluated using a
score function. Finally, the best-scoring peptide-spectrum match (PSM) for the
given spectrum is reported, along with its score.

Sometimes the reported PSM is correct—the peptide assigned to the spec-
trum was present in the mass spectrometer when the spectrum was generated—
and sometimes the PSM is incorrect. Ideally, we would report only the correct
PSMs, but obviously we are not privy to this information: all we have is the
score of the PSM, indicating its quality. Therefore, we report a thresholded list
of top-scoring PSMs, together with the critical estimate of the fraction of incor-
rect PSMs in our reported list. This work focuses on methods for carrying out
this discovery and error estimation procedure.

The problem of controlling the proportion of false discoveries has been studied
extensively in the context of multiple hypotheses testing (MHT), starting with
the seminal of work Benjamini and Hochberg [3]. Specifically, they introduced
a simple procedure that allows us to decide which null hypotheses we reject
(thus declaring them as “discoveries”) so that the FDR, which they defined as
the expected value of the proportion of false discoveries (FDP), is bounded by a
pre-determined level α.

The mass spectrometry community, however, relies mostly on other methods
to control the FDR. The main reason is that the MHT context is predicated on
associating a p-value with each tested null hypothesis, indicating how unlikely
that result is assuming the hypothesis is truly a null one. Until recently, no such
p-values were computed in the PSM context. Moreover, while considerable effort
has of late been invested in computing such p-values [1,9,12,15–17], we recently
showed that there are further subtle but fundamental differences between the
MHT context and the PSM one, implying that we typically cannot use FDR
controlling procedures that were designed for the MHT context [13].

Instead, the most widely used FDR controlling procedure in this context
is a decoy-based protocol called target-decoy competition (TDC), proposed by
Elias and Gygi [5]. The target in TDC refers to the real peptide database of
interest, and the decoy is a database of randomly shuffled or reversed peptides.
The method consists of searching a given set of spectra against the concate-
nated target-decoy database and retaining the single best-scoring PSM for each
spectrum. As a result of this selection, any optimal target PSM that scores less
than the corresponding optimal decoy PSM is eliminated from consideration.

Progressive Calibration and Averaging for Tandem Mass Spectrometry 101

Subsequently, at a given score threshold, the number of accepted decoy PSMs
provides an estimate of the number of false discoveries, or accepted incorrect
target PSMs [4,6,10].

The quality of an FDR controlling procedure (more precisely, of a discovery
and FDR controlling procedure) can be evaluated along at least three orthog-
onal dimensions. First, we can gauge the procedure’s power: how many (cor-
rect) target discoveries, or spectra identifications, does it report at a given FDR
threshold? Second, we can analyze the accuracy of the procedure: how close
is the actual FDR to the estimated one? In determining the accuracy we ask
whether the method is biased or not, where liberally biased methods (those that
underestimate the FDR) are particularly undesirable because they instill in the
user more confidence than is due. Third, in addition to controlling bias, we also
prefer methods that exhibit less variability, since exceedingly high FDP could
have substantial impact on any downstream analysis.

The primary contributions of this paper are two novel procedures for improv-
ing decoy-based FDR control procedures in the context of the mass spectrum
identification problem. The first procedure—partial calibration—yields improved
statistical power relative to TDC; the second procedure—averaged TDC (a-
TDC)—yields reduced variance. Both procedures maintain the asymptotic unbi-
ased control of the FDR of TDC, and a-TDC mitigates much of the liberal bias
of TDC observed at small FDR values [11].

Partial Calibration. The partial calibration procedure is motivated by our
recently described calibration method [12]. We showed that calibrating the scores
(placing the scores of all PSMs on the same scale regardless of the spectrum
involved) can substantially increase the power of TDC.1 For example, we found
that when calibrating the popular XCorr score [7], using the same set of spectra
the number of discoveries at 1% FDR increased in the range of 12–31% [12].
However, since our calibration method relied on searching 10,000 randomly gen-
erated decoy databases (obtained by repeatedly shuffling each peptide of the
target database), our procedure was computationally extremely demanding.

In this work, we show that the advantages calibration offers can be grad-
ually realized starting with a relatively modest requirement of one additional
decoy set and increasing according to the user’s computational resources. In a
nutshell, partial calibration uses the calibrating decoys to convert the raw scores
into empirical p-values. However, whereas our original approach employed the
commonly used method of replacing the raw score with the empirical p-value,
here we keep both and use a two tiered scoring scheme. The primary score is the
empirical p-value, with ties resolved by the secondary score, which is the raw
score. This new primary-secondary scheme allows us to use as few as a single
calibrating decoy in a meaningful way. Previously, in such a case roughly half

1 More rigorously we say that the scoring function of an optimal PSM is “calibrated” if
the distribution of the score of an optimal PSM in a randomly drawn decoy database
is invariant of the spectrum itself.

102 U. Keich and W.S. Noble

the (null) scores would have one p-value (0) and the other half would have a
different p-value (1), so very little could have been done with this data.

By allowing us to benefit from any number of calibrating decoys, partial
calibration raises the question of how many calibrating decoy sets are “enough.”
One option is to let our computational resources determine the number of decoys
we can afford to generate for the given data. However, the downside of this
strategy is that for some datasets and FDR thresholds we would spend too
much effort, whereas in other cases we would still achieve sub-par results. An
ideal approach would allow us to intelligently trade off between statistical power
and computational expense.

Here we propose an ad hoc method, called “progressive calibration” (PC),
that employs a doubling strategy to dynamically determine the number of cali-
brating decoys our partial calibration procedure should use. The method works
by factoring in the user’s computational limits, the particular dataset at hand,
and the range of FDR values the user is interested in. The latter is a particularly
important factor because, empirically, the law of diminishing returns, in terms
of number of discoveries per number of calibrating decoys, kicks in much sooner
for higher FDR levels.

Averaged TDC. The second primary procedure, a-TDC, is motivated by sim-
ulations that show that, for sets of 1000 spectra, the actual FDP among the
PSMs selected by using TDC with an FDR threshold of 0.05 can readily be
±50% of that level, and this problem gets much worse for smaller-sized sets of
spectra and tighter FDR levels [11]. Although calibration can somewhat reduce
TDC’s variability [12], even if we achieve perfect calibration we still cannot get
around the inherent decoy-dependent variability of TDC.

a-TDC gets around this problem by applying TDC to the target database
paired with a small number (np) of randomly drawn “competing” decoy data-
bases and “averaging” the results. Clearly, averaging will reduce the TDC vari-
ance, but the challenge is to make sense of this averaging, especially because the
list of TDC discoveries varies with each competing decoy database.

One might be tempted to define this list of “average target discoveries” as all
the target PSMs that outscore the majority of their decoy competitions. That
is, a target PSM is an a-TDC discovery if it is a (TDC) discovery in more than
np/2 of the np concatenated target-decoy searches2. While intuitively appealing,
when paired with the equally appealing averaging of the (TDC) estimated FDR,
this approach quickly becomes too liberal: the FDR is underestimated.

We therefore devised a more nuanced approach which sequentially constructs
its target discovery list starting from the highest target PSM score. Our method
then goes through the decreasing target PSM scores, ensuring that the number
of discoveries at the current score level does not deviate from the average number
of (TDC) target discoveries, at the same score level, across our np independent
TDC procedures. In order to meet this guarantee, a-TDC occasionally needs to
filter out or reject a target PSM as it goes down the list. At that point, the PSM
2 For reference, Supp. Table 1 provides a summary of our notations.

Progressive Calibration and Averaging for Tandem Mass Spectrometry 103

that is selected for rejection is the one with the smallest score among all hitherto
selected target discoveries that lost the most decoy competitions (Sect. 2.4).

At this point there are several plausible ways to define the corresponding
a-TDC estimate of the FDR among its list of discoveries. We settled on the
ratio between the average number of decoy discoveries across the np independent
TDC procedures, and the actual number of a-TDC discoveries. Importantly, this
definition makes a-TDC with a single decoy (np = 1) identical to TDC.

Verification. We apply our novel procedures—partial calibration (and its adap-
tive variant, PC) and a-TDC—to real as well as simulated data. Most simulations
of the spectrum identification problem, carried out by us as well as others, have
used calibrated scores. However, because much of our work here is dedicated to
the effects of partial calibration, it was crucial to develop a simulation procedure
using uncalibrated scores.

The simulated data supports our claim that our procedures control the FDR
on-par or better than TDC does, and both the real and simulated data show
that a-TDC reduces the variability of TDC and that partial calibration can yield
a sizable increase in the number of target discoveries. In addition, we observe
that, for a typical FDR range of interest, PC allows us to enjoy most of the gains
offered by the our original, brute-force calibration procedure, while employing
significantly fewer than 10,000 decoys.

2 Methods

2.1 TDC, FDR Estimation, and Target Discoveries

An FDR controlling procedure returns a list of discoveries together with an
estimate of the FDR among the reported discoveries. In particular, TDC defines
its list of T (ρ) discoveries at score level ρ as all target PSMs with score ≥ρ that
outscore their corresponding decoy competition (i.e., they remain discoveries in
the search of the concatenated database). Denoting by D (ρ) the number of decoy
discoveries at score level ρ in the concatenated search, TDC estimates the FDR
in its target discovery list as ̂FDR(ρ) := D (ρ)/T (ρ).

Often, the user is more interested in specifying a desired FDR level τ . In this
context the score threshold that corresponds to an (estimated) FDR level of τ is
ρ (τ) := min

{
ρ : ̂FDR(ρ) ≤ τ

}
. We refer to T (τ), the number of target discov-

eries at (estimated) FDR level τ , as short for T (ρ (τ)), the number of discoveries
at score level ρ (τ), and similarly for the list of actual target discoveries at FDR
level τ . For computational efficiency we limited our attention to a predetermined
set of FDR values (Supp. Sect. 1.1). Note that the latter relation between τ and
ρ (τ) is defined for any FDR estimation method and is not specific to TDC.

2.2 Calibrating and Competing Decoys

Let Σ denote the set of spectra generated in the experiment. We associate with
each spectrum σ ∈ Σ its optimal matching peptide in the target database, which

104 U. Keich and W.S. Noble

we loosely refer to as the “target PSM,” or just the “target score,” w(σ), when
we refer to the score of that PSM.

Similarly, we assume that each spectrum σ is searched against two sets of ran-
domly drawn decoy databases that, in practice, are generated by independently
shuffling each peptide in the target database. The sets are statistically identical
but we refer to one,

{Db
i

}nb

i=1
, as the “calibrating” set of decoy databases and

the other,
{Dp

j

}np

j=1
, as the “competing” set of decoys. The distinction between

the two sets of decoys is based on the different roles they play. The calibrating
decoys are used to calibrate the scores whereas the competing decoys are used
for estimating the FDR using target decoy competition.

The score of the optimal match to σ in Db
i is denoted by zb

i (σ), and simi-
larly zp

j (σ) is the score of the optimal match to σ in Dp
j . For each fixed σ the

distribution of zb
i (σ) (with respect to a randomly drawn decoy) is identical to

that of zp
j (σ). Importantly, since we do not assume that the score is necessarily

calibrated, the said distribution can vary with the spectrum σ.

2.3 Partial Calibration

By “partial calibration” we refer to a procedure that allows us to convert a raw
score into a new score that is “more calibrated.” We prefer to be somewhat vague
on what exactly the latter means but, intuitively, it means that the distribution
of the decoy scores z (σ) is “less varied” with respect to the spectrum σ.

Our specific procedure here first uses the calibrating scores associated with
the spectrum σ,

{
zb
i (σ)

}nb

i=1
, to assign to each observed competing decoy score

s = zp
i (σ) or target score s = w (σ) a new, primary score, qσ(s). This primary

score is equivalent to the p-value of s with respect to the empirical cumulative
distribution function (ECDF) constructed from the calibrating scores:

qσ (s) = q
(
s;

{
zb
i (σ)

}nb

i=1

)
:=

∣∣{i : zb
i (σ) < s

}∣∣ +
1
2

∣∣{i : zb
i (σ) = s

}∣∣ .

The secondary score assigned to s is the score s itself.
Using our primary-secondary score we define a new linear order, �, on the

set of all observed target and competing decoy scores as follows. Let si be a score
of an optimal PSM involving the spectrum σi. Instead of using the raw scores
s1 and s2 to determine the order, we now say s1 � s2 if qσ1 (s1) > qσ2 (s2), or if
qσ1 (s1) = qσ2 (s2) and s1 ≥ s2.

Technically, we implement the new order, �, by first converting all observed
target scores, W = {w (σ) : σ ∈ Σ}, and competing decoy scores, Zp ={
zp
j (σ) : σ ∈ Σ, j = 1, . . . , np

}
, into ranks, where the rank of 1 corresponds

to the smallest observed score and the rank of |Σ| (np + 1) corresponds to the
largest observed score. We then map each observed raw score s associated with
the spectrum σ to the partially calibrated score

ψσ(s)=ψ(s;{zb
i (σ)}nb

i=1
,W∪Zp) := qσ(s;{zb

i (σ)}nb

i=1)+ 1
1+2|Σ|(np+1)

r(s;W∪Zp),

Progressive Calibration and Averaging for Tandem Mass Spectrometry 105

where r (s;W ∪ Zp), is the rank of the raw score s in the list of |Σ|(np + 1)
observed target and competing decoys scores. It is easy to see that, given the set
W ∪ Zp, for any observed pair of scores s1 and s2 from that set, s1 � s2 if and
only if ψσ (s1) ≥ ψσ (s2).

If the size of the calibrating set nb is very large then, assuming s1 �= s2, it is
very unlikely that qσ1 (s1) = qσ2 (s2) and the new ordering will coincide with the
one determined by the spectrum specific ECDFs that was used in our previously
described calibration procedure [12]. At the other extreme end, when there are
no calibrating decoys we revert to the ordering determined by the raw score. All
other cases in some sense interpolate between these two extremes, with more
weight placed on the ECDF the more refined it is.

Two points are worth noting. First, if the raw score is already calibrated then
our partial calibration procedure will leave it calibrated. More precisely, recall
that we defined the optimal PSM score function as calibrated if the distribution
of z (σ), the score of the optimal match to σ in a randomly drawn database,
D, is invariant of the spectrum σ. Assuming that the calibrating decoys are
drawn at the same time as D, our new score ψ will also be calibrated. Second,
the definition of ψσ (s) allows us to efficiently utilize an increasing number of
calibrating decoys – a fact that we will return to when discussing progressive
calibration.

2.4 Averaged TDC

The a-TDC procedure begins with repeatedly applying TDC to the target data-
base Dt paired with each of the np independently drawn (competing) decoy
databases Dp

i , for i = 1, . . . , np. Let Ti (ρ) and Di (ρ) denote the number of tar-
get, respectively, decoy discoveries at level ρ, that are reported by TDC in the
ith application. Recall that Di (ρ) is used to estimate Fi (ρ), the correspond-
ing number of false target discoveries, and note that the reported list of target
discoveries typically changes with each decoy database.

Let ρi denote the decreasing target PSM scores, and let T (ρi) :=∑np

j=1 Tj (ρi) /np and D (ρi) :=
∑np

j=1 Dj (ρi) /np be the average of numbers of
target and decoy discoveries, respectively, at level ρi across our np TDC pro-
cedures. Our a-TDC procedure sequentially constructs its discovery list (and
simultaneously its filtered target PSMs list), ensuring that its number of discov-
eries at level ρi, T (ρi), does not deviate from T (ρi) (apart from the inevitable
difference due to rounding).

When a-TDC determines that it needs to filter out a target PSM, it rejects
the PSM with the lowest partially calibrated score ψ

(
s;

{
zp
j (σ)

}np

j=1
,W

)
among

all hitherto selected target PSMs with raw score s ≥ ρi. Note that the latter
partially calibrated score is with respect to the competing decoys rather than
the usual calibrating decoys, and that the rank component of the score is taken
only with respect to the target scores. In other words, the rejected PSM is the
one with the smallest raw score among all remaining target discoveries scoring
≥ρi that lost the most decoy competitions. Finally, a-TDC estimates the FDR
in its level ρi discovery list as ̂FDR (ρi) := D (ρi)/T (ρi) (Supp. Algorithm 1).

106 U. Keich and W.S. Noble

2.5 Progressive Calibration with Mean Cutoff Criterion

Progressive calibration (PC) starts with zero calibrating decoys (raw scores)
and goes through several cycles of essentially doubling the number of calibrating
decoys. At the ith cycle we randomly draw 2i−1 additional calibrating decoy
databases and search each of our spectra against these databases. Thus, after the
ith doubling, for each spectrum we have a set of 2i − 1 calibrating decoy scores,
which contains the corresponding calibrating decoy set of the previous doubling
cycle. The process terminates if the cutoff criterion below was engaged, or the
maximal number of calibrating decoys was reached (2047 for our simulations and
10,000 for the real data).

Adjusting the partially calibrated score to take into account the newly drawn
set of decoys PSM scores, in each of PC’s doubling cycles, is straightforward due
to the identity

q
(
s;

{
zb
i (σ)

}m

i=1

)
+ q

(
s;

{
zb
i (σ)

}nb

i=m+1

)
= q

(
s;

{
zb
i (σ)

}nb

i=1

)
, (1)

which in turn implies

ψ(s;{zb
i (σ)}nb

i=1
,W∪Zp)= q(s;{zb

i (σ)}m

i=1)+ q
(

s;{zb
i (σ)}nb

i=m+1

)
+ 1

1+2|Σ|(np+1)
r(s;W∪Zp).

Hence, we only need to compute the ranks, r (s;W ∪ Zp) for all s observed
target scores, W, and competing decoy scores, Zp, once and then update
q
(
s;

{
zb
i (σ)

}nb

i=1

)
using (1).

We will see below (Fig. 1) that for some combinations of data and FDR levels,
partial calibration can achieve near optimal results with very few calibrating
decoys. In other cases, and particularly for very small FDR levels, achieving near
optimal results requires many more calibrating decoys. Taking this into account,
PC’s stopping criterion focuses only on the mean increase in the number of
discoveries for FDR levels in a range that is specified by the user (≥0.05 in our
experiments). The exact details are in Supp. Sect. 1.2.

Note that the above cutoff criterion applies regardless of whether the FDR
estimation is done using TDC or a-TDC. In addition, we only engage the cutoff
criterion from the third doubling cycle onward (so we use at least seven calibrat-
ing decoys).

2.6 Simulations Using Uncalibrated Scores

One can readily simulate raw decoy scores by searching real spectra against
randomly shuffled versions of real peptide databases, but it is less clear how to
simulate target PSM scores while still knowing which ones are “correct” and
which are “false.” Here we accomplish this by first sampling the optimal PSM
scores using a variant of our previously described calibrated sampling scheme
[14], where false PSMs are drawn from a null distribution and correct PSM are
drawn from an alternative, beta distribution, and each spectrum has a fixed
number of candidate peptides it can match. We then convert, these calibrated

Progressive Calibration and Averaging for Tandem Mass Spectrometry 107

PSM scores to raw scores using a spectrum specific transformation modeled after
a real data set, as explained next.

We begin with associating with each spectrum from the real set (here we
used the yeast dataset, Supp. Sect. 1.4) an ECDF constructed from a sample of
10K optimal decoy PSM scores, which are obtained by searching the spectrum
against 10K randomly shuffled versions of the target database. While we could
have converted the calibrated scores to raw scores using the quantiles of this
spectrum-specific ECDF, this would have limited the granularity of our score
when analyzing the often encountered high scoring correct PSMs.

Therefore, to preserve the necessary granularity in our scoring function we
instead relied on the observation that the distribution of the null optimal PSM
scores of a specific spectrum can often be well approximated by a Gumbel EVD
[17]. Specifically, we fitted a location-shifted and scaled Gumbel distribution to
each of our spectrum-specific ECDFs generated by the yeast real data. We then
randomly associated the fitted Gumbel distributions to our simulated spectra
and used the quantiles of those fitted distributions to convert our initially sam-
pled calibrated scores (Supp. Sect. 1.3). Using this approach our simulated raw
scores inherit the uncalibrated nature of the real yeast data.

2.7 Real Data Analysis

We analyze three real data sets, derived from yeast, C. elegans (worm), and
Plasmodium falciparum (“malaria”). For each of these three sets, we conducted
2000 independent experiments, each of which consisted of randomly drawing
10 distinct competing decoys from a pool of 1K such decoys. We then applied
partial calibration to both the target and the competing decoy PSM scores,
using an increasing number of calibrating decoys, which were randomly drawn
from a pool of 10K such decoys. We next applied a-TDC (using the 10 drawn
competing decoys) and TDC (using just the first of those competing decoys) to
the increasingly calibrated data, noting the number of discoveries and virtually
applying PC to the data. Further details are provided in Supp. Sect. 1.4.

3 Results

3.1 Partial Calibration Yields More Statistical Power

The effectiveness of our partial calibration scheme is demonstrated by our new
raw score simulation method. For example, looking at the mean number of TDC
target discoveries across 10K runs, each of which simulated a set of spectra of
size 10K with 50% native spectra (these are spectra for which the correct peptide
is in the target database), we find that this mean consistently increases with the
number of calibrating decoys (Fig. 1B). Moreover, for FDR levels which are not
very small, much of that increase can be realized with a relatively small number
of calibrating decoys, e.g., at an estimated FDR level of 0.05 using no calibrating
decoys (raw score) the mean number of TDC discoveries is 3317, but using 31

108 U. Keich and W.S. Noble

calibrating decoys it rises to 3726 (12% increase) and with 63 decoys it is at
3942, which is 98% of the maximal 4038 average discoveries (22% increase over
the raw score) obtained when using 2047 calibrating decoys (Fig. 1B). Of course,
the increase in the mean number of discoveries varies with the parameters of
the problem, but our simulations show a consistent increase with the number of
calibrating decoys (Supp. Fig. 1).

The accuracy of TDC, in terms of the actual FDR (as estimated by the
empirical mean of the FDP across 10K samples) over the nominal threshold,
seems largely unchanged by the increase in the number of calibrating decoys
(Fig. 1A and Supp. Fig. 2, middle curves). At the same time, as expected, the
variability of the estimate decreases slightly with the increased calibration (same
figures, upper and lower set of curves).

A
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

estimated FDR

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lo
g

of
 a

ct
ua

l o
ve

r e
st

im
at

ed
 F

D
R

0 1 3 7 15 31 63 127 255 511 1023 2047

B
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

estimated FDR

2000

2500

3000

3500

4000

4500

5000

5500
m

ea
n

of

 ta
rg

et
 d

is
co

ve
rie

s

0
1
3
7
15
31
63
127
255
511
1023
2047

Fig. 1. Partial calibration (TDC). A The set of middle curves, which correspond to
the log of the ratio between the empirical FDR and the nominal FDR level, essentially
coincide for all considered numbers of calibrating decoys (the modest liberal bias of
TDC for low FDR values is discussed in Sect. 3.2). The set of lower and upper curves
correspond to the log of the ratio of the 0.05 and 0.95 quantiles of the FDP to the
nominal FDR level. B The mean number of (TDC) target discoveries consistently
increases with the number of calibrating decoys, although the law of diminishing returns
is quite evident. A–B All means and quantiles are taken with respect to 10K simulation
runs using our raw score, each with 10K spectra, 50% native spectra. The number of
calibrating decoys was varied from 0 to 2047 (see Methods for details).

3.2 Averaged TDC

With Calibrated Scores. Figure 2A demonstrates that a-TDC reduces the
variability in FDR estimation, even when the score is perfectly calibrated. This
reduction is more pronounced with smaller sets of spectra and smaller FDR
levels (Supp. Fig. 3). As a consequence, the variabilities in the reported number
of discoveries as well as of false discoveries are also reduced (Fig. 2B, and Supp.
Figs. 5 and 7). These variance reductions imply that the actual list of target
discoveries should also exhibit reduced variability compared with single-decoy
TDC, although we did not try to quantify this effect here.

Progressive Calibration and Averaging for Tandem Mass Spectrometry 109

Interestingly, a-TDC also typically mitigates much of the previously noted
liberal bias of TDC [11], as can be seen in the set of middle curves of Fig. 2A and
Supp. Fig. 3, which compare the empirical FDR (average of the FDP with respect
to 10K independently drawn sets) with the selected FDR threshold (nominal
level) using TDC as well as a-TDC with 3, 10 and 100 decoys.

With Raw Scores. As expected, when using a raw, uncalibrated score, a-
TDC reduces TDC’s variability even slightly more effectively (Fig. 2C, and Supp.
Figs. 4, 6, and 8). Unexpectedly however, a-TDC also becomes slightly conserva-
tive as the number of competing decoys increases (Fig. 2C, and Supp. Fig. 4). In
spite of this trend, with the exception of very small estimated FDR levels, where
TDC is clearly liberally biased, a-TDC is typically making at least as many true
discoveries as does TDC. Moreover, there are cases in which the number of true
discoveries increases with the number of competing decoys that a-TDC utilizes,
and in particular, in those cases it is typically making more true discoveries than
TDC does (Fig. 2D and Supp. Fig. 9).

The a-TDC procedure yields more true discoveries than TDC when using
an uncalibrated score because a-TDC benefits from the same effect that partial
calibration does: by having a better way to order the PSMs. While, strictly
speaking, a-TDC is not reordering the PSMs as partial calibration does, a-TDC
selects the target PSMs for filtering based on the partially calibrated score with
respect to the competing decoys; hence, a-TDC engages in implicit calibration.

a-TDC Benefits from Partial Calibration. We next investigated the ben-
efits of combining our two procedures, a-TDC and partial calibration. We find
that, similar to TDC, a-TDC can gain a significant boost in statistical power,
as can be seen by the increase in the number of target discoveries in Supp.
Fig. 10. As expected from our analyses of a-TDC’s performance, a-TDC’s power
advantage over TDC diminishes with the increase in the number of calibrating
decoys (Fig. 2E, Supp. Fig. 11). Indeed, when the score is perfectly calibrated
a-TDC should not have more power than TDC does; regardless, for all degrees
of calibration, a-TDC does exhibit reduced variability (e.g., Supp. Fig. 12). At
the same time, a-TDC become less conservative with the increase in the number
of calibrating decoys (Fig. 2F, Supp. Fig. 13).

3.3 Progressive Calibration Dynamically Decides How Many
Decoys Are Sufficient

Progressive calibration can be quite effective in significantly reducing the number
of calibrating decoys that we use while achieving near-optimal power. In Fig. 3A–
B) we repeatedly simulated identifying 10K spectra (50% native) and used PC
coupled with TDC to control the FDR. The experiment was repeated 10K times,
and the average number of calibrating decoys determined by our PC procedure
was only 117. Still, in terms of power little was lost: comparing the ratio of the
number of (TDC) target discoveries our PC procedure made to the number of

110 U. Keich and W.S. Noble

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lo
g

of
 a

ct
ua

l o
ve

r e
st

im
at

ed
 F

D
R

 aTDC (3)
 aTDC (10)
 aTDC (100)

 TDC

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

2500

3000

3500

4000

4500

5000

5500

nu
m

be
r o

f d
is

co
ve

rie
s

TDC aTDC (3) aTDC (10) aTDC (100)

A B

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lo
g

of
 a

ct
ua

l o
ve

r e
st

im
at

ed
 F

D
R

 aTDC (3)
 aTDC (10)
 aTDC (100)

 TDC

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

lo
g

of
 a

TD
C

 o
ve

r T
D

C
 #

 d
is

co
ve

rie
s

 aTDC (3) / TDC
 aTDC (10) / TDC
 aTDC (100) / TDC

C D

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

lo
g

of
 a

TD
C

 o
ve

r T
D

C
 #

 d
is

co
ve

rie
s

0 1 3 7 15 31 63 127 255 511 1023 2047

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lo
g

of
 a

ct
ua

l o
ve

r e
st

im
at

ed
 F

D
R

0 1 3 7 15 31 63 127 255 511 1023 2047

E F

Fig. 2. Averaged TDC (a-TDC). A–D Comparing the FDR controlling procedure of
a-TDC with 1 (TDC), 3, 10, and 100 competing decoys. E–F a-TDC with 10 competing
decoys. A Plotted are the log of the ratios of the mean (empirical FDR, middle curves)
as well as the 0.05 and 0.95 quantiles (upper and lower curves) of the FDP in the
target discovery lists of each of the four procedures, to the nominal FDR level. Scores
are calibrated. B The 0.05 and 0.95 quantiles of the number of target discoveries. Scores
are calibrated. C Same as panel A, except the simulations were done using the raw
(uncalibrated) score. D Shown are the logarithm of the median (middle curves), 0.05
and 0.95 quantiles of the number of true target discoveries reported by a-TDC (with 3,
10, and 100 decoys) over the corresponding number reported by TDC at the same FDR
threshold. Scores are uncalibrated. E The log of the median of the ratio of the number
of true a-TDC to TDC discoveries show that the power advantage of a-TDC over TDC
diminishes with the increase in the number of calibrating decoys. F Coincidentally,
a-TDC becomes less conservative: the middle set of curves show that the log of the
empirical FDR (mean of FDP) over the nominal level increases toward 0 for small FDR
levels. (The 0.05 and 0.95 quantiles are also provided.) A–F All quantiles are taken
with respect to 10K simulations, each with 10K spectra, 50% native spectra.

Progressive Calibration and Averaging for Tandem Mass Spectrometry 111

(TDC) target discoveries attained by the maximally considered 2047 calibrating
decoys we find a median of 99.3% and 0.95 quantile of 98% for all nominal FDR
levels ≥0.05. In other words, while using about 20 times fewer calibrating decoys,
PC delivered 98% of the target discoveries at any estimated FDR level ≥0.05 in
95% of our 10K experiments. For results using additional spectrum set sizes and
proportions of native spectra see Supp. Fig. 14.

Our cutoff criterion is not infallible. Indeed, our simulations show that when
the set of spectra or the number of correct PSMs is small, then progressive
calibration might fail to achieve the near-optimal results TDC can achieve with
“full” calibration. For example, for n = 500 and a native spectrum proportion of
10% (Supp. Fig. 15), the median increase (across 10K experiments) in the number
of TDC target discoveries made when using 2047 calibrating decoys compared
with using PC at FDR level 0.05 is 14%. The corresponding 0.95 quantile is
60% additional discoveries; that is, in 5% of the experiments the increase in
discoveries at FDR 0.05 is 60% or higher. One should, however, keep in mind
that the mean number of additional discoveries the more intensive calibration
effort yields here at FDR 0.05 is about 5. Similarly, with 500 spectra and 50%
native spectra, we see in 5% of the experiments an increase higher than 16%
when using TDC with 2047 decoys (the median increase is only 1.5%).

It is not surprising that combining a-TDC with PC still offers reduced vari-
ability in FDR estimation compared to combining TDC with PC (Supp. Fig. 18).
However, with its reduced variability a-TDC can also help us here in better iden-
tifying those cases where increased calibration can yield a non-negligible number
of additional discoveries. For example, in the same experiment described above
with 500 spectra, of which 50% are native, we find that in 95% of the runs the
increase in a-TDC discoveries using 2047 decoys over using PC at a nominal
FDR level 0.05 is no more than 6.8% (Supp. Fig. 17), compared with 16% when
using TDC. This experiment demonstrates that a-TDC is less likely to prema-
turely terminate the doubling cycle, and it translates here to observing in 5% of
the experiments a 14% or more increase in the number of correct a-TDC target
discoveries compared with TDC at the same FDR level of 0.05 (Supp. Fig. 3C,
Supp. Fig. 19). Of course, this increase in correct discoveries does not come for
free: when using TDC to control the FDR, PC used an average of 123 calibrating
decoys, whereas with a-TDC that number was 134.

3.4 Analysis of Real Data

Thus far, we have described analyses that were carried out with simulated
data sets. We also carried out similar analyses using the three real data sets
described in Supp. Sect. 1.4. Of course, when analyzing real data we do not
know which of the discoveries are false, so instead we compare the reported
number of discoveries. As outlined below, the results qualitatively agree with
our simulations findings.

Consistent with the analysis of our simulations using raw scores, we see that
the number of both TDC and a-TDC target discoveries increases with the num-
ber of calibrating decoys (Supp. Fig. 20). Specifically, using the malaria data

112 U. Keich and W.S. Noble

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

2000

2500

3000

3500

4000

4500

5000

5500

m
ea

n

of
 ta

rg
et

 d
is

co
ve

rie
s

0
63
127
2047
PC:mean

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

20
47

 c
al

ib
ra

tin
g

de
co

ys
 to

 P
C

 #
 o

f t
ar

ge
t d

is
co

ve
rie

s

BA

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

lo
g

of
 a

TD
C

 o
ve

r T
D

C
 #

 d
is

co
ve

rie
s

C

Fig. 3. Progressive calibration (PC). A The mean number of TDC discoveries using: 0
(raw score), 63, 127, 2047 calibrating decoys as well as the number determined by PC
(63 and 127 are the number of decoys in the two cycles that bound the mean number
of decoys used by PC in this experiment: 117). B The 0.05, 0.5, and 0.95 quantiles of
the ratio of the number of TDC discoveries when using the maximal number of 2047
calibrating decoys to the number of discoveries found by PC. C The same quantiles of
the ratio of a-TDC (10 competing decoys) to TDC correct discoveries (both with PC).
A–C The vertical bars are located at 0.05, the minimal FDR level of interest for PC
in this setup. All means and quantiles are taken with respect to 10K simulations using
raw scores, each with 10K spectra in A–B, and 500 spectra in C, 50% native spectra
in all.

and an estimated FDR level of 0.05, the mean number of TDC target discover-
ies gradually increases from 2434 when using no calibrating decoys to 2845 when
using 10K calibrating decoys (17%, Fig. 4A). We observed a similar increase in
the average number of discoveries at the same FDR level when using a-TDC:
2433 to 2844 when increasing from 0 to 10K calibrating decoys. Also consis-
tent with our simulations, we see that regardless of how well calibrated are our
scores, a-TDC reduces the variability in the number of discoveries (Fig. 4B, Supp.
Fig. 21).

We also observe in the real data that PC, especially combined with a-TDC,
yields near optimal power with a significantly smaller number of calibrating
decoys (Supp. Fig. 22). Specifically, the average number of calibrating decoys
used by PC with a-TDC (10 competing decoys) are: yeast 262 (278 with TDC),

Progressive Calibration and Averaging for Tandem Mass Spectrometry 113

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

1000

1500

2000

2500

3000

3500

m
ea

n

of
 ta

rg
et

 d
is

co
ve

rie
s

0
1
3
7
15
31
63
127
255
511
1023
2047
4095
8191
10000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

2000

2200

2400

2600

2800

3000

3200

3400

3600

di

so
ve

rie
s

 a-TDC (10)
 T-TDC

BA

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
estimated FDR

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

lo
g

of
 a

TD
C

 o
ve

r T
D

C
 #

 d
is

co
ve

rie
s

C

Fig. 4. Malaria data. A Partial calibration: the mean number of target discoveries
in the malaria dataset increases with the number of calibrating decoys. B a-TDC is
less variable than TDC: the 0.05 and 0.95 quantiles of the number of a-TDC/TDC
discoveries are compared (scores are calibrated using all 10K calibrating decoys). C
Using PC a-TDC can have more power than TDC: plotted are the log of the ratios
of the 0.05, 0.5 and 0.95 quantiles of the number of a-TDC (10 competing decoys)
discoveries over the corresponding numbers for TDC discoveries. A–C All quantiles
are taken with respect to 2000 randomly drawn sets of competing decoys, as described
in Supp. Sect. 1.4.

worm 235 (165), and malaria 165 (141). The corresponding power, expressed in
terms of the median of the percentage of the number of discoveries made when
using all 10K calibrating decoys, is: yeast 99.2% (99.3% for TDC), worm 98.8%
(96.9%), malaria 99.3% (98.9%). This shows that typically PC yields almost
maximal power (with respect to calibration) using a much smaller number of
calibrating decoys.

Again we find that combining PC with a-TDC can reduce the number of pre-
mature stops in PC’s doubling process. For example, in 100 of our 2K runs (5%)
using the malaria data set, the number of TDC discoveries at FDR level 0.05 was
at least 13% higher when using all 10K calibrating decoys than when TDC used
PC. Applying a-TDC, the corresponding increase was only 2.8% (Supp. Fig. 22)
and this translated to a 12.2% increase in the number of a-TDC discoveries in
5% of our 2K runs (Supp. Fig. 4C).

114 U. Keich and W.S. Noble

Finally, even using a-TDC, PC can sometime terminate its decoy doubling
procedure earlier than we would like. For example, applying a-TDC to the worm
data set using all 10K calibrating decoys, we found that in 100 of our 2K runs
(5%) there are at least 7.2% more discoveries than when using the number of
decoys determined by PC (Supp. Fig. 22).

4 Discussion

We offer two novel methods that rely on additional decoy databases to improve
on TDC, the most commonly used FDR controlling procedure for tandem mass
spectrum identification. The partial calibration procedure increases the power
of TDC by using a primary-secondary score that implicitly interpolates between
our original calibration procedure based on the spectrum-specific ECDF and
the raw score. This primary-secondary score’s flexibility allows us to gradually
enjoy the increase in power that our original calibration procedure offers while
investing significantly fewer computational resources: the procedure works even
with a single calibrating decoy.

As we noted before [12], we are not the first to point out the value of cal-
ibration [10]. However, our approach is different because it does not assume a
specific parametric family [16,17] or require the introduction of a new score func-
tion [9,15]. These previous approaches are less general, and in some cases they
might partially fail [12], In contrast, our approach is generally applicable, albeit
at a computational cost.

Our new a-TDC procedure helps reduce the decoy-dependent variability of
TDC, both in terms of the composition of the reported list of discoveries, as
well as in the associated FDR estimation. The impact of a-TDC is particularly
noticeable for smaller datasets, and those are also the ones where the additional
computational load of a-TDC is less prohibitive.

Interestingly, Barber and Candés recently proved that a slightly modified
version of TDC, where one replaces TDC’s estimated FDR of ̂FDR(ρ) :=
D (ρ) /T (ρ) with ̂FDR(ρ) := [D (ρ) + 1] /T (ρ), does not suffer from the lib-
eral bias that TDC exhibits for small FDR levels [2]. Our experiments above
show that a-TDC is also able to mitigate much of the liberal bias of TDC and
suggest that a-TDC does not result in the loss of power that is associated with
the Barber and Candés correction.

An alternative to a-TDC to reduce variability would be to use multiple decoys
in a concatenated search. In such an approach, instead of using, say, 10 decoy
databases, each the same size as the target database, one can use a single decoy
database that is 10 times larger than the target database. A simple adjustment
to the estimated FDR makes this approach feasible; however, it has the obvious
downside that the larger the decoy set is, the more target discoveries are lost.
In comparison, the number of target discoveries a-TDC filters out is the average
number that is filtered out by each of the individual TDC procedures (each using
equal-sized sets of decoys and targets).

Progressive Calibration and Averaging for Tandem Mass Spectrometry 115

Note that there is some overlap in the goals of partial calibration and a-TDC:
a-TDC can increase the number of discoveries in some cases, and calibration
can also reduce variability. However, a-TDC will further reduce the variability
even if the score is perfectly calibrated. In light of this observation, it would be
particularly interesting to look into the balancing act of allocating extra decoys
to a-TDC vs. partial calibration. An altogether different direction for future
research on a-TDC is the theoretical asymptotic analysis of its performance as
the number of competing decoys increases (and its potential connection with [8]).

We further introduce progressive calibration (PC), a method that attempts
to find from the data what is the “right” amount of partial calibration we need to
invest in. Based on a simple test of the increase in the number of target discover-
ies in each of its decoy-doubling cycles, PC can typically yield near-optimal power
with significant computational savings. The current stopping criterion employed
by PC is ad hoc and could benefit from a deeper analysis in the future including,
for example, considering a criterion based on the change in the discovery lists
themselves rather than just the number of discoveries.

We analyzed all our methods using a novel simulation procedure that allows
us to sample datasets that are realistically modeled after real ones. In particular,
our samples capture the uncalibrated nature of commonly used scores like XCorr.
Our findings in simulated data are echoed in the analysis of three real data sets,
showing that our methods can positively impact real biological analysis.

We note that here we looked at improving TDC using additional, randomly
shuffled decoys. it would be interesting to compare the resulting enhanced per-
formance with adjusting the mix-max competing FDR controlling method [11]
to allow it to utilize multiple decoys as well.

As noted, TDC is the standard procedure for controlling the FDR, although
it is typically carried out using reversed rather than shuffled databases. We
see no inherent difference between shuffling the peptides and reversing them,
and moreover, while not exactly considering the shuffling procedure, Elias and
Gygi noted that [5], “Despite their differences, the four decoy databases consid-
ered here—protein reversal, peptide pseudo-reveral, random and Markov chain—
yielded similar estimations of total correct identifications, and produced similar
numbers of correct identifications.” More generally, the theoretical question of
the applicability of TDC, which was raised in [8], has no particularly satisfying
answer at this point. We currently view this as a modeling question: you cannot
prove your model is suitable; rather, at best you can argue that it is. Regardless,
the methods presented here improve on TDC whenever it is applicable.

Finally, we stress that these methods apply more generally than the spectrum
identification problem. Indeed, as we recently argued, using TDC in this context
is a special case of the problem of controlling the FDR among discoveries from
searching an incomplete database [13]. In particular, our methods are relevant to
controlling the FDR in peptide and protein identification, as well as in problems
that arise in metagenomics sequence homology search and forensics.

116 U. Keich and W.S. Noble

References

1. Alves, G., Ogurtsov, A.Y., Yu, Y.K.: RAId aPS: MS/MS analysis with multiple
scoring functions and spectrum-specific statistics. PLoS ONE 5(11), e15438 (2010)

2. Barber, R.F., Candes, E.J.: Controlling the false discovery rate via knockoffs. Ann.
Stat. 43(5), 2055–2085 (2015). http://dx.doi.org/10.1214/15-AOS1337

3. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300 (1995)

4. Cerqueira, F.R., Graber, A., Schwikowski, B., Baumgartner, C.: Mude: a new app-
roach for optimizing sensitivity in the target-decoy search strategy for large-scale
peptide/protein identification. J. Proteome Res. 9(5), 2265–2277 (2010). pMID:
20199108. http://dx.doi.org/10.1021/pr901023v

5. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in
large-scale protein identifications by mass spectrometry. Nat. Methods 4(3), 207–
214 (2007)

6. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for mass spectrometry-based
proteomics. Methods Mol. Biol. 604, 55–71 (2010)

7. Eng, J.K., McCormack, A.L., Yates III, J.R.: An approach to correlate tandem
mass spectral data of peptides with amino acid sequences in a protein database.
J. Am. Soc. Mass Spectrom. 5, 976–989 (1994)

8. Gupta, N., Bandeira, N., Keich, U., Pevzner, P.: Target-decoy approach and false
discovery rate: when things may go wrong. J. Am. Soc. Mass Spectrom. 22(7),
1111–1120 (2011)

9. Howbert, J.J., Noble, W.S.: Computing exact p-values for a cross-correlation shot-
gun proteomics score function. Mol. Cell. Proteomics 13(9), 2467–2479 (2014)

10. Jeong, K., Kim, S., Bandeira, N.: False discovery rates in spectral identification.
BMC Bioinform. 13(Suppl. 16), S2 (2012)

11. Keich, U., Noble, W.S.: Improved false discovery rate estimation procedure for
shotgun proteomics. J. Proteome Res. 14(8), 3148–3161 (2015)

12. Keich, U., Noble, W.S.: On the importance of well calibrated scores for identifying
shotgun proteomics spectra. J. Proteome Res. 14(2), 1147–1160 (2015)

13. Keich, U., Noble, W.S.: Controlling the FDR in imperfect matches to an incomplete
database (2016, submitted)

14. Kertesz-Farkas, A., Keich, U., Noble, W.S.: Tandem mass spectrum identification
via cascaded search. J. Proteome Res. 14(8), 3027–3038 (2015)

15. Kim, S., Gupta, N., Pevzner, P.A.: Spectral probabilities and generating functions
of tandem mass spectra: a strike against decoy databases. J. Proteome Res. 7,
3354–3363 (2008)

16. Klammer, A.A., Park, C.Y., Noble, W.S.: Statistical calibration of the sequest
XCorr function. J. Proteome Res. 8(4), 2106–2113 (2009)

17. Spirin, V., Shpunt, A., Seebacher, J., Gentzel, M., Shevchenko, A., Gygi, S., Sun-
yaev, S.: Assigning spectrum-specific p-values to protein identifications by mass
spectrometry. Bioinformatics 27(8), 1128–1134 (2011)

http://dx.doi.org/10.1214/15-AOS1337
http://dx.doi.org/10.1021/pr901023v

Resolving Multicopy Duplications de novo
Using Polyploid Phasing

Mark J. Chaisson1, Sudipto Mukherjee2,
Sreeram Kannan2, and Evan E. Eichler1,3(B)

1 Department of Genome Sciences, University of Washington,
Seattle, WA 98195, USA

mchaisso@uw.edu, eee@gs.washington.edu
2 Department of Electrical Engineering, University of Washington,

Seattle, WA 98195, USA
{sudipm,ksreeram}@uw.edu

3 Howard Hughes Medical Institute, University of Washington,
Seattle, WA 98195, USA

Abstract. While the rise of single-molecule sequencing systems has
enabled an unprecedented rise in the ability to assemble complex regions
of the genome, long segmental duplications in the genome still remain
a challenging frontier in assembly. Segmental duplications are at the
same time both gene rich and prone to large structural rearrangements,
making the resolution of their sequences important in medical and evolu-
tionary studies. Duplicated sequences that are collapsed in mammalian
de novo assemblies are rarely identical; after a sequence is duplicated, it
begins to acquire paralog-specific variants. In this paper, we study the
problem of resolving the variations in multicopy, long segmental dupli-
cations by developing and utilizing algorithms for polyploid phasing.
We develop two algorithms: the first one is targeted at maximizing the
likelihood of observing the reads given the underlying haplotypes using
discrete matrix completion. The second algorithm is based on correla-
tion clustering and exploits an assumption, which is often satisfied in
these duplications, that each paralog has a sizable number of paralog-
specific variants. We develop a detailed simulation methodology and
demonstrate the superior performance of the proposed algorithms on
an array of simulated datasets. We measure the likelihood score as well
as reconstruction accuracy, i.e., what fraction of the reads are clustered
correctly. In both the performance metrics, we find that our algorithms
dominate existing algorithms on more than 93% of the datasets. While
the discrete matrix completion performs better on likelihood score, the
correlation-clustering algorithm performs better on reconstruction accu-
racy due to the stronger regularization inherent in the algorithm. We
also show that our correlation-clustering algorithm can reconstruct on
average 7.0 haplotypes in 10-copy duplication datasets whereas existing
algorithms reconstruct less than one copy on average.

M.J. Chaisson and S. Mukherjee—Joint first authorship.
S. Kannan and E.E. Eichler—Joint last authorship.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 117–133, 2017.
DOI: 10.1007/978-3-319-56970-3 8

118 M.J. Chaisson et al.

1 Introduction

Advances in single-molecule sequencing (SMS) by Pacific Biosciences (Menlo
Park, CA), and Oxford Nanopore (Cambridge, UK) have recently enabled the
assembly of draft de novo mammalian genomes [21,35] nearing the quality of the
original release of the human genome. The goal of de novo fragment assembly is
to estimate the sequence of a genome given overlaps of relatively short sequencing
reads, which is a well-studied problem. While there are multiple formulations of
the fragment assembly problem [27,31], the common challenge is that repeats
in the genome longer than the length of sequenced DNA fragments make a
unique reconstruction of the genome impossible [30]. Reads produced by SMS
are advantageous for de novo assembly because the read length is at least two
orders of magnitude greater than other high-throughput sequencing methods, so
that genome order may be uniquely resolved when repeats are small.

SMS reads are characterized by a raw read accuracy between 75% and 90%
with read lengths that follow a log-normal distribution. Initial development in
de novo assembly of SMS reads focused on efficient methods to detect overlaps
between long but noisy reads [6,28]. Consistent with information theory [26],
regions of genomes without sufficiently long repeats are contiguously assembled
[24] with SMS reads. A type of repeat not well represented in human and other de
novo SMS assemblies are segmental duplications: sequences 1 to 400 kilobases in
length that are duplicated with at least 90% identity [18]. Segmental duplications
are at the same time both gene rich and prone to large structural rearrangements,
making the resolution of their sequences important in medical and evolutionary
studies [37]. Comparing an SMS-based assembly of a Yoruban individual [38] to
the human reference (GRCh38) reveals that only 64.2% of known segmentally
duplicated bases in the human genome are present in the assembly. Due to the
low raw-read accuracy of SMS, reads from different duplication paralogs are
frequently merged together into the same sequence in an assembly. As a result,
human assemblies of SMS reads contain large contigs with correctly resolved
unique sequence and shorter contigs containing the collapse of multiple copies
of a duplication into one sequence.

Segmental duplications that are collapsed in real de novo assemblies are
rarely identical; after a sequence is duplicated, over generations it begins to
acquire paralog-specific variants (PSVs): single-nucleotide variants that distin-
guish different duplication paralogs. To put this in an evolutionary context,
sequences that have duplicated shortly after the human-chimpanzee divergence
(6 million years ago) have acquired up to roughly one PSV per thousand bases
[17]. Although the ultimate goal of de novo assembly is to completely resolve the
sequence of a genome, an intermediate goal is to resolve the individual sequences
that are collapsed in the assembly. We propose resolving sequences by estimating
the number of duplications collapsed into an individual sequence in an assembly
and determining the PSVs belonging to each duplication.

Given S segmental duplication paralogs of the same length containing V
variants, one may represent all paralogs as an S × V matrix P with entries in
{0, 1}, where each entry P (i, j) is 0 if the repeat paralog i is in the consensus

Resolving Multicopy Duplications de novo Using Polyploid Phasing 119

state at site j, or 1 if it is a PSV. The set of N reads from all repeat paralogs
may be aligned to the consensus sequence and represented as an N × V read-
fragment matrix X with entries in {0, 1,−} corresponding to consensus, variant,
or absent (since reads only give information about certain positions). The goal is
to reconstruct the paralog matrix P given only the read matrix X, where there
are also sequencing errors creating erroneous entries in X. Let us assume that
the error probability is ε at any position, i.e., with probability 1− ε, the location
is read correctly, and with probability ε, the location is read incorrectly (0 is
read as a 1 and vice versa).

For S = 2, this problem is identical to haplotype phasing of a diploid genome
[4,25,29]. Defining a read conflict as two overlapping reads that are non-gap
and disagreeing at a site, haplotype phasing with error-free reads may be deter-
mined by grouping all conflict-free reads. To handle sequencing errors, a common
formulation for haplotype phasing is minimum error correction (MEC), where
a minimal number of base changes are applied to reads so that they may be
partitioned into two conflict-free sets. For S = 2, there has also been an exact
information theoretic characterization of when it is possible to phase the genome
correctly [13,36], along with efficient algorithms. This is based on connections to
a problem called “community detection” [20] where the goal is to cluster users
into communities based on positive or negative interactions between individuals.

When S > 2, this corresponds to the much less studied problem of poly-
ploid phasing, which was discussed in pioneering work by Aguiar and Istrail [1].
Beginning with HapCompass [1], there has been some work on polyploid phas-
ing using algorithms based on branch-and-extend [5], belief propagation [32] and
semi-definite programming [14]. In a recent theoretical work [7], the hardness of
optimizing the MEC for S > 2 has also been proven, indicating that algorithms
for this problem need to be necessarily approximate or tailored to some assump-
tions. A major drawback of existing works is that they consider only S = 3, 4
and none have been developed, optimized, or tested for the high ploidy that is
encountered in segmental duplications, where S can be potentially larger than
10, and to the low error-rate in Illumina sequencers. Thus, algorithms that are
robust to the high error rates and can handle the high poly-ploidy are imperative
in solving the segmental duplication problem, and in this paper, we will design
such algorithms.

In particular, we propose two algorithms for solving the problem. The first
approach is based on a discrete matrix-completion paradigm where the goal is to
maximize the likelihood of the observed data given the underlying haplotypes.
The second approach is based on a correlation-clustering framework with an
inherent assumption that each haplotype has a PSV (which holds in many types
of segmental duplications). By performing detailed simulations, we demonstrate
the superior performance of the proposed algorithms over existing algorithms,
especially in the high ploidy regime.

120 M.J. Chaisson et al.

2 Haplotype Phasing via Discrete Matrix Completion

2.1 A Probabilistic Model

In order to represent the matrices in real-valued arithmetic, we adopt the follow-
ing mapping f : {0, 1,−} → {−1, 1, 0}, i.e., we represent the consensus allele as
−1, variant as 1 and undisclosed locations as 0. To model the read matrix X, we
first consider an idealized matrix M , which does not contain any noise nor does
it contain any undisclosed position. If read n is sampled from the s-th paralog,
then the n-th row of this matrix M is given by the s-th row of the paralog matrix,
i.e., Mn. = f(Ps.). The disclosed locations of the matrix are represented by a
set Ω, which is the set of tuples (n, v) where read n contains information about
variant v. Given M and Ω, the matrix X is not a deterministic function since
there are independent read errors, which convert a 1 into a −1 with probability
ε and vice versa. The probability of observing X given M and Ω is therefore
given as follows,

logP(X | M,Ω) =
∑

(n,v)∈Ω

logP(Xn,v | M,Ω)

=
∑

(n,v)∈Ω

log
(
(1 − ε)1Xn,v=Mn,v

)
+ log

(
ε1Xn,v �=Mn,v

)

= dH(X,M) ∗ log(ε) + (|Ω| − dH(X,M)) ∗ log(1 − ε)

= −dH(X,M) ∗ log(
1 − ε

ε
) + (|Ω|) ∗ log(1 − ε),

where dH(X,M) is the Hamming distance between the two matrices X and M
in the locations Ω, i.e., where X �= 0. Different haplotype assembly algorithms
have sought to minimize varied objective criteria in order to obtain the correct
clustering of reads belonging to the respective haplotypes [34]. Some of the note-
worthy objectives are minimum edge removal (MER), minimum single-nucleotide
polymorphism removal (MSR) and MEC. The quantity dH(X,M) is called the
error criterion, and in our approach, maximizing the likelihood is equivalent to
minimizing this error criterion referred to as MEC.

We observe that the ideal matrix M has repeated rows, since all rows sampled
from the same paralog are identical. This implies that the matrix M has low rank.
Indeed the matrix M can be factorized as the product of two matrices M = A·B,
where A ∈ R

N×S with Aij ∈ {0, 1} ∀i, j and B ∈ R
S×V with Bij ∈ {−1, 1} ∀i, j.

Each row of A is an elementary vector of length S denoting which paralog the
read is from and matrix B is identical to f(P) (represented in {−1, 1}).

The observed matrix X is a noisy partial observation of the low-rank matrix
M , and the goal is to reconstruct the matrices A and B given X. If each read
spanned the entire segmental duplication, the problem would be trivial, since
similar reads can be grouped together and taking a consensus inside clusters
reveals the segmental duplications. The difficulty is posed by the fact that read
lengths are much smaller and do not span all variant positions.

Resolving Multicopy Duplications de novo Using Polyploid Phasing 121

Each read only provides partial phasing information. The resulting X matrix
is thus sparse, and our goal can be formally stated as follows:

argminA,BdH(X,A · B). (1)

Real-valued versions of this problem have received much attention and are
called the matrix completion problem. While this problem has a rich history,
there is a significant difference in our setting, since the matrices A and B have
structure (i.e., A has only elementary row vectors and B has binary entries)
and the matrix X is ternary. We therefore have to develop new algorithms that
exploit the discrete structure of the problem.

The problem of finding missing entries in a matrix arises in diverse research
domains. One of the most illustrative examples is the Netflix challenge where
users rate a small fraction of movies at random and the task is to predict user
preferences for an unrated movie; a key assumption in this domain is that the true
matrix of preferences is low-rank. While a low-rank matrix-completion problem
is known to be NP-Hard, there are methods that can give provably correct
reconstruction under probabilistic rather than worst-case assumptions [10,33].
Popular techniques for this problem include convex relaxation of the rank to
nuclear norm [33], singular value thresholding [9] and alternating minimization
[22], all of which have theoretical guarantees as well. The key difference between
these works and our problem is that they consider real-valued matrix completion,
whereas, in this paper, we adapt and extend the algorithms to the discrete setting
inherent to the phasing problem.

In a recent paper [8], Cai et al. formulate haplotype phasing as a low-rank
matrix-completion problem and use structure constrained alternating minimiza-
tion for obtaining the haplotypes. In the paper, they demonstrate improved
performance over HapCompass for diploid and simulated polyploid data (with
S = 3, 4). We show in this paper that while that method has good performance
with small S, the performance starts deteriorating with higher S. The main rea-
son for the deteriorating performance is the inability of the algorithm to exploit
the discrete structure of the problem (for example, the algorithm does not use
the fact that the B matrix is binary, instead treating it as a real-valued matrix).
We alleviate this problem in the present paper by proposing an algorithm that
explicitly exploits this fact.

2.2 Iterative Two-Stage Matrix Completion

Our problem stated in (1) is a hard combinatorial problem. One can design
alternating minimization-based techniques for this problem, where A and B
are optimized alternatively while keeping the other variable fixed. While such
methods monotonically increase likelihood, they are not guaranteed to find the
global optimum of the problem and display high sensitivity to initial conditions.
The key idea in our approach is to first neglect the discrete nature of our problem
and view it as a real-valued matrix-completion problem. We then “round” the
results obtained from this real-valued matrix completion to obtain a feasible

122 M.J. Chaisson et al.

Algorithm 1. Iterative Matrix Completion
Input : Noisy incomplete Matrix X, Rank Estimate S

1: Initialize Ainit ∈ R
N×S and Binit ∈ R

S×V with sign-corrected SVD.
2: e ← Error rate
3: k ← S
4: while k ≥ 2 and MEC score decreases do
5: Best ← RealMatCom(Ainit, Binit, X, k)
6: Aest, Best ← DiscreteMatCom(Best, X, e)
7: Choose the best segment based on individual scores
8: Ainit ← Aest

9: Binit ← Best

10: k ← k − 1
11: end while

Output : Estimated Haplotypes Best

Algorithm 2. Real-Valued Matrix Completion
1: procedure RealMatCom(Ainit, Binit, X, k)
2: A ← Ainit

3: B ← Binit

4: while stopping criterion not satisfied do
5: Minimize A using projected gradient descent
6: Minimize B1:k using projected gradient descent
7: end while
8: return sign(B)
9: end procedure

Algorithm 3. Discrete-Valued Matrix Completion
1: procedure DiscreteMatCom(Best, X, e)
2: while MEC score decreases do
3: for each row i of X do
4: for each segment s of Best do
5: d(i, s) ← Hamming distance of Xi and Best,s for known entries
6: Wi ← Window size of revealed entries of Xi

7: Aest,is ← (1 − e)Wi−d(i,s) · ed(i,s)

8: end for
9: Update overall MEC score and score for each individual segment

10: Normalize Aest,i to be a probability distribution
11: end for
12: Initialize Best,new ∈ R

S×V with zeros
13: for each row i of X do
14: Best,new ← Best,new + PΩ(AT

est,i · Xi)
15: end for
16: Best ← sign(Best,new)
17: end while
18: return Aest, Best

19: end procedure

Resolving Multicopy Duplications de novo Using Polyploid Phasing 123

solution for the discrete problem. This rounded solution then becomes the initial
value of a discrete matrix-completion routine designed based on the alternative
minimization technique. While this method already has superior performance
compared to existing approaches, we found that in the regime when the ploidy is
high, the algorithm is able to extract some dominant haplotypes correctly while
being incorrect on the other haplotypes. In order to overcome this barrier, in
iteration i, we only fix the best i−1 haplotypes based on the current MEC, then
optimize for the rest. A schematic representation of this algorithm is depicted
in Fig. 1, and the detailed pseudocode is in Algorithms 1, 2 and 3.

Fig. 1. The initialization
and iteration workflow for
discrete matrix comple-
tion.

A standard approach in combinatorial optimiza-
tion is to relax the integer constraints in the problem
in order to get a real-valued optimization problem, and
then to round the obtained results to get a feasible
solution. We follow a similar approach here by relax-
ing our discrete problem to a continuous optimization
problem, and along with it, we relax the objective too.
Instead of optimizing according to the Hamming dis-
tance objective with the discrete constraints on A,B
(see (1)), we instead minimize the Frobenius norm of
the difference while at the same time assuming that A
and B are real valued.

The noisy low-rank matrix completion can be for-
mally stated as an optimization problem.

min
A,B

1
2
‖PΩ(A · B − X)‖2F

The objective function is a squared sum of errors over all the known entries
of X. PΩ(·) is the projection operator and Ω is the set of known indices of X.
So, PΩ(Zij) = Zij if (i, j) ∈ Ω and 0 otherwise. While we relax the integer
constraints of the problem, we assume the following linear constraints to hold.

0 ≤ Aij ≤ 1 ∀ i ∈ [N], j ∈ [S] (2)
−1 ≤ Bij ≤ 1 ∀ i ∈ [S], j ∈ [V] (3)

Since the optimization is over unknown matrices A and B in a product form,
the problem is non-convex. However, alternating minimization algorithms are
known to have guaranteed reconstruction performance in certain regimes [22] and
therefore we resort to using such algorithms. Thus, we first solve the optimization
over A, keeping B fixed, which makes the problem convex in A and vice versa.

2.3 Projected Gradient Descent

The alternating minimization for our problem therefore can be stated as follows:

min
A

1
2
‖PΩ(A · B − X)‖2F

s.t. 0 ≤ Aij ≤ 1 ∀ i, j

124 M.J. Chaisson et al.

and similarly

min
B

1
2
‖PΩ(A · B − X)‖2F

s.t. − 1 ≤ Bij ≤ 1 ∀ i, j

To incorporate the constraints on the variables, we use a projected gradient
descent to minimize each of the convex formulations.

2.4 Initialization

Since the overall problem is non-convex, it is required to choose a suitable ini-
tialization for better performance. For this purpose, we use the singular value
decomposition (SVD). This is a factorization of a m × n rectangular matrix of
rank r in the form UΣVT , where U is a m×r unitary matrix, Σ is a r×r diagonal
matrix with non-negative diagonal entries, and V is a n × r unitary matrix. The
columns of U and V are called the left and right singular vectors, respectively.
Prior theoretical results [22] suggest taking the S singular vectors of PΩ(X) as
the initial guess for A and B. While this is a reasonable initialization, the signs
of the singular vectors obtained from SVD decomposition may not be consistent
with our problem since we require the entries of A to be strictly non-negative.
We note that the signs of the singular vectors can be swapped without affecting
the SVD. Therefore, in our algorithm, in order to ensure this sign consistency,
we reverse the signs of certain rows of B to ensure that all columns of A have a
positive sum.

PΩ(X) = U · Σ · VT Γ = sign(1T U)Ainit = U ∗ diag(Γ)Binit = (V ∗ diag(Γ))T

For details of the projected gradient descent, we refer the reader to AppendixA.

2.5 Discrete Matrix Completion

We round the output of the real-valued matrix completion to satisfy the discrete
constraints of A and B and utilize this to run a discrete alternating minimization
algorithm to solve (1). The optimization of A given a fixed B is easy to solve:
the basic idea is to assign each read to the segment that minimizes the Hamming
distance with the read. To optimize B given a fixed A, we find the consensus
of all the reads that are informative about a given position. In our algorithm,
instead of having A to be a hard decision of which segment a given read belongs
to, each row i of A encodes the probability that read i belongs to segment j.
Therefore, while optimizing over B, we utilize the weighted consensus rather
than the plain consensus of the read assignments. This procedure of refinement
comes under the purview of a broader class of algorithms called the expectation
maximization (EM) algorithm [16]as well as Variational Bayes [40]. The matrix
A can be viewed as hidden variables encoding the membership of read fragments
to duplication copies and B as the parameters for the exact underlying segments.
We refer the reader to Algorithm 3 for a detailed description of the algorithm.

Resolving Multicopy Duplications de novo Using Polyploid Phasing 125

2.6 Choosing the Best Segment and Effective Rank Reduction

As pointed out earlier, the algorithm as stated above works well with small poly-
ploid instances; however, in the presence of higher ploidy, the algorithm returns
only the top few haplotypes correctly. For example, consider the cascading topol-
ogy of repeats in Fig. 2, it is easier to resolve segment 7 but the other segments
are more easily confused. Therefore, we propose an iterative algorithm, where
in each iteration, the best haplotype is fixed and then the algorithm is run to
optimize over possibilities of the other haplotypes. Thus, in order to do matrix
completion with S haplotypes, the algorithm is iterated over S − 1 times. Such
algorithms have a precedent even in real-valued matrix completion. For example,
stagewise alternating minimization is shown to have better theoretical guaran-
tees in [22]. In our implementation, at iteration i, the best i − 1 haplotypes are
chosen as the ones with minimum Hamming distance from their assigned reads.

3 Haplotype Phasing with Correlation Clustering

One limitation of the MEC objective function and therefore of the discrete
matrix-completion algorithm is that the ploidy must be known a priori or esti-
mated. Since the MEC objective itself decreases monotonically with ploidy, it
is not possible to estimate the ploidy using the MEC objective. This can be
potentially remedied using regularized alternatives that account for model com-
plexity like Akaike information criterion, Bayesian information criterion, and
minimum length description. We propose an alternative algorithm here that can
jointly estimate the ploidy while estimating the haplotypes themselves. This
algorithm is based on a key assumption, distinct from the assumptions of the
discrete matrix-completion problem: that each of the haplotypes have uniquely
identifying variants. While this assumption is stronger, it can lead to stronger
regularization of the problem by restricting the search space and therefore leads
to better estimates, especially when the ploidy is high.

The basic idea of the algorithm is the following: each locus is represented as a
vertex and reads that straddle multiple vertices create edges between the vertices
that have either positive or negative weight based on whether reads share the
variant or not. The goal is then to cluster the nodes into groups that share the
same variant, with each cluster representing a haplotype and each locus (node)
in the cluster representing a haplotype-specific variant.

To formally define our algorithm, we begin with an alternative formulation
for polyploid phasing through correlation clustering [3], with the premise that a
metric defines how similar or dissimilar two objects are, and clusters maximize
the amount of similarity within each cluster and dissimilarity between clusters.
Importantly, in correlation clustering the number of clusters is discovered as a
result of clustering and not as a parameter.

We use an augmented form of the single-nucleotide polymorphism conflict
graph GS introduced in [25], denoted GPSV = (V,E), E = {E+, E−}. The con-
struction of GPSV requires the fragment matrix M , and some data-dependent
parameters: the expected range of coverage per haplotype cmin and cmax, and a
distance d that is the maximum distance reads are expected to overlap variants.

126 M.J. Chaisson et al.

A vertex exists for each of the columns (sites) in the fragment matrix M , con-
nected by an edge (u, v) ∈ E+ if u and v are overlapped by between cmin and
cmax reads that are variant (e.g., 1) at both sites, or an edge (u, v) ∈ E− if the
sites corresponding to u and v are within d bases and (u, v) /∈ E+. A weight
W (u, v) is assigned to each edge.

Correlation clustering on GPSV corresponds to finding clusters C = c1, . . . , cn

that minimize the sum of weighted negative edges within each cluster and
weighed positive edges between clusters: ScoreCC =

∑
ci

(
∑

(u,v)∈ci,(u,v)∈E−

w(u, v) +
∑

(u∈ci,v /∈ci),(u,v)∈E+ w(u, v)), where w(u, v) may reflect certainty of
clustering, or more simply w(u, v) = 1 to count edges. Each cluster defines a set
of sites that belong to a haplotype. This was shown to be APX-hard [12,15,19],
and approximations based on linear programming (LP) were described in [12,15].
We developed an implementation of the LP approach that was successful at clus-
tering smaller datasets; however, the number of constraints grows with |E|2, and
|E| grows by p2v2, for ploidy p and number of PSVs v, which requires excessive
resources for larger datasets.

To evaluate correlation clustering on larger datasets, we developed a simple
randomized heuristic to search similar to the method of [2] for clusters that
provide acceptable values for ScoreCC that follows the steps:

1. Define clusters likely to represent repeat paralogs through a random search.
2. Merge clusters with sufficient overlap and assign nodes to unique clusters.
3. Optimize clusters by swapping vertices from adjacent clusters.

We define the neighbor similarity Sim(u, v) of two vertices to be the number of
neighbors shared between u and v connected by edges in E+, and Score(V,E, c)
to be the ScoreCC of a single cluster c assuming all vertices V \c are in a separate
cluster. First, clusters are formed by iteratively adding vertices neighboring a
cluster as long as the neighbor similarity is sufficient and addition of the vertex
decreases ScoreCC, described in Algorithm 4.

Algorithm 4. Find cluster
procedure FindCluster(V, vi, E, s)

c ← vi

repeat
for all v ∈ c do

for all n ∈ Neighbors(v) /∈ c do
if Sim(v, n) ≥ s and Score(V,E, c ∪ n) < Score(V,E, c) then

c ← c ∪ n
end if

end for
end for

until c has not grown
return c

end procedure

Resolving Multicopy Duplications de novo Using Polyploid Phasing 127

Given parameters for neighbor similarity s, a maximal number of search
iterations max search it and swap iterations max swap it, and fraction cluster
overlap fovp, the method FindCluster is used to find a set of clusters C by first
initializing C = ∅, iteratively selecting a vertex vi /∈ C, and adding the result of
FindCluster(V, vi, E, s) to C until C contains all vertices in V or max it iterations
are reached. The resulting clusters in C are not disjoint, and so any cluster ci

with a fraction of vertices overlapping with a cluster cj > fovp is first merged
into cj , then remaining vertices belonging to more than one cluster are assigned
to the largest cluster for which they are a member. Finally, the clusters are
further optimized by selecting edges (u, v) ∈ E+ where u ∈ ci and v ∈ cj and
swapping u and v if this improves ScoreCC for up to max swap it iterations.

4 Results

We benchmarked our methods on a dataset of simulated collapsed segmen-
tal duplications. It is difficult to simulate the complex mosaic architecture of
segmental duplications [23], and so we elected to use a simplified model of
100 kbp non-mosaic duplications. While this lacks the complexity of mosaic
duplication architecture, the length is greater than the average duplication unit
(∼30 kbp), ensuring evaluation on challenging problems. Starting with an ances-
tral sequence, sequences are duplicated according to a specified tree topology T
and mutation rate r, where each child node is a copy of a parent node mutated
at a rate of r random single-nucleotide variant mutations per base. In real data,
duplications arise with many complex histories [17,39]. To capture the complex-
ity of evolution, we used two classes of trees: 12 simulations from well-defined
topologies such as flat, bifurcating, and cascading resulting in four to eight dupli-
cated sequences, and 50 simulations from random tree topologies that have 10
duplicated sequences. Examples of the duplication topologies are shown in Fig. 2.
The mutation rate was varied across 0.01, 0.005, 0.001, and 0.0005 mutations
per base to simulate various ages of duplications. For each set of duplications
we simulated 50× read coverage using the Alchemy SMS read simulator [11], a
model-based simulator that emulates a sequencing run by Pacific Biosciences,
and mapped reads back to the ancestral sequence. PSV sites are detected as
sites that contain between 25 and 60 non-ancestral bases.

For each of the simulated topologies and mutation rates, we evaluated the
discrete matrix completion (DMP), correlation clustering (CC), and structure
constrained gradient descent (SCGD). The SCGD method has been shown to
outperform other previously developed methods in polyploid phasing [8].

We report MEC values by computing the sum of Hamming distance between
each read and the consensus sequence for each haplotype. For CC, we assign reads
to each haplotype according to the minimal Hamming distance from the read to
each haplotype. For duplications simulated under models of high mutation rates
(0.01 and 0.005), the DMP method is able to obtain a lower MEC score than

128 M.J. Chaisson et al.

0

1 2 3 4

0

1 4

2 3 5 6

0

1 7

2 6

3 5

4

0

1 2 3

4 5 6 11 12 13

7 8

9 10

0

1 2 3 4 5 6 7 8 13

9 11

10 12

0

1 4 5 6 7 13

2 3 8 9 10 11

12

Flat Bifurcating Cascading Random - 1 Random - 2 Random 3

Fig. 2. Examples of topologies of duplication simulations. In total there are 12 struc-
tured trees and 50 random topologies. The divergence between any two simulated
duplications is given by the mutation rate r× the shortest path between the duplica-
tions in the tree.

the other methods. Out of the 128 datasets for which every method is able to
run within the time constraint set on our server, we compare the performance.
We observe that CC obtains the best MEC score in 11% of the datasets, DMP
85%, and SCGD 3.9%.

0e+00 2e+05 4e+05 6e+05 8e+05

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

MEC

DMP

S
C
G
D

0.01
0.005
0.001
0.005

0e+00 2e+05 4e+05 6e+05 8e+05

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

MEC

CC

D
M
P

0.01
0.005
0.001
0.005

0e+00 2e+05 4e+05 6e+05 8e+05

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

MEC

CC

S
C
G
D

0.01
0.005
0.001
0.005

0e+00 2e+05 4e+05 6e+05 8e+05

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

MEC

DMP

C
C
+D

M
P

0.01
0.005
0.001
0.005

Fig. 3. MEC scores for the DMP, CC, SCGD, and CC+DMP methods. The DMP
method is shown to produce haplotypes with lower MEC scores than the other methods,
particularly for the high mutation rate simulations. Lower MEC score is better.

For each haplotype we count the number of reads in the haplotype that
are shared with the reads simulated in each duplication and define a matching
statistic as the sum of number of reads in the maximally matched duplication
divided by the total number of reads. This statistic ranges between 1 for perfect
reconstruction of haplotypes down to a 1/p when all of them are collapsed into
a single reconstructed haplotype. The results are shown in Fig. 4. CC had the
greatest matching score in 67.7% of the datasets, DMP 26.1% of the datasets,
and SCGD on 6.1% of the datasets. Interestingly, while the CC method has
a higher MEC statistic, it has a greater number of correctly partitioned reads
when compared with the ground truth. We reason that this is because the CC
method exploits the assumption that the positions are variant specific explicitly
resulting in stronger regularization, so that even though the likelihood score is
somewhat lower for CC method than other methods, it is able to fit the data
more accurately. The other methods DMP and SCGD are unable to exploit this
assumption and therefore overfit more severely to the data. The DMP method
is sensitive to the initialization conditions for Best, and so we used a solution
derived by CC as initial conditions for DMP. We measured improvements on

Resolving Multicopy Duplications de novo Using Polyploid Phasing 129

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Modified bipartite Score

DMP

S
C
G
D

0.01
0.005
0.001
0.005

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Modified bipartite Score

CC

D
M
P

0.01
0.005
0.001
0.005

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Modified bipartite Score

CC

S
C
G
D

0.01
0.005
0.001
0.005

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Modified bipartite Score

CC

C
C
+D

M
P

0.01
0.005
0.001
0.005

Fig. 4. Matching statistics for the DMP, CC, SCGD, and CC+DMP methods. A per-
fect reconstruction of haplotypes shows a score of 1, while a random assignment will
score 1/ploidy. Higher matching score is better.

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8
R
ec

on
st
ru
ct
ed

C
C

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

0 2 4 6 8

0
2

4
6

8

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●
●

●●
●

●

●

0 2 4 6 8

0
2

4
6

8

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8
R
ec

on
st
ru
ct
ed

D
M
P

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●
●

● ●

0 2 4 6 8

0
2

4
6

8

●

●
●●●●

● ●
●●

●

● ●

●

●
●

●
●

●
●

●●
●

●
● ●

●
●

●●
●

●

●

●

●

●●●
●●●

●●
●

●

●

●● ●

●

●

●
●●
●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8
R
ec

on
st
ru
ct
ed

S
C
G
D

●

●

●
●●

● ●

●
●
●

● ● ●
●●

●
●
●
●●

●
●● ●●●●●

●● ●

●

●

●

●

●

●
●
●

●

●

●●
●●

●

●

●

●
●● ●

●
●

●

● ●

●

●

●

●

●●

0 2 4 6 8

0
2

4
6

8

●

●

●
●

●●●●●●●●

●

●

●
●● ●●
●

●
●
●●●

●

●

●

●●
●● ●

●

●

●
●

●
●

●●
●●●

●
● ●●

●●
●
●

●

● ●

●

●

●

●

●

●

●
●

0 2 4 6 8

0
2

4
6

8

●

● ●

●●●●●

●
●
●
●● ●
●

●

●●
●
●

●
●

●●●
●●

●
●
●

●

●

●●

●

●
●

●

●
●

●
●●
●

●
●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

● ●

0 2 4 6 8

0
2

4
6

8

●

●

●●

●

●

●●●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

r=1.00e−02

R
ec

on
st
ru
ct
ed

C
C
−D

M
P

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

r=5.00e−03

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

0 2 4 6 8

0
2

4
6

8

r=1.00e−03

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

r=5.00e−04

Fig. 5. Correctly assembled haplotypes for the DMP, CC, SCGD, and CC+DMP meth-
ods. Each point is the number of correctly phased genotypes per simulation, with points
jittered for display.

this combination (CC+DMP) relative to DMP on MEC (Fig. 3, right), and CC
for matching score. While the MEC score was largely unchanged, 220 of the
224 simulations where both CC and CC+DMP had a solution had a greater
matching score in CC+DMP (Fig. 4).

We also measure a more stringent quality of reconstruction accuracy: we
ask for what fraction of the true haplotypes have a reconstructed cluster to
which 90% of the correct reads are assigned. Formally, for each simulated dupli-
cation we determined which haplotype had the most reads overlapping with
the reads simulated from that duplication and counted how many such haplo-
types had at least 90% of the reads from that haplotype reciprocally assigned to
that duplication. This gives an indication of the number of copies of a segmen-
tal duplication that would be correctly assembled given the phased haplotypes.

130 M.J. Chaisson et al.

For the 48 simulations with duplication copy number between 3 and 8, the CC
method resolves 70% of duplication copies, while the DMP and SCGD meth-
ods resolve 66% and 26%, respectively (Fig. 5). For duplications of ploidy 10,
the CC method resolves on average 7.0 copies of each duplication, whereas the
DMP and SCGD methods resolve on average 3.3 and 0.03 copies, respectively.
The CC+DMP combined method resolved 80% of duplications for simulations
of copy number between 3 and 8. However, for copy number 10 duplications this
provided marginal improvements over CC alone, providing solutions for 24 fewer
simulations than CC, resolving on average 7.1 duplications per simulation.

5 Conclusions

The resolution of segmental duplications remains problematic in de novo assem-
blies. Deviating from the typical formulations of de novo assembly, we present
a new formulation and two novel algorithms for resolving high-copy collapsed
duplications that rely on polyploid phasing. We demonstrated that while it is
possible to optimize for MEC, methods that focus on resolving clusters with
unique PSVs actually resolve more duplications despite having a higher MEC
value, perhaps due to less over-fitting of results to variants present in ancestral
copies of a duplication. In future work we hope to improve the rank estima-
tion for the discrete matrix-completion method, possibly leveraging the clusters
discovered by correlation clustering, and characterizing the conditions under
which correlation clustering converges to the correct clusters. Finally, we plan
on applying these methods to resolving duplications in published human assem-
blies [35,38].

Acknowledgements. This work was supported, in part, by U.S. National Institutes
of Health (NIH) grants 5R01HG002385-15 (E.E.E. and M.J.C.) and 5R01HG008164-02
(S.K. and S.M.). E.E.E. is an investigator of the Howard Hughes Medical Institute.

A Appendix

After each gradient step, the resultant matrix is projected onto the box. The
updates for A and B are as follows:

Ã(t+1) ← A(t) − αA∇Af(A)

Then A
(t+1)
ij =

⎧
⎪⎨

⎪⎩

0, if Ã
(t+1)
ij < 0

Ã
(t+1)
ij , if 0 ≤ Ã

(t+1)
ij ≤ 1

1, if Ã
(t+1)
ij > 1

B̃(t+1) ← B(t) − αB∇Af(B)

Then B
(t+1)
ij =

⎧
⎪⎨

⎪⎩

−1, if B̃
(t+1)
ij < −1

B̃
(t+1)
ij , if − 1 ≤ Ã

(t+1)
ij ≤ 1

1, if Ã
(t+1)
ij > 1

Resolving Multicopy Duplications de novo Using Polyploid Phasing 131

where f(·) is the objective function. The projected gradient descent allows us to
incorporate additional constraints on the problem as well. If we further enforce
that the sum of each row of A equals 1, then we would have the projection as
A

(t+1)
ij = max{0, Ã

(t+1)
ij − νi} where νi can be computed for each row i using the

equality
S∑

j=1

max{0, Ã
(t+1)
ij − νi} = 1

We allow a maximum of 50 iteration steps for minimizing each of A and B,
and 100 iteration steps for alternating minimization. We exit the iterations if
the change in norm is insignificant (1e − 02) or if the objective value change is
below a tolerance (1e − 04). The learning rate values have to be computed in
order to ensure that gradient steps do not diverge. Our choices of learning rates
have been

αA = C
‖∇f(A(t))‖2F

‖PΩ(∇f(A(t)) · B(t))‖2F
and

αB = C
‖∇f(B(t))‖2F

‖PΩ(A(t) · ∇f(B(t)))‖2F
where C ∈ (0, 1).

References

1. Aguiar, D., Istrail, S.: Haplotype assembly in polyploid genomes and identical by
descent shared tracts. Bioinformatics 29(13), i352–i360 (2013)

2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM (JACM) 55(5), 23 (2008)

3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

4. Bansal, V., Bafna, V.: Hapcut: an efficient and accurate algorithm for the haplotype
assembly problem. Bioinformatics 24(16), i153–i159 (2008)

5. Berger, E., Yorukoglu, D., Peng, J., Berger, B.: Haptree: a novel Bayesian frame-
work for single individual polyplotyping using NGS data. PLoS Comput. Biol.
10(3), e1003502 (2014)

6. Berlin, K., Koren, S., Chin, C.-S., Drake, J.P., Landolin, J.M., Phillippy, A.M.:
Assembling large genomes with single-molecule sequencing and locality-sensitive
hashing. Nat. Biotechnol. 33(6), 623–630 (2015)

7. Bonizzoni, P., Dondi, R., Klau, G.W., Pirola, Y., Pisanti, N., Zaccaria, S.: On the
minimum error correction problem for haplotype assembly in diploid and polyploid
genomes. J. Comput. Biol. 23, 718–736 (2016)

8. Cai, C., Sanghavi, S., Vikalo, H.: Structured low-rank matrix factorization for
haplotype assembly. J. Sel. Top. Sig. Process. 10(4), 647–657 (2016)

9. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for
matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

10. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Com-
mun. ACM 55(6), 111–119 (2012)

132 M.J. Chaisson et al.

11. Chaisson, M.J.: https://github.com/mchaisso/blasr
12. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.

In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer
Science, pp. 524–533. IEEE (2003)

13. Chen, Y., Kamath, G., Suh, C., Tse, D.: Community recovery in graphs with
locality (2016). arXiv preprint arXiv:1602.03828

14. Das, S., Vikalo, H.: SDhaP: haplotype assembly for diploids and polyploids via
semi-definite programming. BMC Genom. 16(1), 4 (2015)

15. Demaine, E.D., Immorlica, N.: Correlation clustering with partial information.
In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM
-2003. LNCS, vol. 2764, pp. 1–13. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45198-3 1

16. Dempster, A.P.: Laird, N, M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1977)

17. Dennis, M.Y., Nuttle, X., Sudmant, P.H., Antonacci, F., Graves, T.A., Nefedov,
M., Rosenfeld, J.A., Sajjadian, S., Malig, M., Kotkiewicz, H., et al.: Evolution of
human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell
149(4), 912–922 (2012)

18. Eichler, E.E.: Recent duplication, domain accretion and the dynamic mutation of
the human genome. Trends Genet. 17(11), 661–669 (2001)

19. Emanuel, D., Fiat, A.: Correlation clustering – minimizing disagreements on arbi-
trary weighted graphs. In: Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol.
2832, pp. 208–220. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39658-1 21

20. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
21. Gordon, D., Huddleston, J., Chaisson, M.J.P., Hill, C.M., Kronenberg, Z.N., Mun-

son, K.M., Malig, M., Raja, A., Fiddes, I., Hillier, L.W., et al.: Long-read sequence
assembly of the gorilla genome. Science 352(6281), aae0344 (2016)

22. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternat-
ing minimization. In: Proceedings of 45h Annual ACM Symposium on Theory of
Computing, STOC 2013, pp. 665–674, ACM, New York (2013)

23. Jiang, Z., Tang, H., Ventura, M., Cardone, M.F., Marques-Bonet, T., She, X.,
Pevzner, P.A., Eichler, E.E.: Ancestral reconstruction of segmental duplications
reveals punctuated cores of human genome evolution. Nat. Genet. 39(11), 1361–
1368 (2007)

24. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Phillippy, A.M.: Canu: scalable
and accurate long-read assembly via adaptive k-mer weighting and repeat separa-
tion. bioRxiv, p. 071282 (2016)

25. Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, com-
plexity, and algorithms. In: Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp.
182–193. Springer, Heidelberg (2001). doi:10.1007/3-540-44676-1 15

26. Motahari, A., Ramchandran, K., Tse, D., Ma, N.: Optimal DNA shotgun
sequencing: noisy reads are as good as noiseless reads (2013). arXiv preprint
arXiv:1304.2798

27. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly.
J. Comput. Biol. 2(2), 275–290 (1995)

28. Myers, G.: Efficient local alignment discovery amongst noisy long reads. In: Brown,
D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 52–67. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44753-6 5

https://github.com/mchaisso/blasr
http://arxiv.org/abs/1602.03828
http://dx.doi.org/10.1007/978-3-540-45198-3_1
http://dx.doi.org/10.1007/978-3-540-45198-3_1
http://dx.doi.org/10.1007/978-3-540-39658-1_21
http://dx.doi.org/10.1007/3-540-44676-1_15
http://arxiv.org/abs/1304.2798
http://dx.doi.org/10.1007/978-3-662-44753-6_5

Resolving Multicopy Duplications de novo Using Polyploid Phasing 133

29. Patterson, M., Marschall, T., Pisanti, N., Iersel, L., Stougie, L., Klau, G.W.,
Schönhuth, A.: WhatsHap: haplotype assembly for future-generation sequencing
reads. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 237–249. Springer,
Cham (2014). doi:10.1007/978-3-319-05269-4 19

30. Pevzner, P.A.: Dna physical mapping and alternating Eulerian cycles in colored
graphs. Algorithmica 13(1–2), 77–105 (1995)

31. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Nat. Acad. Sci. 98(17), 9748–9753 (2001)

32. Puljiz, Z., Vikalo, H.: Decoding genetic variations: communications-inspired haplo-
type assembly. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 518–530 (2016)

33. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

34. Schwartz, R., et al.: Theory and algorithms for the haplotype assembly problem.
Commun. Inf. Syst. 10(1), 23–38 (2010)

35. Seo, J.-S., Rhie, A., Lee, S., Sohn, M.-H., Kim, C.-U., Hastie, A., Cao, H., Yun,
J.-Y., Kim, J., et al.: De novo assembly and phasing of a Korean human genome.
Nature 538, 243 (2016)

36. Si, H., Vikalo, H., Vishwanath, S.: Haplotype assembly: an information theoretic
view. In: 2014 IEEE Information Theory Workshop (ITW), pp. 182–186. IEEE
(2014)

37. Stankiewicz, P., Lupski, J.R.: Genome architecture, rearrangements and genomic
disorders. Trends Genet. 18(2), 74–82 (2002)

38. Steinberg, K.M., Graves-Lindsay, T., Schneider, V.A., Chaisson, M.J.P., Tomlin-
son, C., Huddleston, J.L., Minx, P., Kremitzki, M., Albrecht, D., Magrini, V.,
et al.: High-quality assembly of an individual of Yoruban descent. bioRxiv, p.
067447 (2016)

39. Usher, C.L., Handsaker, R.E., Esko, T., Tuke, M.A., Weedon, M.N., Hastie, A.R.,
Cao, H., Moon, J.E., Kashin, S., Fuchsberger, C., et al.: Structural forms of the
human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat.
Genet. 47(8), 921–925 (2015)

40. Welling, M., Kurihara, K.: Bayesian k-means as a maximization-expectation algo-
rithm (2007)

http://dx.doi.org/10.1007/978-3-319-05269-4_19

A Bayesian Active Learning Experimental
Design for Inferring Signaling Networks

Robert Osazuwa Ness1,2(B), Karen Sachs3, Parag Mallick3, and Olga Vitek2

1 Department of Statistics, Purdue University, West Lafayette 47907, USA
nessr@purdue.edu

2 College of Science, College of Computer and Information Science,
Northeastern University, Boston 02115, USA

3 School of Medicine, Stanford University, Palo Alto 94305, USA

Abstract. Machine learning methods for learning network structure,
applied to quantitative proteomics experiments, reverse-engineer intra-
cellular signal transduction networks. They provide insight into the
rewiring of signaling within the context of a disease or a phenotype. To
learn the causal patterns of influence between proteins in the network,
the methods require experiments that include targeted interventions that
fix the activity of specific proteins. However, the interventions are costly
and add experimental complexity.

We describe a active learning strategy for selecting optimal inter-
ventions. Our approach takes as inputs pathway databases and historic
datasets, expresses them in form of prior probability distributions on net-
work structures, and selects interventions that maximize their expected
contribution to structure learning. Evaluations on simulated and real
data show that the strategy reduces the detection error of validated edges
as compared to an unguided choice of interventions, and avoids redun-
dant interventions, thereby increasing the effectiveness of the experiment.

Keywords: Machine learning · Active learning · Causal inference ·
Bayesian network · Probabilistic graphical models · Biological networks

1 Introduction

Signaling networks describe chains of protein interactions that determine how
cells process signals from their environment. The deregulation of signaling net-
works occurs under many conditions, e.g. in diseases such as cancer [30], gene
knockouts, or introduction of a drug. The patterns of such deregulation can be
inferred from quantitative proteomic experiments conducted under the condi-
tions of interest, using causal inference and Bayesian networks [12,38].

In these investigations, signaling is induced with a stimulus perturbation,
and a measurement technology acquires information on the activity of signaling
proteins [42]. Bulk experiments quantify aggregate signaling activity across a
sample. In contrast, single cell technologies provide cell-level resolution of sig-
naling activity. For example, in flow cytometry cells are chemically fixed, and
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 134–156, 2017.
DOI: 10.1007/978-3-319-56970-3 9

Bayesian Active Learning of Signaling Networks 135

intracellular signaling proteins are tagged with fluorescently-labeled antibodies.
The cytometer then records the antibodies’ fluorescence in individual cells, each
reflecting the relative abundance of signaling proteins in different states of enzy-
matic activity [32]. Similarly, in mass cytometry (CyTOF) experiments, intra-
cellular signaling proteins are tagged with heavy-metal isotopes, and the mass
spectrometer records the mass-to-charge ratio of the charged isotope tags [1].

Causal Bayesian networks represent signaling proteins as nodes, and regula-
tory relationships as directed edges. It interprets a network as a topological map
of the underlying signaling network. By comparing the structure inferred under
a condition to canonical pathways in sources such as KEGG and Reactome, we
can learn the patterns of network deregulation. Data repositories, such as Cyto-
bank [4], provide historic data, which can be incorporated in the analysis and
interpretation of experimental results [12,45]. This prior information is espe-
cially important for higher throughput experiments because it helps eliminate
spurious correlations and false discoveries of relationships between proteins [29].

To distinguish causal relationships from statistical associations, causal net-
work inference requires targeted interventions on some proteins [9,29], e.g., using
small-molecule inhibitors that block a protein’s enzymatic activity. An insuffi-
cient set of interventions results in only a partially causally oriented network
[31]. At the same time, increasing the number of interventions increases the
complexity of the experiment and the cost. This cost is wasted when targeted
interventions redundantly orient the same edges.

In this paper, we propose a strategy for optimal design of bulk or single-
cell proteomic experiments aiming at causal inference. The design prioritizes
targeted interventions, and provides a criterion to stop adding interventions.
It combines prior knowledge in the form of canonical pathways imported from
sources such as KEGG [22] with historic data. The strategy outputs a sequence
of interventions that we call a “batch”, i.e. a minimal subset of candidate inter-
ventions that contributes maximal causal information given the available data.
We then describe an active learning framework, that iterates between selecting
interventions and acquiring data to obtain a fully inferred causal network. To the
best of our knowledge, this is the first active learning approach to experimental
design for inference of signaling networks. Accurate signaling network structure
inference depends on the “right” data; the proposed design approach provides
experimentalists with a roadmap for generating that data.

2 Background

2.1 Directed Graphs as Causal Models of Signaling

A causal Bayesian network denotes a set of p signaling proteins with p nodes
V = {v1, ..., vp}. The nodes are variables representing levels of signaling activity
of the proteins. For example, v1 can take discrete signaling states “active” or
“inactive”, or continuous values quantifying the abundance of a protein form.
The model expresses causal relations between nodes with a directed acyclic graph
structure (DAG) G. The edge direction in the DAG represents the causal effect of

136 R.O. Ness et al.

a change in the signaling state of a parent node on the state of the child. The DAG
is best interpreted as a snapshot of a dynamic system [20]. This interpretation
is strongest when the signaling response has reached some quasi-steady-state.

Each node in the DAG has a conditional probability distribution given its
parents. It is a probabilistic representation of the regulatory influences of the
parents on the child [31]. A key advantage of the probabilistic interpretation is
that it encodes conditional independence, i.e. the probability that the state of
a protein is independent of the state of all its upstream proteins, if we know
(i.e. condition on) the states of its direct parents. This allows us to ignore the
correlation between a protein and proteins more than one step upstream.

Target
Erk

Raf Mek Erk

Raf Mek Erk

Raf Mek Erk

Raf Mek Erk Raf

Mek

Erk

Target
Raf

Target
Mek

P

Raf Mek Erk

Raf Mek Erk

Raf Mek ErkP
Erk

Fig. 1. Illustration of DAG equivalence classes. The DAG Raf → Mek → Erk is
the “ground truth” canonical MAPK signaling pathway, which we seek to learn by
causal inference. The left box shows the equivalence class P , represented by the PDAG
Raf − Mek − Erk. The PDAG contains three DAGS, all statistically indistinguishable
in absence of interventions. The cardinality of P is 3. The middle box shows the PDAG
PErk, obtained after an intervention or Erk. PErk is a subclass of P that has elimi-
nated Raf ← Mek ← Erk. The cardinality of PErk is 2. The right box shows the single
ground truth DAG obtained after an additional intervention on Raf. An alternative
single intervention on Mek simultaneously compels the direction of both edges, and is
more effective at discovering the ground truth.

From the statistical perspective, the goal of causal inference is to infer the
DAG structure representing the signaling network, using associations between
proteins as input. However, statistical associations are not sufficient to orient
the edges in the DAG [29]. We illustrate this with the simple 3-protein canonical
MAPK signaling pathway Raf → Mek → Erk. Imagine that the structure of
the pathway is unknown, and needs to be inferred. A causal inference algorithm
would (1) detect pairwise statistical correlations between abundances of each
pair of the three proteins, pointing to the three candidate edges, (2) test Raf
and Erk for conditional independence, given the state of Mek, and (3) in presence
of conditional independence, eliminate the edge between Raf and Erk. After that,
additional interventions are required to orient the edges between Raf and Mek,
and between Mek and Erk. The left box in Fig. 1 illustrates that, in absence of
interventions, the ground truth is statistically indistinguishable from the other
two causally incorrect DAGs.

A set of statistically indistinguishable DAGs form a Markov equivalence class
P , comprised of DAGs with same edges but varying orientations, which have

Bayesian Active Learning of Signaling Networks 137

equal statistical likelihood for the dataset [24,31]. A Markov equivalence class is
represented with a partially directed acyclic graph (PDAG). The directed edges
in a PDAG have the same orientation in all the DAGs in P . The undirected edges
in the PDAG have varying directions in the DAGs, and therefore represent edges
with uncertain causality. Figure 1 illustrates PDAGs and DAGs in the MAPK
pathway example. The cardinality of a PDAG is defined as the number of its
DAGs.

Targeted interventions proceed by fixing the state of a node, such that it does
not vary with that of its parents [9,24,31]. Fixing the node introduces an addi-
tional constraint, and eliminates members of the equivalence class that fail to
satisfy this constraint. For example, in Fig. 1 a small inhibitor fixes Erk’s enzy-
matic activity state to “off”, such that the activity of Erk becomes independent
of the state of Mek. The intervention fails to regulate the activity of Mek, and
therefore eliminates the DAG with an edge Erk → Mek.

The reduced equivalence class is formally defined as a transition-sequence
Markov equivalence class, i.e. the equivalence class after a sequence of “transi-
tions” (interventions) [43]. Each additional intervention orients more edges in
a PDAG, and a sufficiently large set of interventions compels all the edges. In
Fig. 1, interventions on Erk and Raf eliminated all but the ground truth from
the equivalence class.

As the example illustrates, a batch of interventions targeting Erk and Raf
would reveal the ground truth DAG. However, so would a batch containing
a single intervention on Mek. The goal of this work is to identify batches of
interventions, which reveal the most causality while minimizing the number of
interventions they contain, and by extension the experimental complexity and
cost.

2.2 Bayesian Inference of Causal Networks

This work focuses on a Bayesian approach to learning causal PDAG represen-
tations of signaling, where experimentalists (1) start with background knowl-
edge about the signaling network, such as likely pathways or motifs, (2) use the
background knowledge to construct a prior distribution on graph structures,
(3) collect experimental measurements of the signaling states of proteins, and
(4) estimate a posterior distribution on structures based on the prior and
the experimental measurements. The Bayesian approach is advantageous, as it
reveals the “rewiring” of signaling between conditions by examining differences
between the prior and the posterior distributions.

More formally, the approach uses the background knowledge δ to construct
a prior probability distribution of possible DAG structures π(G|δ) in the space
of possible structures G. The experimentalist collects a data set D of measure-
ments on the proteins V ∈ G, acquired under a batch of targeted interventions S.
A statistical likelihood function p(D|S,G) quantifies the likelihood that the
observations were generated from a graph G. Finally, inference of the DAG
structure relies on a posterior probability distribution π(G|D,S, δ)

138 R.O. Ness et al.

π(G|D,S, δ) ∝ p(D|S,G)π(G|δ) (1)

In many biological applications, inferring a single DAG with high posterior
probability is not of the main interest. Instead, we are interested in local features
of the graph, such as the presence of particular edges or network motifs. This is
expressed through a function f on a graph that quantifies the feature of interest,
and through its posterior expectation E{f |D,S, δ} across all graphs.

E{f |D,S, δ} =
∑

G

f(G)π(G|D,S, δ) (2)

For example, if f is an indicator of the presence of an edge in the network,
then E{f |D,S, δ} is the posterior probability of the presence of that edge. In
this work, our feature of interest quantifies the causal insight provided by an
intervention.

Bayesian inference of DAG structures relies on a Bayesian scoring function
Score(G,D, S, δ) that takes as arguments a DAG, a dataset quantifying protein
activity, a set of interventions, and the structured prior knowledge. It returns
values proportional to the posterior distribution π(G|D,S, δ). Algorithms search-
ing for DAGs with high Score(G,D, S, δ) must explore the combinatorially large
search space of possible DAGs [25,26,36]. For computational tractability, some
algorithms approximate the posterior probabilities π(G|D,S, δ) (see [24,40] for
background, and [8,18] for an example). Since the full search space over all pos-
sible DAGs G is combinatorially large, the common practice is to sample a set
of DAGs from their posterior distribution through a random process such as
bootstrap ([14,21]) or MCMC [15], and keep a sample of high scoring networks.
E{f |D,S, δ} is then approximated as

E{f |D,S, δ} ≈
∑

G∈Ω

f(G)
Score(G,D, S, δ)∑

G;G∈Ω Score(G,D, S, δ)
(3)

where Ω denotes a sample of high scoring DAGs.

2.3 PDAG Representation of Uncertainty in Causal Effects

Experiments with incomplete sets of interventions lack information to fully infer
the causal orientation of the edges in a DAG. In order to characterize this uncer-
tainty, algorithms take a single DAG and determine the space of DAGs having the
same conditional independence structure, topology and likelihood p(D|S,G), but
different edge orientations as the input DAG [5,43]. These DAGs form a Markov
equivalence class. The algorithms return a PDAG, which represents the class
by preserving the shared edge structure, while presenting edges with conflicting
orientations as undirected.

In Bayesian inference of causal networks, we are interested in Markov equiv-
alent graphs with not only the same likelihood, but also the same posterior
probability and the same score Score(G,D, S, δ) [5]. As seen from Eq. 1, Markov

Bayesian Active Learning of Signaling Networks 139

equivalent graphs have the same posterior only if they have the same prior prob-
ability π(G|δ). This last condition does not hold when the prior probabilities
encode available causal information, such that for some edges orientation in one
direction is more probable than the other. A contribution of this manuscript is
an implementation of a DAG-to-PDAG conversion algorithm that accounts for
informative prior probabilities of causal direction of edges, and outputs a PDAG
representing a class of DAGs that are Markov equivalent and have the same
posterior and score.

2.4 Active Learning for the Optimal Design of Causal Network
Inference Experiments

In the context of causal inference from experiments, active learning is the task of
including targeted interventions in the design, to optimize the inference of edge
orientation. For example, in Fig. 1 an intervention on Mek compels both edges
in the graph, and is thus more valuable than an intervention on Erk, which only
orients one edge.

Previous work used active learning to distinguish members of statistically
equivalent graphs [10,17,27,33,43]. However, these approaches work with either
a single PDAG, or a selection of highly-likely PDAGs. The approach in this
manuscript differs by working with the entire probability distribution of PDAGs,
characterizing each PDAG by its posterior probability of containing the causal
truth. Also use a Bayesian approach to represent graph uncertainty. There app-
roach uses.

Alternative Bayesian approaches to active learning of causal networks also
exist. Some of these require the experimentalists to represent their background
knowledge in terms of topological orderings [28,44], i.e. an ordering of nodes
such that the “from” node for every edge occurs earlier in the ordering of the
“to” node. Cho et al. [7] use Gaussian Bayesian networks with a normal-inverse
gamma prior. In contrast, this manuscript represents background knowledge in
terms of probabilities of edge presence and orientation. This more intuitive app-
roach simplifies the experimentalists’ work with pathways. The proposed active
learning approach also works with Gaussian continuous, discrete, and general
structural assumptions on the Bayesian network joint probability distribution.

Finally, the proposed approach is similar in spirit to other methods in the
bioinformatics literature that use historic data to inform experimental design.
E.g., Rossel and Muller [35] used a sequential Bayesian method to plan sample
size. Guan et al. [16] used available data to find optimal orderings of high-
throughput experiments. King et al. [23] constructed a “robot scientist” that
applied an active-learning strategy to functional genomics. To our knowledge,
this manuscript is the first to apply active learning to inferring the structure of
cell signaling pathways.

140 R.O. Ness et al.

3 Methods

3.1 Prior Knowledge for Causal Graph Structure Learning

Quantifying Causal Knowledge with Edge Probabilities. We propose to
use probabilities of edge presence and edge orientation as a means of modeling
signaling events. A set of signaling proteins, represented by nodes in V , has up to
|V |(|V |−1)

2 possible edges. Presence probability of an edge between nodes {u, v},
denoted P (u − v) or πuv as a shorthand, quantifies the confidence that the edge
is present in G. Orientation probability for the edge from u to v, denoted P (u →
v|u−v) or −→π uv as a shorthand, is the conditional probability of this orientation,
given that the edge is present. Since only two orientations are possible, P (u →
v|u − v) = 1 − P (u ← v|u − v). The goal of targeted interventions is to resolve
the orientations of the edges, i.e. coerce orientation probabilities towards 0 or 1.

Let δ be a set of edge probabilities δu,v, where

δu,v
def= {πuv,−→π uv} (4)

In Bayesian setting, we wish to use the edge probabilities to quantify prior causal
knowledge. Let Iuv(G) be an indicator function for the presence an edge between
u and v in G, and

−→
I uv(G) be an indicator function for the orientation of the

edge from u to v. We map edge probabilities δ to a probability distribution on
DAG structures using an edge-wise prior

π(G|δ) = c
∏

uv∈G

(
1 − πuv

)1−Iuv(G)(πuv
−→π uv)Iuv(G)

−→
I uv(G) (5)

where c is a normalizing function on the space of graphs that corrects for the
acyclicity constraint [3].

When nothing is known about the presence or orientation of the edges, we
specify the uninformative edge probabilities [40], where

πuv ≈ 1
2

+
1

2(|V | − 1)
, and −→π uv =

1
2

(6)

The intuition behind Eq. 6 is that two nodes are more likely to be linked in a
small network than in a large network. Therefore, the uninformative presence
probability approaches .5 as network size increases. The uninformative orienta-
tion probability is .5 for either direction. These uninformative edge-wise priors
correspond to the marginal probabilities of an edge in the case when there is a
uniform probability distribution on the space of graphs [40].

Upon conducting an experiment with interventions S and collecting a dataset
D, the next step is to update the DAG probability distribution with condition-
specific information in the data using Bayes rule

π(G|D,S, δ) ∝ p(D|S,G)π(G|δ) (7)

Bayesian Active Learning of Signaling Networks 141

Note that the Bayes rule is agnostic of the process that selected the interventions
in S. S can be selected by any approach, such as applying the available inhibitors,
or using the proposed active learning approach below.

The updated probability distribution π(G|D,S, δ) maps back to edge prob-
abilities using the approach in Eq. 2. Let f(.) in Eq. 2 be an indicator function
Iuv(G) for the presence, and an indicator function

−→
I uv(G) for the orientation,

of an edge between nodes u and v in a DAG. Then, the updated presence and
orientation probabilities of an edge after observing data D is defined as

πuv|D,S =
∑

G

Iuv(G)π(G|D,S, δ) (8)

−→π uv|D,S =
1

πuv

∑

G

−→
I uv(G)π(G|D,S, δ)

In other words, these are average frequencies of edge presence and orientation
over all the DAGs, weighted by the posterior probabilities of the DAGs.

Incorporating Pathway Knowledge and Historic Data. When prior infor-
mation is available, we propose to construct informative edge probabilities δu,v.
In the simplest case, a directed edge between u and v in the canonical pathway
is viewed as a hypothesis that an edge linking these nodes is also present under
the condition of interest, and is oriented from u to v. Denoting the set of edges
in the canonical pathway as K, the background knowledge δu,v is defined as in
Eq. 4 where

πuv =

{
∼ 1 if u − v ∈ K

∼ 0 otherwise
(9)

−→π uv =

{
∼ 1 if u − v is oriented u → v ∈ K |u − v ∈ K

∼ 0 if u − v is oriented u ← v ∈ K |u − v ∈ K

The notation ∼1 (probability near 1) and ∼0 (probability near 0) emphasizes
that the Bayesian approach avoids the boundary probabilities of 0 and 1.

In some cases, experimentalists may wish to use alternative specifications. For
example, in absence of canonical pathway information it may be inappropriate
to assign πuv ∼ 0 to each edge, and subjective edge probabilities may be a better
choice. For edges where no assessments can be made, we use the uninformative
edge probabilities in Eq. 6.

In addition to incorporating prior knowledge from canonical pathways, we
also seek to make use of information in historic datasets. We define historic data
D0 as previous experiments, which quantified the activity of the proteins in the
same network, under the same signaling conditions as the pending causal infer-
ence experiment, but lacking targeted interventions. We update the canonical
knowledge π(G|δ) with the condition-specific information in the historic data

π(G|D0, δ) ∝ p(D0|G)π(G|δ) (10)

142 R.O. Ness et al.

Here p(D0|G) is the likelihood that the historic data came from the graph G, and
π(G|D0, δ) is the updated distribution on graph structures, which now captures
the full state of our prior information before the interventions.

Sampling DAGS from a DAG Distribution. Similarly to Eqs. 2 and 3, the
proposed Bayesian inference on causal networks relies on sampling a set of DAGs
Ω from a distribution π(G|D,S, δ). Our implementation uses Bayesian bootstrap
sampling from a distribution of DAGs [14,21] with random graph starts [19]
and greedy search, and the posterior distributions are derived using Bayesian
Dirichlet approximation [18]. When the signal-to-noise ratio in the historic data
is high and/or the edge-wise prior is informative, the sampling concentrates on a
smaller set of most probable DAGs. When the signal-to-noise ratio is low, weight
is distributed more evenly among graphs, and the sampling must cover a larger
number of graphs with similar π(G|D,S, δ).

Representing Uncertainty in Causal Effects with PDAGs. We incorpo-
rate the informative edge orientation probabilities in δ to express the uncertainty
in edge orientation using PDAGs. We view the conversion of a DAG to a PDAG
as a the function f in Eqs. 2 and 3. Applying these equations requires that DAG
members of the same equivalence class have the same posterior probability, oth-
erwise different instances of the same PDAG would have different probabilities,
i.e. the same f would have different probabilities in Eq. 2 and scores in 3. Current
conversion algorithms are not compatible with edge-wise prior probabilities.

Algorithm 1 is a DAG-to-PDAG conversion algorithm that incorporates infor-
mative edge-wise prior probabilities. It starts with a DAG from Ω. Next, every
directed edge is converted to an undirected edge if it meets three conditions. The
first two conditions are the same as in the prior literature [5,43]. First (lines 4
and 10 in Algorithm1), reversing edge direction should not change the number
of immoral v-structures (i.e., 3-node motifs with one child and two parents, with
no edge between parents). Second (line 6 of Algorithm1), the child node of the
edge should not be targeted by an intervention in S. In this manuscript we intro-
duce a third condition (lines 8 in Algorithm1), stating that the edge should have
an uninformative prior orientation probability of .5. These conditions create an
equivalence class P and its PDAG, where all the members have the same value
for π(G|D0, δ). If the algorithm is applied to two Markov equivalent DAGs with
different causal information in their informative edge-wise priors, two different
PDAGs are returned.

3.2 Bayesian Active Learning with Causal Information Gain

Overview. The strategy for selecting optimal interventions is overviewed in
Fig. 2. The active learning algorithm takes as input a sample of DAGs from a
DAG distribution, and a set of candidate interventions. The algorithm sequen-
tially evaluates the expected causal information gain of the interventions, and
outputs a minimally-sized batch of interventions that maximizes the expected
information gain. We detail the components of the algorithm below.

Bayesian Active Learning of Signaling Networks 143

Algorithm 1. DAG to PDAG Algorithm
Inputs: A DAG G, an (optional) set of selected intervention targets S, a set of
edge probabilities δ.
1: procedure PDAG(G, S, δ)
2: for edge e in G do
3: if e is in an immoral v-structure then
4: Fix direction of e
5: if e’s child is targeted by S then
6: Fix direction of e
7: if e’s orientation probability in δ �= .5 then
8: Fix direction of e
9: for edge e in G do

10: if e is not fixed then
11: if reversing e’s direction

will not add a new v-structure
or introduce a cycle then

12: Make e undirected
13: P ← G
14: return (P)

Is the
expected loss

value statistically
significant?

Predict the
candidate

intervention that
maximizes

causal
information gain

Add candidate to
intervention set

Are
there

any more potential
 interventions?

No

Yes

Construct
graph prior from

background
knowledge

Conduct
experiment with
intervention set

Apply
causal

inference
analysis to

dataset

No

Yes

Fig. 2. Overview of the proposed method. A probability distribution of possible graph
structures is constructed from canonical pathways and historic data. Interventions are
iteratively added to the design until the expect causal information gain we can expect
from an additional intervention becomes small. We then stop adding interventions to
the design and use the newly acquired data to infer the causal network.

Defining the Causal Information Gain of an Intervention. Suppose that
the true causal DAG G were known. Let S ⊆ V denote a batch of candidate
interventions. As discussed in Sect. 2.3, a PDAG is derived directly from a DAG’s
topology and a set of interventions, and can be determined before collecting
data. Therefore, we could devise an algorithm H(G,S) that first determines a
PDAG, then counts the number of oriented edges in the PDAG, i.e. the number
of oriented edges in G that could be inferred from data with interventions S.

144 R.O. Ness et al.

Suppose that we consider an additional intervention on node v, which leads
to H(G, {S, v}) edges correctly oriented edges. We define the causal information
gain IG(G,S, v) of the intervention on v as the increase in correctly oriented
edges, i.e. IG(G,S, v) = H(G, {S, v}) − H(G,S). IG(G,S, v) is non-negative,
and can be zero if v fails to orient any edges beyond those oriented by S. Note
that an equivalent definition of information gain is the reduction in the number
or unoriented edges. This definition parallels the information theory notation of
entropy, where the information gain is viewed as entropy reduction.

Selecting Interventions that Maximize the Expected Information
Gain. Of course in practice the true causal DAG G is unknown. Therefore,
similarly to Eq. 2 we consider the expected information gain, which averages the
information gain over all possible graphs, weighted by their prior distribution
π(G|D0, δ)

EIGS,v =
∑

G

IG(G,S, v)π(G|D0, δ) (11)

Moreover, similarly to Eq. 3, we approximate the expected information gain as

EIGS,v ≈
∑

G∈Ω

IG(G,S, v)
Score(G,D0, S, v, δ)∑

G;G∈Ω Score(G,D0, S, v, δ)
(12)

where Ω denotes a sample of high scoring DAGs, and Score is a Bayesian
scoring function returning a value proportional to π(G|D0, δ). We then select
the candidate v that maximizes the approximated expected information gain.
Algorithm 2 details these steps. Note that in Bayesian decision theory, −IG is a
loss function, and we select the candidate v that minimizes the expected loss [2].

Algorithm 2. Expected Information Gain
Inputs: A set of DAGs Ω, Bayesian scoring function Score, a set of pre-selected
intervention targets S, a candidate for next intervention v, and a set of edge
probabilities δ.
1: procedure EIG(Ω, Score, S, v, δ)
2: Initialize array IG of size |Ω|
3: for i in 1:|Ω| do
4: PS ← PDAG(Gi, S, δ)
5: PS,v ← PDAG(Gi, {S, v}, δ)
6: HS ← num. of directed edges in PS

7: HS,v ← num. of directed edges in PS,v

8: IGi ← HS,v − HS

9: return WeightedMean(IG, Score)

Bayesian Active Learning of Signaling Networks 145

Algorithm 3. Active Learning
Inputs: A set of DAGs Ω, Bayesian scoring function Score, a set U of candidates
for next intervention, and a set of edge probabilities δ.
Parameter: α, stopping criterion for the information gain.
1: procedure ActiveLearning(Ω, Score, U, α, δ)
2: S ← null
3: while length(U) > 0 do
4: TopCandidate ← null
5: MaxEIG ← 0
6: for node v ∈ U do
7: EIGS,v ← EIG(Ω, Score, S, v, δ)
8: if EIGS,v > MaxEIG then
9: TopCandidate ← v

10: MaxEIG ← EIGS,v

11: if ¬ Stop(TopCandidate, Ω, α) then
12: S ← cat(S, TopCandidate)
13: U ← U[-TopCandidate]
14: else
15: return (S)

Starting Point, Iterations and Stopping Criteria. The proposed active
learning strategy is summarized in Algorithm 3. It starts with the empty set
of selected interventions S = ∅, a set of candidate interventions U , and a
set of DAGs Ω. For each intervention v ∈ U and each DAG G in Ω, the
EIG(Ω,Score, S, v) algorithm calculates PS , PS,v and IG(G,S, v), and returns
the expected information gain. The candidate with the maximum expected infor-
mation gain is added to the batch S. In the next iteration, the expected infor-
mation gain for the remaining candidates is evaluated, while accounting for the
effect of the interventions that are already in the batch.

After a certain point, additional interventions to the batch become coun-
terproductive. For example, in Fig. 1 an intervention on Mek would orient the
Mek − Erk edge. Including an additional intervention on Erk would provide no
additional information. In the case of Fig. 1 the true graph is known, and we stop
adding interventions when the information gain is 0. Since in real-life situations
the structure of the true DAG is unknown, we stop adding interventions when
the probability that at least some information gain occurs is below a parameter
α. Similarly to Eqs. 3 and 12, the probability that at least some information gain
occurs is

qS,v =
∑

G∈Ω

I{IG(G,S,v)>0}
Score(G,D0, S, v, δ)∑

G∈Ω Score(G,D0, S, v, δ)
(13)

where v is the candidate that maximizes EIG, and I{} is the indicator function.
We add v to the set of interventions if qS,v > α, and stop if qS,v ≤ α. Higher val-
ues of α will result in a smaller intervention batch. Setting probability threshold
α to ∼0 (i.e., stopping when the probability of at least some information gain is
near 0) is equivalent to stopping when expected information gain is near 0.

146 R.O. Ness et al.

When the signal-to-noise ratio in the historic data is low, there is greater
weight on graphs where the most optimal intervention candidates have no infor-
mation gain. This leads to the triggering of the stopping criteria with a smaller
batch of interventions. Thus when there is more uncertainty in the data, the pro-
cedure avoids the risk of wasteful use of interventions, instead favoring running
the experiment with a smaller batch and then relying on the new experimental
data to evaluate unused interventions.

3.3 Inference of Causal Network from Data Acquired
Post-intervention

The next step in the investigation is to apply the selected interventions, and
collect a new dataset D. The new dataset updates Eq. 7 as

π(G|S,D0,D, δ) ∝ p(D|S,G)π(G|D0, δ) (14)

The updated edge probabilities are obtained as in Eqs. 8 and 9. They balance
the canonical representation of the signaling with the condition-specific signal-
ing behavior quantified under the condition of interest, after the interventions.
A large deviation of the posterior edge probability from the prior in δ indicates
network rewiring or deregulation.

The active learning procedure is iterative in nature, in that the results of the
intervention experiment can be viewed as a new instance of historic data. They
can inform the selection of new interventions by substituting π(G|S,D0,D, δ) in
Eqs. 11 and 12, and repeating the overall procedure.

3.4 Implementation and Computational Complexity

The proposed strategy is implemented in an open-source R package bninfo, avail-
able on Github. The edge-wise prior is constructed as a data frame in R, either
manually or through an interface to the API of KEGG provided by bninfo. His-
toric data is represented as a data frame and pre-selected interventions S as an
array. The package bninfo implements the algorithms for converting a DAG and
a edge-wise to PDAG, calculating the expected gain, and selecting the optimal
batch of interventions. The Bayesian network structure learning is performed
with the existing R package bnlearn [39].

The main scalability bottleneck in the proposed strategy is the selection of
interventions in the while loop in Algorithm3. The complexity of calculating the
expected information gain for a single intervention (Algorithm2 and line 7 in
Algorithm 3) is in the order of the number of edges in the input DAG. However,
the interventions in a batch are selected sequentially (i.e., the selection of the
jth member of the batch depends on the j −1 previously selected interventions).
Therefore, the selection of j candidate interventions requires up to j! calcula-
tions of the expected gain. The running time can be reduced by parallelization
of Algorithm 2, or by limiting the number of candidate interventions. Moreover,
sampling Ω from a distribution of DAGs has well-known scalability challenges

Bayesian Active Learning of Signaling Networks 147

in Bayesian literature. In the worst case, the computational time scales expo-
nentially with the number of proteins. Bayesian bootstrap sampling can be split
among nodes on a cluster, and sped up by parallelization. For the datasets
described below, the generation of intervention batches took 70 min (17 protein
DREAM4 network with 14 candidate interventions and 500 sampled graphs)
and 20 min (11 protein T-cell network with 5 candidate interventions and 500
sampled graphs) on a 16 node cluster.

3.5 Metrics Used for Performance Evaluation

We evaluated the proposed strategy using datasets containing some notion of
“ground truth”, i.e. situations where the true structure of the causal graph is
known. We used the proposed active learning strategy to determine an optimal
intervention batch S. To evaluate the performance of S, we considered the data
D that would be experimentally acquired with the selected interventions. We
then inferred causal networks from D, and derived posterior edge probabilities
as described in Sect. 3.3. Finally, we evaluated whether S can lead to network
inference that correctly detects edges in the “ground truth” graph.

We evaluated the performance of edge detection using two metrics. The first
is the true positive rate of edge detection, i.e. the proportion of correctly detected
edges among the edges in the ground truth network [14]. Our cutoff for edge’s
detection is presence and orientation probabilities greater than uninformative
prior probabilities described in Eq. 6. The second metric is the L1 edge error,
which quantifies the overall probability of prediction error, i.e. the probability
of either discovering a false edge or missing a true edge [28,44]. Given the set
of interventions S and the ground truth network, the L1 edge detection error is
defined as

L1(G,S) =
∑

u,v

−→
I uv(G)(1 − −→π uv|D,S) (15)

+(1 − −→
I uv(G))(−→π uv|D,S)

+(1 − Iuv(G))(πuv|D,S)

where
−→
I uv(G) and Iuv(G) are as in Eq. 9.

4 Datasets

There are currently no publicly available datasets that implement active learning
approach to causal network inference. We therefore use two publicly available
datasets, adapted to provide a measure of “ground truth”.

4.1 DREAM4 Network

“Ground Truth” Network. The 17-node network in Fig. 3A was used in the
DREAM4 Predictive Signaling Network Challenge [34]. The network contains

148 R.O. Ness et al.

canonical pathways downstream of four receptors (dark grey nodes in Fig. 3A):
two inflammatory (TNFa, IL1a), one insulin (IGF-I), and one growth factor
receptor (TGFa). We use this network to evaluate the relative advantages of
active learning, and the importance of the use of prior information.

Prior Information Regarding the Network Structure. We used as the
background information the fact that TNFa, IL1a, IGF-I and TGFa are recep-
tors, i.e. proteins that receive signals from the environment, and activate down-
stream proteins. This presents causal information, in that the remaining proteins
in the pathway are downstream of the receptors.

Historic Data. We use the DREAM4 challenge as a historic dataset. The chal-
lenge provided antibody-based measurements (sandwich immunoassays with the
Luminex xMAP platform) from hepatocellular carcinoma cell lines (HepG2),
which quantified the activity levels of the signaling proteins at bulk (i.e., non-
single-cell) resolution. The dataset is comprised of samples with 5 stimulus con-
ditions, namely no stimulus, stimulus on TNFa, on IL1a, on IGF1, and on TGFa.
The dataset also includes 5 intervention conditions, namely no inhibition, inhi-
bition on ikk, on mek12, on pi3k, and on p38. In total there were 25 samples,
one for each stimulus and intervention pair.

We processed the historic dataset as follows. We imputed missing values using
a neural network model that predicted missing values of a protein given the
values of the protein’s neighbors in the ground truth network. Several proteins
from the pathway (map3k7, ras, map3k1, and mkk4) were not quantified in the
historic dataset. Approaches exist for learning Bayesian network structure with
hidden variables [6,13], but these are beyond the scope of this manuscript. So to
eliminate this artifact we applied a model that predicts a protein’s values given
the values of its parents in the model and common biochemical assumptions on
signaling dynamics [41], and used the model to predict the values for the hidden
nodes. The publicly available challenge data is normalized to the 0–1 range, we
then discretized the quantification values to binary on/off variables using .5 as
a cutoff.

Candidate Interventions. All the non-receptor nodes in the network were
considered as candidates for interventions. Due to the small number of samples
and inhibitions, it was not possible to set aside a portion of this dataset for
performance evaluation. Therefore, we fit a causal network model to the chal-
lenge data and the ground truth network, and used the model fit to generate
synthetic post-intervention datasets. The simulation mimicked the design of the
challenge data, in that it contained one biological sample for each intervention.
We then evaluated the performance of the selected interventions on these syn-
thetic datasets.

Bayesian Active Learning of Signaling Networks 149

IGF1
TGFa TNFa

IL1a

ras

pi3k

akt
mek12

ikk

map3k1

ikb

erk12
jnk12

p38

hsp27

mkk4

map3k7

proliferation

insulin
 response

inflammatory
response

growth

PIP2

PLC

PIP3

PKC

PKA

Akt

P38

JNK

Erk

Mek

Raf

Differentiation Cytokine Release

A B

Incoming signal

Signal enters
nucleus

Fig. 3. The “ground truth” networks in the experimental datasets. A: The DREAM4
Predictive Signaling Network Challenge network. Dark nodes indicate receptors. B:
Native T-cell signaling network in response to antigen. The edges in the PKC →
Raf → Mek → Erk cascade, and the edge PKA → Raf belong to the canonical MAPK
pathway. Dark nodes indicate targets of experimental interventions.

4.2 Flow Cytometry Measurements of T-Cell Signaling

“Ground Truth” Network. The network in Fig. 3B contains 11 phosphopro-
teins and phospholipids involved in the native CD4+ T-cell signaling response
to antigen, and their canonical edges. The network was used to validate causal
inference from an experimental dataset [38], and has been subsequently used as
a benchmark in multiple causal inference studies [9,11].

Prior Information Regarding the Network Structure. We used as the
background knowledge the edges in the canonical MAPK pathway. Although
CD4+ T-cell signaling has been extensively studied, we assumed that no prior
information is available regarding the remaining edges. This assumption allowed
us to compare the case of a minimally informative prior to the case of a unin-
formative prior, and focus performance evaluation on detection edges that were
not addressed in the background knowledge.

Historic Data. The experimental dataset in [38] contains single cell
fluorescence-based quantifications of 11 phosphoproteins and phospholipids in
human primary naive CD4+ T-cells. These analytes are downstream of the
receptors CD3 and CD28 that provide co-stimulatory signals required for T-
cell activation. We used as the “historic data” a portion of this dataset that
was acquired without any targeted interventions. This portion of the dataset
contained 11672 cells.

150 R.O. Ness et al.

Candidate Interventions. The dataset in [38] also contained single cell quan-
tifications, acquired after activating or inhibiting five signaling proteins (dark
nodes in Fig. 3B). These five proteins were considered as candidates for inter-
ventions in this manuscript. The post-intervention experimental datasets were
used to compare the information gain projected in our approach with the actual
information gain after the interventions.

5 Results

5.1 Informative Prior Edge Probabilities Reduced the Required
Number of Interventions in the DREAM4 Dataset

In the DREAM4 dataset, we compared (1) random ordering of interventions,
and (2) proposed active learning strategy with uninformative prior probabilities
of edge presence (Eq. 6), and (3) the same active learning strategy, but with
informative priors. The informative priors encoded the fact that the receptor
nodes have upstream positions in the network. All the receptor-originating edges
were assigned the prior orientation probability of ∼1, all receptor-terminating
edges were assigned the presence probability of ∼0, and the remaining edges
were assigned the uniformed prior presence probability in Eq. 6. All the non-
receptor nodes in the network were candidate targets for interventions. In order
to exhaust the information in the prior and historic data, the active learning
approach with both priors used the most liberal stopping criteria for growing a
batch. It only stopped adding interventions when all the additional candidates
has expected information gain of ∼0.

0 2 4 6 8 10 12

.
1
5

.
2
5

.
3
5

.
4
5

4
0

4
5

5
0

6
0

5
5

L1
 E

rr
or

TP
R

 o
f E

dg
e

D
is

co
ve

ry

interventions

A B

interventions

Selection w/ Uninformative
 Edge-wise Prior
Random Selection

Selection w/ Informative
Edge-wise Prior

0 2 4 6 8 10 12

Fig. 4. Performance of the proposed strategy on the DREAM4 dataset. Dotted line:
uninformative edge-wise priors, randomly selected interventions. Solid line with trian-
gles: uninformative edge-wise priors, interventions selected with active learning. Solid
line with circles: informative edge-wise priors, interventions selected active learning. A:
True Positive Rate (TPR) of detecting ground truth edges. B: L1 error of detecting
ground truth edges.

Bayesian Active Learning of Signaling Networks 151

Figure 4 summarizes the results. With uninformative edge-wise priors, ran-
dom selection of interventions performed similarly to the proposed active learn-
ing in both True Positive Rate of edge detection and L1 loss. Both metrics depend
on correct detection of edge presence as well as edge orientation. The contribution
to edge detection of the added samples provided by each intervention experiment
overshadowed the selection strategies prioritization of interventions that better
resolve edge orientation.

At the same time, the results demonstrate the efficiency gain in selecting
the interventions, brought by encoding the knowledge of receptor identities into
the prior. For example, while with the uninformative prior the true positive
rate of more than .35 could be achieved with on average 9 interventions, the
informative prior only required on average 6 interventions. Table 1 shows the
specific interventions that were selected at a conservative cutoff (qS,v ≤ 0.01).
The results indicate that informative edge-wise priors are important for such
bulk experiments with a small number of replicate samples. The prior knowledge
removed uncertainty in edge presence, increasing the contribution of improved
detection of edge orientation to overall performance.

Table 1. Intervention targets selected by active learning in the DREAM4 dataset. The
informative prior edge probabilities required a smaller intervention batch.

Prior Intervention targets selected by active learning

Informative (1) hsp27, (2) mek12, (3) map3k1, (4) jnk12, (5) pi3k,
(6) mkk4, (7) ikk, (8) akt, (9) p38, (10) erk12, (11) ikb

Uninformative (1) jnk12, (2) hsp27, (3) mkk4, (4) mek12, (5) pi3k,
(6) map3k1, (7) map3k7, (8) ras, (9) ikk, (10) akt,
(11) ikb, (12) p38, (13) erk12

5.2 The Ordering of T-Cell Interventions by Active Learning
Matched Their Contribution to Causal Inference

As above, for the T-cell dataset we compared (1) random ordering of interven-
tions, (2) proposed active learning strategy with uninformative prior probabili-
ties of edge presence (Eq. 6), and (3) the same active learning strategy, but with
informative priors. In the latter case we assumed the prior knowledge of the
canonical MAPK pathway, and assigned a high prior probability (∼1) to the
edges in the PKC → Raf → Mek → Erk cascade, and to the edge PKA → Raf.
The remaining potential edges were assigned the uninformative prior probability
of both presence and orientation. We then considered the five interventions in
[38] as the set of candidate interventions.

Figure 5 summarizes the results. Selection with an uninformative edge-wise
prior did not outperform random selection of interventions in terms of True
Positive Rate of detecting edges. However, it had a smaller L1 error for the
first three selected interventions. With this experiment, the intervention datasets

152 R.O. Ness et al.

served not just to resolve causality, but to improve edge detection by adding
variation in signaling activity not present is preceding datasets. As with the
DREAM4 data, this lead to performance gains due to improved edge detection
overshadowed gains owed to the selection strategy.

In contrast, active learning with the edge-wise prior encoding the MAPK
edges outperformed random selection both in terms of greater True Positive
Rate, and smaller L1 error. Table 2 shows the specific interventions that were
selected at a conservative cutoff (qS,v ≤ 0.01). For example, while with the unin-
formative prior the true positive rate of .75 could be achieved with on average 5
interventions, the informative prior only required on average 3 interventions.

The network structure provides some insight into the role of informative
edge-wise priors in improving the performance. Since the orientation probability
of an edge depends on the orientation probability of its neighbors, the edge-
wise prior reduced error by reducing uncertainty in the orientation of edges
neighboring the MAPK edges. In addition, the edge-wise prior enabled the causal
inference procedure to down-weight graphs where the MAPK edges were not
present or had the wrong orientation, increasing sensitivity. Finally, additional
causal information encoded in the prior made interventions on Mek and Akt
interventions less useful, enabling the stopping criteria to eliminate them from
the batch.

Table 2. Intervention targets selected by active learning in the T-cell dataset. The use
of an informative edge-wise prior eliminates two interventions from the batch.

Prior Intervention targets selected by active learning

Informative (1) PKA, (2) PKC, (3) PIP2

Uninformative (1) PKA, (2) PIP2, (3) PKC, (4) Akt, (5) Mek

6 Discussion

Our results showed that an active learning strategy, combined with informative
priors, is the most effective at suggesting the smallest batch of target interven-
tions for inference of causal networks. It optimizes the causal information in the
intervention experiments, while controlling the experiment time and cost.

The background information comes in the form of prior knowledge on the
presence and orientation of edges in the system available, e.g., in pathway data-
bases such as KEGG, as well as from historic datasets available, e.g. from repos-
itories such as Cytobank. The proposed strategy can be used with any level
of prior information or uncertainty. When prior information and historic data
indicate an intervention is potentially wasteful, it will tend to omit it from the
batch, electing rather to reserving it for potential use in future experiments.

The active learning strategy in this manuscript suggests interventions based
on the prior information and on the topology of the network. In practice, how-
ever, other factors can affect the utility of an intervention. For example, small

Bayesian Active Learning of Signaling Networks 153

.
5
0

.
5
5

.
6
0

0 1 2 3 4 5

4
5

6
7

L1
 E

rr
or

interventions

BA

interventions
0 1 2 3 4 5

TP
R

 o
f E

dg
e

D
is

co
ve

ry 8
9

.
6
5

.
7
0

.
7
5

Selection w/ Uninformative
 Edge-wise Prior
Random Selection

Selection w/ Informative
Edge-wise Prior

Fig. 5. Performance of the proposed strategy on the T-cell signaling dataset. Lines and
panels are as in Fig. 4.

molecule inhibitors vary both in cost and efficacy. Their inhibitory effects may
only occur with some probability, and may also have off-target effects. The pro-
posed framework can be easily extended to incorporate this type of “soft inter-
vention” [9], as well as cost considerations into the expected information gain.
Alternatively, it can produce a batch of interventions with a fixed pre-specified
number of targets, while selecting the targets with the most expected causal
information gain.

The proposed methodology relies on signaling network modeling by means
of direct acyclic graphs. In practice, however, cell signaling often displays feed-
back loops. This can be addressed by refining the biological interpretation of the
graph structures. In particular, cycles in signaling often involve regulatory feed-
back loops that involve transcription. In this case, an activation of the signaling
pathways causes transcription, which then results in the translation of new sig-
naling proteins which then change the initial signaling pathway. Since the time
scale of signaling is in seconds and minutes, and the time scale of transcription
is in minutes and hours, collecting the data at an appropriate time point can
help resolve the confounding between the initial causal effect of the signaling,
and the feedback.

This work addressed both the inference of causal networks from bulk experi-
ments and single cell experiments. Inferring an edges orientation depends of first
detecting its presence, and since many edges between the proteins can poten-
tially exist, bulk experiments often lack replicates to confidently detect the edges.
Therefore, in bulk experiments it is often useful to add interventions not only to
improve the detection of edge orientation, but also to improve the detection of
edge presence through increased sample size.

In contrast, single cell experiments characterize protein signaling activity
in thousands to millions of individual cells, and increase our confidence in the
inferred edge. If the historic data was collected under a minimal number of
conditions, intervention data may resolve both edge orientation and presence by
virtue of adding variation in signaling activity. Moreover, single-cell experiments
do not eliminate the need for true biological replication. The proposed approach

154 R.O. Ness et al.

can be extended to population level inference by modeling subjects as additional
nodes in the network [37].

Overall, we believe that the proposed strategy is an important step towards
an informed experimental design for inference of causal networks, and advocate
its practical use.

Acknowledgements. We thank M. Scutari for guidance in using the R package
bnlearn. This work was supported in part by the NSF CAREER award DBI-1054826,
and by the Sy and Laurie Sternberg award to OV.

References

1. Bandura, D.R., Baranov, V.I., Ornatsky, O.I., Antonov, A., Kinach, R., Lou, X.,
Pavlov, S., Vorobiev, S., Dick, J.E., Tanner, S.D.: Mass cytometry: technique for
real time single cell multitarget immunoassay based on inductively coupled plasma
time-of-flight mass spectrometry. Anal. Chem. 81(16), 6813–6822 (2009)

2. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer
Science & Business Media, New York (2013)

3. Castelo, R., Siebes, A.: Priors on network structures. Biasing the search for
Bayesian networks. Int. J. Approx. Reason. 24(1), 39–57 (2000)

4. Chen, T.J., Kotecha, N.: Cytobank: providing an analytics platform for
community cytometry data analysis and collaboration. In: Fienberg, H.G.,
Nolan, G.P. (eds.) High-Dimensional Single Cell Analysis. Current Topics in Micro-
biology and Immunology, vol. 377, pp. 127–157. Springer, Heidelberg (2014). doi:10.
1007/82 2014 364

5. Chickering, D.M.: A transformational characterization of equivalent Bayesian net-
work structures. In: Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pp. 87–98. Morgan Kaufmann Publishers Inc. (1995)

6. Chickering, D.M., Heckerman, D.: Efficient approximations for the marginal likeli-
hood of Bayesian networks with hidden variables. Mach. Learn. 29(2–3), 181–212
(1997)

7. Cho, H., Berger, B., Peng, J.: Reconstructing causal biological networks through
active learning. PloS ONE 11(3), e0150611 (2016)

8. Cooper, G.F., Yoo, C.: Causal discovery from a mixture of experimental and obser-
vational data. In: Proceedings of the Fifteenth Conference on Uncertainty in Arti-
ficial Intelligence, pp. 116–125. Morgan Kaufmann Publishers Inc. (1999)

9. Eaton, D., Murphy, K.P.: Exact Bayesian structure learning from uncertain inter-
ventions. In: International Conference on Artificial Intelligence and Statistics, pp.
107–114 (2007)

10. Eberhardt, F., Glymour, C., Scheines, R.: On the number of experiments sufficient
and in the worst case necessary to identify all causal relations among N variables
(2012). arXiv preprint: arXiv:1207.1389

11. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with
the graphical LASSO. Biostatistics 9(3), 432–441 (2008)

12. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Sci-
ence 303(5659), 799–805 (2004)

13. Friedman, N., et al.: Learning belief networks in the presence of missing values and
hidden variables. ICML 97, 125–133 (1997)

http://dx.doi.org/10.1007/82_2014_364
http://dx.doi.org/10.1007/82_2014_364
http://arxiv.org/abs/1207.1389

Bayesian Active Learning of Signaling Networks 155

14. Friedman, N., Goldszmidt, M., Wyner, A.: Data analysis with Bayesian networks:
a bootstrap approach. In: Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, pp. 196–205. Morgan Kaufmann Publishers Inc. (1999)

15. Friedman, N., Koller, D.: Being Bayesian about network structure. A Bayesian
approach to structure discovery in Bayesian networks. Mach. Learn. 50(1–2), 95–
125 (2003)

16. Guan, Y., Dunham, M., Caudy, A., Troyanskaya, O.: Systematic planning of
genome-scale experiments in poorly studied species. PLoS Comput. Biol. 6(3),
e1000698 (2010)

17. He, Y.-B., Geng, Z.: Active learning of causal networks with intervention experi-
ments and optimal designs. J. Mach. Learn. Res. 9(11), 2523–2547 (2008)

18. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the
combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

19. Ide, J.S., Cozman, F.G.: Random generation of Bayesian networks. In: Bitten-
court, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 366–376.
Springer, Heidelberg (2002). doi:10.1007/3-540-36127-8 35

20. Ideker, T., Krogan, N.J.: Differential network biology. Mol. Syst. Biol. 8(1), 565
(2012)

21. Imoto, S., Kim, S.Y., Shimodaira, H., Aburatani, S., Tashiro, K., Kuhara, S.,
Miyano, S.: Bootstrap analysis of gene networks based on Bayesian networks and
nonparametric regression. Genome Inform. 13, 369–370 (2002)

22. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: Kegg as a
reference resource for gene and protein annotation. Nucleic Acids Res. 44(D1),
D457–D462 (2016)

23. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H.,
Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis genera-
tion and experimentation by a robot scientist. Nature 427(6971), 247–252 (2004)

24. Koller, D., Friedman, N., Models, P.G.: Principles and Techniques. MIT Press,
Cambridge (2009)

25. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. CRC Press, Boca
Raton (2010)

26. Margaritis, D.: Learning Bayesian network model structure from data. Ph.D. thesis,
U.S. Army (2003)

27. Meganck, S., Leray, P., Manderick, B.: Learning causal Bayesian networks from
observations and experiments: a decision theoretic approach. In: Torra, V.,
Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds.) MDAI 2006. LNCS (LNAI),
vol. 3885, pp. 58–69. Springer, Heidelberg (2006). doi:10.1007/11681960 8

28. Murphy, K.P.: Active learning of causal Bayes net structure (2001)
29. Ness, R.O., Sachs, K., Vitek, O.: From correlation to causality: statistical

approaches to learning regulatory relationships in large-scale biomolecular investi-
gations. J. Proteome Res. 15, 683–690 (2016)

30. Pawson, T., Warner, N.: Oncogenic re-wiring of cellular signaling pathways. Onco-
gene 26(9), 1268–1275 (2007)

31. Pearl, J.: Causality: Models, Reasoning and Inference, vol. 29. Cambridge Univer-
sity Press, Cambridge (2000)

32. Perez, O.D., Nolan, G.P.: Simultaneous measurement of multiple active kinase
states using polychromatic flow cytometry. Nat. Biotechnol. 20(2), 155–162 (2002)

33. Pournara, I., Wernisch, L.: Reconstruction of gene networks using Bayesian learn-
ing and manipulation experiments. Bioinformatics 20(17), 2934–2942 (2004)

http://dx.doi.org/10.1007/3-540-36127-8_35
http://dx.doi.org/10.1007/11681960_8

156 R.O. Ness et al.

34. Prill, R.J., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Stolovitzky, G.:
Crowdsourcing network inference: the DREAM predictive signaling network chal-
lenge. Sci. Signal. 4(189), mr7 (2011)

35. Rossell, D., Müller, P.: Sequential stopping for high-throughput experiments. Bio-
statistics 14(1), 75–86 (2013)

36. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial Intel-
ligence: A Modern Approach, vol. 2. Prentice Hall, Upper Saddle River (2003)

37. Sachs, K., Gentles, A.J., Youland, R., Itani, S., Irish, J., Nolan, G.P.,
Plevritis, S.K.: Characterization of patient specific signaling via augmentation of
Bayesian networks with disease and patient state nodes. In: 2009 Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society, pp.
6624–6627. IEEE (2009)

38. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-
signaling networks derived from multiparameter single-cell data. Sci. (N.Y., NY)
308(5721), 523–529 (2005)

39. Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat.
Softw. 35(3), 1–22 (2010)

40. Scutari, M.: On the prior and posterior distributions used in graphical modelling.
Bayesian Anal. 8(3), 505–532 (2013)

41. Terfve, C., Cokelaer, T., Henriques, D., MacNamara, A., Goncalves, E.,
Morris, M.K., van Iersel, M., Lauffenburger, D.A., Saez-Rodriguez, J.: CellNOptR:
a flexible toolkit to train protein signaling networks to data using multiple logic
formalisms. BMC Syst. Biol. 6(1), 1 (2012)

42. Terfve, C., Saez-Rodriguez, J.: Modeling signaling networks using high-throughput
phospho-proteomics. In: Goryanin, I., Goryachev, A. (eds.) Advances in Systems
Biology. Advances in Experimental Medicine and Biology, vol. 736, pp. 19–57.
Springer, New York (2012). doi:10.1007/978-1-4419-7210-1 2

43. Tian, J., Pearl, J.: Causal discovery from changes. In: Proceedings of the Seven-
teenth Conference on Uncertainty in Artificial Intelligence, pp. 512–521. Morgan
Kaufmann Publishers Inc. (2001)

44. Tong, S., Koller, D.: Active learning for structure in Bayesian networks. In: Inter-
national Joint Conference on Artificial Intelligence, vol. 17, pp. 863–869. Lawrence
Erlbaum Associates Ltd. (2001)

45. Werhli, A.V., Husmeier, D.: Reconstructing gene regulatory networks with
Bayesian networks by combining expression data with multiple sources of prior
knowledge. Stat. Appl. Genet. Mol. Biol. 6(1), 15 (2007)

http://dx.doi.org/10.1007/978-1-4419-7210-1_2

BBK∗ (Branch and Bound over K∗):
A Provable and Efficient Ensemble-Based

Algorithm to Optimize Stability and Binding
Affinity over Large Sequence Spaces

Adegoke A. Ojewole1,3, Jonathan D. Jou1, Vance G. Fowler4,
and Bruce R. Donald1,2(B)

1 Department of Computer Science, Duke University, Durham, NC, USA
brd+recomb17@cs.duke.edu

2 Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
3 Computational Biology and Bioinformatics Program, Duke University,

Durham, NC, USA
4 Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA

Abstract. Protein design algorithms that compute binding affinity
search for sequences with an energetically favorable free energy of bind-
ing. Recent work shows that the following design principles improve the
biological accuracy of protein design: ensemble-based design and continu-
ous conformational flexibility. Ensemble-based algorithms capture a mea-
sure of entropic contributions to binding affinity, Ka. Designs using back-
bone flexibility and continuous side-chain flexibility better model confor-
mational flexibility. A third design principle, provable guarantees of accu-
racy, ensures that an algorithm computes the best sequences defined by
the input model (i.e. input structures, energy function, and allowed pro-
tein flexibility). However, previous provable methods that model ensem-
bles and continuous flexibility are single-sequence algorithms, which are
very costly: linear in the number of sequences and thus exponential in
the number of mutable residues. To address these computational chal-
lenges, we introduce a new protein design algorithm, BBK∗, that retains
all aforementioned design principles yet provably and efficiently com-
putes the tightest-binding sequences. A key innovation of BBK∗ is the
multi-sequence (MS) bound: BBK∗ efficiently computes a single provable
upper bound to approximate Ka for a combinatorial number of sequences,
and entirely avoids single-sequence computation for all provably subop-
timal sequences. Thus, to our knowledge, BBK∗ is the first provable,
ensemble-based Ka algorithm to run in time sublinear in the number of
sequences. Computational experiments on 204 protein design problems
show that BBK∗ finds the tightest binding sequences while approximat-
ing Ka for up to 105-fold fewer sequences than exhaustive enumeration.
Furthermore, for 51 protein-ligand design problems, BBK∗ provably
approximates Ka up to 1982-fold faster than the previous state-of-the-
art iMinDEE/A∗/K∗ algorithm. Therefore, BBK∗ not only accelerates
protein designs that are possible with previous provable algorithms, but
also efficiently performs designs that are too large for previous methods.

A.A. Ojewole and J.D. Jou contributed equally to this work.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 157–172, 2017.
DOI: 10.1007/978-3-319-56970-3 10

158 A.A. Ojewole et al.

1 Introduction

Protein design is the prediction of protein sequences with desired biochemi-
cal functions, which often involve binding to a target ligand. Computational
protein design casts functional design into a structural optimization problem
whose goal is to find amino acid sequences that fold into specified three-
dimensional structures. Protein design algorithms search a space defined by a
biophysical input model, which defines the sequence and structural search space
(i.e. the input structure, allowed amino acid mutations, and allowed protein
flexibility); the optimization objective (e.g. design for binding affinity); and
the energy function [1]. Protein design algorithms [5,9] have successfully pre-
dicted protein sequences that fold and bind desired targets in vitro and in vivo.
For example, these algorithms have been used, with experimental validation,
to predict drug resistance [7,37,41] and to design enzymes [3,13,32,49], new
drugs [19], inhibitors of protein-protein interactions [15,42], epitope-specific anti-
body probes [12], and even neutralizing antibodies [17,45].

Computational methods can potentially search a large number of sequences
to predict the proteins that bind most tightly to a target ligand in less time
and with fewer resources than in vitro methods such as phage display [2,38].
However, four computational challenges have prevented protein design algo-
rithms from realizing this potential. First, for each binding interface, an expo-
nentially large number of conformations in each binding partner’s ensemble
must be pruned or considered to accurately predict binding affinity [5,15,18,32].
Second, for each sequence, finding the lowest energy conformations that most
influence binding affinity is NP-hard [26,39,40,55,56], making algorithms that
guarantee optimality expensive for larger designs. Third, mutating a protein
sequence induces conformational changes in the protein structure. Since such
conformational changes occur over many continuous degrees of freedom, algo-
rithms that model continuous flexibility must search over a large, continuous
conformation space. Fourth, the number of protein sequences (i.e. the sequence
space) grows exponentially with the number of simultaneously mutable residues
in the design. Therefore, previous algorithms either focus on accurately model-
ing smaller designs or attempt larger designs by making simplifications that (a)
ignore the ensemble nature of proteins, (b) disregard continuous conformational
flexibility, or (c) return heuristic solutions with no guarantees. A discussion of
these simplifications and their ramifications for protein design follows; see also
Supplementary Information [36] (SI) Sect. 2.

Global Minimum Energy Conformation (GMEC)-based algorithms [4,10,20,
43,53] assume that the lowest energy conformation accurately predicts binding
affinity. However, GMEC-based designs cannot accurately model entropic change
due to binding [6] and can disproportionately favor sequences with energetically
favorable GMECs over sequences with tight binding affinity [3,15,32,42,46,47].
Many protein design algorithms [29,48,50,51,53] rely on a simplified, discrete
model of side-chain flexibility. However, discrete rotamers model a small subset of
protein energetics, which are sensitive to small atomic movements not permitted
by the discrete model. To overcome this limitation, researchers have developed

BBK∗ (Branch and Bound over K∗) 159

provable algorithms [10,15,21,22,42,43] that incorporate continuous side-chain
flexibility [10,15]. Another important aspect of design algorithms is the quality
of the computed results. Whereas GMEC-based design is NP-hard [26,40,55,56],
computation of thermodynamic ensembles and associated partition functions is
#P-hard [35,52,53]. Provable protein design algorithms either return the opti-
mal sequences or conformations [4,10,23,28,43,48,50,51,53] with respect to the
input model, or return provably good approximate solutions [15,21,22,32,42].
Non-provable algorithms such as Metropolis Monte Carlo methods [27,29,30]
instead use stochastic methods to rapidly sample the space described by the
input model. These algorithms return solutions without any guarantees. Thus,
ensemble-based design, a realistic model of structural flexibility, and provable
optimality of the computed sequences with respect to the input model improve
the predictive power of protein design algorithms. However, each of these design
principles also increases the cost of protein design (as a function of the number
of sequences).

Single-sequence algorithms, which explicitly evaluate each possible sequence,
are powerful and versatile. Molecular dynamics [31,57], for instance, is fre-
quently applied to design for binding affinity. The approach models ensembles
and continuous flexibility. Provable algorithms have also been developed to model
these two phenomena. The K∗ algorithm [15,32,42] in osprey [10,11,13–15,20–
23,25,32,42,43] uses a combination of dead-end elimination pruning [10,15] and
A∗ [24,28,44] gap-free conformation enumeration to provably and efficiently
approximate Ka. K∗ and all previous provable ensemble-based algorithms that
model continuous side-chain flexibility [21,22] are single-sequence algorithms.
The empirical and asymptotic runtime complexity of single-sequence algorithms
is linear in the number of possible sequences, and therefore exponential in the
number of mutable residues. Thus, designs with many mutable residues rapidly
become intractable when using single-sequence algorithms. The comets algo-
rithm [20] in osprey is the only provable multi-state design algorithm that is
more efficient than single-sequence algorithms. However, its binding predictions
are GMEC-based rather than ensemble-based. Additional background and ref-
erences are located in SI [36], Sect. 1.

To efficiently search large sequence spaces while retaining all the benefits of
provable guarantees, ensemble-based design, and continuous side-chain flexibil-
ity, we present a new, provable algorithm: Branch and Bound over K∗ (BBK∗).
The key innovation of BBK∗ is the multi-sequence (MS) bound: BBK∗ effi-
ciently computes upper and lower bounds on the binding affinities of partial
sequences, which are shared by a combinatorial number of full sequences. By
avoiding costly single-sequence computation, BBK∗ runs in time sublinear in the
number of sequences. To our knowledge, BBK∗ is the first provable, ensemble-
based algorithm to do so. BBK∗ not only avoids explicitly computing all possible
sequences, but also provably and efficiently enumerates sequences in a gap-free
decreasing order of binding affinity. Therefore, BBK∗ provides a vast perfor-
mance improvement over the previous state-of-the-art, by not only accelerating
protein designs that were possible with previous provable algorithms, but also

160 A.A. Ojewole et al.

efficiently handling large designs that previous algorithms could not compute in
a reasonable amount of time.

By presenting BBK∗, our paper makes the following contributions:

1. A novel, ensemble-based algorithm that provably computes the same results
as the previous state of the art (exhaustive search over sequences) but is
empirically combinatorially faster, returns a gap-free list of sequences in
decreasing order of binding affinity, and runs in time sublinear in the number
of sequences.

2. Proofs of correctness for multi-sequence bounds, a key innovation in BBK∗.
3. A new two-pass bound that more efficiently computes a provable

ε-approximation to the desired partition functions.
4. 255 protein designs showing that BBK∗ approximates binding affinity for full

sequences up to 1982-fold faster than the best previous algorithm and that
BBK∗ computes the best binding sequences in a large sequence space up to
105-fold more efficiently than exhaustive search.

5. Support for both continuous side-chain and backbone flexibility, demonstrat-
ing the ability of BBK∗ to handle multiple modes of protein flexibility in
addition to large conformation and sequence spaces.

6. An implementation of BBK∗ in our laboratory’s open-source osprey [10,
11,13–15,20–23,25,32,42,43] protein design software package, available for
download as free software.

2 Computing the Partition Function

To successfully design for improved binding affinity Ka, design algorithms must
consider the energy of more than just the GMEC. In particular, all algorithms
that design for improved Ka optimize the ratio of partition function Z for the
bound and unbound states of the protein and ligand (Eq. 2). Protein design can
thus be cast as an optimization problem [5]. For an n-residue protein design
problem with at most a amino acids per mutable residue, let P , L, and PL
denote the unbound protein, unbound ligand, and bound protein-ligand complex,
respectively. For each sequence s, let Q(s) be the set of discrete rigid rotamer
conformations defined by the allowed amino acids for each mutable residue of s.
For a rigid rotamer conformation c, let E

X
be a pairwise energy function with

respect to input structure X, which may be one of P , L, or PL. In particular,
we will consider the case of design with continuous rotamers [10,15]. We define
E

X
(c) to be the energy of c for structure X after energy-minimizing the side-

chains of mutable residues.

2.1 K∗

We define the Boltzmann-weighted partition function Z
X

(s) as:

Z
X

(s) =
∑

c∈Q(s)

exp(−E
X

(c)/RT). (1)

BBK∗ (Branch and Bound over K∗) 161

We define the K∗ score, a partition function ratio that approximates binding
affinity Ka, as:

K∗(s) =
Z

PL
(s)

Z
P
(s)Z

L
(s)

. (2)

As stated in Sect. 1, the K∗ approximation and, by extension, the full par-
tition function, are #P-hard to compute [35,52,53]. Therefore, researchers have
not only developed heuristic algorithms that rapidly compute loose partition
function bounds, but also developed efficient, provable algorithms that com-
pute ε-approximations to the partition function. Probabilistic algorithms bound
the partition function either provably [54] or non-provably [8]. An efficient ε-
approximation to Z

X
(s) is computed in [15,32,42]. However, these methods are

designed to compute partition functions for single sequences. For an n-residue
design with at most t possible amino acids at each residue and q rotamers per
amino acid, provable single-sequence methods must compute or bound the par-
tition functions of all tn sequences, each with qn conformations. Thus, previ-
ous single-sequence algorithms for protein design for binding affinity take time
exponential in n (O(tn)) when computing the sequence with the best predicted
binding affinity.

Therefore, to provably find the best binding sequences, new, efficient prov-
able algorithms are needed to search over an exponentially large sequence space,
in which each sequence represents an exponentially large conformation space.
BBK∗ addresses this need. BBK∗ compares partial sequences (for which some
mutable residues have not been assigned an amino acid identity) without com-
puting the partition functions for all full sequences (which assign a specific amino
acid to each mutable residue). BBK∗ computes bounds on the free energies of
partial sequences, and avoids enumerating conformations from sequences with
poor binding affinity, by pruning sequences during search. As we will describe
in Sect. 3, pruning these sequences circumvents prohibitive computational costs
required to compute many single-sequence K∗ scores.

3 A∗ Search over Sequences, with Multi-sequence (MS)
Bounds

It may at first seem counter-intuitive to compute the sequence with optimal bind-
ing affinity, along with its predicted K∗ score, without explicitly computing the
K∗ scores of all possible sequences. Indeed, all previous ensemble-based provable
methods, as well as many heuristic methods, are single-sequence methods: they
must individually evaluate and compare each sequence to provably return the
optimal sequence. In contrast, BBK∗ bounds the K∗ ratios of a combinatorial
number of sequences efficiently and can prune these sequences without comput-
ing any single-sequence bounds. The key to this improvement is the observation
that a partial sequence s′ with poor predicted binding affinity adversely affects
the K∗ score of the combinatorial set of sequences that contain s′. That is, the
best possible K∗ score consistent with s′ limits the K∗ score of all sequences

162 A.A. Ojewole et al.

Fig. 1. A toy protein design problem in which conformational ensembles (A)
and optimal mutations (B) must be computed at 3 residues. Residues of the
fibronectin F1 module (Fn, blue ribbon), and of a fragment of S. aureus fibronectin
binding protein A (FNBPA-5, green ribbon) are shown (PDB id: 2RL0). Side-chain
conformations, labeled with amino acid identity, are also shown per residue. (A) Pre-
vious provable methods require a fully defined sequence to compute a single-sequence
(SS) ε-approximation bound on binding affinity (i.e. a K∗ score, Eq. 2). (B) A key
innovation in this paper is the multi-sequence (MS) bound for binding affin-
ity in protein design. An MS bound is a provable bound on the binding affinity of
a partial sequence. Unassigned residues, whose amino acid identities are not defined by
the partial sequence, adopt side-chain conformations from multiple amino acids, shown
as the blue, purple, pink, and light blue ensemble. Thus, an MS bound is a provable
upper bound on the binding affinity of all sequences containing that partial sequence,
and is obtained without computing any SS bounds. The Fn:FNBPA-5 design problem
is described in Sect. 4.3.

consistent with s′. Henceforth, we will refer to a bound on the binding affinity
for a sequence as a bound on the sequence. To compute a bound on all sequences
consistent with s′, BBK∗ computes the partition function for an ensemble that
contains conformations from multiple sequences. Figure 1 illustrates the differ-
ence between single-sequence and multi-sequence ensembles. The K∗ ratio of a
multi-sequence ensemble is a provable upper bound on the best possible K∗ ratio
of all sequences that contain s′. This multi-sequence bound (MS bound) is not
only cheaper to compute, but it also allows BBK∗ to compare a combinatorial
number of sequences without computing any single-sequence bounds. By bound-
ing every possible sequence consistent with a partial sequence, BBK∗ can prov-
ably eliminate those sequences, and prune a combinatorial number sequences
without performing any single-sequence computation. Figure 2 illustrates the
combinatorial speedup provided by MS bound pruning, whereby pruning the
partial sequence obviates computation of all single sequences containing the par-
tial sequence. Details of the algorithm, proofs of its space and time complexity,
and comparison to iMinDEE/A∗/K∗ are provided in Appendix A of the SI [36].
An additional enhancement, pruning by fold stability compared to wild type, is
described in Appendix A.7 of the SI [36].

The improvement of BBK∗ over single-sequence methods can be measured
using cost per sequence. We show the improvement is threefold: BBK∗ (a)
reduces the cost to compute a bound on a combinatorial number of sequences,

BBK∗ (Branch and Bound over K∗) 163

(b) eliminates all computational costs once a sequence is pruned, and (c) when
it must compute a bound for a single sequence, computes a bound that is in
many cases cheaper than the bounds computed by previous single-sequence
algorithms. To guarantee that the first sequence returned is optimal, an algo-
rithm must either compute or bound the partition function for all possible
sequences. Previous provable algorithms compute a provable single-sequence
bound of the partition function, called an ε-approximation (SS-ε bound), for
each sequence [15,32,42]. These SS-ε bounds are guaranteed to be within a
user-specified ε of the K∗ score for a sequence. BBK∗ also provably returns
the optimal sequences, but does so without enumerating all possible sequences.
Instead of SS-ε bounds, BBK∗ computes an MS bound, which is an upper bound
on the best possible K∗ score of multiple sequences that share a common partial
sequence.

We will now compare the cost of bounding sequences with single-sequence
algorithms to the cost with BBK∗. Consider an n-residue protein design: we are
given an initial partial sequence s′, which fixes amino acid identity (but not the
rotamer) for a residues, and u residues do not have a fixed amino acid identity
(a+u = n). If the design problem allows at most t amino acids per unassigned (u)
residue and at most q rotamers for any amino acid, there are tu sequences con-
taining s′, and qa partial conformations defined by s′. A complete sequence would
still have qn conformations, and computing the energy of a conformation takes
O(n2) time using a pairwise energy function. Thus, a single-sequence algorithm
would spend O(tuqnn2) worst-case time individually computing the K∗ scores
of all tu sequences. In contrast, the cost of an MS bound is O(qa(a2 + q2t2un)),
which includes O(qaa2) time to compute the pairwise energy of the a assigned
residues of all qa partial conformations, and O(qa+2t2un) time to compute a
bound on the energy of each partial conformation. By reducing two exponentials
from tu to t2, and from qn to qa+2, BBK∗ computes an MS bound in time sub-
linear in the number (tu) of sequences. The cost to compute a single, provable
MS bound (that holds for all tu sequences) is therefore significantly smaller than
the cost to compute tu single-sequence bounds. Furthermore, these MS bounds
are used to prune partial sequences containing combinations of mutations: for
a pruned partial sequence s′, all tu sequences containing s′ are provably elimi-
nated from search without any additional computation. That is, BBK∗ provably,
combinatorially prunes the search space. Finally, MS bounds are in many cases
inexpensive to compute when compared to the O(qnn2) complexity of comput-
ing an SS-ε bound for a single-sequence. Since there are qa partial conformation
energy bounds to compute, the cost of an MS bound increases exponentially as
a increases. Obviously, when a � n, qa+2 � qn. This is very advantageous for
A∗ search, because a is initially very small: when BBK∗ begins search, a = 1,
and increases one at a time. Furthermore, a + u = n, and a never exceeds n.
Thus in many cases a � n, and MS bound costs of O(qa+2t2un) are significantly
smaller than the SS-ε costs of O(qnn2) for a single sequence. Use of MS bounds
enables BBK∗ to efficiently bound and prune sequences that would otherwise
require O(qnn2) time each to evaluate.

164 A.A. Ojewole et al.

Fig. 2. BBK ∗ pruning efficiently explores the sequence space. An example
design of residues 192 and 194 of the fourth fibronectin F1 module, and residues 649 and
651 of a fragment S. aureus fibronectin binding protein A 5 is shown (Fig. 1, PDB Id:
2RL0). As BBK∗ searches the sequence space (tree above) its multi-sequence bounds
provably prune sub-trees from the sequence space. All sequences containing R194/I649
are pruned (red crosses) after computing exactly one multi-sequence bound: the bound
on the partial sequence R194/I649, which is an upper bound for all sequences contain-
ing R194/I649. Sequences containing M192/C194/I649 are pruned (red crosses) after
computing only the multi-sequence bound for the partial sequence M192/C194/I649.
All pruned sequences and partial sequences, shown as empty gray circles, have no
additional computation performed. Even though single-sequence bounds are initiated
for both I192/C194/I649/E651 and I192/C194/I649/D651, the latter is pruned early,
after computing a mere δ-approximation bound (orange leaf node), which is cheaper,
and not as tight as an ε-approximate bound. A provable ε-approximation bound (green
leaf node) is computed for only the optimal sequence, I192/C194/I649/E651. In con-
trast, single-sequence methods compute separate ε-approximate bounds (which are
expensive) for all 8 possible sequences, shown as leaf nodes in the tree.

The algorithmic advances that make MS bounds possible are new bounds
on partial and full sequences. We denote the design states unbound protein,
unbound ligand, and bound complex as P , L, and PL respectively. The following
definitions of these new bounds are sufficient for the theorems provided in the
main paper – the precise definitions involve some subtleties, which are deferred
to Appendix A of the SI [36]. Given a sequence s and a state X ∈ {P,L, PL},
the function L

X
(s) is a provable lower bound of the partition function for s in

state X, and U
X

(s) is a provable upper bound on the partition function for s in
state X. For a partial sequence s′, L

X
(s′) and U

X
(s′) are, respectively, partition

function lower and upper bounds for the combinatorial number of sequences
containing s′. These lower- and upper-bounding functions are combined into an
upper-bounding function K+

a (s′) on the partition function ratio of s′.

Definition 1. Let s be a sequence. K+
a (s) is defined as follows:

K+
a (s) =

U
PL

(s)
L

P
(s)L

L
(s)

. (3)

BBK∗ (Branch and Bound over K∗) 165

The following theorem establishes the relationship between the partition function
ratio of a partial sequence and the partition function ratio of any sequence
containing the partial sequence:

Theorem 1. Let s be a partial or full sequence. For any partial sequence s′ ⊂ s,
K+

a (s′) bounds K+
a (s) from above:

K+
a (s′) ≥ K+

a (s) ≥ Z
PL

(s)
Z

P
(s)Z

L
(s)

= K∗(s). (4)

A proof is provided in Appendix A.3 of the SI [36]. Theorem 1 shows that the
bounds used by BBK∗ are admissible. That is, they never underestimate the
K∗ ratio of any partial sequence. Thus, BBK∗ uses K+

a (s′) as the optimistic
bounding function for A∗ search. Previously, A∗ search has been used to provably
enumerate conformations within some energy window Ew of the GMEC [28] and
to provably approximate the partition function of single sequences [5,15,32,42].
Since Eq. (4) defines an admissible bound over sequences, all of the provable guar-
antees of A∗ apply to BBK∗. With these guarantees, BBK∗ provably searches
over sequences rather than conformations, and is guaranteed to return a gap-free
list of sequences in order of decreasing binding affinity.

3.1 Algorithm Overview

BBK∗ bounds all possible sequences either with the MS bounds described in
Sect. 3, or by computing a single-sequence bound as described in [13,32,42]. In
brief, to bound a single sequence, BBK∗ computes a gap-free list of conforma-
tions whose statistical mechanical energies (Eq. 1) are used to bound the K∗

ratio. The algorithm reports an error bound δ such that the computed bound is
guaranteed to be no more than a (1 + δ) factor greater than the true K∗ ratio.
We will refer to these single-sequence, δ-approximate bounds [15,16] as SS-δ
bounds. As the gap-free list of conformations used for an SS-δ bound grows in
size, the computed single-sequence bound becomes tighter (δ decreases). Eventu-
ally, δ ≤ ε, and the single-sequence bound becomes a provable ε-approximation,
which we will refer to as an SS-ε bound. We will refer to an SS-δ bound con-
structed this way as a running bound, which BBK∗ incrementally tightens as it
enumerates additional conformations [15].

BBK∗ maintains a max heap whose node values correspond to either full
or partial sequences and whose node keys are an upper bound on all K∗ scores
(Eq. 2) in the sequence space represented by the node. The heap is initialized with
a node representing the entire sequence space. BBK∗ then repeatedly removes
the max node x of the queue, and performs one the following operations:
1. Branch. If x contains a partial sequence s′, then s′ is expanded. Expansion

creates t new child nodes by selecting an unassigned residue r in s′, and
creating a new child node for each allowed amino acid a at r. Each child node
contains s′ plus the additional mutation of a assigned at r. These nodes are
bounded with MS bounds or SS-δ bounds, and reinserted into the heap.

166 A.A. Ojewole et al.

2. Update. If x contains a complete sequence s, whose bound is an SS-δ bound,
then BBK∗ enumerates m additional conformations (m = 8 in our study),
tightening the SS-δ bound. x is reinserted into the heap, with the updated
SS-δ bound as its key. Computing this tighter SS-δ bound is important for
pruning sequences, as shown by our computational experiments in Sect. 4.2.

3. Return. If node x contains a full sequence, whose bound is an SS-ε bound,
then the sequence in x has the best K∗ score of all unenumerated sequences
(as with A∗, all better sequences are guaranteed to have already been enu-
merated). The sequence of x is returned.
BBK∗ terminates when it has enumerated the top k sequences (by SS-ε

bound), where k is a user-specified number. A detailed description of the algo-
rithm is provided in Appendix A.8 of the SI [36].

4 Computational Experiments

We implemented BBK∗ in our laboratory’s open source osprey [11] protein
design package and compared our algorithm to the previous state-of-the-art
single-sequence iMinDEE/A∗/K∗ algorithm [15,32,42]. We computed the five
best binding sequences using both BBK∗ and iMinDEE/A∗/K∗ for 204 differ-
ent protein design problems from 51 different protein-ligand complexes. For each
protein-ligand interface, we created four design problems spanning the wild-type
sequence and all sets of single, double, triple, and quadruple mutants, respec-
tively. In each design problem, we modeled either 8 or 9 residues at the protein-
ligand interface as mutable and flexible. Each mutable residue was allowed to
assume its wild-type identity or mutate to 13–19 other amino acids. The size of
the resulting design problems ranged from 10 to 2.6 × 106 sequences and 105 to
1011 conformations (over all sequences). In all cases, we modeled continuous side-
chain flexibility using continuous rotamers [10,43]. As in [10,15], rotamers from
the Penultimate Rotamer Library [33] were allowed to minimize to any confor-
mation within 9◦ of their modal χ-angles. For all design problems, we performed
minimized dead-end elimination pruning (minDEE) [15], followed by either iMin-
DEE/A∗/K∗ or BBK∗. The initial pruning window [10] was 0.1 kcal/mol, and
the SS-ε bound accuracy was 0.683 (details are provided in Appendix A.9 of
the SI [36]). Each design either provably returned the optimal sequences or was
terminated after 30 days. A detailed description of the 51 protein-ligand systems
in our experiments, the 204 protein design problems based on these systems, and
our experimental protocol is provided in Appendix C.1 of the SI [36].

4.1 Performance Comparison

As the size of the sequence space increases, so does the efficiency of BBK∗ over
iMinDEE/A∗/K∗ (Fig. 3), demonstrating that the complexity of BBK∗ is in
practice sublinear in the number of sequences. We first measured the efficiency of
BBK∗ using the number of SS-ε bounds computed. Next, we measured efficiency

BBK∗ (Branch and Bound over K∗) 167

Fig. 3. BBK ∗ is up to five orders of magnitude more efficient than
iMinDEE/A∗/K ∗. BBK∗ completed all 204 designs within a 30 day limit, while
iMinDEE/A∗/K∗ completed only 107. (A) The number of SS-ε bounds performed
vs. the number of sequences in the design space. Results are shown for computing
only the the best sequence (blue) and computing the best five sequences (orange).
Single-sequence algorithms, including the best previous algorithm iMinDEE/A∗/K∗,
must compute binding affinity for all possible sequences (green curve). BBK∗ required
up to 6 × 105-fold fewer SS-ε bounds to find the best sequences. (B) The number of
energy-minimized conformations by BBK∗ and iMinDEE/A∗/K∗ vs. the number of
sequences in the design space. iMinDEE/A∗/K∗ completed only 107 of 204 designs (left
of the vertical line) before the 30-day limit. For these designs, BBK∗ was up to 1700-
fold more efficient. (C) BBK∗ and iMinDEE/A∗/K∗ running times vs. the number
of sequences in the design space. For the 107 designs completed by iMinDEE/A∗/K∗

within 30 days (left of the vertical line), BBK∗ was up to 800-fold more efficient than
iMinDEE/A∗/K∗.

using the number of conformation energy minimizations performed. Last, we
compared the running times of BBK∗ to those of iMinDEE/A∗/K∗.

We divide the design problem sizes into three categories: the smallest
problems have between 10 and 102 sequences; medium-sized problems contain
between 102 and 104 sequences; and the largest problems contain between 104

and 107 sequences. After 30 days, BBK∗ completed all 204 designs, but iMin-
DEE/A∗/K∗ completed only 107 of 204 designs: all 39 of the smallest designs,
54 of 63 medium-sized designs, and only 14 of the 111 largest designs. We now
discuss results for the 107 designs completed by iMinDEE/A∗/K∗. Because iMin-
DEE/A∗/K∗ computes individual sequence binding energies as SS-ε bounds, we
first measured the efficiency of BBK∗ using the number of SS-ε bounds com-
puted (Fig. 3(A)). For small, medium, and large designs, respectively, BBK∗

was on average 17-fold, 162-fold, and 2568-fold more efficient than iMinDEE/-
A∗/K∗. Next, we measured efficiency using the number of conformation energy
minimizations performed (Fig. 3(B)). Here, BBK∗ minimized, on average, 10-
fold, 43-fold, and 113-fold fewer conformations for small, medium, and large-
sized designs, respectively, compared to iMinDEE/A∗/K∗. Last, we compared
empirical running times for both methods (Fig. 3(C)). On average, BBK∗ was
36-fold, 67-fold, and 97-fold faster than iMinDEE/A∗/K∗ for small, medium,
and large-sized designs, respectively.

168 A.A. Ojewole et al.

Based on the 107 designs that iMinDEE/A∗/K∗ was able to complete within
30 days, we conclude that BBK∗ provides a combinatorial speedup over iMin-
DEE/A∗/K∗. Crucially, BBK∗ is not only more efficient, but also retains the
provability guarantees and biophysical modeling improvements (viz. ensemble-
based design, continuous flexibility) employed by single-sequence iMinDEE/-
A∗/K∗. In one large design (2.6 × 106 sequences), involving a camelid single-
domain VHH antibody fragment in complex with RNase A (PDB id: 2P49),
BBK∗ pruned more than 99.9% of sequences to provably find the best 5
sequences. Therefore, BBK∗ can design over similarly sized sequence spaces to
high throughput experimental screening methods such as phage display [2,38].

4.2 Sequence Space Pruning

BBK∗ owes its efficiency to two complementary modes of sequence pruning: MS
bound pruning and SS-δ bound pruning. Figure 4(A) illustrates the efficiency
gains in BBK∗ due to MS bound pruning. In small, medium, and large design
problems, respectively, BBK∗ pruned up to 90%, 99% and 99.9% of the sequence
design space using MS bound pruning. These data show that the amount of MS
pruning increased significantly with the size of the design space. Figure 4(B)
illustrates the efficiency gains in BBK∗ due to SS-δ bound pruning. In small,
medium, and large design problems, respectively, SS-δ pruning eliminates up to
98%, 99.9% and 99.99% of the sequences not pruned by MS pruning. These
data show that the amount of SS-δ pruning increased with the size of the design
problem. Further details are provided in Appendices A.10 and B.1 of the SI [36].

Importantly, MS bound pruning and SS-δ bound pruning have multiplicative
synergy, producing a combined pruning effect of up to 99.99999% of the orig-
inal sequence space while provably finding the five best-binding sequences. In
one example, we re-designed the protein-protein interface of a camelid affinity-
matured single-domain VHH antibody fragment (PDB id: 2P4A). The sequence
space, 2.6 × 106 sequences, consisted of all quadruple mutants in the 9-residue
protein-protein interface. BBK∗ pruned all but 2078 sequences using MS prun-
ing and then pruned 2071 sequences from these remaining 2078 sequences using
SS-δ bound pruning. These data show how BBK∗ prunes a combinatorial num-
ber of sequences from the design space, producing dramatic efficiency gains over
single-sequence methods. See SI [36] Sect. 5.2 for details.

4.3 Design with Coupled Continuous Side-Chain and Backbone
Flexibility

To determine whether design with a fixed backbone and continuous rotamers
predicts tight binding in the same sequences as does a model with both local
backbone flexibility and continuous rotamers, we used BBK∗ to redesign the
Human Fibronectin F1:Staphylococcus aureus FNBPA-5 interface [34] (PDB id:
2RL0) for binding affinity. As we will discuss below, the flexible backbone model
favors binding in different sequences than the fixed backbone model does. Details
of our experimental protocol are provided in Appendix C.3 of the SI [36].

BBK∗ (Branch and Bound over K∗) 169

Fig. 4. BBK ∗ used MS and SS-δ bounds to prune up to 99.99999% of the
sequence space. (A) Sequence space reduction due to MS pruning. The fraction
of un-pruned sequences (gray) normalized to the total number of sequences (green).
BBK∗ used MS bounds to provably prune up to 99.9% of the sequence space. BBK∗

does not compute SS-ε bounds for pruned sequences. (B) The fraction of BBK∗ SS-ε
bounds (blue for the best sequence and orange for the best 5 sequences) normalized
to the number of sequences not pruned by MS bound pruning (gray). To compute
the best sequences, BBK∗ calculated SS-ε bounds for as few as 0.01% of the un-
pruned sequences. The remaining 99.99% of these sequences were pruned at mere SS-δ
accuracy.

In the first experiment, we re-designed the Fibronectin F1:FNBPA-5 inter-
face for binding affinity over the wild-type sequence and 15 single amino-acid
polymorphisms. Our results showed that using the flexible backbone model ver-
sus the fixed backbone model increased the size of the design conformation space
by 1417-fold but only increased the running time by 4-fold in BBK∗. By com-
parison, iMinDEE/A∗/K∗ required 48-fold more time than BBK∗ to complete
the flexible backbone design. Our results also showed that the BBK∗ sequence
rankings between the two input models had a Spearman correlation coefficient
of only ρ = 0.53. Thus, the flexible backbone model favors binding in differ-
ent sequences than the fixed backbone model does. For instance, the FNBPA-5
D650E mutant is predicted to bind less tightly than the wild-type in the fixed
backbone model (Fig. 5(A)) but more tightly than WT in the flexible model
(Fig. 5(B)). In our second experiment, the sequence design space consisted of
the wild-type sequence and 25 single amino-acid polymorphisms. The BBK∗

sequence rankings produced by the two input models had a Spearman corre-
lation coefficient of ρ = 0.82 (additional details are provided in Section B.2
of the SI [36]). Relative to the fixed backbone model, the flexible backbone
model increased the size of the design conformation space by 8447-fold but only
increased the running time by only 1.7-fold in BBK∗. iMinDEE/A∗/K∗ required

170 A.A. Ojewole et al.

Fig. 5. BBK ∗ efficiently handles coupled continuous side-chain and local
backbone flexibility. Selected residues from ensembles, computed by BBK∗, of
human fibronectin F1 modules 4–5 (magenta) in complex with a fragment of S. aureus
fibronectin binding protein A 5 (FNBPA-5, PDB id: 2RL0, [34]). The design space
consisted of the wild-type sequence and either 15 or 25 single amino-acid mutants.
(A) Ensemble of the wild-type sequence based on the original crystal structure. The
design used a fixed FNBPA-5 backbone (green) and continuous side-chain flexibility.
(B) Ensemble of the wild-type sequence using two backbones: the original FNBPA-5
backbone (green) and a second backbone (PDB id: 2RKY, cyan) with RMSD 1.3 Å
from the original (found using the MASTER program [58]). The sequence rankings (by
K∗ score, Eq. 2) from the fixed and flexible backbone models had Spearman correlation
coefficients of ρ=0.53 and ρ=0.82 in the 15 and 25 mutant designs, respectively. This
shows that the flexible backbone model favors binding in very different sequences than
the fixed backbone model does.

89-fold more time than BBK∗ to complete the design using the flexible backbone
model.

It is important to note that these experiments are only possible with provable
algorithms. Without the provable guarantees of BBK∗, it would be difficult and
perhaps unsound to compare the results of computational protein design with
and without coupled continuous side-chain and backbone flexibility, since differ-
ence induced by the fixed backbone and rotamer model cannot be deconvolved
from differences stemming from undersampling or inadequate stochastic opti-
mization. Thus, BBK∗ provides provable methods to analyze the difference in
predicted sequences between different models of side-chain and backbone flexi-
bility.

5 Conclusion

BBK∗ fills an important lacuna in protein design: we presented a novel algo-
rithm that can search not over the energies of single-conformations, but instead
over the binding affinity of sequences. BBK∗ is, to our knowledge, the first
provable, ensemble-based algorithm to search over binding affinity and run in
time sublinear in the number of sequences. Previously, protein designers either
employed heuristic algorithms to compute locally optimal sequences, or com-
puted provably accurate approximations of binding affinity for each sequence

BBK∗ (Branch and Bound over K∗) 171

individually. BBK∗ not only computes the globally optimal sequences, it does
so while combinatorially pruning the sequence space. Our experiments show that
BBK∗ can search over sequence spaces of up to 2.6 × 106 sequences, a capacity
comparable to high-throughput experimental screening methods such as phage
display. Thus, BBK∗ liberates binding affinity-based protein design from the effi-
ciency barrier imposed by exhaustive search. Ensemble-based design for affinity
over large sequence spaces was previously possible only with heuristic algorithms
(with no guarantees), or using high-throughput wet-bench experiments. BBK∗

enables computational protein design by providing new Ka algorithms, with
provable guarantees, for these large-scale protein designs.

Acknowledgments. We thank Drs. Mark Hallen and Pablo Gainza for helpful dis-
cussions and for providing useful protein-ligand binding problems; Dr. Jeffrey Martin
for software optimizations; Hunter Nisonoff, Anna Lowegard and all members of the
Donald lab for helpful discussions; and the NSF (GRFP DGF 1106401 to AAO) and
the NIH (R01-GM78031 to BRD, R01-HL119648 to VGF) for funding.

References

1. Boas, F.E., Harbury, P.B.: Curr. Opin. Struct. Biol. 17, 199 (2007)
2. Carmen, S., Jermutus, L.: Brief Funct. Genomic Proteomic 1, 189 (2002)
3. Chen, C.-Y., et al.: Proc. Natl. Acad. Sci. USA 106, 3764 (2009)
4. Desmet, J., et al.: Nature 356, 539 (1992)
5. Donald, B.R.: Algorithms in Structural Molecular Biology. MIT Press, Cambridge

(2011)
6. Fleishman, S.J., et al.: Protein Sci. 20, 753 (2011)
7. Frey, K.M., et al.: Proc. Natl. Acad. Sci. USA 107, 13707 (2010)
8. Fromer, M., Yanover, C.: Bioinformatics 24, i214 (2008)
9. Gainza, P., Nisonoff, H.M., Donald, B.R.: Curr. Opin. Struct. Biol. 39, 16 (2016)

10. Gainza, P., Roberts, K.E., Donald, B.R.: PLoS Comput. Biol. 8, e1002335 (2012)
11. Gainza, P., et al.: Methods Enzymol 523, 87 (2013). Program, user manual, and

source code are available at www.cs.duke.edu/donaldlab/software.php
12. Georgiev, I., et al.: Retrovirology 9(Suppl. 2), P50 (2012)
13. Georgiev, I., Donald, B.R.: Bioinformatics 23, i185 (2007)
14. Georgiev, I., Lilien, R.H., Donald, B.R.: Bioinformatics 22, e174 (2006)
15. Georgiev, I., Lilien, R.H., Donald, B.R.: J. Comput. Chem. 29, 1527 (2008)
16. Georgiev, I.S.: Novel algorithms for computational protein design, with applica-

tions to enzyme redesign and small-molecule inhibitor design. Ph.D. thesis, Duke
University (2009). http://hdl.handle.net/10161/1113

17. Georgiev, I.S., et al.: J. Immunol. 192, 1100 (2014)
18. Gilson, M.K., et al.: Biophys. J. 72, 1047 (1997)
19. Gorczynski, M.J., et al.: Chem. Biol. 14, 1186 (2007)
20. Hallen, M.A., Donald, B.R.: J. Comput. Biol. 23, 311 (2016)
21. Hallen, M.A., Gainza, P., Donald, B.R.: J. Chem. Theory. Comput. 11, 2292 (2015)
22. Hallen, M.A., Jou, J.D., Donald, B.R.: J. Comput. Biol. Epub ahead of print (2016)
23. Hallen, M.A., Keedy, D.A., Donald, B.R.: Proteins 81, 18 (2013)
24. Hart, P., Nilsson, N., Raphael, B.: IEEE Trans. SSC 4, 100 (1968)
25. Jou, J.D., et al.: J. Comput. Biol. 23, 413 (2016)

www.cs.duke.edu/donaldlab/software.php
http://hdl.handle.net/10161/1113

172 A.A. Ojewole et al.

26. Kingsford, C.L., Chazelle, B., Singh, M.: Bioinformatics 21, 1028 (2005)
27. Kuhlman, B., Baker, D.: Proc. Natl. Acad. Sci. USA 97, 10383 (2000)
28. Leach, A.R., Lemon, A.P.: Proteins 33, 227 (1998)
29. Leaver-Fay, A., et al.: Methods Enzymol. 487, 545 (2011)
30. Lee, C., Levitt, M.: Nature 352, 448 (1991)
31. Leech, J., Prins, J.F., Hermans, J.: Comput. Sci. Eng. 3, 38 (1996)
32. Lilien, R.H., et al.: J. Comput. Biol. 12, 740 (2005)
33. Lovell, S.C., et al.: Proteins 40, 389 (2000)
34. Lower, S.K., et al.: Proc. Natl. Acad. Sci. USA 108, 18372 (2011)
35. Nisonoff, H., Thesis, B.S.: Department of Mathematics, Duke University (2015).

http://hdl.handle.net/10161/9746
36. Ojewole, A.A., et al.: Supplementary information: BBK* (Branch and Bound over

K*): a provable and efficient ensemble-based algorithm to optimize stability and
binding affinity over large sequence spaces for sparse approximations of computa-
tional protein design (2015). http://www.cs.duke.edu/donaldlab/Supplementary/
recomb17/bbkstar

37. Ojewole, A., et al.: Methods Mol. Biol. 1529, 291 (2017)
38. Pál, G., et al.: J. Biol. Chem. 281, 22378 (2006)
39. Peng, J., et al.: [q-bio.BM] (2015). arXiv:1504.05467
40. Pierce, N.A., Winfree, E.: Protein Eng 15, 779 (2002)
41. Reeve, S.M., et al.: Proc. Natl. Acad. Sci. USA 112, 749 (2015)
42. Roberts, K.E., et al.: PLoS Comput. Biol. 8, e1002477 (2012)
43. Roberts, K.E., Donald, B.R.: Proteins 83, 1151 (2015)
44. Roberts, K.E., et al.: Proteins 83, 1859 (2015)
45. Rudicell, R.S., et al.: J. Virol. 88, 12669 (2014)
46. Sciretti, D., et al.: Proteins 74, 176 (2009)
47. Silver, N.W., et al.: J. Chem. Theory Comput. 9, 5098 (2013)
48. Simoncini, D., et al.: J. Chem. Theory. Comput. 11, 5980 (2015)
49. Stevens, B.W., et al.: Biochemistry 45, 15495 (2006)
50. Traoré, S., et al.: Bioinformatics 29, 2129 (2013)
51. Traoré, S., et al.: J Comput. Chem. 37, 1048 (2016)
52. Valiant, L.G.: Theoret. Comput. Sci. 8, 189 (1979)
53. Viricel, C., et al.: The 22nd International Conference on Principles and Practice

of Constraint Programming (2016)
54. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: CoRR abs/1301.0610 (2013)
55. Xu, J.: 9th Annual International Conference, RECOMB, vol. 3500, p. 423 (2005)
56. Xu, J., Berger, B.: J. ACM 53, 533 (2006)
57. Zheng, F., et al.: J. Am. Chem. Soc. 130, 12148 (2008)
58. Zhou, J., Grigoryan, G.: Protein Sci 24, 508 (2015)

http://hdl.handle.net/10161/9746
http://www.cs.duke.edu/donaldlab/Supplementary/recomb17/bbkstar
http://www.cs.duke.edu/donaldlab/Supplementary/recomb17/bbkstar
http://arxiv.org/abs/1504.05467

Superbubbles, Ultrabubbles and Cacti

Benedict Paten1(B), Adam M. Novak1, Erik Garrison2, and Glenn Hickey1

1 UC Santa Cruz Genomics Institute, University of California Santa Cruz,
Santa Cruz, CA 95064, USA
benedict@soe.ucsc.edu

2 Wellcome Trust Sanger Institute, Cambridge, UK

Abstract. A superbubble is a type of directed acyclic subgraph with
single distinct source and sink vertices. In genome assembly and genet-
ics, the possible paths through a superbubble can be considered to rep-
resent the set of possible sequences at a location in a genome. Bidirected
and biedged graphs are a generalization of digraphs that are increasingly
being used to more fully represent genome assembly and variation prob-
lems. Here we define snarls and ultrabubbles, generalizations of super-
bubbles for bidirected and biedged graphs, and give an efficient algorithm
for the detection of these more general structures. Key to this algorithm
is the cactus graph, which we show encodes the nested decomposition
of a graph into snarls and ultrabubbles within its structure. We propose
and demonstrate empirically that this decomposition on bidirected and
biedged graphs solves a fundamental problem by defining genetic sites for
any collection of genomic variations, including complex structural vari-
ations, without need for any single reference genome coordinate system.
Furthermore, the nesting of the decomposition gives a natural way to
describe and model variations contained within large variations, a case
not currently dealt with by existing formats, e.g. VCF.

1 Introduction

Graphs are used extensively in biological sequence analysis, where they are
often used to represent uncertainty about, or ensembles of, potential nucleotide
sequences. Several subtypes have become especially prominent for sequence rep-
resentation, in particular the De Bruijn graph [4,13], the string graph [10],
the breakpoint graph [1,14] and the bidirected graph (aka variation graph or
sequence graph) [6,9].

In the context of de novo sequence assembly several characteristic types of
subgraph are recognised, in particular the bubble [16], a pair of paths that start
and end at common source and sink nodes but are otherwise disjoint. In the con-
text of sequence analysis, a bubble can represent a potential sequencing error or
a genetic variation within a set of homologous molecules. An efficient algorithm
for bubble detection was proposed by [2].

A generalization of the notion of a bubble, the superbubble is a more complex
subgraph type in which a set of (not necessarily disjoint) paths start and end
at common source and sink nodes. This problem was initially proposed by [11],
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 173–189, 2017.
DOI: 10.1007/978-3-319-56970-3 11

174 B. Paten et al.

who gave a quadratic solution. [3] recently provided a linear time algorithm
for superbubbles on directed acyclic graphs (DAGs). This result, when paired
with a previous linear time transformation of the problem of superbubbles on
directed graphs to superbubbles on DAGS [15], yields a linear cost solution for
computing superbubbles on digraphs. For a review of superbubbles and their use
in sequence analysis see [8]. In this paper we generalize the idea of superbubble
to the more general case of a bidirected graph, connect a slight generalization of
the superbubble, which we call the ultrabubble, and show how it relates to the
decomposition of the graph into 2- and 3-edge connected components.

2 Methods

2.1 Directed, Bidirected and Biedged Graphs

A bidirected graph D = (VD, ED) is a graph in which each endpoint of every edge
has an independent orientation (denoted either “left” or “right”), indicating if
the endpoint is incident with the left or right side of the given vertex. The sides
of D are therefore the set VD × {left, right}, and each edge in ED is a pair set
of two sides (Fig. 1). We say for all x ∈ VD, (x, left) and (x, right) are opposite
sides.

Any digraph is a special case of a bidirected graph in which each edge con-
nects a left and a right side (by convention we here consider the right side to
be the outgoing side and the left side the incoming side, so that the conversion
from a digraph to a bidirected graph is determined; see Fig. 1).

A biedged graph is a graph with two types of edges: black edges and grey
edges, such that each vertex is incident with at most one black edge (Fig. 1(C)).

For any bidirected graph D there exists an equivalent biedged graph B(D) =
(VB(D), EB(D)) where:

– VB(D) = VD × {left, right}, the sides of VD.
– EB(D) = SB(D) ∪ ED, where ED are the grey edges,
– and SB(D) = {{(x, left), (x, right)}|x ∈ VD} are the black edges.

For a vertex x ∈ VB(D) we use the notation x̂ to denote the opposite side to
x, e.g. for x = (x′, left) ∈ VB(D), x̂ = (x′, right).

Clearly the bidirected and biedged representations are essentially equivalent,
and the choice to use either one is largely a stylistic consideration. For the
remainder of this paper we will mostly use the biedged representation. As any
digraph is a special case of a bidirected graph and any bidirected graph has a
equivalent biedged graph, so any digraph has an equivalent biedged graph.

2.2 Directed Walks on Biedged and Bidirected Graphs

A directed walk on a bidirected graph is a walk that at each visited vertex exits
the opposite side to that which it enters. On a biedged graph a directed walk is
equivalent to a walk that alternates between black and grey edges. A bidirected
or biedged graph is acyclic if it contains no directed cycles.

Superbubbles, Ultrabubbles and Cacti 175

a
b

d
c

g hfe

(B)

(C)
a

b

c
d f g he

a
b

d
c

g hfe

(A)

Fig. 1. (A) A digraph. (B) A bidirected graph. Each node is drawn as a box and
the orientation for each edge endpoint is indicated by the connection to either the
left or right side of the node. The graph excluding the dotted edges is the equivalent
bidirected graph for the digraph in (A); the dotted edges encode an inversion that
cannot be expressed in the digraph representation. (C) A biedged graph equivalent to
the bidirected graph shown in (B).

These definitions are a generalization of a directed walk on a digraph. In a
bidirected representation of a digraph all edges in a directed walk are all left-
to-right or all right-to-left. A directed walk on a general bidirected (or biedged)
graph can mix these two types and additionally include edges that do not alter-
nate the orientation of their endpoints (e.g. left-right and right-right and left-left
edges).

Given these generalizing relationships, clearly a digraph D is acyclic iff B(D)
is acyclic. Note that any acyclic biedged graph can also be converted into an
equivalent directed acyclic graph (DAG):

Lemma 1. For any acyclic biedged graph B(D) there exists an isomorphic
biedged graph B(D) such that D is a DAG.

Proof. Use a depth first search (DFS) beginning at side x to label the sides of
B(D) either ‘red’ or ‘white’: If x is not already labelled then label x red and x̂
white. For each grey edge incident with x̂, if the connected side is not labeled,
label the connected side red and continue recursively via DFS. In this way all
the sides in the connected component containing x will be labeled in a single
DFS. If during the recursion the connected side encountered is already labelled
then it must be labeled red, else there would exist a cycle in the DFS, a con-
tradiction. Use the labelling to create B(D), isomorphic to B(D) but replacing
the orientation of the sides so that each side labeled white is a left side and each
side labeled red is a right side. All edges in B(D) connect a left and a right side.

2.3 Superbubbles, Snarls and Ultrabubbles

Repeating the definition from [11], any pair of distinct vertices (x, y) in a digraph
D is called a superbubble (Fig. 2(A)) if:

176 B. Paten et al.

– reachability : y is reachable from x.
– matching : The set of vertices, X, reachable from x without passing through
y is equal to the set of vertices from which y is reachable without passing
through x (passing through here means to enter and then exit a vertex on the
path).

– acyclicity : The subgraph induced by X is acyclic.
– minimality : No vertex in X other than y forms a pair with x that satisfies the

criteria defined above, and similarly for y.

We call the subgraph induced by X the superbubble subgraph.
To generalize superbubbles for biedged graphs we introduce the notion of

a snarl, a minimal subgraph in a biedged graph whose vertices are at most 2-
black-edge-connected (2-BEC) to the remainder of the graph (two vertices in a
biedged graph are k-black-edge-connected (k-BEC) if it takes the deletion of at
least k black edges to disconnect them). In a biedged graph B(D) a pair set of
distinct, non-opposite vertices {x, y} are a snarl (Fig. 2(B)) if:

– seperable: The removal of the black edges incident with x and y disconnects
the graph, creating a separated component X containing x and y and not x̂
and ŷ.

– minimality : No node z in X exists such that {x, z} fulfils the above criteria,
and similarly for y.

We call a vertex not incident with a grey edge a tip [16]. In a biedged graph
B(D) a snarl is an ultrabubble if its separated component is acyclic and contains
no tips.

The following shows that a superbubble in a digraph is an ultrabubble in the
equivalent biedged graph.

Lemma 2. For any superbubble (x, y) in a digraph D, the pair set {x′ = (x,
right), y′ = (y, left)} is an ultrabubble in B(D).

Proof. Let d and e be the black edges incident with x′ and y′, respectively, and
let X be the superbubble subgraph of (x, y).

We start by proving that {x′, y′} satisfies the separable criteria. As y is
reachable from x by definition there exists a directed path in B(D) between
x′ (the right side of x) and y′ (the left side of y) that excludes d and e. After
the deletion of these black edges x′ and y′ therefore remain connected. If the
separable criteria is not satisfied the deletion of d and e must therefore not
disconnect x′ and y′ from either or both x̂′ and ŷ′, without loss of generality
assume x′ (and therefore y′) remains connected to x̂′.

If x̂′ is on a directed walk from x′ that excludes d then the addition of d to
this walk defines a directed cycle in B(D). As all nodes reachable from x are
in the separated component X, the existence of this cycle in B(D) implies the
existence of a corresponding directed cycle in X, a contradiction.

If there exists a non-directed walk from x′ to x̂′ then let z′ be the last node
on the walk from x′ such that the subwalk between x′ and z′ is a directed walk.

Superbubbles, Ultrabubbles and Cacti 177

By definition, there exists directed walk from z′ to y′. The next node on the
walk from x′ to x̂′ after z′ is, by definition, not reachable from x′ but y′ must be
reachable from this node. This implies a contradiction of the matching criteria
for the corresponding nodes in X.

We have therefore established that {x′, y′} fufills the seperable criteria. We
have already established that iff a digraph is acyclic its equivalent biedged graph
is acyclic, therefore the seperated component of {x′, y′} is acyclic. As every node
in X is both reachable from x and on a path from y, the separated component
clearly contains no tips.

It remains to prove that {x′, y′} fufills the minimality criteria. If {x′, y′} do
not satisfy the minimality criteria without loss of generality there exists a node
z′ in the separated component of {x′, y′} such that {x′, z′} are separable. It
follows that all directed paths from x′ to y′ that exclude d and e visit z′, and
for the node z in D contained in z′, (x, z) fulfills (clearly) all the superbubble
criteria, a contradiction.

(A)

(B)

d
e

g
f l

k

h j

i

a

b

c q

a
b

c
d

e

f

g

h

i

j

k

l

m p
o

n

m
n

o
p q

r

r

1 1

1 1

2

2

2
2

3 3

3 3

6

6

5

5

4 4

Fig. 2. (A) Superbubbles in a digraph. The superbubbles are indicated by pairs of
numbered arrows. (B) A biedged graph representation of the digraph in (A). The
ultrabubbles are illustrated, as are two snarls that are not ultrabubbles (of several;
pairs 5 and 6, whose separated components contain cycles).

2.4 Cactus Graphs

A cactus graph is a graph in which any two vertices are at most two-edge con-
nected [7]. In a cactus graph each edge is part of at most one simple cycle, and
therefore any two simple cycles intersect at most one vertex.

For a graph G = (VG, EG) let G′ = (VG′ , EG′) be a multigraph created by
merging subsets of the vertices, such that:

– VG′ is a partition of VG,
– EG′ = {{aG′(x), aG′(y)}|{x, y} ∈ EG} is a multiset.

178 B. Paten et al.

where aG′ : VG → VG′ is a graph homomorphism that maps each vertex in VG

to the set in VG′ that contains it.
Merging all equivalence classes of 3-edge connected (3-EC) vertices in a graph

results in a cactus graph [12].
For a biedged graph B(D) let C(D) be the cactus graph created by first

contracting all the grey edges in B(D) then for each equivalence class of 3-EC
vertices in the resulting graph merging together the vertices within the equiva-
lence class (Fig. 3(A–C)). As with G′ and G, VC(D) is a partition of the vertices
of VB(D), and EC(D) = {{aC(D)(x), aC(D)(y)}|{x, y} ∈ SB(D)} is a multiset.

For a vertex x ∈ VB(D) we call aC(D)(x) its projection (in C(D)). Similarly
for a set of vertices X ⊂ VB(D) we call {aC(D)(x)|x ∈ X} the projection of X
(in C(D)). Let bC(D)(x) = {aC(D)(x), aC(D)(x̂)}, which is the projection of the
black edge incident with x in C(D).

Appendix 1 gives lemmas that make explicit the relationship between the
edge connectivity of vertices in B(D) and C(D), and which we use to prove the
relationship between the snarls of B(D) and C(D).

(A)
a

b

c
d

e

f

g

h

i

j

k

l m
n

o
p q

a
b

c
d

e

f
g

h

i

j

k

l
m

n

o

p
q

a
b

c

d
e

f
g

k

l
m

n

o

pq

h

i

j

(B)

(C)

a d
l q

(D)

r

r

r

r

(F)
e

f

g

h j

k

a d
l

q(E) r

1

1

1

1

1
1

1

1

1

1

2

2

2

2

2

2

2

22

2

2

2

3 3

3 3

3 3

3

4 4

4

4

4

4

4

Fig. 3. (A) A biedged graph B(D) with ultrabubbles indicated by pairs of numbered
arrows. (B) The graph in (A) after contracting the grey edges. (C) The cactus graph
C(D) for B(D). (D) The bridge forest D(D). (E) The cactus tree T (D). (F) A net
for the number 2 bridge pair in (A). The projection of chain pairs in B(D) to the
other graphs is shown using the numbered arrows, with the arrows drawn along the
projecting black edge incident with the projected vertex.

Superbubbles, Ultrabubbles and Cacti 179

2.5 Snarls and Cacti

A pair set of distinct vertices {x, y} in B(D) are a chain pair if they project to the
same vertex in C(D) and their incident black edges project to the same simple
cycle in C(D) (e.g. grey arrows and cyan arrows in Fig. 3(C)). A cyclic sequence
of chain pairs within the same simple cycle in C(D) and ordered according to
the ordering of this simple cycle is a (cyclic) chain. Contiguous chain pairs in a
chain share two opposite sides of a black edge in B(D).

For a cactus graph C(D), the graph D(D) resulting from contracting all the
edges in simple cycles in C(D) is a called a bridge forest (Fig. 3(D)).

A pair set of distinct vertices {x, y} in B(D) are a bridge pair if they project
to the same vertex in D(D) and both their incident black edges are bridges (e.g.
pairs of arrows numbered 1 and 2 in Fig. 3(D)). A maximum sequence of bridge
pairs within D(D) connected by incident nodes with degree two is an (acyclic)
chain. As with chain pairs, contiguous bridge pairs in a chain share two opposite
sides of a black (bridge) edge in B(D).

Theorem 1. The set of snarls in B(D) is equal to the union of chain pairs and
bridge pairs.

Proof. Follows from Lemmas 12 and 13 given in Appendix 2.

Given Theorem 1 to calculate the set of snarls for a given biedged graph it
is sufficient to calculate the cactus graph to give the set of snarls that map to
chain pairs and the bridge forest to calculate the set of snarls that map to bridge
pairs. Constructing a cactus graph of the type described for a biedged graph is
linear in the size of the biedged graph (using the algorithm described in [12]),
and clearly the cost of then calculating the bridge forest from the cactus graph
is similarly linear. The number of chain pairs is clearly linear in the size of the
biedged graph, however, the number of bridge pairs is potentially quadratic in the
number of bridge pairs, so enumerating these latter snarls has potentially worst
case quadratic cost in terms of the size of the biedged graph. Below we consider
ways to prune the set of snarls by using their natural nesting relationships to
create a hierarchy of snarls that is at most linear in the size of the biedged graph.

2.6 Ultrabubbles and Cactus Trees

Given Theorem 1, to determine the ultrabubbles in B(D) it is sufficient to check
for each chain and bridge pair if the separated component is acyclic and contains
no tips. As snarls can contain each other, to do this efficiently we decompose the
problem into a series of smaller independent problems. We use a modification
of the cactus graph called a cactus tree. For a cactus graph C(D) the cactus
tree T (D) is created by, for each simple cycle S in C(D), making a novel chain
vertex, adding an edge between each vertex in S and x, and deleting the edges in
S (Fig. 3(E)). We call each non-chain vertex (a member of the set VC(D)) in T (D)
a net vertex. For each chain pair {x, y} in B(D) the edge in T (D) connecting the
net vertex projected to by x and y and the chain vertex representing the simple

180 B. Paten et al.

cycle in C(D) projected to by the black edges incident with x and y is the chain
pair’s chain edge. Each bridge edge in B(D) projects to the other type of edge
in T (D), which connects two net vertices. Each pair of such edges connected
by a path of edges connecting chain and net vertices represents a bridge pair.
The edges of a cactus tree T (D) are therefore decomposable into a set of edges
representing the chain pairs in B(D) and a set of edges representing the bridges
in B(D).

A parent snarl contains a distinct child snarl if the separated component
of the child is contained entirely within the separated component of the par-
ent. From the definition it follows that a snarl that is a bridge pair cannot be
contained within another a snarl.

For a snarl {x, y} in B(D), let X be the path in T (D) connecting aT (D)(x)
and aT (D)(y). X starts and ends with net vertices and alternates between chain
and net vertices. If {x, y} is a chain pair then X consists only of the net vertex
which both x and y project to in T (D). The net graph Y for {x, y} is a biedged
graph as follows (Fig. 3(E)):

– The vertices VY are the subset of vertices in B(D) that project to net vertices
in X.

– The grey edges in EY are the subset of grey edges in EB(D) that connect
members of VY .

– There is a black edge e connecting each pair {x′, y′} of distinct vertices in VY

not equal to {x, y} whose incident black edges in B(D) both project to the
same simple cycle in VC(D) and are connected by a path that starts and ends
with black edges.

We can use net graphs to determine if snarls are ultrabubbles. The net graph
for a snarl {x, y} is bridgeless if it does not contain a vertex other than x or y
without an incident black edge.

Lemma 3. A snarl {x, y} in B(D) is an ultrabubble iff its net graph and the
net graph of each snarl contained in {x, y} is acyclic and bridgeless.

Proof. IF: If the separated component of {x, y} is not acyclic then it contains
a directed cycle S. Let e = {x′, y′} be a grey edge in S. By definition e is
contained within exactly one net graph X. If x′ is not incident with a black
edge in X then its incident black edge in B(D) is a bridge and x′ cannot be a
member of a directed cycle in B(D), therefore let {x′, z′} be the black edge in
X incident with x′. If S does not include z′ then there must exist a directed
walk in B(D) from x̂′ to y′ that excludes z′, but as the black edges incident
with x′ and z′ project to the same simple cycle in C(D), by Lemmas 6 and
11, the deletion of these black edges disconnects B(D), separating x̂′ and y′,
and implying no such directed walk excluding z′ can exist. S therefore contains
x′, y′, z′ and, by the same logic, the node w′ in X connected by a black edge
to y′. If w′ and z′ are not connected by a grey edge then add the nodes in S
that they are connected to by a grey edge in X to this set. Continuing this set
extension we must ultimately define a directed cycle in X, therefore any cycle

Superbubbles, Ultrabubbles and Cacti 181

S in the separated component must define one or more cycles in a net graph. If
the separated component contains a tip vertex x′ then the incident black edge
is by definition a bridge, therefore the net graph containing x is not bridgeless.

ONLY IF: Each black edge {x′, y′} in a net graph X represents a portion of a
simple cycle in C(D), there therefore exists a directed path between x′ and y′ in
B(D) that starts and ends with the black edges incident with x′ and y′. If there
exists a directed cycle S in X then for each black edge in S we can replace it with
a corresponding directed path in B(D) and so define a valid directed cycle in
B(D). If there exists a node x′ in X not equal to x or y and without an incident
black edge then {x′, x̂′} is a bridge edge in B(D). It is easily verified that either
there exists a tip or a directed cyclic walk in the separable component.

For a chain pair {x, y} in B(D) let the contained chain pairs be the chain
pairs whose chain edges in T (D) are:

– reachable from aT (D)(x) without passing through the chain edge of {x, y} and
which,

– on the path from aT (D)(x), first visit the incident chain vertex and then the
incident net vertex.

Similarly for a bridge pair {x, y} in B(D) let the contained chain pairs be
the chain pairs whose chain edges in T (D) are:

– reachable from a vertex on the path X between aT (D)(x) and aT (D)(y) without
passing through an edge in X or the projection in T (D) of the bridge edges
incident with x or y, and which,

– on the path from a vertex in X, first visit the incident chain vertex and then
the incident net vertex.

Lemma 4. For a chain pair or bridge pair {x, y} in B(D) the set of contained
snarls is equal to its contained chain pairs.

Proof. Let X be the component of C(D) containing the projection of x and y
after the deletion of the projection of the black edges incident with x and y. From
Theorem 1 and given that homomorphisms preserve connectedness, it follows
that the vertex induced subgraph in B(D) of vertices that project to a vertex
in X is the separated component of x and y. It follows that only snarls whose
separated components’ vertex projections are contained in X can be contained
in {x, y}. It is easily verified from the definitions that this is equal to the set of
the contained chain pairs for {x, y}.

Theorem 2. A snarl {x, y} in B(D) is an ultrabubble iff its net graph and the
net graph of each its contained chain pairs is acyclic and bridgeless.

Proof. Follows from Lemmas 3 and 4.

Given Theorem 2 we now sketch an algorithm to compute the set of ultra-
bubbles for a given bidirected graph B(D):

182 B. Paten et al.

1. Calculate C(D) (e.g. using the algorithm described in [12]).
2. Calculate T (D).
3. For each chain pair label its chain edge in T (D) with whether the chain pair’s

net graph is acyclic and bridgeless.
4. For each chain pair, traversing from its chain edge in T (D), use depth first

search to determine if its net graph and the net graph of each its contained
chain pairs is acyclic and bridgeless, using the labels of the chain edges, and
reporting the chain pair as an ultrabubble if so. (By recording if a chain pair
is an ultrabubble as it is visited it is easily verified the complete traversal can
be calculated by visiting each chain edge only once).

5. Calculate D(D).
6. For each vertex x in D(D) incident with exactly two edges let {x′, y′} be

the bridge pair whose members project to x in D(D). (There can be at most
|EB(D)| − 1 such bridge pairs). Calculate if the net graph and the contained
chain pairs of {x, y} are acyclic and bridgeless, reporting the bridge pair as
an ultrabubble if true. (As an element in T (D) can be contained in at most
one such bridge pair the cost for this step is O(|VB(D)|+ |EB(D)|) for all such
bridge pairs).

The computational complexity of steps 1, 2, 4, 5 and 6 is less than or equal to
O(|VB(D)|+|EB(D)|). For each chain vertex in step 3 the acyclicity of n net graphs
is calculated, where n is the number of simple cycles incident with the vertex in
C(D). In the worst case, this step has a complexity of O(|EB(D)||VB(D)|), which
occurs when all vertices in B(D) are 3-BEC. The cost of step 3 therefore domi-
nates and the worst case complexity of the entire algorithm is O(|EB(D)||VB(D)|).
However, if the size of the largest net subgraph is bounded by a constant (which
in practice it likely is) the expected running time will be linear in the size of
graph.

2.7 Rooted Cactus Trees, Ultrabubbles and Genetic Sites

One particularly attractive feature of superbubbles is that they have a nested
containment relationship, so that a digraph is partitioned into a set of top level
superbubble components and other graph members not contained in a superbub-
ble component, and each top level superbubble component then contains one or
more child superbubbles, forming a tree structure. The situation is more com-
plex for snarls and ultrabubbles, in that the separated component of snarls can
overlap (Fig. 4), such that each partially contains the other. To create a properly
nested hierarchy of snarls it is therefore necessary to exclude some snarls.

Given Lemma 4, to define a hierarchy of snarls that are chain pairs it is
sufficient to pick a chain vertex as the root in each component of the cactus forest
(e.g. Fig. 4) and only including the chain pairs contained by the root chain, using
the definition of chain pair containment defined above. Note that this naturally
orients the cyclic chains of chain pairs, breaking them by the chosen chain edge
nearest the root.

Superbubbles, Ultrabubbles and Cacti 183

a

b

c

d

a

b

c

d

(A) (B)

(C)
(D)

(E)
1 2 3 4

1

1

3 4

4

2

1 2 3 4

Fig. 4. Overlapping snarls. (A) A bidirected graph, its corresponding (B) cactus graph
and (C) cactus tree. The snarl numbered 2 contains the snarl numbered 4, similarly
the snarl numbered 3 contains the snarl numbered 1. The snarls numbered 2 and 3
overlap. (D–E) Two possible rootings for the cactus tree are shown, each of which
defines a properly nested set of snarls.

Snarls that are bridge pairs are not naturally organized hierarchically. How-
ever, if the objective is to get a decomposition that contains the maximum
number of ultrabubbles then the presence of bridge edges actually simplifies
the problem, because a bridge edge cannot be contained within an ultrabubble.
Hence if a biedged graph contains bridge edges, we can pick a subset of bridge
pairs, and use each bridge pair to define a hierarchy of its contained chain pairs.

(A)

a

m

n

eb
c

d

f

g
h

i
j

k
l

a

mn

e
b

c

d

f

g

h
i

j

kl

(B)

a

(C)

n

(D) b ... m (E) c

d

(F) f

g

(G) i ... j (H) j

k

1

1

1

1 1

1

1

1

2 2

2
2

2 2

2

3
3

3 3

3 3

3

4 4

4

4 4

4
4

5 5

5
5

5

5 5

Fig. 5. (A) A biedged graph B(D) with nested ultrabubbles indicated by pairs of
numbered arrows. (B) C(D) for B(D). (C) T (D) for B(D). (D–H) The net graphs for
the ultrabubbles in B(D).

One of our motivations for investigating ultrabubbles was to define a decom-
position of a bidirected graph representing genome variations into ‘sites’, group-
ings of paths representing subsequences into ‘alleles’, each representing an alter-
native at a particular location within a genome. Given a nesting of the ultra-
bubbles, we can envision that this nesting structure could play a powerful role
in decomposing genotyping problems. This is illustrated in Fig. 5, which shows
a bridge pair (arrows numbered 1) defining a top-level ultrabubble. Within this
ultrabubble are a series of nested ultrabubbles and chains (second-level chain
containing snarls numbered 2, 3 and 4 and a third-level ultrabubble numbered
5). In a genome problem, such a structure can easily arise with nested indels

184 B. Paten et al.

and substitutions. The genotype problem can be viewed as the problem of estab-
lishing a consistent genotype of each ultrabubble’s net graph in a coordinated
fashion.

3 Results

We implemented the ultrabubbles algorithm described above within the vg soft-
ware package (http://github.com/vgteam/vg), where it is used to decompose
graphs into sites for variant calling. Ultrabubbles can also be computed directly
by running vg stats -u. To root the decomposition we picked the largest top-
level chain, which consists of bridge pairs. Here we present the results of running
this decomposition on a graph for human chromosome 1 constructed from the
(roughly 6.5 million) variant calls from phase 3 of the 1000 Genomes Project [5].
The graph contained 19,917,881 nodes and 26,782,661 edges and the runtime
was 23 min using a maximum of 49 G RAM on a single 2.27 GHz Intel Xeon
core (4 min and 30 G of RAM were spent loading the graph into memory, a
process that can be made an order of magnitude more efficient by switching the
implementation to use xg, vg’s succinct representation).

Table 1 shows the relative proportion of each of these structures. The
first three rows describe the top-level ultrabubble decomposition, which cov-
ers exactly every base in the input graph. The second three rows display the
same statistics but for structures that are entirely contained within top-level
ultrabubbles or snarls. The remaining rows describe the third and deepest nest-
ing level, which is contained within second level ultrabubbles or snarls. Every
base within the graph is part of either a top level chain, ultrabubble or snarl in
this decomposition.

Table 1. Coverage statistics for the ultrabubble decomposition of the human chromo-
some 1 variant graph.

Structure Nesting level Count Coverage (bp) Coverage (pct)

Chains Top 1 221,715,143 86.60

Ultrabubbles Top 5,554,903 12,539,619 4.90

Snarls Top 75 21,775,387 8.50

Chains Second 919 20,594,450 8.04

Ultrabubbles Second 533,252 1,199,777 0.47

Snarls Second 0 0 0

Chains Third 67 495 0.00

Ultrabubbles Third 694 1,623 0.00

Snarls Third 0 0 0

Figure 6 shows the size distribution of the top-level ultrabubble and snarl
sizes. All but 22 top-level ultrabubbles (totaling 3,251 bases) are 100 bases long

http://github.com/vgteam/vg

Superbubbles, Ultrabubbles and Cacti 185

Fig. 6. Histograms of top-level ultrabubble and snarl sizes in number of bases, as found
in the 1000 Genomes graph for chromosome 1.

Fig. 7. Ultrabubbles found in the 1000 Genomes-derived graph for chromosome 1.
(A) Two adjacent SNPs inside a deletion (chr1:209,887,366). (B) A more complex
combination of SNP and indel events (chr1:237,977,845). (C) Copy number changes in
a GT repeat (chr1:1,200,943).

or shorter. If we consider such sites “easy” to call, along with top-level chains,
then we can assign roughly 91.5% of chromosome 1 into this category. Figure 7
displays three examples of such small ultrabubbles. The remaining 9.5% of cases
are found in a small number of relatively large snarls.

4 Discussion and Conclusion

We have presented a partial decomposition of a bidirected graph into a set of
nested snarls and ultrabubbles. We believe this solves an important problem in
using graphs for representing arbitrary genetic variations by defining a decom-
position that determines sites and alleles.

As the decomposition is only partial, not all elements in a graph will nec-
essarily fit into one of the ultrabubbles. However, we demonstrate that for an
existing large library of variation (1000 Genomes) the large majority of sites are
either invariant or described by simple, top-level ultrabubbles.

For bases outside of these easy sites it is possible to imagine further subclas-
sification. For example, classifying snarls that contain tips but are acyclic might
define a useful class of subgraph common in some subproblems (e.g. sequence
assembly). Similarly, characteristic structures representing genomic phenomina,
such as inversions and translocations, are imaginable. Beyond our initial inves-
tigation, a more thorough evaluation of how much of a graph fits within a snarl,
ultrabubble, or one of these more complex structures would be a useful exercise.

186 B. Paten et al.

As an alternative to further subclassification, in the context of assembly,
various error correction algorithms have been proposed to remove graph elements
and reduce the complexity of the graph, and therefore correspondingly increase
the fraction of the graph that is contained within an ultrabubble structure. We
foresee the cactus graph structure providing a useful basis for exploring such
algorithms.

Acknowledgements. This work was supported by the National Human Genome
Research Institute of the National Institutes of Health under Award Number
5U54HG007990 and grants from the W.M. Keck foundation and the Simons
Foundation.

Appendix 1

Lemma 5. A pair of vertices x, y are in the same component of B(D) iff their
projections are in the same component of C(D).

Proof. IF: Follows given that by definition no pair of vertices not connected in
B(D) project to the same vertex in C(D). ONLY IF: Follows given that aC(D) is
a graph homomorphism from B(D) to C(D) and graph homomorphisms preverse
connectedness.

Lemma 6. For a subset of edges X ⊂ EB(D), if the removal of the projection
of X disconnects C(D), then the removal of X disconnects B(D).

Proof. Follows given that graph homomorphisms preverse connectedness.

Lemma 7. The vertices in C(D) are the equivalence classes of 3-BEC in B(D).

Proof. Each pair of vertices B(D) that project to the same vertex in C(D)
are either/or-both connected by a path of grey edges (and hence 3-BEC) or
connected by at least three black-edge-disjoint paths (using Menger’s theorem).

Lemma 8. A black edge in B(D) is a bridge edge iff its projection in C(D) is
a bridge edge.

Proof. Let e = {x, x̂} ∈ EB(D).
ONLY IF: Suppose e is a bridge. As e is a bridge the vertices X reachable

from x without visiting x̂ are black edge connected only by e to the vertices
X ′ reachable from x̂ without visiting x. Given Lemma 7, it follows that the
projection of X and the projection of X ′ are disjoint, therefore the projection
of e is a bridge.

IF: Suppose e is not a bridge but its projection is. By definition there exists a
path in B(D) from x to x̂ that does not include e. As aC(D) is a homomorphism,
the projection of that path connects aC(D)(x) and aC(D)(x̂) without traversing
bC(D)(x) implying that it is not a bridge, a contradiction.

Superbubbles, Ultrabubbles and Cacti 187

Lemma 9. A maximal set of vertices in C(D) is 2-EC iff the union of its mem-
bers is a 2-BEC equivalence class of vertices in B(D).

Proof. Delete the black bridge edges in B(D) and the bridge edges in C(D) to
create B(D)′ and C(D)′, respectively. Each component is B(D)′ is, by definition
2-BEC, and similarly each component in C(D)′ is 2-EC. The proof follows from
Lemmas 5 and 8, by showing there exists a bijection between components in
B(D)′ and C(D)′ such that for each component X in B(D)′ all the vertices in
X project to vertices in the same component in C(D)′.

A cut pair is a pair of edges whose deletion disconnects the graph.

Lemma 10. A pair of edges in a 2-EC component of a cactus graph is a cut
pair iff both edges are contained within the same simple cycle.

Proof. By definition, a 2-EC component of a cactus graph is a set of simple
cycles connected by articulation (cut) vertices. It is easily verified that the such
a graph is and can only be disconnected by a pair of edges if they occur within
one such simple cycle.

Lemma 11. A pair of black edges (d, e) in a 2-BEC component X of B(D) is
a cut pair iff its projection is a cut pair in C(D).

Proof. Let X ′ be a vertex induced subgraph of the projection of X. By Lemma 9,
X ′ is a 2-EC component in C(D).

IF: If the deletion of the projection of d and e disconnects X ′ then, using
Lemma 6, the deletion of d and e disconnects X.

ONLY IF: If the projection of d and e are not a cut pair, by the definition of a
cactus graph and Lemma 10 the projection of d and e in X ′ are each members of
two distinct simple cycles. If the projection of d (similarly e) were a self loop then
its endpoints are 3-BEC, implying that after the deletion of d and e its endpoints
remain connected. This is impossible if the deletion of d and e disconnect the
2-EC component, hence each simple cycle containing the projection of d or e
has length greater than one. For any pair of distinct vertices x, y in B(D) that
project to the same vertex in C(D), there exists a path in B(D) that connects
them that excludes their incident black edges, because by Lemma 7 they are 3-
BEC, and are therefore either connected by a path of grey edges or, by Menger’s
theorem, connected by at least three edge disjoint paths containing black edges.
From this observation it is easily verified that the endpoints of d (and similarly
e) must be connected by a path Y in B(D) that includes the black edges that
project to the simple cycle containing d, in the order of the cycle, and which
excludes both d and e. This implies the endpoints of d (similarly e) remain
connected after the deletion of d and e, contradicting the claim they are a cut
pair.

Appendix 2

Lemma 12. Each snarl {x, y} in B(D) is either a chain pair or bridge pair.

188 B. Paten et al.

Proof. Using Lemma 5, both x and y must project to a vertex in the same
component of C(D) as they are connected in B(D).

Let d and e be the black edges incident with x and y, respectively. If d is a
bridge then e must be a bridge, or else by definition e connects two vertices in a
2-EC component X, the removal of d and e cannot therefore disconnect X, and
therefore y and ŷ, violating the snarl separation criteria. Using Lemma8, in this
case the projections of d and e must therefore also be bridges. If d and e are both
bridge edges but x and y do not project to the same vertex in D(D) (and are
therefore not a bridge pair) there exists an intermediate bridge edge bD(D)(z, ẑ)
on the path between aD(X)(x) and aD(X)(y). The deletion d, e and {z, ẑ} for
B(D) disconnects B(D) into distinct components, one contains x and z, one
contains ẑ and y, one contains x̂ and one contains ŷ. This implies {x, z} and
{ẑ, y} each fufill the separation criteria, contradicting the minimality of {x, y}.

If d and e are not bridges both must be in the same 2-BEC component or
contradict the separation criteria, by the same reasoning as earlier. In this case,
Lemma 9 implies both d and e must project edges in the same 2-EC component
in C(D). Lemmas 10 and 11 further imply they must project to edges in the
same simple cycle. If x and y do not project to the same vertex in C(D) (and
are therefore not a chain pair) then there exists an intermediate black edge
bC(D)(z, ẑ) on the path between aC(D)(x) and aC(D)(y) that excludes dD(D)(x̂)
and dD(D)(ŷ). As with the case that both d and e were bridge edges, this similarly
contradicts the minimality of {x, y}.

Lemma 13. Each chain pair or bridge pair {x, y} in B(D) is a snarl.

Proof. Lemmas 6 and 10 imply that {x, y} meet the separation criteria. It
remains to prove that {x, y} is minimal. If {x, y} is not minimal then there must
exist an intermediate edge bC(D)(z, ẑ) on a path between aC(D)(x) and aC(D)(y)
that excludes dC(D)(x̂) and dC(D)(ŷ), and which, using Lemma12, forms chain
or bridge pairs with aC(D)(x) and aC(D)(y). As aC(D)(x) = aC(D)(y) if {x, y}
is a chain pair, or aD(D)(x) = aD(D)(y) if {x, y} is a bridge pair, this is clearly
impossible.

References

1. Alekseyev, M.A., Pevzner, P.A.: Breakpoint graphs and ancestral genome recon-
structions. Genome Res. 19(5), 943–957 (2009). http://genome.cshlp.org/cgi/
content/abstract/19/5/943

2. Birmelé, E., Crescenzi, P., Ferreira, R., Grossi, R., Lacroix, V., Marino, A.,
Pisanti, N., Sacomoto, G., Sagot, M.-F.: Efficient bubble enumeration in directed
graphs. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N.
(eds.) SPIRE 2012. LNCS, vol. 7608, pp. 118–129. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34109-0 13

3. Brankovic, L., Iliopoulos, C.S., Kundu, R., Mohamed, M., Pissis, S.P., Vayani, F.:
Linear-time superbubble identification algorithm for genome assembly. Theor.
Comput. Sci. 609, 374–383 (2015). http://linkinghub.elsevier.com/retrieve/pii/
S0304397515009147

http://genome.cshlp.org/cgi/content/abstract/19/5/943
http://genome.cshlp.org/cgi/content/abstract/19/5/943
http://dx.doi.org/10.1007/978-3-642-34109-0_13
http://linkinghub.elsevier.com/retrieve/pii/S0304397515009147
http://linkinghub.elsevier.com/retrieve/pii/S0304397515009147

Superbubbles, Ultrabubbles and Cacti 189

4. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen 1(49), 758–764 (1946)

5. Consortium, G.P., et al.: A global reference for human genetic variation. Nature
526(7571), 68–74 (2015)

6. Edmonds, J., Johnson, E.L.: Matching: a well-solved class of integer linear pro-
grams. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization
— Eureka, You Shrink!. LNCS, vol. 2570, pp. 27–30. Springer, Heidelberg (2003).
doi:10.1007/3-540-36478-1 3

7. Harary, F., Uhlenbeck, G.E.: On the number of husimi trees: I. Proc. Natl. Acad.
Sci. U.S.A. 39(4), 315–322 (1953). http://www.ncbi.nlm.nih.gov/sites/entrez?
Db=pubmed&Cmd=Retrieve&list uids=16589268&dopt=abstractplus

8. Iliopoulos, C.S., Kundu, R., Mohamed, M., Vayani, F.: Popping superbubbles
and discovering clumps: recent developments in biological sequence analysis. In:
Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 3–14.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-30139-6 1

9. Medvedev, P., Brudno, M.: Maximum likelihood genome assembly. J. Comput.
Biol.: J. Comput. Mol. Cell Biol. 16(8), 1101–1116 (2009). http://www.liebert
online.com/doi/abs/10.1089/cmb.2009.0047

10. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(2), ii79–ii85
(2005). http://bioinformatics.oxfordjournals.org/content/21/suppl 2/ii79.long.
(Oxford, England)

11. Onodera, T., Sadakane, K., Shibuya, T.: Detecting superbubbles in assembly
graphs. In: Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 338–
348. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40453-5 26

12. Paten, B., Diekhans, M., Earl, D., John, J.S., Ma, J., Suh, B., Haussler, D.: Cactus
graphs for genome comparisons. J. Comput. Biol.: J. Comput. Mol. Cell Biol. 18(3),
469–481 (2011). http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=
pubmed&id=21385048&retmode=ref&cmd=prlinks

13. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Natl. Acad. Sci. U.S.A. 98(17), 9748–9753 (2001). http://
www.pnas.org/cgi/content/full/98/17/9748

14. Pevzner, P.: Computational Molecular Biology: An Algorithmic Approach. MIT
Press, Cambridge (2000)

15. Sung, W.K., Sadakane, K., Shibuya, T., Belorkar, A., Pyrogova, I.: An
O(m logm)-time algorithm for detecting super bubbles. IEEE/ACM Trans.
Comput. Biol. Bioinf. 12(4), 770–777 (2015). http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6998850

16. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res. 18(5), 821–829 (2008).
http://www.genome.org/cgi/content/full/18/5/821

http://dx.doi.org/10.1007/3-540-36478-1_3
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Retrieve&list_uids=16589268&dopt=abstractplus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Retrieve&list_uids=16589268&dopt=abstractplus
http://dx.doi.org/10.1007/978-3-319-30139-6_1
http://www.liebertonline.com/doi/abs/10.1089/cmb.2009.0047
http://www.liebertonline.com/doi/abs/10.1089/cmb.2009.0047
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.long
http://dx.doi.org/10.1007/978-3-642-40453-5_26
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21385048&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21385048&retmode=ref&cmd=prlinks
http://www.pnas.org/cgi/content/full/98/17/9748
http://www.pnas.org/cgi/content/full/98/17/9748
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6998850
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6998850
http://www.genome.org/cgi/content/full/18/5/821

EPR-Dictionaries: A Practical and Fast Data
Structure for Constant Time Searches

in Unidirectional and Bidirectional FM Indices

Christopher Pockrandt1,2(B), Marcel Ehrhardt1, and Knut Reinert1

1 Department of Computer Science and Mathematics, Freie Universität Berlin,
Berlin, Germany

christopher.pockrandt@fu-berlin.de
2 International Max Planck Research

School for Computational Biology and Scientific Computation, Berlin, Germany
http://reinert-lab.de

Abstract. The unidirectional FM index was introduced by Ferragina
and Manzini in 2000 and allows to search a pattern in the index in one
direction. The bidirectional FM index (2FM) was introduced by Lam et
al. in 2009. It allows to search for a pattern by extending an infix of
the pattern arbitrarily to the left or right. If σ is the size of the alpha-
bet then the method of Lam et al. can conduct one step in time O(σ)
while needing space O(σ ·n) using constant time rank queries on bit vec-
tors. Schnattinger and colleagues improved this time to O(log σ) while
using O(log σ · n) bits of space for both, the FM and 2FM index. This is
achieved by the use of binary wavelet trees.

In this paper we introduce a new, practical method for conducting an
exact search in a uni- and bidirectional FM index in O(1) time per step
while using O(log σ · n) + o(log σ · σ · n) bits of space. This is done by
replacing the binary wavelet tree by a new data structure, the Enhanced
Prefixsum Rank dictionary (EPR-dictionary).

We implemented this method in the SeqAn C++ library and experi-
mentally validated our theoretical results. In addition we compared our
implementation with other freely available implementations of bidirec-
tional indices and show that we are between ≈ 2.2−4.2 times faster. This
will have a large impact for many bioinformatics applications that rely
on practical implementations of (2)FM indices e.g. for read mapping. To
our knowledge this is the first implementation of a constant time method
for a search step in 2FM indices.

Keywords: FM index · Bidirectional · BWT · Bit vector · Rank
queries · Read mapping

1 Introduction

It is seldom that new data structures or algorithms have such a large practical
impact as full text indices had for biological sequence analysis. The so-called
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 190–206, 2017.
DOI: 10.1007/978-3-319-56970-3 12

EPR-Dictionaries: Constant Time Searches in FM and 2FM Indices 191

next-generation sequencing (NGS) allows to produce billions of small DNA
strings called reads, usually of length 100–250. It is an invaluable technology
for a multitude of applications in biomedicine. In many of these applications
finding the positions of the strings in a reference (i.e., a large string of length
≈ 107 − 1010) is the first fundamental step preceding downstream analyses. The
strings in question can be over different alphabets like DNA (size 4), proteins
(size 27 if ambiguity characters are counted), or reduced protein alphabets (like
Murphy10 of size 10 which is used in transcriptome search in [9,22]).

This has triggered a plethora of work in the field to implement fast and
accurate read mappers or local search tools. Many of the popular programs
like Bowtie2 [13], BWA [15], BWA-Mem [14], Masai [21], Yara [20], GEM [18],
Lambda [9], and Rapsearch [22] use as their main data structure a version of
the FM index [5] that was introduced by Ferragina and Manzini in 2000. The
FM index is based on the Burrows-Wheeler transform (BWT) [3] of the given
text, i.e., the genomes at hand, and conceptually some lookup tables containing
counts of characters in prefixes of the text. In its original form it allows to
search exactly for a pattern in one direction by matching the characters of the
pattern with characters in the BWT [3] (i.e., extending a suffix of the pattern
character by character to the left). It was later extended to the 2FM index by
Lam et al. [11] and Schnattinger et al. [19]. The 2FM index allows to search
in both directions, that means we can extend an infix of a pattern arbitrarily
to the left or to the right. In order to reduce its space requirements, the count
tables are in practice replaced by efficient bit vector data structures with rank
support (see for example [10]). The search method of Lam et al. can conduct
one search step in a 2FM index in time O(σ) while needing space O(σ · n) using
constant time rank queries on bit vectors. Schnattinger et al. improved this time
to O(log σ) while using O(log σ · n) bits of space for both, the FM and 2FM
index. This is achieved by the use of binary wavelet trees introduced by Grossi
et al. [8]. In the last years several theoretical results appeared that improved on
this. However, none of those has found a way into a practical implementation.

In this paper we introduce a new method for conducting an exact search in
a uni- and bidirectional FM index that needs O(1) time per step while using
O(log σ · n) + o(log σ · σ · n) bits of space. This is done by replacing the binary
wavelet tree by a new data structure, the Enhanced Prefixsum Rank dictionary
(EPR-dictionary). To our knowledge this is the first implementation of a constant
time method for 2FM indices. We will show, that the method outperforms other
implementations by several factors at the expense of a slight increase in memory
usage resulting in a very practical method independent of the size of the alphabet
used in the application.

In the following paragraph we will review the concepts of the FM and 2FM
index as well as constant time rank queries very shortly (readers unfamiliar with
this can find a more detailed description in the appendix).

192 C. Pockrandt et al.

1.1 Introduction to the FM and 2FM Index

Given a text T of length n over an ordered, finite alphabet Σ = {c1, . . . , cσ}
with ∀ 1 ≤ i < σ : ci <lex ci+1, let T [i] denote the character at position i in
T , · the concatenation operator and T [1..i] the prefix of T up to the character
at position i. T rev represents the reversed text. We assume that T ends with
a sentinel character $ /∈ Σ that does not occur in any other position in T and
is lexicographically smaller than any character in Σ. The FM index needs the
Burrows-Wheeler transform (BWT) of T . The BWT is the concatenation of
characters in the last column of all lexicographically sorted cyclic permutations
of the string T . We will refer to the BWT as L.

In contrast to suffix trees or suffix arrays, where a prefix P of a pattern is
extended by characters to the right (referred to as forward search P → Pc for c ∈
Σ), the FM index can only be searched using backward searches, i.e., extending
a suffix P ′ by characters to the left, P ′ → cP ′. Performing a single character
backward search of c in the FM index will require two pieces of information.
First, C(c), the number of characters in L that are lexicographically smaller
than c, second, Occ(c, i), the number of c’s in L[1..i]. Given a range [a, b] for
P ; i.e., the range in the sorted list of cyclic permutations that start with P , we
can compute the range [a′, b′] for cP as follows: [a′, b′] = [C(c) + Occ(c, a − 1) +
1, C(c) + Occ(c, b)].

The 2FM index maintains two FM indices I and Irev, one for the original text
T and one for the reversed text T rev. Searching a pattern left to right on the orig-
inal text (i.e., conducting a forward search) corresponds to a backward search in
Irev; searching a pattern right to left in the original text corresponds to a back-
ward search in I. The difficulty is to keep both indices synchronized whenever a
search step is performed. W.l.o.g. we assume that we want to extend the pattern
to the right, i.e., perform a forward search P → Pcj for some character cj . First,
the backward search P rev → cjP

rev is carried out on Irev and its new range
[a′

rev, b′
rev] = [C(cj)+Occ(cj , arev−1)+1, C(cj)+Occ(cj , brev)] is computed. The

new range in I can be calculated using the interval [a, b] for P in I and the range
size of the reversed texts index [a′, b′] = [a + smaller, a + smaller + b′

rev − a′
rev].

To compute smaller, e.g. Lam et al. [11] propose to perform O(σ) backward
searches P rev → ciP

rev for all 1 ≤ i < j and sum up the range sizes, i.e.,
smaller =

∑
1≤i<j Occ(ci, brev) − ∑

1≤i<j Occ(ci, arev − 1) leading to a total
running time of O(σ).

The implementation of the occurrence table Occ is usually not done by
storing explicitly the values of the entire table. Instead of storing the entire
Occ : Σ × {1, . . . , n} → {1, . . . , n} one uses the more space-efficient constant
time rank dictionary : for every c ∈ Σ a bit vector Bc[1..n] is constructed such
that Bc[i] = 1 if and only if L[i] = c. Thus the occurrence value equals the num-
ber of 1’s in Bc[1..i], i.e., Occ(c, i) = rank(Bc, i). Jacobson [10] showed that rank
queries can be answered in constant time using only o(n) additional space per
bit vector by employing a sum of two count arrays (i.e., blocks and superblocks)
and a final in-block count. Since then many other constant time rank query
data structures have been proposed. For an overview we refer the reader to [17]

EPR-Dictionaries: Constant Time Searches in FM and 2FM Indices 193

containing a comparison of various implementations. For readers unfamiliar with
2-level rank dictionaries, an explanation is given in the appendix.

1.2 Recent Improvements on the FM and 2FM Index

For large alphabets, it is not practical to maintain for each character a bit vector
with rank support. In 2003 Grossi et al. [8] proposed the use of a more space
efficient data structure for the FM index, called the (binary) wavelet tree (WT)
that was later used by Schnattinger [19] for an implementation of bidirectional
FM indices. It is a binary tree of height O(log σ) with a bit vector of length n with
rank support at each level. This reduces the space consumption by a factor of
O(log σ

σ) in trade-off for an increased running time of O(log σ). Schnattinger used
the fact that not only the rank query for a given character c can be computed
in O(log σ) but also the smaller value can be computed in the same asymptotic
time which is quite convenient for the 2FM index. Ferragina et al. proposed a
new data structure in 2007 [6], the multi-ary wavelet tree, which could be used
to speed up the needed rank queries of 2FM indices. In 2013 Belazzougui et al.
proposed the first constant-time bidirectional FM index [1] using minimal perfect
hashing, of which to our knowledge no implementation exists (see also [2] for an
extended version). Our solution is based on the use of support data structures
of bit vectors with rank support and the direct use of the BWT. This proved
so far to be very fast in practice, in particular due to the popcount machine
operation. The resulting data structure is implemented in the latest release 2.3
of the SeqAn library.

2 Theoretical Results

In this section we present the main results of this paper. They are based on a
simple observation and a new bit vector data structure with rank query support
which allows us to improve upon the results of Lam and Schnattinger. Our
proposed method runs in constant time per step while using O(log σ ·n)+o(log σ ·
σ · n) bits of space for small alphabets (i.e., σ < log(n)/ log log(n)) which is in
theory inferior in space consumption to the results of mentioned above (see [1]),
but in practice very fast, and presents to our knowledge the first constant time
implementation of 2FM indices with this space complexity.

Our first observation is simple. Instead of defining a bit vector for each c ∈ Σ
to map characters equal to c in L to 1’s, we suggest using prefix sum bit vectors
PBc, i.e., PBc[i] = 1 if and only if L[i] ≤lex c for c ∈ Σ.

Theorem 1. A step in a bidirectional search can be performed in time O(1)
using O(σ · n) bits of space.

Proof. We define Prefix-Occ(cj , i) = rank(PBcj
, i); that means it counts the

number of occurrences of a character lexicographically smaller or equal than
cj up to position i. Prefix-Occ(cj , i) and thus the smaller value for the 2FM

194 C. Pockrandt et al.

index can now be computed by a single rank query rank(PBcj
, i), the origi-

nal Occ(cj , i) value for backward searches needs only two rank queries and a
subtraction, namely Occ(cj , i) = rank(PBcj

, i) − rank(PBcj−1 , i) (for the lexi-
cographically smallest character c0 no subtraction is necessary).

Note that the bit vector for the lexicographically largest character can be
omitted, since all bits will be set to 1 and thus rank(PBcσ

, i) = i, ∀ 1 ≤ i ≤ n.
Our next idea is the main result of this work and will allow us to reduce

the space complexity for both the FM and the 2FM index while maintaining
the optimal running time of O(1) per search step. Instead of using normal bit
vectors we use directly the binary encoding of the BWT (an idea already used by
BWT-SW [12]). We call our data structure EPR-dictionary, short for Enhanced
Prefixsum Rank dictionary.

2.1 The EPR-Dictionary

The general idea of the EPR-dictionary is as follows. Assuming an ordered alpha-
bet Σ = {c1, . . . , cσ}, each character ci is encoded by the binary value ord2(ci)
of its rank i. Conceptually, we use the binary representation of the BWT to
derive from it a spaced bit vector representation for PBc for each s ∈ Σ. Then
we compute the auxiliary data structures (i.e., blocks and superblocks (see also
appendix)) for each of those vectors. After we have those auxiliary structures
which only need o(n) bits space, we delete the bit vectors and only retain the
BWT. In practice the blocks and superblocks are computed directly by a linear
scan on the BWT. For the last in-block query, we show how to derive the counts
Prefix-Occ(cj , i) from the BWT in constant time using a number of logical and
arithmetic operations.

W.l.o.g. we assume that the block length is an even multiple of log σ to avoid
case distinctions in the proof. In practice this holds since the in-block query is
performed with popcounts on registers the length of which is a power of 2. All
bitmasks used for computing the in-block rank are exactly as long as a block.
For a character cj we define the rank bitmask rb(cj) to be a binary sequence of
concatenations of the pattern 0�log σ�−11 ·ord2(cj), i.e., �log σ�−1 many bits set
to 0 followed by a 1 followed by the binary encoding of the character cj . For the
DNA alphabet with Σ = {A,C,G, T} and its binary encodings {00, 01, 10, 11}
the rank bitmask for G ∈ Σ is for example rb(G) = 01 · 10 · 01 · 10

Counting the characters inside a block is done in two steps. The characters at
even and odd positions are counted separately to generate space for an overflow
bit. Therefore we need a bitmask ME masking characters at even positions from
the bit vector. ME has 1s for each even block of length �log σ�, i.e., ME =
00 · 11 · 00 · 11 · 00 · 11 Finally, we need a bitmask BM which filters out the
lowest bit of each odd log σ block, i.e., BM = 01 ·00 ·01 ·00 ·01 ·00 . . . for σ = 4.

Step 1. We first take the characters at odd positions inside the corresponding
block of the BWT, subtract it from rb(ci), which will result in the rightmost bit
of even character positions to be set to 1 if and only if the character to the right

EPR-Dictionaries: Constant Time Searches in FM and 2FM Indices 195

is smaller or equal to ci. We then obtain exactly those bits by masking with
BM .

BEPR(ci)E = (rb(ci) − (BWT&ME))&BM

Step 2. We then take the characters at even positions inside the corresponding
block of the BWT by shifting them �log σ� bits to the right and masking with
ME . We can now continue as in step 1 by subtracting it from rb(ci), which will
again result in a 1 bit in the rightmost bit of even character positions to be set
to 1 if and only if the character to the right is smaller or equal to ci. We then
apply the bitmask BM to filter only these rightmost bits.

BEPR(ci)O = (rb(ci) − ((�log σ� BWT)&ME))&BM

Finally both bit vectors are merged with one of them shifted by 1 to the
left avoiding the rightmost bits to overlap. In practice this is faster than two
popcount operations.

BEPR(ci) = BEPR(ci)E |(
1 BEPR(ci)O)

Since we used the binary encoding of the BWT, note that the underlying
rank queries have to be adapted to Prefix-Occ(cj , i) = rank(BEPR(cj), (i−1) ·
�log σ�+1). It follows directly that Occ(cj , i) can by computed in constant time
by observing that

Occ(cj , i) =

{
Prefix-Occ(cj , i) − Prefix-Occ(cj−1, i) if j > 0
Prefix-Occ(cj , i) otherwise

The EPR-transformed bit vector BEPR(cj) is now a “normal” bit vector and
thus allows us to compute the prefix sums for a string in constant time. This
improves the running time of the 2FM index and makes it optimal in terms of
speed.

Let us now take a look at the space consumption. For our exposition we
define the block length of � =

⌊
log n
2

⌋
(if � is not a multiple of �log σ� padding

strategies can be applied). Given a BEPR(cj), for the m-th superblock we count
the number of 1’s (i.e., the number of occurrences of characters smaller or equal
to cj in the corresponding BWT) from the beginning of BEPR to the end of

the superblock in M ′[m][j] = rank(BEPR(cj),m · �2). As there are
⌊

�log σ�·n
�2

⌋

superblocks and σ characters, M ′ can be stored in

O
(

σ · log σ · n

�2
· log n

)

= O
(

σ · log σ · n

log n

)

= o(σ log σ · n)

bits. For the m-th block we count the number of 1’s from the beginning of the
overlapping superblock to the end of the block in M [m][j] = rank

(
BEPR[1 +

k�..n](cj), (m − k)�
)

where k =
⌊

m−1
�

⌋
� is the number of blocks left of the

196 C. Pockrandt et al.

rb(G) 01 10 01 10 01 10 01 10
BWT&ME − 00 01 00 01 00 11 00 11

- (C) - (C) - (T) - (T)

= 01 01 01 01 00 11 00 11
BM & 01 00 01 00 01 00 01 00

BEPR(G)E = 01 00 01 00 00 00 00 00

(a) step 1

rb(G) 01 10 01 10 01 10 01 10
(��log σ� BWT)&ME − 00 00 00 10 00 10 00 00

- (A) - (G) - (G) - (A)

= 01 10 01 00 01 00 01 10
BM & 01 00 01 00 01 00 01 00

BEPR(G)O = 01 00 01 00 01 00 01 00

(b) step 2

BEPR(G)E 01 00 01 00 00 00 00 00
�1 BEPR(G)O | 10 00 10 00 10 00 10 00

BEPR(G) = 11 00 11 00 10 00 10 00
popcount = 6

(c) retrieving BEPR(G)

Fig. 1. An example for Σ = {A, C, G, T} that shows how to perform an in-block rank
query for characters smaller or equal to G of the BWT substring ACGCGTAT . The
resulting bit vector BEPR(G) has a 1 for each character smaller or equal to G., i.e., all
positions except those with a T .

overlapping superblock. M has
⌊

�log σ�·n
�

⌋
entries for every character and can be

stored in

O
(

σ · log σ · n

�
· log �2

)

= O
(

σ · log σ · n · log log n

log n

)

= o(σ log σ · n)

bits.
Let P be a precomputed lookup table such that for each possible infix V of

a bit vector BEPR(cj) of length �, i ∈
[
1..

⌊
�

log σ

⌋]
and cj ∈ Σ holds P [V][i] =

rank(V, (i−1) · �log σ�+1). There are 2� ·
⌊

�
log σ

⌋
entries of value at most

⌊
�

log σ

⌋

and thus can be stored in

O
(

2� · �

log σ
· log

�

log σ

)

= O
(
2

log n
2 · log(n − σ) · log log(n − σ)

)
=

O (√
n · log n · log log n

)
= o(n)

bits. Note that we do need this lookup table only once, since the position
and counting of the bits set to 1 is the same for all characters.

Equivalent to Theorem 1, we do not need to store blocks and superblocks for
cσ since rank(BEPR(cσ), i) = i, ∀ 1 ≤ i ≤ n.

EPR-Dictionaries: Constant Time Searches in FM and 2FM Indices 197

Theorem 2 (Constant time prefix sum query). One search step in an FM
index or 2FM index can be performed in O(1) time using O(log σ·n)+o(log σ·σ·n)
bits of space.

Proof. The BWT can be stored in O(log σ · n), all the blocks, superblocks, and
lookup table P in o(log σ · σ · n) bits. A prefix sum rank query requires one
superblock and block lookup as well as a constant number of arithmetic and
logical operations on the last block which run all in constant time.

3 Experimental Results

In this Section we will conduct computational experiments to validate our the-
oretical findings and to compare our FM and 2FM indices to another available
implementation. All of our tests were conducted on Debian GNU/Linux 7.1
with Intel� Xeon� E5-2667V2 CPUs at fixed frequency of 3.3 GHz to prevent
dynamic overclocking effects. All data was stored on tmpfs, a virtual file system
in main memory to prevent loading data just on demand during the search and
thus effecting the speed of the search by I/O operations.

In the first part of the experiments we will test FM and 2FM indices with our
new data structure (EPR) in comparison to the wavelet tree (WT) implemen-
tation which was previously the generic standard implementation in SeqAn [4].
Additionally we will run the same benchmarks for other available 2FM imple-
mentations, namely the bidirectional wavelet tree by Schnattinger et al. [19]
which we will call 2SCH and the balanced wavelet tree implementation with
plain bit vectors and constant-time rank support in the SDSL [7] which we will
refer to as 2SDSL.

The 2BWT by Lam et al. [12] is not generic and only works for DNA alpha-
bets. We also were not able to retrieve all hits when switching between forward
and backward searches on the same pattern. Unfortunately we couldn’t reach
the authors and thus excluded 2BWT from our comparisons.

Another implementation that is worth mentioning is the affix array by Meyer
et al. [16]. Even though the affix array implementation is generic, the construc-
tion algorithm did not terminate for alphabets other than DNA in a reasonable
amount of time (several days). Unfortunately the affix array is not stand-alone
but part of an application and does not provide a documented interface. Hence
we were not able to include the affix array in our tests within a reasonable time
frame. Meyer compares the running time of their affix array implementation with
2SCH and states that the affix array is faster by a factor of 1.26 to 2. From that
we can conclude that our 2FM index implementation using the EPR-dictionary
is expected to be faster than the affix array implementation (see below).

3.1 Runtime and Space Consumption

For the first benchmark we want to make a comparison with alphabets of different
sizes to test the predicted independence from σ for the EPR implementation.

198 C. Pockrandt et al.

The alphabet sizes are inspired by bioinformatics applications and are of size 4
(DNA), 10 (reduced amino acid alphabet Murphy10), 16 (IUPAC alphabet) and
27 (protein alphabet).

We first generated a text of length 108 with a uniform distribution and sam-
pled 1 million queries of length 200 from this text. The search in the FM and
2FM indices will determine the number of occurrences of the sampled strings.
Our sampling will ensure that the text occurs at least once and the stepwise
search is never prematurely stopped. This ensures that we have 200 million sin-
gle steps in searches. The unidirectional FM indices perform backward searches
while for 2FM indices we search the right half of the query first (using forward
searches) and then extend the other half of the pattern to the left by backward
searches. The results were also verified on real-world data. Running the same
tests on chromosome 13 of the human genome (with unknown bases removed
and a length of 108 bases left) did not show any measurable difference compared
to the generated data sets.

In the following we will refer to WT and EPR as unidirectional FM indices
and to 2WT and 2EPR as bidirectional FM indices, all part of the SeqAn library.

Table 1 gives an overview of the running times of all FM and 2FM index
implementations. It shows the absolute runtimes as well as the speedup fac-
tor relative to the unidirectional resp. bidirectional wavelet tree implementa-
tion. WT, 2WT, 2SCH, 2SDSL are all based on wavelet trees. Our bidirectional
wavelet tree implementation 2WT has a similar runtime compared to 2SDSL. It
is slightly faster especially for small alphabets.

Table 1. Runtimes of various implementations in seconds and their speedup factors
with respect to the unidirectional respectively bidirectional wavelet tree.

Index DNA Murphy10 IUPAC Protein

Time Factor Time Factor Time Factor Time Factor

WT 20.73s 1.00 52.35s 1.00 66.45s 1.00 85.55s 1.00

EPR 15.09s 1.37 22.27s 2.35 23.39s 2.84 25.31s 3.38

2WT 41.21s 1.00 66.59s 1.00 98.74s 1.00 120.96s 1.00

2EPR 20.09s 2.05 23.80s 2.80 24.39s 4.05 26.08s 4.64

2SDSL 43.54s 0.95 74.69s 0.89 89.07s 1.11 109.44s 1.11

2SCH 59.59s 0.69 91.30s 0.73 107.04s 0.92 129.98s 0.93

Compared to the wavelet tree implementations the EPR implementation is
between 40% (for DNA) and 240% (Protein) faster for unidirectional indices and
between 110% (for DNA) and 360% (Protein) faster for bidirectional indices.

Since we anticipate the application of 2EPR to bioinformatics applications,
we also compared the runtime of all implementations using the complete human
genome sequence. We again searched one million sampled strings of length 200
exactly as described above. The relative results were very similar to the ones in

EPR-Dictionaries: Constant Time Searches in FM and 2FM Indices 199

Table 1, indeed even slightly better. 2SCH crashed with this data set. 2SDSL was
the slowest implementation (46.69s) followed by 2WT (1.4 times as fast) and by
2EPR (2.1 times as fast as 2SDSL) which was again the fastest implementation.

Our experiments also show that we were indeed able to eliminate the log σ
factor of wavelet trees in practice, as predicted by Theorem2. While the runtime
for the WT implementations grows for larger alphabets with log σ the runtime
of EPR and 2EPR increases only slightly for larger alphabets which can be
explained by larger indices and therefore more cache misses. This can be seen in
the following Figure in which we plot the runtime for EPR for different alpha-
bets and the runtime of WT divided by log σ. The resulting times develop very
similarly.

5 10 15 20 25

15

20

25

30

Alphabet size

R
u
n
ti

m
e

in
s

2EPR
2WT
log σ

Fig. 2. Plot of the runtime for EPR for different alphabets and the runtime of WT
divided by log σ.

When we compare the runtimes of the EPR and 2EPR, they behave as
expected, i.e., the unidirectional index is slightly faster, since in each step of
the bidirectional index we have to synchronize two indices.

All indices implemented in SeqAn (WT, EPR, 2WT, 2EPR) support up to
3 levels for rank dictionary support: blocks, superblocks and ultrablocks. The
tests presented here were performed with a 2-level rank dictionary similar to the
one explained in Sect. 2.1 (or in the Appendix). Table 2 illustrates the practical
space consumption for all previously discussed indices and of the affix array for
DNA (larger alphabets did not finish within several days).

Please note, that the other implementations may use versions of rank dic-
tionaries different to the simple one explained in Sect. 2.1. The numbers of FM
indices given in Table 2 do neither account for storing the text itself nor for stor-
ing a compressed suffix array necessary to locate the matches in the text since the
libraries use different implementations offering various space-time trade-offs. The
running time of the backward and forward searches does not depend on it and

200 C. Pockrandt et al.

the compressed suffix array implementation is independent from the used rank
dictionary and thus interchangeable. A typical compressed suffix array imple-
mentation as used in the 2SDSL takes n

η log n (when sampling on the text instead
of the suffix array). For a sampling rate of 10% (η = 10) the space consumption
for our experiments would be 253 MB and thus still much smaller than the affix
array.

Table 2. Space consumption of the rank data structure in Megabyte of various imple-
mentations

Index DNA Murphy10 IUPAC Protein

EPR 42 156 227 478

2EPR 84 311 454 955

WT 30 51 60 72

2WT 60 102 120 144

2SDSL 68 105 122 145

2SCH 75 108 123 146

AF 2670 - - -

The current implementation of the EPR and 2EPR in SeqAn interleaves the
bit vector (i.e., the BWT) and precomputed block values but does not interleave
superblock values. Reconsidering the design and storing block and superblock
values close to the corresponding bit vector region could decrease the number of
cache misses for one rank query to one cache miss and thus further improve the
running time.

For larger alphabets one might also consider using a 3-level rank dictionary
with smaller data types for blocks and superblocks which will reduce the space
consumption noticeably at the expense of a higher runtime (i.e., for the pro-
tein alphabet we reduce the space consumption from 955 MB to 581 MB while
increasing the runtime from 26.08 to 35.13 s). Thus it is still faster than the 2WT
by a facter of 3.4. The increased running time is due to another array lookup
and thus still constant-time per step.

3.2 Effect of the Low Order Terms for Space Consumption

In Table 3 we show how quickly the o(log σ · σ · n) data structures for rank
queries can be neglected for growing n. For the WT and EPR implementations
we measured the space needed for both the DNA and the IUPAC alphabet for
n = 104, 105, 106, 107, 108, 109. We then divided the space consumption of both
implementations by the factor in the O-term, namely log σ · n.

For growing n the O-term should dominate the low order o-term, hence we
would expect the resulting number converge to a constant. This is indeed true,
as can be seen in Table 3. The EPR implementation converges faster than the

EPR-Dictionaries: Constant Time Searches in FM and 2FM Indices 201

WT, which is expected, since our o-term is larger than the one for the WT
implementations. The effect of the o-terms falls for EPR from 105 to 106 by 35
resp. 6 percent, whereas the decline for WT is steeper with 84 and 123 percent.
From size 107 on, the low order terms are clearly dominated by the O-terms.

Table 3. Influence of the space consumption of the o-terms with increasing n.

Method (σ) 104 105 106 107 108 109

EPR (4) 2.4000 0.6000 0.4440 0.4292 0.4276 0.4274

EPR (16) 2.0000 1.2400 1.1680 1.1610 1.1602 1.1601

WT (4) 4.4000 0.6400 0.3480 0.3088 0.3056 0.3053

WT (16) 7.0000 0.8000 0.3580 0.3104 0.3057 0.3053

4 Conclusions

In this paper we have introduced a new data structure, the EPR-dictionary,
that enables constant time prefix sum computations for arbitrary, finite alpha-
bets in O(log σ ·n)+o(log σ ·σ ·n) bits of space and works directly on the BWT.
This allows two important data structures, the FM and 2FM index, to perform
single search steps in time O(1). We implemented the dictionary in the C++
library SeqAn and used it for an implementation of an FM and 2FM index.
We compared its practical performance with the previous SeqAn implementa-
tion using wavelet trees and with other openly available implementations, among
them the quasi standard for succinct data structures, the SDSL. We show that
the EPR-dictionary implementation supports our theoretical claims, eliminates
the log σ factor for searching in bidirectional indices, and performs between 40%
and 360% faster than the wavelet tree implementation at the expense of a higher
memory consumption. We compared our 2FM implementation against the avail-
able, open implementation of Schnattinger et al. (2SCH). Our implementation is
between 3 to 5 times faster than 2SCH and 2.2 to 4.2 faster than the 2SDSL. We
also showed that the additional space consumption is easily tolerable on normal
hardware.

Acknowledgments. We would like to acknowledge Enrico Siragusa for his previous
implementations of the FM index in SeqAn. The first author acknowledges the support
of the International Max-Planck Research School for Computational Biology and Sci-
entific Computing (IMPRS-CBSC). We also thank Veli Mäkinen and Simon Gog for
very helpful remarks on a previous version of this manuscript during the Dagstuhl sem-
inar 16351 “Next Generation Sequencing - Algorithms, and Software For Biomedical
Applications”.

202 C. Pockrandt et al.

Appendix

In the appendix we give for the reader not familiar with FM and 2FM indices a
short introduction.

Introduction to the FM and 2FM Index

Given a text T of length n over an ordered, finite alphabet Σ = {c1, . . . , cσ}
with ∀ 1 ≤ i < σ : ci <lex ci+1, let T [i] denote the character at position i in
T , · the concatenation operator and T [1..i] the prefix of T up to the character
at position i. T rev represents the reversed text. We assume that T ends with
a sentinel character $ /∈ Σ that does not occur in any other position in T and
is lexicographically smaller than any character in Σ. The FM index needs the
Burrows-Wheeler transform (BWT) of T . The BWT is the concatenation of
characters in the last column of all lexicographically sorted cyclic permutations
of the string T (see Fig. 3 for an example). We will refer to the BWT as L.

F L

a → $ mississipp i

i $mississip p

i ppi$missis s

i ssippi$mis s

i ssissippi$ m

m ississippi $

p i$mississi p

p pi$mississ i

s ippi$missi s

s issippi$mi s

s sippi$miss i

b → s sissippi$m i

a = 1
b = 12

⇒

F L

$ mississipp i

i $mississip p

i ppi$missis s

i ssippi$mis s

i ssissippi$ m

m ississippi $

p i$mississi p

p pi$mississ i

s ippi$missi s

s issippi$mi s

s sippi$miss i

s sissippi$m i

a′ = C(i) + Occ(i, 0) + 1 = 1 + 0 + 1
b′ = C(i) + Occ(i, 12) = 1 + 4

Fig. 3. First step of the backwards search for P = ssi in the FM index for the text T =
mississippi$. The first interval [a, b] is the whole range [1, 12]. From all matrix rows
we search those beginning with the last pattern character P [3] = i. From Occ(i, 1) = 0
and Occ(i, 12) = 4 follows a′ = C(i) + 0 + 1 = 2 and b′ = C(i) + 4 = 5.

In contrast to suffix trees or suffix arrays, where a prefix P of a pattern is
extended by characters to the right (referred to as forward search P → Pc for
c ∈ Σ), the FM index can only be searched using backward search, i.e., extending
a suffix P ′ by characters to the left, P ′ → cP ′. Performing a single character
backward search of c in the FM index will require two pieces of information.

EPR-Dictionaries: Constant Time Searches in FM and 2FM Indices 203

First, C(c), the number of characters in L that are lexicographically smaller
than c, second, Occ(c, i), the number of c’s in L[1..i]. Given a range [a, b] for P ;
i.e., the range in the sorted list of cyclic permutations that starts with P , we
can compute the range [a′, b′] for cP as follows: [a′, b′] = [C(c) + Occ(c, a − 1) +
1, C(c) + Occ(c, b)]. We will refer to the BWT together with tables C and Occ
as FM index I (see Fig. 3 for an example of one search step).

The 2FM index maintains two FM indices I and Irev, one for the original text
T and one for the reversed text T rev. Searching a pattern left to right on the orig-
inal text (i.e., conducting a forward search) corresponds to a backward search in
Irev; searching a pattern right to left in the original text corresponds to a back-
ward search in I. The difficulty is to keep both indices synchronized whenever a
search step is performed. W.l.o.g. we assume that we want to extend the pattern
to the right, i.e., perform a forward search P → Pcj for some character cj . First,
the backward search P rev → cjP

rev is carried out on Irev and its new range
[a′

rev, b′
rev] = [C(cj)+Occ(cj , arev−1)+1, C(cj)+Occ(cj , brev)] is computed. The

new range in I can be calculated using the interval [a, b] for P in I and the range
size of the reversed texts index [a′, b′] = [a + smaller, a + smaller + b′

rev − a′
rev].

To compute smaller, Lam et al. [11] propose to perform O(σ) backward
searches P rev → ciP

rev for all 1 ≤ i < j and sum up the range sizes, i.e.,
smaller =

∑
1≤i<j Occ(ci, brev) − ∑

1≤i<j Occ(ci, arev − 1) leading to a total
running time of O(σ) (See Fig. 4 for an illustration).

I

Pcj
P

a

a′

b′

b

Irev

P rev

cj P rev

cj−2P
rev

cj−1P
rev

a′
rev

b′
rev

arev

brev

Fig. 4. When conducting a forward search P ⇒ Pcj we need to determine the subinter-
val of the suffix array interval for P which is depicted on the left. In order to determine
the start, we can compute in Irev the size of the intervals for all characters smaller
then cj , depicted in dark gray on the right. The sum of all those sizes is exactly the
needed offset from the beginning of the interval for P in I.

The implementation of the occurrence table Occ is usually not done by
storing explicitly the values of the entire table. Instead of storing the entire
Occ : Σ × {1, . . . , n} → {1, . . . , n} one uses the more space-efficient constant
time rank dictionary : for every c ∈ Σ a bit vector Bc[1..n] is constructed such

204 C. Pockrandt et al.

that Bc[i] = 1 if and only if L[i] = c. Thus the occurrence value equals the num-
ber of 1’s in Bc[1..i], i.e., Occ(c, i) = rank(Bc, i). Jacobson [10] showed that rank
queries can be answered in constant time using only o(n) additional space per
bit vector. Since then many other constant time rank query data structures have
been proposed. For an overview we refer the reader to [17] containing a compar-
ison of various implementations. Since we will make also use of this technique,
we explain the most simple idea, namely the one for 2-level rank dictionaries in
the following paragraph.

Constant Time Rank Queries

In order to store partial prefix sums, the technique uses two levels of lookup
table, called blocks and superblocks. Given a bit vector B of length n we divide
it into blocks of length � and superblocks of length �2 where

� =
⌊

log n

2

⌋

.

For both, blocks and superblocks we allocate arrays M and M ′ of sizes
⌊

n
�

⌋
and⌊

n
�2

⌋
respectively (see Fig. 5 for an illustration).

For the m-th superblock we store the number of 1’s from the beginning of
B to the end of the superblock in M ′[m] = rank(B,m · �2). As there are

⌊
n
�2

⌋

superblocks, M ′ can be stored in O (
n
�2 · log n

)
= O

(
n

log n

)
= o(n) bits. For the

m-th block we store the number of 1’s from the beginning of the overlapping
superblock to the end of the block in M [m] = rank

(
B[1 + k�..n], (m − k) · �

)
,

where k =
⌊

m−1
�

⌋
� is the total number of blocks in all superblocks left of the

current superblock. M has
⌊

n
�

⌋
entries and can be stored in O (

n
� · log �2

)
=

O
(

n·log log n
log n

)
= o(n) bits.

B
blocks M

superblocks M ′

. . .

. . .

. . .

�2 �

Fig. 5. 2-level dictionary. Blocks and superblocks are allocated for each character (only
one shown).

Given a rank query rank(B, i), one can now add the corresponding
superblock and block values. But we still have to account for the 1’s in the
block covering position i (in case i is not at the end of a block). Let P be a
precomputed lookup table such that for each possible bit vector V of length �

EPR-Dictionaries: Constant Time Searches in FM and 2FM Indices 205

and i ∈ [1..�] holds P [V][i] = rank(V, i). V has 2� · � entries of values at most �
and thus can be stored in

O (
2� · � · log �

)
= O

(
2

log n
2 · log n · log log n

)
= O (√

n · log n · log log n
)

= o(n)

bits. We now decompose a rank query into 3 subqueries using the precomputed
tables. For a position i we determine the index p =

⌊
i−1

�

⌋
of next block left of i

and the index q =
⌊

p−1
�

⌋
of the next superblock left of block p. Then it holds:

rank(B, i) = M ′[q] + M [p] + P
[
B[1 + p�..(p + 1)�]

][
i − p�

]
.

Since the text T of length n has to be addressed, we assume that a register
has at least size �log n�. Thus B[1+p�..(p+1)�] fits into a single register and can
be determined in O(1) time. Therefore a rank query can be answered in O(1)
time. In practice the precomputed lookup table P is replaced by a popcount
operation on the CPU register and we have only two lookup operations.

One can now replace the occurrence table by this 2-level dictionary, i.e., by
creating a bit vector for every c ∈ Σ and setting it to 1 if the character occurs
in the BWT L. This results in O(σ · n) + o(σ · n) bits space requirement.

References

1. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct rep-
resentations of the bidirectional burrows-wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40450-4 12

2. Belazzougui, D., Navarro, G.: Optimal lower and upper bounds for representing
sequences. ACM Trans. Algorithms 11, 31 (2015)

3. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report (1994)

4. Döring, A., Weese, D., Rausch, T., Reinert, K.: SeqAn an efficient,
generic C++ library for sequence analysis. BMC Bioinform. 9, 11 (2008).
https://doi.org/10.1186/1471-2105-9-11

5. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Annual Symposium on Foundations of Computer Science (2000). https://doi.org/
10.1109/SFCS.2000.892127

6. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algorithms (TALG) 3, 20 (2007)

7. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and
play with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.)
SEA 2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). doi:10.1007/
978-3-319-07959-2 28

8. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (2003)

9. Hauswedell, H., Singer, J., Reinert, K.: Lambda: the local aligner for mas-
sive biological data. Bioinformatics (Oxford, England) 30, i349–i355 (2014).
https://doi.org/10.1093/bioinformatics/btu439

http://dx.doi.org/10.1007/978-3-642-40450-4_12
https://doi.org/10.1186/1471-2105-9-11
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1093/bioinformatics/btu439

206 C. Pockrandt et al.

10. Jacobson, G.J.: Succinct static data structures (1988)
11. Lam, T., Li, R., Tam, A., Wong, S., Wu, E.: High throughput short read alignment

via bi-directional BWT. In: Proceedings of BIBM, pp. 31–36 (2009). https://doi.
org/10.1109/BIBM.2009.42

12. Lam, T., Sung, W., Tam, S., Wong, C., Yiu, S.: Compressed index-
ing and local alignment of DNA. Bioinformatics 24, 791–797 (2008).
https://doi.org/10.1093/bioinformatics/btn032

13. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357–359 (2012)

14. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM (2013)

15. Li, H., Durbin, R.: Fast and accurate short read alignment with
burrows-wheeler transform. Bioinformatics 25, 1754–1760 (2009).
https://doi.org/10.1093/bioinformatics/btp324

16. Meyer, F., Kurtz, S., Backofen, R., Will, S., Beckstette, M.: Structator: fast
index-based search for RNA sequence-structure patterns. BMC Bioinform. 12, 214
(2011). https://doi.org/10.1186/1471-2105-12-214

17. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Interna-
tional Symposium on Experimental Algorithms (2012). https://doi.org/10.1007/
978-3-642-30850-5 26

18. Santiago, M., Sammeth, M., Guigo, R., Ribeca, P.: The GEM mapper: fast, accu-
rate and versatile alignment by filtration. Nat. Methods 9, 1185–1188 (2012).
https://doi.org/10.1038/nmeth.2221

19. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Inf. Comput. 213, 13–22 (2012).
https://doi.org/10.1016/j.ic.2011.03.007

20. Siragusa, E.: Approximate string matching for high-throughput sequencing. Ph.D.
thesis, Freie Universität Berlin (2015)

21. Siragusa, E., Weese, D., Reinert, K.: Fast and accurate read mapping with approx-
imate seeds and multiple backtracking. Nucleic Acids Res. 41, e78–e78 (2013).
https://doi.org/10.1093/nar/gkt005

22. Ye, Y., Choi, J.-H., Tang, H.: Rapsearch: a fast protein similarity search tool for
short reads. BMC Bioinform. 12, 1 (2011)

https://doi.org/10.1109/BIBM.2009.42
https://doi.org/10.1109/BIBM.2009.42
https://doi.org/10.1093/bioinformatics/btn032
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1186/1471-2105-12-214
https://doi.org/10.1007/978-3-642-30850-5_26
https://doi.org/10.1007/978-3-642-30850-5_26
https://doi.org/10.1038/nmeth.2221
https://doi.org/10.1016/j.ic.2011.03.007
https://doi.org/10.1093/nar/gkt005

A Bayesian Framework for Estimating Cell Type
Composition from DNA Methylation Without

the Need for Methylation Reference

Elior Rahmani1(B), Regev Schweiger1, Liat Shenhav1,
Eleazar Eskin2, and Eran Halperin2(B)

1 Tel Aviv University, Tel Aviv, Israel
elior.rahmani@gmail.com

2 University of California Los Angeles, Los Angeles, CA, USA
ehalperin@cs.ucla.edu

Abstract. Genome-wide DNA methylation levels measured from a tar-
get tissue across a population have become ubiquitous over the last few
years, as methylation status is suggested to hold great potential for bet-
ter understanding the role of epigenetics. Different cell types are known
to have different methylation profiles. Therefore, in the common sce-
nario where methylation levels are collected from heterogeneous sources
such as blood, convoluted signals are formed according to the cell type
composition of the samples. Knowledge of the cell type proportions is
important for statistical analysis, and it may provide novel biological
insights and contribute to our understanding of disease biology. Since
high resolution cell counting is costly and often logistically impractical
to obtain in large studies, targeted methods that are inexpensive and
practical for estimating cell proportions are needed. Although a super-
vised approach has been shown to provide reasonable estimates of cell
proportions, this approach leverages scarce reference methylation data
from sorted cells which are not available for most tissues and are not
appropriate for any target population. Here, we introduce BayesCCE, a
Bayesian semi-supervised method that leverages prior knowledge on the
cell type composition distribution in the studied tissue. As we demon-
strate, such prior information is substantially easier to obtain compared
to appropriate reference methylation levels from sorted cells. Using real
and simulated data, we show that our proposed method is able to con-
struct a set of components, each corresponding to a single cell type, and
together providing up to 50% improvement in correlation when com-
pared with existing reference-free methods. We further make a design
suggestion for future data collection efforts by showing that results can
be further improved using cell count measurements for a small subset
of individuals in the study sample or by incorporating external data
of individuals with measured cell counts. Our approach provides a new
opportunity to investigate cell compositions in genomic studies of tissues
for which it was not possible before.

Keywords: DNA methylation · Epigenetics · Bayesian model · Cell
type composition · Cell type proportions · Tissue heterogeneity

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 207–223, 2017.
DOI: 10.1007/978-3-319-56970-3 13

208 E. Rahmani et al.

1 Introduction

Epigenome-Wide Association Studies (EWAS), where genome-wide methylation
levels are measured across a population and compared to a phenotype of inter-
est, have become ubiquitous over the last few years. Many associations between
methylation sites and disease status have been reported (e.g., multiple sclero-
sis [1], schizophrenia [2], and type 2 diabetes [3]), suggesting an important role
for DNA methylation in complex diseases. Thus, DNA methylation status holds
great potential for better understanding the role of epigenetics, potentially lead-
ing to better clinical tools for diagnosing and treating patients.

In a typical EWAS, we obtain a large matrix in which each entry corresponds
to the methylation level (a number between 0 and 1) at a specific genomic
position for a specific individual. This level represents the fraction of the probed
DNA molecules that were found to have an additional methyl group at the
specific position for the specific individual. In such studies, we typically search
for rows of the methylation matrix (each corresponding to one genomic position)
that are significantly correlated with a phenotype of interest. The analysis of
EWAS is complicated by the fact that the studied tissue is typically a mixture of
different cell types. Since each cell type may have a distinct methylation pattern,
the resulting DNA methylation matrix is a convolution of the signals arising from
the different cell types. As a result, a large number of false discoveries may be
found in the common case where the cell type composition is correlated with the
phenotype [4].

In principle, one can avoid false discoveries by adding high-resolution cell
counts to a regression model commonly used in an EWAS. Unfortunately, such
cell counting for a large cohort may be costly and often logistically impractical
(e.g., in some tissues, such as blood, reliable cell counting can be obtained from
fresh samples only). In order to overcome this problem and to allow correcting
methylation data for cell type composition, several statistical and computational
methods have been proposed [5–9]. These methods take either a supervised app-
roach, in which reference data of methylation patterns from sorted cells are
obtained and used for predicting cell compositions [5], or an unsupervised app-
roach (reference-free) [6–9].

The main advantage of the reference-based method is that it provides direct
(absolute) estimates of the cell counts, while current unsupervised methods are
only capable of inferring components that capture linear combinations of the cell
counts. However, the reference-based method can only be applied when relevant
reference data exist. Currently, reference data only exist for blood [10], breast [11]
and brain [12], for a small number of individuals (e.g., six samples in the blood
reference [10]). In addition, the individuals in most data sets do not match
the reference individuals in their methylation-altering factors such as age [13]
and sex [14,15]. This problem was recently highlighted in a study showing that
available blood reference collected from adults fails to estimate cell proportions
of newborns [16]. It is therefore often the case that unsupervised methods are
either the only option or are a better option for the analysis of EWAS.

A Bayesian Framework for Estimating Cell Type Composition 209

As opposed to the supervised approach, although can be applied for any
tissue in principle, the reference-free methods do not provide direct estimates
of the cell type proportions. A few reference-free methods allow us to infer a
set of components, or general axes, which were shown to be linearly correlated
with cell type composition [8,9]. Unlike cell proportions, while linearly correlated
components are useful in linear analyses such as linear regression, they cannot
be used in any nonlinear downstream analysis (e.g., when studying specific cell
types). Cell proportions may provide novel biological insights and contribute to
our understanding of disease biology, and we therefore need targeted methods
that are practical and low in cost.

Here, we propose an alternative strategy that utilizes prior knowledge about
cell counts to improve upon the performance of reference-free methods, while
addressing some of their limitations. We present a Bayesian semi-supervised
method, BayesCCE (Bayesian Cell Count Estimation), which encodes experi-
mentally obtained cell count information as a prior on the distribution of the
cell type composition in the data. As we demonstrate here, the required prior
is substantially easier to obtain compared with standard reference data from
sorted cells. We can estimate this prior from general cell counts collected in pre-
vious studies, without the need for corresponding methylation data or any other
genomic data.

We evaluate our method on two large data sets and on simulated data, and
show that our method produces a set of components that can be used as cell
composition estimates. We observe that each component of BayesCCE can be
regarded as corresponding to a linear transformation of exactly one cell type (i.e.
high absolute correlation with one cell type, but not necessarily good estimates
in absolute terms). Considering existing reference-free methods as a baseline for
estimating cell proportions, we find that BayesCCE provides improvement of
up to 50% in correlation. We also consider the case where both methylation
and cell count information are available for a small subset of the individuals
in the sample, or for a group of individuals from external data. We show that
our proposed Bayesian model can leverage such additional information, and we
demonstrate that it allows us to impute missing cell counts in absolute terms.
Testing this case on both real and simulated data, we find that measuring cell
counts for a small group of samples (a couple of dozens) can lead to a further
increase in the correlation of BayesCCE’s components with the cell types com-
position. We therefore propose that future studies will consider measuring cell
counts for at least a small number of the samples in the study, if possible, or
incorporate into their analysis external data of samples with both methylation
and measured cell counts from the same tissue.

2 Methods

2.1 Model

Let O ∈ R
m×n be an m sites by n samples matrix of DNA methylation lev-

els coming from heterogeneous source consisted of k cell types. For methylation

210 E. Rahmani et al.

levels, we consider what is commonly referred to as beta-normalized methyla-
tion levels, which are defined for each sample in each site as the proportion of
methylated probes out of the total number of probes. Put differently, Oji ∈ [0, 1]
for each site j and sample i. We denote M ∈ R

m×k as the cell type specific mean
methylation levels for each site, and denote a row of this matrix, corresponding
to the jth site, using Mj,·. We denote R ∈ R

n×k as the cell type proportions
of the samples in the data, and denote X ∈ R

n×p as a matrix of p covariates
for each individual and a p-length row vector βj as their corresponding effects
in the jth site. If the measurements of Oji were the true values of the methy-
lation levels, then Oji = Mj,·RT

i + βjX
T
i . Due to measurement noise and other

unmodeled factors, we incorporate an error term εji. Thus, the full model for
the observed methylation levels is

Oji = Mj,·RT
i + βjX

T
i + εji (1)

εji ∼ N(0, σ2) (2)
∀i∀h : Rih ≥ 0 (3)

∀i :
k∑

h=1

Rih = 1 (4)

∀j∀h : 0 ≤ Mjh ≤ 1 (5)

The constraints in (3) and in (4) require the cell proportions to be positive
and to sum up to one in each sample, and the constraints in (5) require the
cell type specific mean levels to be in the range [0, 1]. We note that the above
formulation of the problem is similar to the one previously suggested in the
context of reference-based estimation of cell proportions from DNA methylation
by Houseman et al. [5]. The reference-based method first obtains an estimate of
M from reference methylation data collected from sorted cells of the cell types
composing the studied tissue. Once M is known, R can be estimated by solving
a standard quadratic program.

If the matrix M is not known, which is a reference-free version of the problem,
the above formulation of the problem can be regarded as a version of non-
negative matrix factorization (NNMF) problem. NNMF has been suggested in
several applications in biology; notably, the problem of inference of cell type
composition from methylation data has been recently formulated as an NNMF
problem [9]. In order to optimize the model, the authors use an alternative
optimization procedure in which M or R are optimized while the other is kept
fixed. However, as demonstrated by the authors [9], their version of NNMF
results in the inference of a linear combination of the cell proportions R. Put
differently, more than one component of the NNMF is required for explaining
each cell type in the data. Another recent reference-free method for estimating
cell composition in methylation data, ReFACTor [8], performs a feature selection
step followed by a principal components analysis (PCA). Similarly as in the
NNMF solution, ReFACTor is an unsupervised method and it only finds principal
components (PCs) that form linear combinations of the cell proportions rather
than directly estimates the cell proportion values [8].

A Bayesian Framework for Estimating Cell Type Composition 211

Here, we suggest a more detailed model by adding a prior on R and taking
into account potential covariates. Specifically, we assume that

RT
i ∼ Dirichlet(α1, ..., αk) (6)

where α1, ..., αk are assumed to be known. In practice, the parameters are esti-
mated from external data in which cell type proportions of the studied tissue
are known. Such experimentally obtained cell type proportions were used to test
the appropriateness of the Dirichlet prior in describing cell composition distrib-
ution (data not shown). We are interested in estimating R. Deriving a maximum
likelihood-based solution for this model and repeating the constrains for com-
pleteness results in the following optimization problem:

R̂, M̂ , {β̂j}m
j=1 = argmin

R,M,{βj}m
j=1

1
2σ2

m∑

j=1

n∑

i=1

(
Oji − Mj,·RT

i − βjX
T
i

)2

−
n∑

i=1

k∑

h=1

(αh − 1) log(Rih) (7)

s.t ∀i∀h : Rih ≥ 0 (8)

∀i :
k∑

h=1

Rih = 1 (9)

∀j∀h : 0 ≤ Mjh ≤ 1 (10)

Our intuition in this model is that since the priors on R are estimated from real
data, incorporating them will push the solution of the optimization to return
estimates of R which are closer to the true values as opposed to a linear combi-
nation of them.

2.2 Algorithm

Our algorithm uses ReFACTor as a starting point. Specifically, we use ReFAC-
Tor’s PCs (ReFACTor components) in order to estimate R by finding an appro-
priate linear transformation of the ReFACTor components. In principle, both
ReFACTor and NNMF could be used as the starting point for our method. How-
ever we found that ReFACTor captures a larger portion of the cell composition
variance compared with the NNMF solution (see Results).

Applying ReFACTor on our input matrix O we get a list of t sites that are
most informative with respect to the cell composition in O. Let Õ ∈ R

t×n be
a truncated version of O containing only the t sites selected by ReFACTor. We
apply PCA on Õ to get L ∈ R

t×d, P ∈ R
n×d, the loadings and scores of the

first d ReFACTor components. Then, we reformulate the original optimization
problem in terms of linear transformations of L and P as follows:

212 E. Rahmani et al.

Â, V̂ , B̂ = argmin
A,V,B

1
2σ2

||Õ − LAV T PT − LBXT ||2F

−
n∑

i=1

k∑

h=1

(αh − 1) log

(
d∑

l=1

PilVlh

)
(11)

s.t ∀i∀h :
d∑

l=1

PilVlh ≥ 0 (12)

∀i :
k∑

h=1

d∑

l=1

PilVlh = 1 (13)

∀j∀k : 0 ≤
d∑

l=1

LjlAlh ≤ 1 (14)

where ‖·‖2F is the squared Frobenius norm, A ∈ R
d×k is a transformation matrix

such that M̃ = LA (M̃ being a truncated version of M with the t sites selected
by ReFACTor), V ∈ R

d×k is a transformation matrix such that R = PV and
B ∈ R

d×p is a transformation matrix such that LB corresponds to the effects
of each covariate on the methylation levels in each site. The constraints in (12)
and in (13) correspond to the constraints in (8) and in (9), and the constraints
in (14) correspond to the constraints in (10).

Given V̂ , we simply return R̂ = PV̂ as the estimated cell proportions. Note
that in the new formulation we are now required to learn only d(2k + p) para-
meters - d, k and p being small constants - a dramatically decreased number of
parameters compared with the original problem which requires nk + m(k + p)
parameters. By taking that approach, we make an assumption that Õ consists
of a low rank structure that captures the cell composition using d orthogo-
nal vectors. While a natural value for d would be d = k, d is not bounded to
be k. Particularly, in cases where substantial additional cell composition signal
is expected to be captured by latter ReFACTor components (i.e. components
beyond the first k), we would expect to benefit from increasing d. Clearly, overly
increasing d is expected to result in overfitting and thus a decrease in perfor-
mance. Finally, taking into account covariates with potentially dominant effects
in the data should alleviate the risk of introducing noise into R̂ in case of mixed
low rank structure of cell composition signal and other unwanted variation in the
data. We note, however, that similarly to the case of correlated explaining vari-
ables in regression, considering covariates that are expected to be correlated with
the cell type composition may result in underestimation of A, V and therefore
to a decrease in the quality of R̂.

2.3 Imputing Cell Counts Using a Subset of Samples with Measured
Cell Counts

In practice, we observe that each of BayesCCE’s components corresponds to a
linear transformation of one cell type rather than to an estimate of that cell

A Bayesian Framework for Estimating Cell Type Composition 213

type in absolute terms. That is, it still lacks the right scaling (multiplication by
a constant and addition of a constant) for transforming it into cell proportions.
Furthermore, we would like the ith BayesCCE component to correspond to the
ith cell type described by the prior using the αi parameter. Empirically, that is
not necessarily the case, especially in scenarios where some of the αi values are
similar. In order to address these two caveats, we suggest incorporating measured
cell counts for a subset of the samples in the data.

Assume we have n0 reference samples in the data with known cell counts
R(0) and n1 samples with unknown cell counts R(1) (n = n0 +n1). This problem
can be regarded as an imputation problem, in which we aim at imputing cell
counts for samples with unknown cell counts. We can find M̂ by solving the
problem in (7) under the constraints in (10) for the n0 reference samples while
replacing R with R(0) and keeping it fixed. Then, given M̂ , we can now solve the
problem in (11), after replacing LA with M̂ (i.e. we find only V,B now), under
the following constraints

∀(1 ≤ i ≤ n0)∀h :
d∑

l=1

P
(0)
il Vlh = R

(0)
ih (15)

∀(1 ≤ i ≤ n1)∀h :
d∑

l=1

P
(1)
il Vlh ≥ 0 (16)

∀(1 ≤ i ≤ n1) :
k∑

h=1

d∑

l=1

P
(1)
il Vlh = 1 (17)

where P (0) contains n0 rows corresponding to the reference samples in P , and
P (1) contains n1 rows corresponding to the remaining samples in P . In this
case, both problems of estimating M and solving (11) while keeping M̂ fixed are
convex - the first problem takes the form of a standard quadratic problem and
the latter results in an optimization problem of the sum of two convex terms
under linear constraints. Using M̂ , estimated from cell counts and corresponding
methylation levels of a group of samples, as well as adding the constraints in (15),
are expected to direct the inference of R towards a set of components such that
each one corresponds to one known cell type with a proper scale.

2.4 Implementation and Practical Issues

We estimate σ2 in (11) as the mean squared error of predicting Õ with P and
X. The α1, ..., αk Dirichlet parameters of the prior can be estimated from cell
proportions using maximum likelihood estimators. In practice, we add a column
of ones to both L and P in (11) in order to assure feasibility of the problem -
these constant columns are used to compose the mean methylation level per site
across all cell types and the mean cell proportion fraction in each cell type across
all samples. In addition, we slightly relax some of the constraints in the problem
to avoid problems due to numeric instability and inconsistent noise issues. First,
we do not impose the equality constraints in (13) and in (17) but rather allow a

214 E. Rahmani et al.

small deviation from equality (5%). In addition, the inequality constraints in (12)
and in (16) are changed to require the cell proportions to be greater than ε > 0,
as a result of the logarithm term in the objective (ε = 0.0001). Finally, given cell
counts for a subset of the samples, we allow a small deviation from the equality
constraints in (15) due to expected inaccuracies of cell counts measurements
(1%).

We performed all the experiments in this paper using a Matlab imple-
mentation of BayesCCE. Specifically, we solved the optimization problems in
BayesCCE using the fmincon function with the default interior-point algorithm,
and we used the fastfit [17] Matlab package for calculating maximum likelihood
estimates of the Dirichlet priors. All executions of BayesCCE required several
minutes on a 64-bit Mac OS X computer with 3.1 GHz and 16 GB of RAM.
Corresponding code is available at: https://github.com/cozygene/bayescce.

2.5 Evaluation of Performance

The fraction of cell composition variation (R2) captured by each of the reference-
free methods, ReFACTor and NNMF, was computed for each cell type using a
linear predictor fitted with the first k components provided by the method.
In order to evaluate the performance of BayesCCE, for each component i we
calculated its correlation with the ith cell type, and reported the mean absolute
correlation (MAC) across the k estimated cell types. Empirically, we observed
that in the case of k = 6 with no known cell counts for a subset of samples,
the ith BayesCCE component did not necessarily correspond to the ith cell
type. Put differently, the labels of the k cell types had to be permuted before
calculating the MAC. In this case we considered the permutation of the labels
which resulted with the highest MAC as the correct permutation. In the rest of
the cases, we did not apply such permutation (all the experiments using k = 3
and all the experiments using k = 6 with known cell counts for a subset of the
samples). For evaluating ReFACTor and NNMF, reference-free methods which
do not attribute their components to specific cell types in any scenario, we
considered the permutation leading to the highest MAC in all experiments when
compared with BayesCCE. In addition, we considered the mean absolute error
(MAE) as an additional quality measurement. When calculating absolute errors
for the ReFACTor components, we scaled each component to be in the range
[0, 1]. Finally, in experiments where cell counts were assumed to be known for a
subset of the samples, MAC and MAE were calculated using only the samples
for which cell counts were assumed to be unknown.

2.6 Implementation of ReFACTor and NNMF

The ReFACTor components were calculated for each data set using the para-
meters k = 6 and t = 500 and according to the implementation of ReFAC-
Tor described at http://glint-epigenetics.readthedocs.io, while accounting for
known covariates in each data set. More specifically, in the Liu et al. data [18]
we accounted for age, sex, smoking status and batch information, and in the

https://github.com/cozygene/bayescce
http://glint-epigenetics.readthedocs.io

A Bayesian Framework for Estimating Cell Type Composition 215

Hannum et al. data [19] we accounted for age, sex, ethnicity and batch informa-
tion. We used the first six ReFACTor components (d = 6) for simulated data
in order to accommodate with the number of simulated cell types, and the first
ten components (d = 10) for real data, as real data are typically more complex
and are therefore more likely to contain substantial signal in latter components.
The NNMF components were computed for each data set using the RefFreeE-
WAS R package from the subset of 10,000 most variable sites in the data set, as
performed in the NNMF paper by the authors [9].

2.7 Implementation of the Reference-Based Algorithm

We implemented the reference-based algorithm according to Houseman et al. [5],
using 300 highly informative methylation sites defined in a recent study [20] and
using reference data collected from sorted blood cells [10].

2.8 Data Sets

We evaluated the performance of BayesCCE using three data sets collected with
the Illumina 450K DNA methylation array. All three data sets are publicly avail-
able and preprocessed versions of the data were downloaded from the Gene
Expression Omnibus (GEO) database. The first data set (accession GSE42861)
was studied in a recent association study of DNA methylation with rheuma-
toid arthritis (RA) by Liu et al. (n = 686) [18]. The second data set (accession
GSE40279) was originally used in a study of aging rates by Hannum et al.
(n = 656) [19]. In addition, we used a reference data set of sorted cell types
collected in six individuals from whole blood tissue (accession GSE35069) [10].
The latter was used for generating simulated data sets and for estimating the
cell type specific mean levels in the implementation of the reference-based algo-
rithm. We excluded from each data set sites coming from the sex chromosomes,
as well as polymorphic and cross-reactive sites, as was previously reported [21].
Two samples in the Hannum et al. data were detected as outliers by PCA and
were therefore excluded. When running BayesCCE on the data sets by Liu et al.
and Hannum et al. we considered known batch information in the analysis.

2.9 Data Simulation

We simulated data following a model that was previously described in details
elsewhere [8]. Briefly, we used methylation levels from sorted blood cells [10] and,
assuming normality, estimated maximum likelihood parameters for each site in
each cell type. Cell type specific DNA methylation data were then generated for
each simulated individual from normal distributions with the estimated para-
meters, conditional on the range [0,1], for six cell types and for each site. Cell
proportions for each individual were generated using a Dirichlet distribution.
The parameters for the Dirichlet were fitted using the cell proportions estimated
for the individuals in the Liu et al. [18] and Hannum et al. [19] data sets using

216 E. Rahmani et al.

the reference-based method [5]. Finally, observed DNA methylation levels were
composed from the cell type specific methylation levels and cell proportions for
each individual, and a random normal noise was added to every data entry to
simulate technical noise (σ = 0.01).

3 Results

3.1 Benchmarking Existing Reference-Free Methods

We first demonstrate that existing reference-free methods can estimate compo-
nents that are correlated with the tissue composition in methylation data col-
lected from heterogeneous sources. For the experiments in this paper, we used
the whole-blood data set by Liu et al. [18] (n = 686) and the whole-blood data
set by Hannum et al. [19] (n = 654; see Methods). In addition, we simulated
data based on reference data set of methylation levels from sorted leukocytes
cells [10] (see Methods). While cell proportions were known for each sample in
the simulated data, cell counts were not available for the two real data sets. We
therefore estimated the cell type composition of six major blood cell types (gran-
ulocytes, monocytes and four subtypes of lymphocytes) using a reference-based
method [5], which was shown to reasonably estimate leukocyte cell proportions
from whole blood methylation data collected from adult individuals [16,20,22].
Due to the absence of large publicly available data with measured cell counts,
these estimates were considered as the ground truth for evaluating the perfor-
mance of the different methods.

We considered two reference-free methods, ReFACTor [8] and NNMF [9],
both allowing to generate components that were shown to capture cell type
composition information in methylation. We evaluated the first six components
of ReFACTor and the six components provided by NNMF - six being the number
of estimated cell types composing the ground truth. We found both methods to
capture a large portion of the cell composition in all data sets; particularly, we
observed that ReFACTor performed considerably better than NNMF in all data
sets (Fig. 1a–c). Yet, in spite of the fact that both ReFACTor and NNMF capture
a large portion of the cell composition variance, each component provided by
these methods is a linear combination of the cell types in the data rather than
an estimate of the proportions of a single cell type. As a result, as we show in
the following experiments, both methods, in general, perform poorly when their
components are considered as estimates of cell proportions.

3.2 Evaluation of BayesCCE on Real and Simulated Data

We evaluated BayesCCE under various scenarios. The results of the experiments
described hereafter are summarize in Fig. 1d–h. In the first and most common
scenario, we assume that no appropriate reference methylation data of sorted
cells exist for the studied tissue, but we do have information about the dis-
tribution of the cell composition in the studied tissue. Such information can be

A Bayesian Framework for Estimating Cell Type Composition 217

G
ra

n

C
D

4+

C
D

8+ B

N
K

M
on

o

0

0.2

0.4

0.6

0.8

1
R

2
Liu et al. data(a)

G
ra

n

C
D

4+

C
D

8+ B

N
K

M
on

o

0

0.2

0.4

0.6

0.8

1

R
2

Hannum et al. data(b)

G
ra

n

C
D

4+

C
D

8+ B

N
K

M
on

o

0

0.2

0.4

0.6

0.8

1

R
2

Simulated data(c)

0

0.2

0.4

0.6

0.8

M
ea

n
co

rr
el

at
io

n

Liu et al. data (k=3)

0.04 0.02

0.15

0.24
0.28

(d)

NNMF
ReFACTor
BayesCCE
BayesCCE impute
BayesCCE impute ext

0

0.2

0.4

0.6

0.8

M
ea

n
co

rr
el

at
io

n

Hannum et al. data (k=3)

0.03 0.02

0.18 0.17 0.17

(f)

0

0.2

0.4

0.6

0.8

M
ea

n
co

rr
el

at
io

n
Liu et al. data (k=6)

0.03 0.02 0.04

0.37

0.15

(e)

0

0.2

0.4

0.6

0.8

M
ea

n
co

rr
el

at
io

n

Hannum et al. data (k=6)

0.04 0.03

0.12

0.27

0.15

(g)

0

0.2

0.4

0.6

0.8

M
ea

n
co

rr
el

at
io

n

Simulated data (k=6)

0.03

0.12

0.39

0.11

(h)

Fig. 1. Capturing cell type composition in real and simulated data. (a)–(c) The frac-
tion of variance explained (R2) by the first six components of NNMF and ReFACTor
in each one of the six cell types in the Liu et al. data (n = 686), the Hannum et
al. data (n = 654) and in simulated data (n = 650; average over 10 simulations).
(d)–(h) Considering a single component for estimating each cell type in real data and
in simulated data (average over 10 simulations), using existing reference-free methods
(NNMF and ReFACTor) and BayesCCE, as well as using BayesCCE with known cell
counts for 5% of the samples in the data (BayesCCE impute) and BayesCCE with cell
counts and methylation for a group of samples from external data (BayesCCE impute
ext). The bar plots present the mean absolute correlation of the components with the
cell types in case of three assumed cell types (k = 3) and in case of six assumed cell
types (k = 6). Dashed line on each bar plot indicates the mean absolute error of the
estimates across all cell types. For more details about the evaluation of performance
see Methods.

inferred from cell counts collected in previous studies of the same tissue (without
the need for any additional genomic data). This information can be then used by
BayesCCE for tuning the prior required for the model (see Methods). In order
to demonstrate this, we used cell counts collected from 35 healthy adults in a
recent study [23]. These cell counts measured levels of lymphocytes, monocytes
and three subtypes of granulocytes. Since our ground truth, compiled using the
reference-based method, contained only the total granulocyte levels, we collapsed
the three subtypes of granulocytes into a total measurement of granulocytes.

We applied BayesCCE on the real data sets under the assumption that three
cell types compose the data (k = 3). Since each component of BayesCCE is
expected to correspond to a linear transformation of one cell type, we report
absolute linear correlations (see Methods). BayesCCE provided excellent esti-
mates of the levels of granulocytes and lymphocytes in both data sets (r = 0.96
and r = 0.98 in the Liu et al. data, and r = 0.94 and r = 0.98 in the Hannum
et al. data; see Fig. 2). In contrast, we observed poor estimates of the monocyte

218 E. Rahmani et al.

levels (r = 0.14 in the Liu et al. data and r = 0.26 in the Hannum et al. data).
We note that poor performance in capturing some cell type may be partially
derived by inaccuracies introduced by the reference-based estimates which are
used as the ground truth in our experiments. For example, several recent studies
consisted of samples for which both methylation levels and cell count measure-
ments were available, demonstrated that while the reference-based estimates of
the overall lymphocyte and granulocyte levels were found to be highly correlated
with the true levels, the accuracy of the estimates of monocytes was found to
be substantially lower [8,16,24]. Such inaccuracies in estimating a specific cell
type by the reference-based approach may be the result of utilizing inappro-
priate reference. More specifically, cell types with highly variable methylation
patterns across different populations may not be well represented for the target
population by existing reference (coming from a specific population). Another
possible driver for low quality estimates is having cell types with methylation
profiles that do not distinct them well enough from other cell types in the tissue,
or failing to select a set of informative features that mark some of the cell types.

0 0.5 1
Ref-based

0

0.2

0.4

0.6

0.8

1

B
ay

es
C

C
E

Gran (r=0.96)

0 0.5 1
Ref-based

0

0.2

0.4

0.6

0.8

B
ay

es
C

C
E

Lymph (r=0.98)

0 0.1 0.2
Ref-based

0

0.05

0.1

0.15

0.2

B
ay

es
C

C
E

Mono (r=0.14)

0 0.5 1
Ref-based

0

0.2

0.4

0.6

0.8

1

B
ay

es
C

C
E

Gran (r=0.94)

0 0.5 1
Ref-based

0

0.2

0.4

0.6

0.8
B

ay
es

C
C

E

Lymph (r=0.98)

0 0.1 0.2 0.3
Ref-based

0

0.05

0.1

0.15

0.2

0.25

B
ay

es
C

C
E

Mono (r=0.26)

Fig. 2. BayesCCE captures cell type composition under the assumption of three cell
types in the data (k = 3): granulocytes, lymphocytes and monocytes. Each BayesCCE
component was linearly transformed to match its corresponding cell type in scale. Left:
the results for the Liu et al. data. Right: the results for the Hannum et al. data.

As a second validation of our method, we used the reference-based estimates
of the six cell types for learning the prior. For each one of the two real data sets,
we used the cell proportion estimates of the other data set for learning the prior.
We then applied BayesCCE on each data set under the assumption of six cell
types (k = 6) and measured the correlation with the reference-based estimates.
The mean absolute correlation across the six cell types was found to be 0.57 in
the Liu et al. data and 0.56 in the Hannum et al. data (Fig. 3). In addition to
the real data analysis, we further conducted a similar experiment on simulated
data (n = 650). In this case, we estimated the prior from a group of 50 samples
that were generated from the true distribution. We applied BayesCCE on ten
different simulated data sets, and found the mean absolute correlation across all
cell types and across all the simulated data sets to be 0.62. As expected, apply-
ing BayesCCE on increased sample size resulted in an improved performance
(Supplementary Fig. S1).

A Bayesian Framework for Estimating Cell Type Composition 219

0 0.5 1
Ref-based

0

0.2

0.4

0.6

0.8

1
B

ay
es

C
C

E
Gran (r=0.97)

0 0.2 0.4 0.6
Ref-based

0

0.1

0.2

0.3

0.4

0.5

B
ay

es
C

C
E

CD4+ (r=0.77)

0 0.2 0.4
Ref-based

-0.1

0

0.1

0.2

0.3

0.4

B
ay

es
C

C
E

CD8+ (r=0.69)

0 0.1 0.2
Ref-based

0

0.05

0.1

0.15

0.2

B
ay

es
C

C
E

B (r=0.33)

0 0.1 0.2 0.3
Ref-based

0

0.1

0.2

0.3
B

ay
es

C
C

E
NK (r=0.48)

0 0.1 0.2
Ref-based

0

0.05

0.1

0.15

0.2

B
ay

es
C

C
E

Mono (r=0.16)

0 0.5 1
Ref-based

0

0.2

0.4

0.6

0.8

1

B
ay

es
C

C
E

Gran (r=0.77)

0 0.2 0.4 0.6
Ref-based

0

0.1

0.2

0.3

0.4

0.5

B
ay

es
C

C
E

CD4+ (r=0.78)

0 0.1 0.2 0.3
Ref-based

0

0.1

0.2

0.3

B
ay

es
C

C
E

CD8+ (r=0.55)

0 0.2 0.4
Ref-based

0

0.05

0.1

0.15

0.2

0.25

B
ay

es
C

C
E

B (r=0.37)

0 0.1 0.2
Ref-based

0

0.05

0.1

0.15

0.2

B
ay

es
C

C
E

NK (r=0.41)

0 0.1 0.2 0.3
Ref-based

0

0.05

0.1

0.15

0.2

0.25

B
ay

es
C

C
E

Mono (r=0.42)

Fig. 3. BayesCCE captures cell type composition under the assumption of six cell types
in the data (k = 6): granulocytes, four subtypes of lymphocytes (CD4+, CD8+, B cells
and NK cells) and monocytes. Each BayesCCE component was linearly transformed
to match its corresponding cell type in scale. Left: the results for the Liu et al. data.
Right: the results for the Hannum et al. data.

3.3 Evaluation of Cell Count Imputation

Next, we considered the scenario in which cell counts are known for a small
subset of the samples in the data. This problem can be viewed as an imputation
problem of the missing cell count values (see Methods). We repeated the pre-
vious experiments (k = 3 and k = 6), only this time we used the values of the
estimated cell counts for randomly selected 5% of the samples in each data set.
As opposed with the previous experiments, in which each one of BayesCCE’s
components formed a linear transformation of one of the cell types, here we get
that the BayesCCE components form absolute estimates of the cell proportions
(i.e. low absolute error). In addition, we observed up to 22% improvement in
the mean correlation values compared with our previous experiments (Supple-
mentary Figs. S2 and S3). We further tested this approach on simulated data
(n = 650), while assuming known cell counts for 5% of the samples in the data,
and found the mean correlation across different cell types and across ten different
simulated data set to be 0.78. Applying this approach with an increased number
of samples for which cell counts are known, reveals that the cell count estimates
can be improved using a relatively small subset of a couple of dozens of samples
with known cell counts (Supplementary Fig. S4).

In the absence of cell counts for a subset of the individuals in the data,
external data with samples for which both methylation levels and cell counts
are available can be added to the analysis. Again, we repeated the previous
experiments (k = 3 and k = 6), only this time for each data set we added
randomly selected 5% of the samples from the other data set, and used both
their methylation levels and estimated cell counts in the analysis. Unlike in the
previous experiments, here we potentially introduce new batch effects into the
analysis, as in each experiment the original sample is combined with external
data. We therefore accounted for the new batch information by adding it as a
new covariate into BayesCCE. We observed up to 14% improvement in the mean
correlation values compared with our previous experiments not taking any cell

220 E. Rahmani et al.

counts into account (Supplementary Figs. S5 and S6), showing that incorporating
external samples with both methylation and cell counts can be a practical and
useful way for estimating cell counts.

4 Discussion

We introduce BayesCCE, a Bayesian method that estimates cell type composi-
tion from heterogeneous methylation data using a prior on the cell composition
distribution. In contrast to previous methods, using BayesCCE we can generate
components such that each component corresponds to a linear transformation
of a single cell type. These components can allow researchers to perform down-
stream analysis that is not possible using existing reference-free methods.

Our approach is based on finding a suitable linear transformation of the
components found by ReFACTor [8]. Thus, it is limited by the quality of the
ReFACTor components, and particularly BayesCCE will provide the exact same
result as ReFACTor if used for correcting for potential cell type composition
confounder in methylation data. We therefore suggest to use ReFACTor for
correction and BayesCCE for cases in which a study of individual cell types
is performed. We note that several supervised and unsupervised deconvolution
methods have been suggested for estimating cell composition from gene expres-
sion [25–29]. However, these were refined for gene expression data and, to the
best of our knowledge, none of these methods takes into account prior knowledge
about the cell composition distribution as in BayesCCE. It remains of interest to
investigate whether BayesCCE can be adapted for estimating cell composition
from gene expression without the need for purified expression profiles.

The parameters of the prior required for BayesCCE can be estimated by uti-
lizing previous studies that collected cell counts from the tissue of interest. Since
no other genomic information is required, obtaining such data is relatively easy
for many tissues, such as brain [30], heart [31] and adipose tissue [32]. Particu-
larly, such data should be substantially easier to obtain compared to reference
data from sorted cells for the corresponding tissues. Ideally, one would want
to use cell counts coming from the same population as the target population
in the study, especially when the cell composition distribution of the studied
tissue may vary substantially across different populations. While this may be
a potential limitation of BayesCCE in cases where cell counts from the target
population are not available, our results using priors estimated from three differ-
ent data sets empirically show that priors estimated from a different population
than the target population can still provide good estimates.

Since no large data with measured cell counts are currently publicly avail-
able, we used a supervised method [5] for obtaining cell type proportion esti-
mates, which were used as the ground truth in our experiments. Even though
the method used for obtaining these estimates was shown to reasonably estimate
leukocyte cell proportions from whole blood methylation data in several inde-
pendent studies [16,20,22], these estimates may have introduced biases into the
analysis. Particularly, in the presence of systematic biases, the estimates could

A Bayesian Framework for Estimating Cell Type Composition 221

have affected the estimated priors, which in turn could have affected the results.
However, we believe that our results on several independent data sets, including
simulated data, and the use of priors estimated from several sources, including
real cell counts, provide a compelling evidence for the utility of BayesCCE.

Finally, we demonstrate that imputation of the cell counts can be highly
accurate even when cell counts are available for only a relatively small number
of individuals. Moreover, in the general setting of BayesCCE, each component
is correlated to one cell type, and the identity of that cell type may not be
known, while in the case of imputation BayesCCE is able to reconstruct the cell
counts up to a small absolute error (i.e. each component corresponds to a known
cell type and is scaled to form cell proportion estimates of that cell type). We
therefore recommend that in future studies either the cell counts be measured
for at least a couple of dozens of the samples or external data of samples with
measured cell counts be utilized in the analysis.

Acknowledgments. We would like to thank Lana Martin for feedback on the man-
uscript. This research was partially supported by the Edmond J. Safra Center for
Bioinformatics at Tel Aviv University. E.H., E.R., L.S. and R.S. were supported in
part by the Israel Science Foundation (Grant 1425/13), E.H., L.S. and R.S. by the
United States Israel Binational Science Foundation grant 2012304. E.R. and L.S. were
supported by Len Blavatnik and the Blavatnik Research Foundation. R.S. was sup-
ported by the Colton Family Foundation. E.E. was supported by National Science
Foundation grants 1065276, 1302448, 1320589 and 1331176, and National Institutes
of Health grants R01-GM083198, R01-ES021801, R01-MH101782, R01-ES022282 and
U54EB020403.

Appendix

The supplementary materials can be found at: https://github.com/cozygene/
BayesCCE/blob/master/BayesCCE-SI.pdf.

References

1. Koch, M.W., Metz, L.M., Kovalchuk, O.: Epigenetic changes in patients with mul-
tiple sclerosis. Nat. Rev. Neurol. 9(1), 35–43 (2013)

2. Ikegame, T., Bundo, M., Sunaga, F., Asai, T., Nishimura, F., Yoshikawa, A.,
Kawamura, Y., Hibino, H., Tochigi, M., Kakiuchi, C., et al.: DNA methyla-
tion analysis of BDNF gene promoters in peripheral blood cells of schizophrenia
patients. Neurosci. Res. 77(4), 208–214 (2013)

3. Toperoff, G., Aran, D., Kark, J.D., Rosenberg, M., Dubnikov, T., Nissan, B.,
Wainstein, J., Friedlander, Y., Levy-Lahad, E., Glaser, B., et al.: Genome-wide
survey reveals predisposing diabetes type 2-related DNA methylation variations in
human peripheral blood. Hum. Mol. Genet. 21(2), 371–383 (2012)

4. Jaffe, A.E., Irizarry, R.A.: Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biol. 15(2), R31 (2014)

https://github.com/cozygene/BayesCCE/blob/master/BayesCCE-SI.pdf
https://github.com/cozygene/BayesCCE/blob/master/BayesCCE-SI.pdf

222 E. Rahmani et al.

5. Houseman, E.A., Accomando, W.P., Koestler, D.C., Christensen, B.C., Marsit,
C.J., Nelson, H.H., Wiencke, J.K., Kelsey, K.T.: DNA methylation arrays as sur-
rogate measures of cell mixture distribution. BMC Bioinform. 13(1), 86 (2012)

6. Houseman, E.A., Molitor, J., Marsit, C.J.: Reference-free cell mixture adjustments
in analysis of DNA methylation data. Bioinformatics 30(10), 1431–1439 (2014)

7. Zou, J., Lippert, C., Heckerman, D., Aryee, M., Listgarten, J.: Epigenome-wide
association studies without the need for cell-type composition. Nat. Methods 11(3),
309–311 (2014)

8. Rahmani, E., Zaitlen, N., Baran, Y., Eng, C., Hu, D., Galanter, J., Oh, S.,
Burchard, E.G., Eskin, E., Zou, J., et al.: Sparse PCA corrects for cell type het-
erogeneity in epigenome-wide association studies. Nat. Methods 13(5), 443–445
(2016)

9. Houseman, E.A., Kile, M.L., Christiani, D.C., Ince, T.A., Kelsey, K.T., Marsit,
C.J.: Reference-free deconvolution of DNA methylation data and mediation by cell
composition effects. BMC Bioinform. 17(1), 259 (2016)

10. Reinius, L.E., Acevedo, N., Joerink, M., Pershagen, G., Dahlén, S.E., Greco, D.,
Söderhäll, C., Scheynius, A., Kere, J.: Differential DNA methylation in purified
human blood cells: implications for cell lineage and studies on disease susceptibility.
PloS ONE 7(7), e41361 (2012)

11. Teschendorff, A.E., Gao, Y., Jones, A., Ruebner, M., Beckmann, M.W., Wachter,
D.L., Fasching, P.A., Widschwendter, M.: DNA methylation outliers in normal
breast tissue identify field defects that are enriched in cancer. Nat. Commun. 7,
10478 (2016)

12. Guintivano, J., Aryee, M.J., Kaminsky, Z.A.: A cell epigenotype specific model for
the correction of brain cellular heterogeneity bias and its application to age, brain
region and major depression. Epigenetics 8(3), 290–302 (2013)

13. Horvath, S.: DNA methylation age of human tissues and cell types. Genome Biol.
14(10), R115 (2013)

14. Singmann, P., Shem-Tov, D., Wahl, S., Grallert, H., Fiorito, G., Shin, S.Y.,
Schramm, K., Wolf, P., Kunze, S., Baran, Y., et al.: Characterization of whole-
genome autosomal differences of DNA methylation between men and women. Epi-
genet. Chromatin 8(1), 1–13 (2015)

15. Yousefi, P., Huen, K., Davé, V., Barcellos, L., Eskenazi, B., Holland, N.: Sex dif-
ferences in DNA methylation assessed by 450 K BeadChip in newborns. BMC
Genomics 16(1), 1 (2015)

16. Yousefi, P., Huen, K., Quach, H., Motwani, G., Hubbard, A., Eskenazi, B., Hol-
land, N.: Estimation of blood cellular heterogeneity in newborns and children for
epigenome-wide association studies. Environ. Mol. Mutagen. 56(9), 751–758 (2015)

17. Minka, T.: Estimating a Dirichlet distribution (2000)
18. Liu, Y., Aryee, M.J., Padyukov, L., Fallin, M.D., Hesselberg, E., Runarsson, A.,

Reinius, L., Acevedo, N., Taub, M., Ronninger, M., et al.: Epigenome-wide associa-
tion data implicate DNA methylation as an intermediary of genetic risk in Rheuma-
toid Arthritis. Nat. Biotechnol. 31(2), 142–147 (2013)

19. Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B.,
Bibikova, M., Fan, J.B., Gao, Y., et al.: Genome-wide methylation profiles reveal
quantitative views of human aging rates. Mol. Cell 49(2), 359–367 (2013)

20. Koestler, D.C., Jones, M.J., Usset, J., Christensen, B.C., Butler, R.A., Kobor,
M.S., Wiencke, J.K., Kelsey, K.T.: Improving cell mixture deconvolution by identi-
fying optimal DNA methylation libraries (IDOL). BMC Bioinform. 17(1), 1 (2016)

A Bayesian Framework for Estimating Cell Type Composition 223

21. Chen, Y.A., Lemire, M., Choufani, S., Butcher, D.T., Grafodatskaya, D., Zanke,
B.W., Gallinger, S., Hudson, T.J., Weksberg, R.: Discovery of cross-reactive probes
and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microar-
ray. Epigenetics 8(2), 203–209 (2013)

22. Koestler, D.C., Christensen, B.C., Karagas, M.R., Marsit, C.J., Langevin, S.M.,
Kelsey, K.T., Wiencke, J.K., Houseman, E.A.: Blood-based profiles of DNA methy-
lation predict the underlying distribution of cell types: a validation analysis. Epi-
genetics 8(8), 816–826 (2013)

23. Chomczynski, P., Wilfinger, W.W., Eghbalnia, H.R., Kennedy, A., Rymaszewski,
M., Mackey, K.: Inter-individual differences in RNA levels in human peripheral
blood. PloS ONE 11(2), e0148260 (2016)

24. Cardenas, A., Allard, C., Doyon, M., Houseman, E.A., Bakulski, K.M., Perron,
P., Bouchard, L., Hivert, M.F.: Validation of a DNA methylation reference panel
for the estimation of nucleated cells types in cord blood. Epigenetics 11, 773–779
(2016)

25. Lu, P., Nakorchevskiy, A., Marcotte, E.M.: Expression deconvolution: a reinterpre-
tation of DNA microarray data reveals dynamic changes in cell populations. Proc.
Natl. Acad. Sci. 100(18), 10370–10375 (2003)

26. Abbas, A.R., Wolslegel, K., Seshasayee, D., Modrusan, Z., Clark, H.F.: Deconvo-
lution of blood microarray data identifies cellular activation patterns in systemic
lupus erythematosus. PloS ONE 4(7), e6098 (2009)

27. Kuhn, A., Thu, D., Waldvogel, H.J., Faull, R.L., Luthi-Carter, R.: Population-
specific expression analysis (PSEA) reveals molecular changes in diseased brain.
Nat. Methods 8(11), 945–947 (2011)

28. Zuckerman, N.S., Noam, Y., Goldsmith, A.J., Lee, P.P.: A self-directed method
for cell-type identification and separation of gene expression microarrays. PLoS
Comput. Biol. 9(8), e1003189 (2013)

29. Steuerman, Y., Gat-Viks, I.: Exploiting gene-expression deconvolution to probe
the genetics of the immune system. PLoS Comput. Biol. 12(4), e1004856 (2016)

30. Azevedo, F.A., Andrade-Moraes, C.H., Curado, M.R., Oliveira-Pinto, A.V.,
Guimarães, D.M., Szczupak, D., Gomes, B.V., Alho, A.T., Polichiso, L., Tam-
pellini, E., et al.: Automatic isotropic fractionation for large-scale quantitative cell
analysis of nervous tissue. J. Neurosci. Methods 212(1), 72–78 (2013)

31. Pinto, A.R., Ilinykh, A., Ivey, M.J., Kuwabara, J.T., D’Antoni, M.L., Debuque,
R., Chandran, A., Wang, L., Arora, K., Rosenthal, N.A., et al.: Revisiting cardiac
cellular composition. Circ. Res. 118(3), 400–409 (2016)

32. Divoux, A., Tordjman, J., Lacasa, D., Veyrie, N., Hugol, D., Aissat, A., Basdevant,
A., Guerre-Millo, M., Poitou, C., Zucker, J.D., et al.: Fibrosis in human adipose
tissue: composition, distribution, and link with lipid metabolism and fat mass loss.
Diabetes 59(11), 2817–2825 (2010)

Towards Recovering Allele-Specific Cancer
Genome Graphs

Ashok Rajaraman and Jian Ma(B)

Computational Biology Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA

jianma@cs.cmu.edu

Abstract. Integrated analysis of structural variants (SVs) and copy
number alterations (CNAs) in aneuploid cancer genomes is key to under-
standing the tumor genome complexity. A recently developed new algo-
rithm Weaver can estimate, for the first time, allele-specific copy number
of SVs and their interconnectivity in aneuploid cancer genomes. How-
ever, one major limitation is that not all SVs identified by Weaver are
phased. In this paper, we develop a general convex programming frame-
work that predicts the interconnectivity of unphased SVs with possibly
noisy allele-specific copy number estimations as input. We demonstrated
through applications to both simulated data and the HeLa whole-genome
sequencing data that our method is robust to the noise in the input copy
numbers and can predict SV phasings with high specificity. We found
that our method can make consistent predictions with Weaver even if
a large proportion of the input variants are unphased. We also applied
our method to TCGA ovarian cancer whole-genome sequencing sam-
ples to phase unphased SVs obtained by Weaver. Our work provides
an important new algorithmic framework for recovering more complete
allele-specific cancer genome graphs.

1 Introduction

A significant proportion of cancer genomes are aneuploid and have under-
gone somatic copy number alterations (CNAs) and even whole-genome duplica-
tions (WGD) [2,7,20]. Structural variations (SVs) that involve complex somatic
rearrangements can further modify aneuploid cancer genomes. It has been shown
that aneuploid cancer genomes typically have a higher rate of CNAs and SVs
that happen together [20]. Therefore, it is important to analyze CNAs and SVs
in an integrated manner in aneuploid cancer genomes in order to obtain a more
complete view of the tumor genome complexity, which would in turn help under-
stand the somatic evolutionary history of cancer genomes [8]. In the past few
years, many computational tools have been developed to infer SVs and CNAs
individually [3,18,19], but none gives us a completely integrated view of how
CNAs and SVs interact, nor do they provide an allele-specific context to SVs.

We previously developed a new algorithm Weaver [13], which can simultane-
ously analyze SVs and allele-specific copy number of the genome (ASCNG) in
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 224–240, 2017.
DOI: 10.1007/978-3-319-56970-3 14

Towards Recovering Allele-Specific Cancer Genome Graphs 225

the context of aneuploid cancer genome. Specifically, Weaver is able to identify
allele-specific copy number of SVs (ASCNS) as well as the inter-connectivity
of them (i.e., phasing). Weaver uses a Markov Random Field (MRF), where
ASCNS and SV phasing configuration, together with ASCNG, are hidden states
in the nodes in the graph and the observations include sequencing coverage and
read linkage between SVs. The results from [13] demonstrated that Weaver can
be successfully applied to cancer cell lines (MCF-7 and HeLa) as well as TCGA
patient samples to generate base-pair resolution ASCNS and ASCNG with high
accuracy.

However, one major limitation of Weaver is that it is not guaranteed to
output a phasing for all SVs. In some tumor samples we have tested, as few
as 60% of the detected SVs may be phased by using the paired-end reads from
the whole-genome sequencing sample together with the known SNP phasing
information from the 1000 Genomes Project. It is therefore important to develop
additional approaches as a step further to predict the interconnectivity of allele-
specific SVs and phase them into a more complete haplotype structure. Our
motivation in this work is that we may be able to utilize the copy number
information gathered to further predict phasing for the remaining allele-specific
breakpoints caused by SVs. Such an approach could serve two useful purposes:
(1) the predicted phasing structure would provide a more complete context for
interpreting cancer-specific functional genomic data (such as [1]); and (2) the
predicted phasing structure may offer insights into incorporating data from other
technologies (such as physical maps [9], PacBio [1,6], or 10X Genomics [22]), if
available, to further solve somatic genome architecture at the haplotype level in
aneuploid cancer genomes.

The goal of this work is to develop a new algorithm to fully leverage the
output from Weaver to further improve SV phasing. Given copy number pre-
dictions from some source, e.g., from sources such as [1] or from Weaver, and a
large number of putative unphased SVs, we wish to use the new algorithm to
further predict SV phasing accurately. Here, we develop a convex optimization
framework which minimizes a flow-like objective function while phasing the set
of unphased SVs. We implement an integer linear program derived from this
framework and test it on both simulations and real data to demonstrate that
our method is not sensitive to false positives, and robust to copy number noise
in the input. We aim to extend this method to account for long read data in
the future, and support the Weaver framework in obtaining a more complete
description of a cancer genome.

2 Background

As we previously mentioned, one major limitation of Weaver is that it does
not always phase all SVs. For example, out of 36 TCGA ovarian cancer patient
samples we analyzed using Weaver in this paper, the average fraction of unphased
SVs is a little over 30% and many as 53% of the detected SVs (where the total
number varies from 17 to 527) may be unphased in these samples. This may be

226 A. Rajaraman and J. Ma

due to low read support for the SV or due to balanced copy numbers for the
bordering region alleles. Currently, Weaver also does not predict the phasing of
copy number neutral events, such as inversions. On the other hand, we know
that Weaver can produce accurate estimation of ASCNG in aneuploid tumor
genomes [13]. Our goal here is to improve upon, or predict the phasing of SVs,
given the allele-specific copy numbers (ASCNs). Note that in this work we do not
seek information from germline SNPs to help phasing as we assume that we have
already exhausted the information from SNPs and the read linkage provided by
the paired-end reads from the sequencing data.

2.1 Problem Setting

Our input is a set of genomic regions and SVs. A genomic region is specified
by a pair of loci (i.e., coordinates) on a chromosome in the reference genome,
called the extremities of that genomic region. We assume that the set of all
genomic regions is disjoint, i.e., there are no two regions such that one or both
extremities of one region lies between the extremities of the other. An SV is
specified by a set of genomic loci, called breakpoints. These breakpoints need not
lie on the same chromosome. Since Weaver infers pairs of breakpoints as SVs, we
use the terms ‘pair of breakpoints’ and SVs interchangeably. In the input, each
genomic locus is associated with at most one breakpoint: this is called the infinite
sites assumption [12,14]. This assumption comes as a natural consequence of the
hypothesis that the probability of a single genomic site being subjected to an
SV breakpoint is usually low. Formally, breakpoints may be assumed to occur
randomly across the genome, following an unobserved probability distribution. If
the number of genomic loci is very large, this distribution may be approximated
by a continuous density function. Under this assumption, a genomic locus will
almost surely not be used as a breakpoint more than once, even if some regions
are more likely to host breakpoints than others. However, this assumption may
be invalid if the breakpoints are resolved at a very low resolution. Therefore, in
the context of providing a general framework, the infinite-sites assumption can
be ignored as a condition which is probably too strong in real data.

The normal human genome is diploid, where each genomic region on a chro-
mosome can be associated with two alleles. Specifically, it is possible to dif-
ferentiate between chromosome regions that arise from the paternal copy of the
chromosome, and those that come from the maternal copy of the chromosome. In
a non-cancerous genome, for most genomic regions, we expect exactly one copy
of the chromosome region from each allele. In a tumor genome, on the other
hand, due to somatic CNAs and SVs, as well as aneuploidy, we frequently find
multiple copies of allelic regions, or regions from a specific allele which are lost
(loss of heterozygosity). It is now acknowledged that CNAs and whole-genome
duplications are prevalent in various types of cancer genomes [20]. Therefore,
it is important to accurately characterize the allele-specific copy number of a
genomic region in the tumor genome. Furthermore, SVs and CNAs in cancer
genomes could lead to rearranged haplotype structure and a different intercon-
nectivity of the SVs from that seen in the non-cancerous genome. Thus, if we

Towards Recovering Allele-Specific Cancer Genome Graphs 227

can identify the connections among different SVs at the haplotype level (i.e.,
providing a phasing), we can specify the haplotype that the breakpoints lie in,
resolving the complexity of aneuploid cancer genome to a more refined resolu-
tion. We can also associate an ASCN to SVs, based on how many times the
phased variant is found in the tumor genome. ASCN of SVs (ASCNS) is also
estimated through Weaver [13].

Figure 1A shows an example of how a cancer genome may compare to a nor-
mal genome. The figure shows two copies of the same chromosome, with blocks
representing regions, black edges representing connections between regions which
were adjacent in the normal genome, and colored edges representing connections
between regions which are detected in the cancer genome. Red edges are adjacen-
cies representing SVs that are phased. Green edges represent a possible phased
configuration of an unphased SV. The numbers depict the number of copies of
each region/SV. The goal is to predict a phasing of the SVs represented by the
green edges, which translates to setting the ASCN of the other possibilities to 0,
that minimizes an objective function which corresponds to ‘discordant’ ASCN
information in the input data.

2.2 Method Overview

Using the regions and SVs, and their corresponding ASCNs as predicted by
Weaver as input, we can construct an allele-specific cancer genome graph. In such
a graph, we represent different alleles of a region by different vertices. Specifically,
we represent each region extremity by two vertices, each representing a different
allele with the corresponding ASCN. Two vertices are then adjacent to each
other if the corresponding allele-specific regions occurred next to each other in
the tumor genome, i.e., they either represent a putative SV with allele-specific
breakpoints, or the adjacency has never been broken in the cancer genome. In the
resulting graph, there may be breakpoints adjacent to more than one SV edge,
representing the possible phasings of an SV. Thus, the graph is incomplete, in the
sense that there is a set of edges in the graph which are either not representative
of the actual adjacency information in the tumor sample. If all the SVs were
phased, and all ASCNs were predicted correctly, the copy number of an allele-
specific region should be equal to the cumulative degree (sum of weights on
edges) at each extremity.

Our aim is to use the ASCNs predicted by Weaver to phase unphased SVs.
To achieve this, we designed an optimization problem which attempts to balance
the inflow and outflow through a region, while conforming to a set of constraints
which specify the structure of the problem.

3 Method

3.1 Preliminaries

We now introduce the notion of an incomplete allele-specific cancer genome graph
(see example in Fig. 1B), a representation of the input where vertices and edges
encode region extremities and adjacencies between them, respectively.

228 A. Rajaraman and J. Ma

2 1 1

2 2

1 1

1 1

1 1

1 1

2 2

1 1 2

1 1 2

2 1 1

Chr1
Allele A

Chr1
Allele B

Chr1
Allele A

Chr1
Allele B

Chr1
Allele A

Chr1
Allele B

1

1

1

1

1

1 1

1

11

1 1

1
11

1

1

1

1
1

1
1

(A) Input data

(B)

(C) Feasible solution

Phased break edge Unphased break edge

Fig. 1. An example of an incomplete allele-specific cancer genome graph, showing two
alleles of the same chromosome. (A) shows the problem setting, where two copies
of the same chromosome are given. Genomic regions are given as blocks, adjacencies
between blocks present in the reference genome are shown in black, and SVs are given
by colored edges. Phased SVs, with the allele of both breakpoints known, are in red,
and those which are unphased are in green. ASCNs for both genomic regions and SVs
are shown as numbers near the regions/edges. If an SV is unphased, there are many
possibilities for the correct phasing. (B) shows the translation into an incomplete allele-
specific cancer genome graph, with regions being replaced by 2 vertices each, and copy
numbers assigned to all SVs and possible non-cancer edges. This is the instance on
which the objective (3) is defined. A correct solution will modify the copy numbers of
the edges to minimize (3), selecting one of the many possible SVs. (C) shows a feasible
solution to the toy problem presented. Edges which are assigned copy number 0 in this
solution are not shown, and SVs which are phased are now given in red.

Definition 1. The set of region extremities V is a set of objects, each of which
has the following characteristics.

1. Each v ∈ V is associated to a chromosome and a position on the chromosome.
2. There is a symmetric relation on the set V which associates each v ∈ V with

a corresponding extremity called its mate in V . We denote the mate of an
extremity v by v.

3. v has an associated allele, such that v is also associated with the same allele.

Towards Recovering Allele-Specific Cancer Genome Graphs 229

4. Every v ∈ V is associated to another region extremity γ (v) ∈ V , which is
called its variant. γ (v) is associated with the same chromosome and position
as v, but must be associated to a different allele. The relation γ is symmetric
(i.e., γ (γ (v)) = v), and γ (v) = γ (v) for every v ∈ V .

Since the regions are all associated with allele-specific copy numbers, we define
a multiplicity function on the set of region extremities as follows.

Definition 2. The multiplicity function μ : V → N is a non-negative integer
function on a set of region extremities with the following conditions.

1. For every v ∈ V , μ (v) = μ (v).
2. If allele labels are not known, region extremities are labelled as either major

or minor, such that, if extremity v is a major allele, μ (v) ≥ μ (γ (v)).

We can now define the main object that we study in our problem.

Definition 3. An incomplete allele-specific cancer genome graph G = (V,E) is
an undirected graph, where the set of vertices V is a set of region extremities,
and the set of edges E is defined as follows.

1. There is an edge between all region extremities which are putatively adjacent
in the normal genome. We call these non-break edges. All other edges will be
called break edges.

2. For every SV that is phased, we add an edge between the vertices corresponding
to the region extremities which form the breakpoints of the SV. We call these
phased edges.

3. For every SV in which exactly one breakpoint is unphased, we add edges from
the vertex corresponding to the phased region extremity to both possible alleles
of the unphased region extremity.

4. For every SV in which both breakpoints are unphased, we add edges from
the vertices corresponding to both alleles of one region extremity to those
corresponding to both alleles of the other extremity.

Edges that are not phased are called unphased edges. Ev denotes the set of edges
adjacent to a vertex v.

A non-negative integer function ν : E → N is defined on the set of edges,
which we will call the edge multiplicity function.

Note that an incomplete allele-specific cancer genome graph may be discon-
nected. ν may be defined as a partial function ν′. In this case we extend ν,
such that ν (e) = ν′ (e), if ν′ is defined on e = {u, v} ∈ E, and ν (e) =
min{μ (u) , μ (v)} otherwise. The functions μ and ν represent the expected num-
ber of copies of the region/SV as observed in the tumor sample, respectively.
They are also important when deciding on a traversal of the graph. Such a tra-
versal would correspond to a possible representation of the cancer genome, with
each linear or cyclic walk corresponding to a linear or circular chromosomal
segment formed after genomic alterations. Figure 1B shows an example of an
incomplete allele-specific cancer genome graph.

230 A. Rajaraman and J. Ma

Given an incomplete allele-specific cancer genome graph G = (V,E), with
multiplicity and edge multiplicity functions μ and ν, respectively, the imbalance
of a region r, associated with the extremities v, v, is the following quantity.

∣
∣
∣
∣
∣

∑

e′∈Ev

ν (e′) −
∑

e′∈Ev

ν (e′)

∣
∣
∣
∣
∣
.

A non-telomeric region is said to be balanced if it has imbalance 0. This is the
same as saying that the number of regions adjacent to one end of an allele-
specific region r in the cancer genome is equal to the number of regions adjacent
to the other end. Clearly, this condition does not hold for telomeric regions. An
incomplete allele-specific cancer genome graph in which all regions are balanced
with respect to functions μ and ν is said to be (μ, ν)-resolved. If μ and ν are
clear from the context, we just say the graph is resolved.

3.2 The Convex Program

Assume we are given an incomplete allele-specific cancer genome graph G =
(V,E), and let μ : V → N and ν : E → N be the multiplicity and edge multiplicity
functions on V and E, respectively. Our goal is to edit the functions μ and ν to
μ′ and ν′, respectively, so that the total imbalance over all regions is minimized.

Let xv be a variable associated with every vertex v ∈ V , and let ye be a
variable associated with every edge. We define δ (v) for a vertex v, and Δ (v, v)
as the following variables.

δ (v) = μ (v) + xv −
∑

e∈Ev

(ν (e) + ye) , (1)

Δ (v, v) = |δ (v) − δ (v)|. (2)

More generally, we will define δ (v) to be within an ε threshold of the term on
the right hand side in (1), where 0 < ε < 1. Note that Δ (v, v) is analogous to
the imbalance of the region defined by v, v, and only differs by the new variables
introduced. Using these definitions, we can now define the following problem.

Problem 1 (Total allele specification problem). Given an incomplete allele-
specific cancer genome graph G = (V,E), find an optimal integer solution to
the following convex program.

min
{xv},{ye}

∑

{v,v}
wv,vΔ (v, v) +

∑

v

λv|xv| +
∑

e

λe|ye| (3)

subject to:
xv − xv = 0, xv ≥ −μ (v) , δ (v) ≥ 0 ∀ v ∈ V, (4)

ye ≥ −ν (e) ∀ e ∈ E, (5)
(ν (e) + ye) . (ν (e′) + ye′) = 0 ∀ e, e′ ∈ Ev, e �= e′ (6)

being break edges,∀ v ∈ V,

Towards Recovering Allele-Specific Cancer Genome Graphs 231

where we optimize over all variables xv and ye for all vertices and edges, respec-
tively, the sum in (3) is over all distinct sets {v, v} of extremity and mate extrem-
ity in V , wv,v is a real, non-negative weight, and λv, λe are real positive para-
meters used for regularization.

This is a feasible, bounded integer program, interpreted in the following
section. A solution to this problem returns a ‘smoothing’ of the copy numbers,
and an ASCN for every possible phasing of an unphased SV.

3.3 Interpreting the Objective and Constraints

The objective function (3) is the sum of the imbalance over all regions defined in
the incomplete allele-specific cancer genome graph, along with two regularization
terms. We interpret the total imbalance as follows. Assume that a region defined
by vertices v, v has copy number k and is not telomeric in any chromosome in
the cancer genome. Clearly, the number of adjacencies next to the region at
extremity v should be equal to the number of adjacencies next to the region at
extremity v, and should be equal to k. If so, the difference between the sum of
the copy number of the edges from v and the sum of the edges from v should be
0. This is the expected imbalance of the region, which we are trying to minimize.

By definition (1), δ (v) itself is a constraint which states that every region is
only adjacent to as many other regions as its copy number. However, it allows
the copy number of the region to be greater than the sum of the copy number of
the edges adjacent to it at a single end. The variables xv and ye are the amounts
by which we must modify the copy numbers in order to find a minimum total
imbalance solution to the integer program described. However, an ASCN cannot
be negative, ensured by Constraints (4) and (5). The extra terms in the objective
are regularization terms to make sure that the copy numbers are not changed
significantly from the original assignment.

Constraint (6) is the only non-linear constraint specified in the problem. It
states that, assuming there are two break edges adjacent to the same extremity
of a region, then the copy number of at least one of these two edges must be
0. In other words, it enforces the very strong infinite sites assumptions. This
assumption only remains mostly valid when the breakpoints are resolved to the
nucleotide level. We shall later discuss how to interpret solutions for a system in
which we discard this constraint.

To understand how the program aids in phasing breakpoints, we note that in
case an SV is not phased, then we add all possible phasings of the SV edges to
the input graph. However, this causes an imbalance in the concerned regions on
which the breakpoints lie. In order to reduce/remove this imbalance, the method
will modify the copy numbers. It will set the copy numbers of all unsupported
phasings of an SVs to 0 while solving the problem, thus finding an assignment
of phase to the unphased breakpoints. A solution for the toy example presented
is shown in Fig. 1C.

It is instructive to compare the presented formulation against the integer
linear program (ILP) proposed by Oesper et al. [17] to infer the structure of

232 A. Rajaraman and J. Ma

cancer genomes, and to the flow framework presented by Dzamba et al. [5] (which
itself was based on prior work by [15,16]). While their methods are not designed
to resolve SVs at an allele-specific level, it uses the same basic principles for
inferring SVs, and presents the ILP as a maximum likelihood problem. The
constraints of these ILPs include the flow condition, i.e., the total in-flow should
be equal to the total out-flow through a node. In comparison, the objective (3)
in our formulation is presented as a combinatorial problem in which we seek
to minimize the total number of flow-like constraints violated, anticipating the
problem of missing edges or incorrectly estimated copy numbers. A theoretical
basis for similar frameworks is also given in [21].

3.4 Removing Non-linear Constraints

Recall that Constraint (6) is included to ensure that every vertex has maximum
degree 2. If we remove it, we would allow the possibility of multiple break edges
adjacent to a vertex, violating the infinite sites assumption, and the resulting
solution may lead to finding breakpoints which are used more than once. This is
a practical consideration that allows for breakpoints that are not resolved at a
nucleotide level. Since we are dealing with possibly noisy data in order to resolve
breakpoints, we will assume that we do not have nucleotide-level resolution of
breakpoints, and discard the infinite-sites assumption as a very strong constraint
on the data used. The absence of this constraint simplifies the problem to an
ILP, which is easier to solve in practice, though still theoretically NP-hard.

If, however, we wish to only analyze SVs which have a single unambiguous
phasing, we can discard all SVs for which more than one putative phasing is
predicted. This guarantees that none of the predicted phased variants is a false
positive. However, as we shall see on real data, the relative number of SVs for
which more than one possible phasing is predicted is generally small compared
to those successfully phased.

3.5 Implementation

We implemented the ILP in Python using the CVXPY package [4] and used
GUROBI [10] as the preferred solver. The program obtains an exact integer
solution to the linear program (3). While integer linear programs are known to
be NP-hard [11], they can be efficiently solved in practice for instances with thou-
sands of variables using sparse matrix data structures. This is important, since
the number of variables can be anywhere between 5,000 and 50,000, depending
on the input data. This is because the number of vertices in the graph may vary
from a few thousand to tens of thousands, and number of edges usually scales
linearly with the vertices. We require auxiliary variables in the ILP to represent
some constraints.

Towards Recovering Allele-Specific Cancer Genome Graphs 233

4 Results

4.1 Evaluation by Simulations

In order to evaluate the method, we simulated 25 datasets having region sizes
sampled from the distribution of regions produced by Weaver on the HeLa whole-
genome sequencing data in Adey et al. [1,13]. We simulated a set of SVs on this
set of regions such that the number of regions that are copy number altered is
relatively close (∼250 regions) to that produced by Weaver.

In the set of simulations created, we introduced copy number errors and
deleted the phasing of the breakpoints in order to create the input for the
method. We created two such subsets. In the first subset of simulations, we
discarded the phasing of SVs with probability 0.3, which is the expected frac-
tion of unphased SVs in the Weaver output, and perturbed the copy numbers
with the same probability. On average, each simulation in this subset has about
102 unphased SVs. However, the number of SVs used is higher than those which
are analyzed by Weaver in its final step. In the second subset, we used the same
parameters but discarded SVs with probability 0.3, so that the number of SVs
is similar to those analyzed by Weaver. This simulated the cases where the set
of SVs cannot account for all the CNAs observed in the data. On average, each
simulation in this subset has about 69 unphased SVs.

We used static parameters of �, 100�, and 0.01 as the cost, region regular-
ization, and edge regularization parameters, respectively, where � is the length
of a region. The main reasoning behind the choice of the parameters is that we
generally have more confidence in the ASCN of a region, since we expect a large
region to also support enough read alignments to be able to confidently predict
its copy number.

Under these parameters, we present the phasing results in Fig. 2. If we have
the entire set of possible SVs, over 50% of the ∼100 unphased SVs are cor-
rectly phased, while the number of incorrectly phased SVs is quite low (<10%).
However, a large number of SVs may remain unphased, i.e., more than 1 pos-
sible phasing is predicted for them. If we do not detect ∼30% of the SVs that
occurred, the noise added causes the quality of the phasing to drop significantly,
and the mean percentage of correctly phased SVs drops to about 40%. The num-
ber of incorrectly phased SVs remains under 10%, which means the method does
not create many false positives and is quite specific, but in the absence of the
non-linearity, the number of unphased SVs remains high.

Figure 3 shows how the number of incorrectly phased SVs, i.e., false positives,
in the two simulation datasets varies as the two regularization parameters are
changed. We note that the number of incorrectly phased SVs is always quite low,
at ≤15% of the number of unphased SVs in the input. Indeed, assuming all SVs
are detected, then with reasonable parameter values the number of errors during
phasing can be kept to single digits. However, if the regularization coefficient
for the edges exceeds that used for regions, the quality of the phasing drops
significantly in both data sets. This is expected behavior, considering that the
number of errors in ASCNs of regions is significantly lower than that for edges.

234 A. Rajaraman and J. Ma

Fig. 2. Phasing results for the two different simulation sets we create. Both sets consist
of approximately the same number of genomic regions as the HeLa results produced by
Weaver [13]. In the first one, we keep all the simulated SVs, but discard the phasing of
breakpoints with probability about 0.30. This leads to ∼102 unphased SVs, of which
we can correctly phase ∼52%. In the second set, we also delete SVs with probability
0.30, leading to ∼69 SVs on average. In this case, the missing information from the
deleted breakpoints affects the phasing inference, and the number of recovered SVs
that are phased correctly is fewer than those that remain unphased. In both cases,
however, the number of wrongly phased SVs is only ∼8%.

-2.0 -1.0 0.0 1.0 2.0
log10 (Edge regularization)

-2.0

-1.0

0.0

1.0

2.0

lo
g 1

0
(R

eg
io

n
re

gu
la

riz
at

io
n) False positive SVs vs regularization terms

0.078

0.084

0.090

0.096

0.102

0.108

0.114

0.120

0.126

-2.0 -1.0 0.0 1.0 2.0
log10 (Edge regularization)

-2.0

-1.0

0.0

1.0

2.0

lo
g 1

0
(R

eg
io

n
re

gu
la

riz
at

io
n) False positive SVs vs regularization terms

0.078

0.084

0.090

0.096

0.102

0.108

0.114

0.120

0.126

(A) Number of wrongly phased SVs
when all SVs are provided.

(B) Number of wrongly phased SVs
when around 30% of the SVs are
not detected.

Fig. 3. Variation in the number of incorrectly phased SVs with variation in the two
regularization terms. The weighting coefficient is kept constant at 1. The axes are log
scaled.

Therefore, if the ASCNS is perturbed and we have to find the phasing, it is more
likely to introduce errors by disallowing large corrections in the ASCNS than by
disallowing large corrections in the ASCNG.

Towards Recovering Allele-Specific Cancer Genome Graphs 235

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Ratio of SVs which are unphased in the input

0.7

0.75

0.8

0.85

0.9

0.95

1.0

R
at

io
 o

f
S
V
s

w
ho

se
 p

ha
se

m
at

ch
es

 t
he

 W
ea

ve
r

pr
ed

ic
tio

n

Phasing statistics
(Vertex regularization=102, Edge regularization=10−2)

No copy number errors
With copy number errors

Fig. 4. Phasing results compared to Weaver on the HeLa whole-genome sequencing
data. The X-axis represents the fraction of unphased SVs in the input provided to our
method, while the Y-axis is the fraction of SVs where the recovered phasing agrees
with that obtained by Weaver. The green plot shows the results when the input does
not have noisy copy numbers, which should aid phasing. The orange plot shows how
the results vary when copy numbers of SVs and regions are perturbed with probability
0.3.

4.2 Application to the HeLa Whole-Genome Sequencing Data

To evaluate the method on real data, we used as input noisy results from Weaver
on the HeLa whole-genome sequencing dataset [13] on the HeLa genome [1]. In
this input, we examined the results for our method when the number of phased
breakpoints is varied. We then verified how our recovered phasing compares with
the prediction from Weaver, and how it is affected when noise is introduced in
the form of perturbation in the copy numbers of the SVs and the regions.

Figure 4 shows the fraction of SVs where our phasing prediction is similar
to that predicted by Weaver versus the fraction of unphased SVs in the input.
The results were calculated at parameter values of �, 100�, .01 for the cost, region
regularization, and edge regularization parameters respectively, where � is the
length of the corresponding region. In the results obtained, we found that our
method manages to recover a large percentage of discarded phasing information.
When the copy numbers of the regions and the SVs are known, we can recover
almost 90% or better of the predicted phasing by Weaver, irrespective of the
number of SVs that are already phased. Weaver, on the other hand, uses germline
SNP data and their haplotype information from the 1000 Genomes Project to
predict phasing.

When noise is introduced, the fraction of recovered phasing drops to ∼74%
when only 5% of the original input is phased, but it rises to ∼90% if even
50% of the original input is phased. Therefore, any noise in the copy number
data is being offset by prior information about the phasing of some SVs. This
information allows the method to balance some of the copy numbers so that the
phasing of the remaining SVs can be recovered. In Fig. 5, we provide an example

236 A. Rajaraman and J. Ma

HeLa Allele A

HeLa Allele B

1 4 2 4 1

1 2 1 2

4

2

2

?

0

?

Phased deletion
Predicted ASCNS=2
Chr11: 27.5-92.7Mb

Other possible
phasing

Predicted ASCNS=0

Allele A

Allele B

(A) Genome Browser view of a region in HeLa cells

(B) Subgraph including labelled SVs

Fig. 5. (A) A Genome Browser view that shows two possible phasings of a given SV (a
deletion) in the HeLa genome, where the phasing prediction by Weaver was discarded,
in a region with a large number of unphased SVs and CNAs. The number of CNAs and
SVs makes it liable to predict the phasing incorrectly. The two tracks represent allele A
and allele B frequencies for regions on chromosome 11 as predicted by Weaver. The red
edges are possible phasings of an SV detected on the chromosome. On solving (3), one of
these possibilities is predicted to have copy number 0 (dotted edge), and the other (solid
edge), which is the phasing predicted by Weaver, has copy number 2. Note that other
unphased SVs in the figure are not shown for clarity. (B) A schematic representation
of the corresponding incomplete allele-specific cancer genome graph near the region
shown in (A). Here the regions are represented as oriented blocks, with the number on
each block referring to their ASCNG. The green connections represent a large set of
regions excluded in the schematic. These regions are also subject to unrepresented SVs
that may have confound the inference. Despite this, the inference agrees with Weaver’s
prediction, which was erased from the input.

of an SV in a region with CNAs in the HeLa data, where the predicted phase is
consistent with the Weaver prediction. Note that the prediction is unaffected by
other unphased SVs (not shown in the figure) in a region with a large number
of CNAs.

4.3 Application to Ovarian Cancer Data from TCGA

In Li et al. [13], Weaver was used to infer allele-specific copy numbers and phas-
ing information for TCGA ovarian cancer samples. The number of SVs detected
in these samples varied from under 50 to over 500. However, on average, 23% of

Towards Recovering Allele-Specific Cancer Genome Graphs 237

the SVs detected in a sample were unphased, and some of the detected unphased
variants were inferred to have copy number 0. Some samples had over 50% of
the detected SVs unphased at either one or both breakpoints. We attempted to
resolve these variants using the convex programming framework introduced in
this paper, and classified the SVs into 3 classes: (1) variants that were phased
using the framework and were estimated to have non-zero copy number; (2) vari-
ants that remained unphased; and (3) variants whose copy number is predicted
to be 0 by both Weaver and the ILP.

In these results (Table 1), on average, about 60% of the unphased SVs in the
samples were estimated to have a copy number of 0, matching the estimation
through Weaver. We classify these as undetermined variants, since we cannot
distinguish the classes they might fall into, nor the phasing. However, of the
other 40% of the SVs which are predicted to have non-zero copy number, almost
60% are phased on average, with the number of ambiguous phasings never rising
above single digits. Thus, for a large number of SVs with predicted copy number
>0, we are able to obtain a single, unambiguous phasing.

5 Discussion and Conclusion

The main contribution of this paper is a combinatorial framework within which
we can examine allele-specific rearrangements in cancer genomes. An advantage
of our method is that given ASCN information and putative SVs from any
source, we can infer phased SVs efficiently. We showed that this framework, as
implemented here, has high specificity. As a proof-of-principle, we demonstrated
the performance of our method on real data. Even in the presence of external
noise in the form of errors in the input ASCNs, our results agreed closely with the
original predicted results from Weaver that used many other types of input data
(germline SNP and read linkage from paired-end reads) to obtain SV phasing
information.

The method proposed in this paper can also be extended for more sophisti-
cated inference. We will explore adding further non-linear constraints which can
capture information gathered from long-range sequencing and alignment data,
such as PacBio and 10X Genomics data. In such a framework, we should be able
to incorporate both long and short read data into a comprehensive assembly-
like problem formulation and obtain a description of the cancer genome through
the cancer genome graph. In addition, a theoretical analysis of the method, in
the sense of accuracy of rounded solutions to relaxations of problem, can also
be pursued. Assuming we can bound the error in our prediction of value of the
objective function, we believe the main drawback in the current iteration of the
method, which is the number of false negatives, can be overcome. We also do
not specifically consider the problem of subclones in this work. Indeed, if multi-
ple clones are present, then the incomplete allele-specific cancer genome graph
obtained will represent SVs from different subclones, and the problem of decom-
posing the graph into individual clones needs to be addressed. Finally, from a
practical point of view, the ILP framework is fast and efficient for most cases,

238 A. Rajaraman and J. Ma

Table 1. The results of the ILP on 36 ovarian cancer samples from TCGA. The first
column gives the sample ID. The second column shows the number of the SVs identified
by Weaver, while the third column shows the number of SVs which are left unphased.
The fourth column shows the number of SVs which are phased by the ILP and are
predicted to have more than 1 copy. The fifth column is the number of SVs whose
phase is left ambiguous by the ILP, though Weaver predicts that they have non-zero
copies. The sixth and final column shows the number of SVs that are predicted to have
copy number 0 by both Weaver and the ILP. These are classified as undetermined SVs.

Sample name SVs detected

by Weaver

Unphased

SVs

Newly

phased SVs

Remaining

unphased SVs

Undetermined

SVs

TCGA-04-1331 80 24 10 3 11

TCGA-04-1347 174 25 11 5 9

TCGA-04-1349 62 7 3 1 3

TCGA-04-1367 59 24 4 2 18

TCGA-04-1514 173 73 14 7 52

TCGA-09-1666 222 105 21 8 76

TCGA-09-2045 105 14 4 2 8

TCGA-09-2050 120 21 3 6 12

TCGA-10-0934 128 7 0 2 5

TCGA-10-0937 100 17 6 2 9

TCGA-10-0938 276 89 18 7 64

TCGA-13-0725 21 8 2 2 4

TCGA-13-0751 120 19 6 5 8

TCGA-13-0906 94 22 1 6 15

TCGA-13-1477 17 6 2 1 3

TCGA-13-1487 275 29 5 5 19

TCGA-13-1491 101 19 4 1 14

TCGA-23-1110 145 32 7 5 20

TCGA-24-0982 32 8 2 4 2

TCGA-24-1419 51 10 4 1 5

TCGA-24-1466 527 39 16 9 14

TCGA-24-1544 288 152 13 7 132

TCGA-24-1548 73 9 2 2 5

TCGA-24-1557 265 37 8 4 25

TCGA-24-1558 189 26 8 3 15

TCGA-24-1562 92 11 4 1 6

TCGA-24-1614 180 80 11 9 60

TCGA-24-2024 67 19 1 3 15

TCGA-24-2290 168 55 10 4 41

TCGA-25-1632 165 11 2 2 7

TCGA-25-1634 118 28 8 8 12

TCGA-25-2391 88 24 2 3 19

TCGA-25-2400 213 54 29 6 19

TCGA-36-1570 161 29 7 6 16

TCGA-36-1574 114 21 9 3 9

TCGA-61-2000 460 90 13 3 74

Towards Recovering Allele-Specific Cancer Genome Graphs 239

but there is no guarantee of a polynomial time solution. For certain input pro-
grams, for example, the algorithm may take exponential time, and it is hard to
quantify which cases these are. In the context of the large graphs being handled,
this could be a potential problem. A more thorough analysis, a more efficient
implementation, and a study of the structure of edge cases would improve the
utility of the method.

Acknowledgments. The authors would like to thank anonymous reviewers for sug-
gestions that improved the paper. The authors would also like to thank the TCGA
Research Network for making the data publicly available. This work is supported in
part by National Institutes of Health Grants CA182360, HG007352, and DK107965 (to
J.M.), and National Science Foundation Grants 1054309 and 1262575 (to J.M.).

References

1. Adey, A., Burton, J.N., Kitzman, J.O., Hiatt, J.B., Lewis, A.P., Martin, B.K., Qiu,
R., Lee, C., Shendure, J.: The haplotype-resolved genome and epigenome of the
aneuploid HeLa cancer cell line. Nature 500(7461), 207–211 (2013)

2. Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan,
J., Barretina, J., Boehm, J.S., Dobson, J., Urashima, M., et al.: The landscape of
somatic copy-number alteration across human cancers. Nature 463(7283), 899–905
(2010)

3. Carter, S.L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., Zack, T., Laird,
P.W., Onofrio, R.C., Winckler, W., Weir, B.A., et al.: Absolute quantification of
somatic DNA alterations in human cancer. Nat. Biotechnol. 30(5), 413–421 (2012)

4. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex
optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

5. Dzamba, M., Ramani, A.K., Buczkowicz, P., Jiang, Y., Yu, M., Hawkins, C.,
Brudno, M.: Identification of complex genomic rearrangements in cancers using
CouGaR. Genome Res. 27(1), 107–117 (2017)

6. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D.,
Baybayan, P., Bettman, B., et al.: Real-time DNA sequencing from single poly-
merase molecules. Science 323(5910), 133–138 (2009)

7. Gordon, D.J., Resio, B., Pellman, D.: Causes and consequences of aneuploidy in
cancer. Nat. Rev. Genet. 13(3), 189–203 (2012)

8. Greenman, C.D., Pleasance, E.D., Newman, S., Yang, F., Fu, B., Nik-Zainal, S.,
Jones, D., Lau, K.W., Carter, N., Edwards, P.A., et al.: Estimation of rearrange-
ment phylogeny for cancer genomes. Genome Res. 22(2), 346–361 (2012)

9. Gupta, A., Place, M., Goldstein, S., Sarkar, D., Zhou, S., Potamousis, K., Kim, J.,
Flanagan, C., Li, Y., Newton, M.A., et al.: Single-molecule analysis reveals wide-
spread structural variation in multiple myeloma. Proc. Nat. Acad. Sci. 112(25),
7689–7694 (2015)

10. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2015)
11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,

Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations,
pp. 85–103. Springer, New York (1972)

12. Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite
population due to steady flux of mutations. Genetics 61(4), 893 (1969)

240 A. Rajaraman and J. Ma

13. Li, Y., Zhou, S., Schwartz, D.C., Ma, J.: Allele-specific quantification of structural
variations in cancer genomes. Cell Syst. 3(1), 21–34 (2016)

14. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.: The infi-
nite sites model of genome evolution. Proc. Nat. Acad. Sci. 105(38), 14254–14261
(2008)

15. Medvedev, P., Fiume, M., Dzamba, M., Smith, T., Brudno, M.: Detecting copy
number variation with mated short reads. Genome Res. 20(11), 1613–1622 (2010)

16. Medvedev, P., Stanciu, M., Brudno, M.: Computational methods for discovering
structural variation with next-generation sequencing. Nat. Methods 6, S13–S20
(2009)

17. Oesper, L., Ritz, A., Aerni, S.J., Drebin, R., Raphael, B.J.: Reconstructing cancer
genomes from paired-end sequencing data. BMC Bioinform. 13(6), S10 (2012)

18. Van Loo, P., Nordgard, S.H., Lingjærde, O.C., Russnes, H.G., Rye, I.H., Sun, W.,
Weigman, V.J., Marynen, P., Zetterberg, A., Naume, B., et al.: Allele-specific copy
number analysis of tumors. Proc. Nat. Acad. Sci. 107(39), 16910–16915 (2010)

19. Wang, J., Mullighan, C.G., Easton, J., Roberts, S., Heatley, S.L., Ma, J., Rusch,
M.C., Chen, K., Harris, C.C., Ding, L., et al.: Crest maps somatic structural vari-
ation in cancer genomes with base-pair resolution. Nat. Methods 8(8), 652–654
(2011)

20. Zack, T.I., Schumacher, S.E., Carter, S.L., Cherniack, A.D., Saksena, G., Tabak,
B., Lawrence, M.S., Zhang, C.Z., Wala, J., Mermel, C.H., et al.: Pan-cancer pat-
terns of somatic copy number alteration. Nat. Genet. 45(10), 1134–1140 (2013)

21. Zerbino, D.R., Ballinger, T., Paten, B., Hickey, G., Haussler, D.: Representing and
decomposing genomic structural variants as balanced integer flows on sequence
graphs. BMC Bioinform. 17(1), 400 (2016)

22. Zheng, G.X., Lau, B.T., Schnall-Levin, M., Jarosz, M., Bell, J.M., Hindson, C.M.,
Kyriazopoulou-Panagiotopoulou, S., Masquelier, D.A., Merrill, L., Terry, J.M., et
al.: Haplotyping germline and cancer genomes with high-throughput linked-read
sequencing. Nat. Biotechnol. 34(3), 303–311 (2016)

Using Stochastic Approximation Techniques
to Efficiently Construct Confidence Intervals

for Heritability

Regev Schweiger1(B), Eyal Fisher2, Elior Rahmani1, Liat Shenhav2,
Saharon Rosset2, and Eran Halperin3,4

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
schweiger@post.tau.ac.il

2 School of Mathematical Sciences, Department of Statistics,
Tel Aviv University, Tel Aviv, Israel

3 Department of Computer Science, University of California, Los Angeles, CA, USA
4 Department of Anesthesiology and Perioperative Medicine,

University of California, Los Angeles, CA, USA

Abstract. Estimation of heritability is an important task in genetics.
The use of linear mixed models (LMMs) to determine narrow-sense SNP-
heritability and related quantities has received much recent attention,
due of its ability to account for variants with small effect sizes. Typically,
heritability estimation under LMMs uses the restricted maximum like-
lihood (REML) approach. The common way to report the uncertainty
in REML estimation uses standard errors (SE), which rely on asymp-
totic properties. However, these assumptions are often violated because
of the bounded parameter space, statistical dependencies, and limited
sample size, leading to biased estimates and inflated or deflated confi-
dence intervals. In addition, for larger datasets (e.g., tens of thousands
of individuals), the construction of SEs itself may require considerable
time, as it requires expensive matrix inversions and multiplications.

Here, we present FIESTA (Fast confidence IntErvals using STochastic
Approximation), a method for constructing accurate confidence intervals
(CIs). FIESTA is based on parametric bootstrap sampling, and there-
fore avoids unjustified assumptions on the distribution of the heritabil-
ity estimator. FIESTA uses stochastic approximation techniques, which
accelerate the construction of CIs by several orders of magnitude, com-
pared to previous approaches as well as to the analytical approximation
used by SEs. FIESTA builds accurate CIs rapidly, e.g., requiring only
several seconds for datasets of tens of thousands of individuals, making
FIESTA a very fast solution to the problem of building accurate CIs for
heritability for all dataset sizes.

1 Introduction

Heritability, or the proportion of phenotypic variation that is explained by
genetic variation, is an important population parameter in human genetics, in
evolution, in plant and animal breeding, and more. Estimating the heritability
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 241–256, 2017.
DOI: 10.1007/978-3-319-56970-3 15

242 R. Schweiger et al.

has been traditionally performed using related individuals such as in twin stud-
ies or pedigree designs [1–3]. More recently, genetic variation has been estimated
using genetic marker information, and in particular in genome-wide association
studies (GWAS) [4,5], which have identified thousands of genetic variants that
are associated with dozens of common diseases. However, genome-wide signifi-
cant associations were generally found to explain only a small proportion of the
heritability of complex diseases.

To cope with this challenge, linear mixed model (LMM) approaches [6–13]
have been applied to estimate the heritability explained by common SNPs (the
narrow-sense SNP-heritability, to which we refer as heritability, and denote by
h2) from cohorts of unrelated individuals, such as those found in GWAS [14].
Estimation under the LMM is usually performed using restricted maximum like-
lihood (REML) estimation, and is implemented in some widely used tools, like
the GCTA software package [15]. LMMs utilize all variants from a GWAS, and
not just the variants that are statistically significant, and therefore is able to
account for variants with small effect sizes.

As in any statistical analysis, the process of estimating the heritability suffers
from statistical uncertainty. Typically, confidence intervals (CIs) are reported
alongside with point estimates to quantify this uncertainty. Usually, such CIs
are constructed from standard errors (SEs), which make the assumption that
the estimators asymptotically follow a normal distribution. However, it has been
shown [13,16–20] that such CIs can be highly inaccurate. This is because estima-
tors do not necessarily obey the conditions required for them to asymptotically
follow the normal distribution. Additionally, these CIs may spread beyond the
natural boundaries of their parameters, e.g., including negative values for heri-
tability. As a result, these CIs are often inaccurate, difficult to interpret, or lead
to erroneous conclusions.

To handle these issues, previous approaches have taken several directions.
Non-standard asymptotic theory for boundary and near-boundary maximum
likelihood estimates has been developed (e.g., [21–23]), and it has been suggested
to replace the asymptotic normality assumption with the asymptotics developed
for the non-standard boundary case [24]. Visscher and Goddard [25] derived an
analytical expression for the asymptotic variance of the heritability estimator
in a range of pedigree- and marker-based experimental designs. Unfortunately,
these conditions typically do not hold for genomic datasets, mainly due to the
limited sample size, making either of these approximations ineffective [20]. Other
approaches include hierarchical bootstrapping schemes, e.g., [26]; extending the
REML estimation method with Bayesian priors, e.g., [27,28]; using alternative
statistics as a basis for building CIs [17,29,30]; or using Bayesian posterior dis-
tribution of the heritability value [31].

An alternative approach is the parametric bootstrap test inversion technique,
which constructs CIs via sampling phenotypes, performing heritability estima-
tion on the sampled phenotypes, estimating the distribution of the heritability
estimator and using these estimates as a basis for CI construction [32]. The main
advantage of using a parametric bootstrap approach is that it does not require

Confidence Intervals for Heritability 243

any assumptions on the distribution of the heritability estimator or of Bayesian
priors. As a näıve implementation of this approach would be computationally
prohibitive, the ALBI method [20] utilizes a highly accurate approximation that
allows an efficient construction of accurate CIs. However, ALBI still requires a
preprocessing step. Newer datasets (e.g. the UK Biobank [33]) may contain tens
or hundreds of thousands of individuals, for which this step may require hours
of computation time. In addition, the need for a preprocessing step can be an
obstacle in the adoption of a better CI construction method.

In this paper, we introduce FIESTA (Fast confidence IntErvals using STo-
chastic Approximation), which dramatically reduces the running time of CI con-
struction by several orders of magnitude, e.g., to mere seconds for dataset with
tens of thousands of individuals, compared to hours or days. The key ingredi-
ent of our approach is a CI construction algorithm from the field of stochas-
tic approximation (for a review, see [34]). Originating in the work of Robbins
and Monro [35], stochastic approximation algorithms are recursive update rules
that can be used, among other things, to solve optimization problems or func-
tion inversion problems when the collected data is subject to noise. It has been
shown [36] that stochastic approximation can be used to construct CIs for gen-
eral families of parametric distributions, given the ability to randomly sample
from them, and this is the approach we employ here. We validate FIESTA on
two real datasets, the Northern Finland Birth Cohort (NFBC) dataset [37] and
the Wellcome Trust Case Control Consortium 2 (WTCCC2) [38] dataset.

In addition to the significant speedup in time, FIESTA requires no pre-
processing step beyond calculating the eigendecomposition of the kinship matrix,
which is usually already performed as a part of heritability estimation. Finally,
we show that FIESTA is even significantly faster than the analytical SE formu-
lation. In summary, FIESTA can effectively be used extremely easily to rapidly
generate accurate CIs for REML heritability estimates. FIESTA is available as
part of the ALBI toolkit at https://github.com/cozygene/albi.

2 Results

2.1 A Faster Method for Calculating CIs for Heritability

CIs constructed from standard errors, which are based on the assumption of
a normal distribution for the heritability estimators, were previously shown to
be inaccurate [13,16–20]. In this paper, we introduce FIESTA, a method that
generates accurate CIs for h2, the true heritability value, given ĥ2, the restricted
maximum likelihood (REML) estimator for h2 (see Methods). FIESTA uses the
principle of test inversion to construct accurate CIs, using a stochastic approx-
imation method that directly estimates the CI boundaries. We review FIESTA
below; for a full description, see Methods.

The methodology of test inversion can be described as follows. The estimator
ĥ2 is a function of the phenotype, which is a random variable whose distribution
depends on h2, assuming a fixed kinship matrix. Therefore, ĥ2 is distributed

https://github.com/cozygene/albi

244 R. Schweiger et al.

differently for every value of h2. For each true value of h2, we select a subset of
possible ĥ2 values that has a sampling probability of 1−α, where ĥ2 is distributed
under the assumption of a true heritability value h2. We define this subset to be
the acceptance region for that value of h2. The CI accompanying an estimate ĥ2

is the interval containing all values of h2 whose acceptance region includes ĥ2,
namely, for which ĥ2 does not imply the rejection of the null hypothesis that the
true heritability value is h2, with a significance level of α.

It remains to define suitable acceptance regions. In the Methods section, we
review our scheme for defining acceptance regions. A basic ingredient of our
construction of acceptance regions is inverting certain quantile functions of the
distribution of ĥ2, as a function of h2. For example, finding the inverse of a
value H2 of the 95%-quantile function is finding a heritability value h2 for which
Prh2(ĥ2 ≤ H2) = 0.95, i.e., the probability to get an heritability estimate of H2

or below is precisely 95%, when ĥ2 is distributed with the heritability value h2.
Instead of carrying out this task by a full parametric bootstrap estimate of the

distribution of the estimator, we employ a technique from the field of stochastic
approximation to achieve the same results with a fraction of the computational
cost. The modified Robbins-Monro procedure [39], described in the Methods
section, is an iterative method that finds the inverse of the quantile function of a
one-parameter distribution. It operates by iteratively (1) drawing a sample with
a true heritability value equal to our current guess for the required inverse value,
(2) comparing its estimated heritability to H2; (3) updating our current guess
accordingly, by moving in the right direction, with a step size that decreases
with the number of iterations. An additional speedup is acquired by using a fast
method to calculate the derivative of likelihood of the sample, and using the
derivative to compare its estimated heritability to H2, instead of performing the
full likelihood maximization.

We applied FIESTA to construct 95% CIs for the NFBC dataset [37] and the
WTCCC2 dataset [38], as seen in Fig. 1. We then turned to verify the accuracy
of these CIs, which can be measured as follows. Draw multiple phenotype vectors
from the distribution assumed by the LMM with parameters that correspond to
a true heritability value h2. From each such phenotype, construct a CI for its
estimated heritability with a confidence level of, e.g., 95%. If the constructed
CIs are accurate, then they should cover the true underlying h2 95% of the time.
Then, check the percentage of times in which the CI covered h2, as a function of
h2. We measured the accuracy of FIESTA, with CIs designed to have a coverage
of 95%. The results are shown in Fig. 2, demonstrating that FIESTA accurately
achieves the desired confidence levels.

2.2 Benchmarks

We compared the speed of the stochastic approximation approach, implemented
in FIESTA, with that of using the parametric bootstrap for estimating the dis-
tribution of heritability estimator. The latter was tested either as implemented
naively by using either GCTA [15] and pylmm [40], or by using ALBI [20]. Both
the stochastic approximation and parametric bootstrap approaches require the

Confidence Intervals for Heritability 245

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimated value ĥ2

T
ru

e
va

lu
e

o
f
h
2

NFBC

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimated value ĥ2

T
ru

e
va

lu
e

o
f
h
2

WTCCC2

Fig. 1. 95% CIs for the NFBC and WTCCC2 datasets. Accurate 95% CIs
constructed for the NFBC dataset [37] (left) and the WTCCC2 [38] dataset (right) by
FIESTA. For each ĥ2 on a fine grid of 1000 values (x axis), we constructed a CI, whose
boundaries are shown (y axis). For example, for ĥ2 = 0.5 (denoted by a dashed line),
the CI for NFBC is [0.282, 0.705] (denoted by a full line).

0 0.2 0.4 0.6 0.8 1
90%

95%

100%

True value of h2

C
ov

er
a
g
e

P
ro

b
a
b
il
it
y

NFBC

0 0.2 0.4 0.6 0.8 1
90%

95%

100%

True value of h2

WTCCC2

Fig. 2. Accuracy of CIs for the NFBC and WTCCC2 datasets. The coverage
probabilities of the FIESTA CIs. The coverage probabilities are shown for CIs designed
to have coverage probabilities of 95%. The CIs achieve accurate coverage.

calculation of the eigendecomposition of the kinship matrix. As this is already
often a part of the heritability estimation algorithm, its calculation time is sep-
arated in the benchmarks. In the Discussion, we discuss how this step could be
avoided altogether.

One difference between the two approaches is that the bootstrap approach
performs a lengthy preprocessing step that estimates many distributions. Once
these distributions are estimated, constructing a CI is very rapid. In contrast,
the stochastic approximation approach does not perform a preprocessing step,
but performs a non-trivial calculation per CI.

246 R. Schweiger et al.

The construction of a single CI with FIESTA consists of calculating six to
eight values using the modified Robbins-Monro procedure (see Methods). The
first four values depend only on the kinship matrix, but not on the heritability
estimate for which we construct a CI, so they need to be calculated only once
per kinship matrix, and can then be shared between several CIs. Each modified
Robbins-Monro run has the complexity of O(nT), where n is the number of
individuals in the sample and T is the number of iterations (in the order of
1,000; see Methods). Therefore, in total, the time complexity to construct K CIs
with FIESTA grows linearly with K,T and n.

We also compared FIESTA to the performance of the analytical SE app-
roach. While often inaccurate, analytical SEs are often the go-to method by
many practitioners: First, their calculation is conceptually easy to understand,
since a closed-form formula exists for the SEs (see Appendix); second, using a
closed-form expression is often perceived as faster than more involved algorithmic
procedures. However, this is not the case for heritability estimation, as SEs are
calculated using variants of the Fisher information matrix (e.g., the AI matrix,
as in GCTA [15]), whose calculation requires matrix-by-vector multiplications,
which are O(n2). In contrast, FIESTA is linear in n, giving it an advantage at
larger datasets in particular.

We performed a benchmark to evaluate FIESTA, using the NFBC and
WTCCC2 datasets. We estimated the distributions of ĥ2 for h2 = 0, 0.01, . . . , 1,
with GCTA [15] and pylmm [40], both of which perform full estimation, using
1,000 random bootstrap samples. For the same task, we also used ALBI [20],
at a grid resolution of 0.001. The accuracy of CIs constructed according to the
full estimation approach, as implemented in ALBI, are shown in the Appendix.
As explained above, the time of construction of CIs given these distributions is
negligible relative to the time required for the estimation of the distributions.
We also constructed analytical SEs for both datasets using the AI method (see
Appendix). These times are reported in Table 1.

As a comparison, we used FIESTA to construct varying number of CIs, using
1,000 iterations in the modified Robbins-Monro procedure (see Methods). In
Table 1, it can be seen that FIESTA is significantly faster, particularly when
few CIs are needed. We also note that FIESTA is currently implemented in the
Python language, using the numpy package; a significant additional speedup can
be obtained by migrating to a compiled language, e.g., C++.

We then continued to investigate the stability of CI construction and its
dependency on the number of iterations. We ran FIESTA 100 times to construct
CI for the NFBC and WTCCC2 datasets using 200, 500, 1,000 or 2,000 itera-
tions. We measured the variance in the constructed CI endpoints (Table 2). As
expected, the variance decreases with the number of iterations. In addition, we
measured the mean and variance of the coverage of CIs under a grid of true her-
itability values. Here, also, we observed that variance of coverage decreases with
the number of iterations. We note that 500 iterations are sufficient for reasonably
accurate CIs for these datasets, and that the coverage of even 200 iterations is
only slightly biased downwards.

Confidence Intervals for Heritability 247

Table 1. Benchmarks. Running times of FIESTA, compared with previous meth-
ods (see Results for more details). Running times are reported for the NFBC (2,520
individuals) and WTCCC2 (13,950 individuals) datasets.

Algorithm Software Time for NFBC Time for WTCCC2

Eigen-decomp GCTA 50 s 2 h

Full bootstrap GCTA > 30 days > 30 days

Full bootstrap pylmm 3.8 h > 8 days

Full bootstrap ALBI 5.35 min 2.5 h

Analytical SEs n/a ∼3.1 sec × # of CIs, e.g.: ∼6.2 min × # of CIs, e.g.:

1 CI, ∼3 s 1 CI, ∼6 min

5 CIs, ∼15 s 5 CIs, ∼31min

10 CIs, ∼31 s 10 CIs, ∼1 h

50 CIs, ∼2.6 min 50 CIs, ∼5 h

Stochastic
approximation

FIESTA ∼1.8 sec + 0.6 sec ×
of CIs, e.g.:

∼6 sec + 2.8 sec ×
of CIs, e.g.:

1 CI, ∼3 s 1 CI, ∼9 s

5 CIs, ∼6 s 5 CIs, ∼20 s

10 CIs, ∼8 s 10 CIs, ∼34 s

50 CIs, ∼33 s 50 CIs, ∼2.4min

Table 2. Stability of CI construction. 95% CIs for the NFBC and WTCCC2
datasets were constructed 100 times, with either 200, 500, 1,000 or 2,000 iterations.
CIs were constructed for ĥ2 = 0, 0.001, . . . , 1. In order to assess the variance of the
construction process, the mean empirical standard error (SE) of the lower and upper
endpoints is reported, where the mean was calculated over all non-constant endpoints,
across all ĥ2 values. In addition, the CI coverage for h2 = 0, 0.01, . . . , 1 was calculated
as in Fig. 2. The average mean and SE across all 100 runs, calculated across all h2, is
reported.

Dataset NFBC WTCCC2

No. of iterations 200 500 1,000 2,000 200 500 1,000 2,000

CI lower point SE 0.0201 0.0132 0.0094 0.0067 0.0050 0.0032 0.0023 0.0016

CI upper point SE 0.0206 0.0133 0.0096 0.0070 0.0050 0.0031 0.0023 0.0016

Mean coverage 94.20% 94.71% 94.87% 94.95% 94.720% 95.217% 95.323% 95.373%

SE of coverage 0.45% 0.34% 0.30% 0.28% 0.781% 0.575% 0.486% 0.442%

3 Methods

For clarity of presentation, we begin by defining the heritability under the LMM,
and briefly reviewing stochastic approximation and its relevance to finding CIs.
Finally, we introduce FIESTA, our improved method for faster construction of
CIs for heritability.

248 R. Schweiger et al.

3.1 The Linear Mixed Model and REML

We consider the following standard linear mixed model (see [41] for a detailed
review). Let n be the number of individuals and m is the number of SNPs. Let
y be a n × 1 vector of phenotype measurements for each individual. Let X be a
n × p matrix of p covariates (possibly including an intercept vector 1n as a first
column, as well as other covariates such as sex, age, etc.). Let Z be the n × m
standardized genotype matrix, i.e., columns have zero mean and unit variance.
Let β be a p × 1 vector of fixed effects, s a m × 1 vector of random effects, and
e a n × 1 vector of errors. Then, y = Xβ + Zs + e. We assume s and e are
statistically independent and are distributed normally as s ∼ N (

0m, 1
mσ2

gIm

)
,

e ∼ N (
0n, σ2

eIn

)
. The fixed effects β and the coefficients σ2

g and σ2
e are the

parameters of the model.
Define K = 1

mZZT. Typically, K is commonly called the kinship matrix, or
the genetic relationship matrix. Under these conditions, it follows [14] that:

y ∼ N (
Xβ, σ2

gK + σ2
eIn

)
. (1)

The narrow-sense heritability due to genotyped common SNPs is defined as
the proportion of total variance explained by genetic factors [6]:

h2 =
σ2

g

σ2
g + σ2

e

. (2)

Defining σ2
p = σ2

g + σ2
e , Eq. 1 becomes: y ∼ N (

Xβ, σ2
pVh2

)
, where

Vh2 = h2K + (1 − h2)In.
The most common way of estimating h2 is restricted maximum likelihood

(REML) estimation. REML consists of maximizing the likelihood function asso-
ciated with the projection of the phenotype onto the subspace orthongonal to
that of the fixed effects of the model [42]. In [20], it is shown that the distribution
of ĥ2 depends only on h2, and is invariant under changes to σ2

p and β. We may
therefore limit our study to the ĥ2 estimator alone, in the special case of fixed
σ2

p = 1 and β = 0p, which substantially simplifies the problem; namely, we may
focus on properties of the distribution N (0n,Vh2) instead of the more general
N (

Xβ, σ2
pVh2

)
.

3.2 Confidence Intervals for h2

We wish to build confidence intervals with a coverage probability of 1 − α (e.g.,
95%). The full derivation is developed in [20], and is reviewed in the Appendix;
we cite the results here.

Let cβ(h2) be the β-th quantile function of ĥ2, when the true heritabil-
ity is h2; i.e. Prh2(ĥ2 ≤ cβ(h2)) = β. Define s and t to be the values for
which Prh2=s(ĥ2 = 0) = α/2 and Prh2=t(ĥ2 = 1) = α/2. In addition, let

Confidence Intervals for Heritability 249

s∗ = c1−α(0), t∗ = cα(1). Then the lower and upper CI boundaries for an
estimate H2 are given, respectively, by

lH2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if H2 ≤ s∗

c−1
1−α(H2) if c−1

1−α(H2) < s

s if s ∈ [c−1
1−α/2(H

2), c−1
1−α(H2)]

c−1
1−α/2(H

2) if s < c−1
1−α/2(H

2)

(3)

and

uH2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c−1
1−α/2(H

2) if c−1
α/2(H

2) < t

t if t ∈ [c−1
α (H2), c−1

α/2(H
2)]

c−1
α (H2) if t < c−1

α (H2)
1 if t∗ ≤ H2 .

(4)

3.3 Using Stochastic Approximation to Calculate CIs

Robbins-Monro. Stochastic approximation methods are a family of iterative sto-
chastic optimization algorithms that attempt to find zeroes, inverses or extrema
of functions which cannot be computed directly, but only estimated via noisy
observations. The classical Robbins-Monro algorithm presents a methodology for
solving a function inversion problem, where the function is the expected value
of a parametrized family of distributions. Namely, a function g(θ) is given, for
which we want to find an inverse, i.e., a value θ̄ for which g(θ̄) = C, for some
constant C. However, the function g is not directly available to us, but rather
we are only able to obtain noisy observations from it. The Robbins-Monro pro-
cedure is a modification of Newton’s method, where the step sizes are instead
an appropriately decreasing sequence. Starting with an initial guess, θ0, at iter-
ation n we obtain a noisy sample yn from a distribution whose mean is g(θn),
and update our estimate with

θn+1 = θn − γn · (yn − C) (5)

where γn = 1/n. The Robbins-Monro procedure is shown to converge to the
correct solution when: (i) the random variables defining our sampling process at
each g(θ) are uniformly bounded; (ii) g(θ) is nondecreasing; and (iii) g′(θ̄) exists
and is positive [35].

Using Robbins-Monro to calculate CIs. Garthwaite and Buckland [36] have used
the Robbins-Monro process for finding the endpoints of CIs, as we will now
describe. We discuss the case of one-sided CIs, but the application to two-sided
CIs is immediate.

Suppose that [0, uθ̂) is the one-sided 1 − α CI for θ, when data y has been
observed, with an estimate θ̂ = θ̂(y). Then, the correct endpoint satisfies

Prθ=uθ̂

(
θ̂ ≤ θ̂(y)

)
= α (6)

250 R. Schweiger et al.

If we define g(θ) = Prθ

(
θ̂ ≥ θ̂(y)

)
(to make it nondecreasing), then finding uθ̂

is equivalent to finding the inverse of g at 1 − α. However, under these settings,
we do not have direct access to g. Rather, we sample a binary random variable
Yθ, indicating that a sample yθ randomly drawn from g(θ) has an estimate θ̂(yθ)
larger than θ̂(y). By definition, Prθ(Yθ) = Prθ

(
θ̂(yθ)) ≥ θ̂(y)

)
= g(θ), so the

random sample Yθ has a mean of g(θ). Effectively, this formulation allows us to
use the Robbins-Monro procedure to invert the quantile function as a function
of θ. Full asymptotic efficiency can be achieved by multiplying the step size γn

by some constant c.
In detail, denote by yn a random sample from the random variable Yθn

. The
update rule is θn+1 = θn − cγn · (yn − (1 − α)), or explicity:

θn+1 =

{
θn − cα

n if yn = 1
θn + c(1−α)

n if yn = 0
(7)

The procedure is shown to be fully asymptotic efficient if c = 1/g′(uθ). However,
as neither g nor uθ are known in advance, c is estimated adaptively, using the
current estimate θn in place of uθ, and assuming a parametric form for g [36].

The modified Robbins-Monro procedure. As mentioned above, if the optimal step
size constant is known, this procedure is fully asymptotic efficient. However it was
empirically shown to work poorly for extreme quantiles. Joseph [39] suggested
a modification of this procedure, which is tuned to obtain optimal convergence
speed. It uses the following update form:

θn+1 = θn − an(yn − Cn). (8)

Joseph allows the use of a different target value, Cn, in each iteration, instead
of the required constant, C. The step sizes an and target values Cn are derived
explicitly in [39] to be optimal under a Bayesian analysis framework. As in [36],
the optimal step size also uses g′(uθ), which is unknown, and a suitable approxi-
mation scheme is used. The modified Robbins-Monro procedure achieves signifi-
cantly faster convergence rates in the case of the estimation of extreme quantiles.

3.4 Using the Modified Robbins-Monro Procedure to Obtain CIs
for Heritability

We now describe how to rapidly construct CIs for heritability. As described
above, the first step is to find s, t, s∗ and t∗. To find s, we employ the modified
Robbins-Monro procedure [39], where the parameter of interest is θ := h2, the
function is g(θ) := Prh2=θ(ĥ2 = 0) and the inverse value we wish to find corre-
sponds to C = α/2. We note that we chose g here to be nonincreasing for the
sake of clarity of presentation; to conform with the Robbins-Monro formulation,
we would need to redefine g → 1− g and C → 1−C. At a single iteration of the
modified Robbins-Monro procedure, we have an estimate h2

n for s, and we need

Confidence Intervals for Heritability 251

to sample from a distribution whose mean is Prh2
n
(ĥ2 = 0). To achieve that,

we draw a sample from the distribution corresponding to h2
n, N (

0n,Vh2
n

)
, and

check if the maximum likelihood estimate for it is 0 (or above). This procedure
can be done quickly in O(n), as we now describe, circumventing the need to
perform a full likelihood maximization for the sample.

As detailed above, we make repeated use of the following procedure: (1) Draw
a random sample y from the distribution correpsonding to a given heritability
value h2, N (0n,Vh2); (2) Decide whether its heritability estimate, ĥ2(y), is
larger than a given value, H2. In [20], it is shown that when X = 1n, these two
steps may equivalently be performed by drawing a vector u of i.i.d, standard
normal variables u ∼ N (0n, In), and checking if

n∑

i=1

ξh2,H2

i u2
i > 0, (9)

where

ξh2,H2

i =
h2(di − 1) + 1
H2(di − 1) + 1

⎛

⎝ di − 1
H2(di − 1) + 1

− 1
n − 1

n−1∑

j=1

dj − 1
H2(dj − 1) + 1

⎞

⎠ (10)

for i = 1, . . . , n−1, and ξh2,H2

n = 0, with di being the eigenvalues of K. The sign
of the expression in Eq. (9) is equal to the sign of ∂�REML

∂h2 (H2), the derivative of
�REML at the point H2. Therefore, assuming the restricted likelihood function is
well behaved, a positive derivative indicates that the REML heritability estimate
is larger than H2. Similar expressions are defined for a general X in [20]. Once
the eigendecomposition of K is obtained, this procedure may be performed in a
time complexity linear in n.

Similarly, for finding s∗, we define the function g(θ) := Prh2=0(ĥ2 ≤ θ), for
which we want to find the inverse of C = 1 − α. The procedures for finding t
and t∗ are similar.

The second step involves calculating the quantities c−1
α/2(H

2), c−1
α (H2),

c−1
1−α(H2) and c−1

1−α/2(H
2) as required. This can again be done by the modi-

fied Robbins-Monro procedure, by setting θ := h2, g(θ) := Prh2(ĥ2 ≤ H2), and
C = α/2, α, 1 − α/2 or 1 − α. To sample from a distribution whose mean is
Prh2

n
(ĥ2 ≤ H2), we draw a sample from the distribution corresponding to h2

n,
and check if the maximum likelihood estimate for it is above H2. Again, this pro-
cedure can be done quickly in O(n). Once these quantities have been calculated,
the CI can be calculated as detailed in Eqs. (3) and (4).

In practice, we used the following choices in the modified Robbins-Monro pro-
cedure: (i) We used T = 1000 iterations; (ii) we set the prior standard deviation
to τ = 0.4, used to derive an and Cn via the Bayesian analysis (see [39]); (iii) we
used the midpoint between the estimate and relevant boundary (0 or 1, depend-
ing on the quantile required) as a starting point; (iv) we adaptively changed
the step size constant, following the suggestion of Garthwaite and Buckland,

252 R. Schweiger et al.

by approximating the derivative with an expression proportional to the distance
from θ̂:

g′(uθ) ≈ k(h2
n − H2), k =

2

zβ · (2π)−1/2 · e−z2
β/2

(11)

where z is the quantile function of the normal distribution, and β is the required
quantile.

3.5 The NFBC Dataset

We analyzed 5,236 individuals from the Northern Finland Birth Cohort (NFBC)
dataset, which consists of genotypes at 331,476 genotyped SNPs and 10 pheno-
types [37]. From each pair of individuals with relatedness of more than 0.025,
one was reserved, resulting in 2,520 individuals.

3.6 The WTCCC2 Dataset

We analyzed the Wellcome Trust Case Control Consortium 2 dataset [38]. In the
multiple sclerosis (MS) and ulcerative colitis (UC) datasets, we used the same
data processing described in [43] to ensure consistency. Briefly, UK controls
and cases from both UK and non-UK were used. SNPs were removed with >
0.5% missing data, p < 0.01 for allele frequency difference between two control
groups, p < 0.05 for deviation from Hardy-Weinberg equilibrium, p < 0.05 for
differential missingness between cases and controls, or minor allele frequency
< 1%. In all analyses, SNPs within 5M base pairs of the human leukocyte antigen
(HLA) region were excluded, because they have large effect sizes and highly
unusual linkage disequilibrium patterns, which can bias or exaggerate the results.
Finally, from each pair of individuals with relatedness of more than 0.025, one
was reserved, resulting in 13,950 individuals.

4 Discussion

We have presented FIESTA, an efficient method for constructing accurate CIs
using stochastic approximation. We have shown that FIESTA is very fast, while
achieving exact coverage due to the fact that it does not rely on any assumptions
of the distribution of the estimator. FIESTA is also faster than the analytical
approximation used by SEs. Due to its speed, FIESTA can be easily used for
datasets with tens or hundreds of thousands of individuals.

FIESTA requires the eigendecomposition of the kinship matrix, whose com-
putational complexity is cubic in the number of individuals. While this is often
a preliminary step in heritability estimation, it may be computationally pro-
hibitive for larger datasets. Recent methods for heritability estimation (see [44])
utilize conjugate gradient methods to avoid cubic steps altogether. One direction
of extension for FIESTA is devising a procedure to calculate the derivative of
the restricted likelihood function using conjugate gradient methods, which are
quadratic, but do not require the eigendecomposition.

Confidence Intervals for Heritability 253

We note that the confidence intervals constructed by FIESTA are estimated
under a set of assumptions, particularly that the data is generated from the linear
mixed model as described in the Methods. Deviations from these assumptions
could result in inaccurate confidence intervals. Specifically, we observed that
when the genotype matrix is of low rank (e.g., in the case where duplicates
are introduced), then the confidence intervals calculated by FIESTA may be
inaccurate. We therefore recommend removing duplicates and closely related
individuals from the data prior to the application of FIESTA.

A common extension of the LMM is that of multiple variance components,
where the genome is divided into distinct partitions (e.g., according to func-
tional annotations, or by chromosomes), and the relative genetic contribution
of each partition is estimated instead. Another extension is that of multiple
traits, where several phenotypes are estimated concurrently, allowing dependen-
cies between them. In principle, the methodology behind FIESTA can be applied
to the multiparametric case as well. However, there are several computational
and conceptual hurdles that make this application highly nontrivial. First, a
major difficulty rises from the fact that it is no longer necessarily possible to
jointly diagonalize several kinship matrices. Thus, the computation of the deriv-
atives of the logarithm of the restricted likelihood functions can no longer utilize
the eigendecomposition. Second, the inversion of acceptance regions of multiple
parameters results in confidence regions of more than one dimension. While these
have the required coverage probability, their shape may be difficult to report or
to interpret easily (e.g. an ellipsoid). For example, hyper-rectangular confidence
regions are often desirable [45], as the marginal CI of each parameter has the
same coverage probability as the confidence region. Therefore, multiparametric
extensions remain a future direction of research.

Acknowledgements. The authors would like to thank David Steinberg. R.S. is
supported by the Colton Family Foundation. This study was supported in part
by a fellowship from the Edmond J. Safra Center for Bioinformatics at Tel Aviv
University to R.S. The Northern Finland Birth Cohort data were obtained from dbGaP:
phs000276.v2.p1. This study makes use of data generated by the Wellcome Trust Case
Control Consortium. A full list of the investigators who contributed to the generation
of the data is available from www.wtccc.org.uk. Funding for the project was provided
by the Wellcome Trust under award 076113.

Appendix

The supplementary material, including additional figures, are located at https://
github.com/cozygene/albi.

www.wtccc.org.uk
https://github.com/cozygene/albi
https://github.com/cozygene/albi

254 R. Schweiger et al.

References

1. Fisher, R.A.: The correlation between relatives on the supposition of mendelian
inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918)

2. Silventoinen, K., Sammalisto, S., Perola, M., Boomsma, D.I., Cornes, B.K.,
Davis, C., Dunkel, L., De Lange, M., Harris, J.R., Hjelmborg, J.V., et al.: Heritabil-
ity of adult body height: a comparative study of twin cohorts in eight countries.
Twin Res. 6(05), 399–408 (2003)

3. Macgregor, S., Cornes, B.K., Martin, N.G., Visscher, P.M.: Bias, precision and
heritability of self-reported and clinically measured height in Australian twins.
Hum. Genet. 120(4), 571–580 (2006)

4. Manolio, T.A., Brooks, L.D., Collins, F.S.: A hapmap harvest of insights into the
genetics of common disease. J. Clin. Invest. 118(5), 1590 (2008)

5. Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H.,
Klemm, A., Flicek, P., Manolio, T., Hindorff, L., Parkinson, H.: The NHGRI
GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res.
42(Database issue), D1001–D1006 (2014)

6. Visscher, P.M., Hill, W.G., Wray, N.R.: Heritability in the genomics eraconcepts
and misconceptions. Nat. Rev. Genet. 9(4), 255–266 (2008)

7. Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D., Daly, M.J.,
Eskin, E.: Efficient control of population structure in model organism association
mapping. Genetics 178(3), 1709–1723 (2008)

8. Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.Y.Y., Freimer, N.B.,
Sabatti, C., Eskin, E.: Variance component model to account for sample structure
in genome-wide association studies. Nat. Genet. 42(4), 348–354 (2010)

9. Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.I., Heckerman, D.:
Fast linear mixed models for genome-wide association studies. Nat. Methods 8(10),
833–835 (2011)

10. Zhou, X., Stephens, M.: Genome-wide efficient mixed-model analysis for association
studies. Nat. Genet. 44(7), 821–824 (2012)

11. Vattikuti, S., Guo, J., Chow, C.C.: Heritability and genetic correlations explained
by common SNPs for metabolic syndrome traits. PLoS Genet. 8(3), e1002637
(2012)

12. Wright, F.A., Sullivan, P.F., Brooks, A.I., Zou, F., Sun, W., Xia, K., Madar, V.,
Jansen, R., Chung, W., Zhou, Y.H., Abdellaoui, A., Batista, S., Butler, C.,
Chen, G., Chen, T.H., D’Ambrosio, D., Gallins, P., Ha, M.J., Hottenga, J.J.,
Huang, S., Kattenberg, M., Kochar, J., Middeldorp, C.M., Qu, A., Shabalin, A.,
Tischfield, J., Todd, L., Tzeng, J.Y., van Grootheest, G., Vink, J.M., Wang, Q.,
Wang, W., Wang, W., Willemsen, G., Smit, J.H., de Geus, E.J., Yin, Z.,
Penninx, B., Boomsma, D.I.: Heritability and genomics of gene expression in
peripheral blood. Nat. Genet. 46(5), 430–437 (2014)

13. Kruijer, W., Boer, M.P., Malosetti, M., Flood, P.J., Engel, B., Kooke, R.,
Keurentjes, J.J., van Eeuwijk, F.A.: Marker-based estimation of heritability in
immortal populations. Genetics 199(2), 379–398 (2015)

14. Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R.,
Madden, P.A., Heath, A.C., Martin, N.G., Montgomery, G.W., Goddard, M.E.,
Visscher, P.M.: Common SNPs explain a large proportion of the heritability for
human height. Nat. Genet. 42(7), 565–569 (2010)

15. Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M.: GCTA: a tool for genome-wide
complex trait analysis. Am. J. Hum. Genet. 88(1), 76–82 (2011)

Confidence Intervals for Heritability 255

16. Lohr, S.L., Divan, M.: Comparison of confidence intervals for variance components
with unbalanced data. J. Stat. Comput. Simul. 58(1), 83–97 (1997)

17. Burch, B.D.: Comparing pivotal and REML-based confidence intervals for heri-
tability. J. Agric. Biol. Environ. Stat. 12(4), 470–484 (2007)

18. Burch, B.D.: Assessing the performance of normal-based and REML-based confi-
dence intervals for the intraclass correlation coefficient. Comput. Stat. Data Anal.
55(2), 1018–1028 (2011)

19. Kraemer, K.: Confidence intervals for variance components and functions of vari-
ance components in the random effects model under non-normality (2012)

20. Schweiger, R., Kaufman, S., Laaksonen, R., Kleber, M.E., März, W., Eskin, E.,
Rosset, S., Halperin, E.: Fast and accurate construction of confidence intervals for
heritability. Am. J. Hum. Genet. 98(6), 1181–1192 (2016)

21. Chernoff, H.: On the distribution of the likelihood ratio. Ann. Math. Stat. 573–578
(1954)

22. Moran, P.A.: Maximum-likelihood estimation in non-standard conditions. In:
Mathematical Proceedings of the Cambridge Philosophical Society, vol. 70, pp.
441–450. Cambridge University Press (1971)

23. Self, S.G., Liang, K.Y.: Asymptotic properties of maximum likelihood estima-
tors and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc.
82(398), 605–610 (1987)

24. Stern, S., Welsh, A.: Likelihood inference for small variance components. Can. J.
Stat. 28(3), 517–532 (2000)

25. Visscher, P.M., Goddard, M.E.: A general unified framework to assess the sampling
variance of heritability estimates using pedigree or marker-based relationships.
Genetics 199(1), 223–232 (2015)

26. Thai, H.T., Mentré, F., Holford, N.H.G., Veyrat-Follet, C., Comets, E.: A com-
parison of bootstrap approaches for estimating uncertainty of parameters in linear
mixed-effects models. Pharm. Stat. 12(3), 129–140 (2013)

27. Wolfinger, R.D., Kass, R.E.: Nonconjugate Bayesian analysis of variance compo-
nent models. Biometrics 56(3), 768–774 (2000)

28. Chung, Y., Rabe-hesketh, S., Gelman, A., Dorie, V., Liu, J.: Avoiding bound-
ary estimates in linear mixed models through weakly informative priors. Berkeley
Preprints, pp. 1–3 (2011)

29. Harville, D.A., Fenech, A.P.: Confidence intervals for a variance ratio, or for heri-
tability, in an unbalanced mixed linear model. Biometrics 137–152 (1985)

30. Burch, B.D., Iyer, H.K.: Exact confidence intervals for a variance ratio (or heri-
tability) in a mixed linear model. Biometrics 1318–1333 (1997)

31. Furlotte, N.A., Heckerman, D., Lippert, C.: Quantifying the uncertainty in heri-
tability. J. Hum. Genet. 59(5), 269–275 (2014)

32. Carpenter, J., Bithell, J.: Bootstrap confidence intervals: when, which, what? A
practical guide for medical statisticians. Stat. Med. 19(9), 1141–1164 (2000)

33. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P.,
Elliott, P., Green, J., Landray, M., et al.: Uk biobank: an open access resource for
identifying the causes of a wide range of complex diseases of middle and old age.
PLoS Med. 12(3), e1001779 (2015)

34. Kushner, H., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and
Applications, vol. 35. Springer Science & Business Media, New York (2003)

35. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat.
400–407 (1951)

36. Garthwaite, P.H.: Buckland, S.T.: Generating monte carlo confidence intervals by
the robbins-monro process. Appl. Stat. 159–171 (1992)

256 R. Schweiger et al.

37. Sabatti, C., Service, S.K., Hartikainen, A.L.L., Pouta, A., Ripatti, S., Brodsky, J.,
Jones, C.G., Zaitlen, N.A., Varilo, T., Kaakinen, M., Sovio, U., Ruokonen, A.,
Laitinen, J., Jakkula, E., Coin, L., Hoggart, C., Collins, A., Turunen, H.,
Gabriel, S., Elliot, P., McCarthy, M.I., Daly, M.J., Järvelin, M.R.R., Freimer, N.B.,
Peltonen, L.: Genome-wide association analysis of metabolic traits in a birth cohort
from a founder population. Nat. Genet. 41(1), 35–46 (2009)

38. Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, C.C., Patsopoulos, N.A.,
Moutsianas, L., Dilthey, A., Su, Z., Freeman, C., Hunt, S.E., et al.: Genetic risk
and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Nature 476(7359), 214 (2011)

39. Joseph, V.R.: Efficient Robbins-Monro procedure for binary data. Biometrika
91(2), 461–470 (2004)

40. Furlotte, N.A., Eskin, E.: Efficient multiple trait association and estimation of
genetic correlation using the matrix-variate linear mixed-model. Genetics 200(1),
59–68 (2015)

41. Searle, S.R., Casella, G., McCulloch, C.E.: Variance Components, vol. 391. Wiley,
Hoboken (2009)

42. Patterson, H.D., Thompson, R.: Recovery of inter-block information when block
sizes are unequal. Biometrika 58(3), 545–554 (1971)

43. Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M., Price, A.L.: Advantages
and pitfalls in the application of mixed-model association methods. Nat. Genet.
46(2), 100–106 (2014)

44. Loh, P.R., Bhatia, G., Gusev, A., Finucane, H.K., Bulik-Sullivan, B.K.,
Pollack, S.J., de Candia, T.R., Lee, S.H., Wray, N.R., Kendler, K.S., O’Donovan,
M.C., Neale, B.M., Patterson, N., Price, A.L.: Contrasting genetic architectures of
schizophrenia and other complex diseases using fast variance-components analysis.
Nat. Genet. 47(12), 1385–1392 (2015)

45. Sidak, Z.: Rectangular confidence regions for the means of multivariate normal
sistributions. J. Am. Stat. Assoc. 62(318), 626–633 (1967)

46. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer
Science & Business Media, New York (2013)

47. Gilmour, A.R., Thompson, R., Cullis, B.R.: Average information REML: an effi-
cient algorithm for variance parameter estimation in linear mixed models. Biomet-
rics 1440–1450 (1995)

Improved Search of Large Transcriptomic
Sequencing Databases Using Split Sequence

Bloom Trees

Brad Solomon1 and Carl Kingsford2(B)

1 Computational Biology Department, School of Computer Science,
Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program in
Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA

2 Computational Biology Department, School of Computer Science,
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA

carlk@cs.cmu.edu

Abstract. Enormous databases of short-read RNA-seq sequencing
experiments such as the NIH Sequencing Read Archive (SRA) are
now available. These databases could answer many questions about the
condition-specific expression or population variation, and this resource
is only going to grow over time. However, these collections remain dif-
ficult to use due to the inability to search for a particular expressed
sequence. While some progress has been made on this problem, it is still
not feasible to search collections of hundreds of terabytes of short-read
sequencing experiments. We introduce an indexing scheme called Split
Sequence Bloom Tree (SSBT) to support sequence-based querying of
terabyte-scale collections of thousands of short-read sequencing experi-
ments. SSBT is an improvement over the SBT [1] data structure for the
same task. We apply SSBT to the problem of finding conditions under
which query transcripts are expressed. Our experiments are conducted
on a set of 2,652 publicly available RNA-seq experiments contained in the
NIH for the breast, blood, and brain tissues. We demonstrate that this
SSBT index can be queried for a 1000 nt sequence in under 4 min using
a single thread and can be stored in just 39 GB, a five-fold improvement
in search and storage costs compared to SBT.

1 Introduction

An enormous amount of DNA and RNA short read sequence data has been
published world wide. The NIH Sequence Read Archive (SRA) [2] alone con-
tains almost four petabases of open-access sequence and continues to grow at
an accelerating rate. This collection could be a great resource for understanding
genetic variation, and condition- and disease-specific gene function in ways the
original depositors of the data did not anticipate. For example, a natural use
would be to search all public, human RNA-seq short-read files in the SRA (rep-
resenting individual sequencing runs) for the presence of a particular transcript
of interest to understand conditions of expression or develop a manageable sub-
set for further analysis. However, searching the entirety of such a database for a
query sequence has not been possible in reasonable computational time.
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 257–271, 2017.
DOI: 10.1007/978-3-319-56970-3 16

258 B. Solomon and C. Kingsford

Some progress has been made toward enabling sequence search on large data-
bases. The NIH SRA does provide a sequence search functionality [3]; however,
it requires the selection of a small number of experiments to which to restrict
the search. Existing full-text indexing data structures such as Burrows-Wheeler
transform [4], FM-index [5], or others [6–8] cannot at present be efficiently built
at this scale. Word-based indices [9,10], such as those used by Internet search
engines, are not appropriate for edit-distance-based biological sequence search.
The sequence-specific solutions caBLAST and its variants [11–13] require an
index of a known genomes, genes, or proteins and so cannot search for novel
sequences in unassembled read sets. Further, all of these existing approaches do
not handle the additional complication that a match to a query sequence q may
span many short reads.

More recently, two methods have been developed that store the kmer content
of a set of experiments in a directly searchable index. The Sequence Bloom
Tree [1] (SBT) encodes an approximation of each experiment’s kmer content in
a single bloom filter and builds a directly searchable binary tree of bloom filters
over increasingly large subsets of the data. Queries are processed by looking up
each kmer in a query for their presence or absence in the tree and recursing until
all matching leaves have been found. It represents the current best method for
searching a large database but cannot handle petabase-scale data. The Bloom
Filter Trie [14] (BFT) was designed as a direct compression method for a pan-
genome and provides an exact index of kmer content which can be queried.

We address the search problem of finding all the experiments that contain
enough reads matching a given query sequence q to indicate that q was present
in the experiment. A query is an arbitrary sequence such as a transcript, and we
find the collection of short-read experiments in which that sequence is present.
These estimates themselves could be used to analyze conditions of gene expres-
sion or could make downstream analysis more efficient by filtering a large data-
base for the relevant files. The Sequence Bloom Tree was the first data structure
to directly address this problem and could search a 5 terabase dataset in under
20 min using a 200 GB index. We modify the base structure of SBT with a new
indexing data structure called Split Sequence Bloom Tree (SSBT). SSBT “splits”
the bloom filters present in an SBT into two distinct filters which store unique
subsets of the base filter as described in Sect. 2.1. In addition to this novel stor-
age strategy, the SSBT method introduces the concept of a ‘non-informative bit’
(Sect. 2.3) and uses a more efficient query algorithm which can prune query indices
when universal matches or mismatches are found in a subtree (Sect. 2.5). These
novel elements are the basis of the space and time improvements described below.

SSBT also extends a number of important properties found in SBT. Like
SBT, SSBT is independent of the eventual queries, so the approach is not lim-
ited to searching only for known genes, but can potentially identify arbitrary
sequences. SSBTs can be efficiently built, extended, and stored in limited space
and do not require retaining the original sequence files. Using SSBT, datasets
can be searched using low memory for the existence of arbitrary query sequences.
We compared SSBT against BFT and SBT and found that it outperforms both
in terms of query time (5 times faster than SBT and 15 times faster than BFT)

Improved Search of Sequence Databases 259

and storage cost, at the price of some additional time and temporary storage
needed to construct the index.

2 Methods

2.1 Split Sequence Bloom Tree

The main idea behind SSBT is the creation of a hierarchy of compressed bloom
filters [15,16], which is used to efficiently store a set of experiments each con-
sisting of many short reads (Fig. 1). A bloom filter is a probabilistic storage
structure which encodes an arbitrary set into a fixed length bit vector using
hash functions. As in the SBT, each bloom filter here encodes the set of k-mers
(length-k subsequences) present within a subset of the sequencing experiments
and is stored using hash functions that convert these kmers to a specific index
on the filter. We define each experiments’ individual kmer content as the set
bi, with the collection B = {bi | 0 ≤ i < n} denoting a set of n experiments
represented by their kmer content. Throughout, we abuse notation slightly to
identify bloom filters with the sets they represent.

An SSBT is a binary tree that stores each bi in B across a unique path from
root to leaf with each leaf mapping to a single experiment. This is a change from

Uncompressed SSBT

Compressed SSBT

(a)

(b)

Sim
Rem

Sim
Rem

Fig. 1. An example uncompressed and compressed SSBT where black corresponds to
a bit value of ‘1’ and white corresponds to a bit value of ‘0’. (a) Grey bits correspond
to non-informative bits whose value is known (always zero) given a parent filter. We
see that grey bits are cumulative and exist at all index positions below a on ‘1’ in the
sim filter or a ‘0’ in the rem filter. When looking up index value 6, each filter is queried
until either a sim ‘1’ is found or a rem ‘0’ is found. (b) All non-informative bits have
been removed from the uncompressed tree (RRR does not change the bit values and is
not represented in the figure). The lookup for index value 6 is adjusted based on the
removed non-informative bits.

260 B. Solomon and C. Kingsford

the SBT, which stores each bi in B both as a unique leaf and in each node from root
to leaf. The root node r of an SSBT contains the total content of each bi and stores
this information using two identically sized bloom filters with a single conserved
hash; we define the pair of bloom filters at a node as a single ‘split bloom filter’.
We define the first filter as the similarity filter rsim =

⋂n−1
i=0 bi as the bloom filter

that stores the universally expressed kmers in set B. The second filter is defined
as the remainder filter rrem =

⋃n−1
i=0 (bi − rsim) as the bloom filter which stores

the remaining kmers — those in the union of all bi excluding those found in the
similarity vector. By this definition, the bitwise union of rsim and rrem is equiv-
alent to a single fixed length bloom filter which stores all bi in B. Furthermore,
the bitwise intersection of rsim and rrem is the nullset. Different kmers in B may
hash to the same position in rsim. As rrem is defined by rsim, additional ‘similar-
ity’ may be found by random chance when hashing kmers. The inverse (identical
kmers mapping to different positions) is not possible in a bloom filter.

Given the root r, only the kmers which are stored in rrem are then passed
to the children. In this way r’s immediate children do not store the full set bi
but rather the modified b′

i = (bi − rsim). This sparsification continues from root
to leaf with b′′

i = (b′
i − r′

sim) and more generally takes the form of a recurrence
relationship b

(d)′

i = b
(d−1)′

i − r
(d−1)′

sim for the depth d node on an arbitrary path
from root to leaf. A leaf at depth d stores b

(d)′

i in its sim filter. The leaf’s rem
filter is defined as b

(d)′

i − b
(d)′

i , or the nullset. We can recover the original set by
following the unique path from root to leaf and find bi =

⋃d
j=0 r

(j)′

sim.

2.2 SSBT Construction and Insertion

A SSBT inherits the same general build process as an SBT and is built by
repeated insertion of sequencing experiments followed by the removal of all non-
informative bit indices from each filter. Given a (possibly empty) SSBT T , a new
sequencing experiment s can be inserted into T by first computing the fixed-
length bloom filter bs of the kmers present in s and then walking from the root
along a path to the leaves and inserting s at the bottom of T in the following
way. When at node u, if u has children, bs has to be split between usim and urem.
This is done through the bit updates defined by Table 1 for each bit index i in
0 ≤ i < |bs|. These updates ensure that u correctly stores what is still universally
similar in usim and what now exists below u in the tree with urem and that bs
has been updated to store similar elements at u.

The potentially modified bs is then compared against each child c of u in
order to find the “most similar” child. This greedy insertion strategy attempts
to maximize the similarity in a branch in order to produce the smallest SSBT
with the most efficient branch pruning. While we tested many similarity metrics
for comparing a single filter b(s) with a split filter (csim, crem), the metric used in
the experiments reported below first computes the total number of 1-bits shared
between the csim and bs, and chooses the child with the largest number of such
shared 1-bits. If no child has any 1-bits in common with bs, the metric then
selects the child with the smallest Hamming distance between bs and crem(s).

Improved Search of Sequence Databases 261

Table 1. Bit update table when inserting b(s) into the subtree rooted at u. u’s two
immediate children are both updated with the single column csim. A value of ‘-’ implies
that no change needs to be made to that bit. (i) b(s) contains a value already stored in
usim, the value is removed from b(s). (ii) b(s) does not contain a value stored in usim.
Although the bit is no longer similar at u, b(s) has not yet been inserted into a child
and all current children of u are universally similar at this location. (v) b(s) contains
a value not found in the tree. urem is updated to reflect that the value now exists. (iii,
iv, vi) No changes need to be made.

Before After

usim urem b(s) usim urem b(s) csim

(i) 1 0 1 - - 0 -

(ii) 1 0 0 0 1 - 1

(iii) 0 1 1 - - - -

(iv) 0 1 0 - - - -

(v) 0 0 1 - 1 - -

(vi) 0 0 0 - - - -

Once the most similar child has been found, this child then becomes the new
current node, and the process is repeated with a new subtree. If u has no children,
then u represents a sequencing experiment s′ and only contains one vector usim.
In this case, a new node v is created as a child of u’s parent with u and bs as
v’s children. As both u = usim and bs are leaves, vsim is the bit-intersection of u
and bs while vrem is the bit-union of u − vsim and bs − vsim. Finally, we remove
the elements in this new parent node from both children by replacing u with
u − vsim and bs with bs − vsim. This yields an uncompressed SSBT containing
all previous nodes and two new nodes v and bs.

2.3 Bit Non-informativity in SSBT

Given the definition of SSBT’s split filters described above, for an arbitrary
node u the only values allowed at a particular index i are (usim[i], urem[i]) =
(1, 0), (0, 1), (0, 0). However, every index is represented using a bit from either
filter, even when one filter’s value clearly defines the other. We address this
inefficiency by removing these “non-informative bits” from the tree. Here we
define a non-informative bit as a bit index i present in node u whose value can
be determined by examining the bloom filters present in the set of parent filters
above u. We describe the cases of non-informativity in SSBT below and provide
an example in Fig. 1:

1. For a bit index i, if urem[i] = 0, then for every descendant c of u, csim[i] =
crem[i] = 0 and i is non-informative below u. This is a direct result of the
definition of urem as the union of all children below it.

2. For a bit index i, if usim[i] = 1 then urem[i] = 0 and urem[i] is non-informative.
This is a formalization of the fact that the rem filter only contains the elements
which are not stored in the sim filter.

262 B. Solomon and C. Kingsford

3. For a bit index i, if usim[i] = 1 then for every descendent c of u, csim[i] =
crem[i] = 0 and i is non-informative below u. This is the logical extension of
applying (1) to (2).

Using these cases, we can remove all non-informative bits from urem given usim

and we can remove all non-informative bits from u’s immediate children using
both usim and urem. As bits are only ever removed, for a node u and its child
c, |crem| ≤ |csim| ≤ |urem| ≤ |usim|. These removed bits lead to size reductions
for all subsequent filters. SSBTs are most efficient when there is a large amount of
uniformity in the experiments being stored at u either in terms of uniform expres-
sion of kmers or uniform absence of any kmer hashing to a particular bit.

2.4 SSBT Compression

Given an uncompressed SSBT T with bloom filters of fixed length m and conserved
hash function, we build a compressed SSBT T ′ by removing all non-informative
bits (defined in Sect. 2.3) from T and compressing the variable length filters using
RRR-compression [17]. We handle the ‘removal’ of a bit in node u by constructing
an intermediate node u′ of size equal to the informative bits remaining and copying
only these informative bits from u to u′. The total number of informative bits in
usim and urem, as well as their exact indices, can be determined using two filters:
u’s immediate parent’s rem filter, p(u)rem, and usim. We define rankx(u)[j] to be
the number of bits set to x in the bit vector u from index 0 ≤ i < j. We compute
this value in O(log log d) time, with d defined by the size of the vector, b = �log(d)�,
by including a 64 bit overhead per 512 bit superblock in our raw bit vectors. This
data structure was first proposed as part of the 64-bit rank9 function [18], and we
used the implementation found in the C++ package sdsl [19]. For vectors of size
2256 bits or less, this can be considered a near-constant time method.

Given p(u)rem, the only informative bits in usim are those i for which
p(u)rem[i] = 1 and |u′

sim| = m − rank0(p(u)rem)[m] = rank1(p(u)rem)[m].
Likewise given usim, the only informative bits in urem are those i in which
both usim[i] = 0 and p(u)rem[i] = 1 and |u′

rem| = m − rank0(p(u)rem)[m] −
rank1(usim)[m]. At each i, the values in p(u)rem[i] and usim[i] determine if i
is informative. If i is informative, it is copied over to the next open position in
u′
sim and/or u′

rem. Subsequently, u′ is compressed via the RRR [17] compression
scheme, which allows querying a bit without decompression and incurs only a
O(log m) factor increase in access time (where m is the size of the bloom filter
with non-informative bits removed). This process operates for every node in the
tree, starting with the root node T which has a full length T ′

sim as it has no
parent. See Fig. 1 for an example of the compression step.

2.5 SSBT Querying

Given a query sequence q and a compressed Split Sequence Bloom Tree T , the
sequencing experiments that contain q can be found by breaking q into its con-
stituent set of kmers Kq and then flowing these kmers over T starting from the

Improved Search of Sequence Databases 263

root. In an SSBT, these kmers are organized into a set of unique kmers and
immediately converted into a vector of filter indices Vq = Hash(Kq) using the
conserved hash functions defined by T ’s root’s sim filter. At the root node u, we
query first usim for each index in Vq. Matches in usim are recorded as ‘universal
hits’ since they are found in intersection of all experiments rooted beneath u. The
count of all universal hits represents a lower bound on the number of matching
kmers in all experiments rooted below u. Indices that are universal hits do not
have to be queried further and are removed from the set — the sum of these hits
records their presence at all children to u. The remaining indices that were not
found in usim are then queried in urem. As |usim| ≥ |urem|, this query is accom-
plished by adjusting all indices Vi ∈ Vq to account for the non-informative bits
removed. We transition from usim to urem by subtracting the number of 1-bits
which occurred before Vi in usim. This is simply the rank1(usim, Vi), a property
of a bit vector which can be computed in constant time using RRR-compressed
vectors.

Each modified index can then be queried in urem. Indices that map to 0-bits
do not have to be queried further as they do not exist in any child to u. Indices
that map to 1-bits are potential hits which belong to at least one child below u
but not all. By adding the number of potential hits in urem with the number of
universal hits found in usim, an upper bound on the number of matching kmers
is determined for each query. If, for a user-specified cutoff θ ∈ [0, 1], this count
is less than θ|Vq|, then the query cannot exist in this subtree and the subtree
is not searched further (it is pruned). If there exist θ|Vq| or more universal
matches, every child beneath u is a query hit and the tree also does not have
to be searched further. Only in the case where the count is greater than θ|Vq|
but not enough universal matches have been found do we have to proceed to u’s
children. To transition each index from node u to child node c, each index has
to be further adjusted by the number of 0-bits in urem. Once again, this can
be calculated in constant time using rank0(urem, Vi). By repeating this process
down through the tree, SSBT efficiently prunes branches that cannot contain the
query, prunes queries which are known to exist in all children, and maintains a
consistent hash function across a variable length set of compressed filters. After
searching or pruning every branch, the set of leaves which contain the query are
then returned. An example of this query process can be found on Fig. 1.

Using this logic, not all query indices are searched at each node in the tree. All
indices are initially searched in an ‘active’ state but may be pruned to ‘inactive’
if a universal match or mismatch is found. To prevent having to store a unique
query set for every node in the tree, we stored Vq only once outside of the SSBT
structure and developed a reversible means of activating or deactivating an index,
as well as reversing changes made to the index value when descending the tree.
Given a vector of indices Vq, we define a single integer — the tail-index — to be
the position along the Vq vector that contains the last ‘active’ query index. This
tail-index is initialized to the final value in Vq and queries which are ‘deactivated’
simply swap positions with the tail-index and the tail-index is decremented by
one. In such a way, we store the full set of indices but only query those indices
up to and including the tail-index. By storing the tail-index present in each node

264 B. Solomon and C. Kingsford

(a cost of a single integer per node), we can restore all queries which were active
at that node. Because the tail-index defines both the pivot between ‘active’ and
‘inactive’ and the swap position for deactivating an index, the order in the vector
records the order of deactivation. Because of this, any index which was ‘active’ for
an arbitrary node u with tail-index k will always be among the first k indices in Vq

and can be re-activated as the tree traversal pops back up the tree. Thus using the
tail-index we can exactly store the unique set of indices that need to be searched
at any node using only a single vector and an integer at each node.

‘Active’ indices in Vq also have their values adjusted at each step to match
the change in size between usim and urem and between u and u’s children. Given
an index position irem that maps to urem, we can reconstruct the index position
isim that maps to usim by looking up the irem-th informative bit in usim. As
usim = 1 defines non-informativity, we simply find the irem-th 0 in usim. This
can be done using the selectx(u)[j] operation, which we define to be the index
position of the j-th bit set to x in the bit vector u. For an RRR-compressed
vector, select0(usim)[irem] can be computed in O(log m) time for a length m
vector. Likewise given an index position jsim mapping to an arbitrary child node
of u, csim, we can recover the index position irem mapping to urem by finding the
jsim-th informative bit in urem. As urem = 0 defines non-informativity, we simply
find the jsim-th 1 in urem. For an RRR-compressed vector, this can be computed
in O(log m) time for a length m vector using the select1(urem)[jsim] operation.
Thus, using just the rank and select operations implicit to an RRR-compressed
vector, we can recover any index position at any node given a position along the
SSBT and the SSBT split bloom filters themselves.

2.6 Accuracy

SSBT builds off of the base bloom filters used in SBT and encodes the same
information found in the leaves of an SBT. The innovations introduced here
improve upon the efficiency of that encoding and provide additional information
to facilitate rapid search but an SSBT will always yield an identical set of results
as SBT. As it has been shown that kmer similarity is highly correlated to the
quality of the alignments between sequences [20–23], and SBT has previously
determined the accuracy of this metric [1], we did not investigate the accuracy of
SSBT, which is the same as SBT, further here. In fact, one can think of SSBT as
a lossless compression and reorganization scheme on SBTs that operates before
RRR-compression.

3 Results

3.1 Data and Hardware

All data used in this publication was constructed from the set or a subset of
2652 human, RNA-seq short-read sequencing runs from the NIH SRA [2]. At
the time of download, these files consisted of the entire set of publicly available,
human RNA-seq runs from blood, brain, and breast tissues stored at the SRA

Improved Search of Sequence Databases 265

(as determined by keywords in their metadata and excluding files sequenced
using the SOLID technology). This dataset has a total size of 5 TB of raw SRA
data or 2.7 TB of gzipped fasta sequences. The 50 files selected for the comparison
with BFT were chosen at random from this set and have a total size of 49 GB
of gzipped fasta sequences. Kmers counts were computed using the Jellyfish
2.0 library for SBT and SSBT and KMC 2.0 for BFT. Jellyfish counts were
constructed using the SBT ‘count’ command using an expected kmer set size
of 2e9 and a single hash function. All times in these experiments were obtained
on a shared computer with 16 Intel Xeon 2.60 GHz cores using a single thread.
BFT was run using default options with a compression constant of 50. SBT and
SSBT use a kmer size of 20 while BFT was built using a kmer size of 18 as it
only allows kmer lengths that are multiples of 9.

3.2 Evaluation on Build Time and Storage Cost

We compared the construction costs associated between SBT version 0.3.5, SSBT
version 0.1, and BFT version 0.8.1 by measuring their respective build time, max-
imum memory cost during construction, and storage cost of the resulting 100
experiment index. SBT and SSBT’s RAM loads are controlled by setting the
maximum number of filters allowed to be loaded simultaneously. We manually
adjusted these values to be roughly equivalent to BFT by setting SBT’s maxi-
mum in-memory filter load to 100 nodes, with a measured peak RAM of 24.2 GB,
and SSBT was limited to 30 nodes, with a measured peak RAM of 16.2 GB.
This is in line with our expecations that an uncompressed SSBT internal node
is roughly twice as large as an SBT node and requires a more complicated build
process. In addition, as BFT uses a different kmer counting tool (KMC2 vs.
Jellyfish), the build time records only the time required to construct an index
from a pre-computed set of kmer counts. These results, which are summarized in
Tables 2 and 3, indicate that BFT takes 11 times longer to build than the com-
bined time to build and compress an SBT and yields an index over three times
larger. Similarly SSBT builds and compresses 3.8 times faster than BFT and
yields a directly searchable index with less than 1/13th the total storage cost.
We note that this is not a strictly apples-to-apples comparison as BFT exactly
encodes the kmer set for each experiment while SBT and SSBT are approximate
indices with a high false positive for any one kmer.

We also performed a large-scale comparison between SBT and SSBT using the
full 2652 experiment set. Both SBT and SSBT were run with a maximum of 100
tree nodes in memory, with a peak memory of roughly 24 GB and 48 GB respec-
tively. The results from this analysis are summarized in Table 4 and show that
SSBT is still roughly three times slower to build and compress than the SBT. How-
ever we note that the large-scale SSBT is much less efficient to build while much
more efficient to compress when compared to the small-scale test. We hypothesize
that the more complex construction scheme, as well as the storage costs associated
with storing two bloom filters in each internal node, scales poorly with database
size and negatively impacts the build time. Meanwhile, the improvements in com-
pression time is primarily a consequence of the non-informative bits. Specifically,
as these non-informative bits do not need to be compressed and are cumulative,

266 B. Solomon and C. Kingsford

Table 2. Build and compression peak RAM loads and on-disk storage costs for SBT,
SSBT, and BFT constructed from a 50 experiment set. As BFT’s built-in compression
tool is a core part of its build process, we report only a single value for RAM and final
size for BFT.

Data index BFT SBT SSBT

Build peak RAM (GB) 21.2 21.5 15.6

Compress peak RAM (GB) - 24.2 16.2

Uncompressed size (GB) - 24 35

Compressed size (GB) 13 3.9 0.94

Table 3. Build and compression times for SBT, SSBT, and BFT constructed from a
50 experiment set. As SBT and SSBT were designed to be queried from a compressed
state, we compare the time to build and compress against BFT’s time to build.

Data index BFT SBT SSBT

Build time (Min) 137 6 19

Compression time (Min) - 6.5 17

Total time (Min) 137 12.5 36

it becomes increasingly efficient to compress filters as one descends the tree. This
has a much more significant effect at large scales where the accumulation of non-
informative bits at low depths effects a greater number of nodes. In addition, we
predict that there should be more non-informative bits overall given a larger pop-
ulation of experiments organized to maximize similarity in each sub-tree. This is
supported by the fact that the average size of a compressed leaf filter is smaller in
the large-scale SSBT than the small-scale, implying that more bits were removed
on average from each individual experiment.

While the ratio of build times remained roughly the same, the SSBT is demon-
strably more efficient to store at large scales, yielding a five-fold improvement in
overall size. As the indices only need to be built once (and can be incrementally
built from the uncompressed state), the SSBT is a superior choice when there is
sufficient hardware support for its larger uncompressed size. We further note that
even this size (1853 GB) is significantly smaller than the raw data, that this size
includes the bloom filter representation of every experiment, and that the raw data
is not needed during the search once the bloom filter is constructed.

3.3 Evaluation of the Query Time

We evaluated the efficiency of queries in SBT, SSBT, and BFT on three sets of
100 queries. To build each query set, we estimated the expression profiles of all 50
experiments used in the small-scale indices using Sailfish [24]. We then randomly
sampled transcripts that were expressed at TPM values at or above 100, 500, or
1,000 in at least one of those files to build three query sets, of 100 queries each.

Improved Search of Sequence Databases 267

Table 4. Build statistics for SBT and SSBT constructed from a 2652 experiment set.
The sizes are the total disk space required to store a bloom tree before or after compres-
sion. In SSBT’s case, this compression includes the removal of non-informative bits.

Data index SBT Split SBT

Build time 18 Hr 78 Hr

Compression time 17 Hr 19 Hr

Uncompressed size 1295GB 1853GB

Compressed size 200GB 39.7GB

Each query was run individually for each tool and the file system cache was
emptied at the end of each run to ensure that the average time is an accurate
representation of query behavior. The results are summarized in Table 5 and
show that SSBT is anywhere from 3–15x faster than either method at this scale.
Although this is a significant improvement, we suspect that this 50-experiment
test underestimates SSBTs relative performance, due to SSBTs efficient storage
of similar elements and better optimized querying. We further note that this
comparison is not strictly fair to BFT as it returns exact kmer content rather
then approximate content. In practice, this would yield significantly fewer false
positives which may be preferred in certain contexts.

Table 5. Comparison in query timing (and average peak memory) between SBT,
SSBT, and BFT indices for 50 experiments.

Index TPM ≥100 TPM ≥500 TPM ≥1000

BFT 85 Sec (11.5 GB) 84 Sec (11.5 GB) 84 Sec (11.5 GB)

SBT 19 Sec (2.9 GB) 21 Sec (3.1 GB) 22 Sec (3.2 GB)

SSBT 5.8 Sec (0.64 GB) 6.2 Sec (0.65 GB) 6.3 Sec (0.66 GB)

A larger-scale comparison was performed using the full 2652-experiment
indices with SBT and SSBT. The query sets used in this analysis were ran-
domly selected to exist in at least one of 100 randomly sampled experiments
out of the full dataset with three TPM-specific sets constructed as before. Each
query was run individually and the results are summarized in Tables 6 and 7 and
show that SSBT is over five times faster than SBT regardless of the TPM value
or cutoff threshold used in either index.

Table 6. Comparison in query timing between SBT and SSBT for 2652 experiments.

Index TPM ≥100 TPM ≥500 TPM ≥1000

SBT 19.7 Min 20.7 Min 20 Min

SSBT 3.7 Min 3.8 Min 3.6 Min

268 B. Solomon and C. Kingsford

Table 7. Comparison of query times using different thresholds θ for SBT and SSBT
using queries found at TPM ≥ 100. ‘RAM SSBT’ describes a hardware-accelerated
search enabled locally based on the SSBT’s smaller index size. A similar improvement
in speed would be possible on SBT given the necessary hardware.

Query time: θ = 0.7 θ = 0.8 θ = 0.9

SBT 20 Min 19 Min 17 Min

SSBT 3.7 Min 3.5 Min 3.2 Min

RAM SSBT 31 Sec 29 Sec 26 Sec

Given that SSBT’s speed improvement closely mirrors its size improvement (a
five-fold speedup for a five-fold size reduction), we hypothesized that SSBT could
be made significantly faster by reducing or eliminating the I/O costs associated
with loading and unloading bloom filters. Both SBT and SSBT are likely to
benefit from this engineering adjustment, but under our hardware specifications
this is only possible for an SSBT, whose directly searchable index uses less than
1% of the size of the original data. This resulted in an additional 7x speedup
over regular SSBT and a roughly 39x increase over SBT. We report this result
as ‘RAM SSBT’ in Table 7.

Fig. 2. Number of SSBT nodes that would be loaded if SSBT did not prune queries
against the total number of query matches found among 2652 experiments. Blue, green,
and red correspond to a kmer matching threshold of 0.7, 0.8, and 0.9 respectively. A
näıve approach would search all 2652 leaves as individual bloom filters, represented by
the black dashed line.

Improved Search of Sequence Databases 269

SSBT’s speed improvement can generally be explained by a reduction in I/O
costs resulting from its smaller size but SSBT has another key benefit in the
ability to prune queries which are found in every child (“universal query prun-
ing”). This is not relevant for the average query but is a significant improvement
in recovery of queries which are expressed in a large fraction of the database. We
demonstrate this property by recording the number of SSBT nodes loaded in our
TPM 100 set. When universal query pruning is ignored (Fig. 2), queries that are
expressed in a majority of the dataset are inefficient to look up, loading many
more nodes then the näıve bloom filter search. However, when query pruning is
introduced (Fig. 3), significantly fewer queries look at more than 2652 nodes.

0.7

0.8

0.9

Fig. 3. Number of SSBT nodes loaded against the total number of query matches
found among 2652 experiments. Blue, green, and red correspond to a kmer matching
threshold of 0.7, 0.8, and 0.9 respectively. A näıve approach would search all 2652
leaves as bloom filters, represented by the black dashed line

4 Conclusion

The Split Sequence Bloom Tree is a novel approach to searching for short read
experiments in a large database. It uses a more efficient encoding scheme to
generate a compressed but directly searchable index that is at least five times
smaller than any existing method. This improvement is significant for all queries

270 B. Solomon and C. Kingsford

but produces the largest gap over existing techniques when querying transcripts
which are found in many experiments. SSBT’s improved storage allows 5 TB of
sequencing information to be indexed in 40 GB, yielding a 5x increase in speed.
Its on-disk memory usage scales more efficiently than any previous tool, and
the size of the database which can be stored as a RAM-index is several times
larger. For example, a 5 TB dataset could be searched 39x faster using RAM-
SSBT but SBT could not be accelerated due to hardware constraints. Although
these improvements come at a significant cost in build time and some additional
uncompressed storage usage, these operations are typically much more rare than
queries. All of the results in this paper were run using a single thread on a
single computer. Future work optimizing SSBT for multiple-threaded builds and
querying should produce an even more significant improvement in build and
query times.

SSBT is open source and available at http://www.cs.cmu.edu/∼ckingsf/
software/bloomtree/.

Acknowledgements. We would like to thank Hao Wang, Natalie Sauerwald,
Cong Ma, Tim Wall, Mingfu Sho, and especially Guillaume Marçais, Dan DeBlasio, and
Heewook Lee for valuable discussions and comments on the manuscript. This research
is funded in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery
Initiative through Grant GBMF4554 to Carl Kingsford. It is partially funded by the US
National Science Foundation (CCF-1256087, CCF-1319998) and the US National Insti-
tutes of Health (R21HG006913, R01HG007104). C.K. received support as an Alfred
P. Sloan Research Fellow. B.S. is a predoctoral trainee supported by US National
Institutes of Health training grant T32 EB009403 as part of the Howard Hughes Med-
ical Institute (HHMI)-National Institute of Biomedical Imaging and Bioengineering
(NIBIB) Interfaces Initiative.

References

1. Solomon, B., Kingsford, C.: Fast search of thousands of short-read sequencing
experiments. Nat. Biotechnol. 34, 300–302 (2016)

2. Leinonen, R., Sugawara, H., Shumway, M., The International Nucleotide
Sequence Database Collaboration: The sequence read archive. Nucleic Acids Res.
39(Database issue), D19–D21 (2011)

3. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K.,
Madden, T.L.: BLAST+: architecture and applications. BMC Bioinform. 10(1),
421 (2009)

4. Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

5. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

6. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)

7. Grossi, R., Vitter, J.S., Xu, B.: Wavelet trees: from theory to practice. In: 2011 First
International Conference on Data Compression, Communications and Processing
(CCP), pp. 210–221. IEEE (2011)

http://www.cs.cmu.edu/~ckingsf/software/bloomtree/
http://www.cs.cmu.edu/~ckingsf/software/bloomtree/

Improved Search of Sequence Databases 271

8. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39,
2 (2007)

9. Ziviani, N., Moura, E., Navarro, G., Baeza-Yates, R.: Compression: a key for next-
generation text retrieval systems. IEEE Comput. 33, 37–44 (2000)

10. Navarro, G., Moura, E., Neubert, M., Ziviani, N., Baeza-Yates, R.: Adding com-
pression to block addressing inverted indexes. Inf. Retrieval 3, 49–77 (2000)

11. Loh, P.-R., Baym, M., Berger, B.: Compressive genomics. Nat. Biotechnol. 30(7),
627–630 (2012)

12. Daniels, N.M., Gallant, A., Peng, J., Cowen, L.J., Baym, M., Berger, B.: Compres-
sive genomics for protein databases. Bioinformatics 29(13), i283–i290 (2013)

13. Yu, Y.W., Daniels, N.M., Danko, D.C., Berger, B.: Entropy-scaling search of mas-
sive biological data. Cell Syst. 1(2), 130–140 (2015)

14. Holley, G., Wittler, R., Stoye, J.: Bloom filter trie: an alignment-free and reference-
free data structure for pan-genome storage. Algorithms Mol. Biol. 11(1), 1 (2016)

15. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

16. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey.
Internet Math. 1(4), 485–509 (2005)

17. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2002, Philadelphia, PA,
USA, pp. 233–242. Society for Industrial and Applied Mathematics (2002)

18. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-68552-4 12

19. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and
play with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.)
SEA 2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). doi:10.1007/
978-3-319-07959-2 28

20. Rasmussen, K., Stoye, J., Myers, E.: Efficient q-gram filters for finding all ε-matches
over a given length. J. Comput. Biol. 13(2), 296–308 (2006)

21. Philippe, N., Salson, M., Commes, T., Rivals, E.: CRAC: an integrated approach
to the analysis of RNA-seq reads. Genome Biol. 14(3), R30 (2013)

22. Zhang, Q., Pell, J., Canino-Koning, R., Howe, A.C., Brown, C.T.: These are not
the k-mers you are looking for: efficient online k-mer counting using a probabilistic
data structure. PLoS ONE 9(7), e101271 (2014)

23. Brown, T., Howe, A., Zhang, Q., Pyrkosz, A., Brom, T.: A reference-free algorithm
for computational normalization of shotgun sequencing data. arXiv:1203.4802
[q-bio.GN]

24. Patro, R., Mount, S.M., Kingsford, C.: Sailfish enables alignment-free isoform quan-
tification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol. 32,
462–464 (2014)

http://dx.doi.org/10.1007/978-3-540-68552-4_12
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://arxiv.org/abs/1203.4802

AllSome Sequence Bloom Trees

Chen Sun1, Robert S. Harris2, Rayan Chikhi3, and Paul Medvedev1,4,5(B)

1 Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, USA

pashadag@cse.psu.edu
2 Department of Biology, The Pennsylvania State University, University Park, USA

3 CNRS, CRIStAL, University of Lille, Lille, France
4 Department of Biochemistry and Molecular Biology,

The Pennsylvania State University, University Park, USA
5 Genome Sciencies Institute of the Huck, The Pennsylvania State University,

University Park, USA

Abstract. The ubiquity of next generation sequencing has transformed
the size and nature of many databases, pushing the boundaries of cur-
rent indexing and searching methods. One particular example is a data-
base of 2,652 human RNA-seq experiments uploaded to the Sequence
Read Archive. Recently, Solomon and Kingsford proposed the Sequence
Bloom Tree data structure and demonstrated how it can be used to accu-
rately identify SRA samples that have a transcript of interest potentially
expressed. In this paper, we propose an improvement called the AllSome
Sequence Bloom Tree. Results show that our new data structure sig-
nificantly improves performance, reducing the tree construction time by
52.7% and query time by 39–85%, with a price of up to 3x memory con-
sumption during queries. Notably, it can query a batch of 198,074 queries
in under 8 h (compared to around two days previously) and a whole set
of k-mers from a sequencing experiment (about 27 mil k-mers) in under
11min.

Keywords: Sequence Bloom Trees · Bloom filters · RNA-seq · Data
structures · Algorithms · Bioinformatics

1 Introduction

Data structures for indexing and searching of databases have always been a core
contribution of algorithmic bioinformatics to the analysis of biological data and
are the building blocks of many popular tools [18]. Traditional databases may
include reference genome assemblies, collections of known gene sequences, or
reads from a single sequencing experiment. However, the ubiquity of next gener-
ation sequencing has transformed the size and nature of many databases. Each

C. Sun and R.S. Harris—Contributed equally to the work.
The full version of this paper is available at [33].

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 272–286, 2017.
DOI: 10.1007/978-3-319-56970-3 17

AllSome Sequence Bloom Trees 273

sequencing experiment results in a collection of reads (gigabytes in size), typi-
cally deposited into a database such as the Sequence Read Archive (SRA) [15].
There are thousands of experiments deposited into the SRA, creating a database
of unprecedented size in genomics (4 petabases, as of 2016). The SRA enables
public access of the database via meta-data queries on the experiments’ name,
type, organism, etc. However, efficiently querying the raw read sequences of the
database has remained out of reach for today’s indexing and searching methods,
until earlier this year [31].

Given a transcript of interest, an important problem is to identify all pub-
licly available sequenced samples which express it. The SRA contains thousands
of human RNA-seq experiments, providing a powerful database to answer this
question. One approach is to use tools such as [4,27,34] to first identify tran-
scripts present in each of the experiments; however, running these tools on a
massive scale is time prohibitive (though cloud-enabled tools like Rail-RNA [26]
are making inroads). Moreover, they introduce biases and can easily miss a tran-
script that is supported by the reads. Another approach is to align the SRA reads
to the transcript of interest; however, this approach is infeasible for such large
datasets [31].

Recently, Solomon and Kingsford proposed the Sequence Bloom Tree (SBT)
data structure and demonstrated how it can accurately identify samples that
may have the transcript of interest expressed in the read data [31]. SBT was a
breakthrough, allowing to query a set of 214,293 transcripts against a database
of 2,652 human RNA-seq experiments in just under 4 days. The SBT is not
intended to replace more thorough methods, like alignment, but is intended to
be complementary, narrowing down the set of experiments for which a more
rigorous investigation is needed.

In this paper, we present the AllSome Sequence Bloom Tree (SBT-ALSO),
a time and space improvement on the original SBT (denoted by SBT-SK). It
combines three new ideas. The first one is a better construction algorithm based
on clustering. The second one is a different representation of the internal nodes
of the tree so as to allow earlier pruning and faster exploration of the search
space. The final one is building a Bloom filter on the query itself. This allows
quick execution of queries that are not just transcripts but are themselves large
sequencing experiments.

We evaluate SBT-ALSO on the database of 2,652 human RNA-seq sequenc-
ing runs used in [31]. SBT-ALSO reduces tree construction time by 52.7%, when
given the Bloom filters of the datasets. It reduces query time by 39–85%, with a
price of up to 3x memory consumption. Notably, it can query a batch of 198,074
queries in under 8 h, compared to over two days for SBT-SK. It can also query
a whole set of k-mers from a sequencing experiment (about 27 mil k-mers) in
under 11 min, compared to more than 23 h by SBT-SK. Our software is open
source and freely available via GitHub1.

1 SBT-ALSO GitHub repository: https://github.com/medvedevgroup/
bloomtree-allsome.

https://github.com/medvedevgroup/bloomtree-allsome
https://github.com/medvedevgroup/bloomtree-allsome

274 C. Sun et al.

2 Related Work

This work falls into the general category of string pattern matching, where we are
asked to locate all occurrences of a short pattern in a large text. In many cases,
it is useful to pre-process the text to construct an index that will speed up future
queries. The k-mer-index, trie, suffix tree, suffix array, BWT, and FM-index are
examples of such indices [18]. These form the basis of many read alignment tools
such as BWA-mem and Bowtie 2. While many of these approaches are space
and time efficient in their intended setting, they can nevertheless be infeasi-
ble on terabyte or petabyte scale data. Other approaches based on word-based
indices [25,36] and compressive genomics [17,35] do not help for the type of data
and queries we consider in this paper.

A Bloom filter (BF) is widely used to improve scalability by determining
whether the pattern occurs in the text, without giving its location. It is a space
efficient data structure for representing sets that occasionally provides false-
positive answers to membership queries [3]. For pattern matching, a BF can be
constructed for all the constituent k-mers (strings of length of k) of the text.
Then, if a high percentage of a pattern’s constituent k-mers match, the text is
a potential match and a full search can be performed. BFs are used in several
bioinformatics contexts such as assembly [6,12,22,30], to index and compress
whole genome datasets [29], and to compare sequencing experiments against
whole genomes [32].

When pattern matching against a database of read collections from sequenc-
ing experiments, additional factors need to be considered. First, the reads contain
sequencing errors. Second, they only represent short fragments of the underlying
DNA and are typically much shorter than the pattern. Third, there are many
texts, each of which is its own sequencing experiment. The goal is to identify
all texts that match the pattern. A simple way to adapt the BF idea to this
case is to simply build a BF for every text and check the pattern separately
against every text’s BF. A more sophisticated approach builds a tree to index
the collection of BFs [8]. This Bloofi data structure was introduced in the context
of distributed data provenance, but it was later adapted to the bioinformatics
setting by Solomon and Kingsford in [31].

An orthogonal approach is the Bloom Filter Trie (BFT) [13], which works
similarly to a trie on the k-mers in all the texts. Each leaf contains a bitvector
describing the texts in which that k-mer appears, and BFs are cleverly used
inside the trie to “jump down” � positions at a time, thus speeding up the trie
traversal process. The BFT complexity scales up with the number of k-mers in
the query, while SBT complexity scales up with the number of datasets. Thus
the two approaches suggest orthogonal use cases. In particular, the BFT is very
efficient for queries that are single k-mers, significantly outperforming the SBT.
An approach that uses BFT to query longer patterns like the ones we consider
in this paper is promising but is not yet available.

There is also a body of work about storing and indexing assembled
genomes [2,10,16,21,23], which is part of the growing field of pangenomics [7].
However, our work relates to the indexing of unassembled data (i.e. reads) as

AllSome Sequence Bloom Trees 275

opposed to complete genomes. In addition to the topics specifically mentioned
above, there are other studies related to scaling up indexing methods [9,20],
though the list here is in no way complete.

3 Technical Background

Terminology: Let x and y be two bitvectors of the same length. The bitwise
AND (i.e. intersection) between x and y is written as x ∩ y, and the bitwise
OR (i.e. union) is x ∪ y. A bitvector can be viewed as a set of positions set to
1, and this notation is consistent with the notion of set union and intersection.
The set difference of x and y is written as x \ y and can be defined as x \ y =
x AND (NOT y). A Bloom filter (BF) is a bitvector of length b, together with
p hash functions, h1, . . . , hp, where b and p are parameters. Each hash function
maps a k-mer to an integer between 0 and b − 1. The empty set is represented
as an array of zeros. To add a k-mer x to the set, we set the position hi(x) to
1, for all i. To check if a k-mer x is in the set, we check that the position hi(x)
is 1, for all i. In this paper, we assume that the number of hash functions is 1.
Next, consider a rooted binary tree. The parent of a non-root node u is denoted
as parent(u), and the set of all the leaves of the subtree rooted at a node v
is denoted by leaves(v). Let lchild(u) and rchild(u) refer to the left and right
children of a non-leaf node u, respectively.

SBT: Let Q be a non-empty set of k-mers, and let B be a k-mer BF. Given
0 ≤ θ ≤ 1, we say that Q θ-matches B if |{x ∈ Q : x exists in B}|/|Q| ≥ θ. That
is, the percentage of k-mers in Q that are also in B (including false positive hits)
is at least θ. Solomon and Kingsford consider the following problem. We are given
a database D = {D1, . . . , Dn}, where each Di is a BF of size b. The query is a
k-mer set Q, and the result of the query should be the set {i : Qθ-matches Di}.
The goal is to build a data structure that can construct an index on D to support
multiple future queries.

We make a distinction between the abstract data type that Solomon and
Kingsford propose for the problem and their implementation of it. We call the
first SBT, and the second SBT-SK (note that in [31] no distinction is made and
SBT refers to both). A rooted binary tree is called a Sequence Bloom Tree (SBT)
of a database D if there is a bijection between the leaf nodes and the elements of
D. Define B∪(u) for a leaf node u as its associated database element and B∪(u)
for an internal node as

⋃
i∈leaves(u) B∪(i). Note that B∪(u) of an internal node u

can be equivalently defined as B∪(lchild(u)) ∪ B∪(rchild(u)). Each node u then
represents the set of database entries corresponding to the descendant leaves
of u. Additionally, the SBT provides an interface to construct the tree from a
database, to query a k-mer set against the database, and to insert/delete a BF
into/from the database. An example of an SBT is shown in Fig. 2.

276 C. Sun et al.

SBT-SK: We call the implementation of the SBT interface provided in [31] as
SBT-SK. In SBT-SK, each node u is stored as a compressed version of B∪(u).
The compression is done using RRR [28] implemented in SDSL [11], which allows
to efficiently test whether a bit is set to 1 without decompressing the bitvector. To
insert a BF B into a SBT T , SBT-SK does the following. If T is empty, it just adds
B as the root. Otherwise, let r be the root. If r is a leaf, then add a new root r′ that
is the parent of B and r and set B∪(r′) = B∪(r) ∪ B. Otherwise, take the child
v of r that has the smallest Hamming distance to B, recursively insert B in the
subtree rooted at v, and update B∪(r) to be B∪(r) ∪ B. Note that because RRR
compressed bitvectors do not support bitwise operations, each bitvector must be
first decompressed before bitwise operations are performed and then recompressed
if any changes are made. The running time of an insertion is proportional to the
depth of the SBT. To construct the SBT for a database, SBT-SK starts with an
empty tree and inserts each element of the database one-by-one. Construction can
take time proportional to nd, where d is the depth of the constructed SBT. The
left panel of Fig. 1 provides an example of the construction algorithm. To query
the database for a k-mer set Q, SBT-SK first checks if Q θ-matches the root.

Fig. 1. Example of the SBT-SK and SBT-ALSO construction algorithms for the data-
base D = {D1 = 111000, D2 = 111010, D3 = 000100, D4 = 000011}. Leaves shown in
blue, internal nodes in gray. In this example, the dataset can be partitioned into two
types: 000xxx and 111xxx, based on the first 3 bits. In the SBT-SK construction, after
the first two experiments are inserted (both of type 111xxx), they are destined to be in
the two different sides of the tree (regardless of future insertions). Any future 111xxx
type query will have to examine all the nodes. The SBT-ALSO construction, on the
other hand, groups together the experiments so that future 000xxx type or 111xxx
type queries will have to examine only about half the nodes of the tree.

AllSome Sequence Bloom Trees 277

If yes, then it recursively queries the children of the root. When the query hits a
leaf node, it returns the leaf if Q θ-matches it.

Since SBT is designed to work on very large databases, its implementation
should avoid loading the database into memory. In SBT-SK, each B∪(u) is
stored on disk and only loaded into memory when u is being θ-matched by a
query. When there are multiple queries to be performed, SBT-SK will batch
them together so that the θ-matching of multiple queries to the same node will
be performed simultaneously. Hence, each node needs to be loaded into memory
only once per batch. We implement the same strategy in SBT-ALSO.

4 Methods

We propose the AllSome SBT as an alternative implementation of the SBT
abstract data type. In this section, we describe the construction and query algo-
rithms. Insertion and deletion algorithms are the same as in SBT-SK, though
some special care is needed. For completeness, they are described in the full
version [33].

4.1 AllSome Node Representation and Regular Query Algorithm

Define the intersection of leaves in the subtree rooted at a node u as B∩(u) =⋂
i∈leaves(u) B∪(i). Intuitively, we can partition the 1 bits of B∪(u) into three

sets: Ball(u), Bsome(u), and B∩(parent(u)). Ball(u) are the bits that appear in
all of leaves(u), excluding those in all of leaves(parent(u)). Bsome(u) are the
bits in some of leaves(u) but not in all. Both sets therefore exclude bits present
in B∩(parent(u)). Formally, define

Ball(u) = B∩(u) \ B∩(parent(u))
Bsome(u) = B∪(u) \ B∩(u)

At the root r, define B∩(parent(r)) = ∅. Ball(u) and Bsome(u) are stored using
two bitvectors of size b compressed with RRR. B∪(u) and B∩(u) are not explicitly
stored. We refer to this representation of the nodes using Ball and Bsome as the
AllSome representation (Fig. 2 gives an example).

When we receive a query k-mer set Q, we hash each k-mer to determine
the list of BF bits corresponding to Q. These are a multi-set of position indices
(between 0 and b− 1), stored as an array. We call these the list of unresolved bit
positions. We also maintain two counters: the number of bit positions that have
been determined to be 1 (present), and the number of bit positions determined
to be 0 (absent). These counters are both initially 0. The query comparison
then proceeds in a recursive manner. When comparing Q against a node u, each
unresolved bit position that is 1 in Ball(u) is removed from the unresolved list
and the present counter is incremented. Each unresolved bit position that is
0 in Bsome(u) is removed from the unresolved list and the absent counter is
incremented. If the present counter is at least θ|Q|, we add leaves(u) to the

278 C. Sun et al.

Fig. 2. Example SBT on D = {1110001110000000, 1110111100000000, 1111110000000
000, 1001000111001000, 1001000011110000, 1001000000001111}. Leaves shown in blue,
internal nodes in gray. In SBT-ALSO, only Ball and Bsome are explicitly stored, while
in SBT-SK, only B∪ is stored. Bits present in Ball at one node are shown as hyphens
(‘-’) in the Ball and Bsome of its descendants, but in the actual SBT-ALSO data
structure they are zeros.

list of θ-matches and terminate the search of u’s subtree. If the absent counter
exceeds (1 − θ)|Q|, we realize that Q will not θ-match any of the leaves in the
subtree rooted at u and terminate the search of u’s subtree. If neither of these
holds, we recursively pass the two counters and the list of unresolved bits down
to its children. When we reach a leaf, the unresolved list will become empty
because Bsome is empty at a leaf, and the algorithm will necessarily terminate.

The idea behind the AllSome representation is that in a database of biolog-
ically associated samples, there are many k-mers that are shared between many
datasets. In the SBT-SK representation, a query must continue checking for the
presence of these k-mers at every node that it encounters. By storing at u all the
bits that are present in all the leaves of its subtree, we can count those bits as
resolved much earlier in the query process – limiting the amount of bit look-ups
performed. Moreover, we will often prune the search space earlier and decrease
the number of bitvectors that need to be loaded from disk. A query that matches
all the leaves of a subtree can often be resolved after just examining the root
of that subtree. In the extreme case, the number of nodes examined in a search
may be less than the number of database entries that are matched.

A second important point is that the size of the uncompressed bitvectors
at each node is now twice as large as before. Because query time has a large
I/O component, this has potential negative effects. Fortunately, we observe that
the compressed size of these bitvectors is roughly proportional to the number of
1s that are contained. By defining the AllSome representation as we do, the
number of 1s in total in Ball(u) and Bsome(u) is no more than the number of
ones in B∪(u). Moreover, because we exclude B∩(u) from all of u’s descendants,
the number of 1s is less.

AllSome Sequence Bloom Trees 279

4.2 Construction Algorithm

Except for large queries or large batches of queries, the running time of the query
algorithm is dominated by the I/O of loading bitvectors into memory [31]. If the
number of leafs that the query θ-matches is localized within the same part of the
SBT, then fewer internal nodes have to be explored and, hence, fewer bitvectors
have to be loaded into memory. The SBT-SK construction algorithm is greedy
and sensitive to the order in which the entries are inserted into the tree, which
can lead to trees with poor localization (see example in Fig. 1).

To improve the localization property of the tree, we propose a non-greedy
construction method based on agglomerative hierarchical clustering [14]. Every
Di is initially its own SBT, with its B∪ loaded into memory. At every step, two
SBTs are chosen and joined together to form a new SBT. The new SBT has a
root node r with the left and right subtrees corresponding to the two SBTs being
joined. B∪(r) is computed as B∪(lchild(r)) ∪ B∪(rchild(r)). To choose the pair
of SBTs to be joined, we choose the two SBTs that have the smallest Hamming
distance between the B∪ of their roots. The right panel of Fig. 1 shows how our
construction algorithm works.

Since each B∪ is a large bitvector, computing and maintaining the pairwise
distances between all pairs is computationally expensive. Instead, we use the
following heuristic. We fix a number b′ � b (e.g. b′ = 105 � 109 = b) and
then extract b′ bits from each Di, starting from a fixed but arbitrary offset. We
then run the above clustering algorithm on this smaller database of extracted
bitvectors.

The resulting topology is then extracted and used for constructing the Ball

and Bsome bitvectors for all the nodes. We process the nodes in a bottom-up
fashion. Initially, for all leaves u, we set Ball(u) = B∪(u) and Bsome(u) = ∅.
For the general case, consider an internal node u whose children � and r have
already been processed. All bits that are set in both Ball(l) and Ball(r) go into
Ball(u):

Ball(u) = Ball(l) ∩ Ball(r)

Additionally, the Ball bits of � and r must exclude those that are set in the
parent Ball(u). After computing Ball(u), we can unset these bits:

Ball(v) = Ball(v) \ Ball(u),where v ∈ {�, r}. (1)

Note that this is the only necessary update to the bitvectors of nodes in the
subtree rooted in � or r. Next, we must compute Bsome(u), which is the set of
bits that exist in some of u’s children nodes but not all:

Bsome(u) = Bsome(�)∪ Bsome(r)∪ Ball(�)∪ Ball(r)

Note that here we are using the Ball after the application of Eq. (1). This com-
pletes the necessary updates to the tree for a node u. These updates can be
efficiently computed using bitwise operations on uncompressed bitvectors, so we

280 C. Sun et al.

keep them uncompressed in memory and only compress them when they are
written to disk and are no longer needed. The total time for construction is pro-
portional to n and not to nd, as with SBT-SK. For completeness, we provide a
more formal algebraic derivation of the update formulas in the full version [33].

4.3 Large Query Algorithm

The “regular query” algorithm (Sect. 4.1) is designed with relatively small queries
in mind (e.g. thousands of k-mers from a transcript). However, after performing
a new sequencing experiment, it might be desirable to query the database for
other similar samples. In such cases, the query would itself be a whole sequencing
experiment, containing millions of k-mers. Our experimental results show that
neither SBT-SK nor our own regular query algorithm is efficient for these large
queries.

While for small queries, the running time is dominated by the I/O of loading
bitvectors into memory, for large queries, the time taken to look up the query
k-mers in the Ball and Bsome of a node becomes the bottleneck. Let BQ be the
Bloom filter of size b for the k-mers in the query Q. We propose an alternate
“large query” algorithm that can be used whenever the number of k-mers in
the query exceeds some pre-defined user threshold. This large query algorithm
is identical to the regular one except in the way that the unresolved list is
maintained and updated. The basic idea is that instead of checking each k-
mer in Q one-by-one, we can do bitwise comparisons using BQ. Assume for the
moment that there are no two k-mers in Q that hash to the same position (recall
that our BFs have only one hash function). In this case, the list of unresolved bit
positions can be represented as the set of 1 positions in BQ. At a node u, we first
increment the present counter by the number of ones in BQ ∩ Ball(u) and update
the unresolved bit positions to be B′

Q = BQ \ Ball(u). Then we increment the
absent counter by the number of ones in B′

Q\Bsome(u) and update the unresolved
bit positions to be B′′

Q = B′
Q ∩ Bsome(u). If the counters do not exceed their

respective thresholds, then we pass them and the remaining unresolved bits (B′′
Q)

down to the children.
When there are k-mers that hash to the same bit positions, the above algo-

rithm can still be used as a heuristic. In fact, it can be shown that the hits
returned by the above heuristic algorithm are always a subset of the hits that
are returned by an exact algorithm, since the heuristic’s counter values are never
greater than those of the exact algorithm. But, we can obtain an exact algorithm
by modifying the above heuristic to also maintain a list of bit positions that have
multiple k-mers hashing to them. An entry of the list is a bit position and the
number of k-mers that hash to it. Whenever we make a bitwise comparison
involving BQ, this list is scanned to convert numbers of bits to numbers of k-
mers. When the list is small, this exact algorithm should not be significantly
slower than the heuristic one.

Unfortunately, computing bitwise operations cannot be efficiently done on
RRR compressed bitvectors. To support the large query algorithm, the bitvec-
tors are compressed using the Roaring [5] scheme (abbreviated ROAR). Roaring

AllSome Sequence Bloom Trees 281

bitmaps are compressed using a hybrid technique that allows them to efficiently
support set operations on bitvectors (intersection, union, difference, etc.). How-
ever, we found that they generally do not compress as well as RRR on our data,
leading to longer I/O times. In cases where both small and large queries are
common, and query time is more important than disk space, both a ROAR and
an RRR compressed tree can be maintained.

5 Results

We implemented SBT-ALSO, building on the SBT-SK code base [1]. Solomon
and Kingsford already explored the advantages, disadvantages and accuracy of
the SBT approach as a way of finding experiments where the queried transcripts
are expressed [31]. Since SBT-ALSO gives identical query results as SBT-SK,
we therefore focus our evaluation on its resource utilization. We used the same
dataset for evaluation as in [31]. This is the set of 2,652 runs representing the
entirety (at the time of [31]) of human RNA-seq runs from blood, brain, and
breast tissues at the SRA, excluding those sequenced with SOLID. In [31], each
sequencing run was converted to a k-mer Bloom filter (b = 2 ·109, k = 20) by the
Jellyfish k-mer-counting software (containing k-mers that occur greater than a
file-dependent threshold, typically at least 3 occurrences). We downloaded these
BFs from [1] and used them as our database. Per the results of [31], this Bloom
filter size leads to a false positive rate of 0.5 for an individual Bloom filter. We
performed experiments on an OpenStack instance with 12 vCPUs (Intel Xeon
E312xx), 128 GB memory, and 4 TB network-mounted disk storage.

To choose the appropriate number of bits to use for clustering (b′), we ran-
domly sampled 5,000 bitvector pairs from the dataset and computed their pair-
wise distances. We then computed distances for the same pairs using only b′

bits, for various values of b′. The two distance metrics showed a high correlation
(r2 = 0.9999874) for b′ = 500, 000.

We then constructed SBT-SK and SBT-ALSO, as well as two other trees
to help us separate out the contributions of the clustering algorithm from the
AllSome representation. These two trees are SBT-SK+CLUST, which uses
the B∪ node representation of SBT-SK but the SBT-ALSO clustering con-
struction, and SBT-SK+AS, which uses the greedy construction of SBT-SK
but the AllSome node representation of SBT-SK.

First, we compared the space and time used to construct SBT-SK and SBT-
ALSO (Table 1). SBT-ALSO reduces the tree construction time by 52.7% and
resulting disk space by 11.4%. It requires twice as much intermediate space, due
to maintaining two uncompressed bitvectors for each node instead of just one.

To study the regular query performance, we downloaded all known transcripts
at least k bases long (198,074 of them) from Gencode (ver. 25). We then queried
several subsets of transcripts against both trees, and measured the number of
nodes examined for each query (Fig. 3) as well as the running time (Table 2).
The results of all query experiments in this paper were verified to be equiva-
lent between the tested data structures. SBT-ALSO reduces the runtime by

282 C. Sun et al.

Fig. 3. Number of nodes examined per query for SBT-SK, SBT-ALSO, as well two
intermediate SBTs. A set of 1,000 transcripts were chosen at random from Gencode
set, and each one queried against the four different trees. A dot represents a query
and shows the number of matches in the database (x-axis) compared to the number of
nodes that had to be loaded from disk and examined during the search (y-axis). For
each tree (color), we interpolated a curve to show the pattern. The dashed horizontal
line represents the hypothetical algorithm of simply checking if the query θ-matches
against each of the database entries, one-by-one. For θ, we used the default value in
the SBT software (θ = 0.9).

39 - 85%, depending on the size of the batch, likely due to the fact that the
number of nodes examined per query is reduced by 52.7%, on average. Notably,
SBT-ALSO was able to query a very large batch (198,074 queries) in under 8 h,
while SBT-SK took over 2 days. SBT-ALSO uses more memory than SBT-SK
on larger batches.

To study the performance of the large query algorithm, we selected an arbi-
trary run from our database (SRR806782) and used Jellyfish [19] to extract all
20-mers that appear at least three times. These 27,546,676 k-mers formed one
query. In heuristic mode, the large query algorithm was 22 times faster than the
regular one, but only detected 47 hits, which is a subset of the 50 hits by regular
algorithm (Table 3). In the exact mode, the large query algorithm recovered all
the hits (as expected) and was 18 times faster. Compared to SBT-SK, it was
155 times faster.

The clustering construction, even without the AllSome representation, sig-
nificantly reduces the number of nodes that need to be examined per query
(36.5% on average when comparing SBT-SK to SBT-SK+CLUST in Fig. 3).
The improvement seems to be uniform regardless of the number of leaf hits.
As expected, this leads a significant improvement to the running time (19–32%,
Sect. 5).

The AllSome representation, without the clustering construction, also gives
the benefit of allowing earlier query resolution, but the effect only becomes

AllSome Sequence Bloom Trees 283

Table 1. Construction time and space. Times shown are wall-clock times. A single
thread was used. Note the SBT-SK tree that was constructed for the purposes of
this table differs from the tree used in [31] and in our other experiments because the
insertion order during construction was not the same as in [31] (because it was not
described there).

SBT-SK SBT-ALSO

Construction of tree topology (i.e. clustering) N/A 27 m

Construction of internal nodes 56 h 54 m 26 h 3 m

Peak memory usage 726 MB 908 MB

Temporary disk space 1,235 GB 2,469 GB

Final disk space 200 GB 177 GB

Table 2. Query wall-clock run times and maximum memory usage, for batches of
different sizes. For the batch of 1,000 queries, we used the same 1,000 queries as in Fig. 3.
For the batch of 100 queries, we generated three replicate sets, where each set contains
100 randomly sampled transcripts without replacement from the 1,000 queries set. For
the batch of 10 queries, we generated 10 replicate sets by partitioning one of the 100
query sets into 10 sets of 10 queries. For the batch of 1 query, we generated 50 replicate
sets by sampling 50 random queries from Gencode set. The shown running times are
the averages of these replicates. For θ, we used the default value in the SBT software
(θ = 0.9).

query SBT-SK SBT-SK+AS SBT-SK+CLUST SBT-ALSO

1 1.2 m/301 MB 2.7 m/301 MB 0.9 m/299MB 0.5 m/301 MB

10 4m/305 MB 8.3 m/319 MB 3.3 m/304MB 2 m/313 MB

100 7.7 m/315 MB 13.7 m/346 MB 6.5 m/317MB 4.7 m/353 MB

1,000 25.5 m/420 MB 20.8 m/575 MB 17.3 m/418MB 8.3 m/639 MB

198,074 3082m/22 GB 1286m/51 GB 1910m/23 GB 463 m/63 GB

Table 3. Performance of different trees and query algorithms on a large query. We show
the performance of SBT-SK and three query algorithms using SBT-ALSO compressed
with ROAR: the regular algorithm, the large exact algorithm, and the large heuristic
algorithm. We show the wall-clock run time and maximum RAM usage. We used θ = 0.8
for this experiment. The ROAR compressed tree was 190GB (7.3% larger than the RRR
tree).

SBT-SK SBT-ALSO

Regular alg Regular alg Large exact alg Large heuristic alg

Query time 1397 m 18 s 195 m 33 s 10 m 35 s 8 m 32 s

Query memory 2.3 GB 4.7 GB 1.3 GB 1.2 GB

284 C. Sun et al.

pronounced for queries that hit a lot of leaves. For instance, queries that hit
more than 800 leaves examined 27.4% less nodes in SBT-SK+AS then in SBT-
SK. In the extreme case, there are seven queries out of 1,000 where the number
of nodes examined is less than the number of leaf hits, something that is not
possible with SBT-SK. However, the benefits of clustering construction and
AllSome representation are synergistic: the multiplicative effect of their indi-
vidual contributions (42.3% decrease in number of examined nodes) is less than
the observed effect of their combined contributions (52.7%). In terms of the
running time performance, the AllSome representation incurs the overhead of
making two queries per active bit, instead of just one. This is more than com-
pensated by a decrease in the amount of active bits when the tree is clustered
well. But, as the SBT-SK+AS column of Sect. 5 shows, the running time can
actually deteriorate when the tree is not clustered.

6 Discussion

In this paper we present an alternate implementation of the SBT that provides
substantial improvements in query and construction time. We are especially
effective for large batches of queries (6 times faster) or for large queries (155 times
faster). Solomon and Kingsford make a convincing case that an efficient SBT
implementation translates to an efficient and accurate solution to the broader
problem of identifying RNA-seq samples that express a transcript of interest.
They study the best parameter values of SBT (θ, k, b, p) to achieve accuracy
and speed for the broader problem. The focus of this paper is on improving
resource performance, and hence we do not revisit these questions, however, a
more thorough exploration of the biological questions that the SBT can answer
will be important moving forward.

The implications of using the SBT for queries which are themselves sequenc-
ing experiments were not explored in SBT-SK or here. The BFT [13], if adapted
to multi-k-mer queries with θ-matching, could prove to be powerful in this con-
text. In general, the question of whether the percentage of matching k-mers is a
good metric for comparing sequencing experiments is still open, and more inves-
tigation into how to best measure similarity is needed (e.g. see [24]). However,
our large query algorithm opens the door for efficiently exploring the parameter
space of k-mer-based approaches.

Acknowledgements. This work has been supported in part by NSF awards
DBI-1356529, CCF-551439057, IIS-1453527, and IIS-1421908 to PM.

References

1. SBT-SK software and data. http://www.cs.cmu.edu/%7Eckingsf/software/
bloomtree/. Accessed 01 July 2016

2. Baier, U., Beller, T., Ohlebusch, E.: Graphical pan-genome analysis with
compressed suffix trees and the Burrows-Wheeler transform. Bioinformatics 32,
497–504 (2015)

http://www.cs.cmu.edu/%7Eckingsf/software/bloomtree/
http://www.cs.cmu.edu/%7Eckingsf/software/bloomtree/

AllSome Sequence Bloom Trees 285

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

4. Bray, N.L., Pimentel, H., Melsted, P., Pachter, L.: Near-optimal probabilistic
RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527 (2016)

5. Chambi, S., Lemire, D., Kaser, O., Godin, R.: Better bitmap performance with
roaring bitmaps. Softw. Pract. Exp. 46(5), 709–719 (2015)

6. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based
on a bloom filter. Algorithms Mol. Biol. 8(1), 1 (2013)

7. Consortium, C.P.G., et al: Computational pan-genomics: status, promises and chal-
lenges. Brief. Bioinform. bbw089 (2016)

8. Crainiceanu, A., Lemire, D.: Bloofi: multidimensional bloom filters. Inf. Syst. 54,
311–324 (2015)

9. Dolle, D.D., Liu, Z., Cotten, M.L., Simpson, J.T., Iqbal, Z., Durbin, R.,
McCarthy, S., Keane, T.: Using reference-free compressed data structures to
analyse sequencing reads from thousands of human genomes. Genome Res. 27,
300–309 (2016)

10. Ernst, C., Rahmann, S.: PanCake: a data structure for pangenomes. Ger. Conf.
Bioinform. 34, 35–45 (2013)

11. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and
play with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.)
SEA 2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). doi:10.1007/
978-3-319-07959-2 28

12. Heo, Y., Wu, X.L., Chen, D., Ma, J., Hwu, W.M.: BLESS: bloom filter-based
error correction solution for high-throughput sequencing reads. Bioinformatics 30,
1354–1362 (2014)

13. Holley, G., Wittler, R., Stoye, J.: Bloom filter trie – a data structure for pan-
genome storage. In: Pop, M., Touzet, H. (eds.) WABI 2015. LNCS, vol. 9289, pp.
217–230. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48221-6 16

14. de Hoon, M.J., Imoto, S., Nolan, J., Miyano, S.: Open source clustering software.
Bioinformatics 20(9), 1453–1454 (2004)

15. Leinonen, R., Sugawara, H., Shumway, M.: The sequence read archive. Nucleic
Acids Res. 39, D19–D21 (2010)

16. Liu, B., Zhu, D., Wang, Y.: deBWT: parallel construction of Burrows-Wheeler
Transform for large collection of genomes with de Bruijn-branch encoding. Bioin-
formatics 32(12), i174–i182 (2016)

17. Loh, P.R., Baym, M., Berger, B.: Compressive genomics. Nat. Biotechnol. 30(7),
627–630 (2012)

18. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design. Cambridge University Press, Cambridge (2015)

19. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011)

20. Marchet, C., Limasset, A., Bittner, L., Peterlongo, P.: A resource-frugal prob-
abilistic dictionary and applications in (meta) genomics (2016). arXiv preprint:
arXiv:1605.08319

21. Marcus, S., Lee, H., Schatz, M.C.: SplitMEM: a graphical algorithm for pan-
genome analysis with suffix skips. Bioinformatics 30(24), 3476–3483 (2014)

22. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in DNA sequences using
a bloom filter. BMC Bioinform. 12(1), 333 (2011)

23. Minkin, I., Pham, S., Medvedev, P.: TwoPaCo: an efficient algorithm to build the
compacted de Bruijn graph from many complete genomes. Bioinformatics btw609
(2016)

http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1007/978-3-662-48221-6_16
http://arxiv.org/abs/1605.08319

286 C. Sun et al.

24. Murray, K.D., Webers, C., Ong, C.S., Borevitz, J.O., Warthmann, N.: kWIP: the
k-mer weighted inner product, a de novo estimator of genetic similarity (2016).
bioRxiv: 075481

25. Navarro, G., De Moura, E.S., Neubert, M., Ziviani, N., Baeza-Yates, R.: Adding
compression to block addressing inverted indexes. Inf. Retr. 3(1), 49–77 (2000)

26. Nellore, A., Collado-Torres, L., Jaffe, A.E., Alquicira-Hernández, J., Wilks, C.,
Pritt, J., Morton, J., Leek, J.T., Langmead, B.: Rail-RNA: scalable analysis of
RNA-seq splicing and coverage. Bioinformatics btw575 (2016)

27. Patro, R., Mount, S.M., Kingsford, C.: Sailfish enables alignment-free isoform quan-
tification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol. 32(5),
462–464 (2014)

28. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In: Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 233–242. Society for
Industrial and Applied Mathematics (2002)

29. Rozov, R., Shamir, R., Halperin, E.: Fast lossless compression via cascading bloom
filters. BMC Bioinform. 15(9), 1 (2014)

30. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading bloom filters to improve
the memory usage for de Brujin graphs. In: Darling, A., Stoye, J. (eds.) WABI
2013. LNCS, vol. 8126, pp. 364–376. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40453-5 28

31. Solomon, B., Kingsford, C.: Fast search of thousands of short-read sequencing
experiments. Nat. Biotechnol. 34(3), 300–302 (2016)

32. Stranneheim, H., Käller, M., Allander, T., Andersson, B., Arvestad, L.,
Lundeberg, J.: Classification of DNA sequences using bloom filters. Bioinformatics
26(13), 1595–1600 (2010)

33. Sun, C., Harris, R.S., Chikhi, R., Medvedev, P.: Allsome sequence bloom trees.
bioRxiv (2016). http://biorxiv.org/content/early/2016/12/02/090464

34. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H.,
Salzberg, S.L., Rinn, J.L., Pachter, L.: Differential gene and transcript expression
analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7(3),
562–578 (2012)

35. Yu, Y.W., Daniels, N.M., Danko, D.C., Berger, B.: Entropy-scaling search of mas-
sive biological data. Cell Syst. 1(2), 130–140 (2015)

36. Ziviani, N., de Moura, E.S., Navarro, G., Baeza-Yates, R.: Compression: a key for
next-generation text retrieval systems. IEEE Comput. 33(11), 37–44 (2000)

http://dx.doi.org/10.1007/978-3-642-40453-5_28
http://dx.doi.org/10.1007/978-3-642-40453-5_28
http://biorxiv.org/content/early/2016/12/02/090464

Longitudinal Genotype-Phenotype Association
Study via Temporal Structure Auto-learning

Predictive Model

Xiaoqian Wang1, Jingwen Yan2,3, Xiaohui Yao2,3, Sungeun Kim2,
Kwangsik Nho2, Shannon L. Risacher2, Andrew J. Saykin2, Li Shen2,

Heng Huang1(B), and for the ADNI

1 Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX 76019, USA

heng@uta.edu
2 Radiology and Imaging Sciences,

Indiana University School of Medicine, Indianapolis, IN 46202, USA
3 BioHealth, Indiana University School of Informatics and Computing,

Indianapolis, IN 46202, USA

Abstract. With rapid progress in high-throughput genotyping and
neuroimaging, imaging genetics has gained significant attention in the
research of complex brain disorders, such as Alzheimer’s Disease (AD).
The genotype-phenotype association study using imaging genetic data
has the potential to reveal genetic basis and biological mechanism of
brain structure and function. AD is a progressive neurodegenerative dis-
ease, thus, it is crucial to look into the relations between SNPs and longi-
tudinal variations of neuroimaging phenotypes. Although some machine
learning models were newly presented to capture the longitudinal pat-
terns in genotype-phenotype association study, most of them required
fixed longitudinal structures of prediction tasks and could not auto-
matically learn the interrelations among longitudinal prediction tasks.
To address this challenge, we proposed a novel temporal structure
auto-learning model to automatically uncover longitudinal genotype-
phenotype interrelations and utilized such interrelated structures to

H. Huang—This work was partially supported by the National Science Foundation
[IIS 1302675 to H.H., IIS 1344152 to H.H., DBI 1356628 to H.H., IIS 1619308 to H.H.,
IIS 1633753 to H.H.] at UTA and [IIS 1622526 to L.S.] at IU; and by the National
Institutes of Health [R01 LM011360 to L.S. and A.S., U01 AG024904 to Michael
Weiner and A.S., RC2 AG036535 to Michael Weiner and A.S., R01 AG19771 to A.S.,
P30 AG10133 to A.S., UL1 TR001108 to Anantha Shekhar] and [R01 AG049371 to
H.H.] at UTA.
ADNI—Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.
usc.edu/wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 287–302, 2017.
DOI: 10.1007/978-3-319-56970-3 18

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

288 X. Wang et al.

enhance phenotype prediction in the meantime. We conducted longi-
tudinal phenotype prediction experiments on the ADNI cohort including
3,123 SNPs and two types of imaging markers, VBM and FreeSurfer.
Empirical results demonstrated advantages of our proposed model over
the counterparts. Moreover, available literature was identified for our
top selected SNPs, which demonstrated the rationality of our prediction
results. An executable program is available online at https://github.com/
littleq1991/sparse lowRank regression.

Keywords: Alzheimer’s Disease · Genotype-phenotype association
prediction · Longitudinal study · Temporal structure auto-learning ·
Low-rank model

1 Introduction

As the most prevalent and severe type of neurodegenerative disorder, Alzheimer’s
Disease (AD) strongly impacts human’s memory, thinking and behavior [1]. This
disease is characterized by progressive impairment of memory and other cognitive
abilities, triggered by the damage of neurons [2]. AD usually progresses along
a temporal continuum, initially from a preclinical stage, subsequently to mild
cognitive impairment (MCI) and ultimately deteriorating to AD [3]. According
to [4], AD is the 6th leading cause of death in the United States. Every 66
seconds, there is someone in the United States developing AD. Up until 2016,
an estimate of 5.4 million individuals in the United States are living with AD,
while the number worldwide is about 44 million. To make matters worse, if no
breakthrough discovered, the world will see a more striking increase in these
numbers in near future.

With all these facts, AD has gained its growing attention in this day and age.
Current consensus underscores the need of understanding the genetic causes of
AD, with which to achieve the goal of stoping or slowing down disease progression
[5]. Recent advances in neuroimaging and microbiology have provided a helping
hand for exploring the associations among genes, brain structure and behavior
[6]. Meanwhile, rapid developments in high-throughput genotyping have enabled
the measurement of hundreds of thousands of, or even more than one million
single nucleotide polymorphisms (SNPs) simultaneously [7]. These progresses
have facilitated the pullulation of imaging genetics, which holds great promise
for better understanding complex neurobiological systems.

In imaging genetics, an emerging strategy to facilitate identification of sus-
ceptibility genes for disorders like AD is to evaluate genetic variation using
outcome-relevant biomarkers as quantitative traits (QTs). The association stud-
ies between genetic variations and imaging measures usually maintain an obvious
advantage over case-control studies, as QTs are quantitative measures with the
ability of increasing statistical power four to eight fold and decreasing required
sample size to a large extent [8]. Numerous works have been reported to identify
genetic factors impacting imaging phenotypes of biomedical importance [9–14].

https://github.com/littleq1991/sparse_lowRank_regression
https://github.com/littleq1991/sparse_lowRank_regression

Longitudinal Genotype-Phenotype Association Study 289

In the genotype-phenotype association study, we can denote our inputs in
the matrix format as follows: the SNP matrix X ∈ R

d×n (n is the number or
samples, d is the number of SNPs) and the imaging phenotype matrices Y =
[Y1, Y2, . . . , YT] ∈ R

n×cT (c is the number of QTs, T is the number of time points,
and Yt ∈ R

n×c is the phenotype matrix at time t). The goal is to find the weight
matrix W = [W1,W2, . . . ,WT] ∈ R

d×cT , which properly reflect the relations
between SNPs and QTs and capture a subset of SNPs responsible for phenotype
prediction at the same time. If we treat the prediction of one phenotype at one
time point as a task, then the association study between genotypes with multiple
longitudinal phenotypes can be seen as a multi-task learning problem.

Conventional strategies [15–17], which perform standard regression at all
time points, are equivalent to carrying out regression at individual time point
separately, thus ignore the longitudinal variations of brain phenotypes. Since
AD is a progressive disorder and imaging phenotype is a quantitative reflect
of its neurodegenerative status, prediction tasks at various time points can be
reasonably assumed related. For a certain QT, its value at different time may
be correlated, while distinct QTs at a certain time may also retain some mutual
influence. To excavate correlations among longitudinal prediction tasks, several
multi-task models were proposed on the basis of sparse learning [18,19]. The
main idea of these models is to exert trace norm on the entire parameter matrix,
such that the common subspace globally shared by different prediction tasks can
be extracted.

However, longitudinal prediction tasks are interrelated as different groups,
not as a whole. Existing methods cannot find the task interrelations properly. It
is intractable to discover such task group structure. One straightforward way of
capturing such interrelated groups is to conduct clustering analysis and extract
the group structure as a preprocessing step. Nevertheless, such a heuristic step is
independent to the entire longitudinal learning model, thus the detected group
structures are not optimal for the longitudinal learning. To bridge this gap, we
propose a novel temporal structure auto-learning low-rank predictive model to
simultaneously uncover the interrelations among different prediction tasks and
utilize the learned interrelated structures to enhance phenotype prediction.

Notations: In this paper, matrices are all written as uppercase letters while
vectors as bold lower case letters. For a matrix M ∈ R

d×n, its i-th row and j-th
column are denoted by mi, mj respectively, while its ij-th element is written as
mij or M(i, j). For a positive value p, the �2,p-norm of M is defined as ‖M‖2,p =

(
∑d

i=1(
∑n

j=1 m2
ij)

p
2)

1
p = (

∑d
i=1(

∥
∥mi

∥
∥
2
)p)

1
p .

2 Temporal Structure Auto-learning Predictive Model

2.1 Illustration of Our Idea

Our main purpose is to construct a model to simultaneously detect the latent
group structure of longitudinal phenotype prediction tasks and study SNP asso-
ciations across all endophenotypes. As is shown in Fig. 1, the four phenotypes

290 X. Wang et al.

Fig. 1. Illustration of our temporal structure auto-learning regression model. In this
figure, parameter matrices at different time points are arranged in the column order.
Four tasks marked out by green rectangles obey similar patterns thus have high interre-
lations while one SNP loci rs429358 enclosed by a red rectangle appears to be correlated
with most phenotypes. Our model is meant to uncover the group information among
all prediction tasks along the time continuum, i.e., cluster the phenotypes in the same
latent subspace (phenotypes marked out by green rectangles) into the same group and
meanwhile discover genetic biomarkers responsible for most prediction tasks (SNPs
marked out by red rectangles).

marked by the green rectangles have similar distributions and are very likely to
be correlated. However, previous models are not capable of capturing such inter-
linked structures in different task groups. In our model, we expect to uncover
such latent subspaces in different groups via low-rank constraints. Meanwhile,
the SNP loci marked by the red rectangle, rs429358, appears to be predominant
for most response variables. Correspondingly, we impose a sparsity constraint to
pick it out. In consequence, our model should be able to capture the group struc-
ture within the prediction tasks and utilize this information to select prominent
SNPs across the relevant phenotypes. In the next subsection, we will elaborate
how to translate these ideas into the new learning model.

2.2 New Objective Function

To discover the group structure of phenotype prediction tasks, we introduce and
optimize a group index matrix set Q. Suppose the tasks come from g groups,
then we have Q = {Q1, Q2, . . . , Qg}, where Qi is a diagonal matrix and Qi ∈
{0, 1}cT×cT . For each Qi, (Qi)(k,k) = 1 means the k-th feature belongs to the
i-th group while (Qi)(k,k) = 0 means not. To avoid overlap of subspaces, we
maintain the constraint that

∑g
i=1 Qi = I.

On the other hand, since SNPs are often correlated and have an overlap
in impacting phenotypes, we impose low-rank constraint to uncover the com-
mon subspaces shared by prediction tasks. The traditional method to impose

Longitudinal Genotype-Phenotype Association Study 291

low-rank constraint is minimizing trace norm, which is a convex relaxation of
rank minimization problem. However, trace norm is not an ideal approximation
of the rank minimization. Here, we use the Schatten p-norm regularization term
instead, which approximates the rank minimization better than trace norm [20].
The definition of Schatten p-norm of a matrix M ∈ R

m×n is:

‖M‖Sp
= (Tr((MTM)

p
2))

1
p = (

min{m,n}∑

i=1

σp
i)

1
p , (1)

where σi is the i-th singular value of M . Specially, when p = 1, the Schatten
p-norm of M is exactly the trace norm since ‖M‖∗ = ‖M‖S1

= Tr((MTM)
1
2) =

min{m,n}∑

i=1

σi. As we recall, the rank of M can be denoted as rank(M) =
∑min{m,n}

i=1 σ0
i , where 00 = 0. Thus, when 0 < p < 1, Schatten p-norm is a

better low-rank regularization than trace norm.
Moreover, since we intend to integrate the SNP selection procedure across

multiple learning tasks, here we impose a sparsity constraint. One possible app-
roach is �2,1-norm regularization [21], which is popularly utilized owing to its
convex property. However, the real data usually don’t satisfy the RIP condition,
thus the solution of �2,1-norm may not be sparse enough. See [22,23] for details.
To solve this problem, in our model, we resort to a stricter sparsity constraint,
�2,0+-norm, which is defined as follows:

‖M‖2,q = (
d∑

i=1

(
n∑

j=1

m2
ij)

q
2)

1
q = (

d∑

i=1

(
∥
∥mi

∥
∥
2
)q)

1
q ,

where q is a positive value. Similarly to the previous discussion, when 0 < q < 1,
�2,0+-norm can achieve a more sparse solution than �2,1 norm.

All in all, we propose a new temporal structure auto-learning model:

min
W,Qi|gi=1

∥
∥XTW − Y

∥
∥2

F
+ γ1

g∑

i=1

(‖WQi‖pSp
)k + γ2 ‖W‖2,0+ ,

s.t. Qi|gi=1 ∈ {0, 1}cT×cT ,

g∑

i=1

Qi = I.

(2)

In Eq. (2), we adopt the k-power of Schatten p-norm to make our model more
robust. The use of parameter k will be articulated in Sect. 4. Since it is difficult
to solve the proposed new non-convex and non-smooth objective, in the next
section we propose a novel alternating optimization method for Problem (2).

3 Optimization Algorithm

In this section, we first introduce an optimization algorithm for general problems
with Problem (2) being a special case, and then discuss the detailed optimization
steps of Problem (2).

292 X. Wang et al.

Lemma 1. Let gi(x) denote a general function over x, where x can be a scalar,
vector or matrix, then we can claim:

When δ → 0, The optimization problem

min
x∈C

f(x) +
∑

i

Tr((gTi (x)gi(x))
p
2)

is equivalent to

min
x∈C

f(x) +
∑

i

Tr(gTi (x)gi(x)Di), where Di =
p

2
(gTi (x)gi(x) + δI)

p−2
2 . (3)

Proof. When δ → 0, it’s apparent that the optimization problem

min
x∈C

f(x) +
∑

i

Tr((gTi (x)gi(x) + δI)
p
2) (4)

will reduce to
min
x∈C

f(x) +
∑

i

Tr((gTi (x)gi(x))
p
2). (5)

So we turn the non-smooth Problem (5) to the smooth Problem (4) where δ
is fairly small.

The Lagrangian function of Problem (4) is:

L(x, λ) = f(x) +
∑

i

Tr((gTi (x)gi(x) + δI)
p
2) − r(x, λ), (6)

where r(x, λ) is a Lagrangian term for the domain constraint x ∈ C. Take deriv-
ative w.r.t. x and set it to zero, we have:

f ′(x) +
∑

i

∂Tr((gTi (x)gi(x) + δI)
p
2)

∂x
− ∂r(x, λ)

∂x
= 0. (7)

Based on the chain rule [24], Eq. (7) can be rewritten as:

f ′(x) +
∑

i

tr
(
2p
2 (gTi (x)gi(x) + δI)

p−2
2 gTi (x)∂gi(x)

)

∂x
− ∂r(x, λ)

∂x
= 0. (8)

According to the Karush-Kuhn-Tucker conditions [25], if we can find a solu-
tion x that satisfies Eq. (8), then we usually find a local/global optimal solution
to Problem (4). However, it is intractable to directly find the solution x that
satisfies Eq. (8). Here we come up with a strategy as follows:

If we define Di = p
2 (gTi (x)gi(x) + δI)

p−2
2 as a given constant, then Eq. (8)

can be reduced to

f ′(x) +
∑

i

tr
(
2Dig

T
i (x)∂gi(x)

)

∂x
− ∂r(x, λ)

∂x
= 0. (9)

Longitudinal Genotype-Phenotype Association Study 293

Based on the chain rule [24], the optimal solution x∗ of Eq. (9) is also an
optimal solution to the following problem:

min
x∈C

f(x) +
∑

i

Tr(gTi (x)gi(x)Di). (10)

Based on this observation, we can first guess a solution x, next calculate
Di based on the current solution x, and then update the current solution x by
the optimal solution of Problem (10) on the basis of the calculated Di. We can
iteratively perform this procedure until it converges. �

According to Lemma 1 and the property of Qi that QiQ
T
i = Qi, Problem (2)

is equivalent to:

min
W,Qi|gi=1

∥
∥XTW − Y

∥
∥2

F
+ γ1

g∑

i=1

Tr(WQiW
TDi) + γ2Tr(WWTB)

s.t. Qi|gi=1 ∈ {0, 1}cT×cT ,

g∑

i=1

Qi = I,

(11)

where Di is defined as:

Di =
kp

2
(‖WQi‖pSp

)k−1(WQiW
T + δ1I)

p−2
2 , (12)

and B is defined as a diagonal matrix with the l-th diagonal element to be:

bll =
q

2
(wl(wl)T + δ2I)

q−2
2 , (13)

and δ1 and δ2 are two fairly small parameters close to zero.
We can solve Problem (11) via alternating optimization.

The first step is fixing W and solving Q, then Problem (11) becomes:

min
Qi|gi=1

g∑

i=1

Tr((WTDiW)Qi) s.t. Qi|gi=1 ∈ {0, 1}cT×cT ,

g∑

i=1

Qi = I.

Let Ai = WTDiW , then the solution of each Qi is as follows:

Qi(k, k) =

{
1, i = arg min

j
Aj(k, k)

0, otherwise
(14)

The second step is fixing Q and solving W . Problem (11) becomes:

min
W

∥
∥XTW − Y

∥
∥2

F
+ γ1

g∑

i=1

Tr(WQiW
TDi) + γ2Tr(WWTB),

which can be further decoupled for each column of W as follows:

min
wk

∥
∥XTwk − yk

∥
∥2

2
+ γ1

g∑

i=1

(Qi(k, k)wT
k Diwk) + γ2wT

k Bwk.

294 X. Wang et al.

Taking derivative w.r.t. wk in the above problem and set it to zero, we get:

wk = (XXT + γ1(
g∑

i=1

Qi(k, k)Di) + γ2B)−1Xyk. (15)

We can iteratively update D, Q, B and W with the alternative steps men-
tioned above and the algorithm for Problem (11) is summarized in Algorithm 1.

Algorithm 1. Algorithm to solve problem (11).
Input:

SNP matrix X ∈ R
d×n, longitudinal phenotype matrix Y = [Y1 Y2 ... YT] where

Yt|Tt=1 ∈ R
n×c, parameter δ1 = 10−12 and δ2 = 10−12, number of groups g.

Output:
Weight matrix W = [W1 W2 ... WT] where Wt|Tt=1 ∈ R

d×c and g different group
matrices Qi|gi=1 ∈ R

cT×cT which groups the tasks into exactly g subspaces.
Initialize W by the optimal solution to the ridge regression problem:
min
W

‖WTX − Y ‖2
F + ‖W‖2

F

Initialize Q matrices randomly
while not converge do

1. Update D according to the definition in Eq. (12).
2. Update Q according to the solution in Eq. (14)
3. Update B according to the definition in Eq. (13).
4. Update W , where the solution to the k-th column of W is displayed in Eq. (15).

end while

Convergence analysis: Our algorithm uses the alternating optimization
method to update variables, whose convergence has already been proved in [26].
In our model, variables in each iteration has a closed form solution and can be
computed fairly fast. In most cases, our method converges within 10 iterations.

4 Discussion of Parameters

In our model, we introduced several parameters to make it more general and
adaptive to various circumstances. Here we analyze the functionality of each
parameter in detail.

In Problem (2), parameter p and q are norm parameters proposed for the two
regularization terms. For p, it adjusts the stringency of the low-rank constraint.
As analyzed in Sect. 3, Schatten p-norm makes a stricter low-rank constraint
than trace norm when 0 < p < 1. The closer p is to 0, the more rigorous low-
rank constraint the regularization term ‖M‖pSp

imposes. The rationale is similar
for parameter q. The �2,0+-norm is a better approximation of �2,0-norm than
�2,1-norm when q lies in the range of (0, 1), thus makes our learned parameter
matrix more sparse.

Longitudinal Genotype-Phenotype Association Study 295

In the low rank regularization term ‖M‖pSp
, when p is small, the number of

local solutions becomes more thus lead our model (2) to be more sensitive to
outliers. Under this condition, we use k-power of this term as (‖M‖pSp

)k to make
our model robust. According to experimental experience, the value of k can be
determined in the range of [2, 3].

The parameters γ1 and γ2 are proposed to balance the importance of two
regularization terms. Larger γ1 lead to more attention on the low-rank constraint
while larger γ2 lays more emphasis on the sparse structure. These two parameters
can be adjusted to accommodate different cases.

In our empirical section, we didn’t make too much effort on tuning these
parameters. Instead, in fairness to other comparing methods, we just simply set
each parameters to a reasonable value. Though these parameters brought about
great challenges in solving our optimization problem, they make our model more
flexible and adaptive to different settings and conditions.

5 Experimental Results

In this section, we evaluate the prediction performance of our proposed method
using both synthetic and real data. Our goal is to uncover the latent subspace
structure of the prediction tasks and meanwhile select a subset of SNPs respon-
sible for their variation.

5.1 Experiments on Synthetic Data

First of all, we utilize synthetic data to illustrate the effectiveness of our model.
Our synthetic data is composed of 30 features and 3 groups of tasks from 4
different time points. Each group includes 4 tasks, who are identical to each other
up to a scaling. After we generated weight matrix W in this way, we constructed
a random X including 10000 samples and get Y according to Y = XTW .

Figure 2(a) shows the original Wo matrix, where weight matrices in differ-
ent time points are arranged in a column order. According to the construction
process of Wo, tasks in Wo should form three low-rank subspaces. For easier
visualizing this low-rank structure, we reshuffled tasks in Wo by putting tasks
in the same group together and formed Fig. 2(b). Now the low-rank structure
within the synthetic data can be easily detected, where every four columns in
Fig. 2(b) make a low-rank subspace. We applied our method to this synthetic
data and plotted our learned W matrix in Fig. 2(c). To evaluate the structure of
W , we did the rearrangement likewise. By comparing Fig. 2(b) and (d), we note
that our method has successfully uncover the group structure of the synthetic
data and recovered the parameter matrix W in an accurate way.

5.2 Experimental Settings on Real Benchmark Data

In the following we evaluate our method on real benchmark datasets. We com-
pare our method with all the counterparts discussed in the introduction section,

296 X. Wang et al.

0.5

1

1.5

2(a) (b) (c) (d)

Fig. 2. Visualization of the synthetic parameter matrix W . Columns of W denote 12
prediction tasks from 4 different time points, while rows of W correspond to 30 features.
These 12 tasks are equally divided into 3 groups, where tasks in the same group are
identical to each other up to a scaling factor. (a) The original weight matrix Wo. (b)
Rearrangement of columns in Wo by putting tasks in the same group together, such
that the low-rank structure of Wo is more clear. (c) The learned W matrix by our
model. (d) Rearrangement of W learned by our model.

which are: multivariate Linear Regression (LR), multivariate Ridge Regres-
sion (RR), Multi-Task Trace-norm regression (MTT) [27], Multi-Task �2,1-norm
Regression (MTL21) [28] and their combination (MTT+L21) [18,19].

In our pre-experiments, we found the performance of our method to be rel-
atively stable with parameters in the reasonable range (data not shown). For
simplicity, we set γ1 = 1, γ2 = 1, p = 0.8, q = 0.1, and k = 2.5 without tuning.
The definition and reasonable range of these parameters has been discussed in
Sect. 4.

As the evaluation metric, we reported the root mean square error (RMSE)
and correlation coefficient (CorCoe) between the predicted and actual scores in
out-of-sample prediction. In our experiment, the RMSE was normalized by the
Frobenius norm of the ground truth matrix. Better performance relates with
lower RMSE or higher CorCoe value. We utilized the 5-fold cross validation
technique and reported the average RMSE and CorCoe on these 5 trials for each
method.

5.3 Description of ADNI Data

Data used in this work were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). One goal of ADNI is to test
whether serial magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment
(MCI) and early AD. For up-to-date information, see www.adni-info.org. The
genotype data [29] of all non-Hispanic Caucasian participants from the ADNI
Phase 1 cohort were used here. They were genotyped using the Human 610-Quad
BeadChip. Among all the SNPs, only SNPs, within the boundary of ±20K base
pairs of the 153 AD candidate genes listed on the AlzGene database (www.alzgene.
org) as of 4/18/2011 [30], were selected after the standard quality control (QC)

http://www.adni-info.org
www.alzgene.org
www.alzgene.org

Longitudinal Genotype-Phenotype Association Study 297

and imputation steps. The QC criteria for the SNP data include (1) call rate check
per subject and per SNP marker, (2) gender check, (3) sibling pair identifica-
tion, (4) the Hardy-Weinberg equilibrium test, (5) marker removal by the minor
allele frequency and (6) population stratification. As the second pre-processing
step, the QC’ed SNPs were imputed using the MaCH software [31] to estimate
the missing genotypes. As a result, our analyses included 3,576 SNPs extracted
from 153 genes (boundary: ±20KB) using the ANNOVAR annotation (http://
www.openbioinformatics.org/annovar/).

Two widely employed automated MRI analysis techniques were used to
process and extract imaging phenotypes from scans of ADNI participants as
previously described [11]. First, Voxel-Based Morphometry (VBM) [32] was
performed to define global gray matter (GM) density maps and extract local
GM density values for 90 target regions. Second, automated parcellation via
FreeSurfer V4 [33] was conducted to define volumetric and cortical thickness
values for 90 regions of interest (ROIs) and to extract total intracranial volume
(ICV). Further details are available in [11]. All these measures were adjusted for
the baseline ICV using the regression weights derived from the healthy control
(HC) participants. The time points examined in this study for imaging markers
included baseline (BL), Month 6 (M6), Month 12 (M12) and Month 24 (M24).
All the participants with no missing BL/M6/M12/M24 MRI measurements were
included in this study, including 96 AD samples, and 219 MCI samples and 174
health control (HC) samples.

5.4 Performance Comparison on ADNI Cohort

Here we assessed the ability of our method to predict a set of imaging biomarkers
via genetic variations. We tracked the process along the time axis and intended to
uncover the latent subspace structure maintained by phenotypes and meanwhile
capture a subset of SNPs influencing the phenotypes in a certain subspace.

We examined the cases where the number of selected SNPs were
{30, 40, . . . , 80}. The experimental results are summarized in Tables 1 and 2. We
observe that our method consistently outperforms other methods in most cases.
The reasons go as follows: multivariate regression and ridge regression assumed
the imaging features at different time points to be independent, thus didn’t con-
sider the correlations within. Their neglects of the interrelations among the data
was detrimental to their prediction performance.

As for MTTrace, MTL21 and their combination MTTrace+MTL21, even
though they take into account the inner connection information of imaging phe-
notypes, they simply constrain all phenotypes to a global space thus cannot han-
dle the possible group structure therein. That is why they may overweigh the
standard methods in some cases, but cannot outperform our proposed method.
As for our proposed method, not only did we capture the latent structure among
the longitudinal phenotypes, but we also selected a set of responsible SNPs at
the same time. All in all, our model can capture SNPs responsible for some but
not necessarily all imaging phenotypes along the time continuum, which save
more effective information in the prediction.

http://www.openbioinformatics.org/annovar/
http://www.openbioinformatics.org/annovar/

298 X. Wang et al.

Table 1. Biomarker “VBM” and “FreeSurfer” (upper table for “VBM”, lower table
for “FreeSurfer”) prediction comparison via root mean square error (RMSE) measure-
ment with different number of selected SNPs. Better performance corresponds to lower
RMSE.

of
SNPs

LR RR MTT MTL21 MTT+L21 OURS

30 0.9277± 0.0122 0.9278± 0.0122 0.9270± 0.0135 0.9278± 0.0122 0.9276± 0.0126 0.9266±0.0124

40 0.9106± 0.0147 0.9100± 0.0146 0.9099± 0.0141 0.9100± 0.0146 0.9099± 0.0141 0.9061±0.0087

50 0.8914± 0.0177 0.8916± 0.0176 0.8934± 0.0159 0.8916± 0.0176 0.8919± 0.0176 0.8913±0.0084

60 0.8843± 0.0216 0.8846± 0.0216 0.8831± 0.0192 0.8846± 0.0216 0.8848± 0.0215 0.8726±0.0051

70 0.8661± 0.0204 0.8663± 0.0203 0.8675± 0.0211 0.8663± 0.0203 0.8666± 0.0202 0.8615±0.0045

80 0.8509± 0.0250 0.8503± 0.0244 0.8500± 0.0242 0.8503± 0.0244 0.8500± 0.0242 0.8482±0.0042

30 0.9667± 0.0145 0.9664± 0.0145 0.9667± 0.0145 0.9664± 0.0145 0.9664± 0.0146 0.9558±0.0147

40 0.9569± 0.0113 0.9569± 0.0112 0.9569± 0.0113 0.9569± 0.0112 0.9569± 0.0114 0.9436±0.0113

50 0.9502± 0.0141 0.9503± 0.0141 0.9502± 0.0141 0.9503± 0.0141 0.9503± 0.0142 0.9350±0.0143

60 0.9416± 0.0106 0.9417± 0.0106 0.9416± 0.0106 0.9417± 0.0106 0.9415± 0.0107 0.9234±0.0106

70 0.9319± 0.0105 0.9316± 0.0105 0.9319± 0.0105 0.9316± 0.0105 0.9321± 0.0106 0.9096±0.0106

80 0.9246± 0.0093 0.9247± 0.0093 0.9246± 0.0093 0.9247± 0.0093 0.9247± 0.0094 0.9012±0.0094

Table 2. Biomarker “VBM” and “FreeSurfer” (upper table for “VBM”, lower table for
“FreeSurfer”) prediction comparison via correlation coefficient (CorCoe) measurement
with different number of selected SNPs. Better performance corresponds to higher
CorCoe.

of
SNPs

LR RR MTT MTL21 MTT+L21 OURS

30 0.4186± 0.0092 0.4180± 0.0098 0.4232± 0.0088 0.4180± 0.0098 0.4216± 0.0077 0.6193±0.0177

40 0.4284± 0.0163 0.4282± 0.0166 0.4333± 0.0181 0.4282± 0.0166 0.4312± 0.0157 0.6294±0.0071

50 0.4476± 0.0395 0.4470± 0.0400 0.4526± 0.0384 0.4470± 0.0400 0.4508± 0.0385 0.6362±0.0094

60 0.4477± 0.0391 0.4471± 0.0397 0.4513± 0.0388 0.4471± 0.0397 0.4510± 0.0380 0.6435±0.0196

70 0.4502± 0.0345 0.4490± 0.0356 0.4547± 0.0335 0.4490± 0.0356 0.4529± 0.0339 0.6460±0.0129

80 0.4467± 0.0287 0.4470± 0.0286 0.4514± 0.0271 0.4470± 0.0286 0.4508± 0.0268 0.6521±0.0083

30 0.9007± 0.0145 0.9008± 0.0145 0.9007± 0.0145 0.9008± 0.0145 0.9010± 0.0146 0.9019±0.0147

40 0.9049± 0.0113 0.9051± 0.0112 0.9049± 0.0113 0.9051± 0.0112 0.9052± 0.0114 0.9060±0.0113

50 0.9045± 0.0141 0.9046± 0.0141 0.9045± 0.0141 0.9046± 0.0141 0.9048± 0.0142 0.9057±0.0143

60 0.9079± 0.0106 0.9080± 0.0106 0.9079± 0.0106 0.9080± 0.0106 0.9081± 0.0107 0.9089±0.0106

70 0.9094± 0.0105 0.9096± 0.0105 0.9094± 0.0105 0.9096± 0.0105 0.9097± 0.0106 0.9106±0.0106

80 0.9114± 0.0093 0.9115± 0.0093 0.9114± 0.0093 0.9115± 0.0093 0.9117± 0.0094 0.9124±0.0094

5.5 Identification of Top Selected SNPs

Shown in Fig. 3 are the heat maps of top regression weights between imaging
QTs and SNPs. APOE-rs429358, the well-known major AD risk factor, demon-
strated relatively strong predictive power in both analysis: (1) In FreeSurfer
analysis, it predicts mainly the cerebral cortex volume at M06, M12 and M24.
(2) In VBM analysis, it predicts the GM densities of amygdala, hippocampus,
and parahippocampal gyrus at multiple time points (Fig. 4). Both patterns are
reassuring, since APOE-rs429358 and atrophy patterns of the entire cortex as
well as medial temporal regions (including amygdala, hippocampus, and parahip-
pocampal gyrus) are all highly associated with AD.

In addition, APOE-rs429358 has been shown to be related to medial
temporal lobe atrophy [34], hippocampal atrophy [35] and cortical atrophy
[36]. Variants within membrane-spanning 4-domains subfamily A (MS4A) gene

Longitudinal Genotype-Phenotype Association Study 299

Fig. 3. Heat maps of top regression weights between quantitative traits (QTs) and
SNPs filtered by a user-specified weight threshold: (A) FreeSurfer QTs and (B) VBM
QTs. Weights from each regression analysis are color-mapped and displayed in the heat
maps. Heat map blocks labeled with “x” reach the weight threshold. Only top SNPs
and QTs are included in the heat maps, and so each row (SNP) and column (QT) have
at least one “x” block. Dendrograms derived from hierarchical clustering are plotted
for SNPs. The color bar on the left side of the heat map codes the chromosome IDs for
the corresponding SNPs.

cluster are some other recently discovered AD risk factors [37]. Our analysis
also demonstrated their associations with imaging QTs: (1) MS4A4E-rs670139
predicts cerebral white matter volume at BL, M06 and M12; and (2) MS4A6A-
rs667897 predicts GM densities of posterior cingulate and pallidum at almost
all time points. Another interesting finding is EBF3-rs482761, which is identi-
fied in both analyses: (1) In FreeSurfer analysis, it predicts left cerebral white
matter volume at M06; and (2) in VBM analysis, it predicts GM densities of left
Heschl’s gyri, left superior temporal gyri, hippocampus, left amygdala at mul-
tiple time points. EBF3 (early B-cell factor 3) is a protein-coding gene and has
been associated with neurogenesis and glioblastoma. In general, both FreeSurfer
and VBM analyses picked up similar regions across different time points. These

300 X. Wang et al.

B
L

Axial Coronal Sagittal (L) Sagittal (R)

M
06

M
12

M
24

L R

Fig. 4. Top 10 weights of APOE-rs429358 mapped on the brain for the VBM analysis.

identified imaging genomic associations warrant further investigation in indepen-
dent cohorts. If replicated, these findings can potentially contribute to biomarker
discovery for diagnosis and drug design.

6 Conclusions

In this paper, we proposed a novel temporal structure auto-learning model
to study the associations between genetic variations and longitudinal imaging
phenotypes. Our model can simultaneously uncover the interrelation structures
existing in different prediction tasks and utilize such learned interrelated struc-
tures to enhance the feature learning model. Moreover, we utilized the Schatten
p-norm to extract the common subspace shared by the prediction tasks. Our
new model is applied to ADNI cohort for neuroimaging phenotypes prediction
via SNPs. We conducted experiments on both synthetic and real benchmark
data. Empirical results validated the effectiveness of our model by demonstrat-
ing the improved prediction performance compared with related methods. In real
data analysis, we also identified a set of interesting and biologically meaningful
imaging genomic associations, showing the potential for biomarker discovery in
disease diagnosis and drug design.

Longitudinal Genotype-Phenotype Association Study 301

References

1. Khachaturian, Z.S.: Diagnosis of Alzheimer’s disease. Arch. Neurol. 42(11), 1097–
1105 (1985)

2. Burns, A., Iliffe, S.: Alzheimer’s disease. BMJ 338, b158 (2009)
3. Wenk, G.L., et al.: Neuropathologic changes in Alzheimer’s disease. J. Clin. Psy-

chiatry 64, 7–10 (2003)
4. Association, A., et al.: 2016 Alzheimer’s disease facts and figures. Alzheimer’s

Dement. 12(4), 459–509 (2016)
5. Petrella, J.R., Coleman, R.E., Doraiswamy, P.M.: Neuroimaging and early diagno-

sis of Alzheimer disease: a look to the future 1. Radiology 226(2), 315–336 (2003)
6. Hariri, A.R., Drabant, E.M., Weinberger, D.R.: Imaging genetics: perspectives from

studies of genetically driven variation in serotonin function and corticolimbic affec-
tive processing. Biol. Psychiatry 59(10), 888–897 (2006)

7. Potkin, S.G., Guffanti, G., et al.: Hippocampal atrophy as a quantitative trait
in a genome-wide association study identifying novel susceptibility genes for
Alzheimer’s disease. PLoS One 4(8), e6501 (2009)

8. Potkin, S.G., Turner, J.A., et al.: Genome-wide strategies for discovering genetic
influences on cognition and cognitive disorders: methodological considerations.
Cogn. Neuropsychiatry 14(4–5), 391–418 (2009)

9. Harold, D., Abraham, R., et al.: Genome-wide association study identifies variants
at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41(10),
1088–1093 (2009)

10. Bis, J.C., DeCarli, C., et al.: Common variants at 12q14 and 12q24 are associated
with hippocampal volume. Nat. Genet. 44(5), 545–551 (2012)

11. Shen, L., Kim, S., et al.: Whole genome association study of brain-wide imaging
phenotypes for identifying quantitative trait loci in MCI and AD: a study of the
ADNI cohort. Neuroimage 53(3), 1051–1063 (2010)

12. Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., Shen, L.: ADNI: joint clas-
sification and regression for identifying ad-sensitive and cognition-relevant imaging
biomarkers. In: The 14th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI), pp. 115–123 (2011)

13. Wang, H., Nie, F., Huang, H., Kim, S., Nho, K., Risacher, S.L., Saykin, A.J., Shen,
L.: Identifying quantitative trait loci via group-sparse multitask regression and
feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics
28(2), 229–237 (2012)

14. Wang, H., Nie, F., Huang, H., Risacher, S.L., Saykin, A.J., Shen, L.: ADNI: iden-
tifying disease sensitive and quantitative trait relevant biomarkers from multi-
dimensional heterogeneous imaging genetics data via sparse multi-modal multi-
task learning. Bioinformatics 28(12), i127–i136 (2012). [20th Annual International
Conference on Intelligent Systems for Molecular Biology (ISMB)]

15. Ashford, J.W., Schmitt, F.A.: Modeling the time-course of Alzheimer dementia.
Curr. Psychiatry Rep. 3(1), 20–28 (2001)

16. Sabatti, C., Service, S.K., et al.: Genome-wide association analysis of metabolic
traits in a birth cohort from a founder population. Nat. Genet. 41(1), 35–46 (2008)

17. Kim, S., Sohn, K.A., et al.: A multivariate regression approach to association analy-
sis of a quantitative trait network. Bioinformatics 25(12), i204–i212 (2009)

18. Wang, H., Nie, F., Huang, H., et al.: From phenotype to genotype: an association
study of longitudinal phenotypic markers to Alzheimer’s disease relevant SNPs.
Bioinformatics 28(18), i619–i625 (2012)

302 X. Wang et al.

19. Wang, H., Nie, F., et al.: High-order multi-task feature learning to identify lon-
gitudinal phenotypic markers for Alzheimer’s disease progression prediction. In:
Advances in Neural Information Processing Systems, pp. 1277–1285 (2012)

20. Nie, F., Huang, H., Ding, C.H.: Low-rank matrix recovery via efficient Schatten
p-norm minimization. In: AAAI (2012)

21. Obozinski, G., Taskar, B., Jordan, M.: Multi-task feature selection. Technical
report, Statistics Department, UC Berkeley (2006)

22. Candès, E.J.: The restricted isometry property and its implications for compressed
sensing. C. R. Math. 346(9), 589–592 (2008)

23. Cai, T.T., Zhang, A.: Sharp RIP bound for sparse signal and low-rank matrix
recovery. Appl. Comput. Harmon. Anal. 35(1), 74–93 (2013)

24. Bentler, P., Lee, S.Y.: Matrix derivatives with chain rule and rules for simple,
Hadamard, and Kronecker products. J. Math. Psychol. 17(3), 255–262 (1978)

25. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series. Princeton Uni-
versity Press, Princeton (1970)

26. Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural
Parallel Sci. Comput. 11(4), 351–368 (2003)

27. Ji, S., Ye, J.: An accelerated gradient method for trace norm minimization. In:
Proceedings of the 26th Annual International Conference on Machine Learning,
pp. 457–464. ACM (2009)

28. Evgeniou, A., Pontil, M.: Multi-task feature learning. Adv. Neural Inf. Process.
Syst. 19, 41 (2007)

29. Saykin, A.J., Shen, L., et al.: Alzheimer’s disease neuroimaging initiative biomark-
ers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers
Dement. 6(3), 265–273 (2010)

30. Bertram, L., McQueen, M.B., et al.: Systematic meta-analyses of Alzheimer disease
genetic association studies: the AlzGene database. Nat. Genet. 39(1), 17–23 (2007)

31. Li, Y., Willer, C.J., et al.: MaCH: using sequence and genotype data to estimate
haplotypes and unobserved genotypes. Genet. Epidemiol 34(8), 816–834 (2010)

32. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage
11(6 Pt 1), 805–821 (2000)

33. Fischl, B., Salat, D.H., et al.: Whole brain segmentation: automated labeling of
neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

34. Pereira, J.B., Cavallin, L., et al.: Influence of age, disease onset and ApoE4 on visual
medial temporal lobe atrophy cut-offs. J. Intern. Med. 275(3), 317–330 (2014)

35. Andrawis, J.P., Hwang, K.S., et al.: Effects of ApoE4 and maternal history of
dementia on hippocampal atrophy. Neurobiol. Aging 33(5), 856–866 (2012)

36. Risacher, S.L., Kim, S., Shen, L., et al.: The role of apolipoprotein E (APOE)
genotype in early mild cognitive impairment (E-MCI). Front Aging Neurosci. 5,
11 (2013)

37. Ma, J., Yu, J.T., Tan, L.: MS4A cluster in alzheimer’s disease. Mol. Neurobiol. 51,
1240–1248 (2014)

Improving Imputation Accuracy by Inferring
Causal Variants in Genetic Studies

Yue Wu1, Farhad Hormozdiari1,2, Jong Wha J. Joo1,3, and Eleazar Eskin1,4(B)

1 Department of Computer Science, UCLA, Los Angeles, USA
hormozdiari@hsph.harvard.edu, eeskin@cs.ucla.edu

2 Program in Genetic Epidemiology and Statistical Genetics, Harvard University,
Cambridge, USA

3 Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, USA
4 Department of Human Genetics, UCLA, Los Angeles, USA

Abstract. Genotype imputation has been widely utilized for two rea-
sons in the analysis of Genome-Wide Association Studies (GWAS). One
reason is to increase the power for association studies when causal SNPs
are not collected in the GWAS. The second reason is to aid the inter-
pretation of a GWAS result by predicting the association statistics at
untyped variants. In this paper, we show that prediction of association
statistics at untyped variants that have an influence on the trait pro-
duces overly conservative results. Current imputation methods assume
that none of the variants in a region (locus consists of multiple variants)
affect the trait, which is often inconsistent with the observed data. In this
paper, we propose a new method, CAUSAL-Imp, which can impute the
association statistics at untyped variants while taking into account vari-
ants in the region that may affect the trait. Our method builds on recent
methods that impute the marginal statistics for GWAS by utilizing the
fact that marginal statistics follow a multivariate normal distribution.
We utilize both simulated and real data sets to assess the performance
of our method. We show that traditional imputation approaches under-
estimate the association statistics for variants involved in the trait, and
our results demonstrate that our approach provides less biased estimates
of these association statistics.

1 Introduction

Genome-wide association studies (GWAS) have been used to discover the genetic
variants that affect a trait of interest [1–7]. GWAS collect information on genetic
variants, typically single nucleotide polymorphisms (SNPs), from two popula-
tions. In this case, the two populations are comprised of a large number of
individuals who carry a specific disease (cases) and those who do not (controls).
GWAS estimate correlations between disease status and collected genetic vari-
ants. After estimating the correlations, we perform a statistical test to indicate
if each of the estimated correlations is statistically significant. The computed

Y. Wu and F. Hormozdiari—These authors contributed equally to this work.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 303–317, 2017.
DOI: 10.1007/978-3-319-56970-3 19

304 Y. Wu et al.

significant statistics are known as summary statistics or marginal statistics. In
GWAS, due to cost considerations, only a subset of SNPs, called tag SNPs, are
genotyped, and SNPs that are not collected are referred to as untyped SNPs.
While genotypes of untyped SNPs are not collected, we can infer these variant
genotypes using their correlations to the tag SNPs. The correlation between a
pair of variants is referred to as linkage disequilibrium (LD) [8,9]. Imputation is
a process that uses LD to compute the genotypes of the missing variants [10–17].

Genotype imputation requires two data sets. One data set is a set of indi-
viduals who are genotyped at all the SNPs, and this data set is referred to as
the reference panel. The other data set, which is the data set of interest, con-
sists of individuals who are only genotyped at the tag SNPs. We can impute
the genotypes of untyped SNPs in the second data set by utilizing the cor-
relations between SNPs that derive from the reference panel. In order to use
the imputed genotypes for GWAS, we compute the summary statistics of the
imputed genotypes by applying the same statistical test as if the imputed SNPs
are collected in the second data set. In this paper, we use summary statistics
and marginal statistics interchangeably. Summary statistics, such as z-scores,
indicate the magnitude of the associations between genotypes and a phenotype
of interest.

There are two methodologies for aiding GWAS analysis with imputation.
The standard way of utilizing imputation in the GWAS analysis is to impute
the genotypes and compute the summary statistics from the imputed genotypes
[10–17]. More recently, a second class of methods has been developed that
directly imputes the marginal statistics. These methods approximate the com-
bined result of genotype imputation and association test results. It is shown that
the statistics of tag SNPs and untyped SNPs follow a multivariate normal distrib-
ution (MVN) [18–22]. Thus, given the LD between tag SNPs and untyped SNPs,
we get a conditional distribution of statistics of untyped SNPs conditioning on
the statistics of tag SNPs. Having the statistics of tag SNPs, we can impute the
untyped SNPs with mean of the conditional distribution [23,24]. These methods
are shown to have similar accuracy of genotype imputation and are much faster
to use for GWAS. In addition, the second class of methods only require summary
statistics to perform imputation, while the first class of methods require a level
of genotype data that is not always available(e.g. individual genomic data).

Genotype imputation has been widely utilized for two reasons in the analysis
of GWAS. One reason is to increase the statistical power of association studies
when the causal SNPs are not collected in the GWAS. The second reason is to
aid the interpretation of GWAS results by predicting the association statistics at
untyped variants. Unfortunately, all the existing methods assume a null-based
model where all the variants are not causal. As a result, when there exists a
causal variant, the computed summary statistics for untyped SNPs are lower
than the true summary statistics. Thus, the null-based imputation approach is
conservative and may lose the real causal signals. These approaches are reason-
able when the goal is to identify more genetic variants associated with the trait
[10–17]. However, when the goal is to interpret the associated regions to identify

Improving Imputation Accuracy by Inferring Causal Variants 305

the actual causal variants, this assumption will cause bias at variants that are
actually causal.

In this paper, we introduce a novel method for imputation of summary sta-
tistics under the assumption that some SNPs in a locus can be causal. Our
approach uses the statistics at tag SNPs and LD patterns to infer which of the
variants are causal and performs imputation with this information taken into
account. As shown in previous works [18–21], the joint distribution of marginal
statistics follows MVN, and the mean of the distribution depends on which SNPs
are causal. We compute the marginal statistics of the untyped SNPs conditional
on the marginal statistics of tag SNPs and the knowledge of which SNPs are
causal. Since we do not know which variants are causal within a region, we
impute the marginal statistics of the untyped SNPs as a weighted average of all
possible subsets of SNPs in the region to be causal. Unfortunately, considering
all possible subsets of SNPs is intractable, so we assume that we have at most
three causal SNPs in a locus. This assumption makes our approach applicable
to larger loci in the genome without reducing the accuracy of our method. The
idea of bounding the number of causal SNPs is widely used in Fine-mapping
literature [20–22].

We show that our method (CAUSAL-Imp) performs favorably in both sim-
ulated and real data. We apply our method to simulated data sets where we
generated the marginal statistics. Then, we treat some of the SNPs as untyped
and others as tagged. We apply CAUSAL-Imp and DIST*, which is our imple-
mentation of DIST [23]. We use simulated data to illustrate that CAUSAL-Imp
tends to impute summary statistics that are closer to the true generated sum-
mary statistics than DIST*. Next, we evaluate our performance utilizing the
Northern Finland Birth Cohort (NFBC) data set [25]. We treat the previously
reported significant SNPs as untyped and try to impute their summary statis-
tics using CAUSAL-Imp and DIST*. We show that CAUSAL-Imp imputes the
associated statistics more accurately than previous approaches.

2 Results

2.1 Overview of CAUSAL-Imp

CAUSAL-Imp builds on methods that perform imputation on summary statis-
tics. It is known that the statistics for a set of SNPs (SNPs in a locus) follow
an MVN distribution with a variance-covariance matrix equal to the pairwise
correlation between the genotypes [18–21]. For simplicity, let’s consider the case
where one SNP is untyped and the rest are tag SNPs in a region; we have � SNPs
and the �-th SNP is untyped. Let si be the marginal statistics of the i-th SNP.
Let S¬� = {s1, s2 · · · s�−1} and s� indicate the marginal statistics for the tag and
untyped SNPs, respectively. In traditional methods that impute the summary
statistics, the model of the joint distribution is as follows:

([
S¬�

s�

])
∼

([
0
0

]
,

[
Σ¬� R¬��

RT
¬�� 1

])
(1)

306 Y. Wu et al.

where Σ¬� be a ((� − 1) × (� − 1)) matrix of LD for all the SNPs, excluding the
�-th SNP, and R¬�� be a ((� − 1) × 1) vector, which represent the correlation of
all the variants with the �-th SNP, excluding the �-th SNP. We can obtain the
variance-covariance matrix of the model utilizing the correlation of genotypes
from a reference panel, such as the 1000 Genomes data [26,27]. Then, given the
association statistics at observed variants, we can use the conditional form of the
multivariate normal to estimate the association statistics at the untyped variants.
In traditional methods, marginal statistics of untyped SNPs conditioned on the
marginal statistics of tag SNP is as follows:

(
s�|S¬� = Ŝ¬�

)
∼ N

(
RT

¬��Σ
−1
¬� Ŝ¬�, 1 − RT

¬��Σ¬�
−1R¬��

)
(2)

where Ŝ¬� is the observed marginals statistics for all the tag SNPs. We impute
the untyped SNP with the mean of above distribution RT

¬��Σ
−1
¬� Ŝ¬� [23,24].

Our method, CAUSAL-Imp, takes into account the fact that some variants
can be causal. Let’s assume we only have one causal SNP and the i-th SNP is
causal. Then, the marginal statistics for this SNP follows a normal distribution
as follows: si ∼ N(λi, 1) where λi is the non-centrality parameter (NCP) for the
i-th SNP that depends on the true effect size of the SNP towards the phenotype.
We extend this to the case where the j-th SNP is not causal and is in LD with
the causal SNP i. Then the marginal statistics for the j-th SNP is as follows:
sj ∼ N(rijλi, 1) where rij is the LD (genotype Pearson’s correlation) between
SNP i and j.

To provide a simplified description of this section, we assume that all causal
variants have the same NCP. However, CAUSAL-Imp takes into account that
causal variants can have different NCP values. We define any subset of SNPs
that are causal as the causal status. Causal status indicates which SNPs are
causal and which are not. We use 1 to indicate the variants which are causal
and 0 to indicate the variants that are not causal. Let C¬� be a vector of size
� − 1 to represent the causal status of the first � − 1 SNPs. Similarly, Let c� be a
binary variable which indicates the causal status of the �-th SNP. As shown in
previous works [18,20,21], the joint marginal statistics given the causal statistics
is as follows:([

S¬�

s�

] ∣∣∣∣
[

C¬�

c�

])
∼ N

(
λ
√

N

[
Σ¬� R¬��

RT
¬�� 1

] [
C¬�

c�

]
,

[
Σ¬� R¬��

RT
¬�� 1

])

The summary statistics of untyped SNP (s�) conditioning on the statistics of
the tag SNPs (S¬�) and the given causal status, C = C∗ is as follows:

(
s�|S¬� = Ŝ¬�, C=C∗

)
∼ N

⎛
⎜⎝ λ

√
N(1 − RT

¬��Σ¬�
−1R¬��)c∗

�︸ ︷︷ ︸
Contribution of causal status for the �-th SNP

+ RT
¬��Σ

−1
¬� Ŝ¬�︸ ︷︷ ︸

Contribution of Null

, 1 − RT
¬��Σ¬�

−1R¬��

⎞
⎟⎠
(3)

However, the true causal status is not known. Thus, CAUSAL-Imp considers
all the possible causal statuses. We impute summary statistics as a weighted
average of all the summary statistics computed for the unobserved variants for
different causal status.

Improving Imputation Accuracy by Inferring Causal Variants 307

∑
C∗

(
λ
√

N(1 − RT
¬��Σ¬�

−1R¬��)c∗
� + RT

¬��Σ
−1
¬� Ŝ¬�

)
Pr

(
C = C∗|S¬� = Ŝ¬�

)

(4)
where Pr

(
C = C∗|S = Ŝ

)
is the posterior probability of a causal status given

the observed marginal statistics. Although we describe the method to consider
all possible causal status, in practice, we allow up to three causal variants in a
locus to reduce the computational complexity.

2.2 A Motivating Example

Figure 1 illustrates a simple region where we have 10 SNPs. In this example, we
observe the statistics of 3 SNPs (SNP3, SNP7, and SNP10), which are indicated
by the black arrows. The green triangles indicate the real marginal statistics for
all the 10 SNPs. The rest of the SNPs are untyped. Given, the marginal statistics
of these three SNPs, we want to impute the marginal statistics of other SNPs. In
this example, as the marginal statistic of SNP10 is slightly inflated, we assume
one of the SNPs in the region should be causal. In CAUSAL-Imp, we do not
know the real causal SNPs, thus we consider all the possible causal statuses in
this region.

In this example, there are 210 possible causal statuses. For a specific causal
status, we impute the summary statistics of the seven unobserved SNPs utilizing
the conditional MVN. The red dots indicate the marginal statistics imputed
by CAUSAL-Imp. The blue dots indicate the marginal statistics imputed by
DIST* (our implementation of DIST [23]), which assumes the null-model where
all variants are not causal. In this example, our imputed marginal statistics are
closer to the true marginal statistics than those of DIST*. Note that we perform
our evaluations using our own implementation of the standard summary statistic
method (DIST) [23]), which we refer to as DIST*. The reason we used our own
implementation is that these methods rely on many matrix operations that may
result in numerical issues. The differences in linear algebra libraries dealing with
numerical issues can cause differences in the results. By reimplementing DIST,
our approach and DIST* share many parts of the implementation to eliminate
this issue from the evaluation.

2.3 CAUSAL-Imp Achieves Better Statistics Compared to the
Existing Methods in Simulated Data Sets

In order to assess the performance of our method, we simulated marginal statis-
tics utilizing the Northern Finland Birth Cohort (NFBC) data set. The NFBC
data set consists of 10 phenotypes and 331,476 genotypes measured in 5,327
individuals. Since imputation is a regional analysis, we selected 20 regions from
the NFBC and computed the LD between each pair of SNPs. In this setting,
we used 100 SNPs for each locus. Then, we simulated the marginal statistics
from the MVN distribution similar to the previous studies [20,21,28,29], where
we implant one causal SNP. We generated 1000 sets of summary statistics.

308 Y. Wu et al.

0
2

4
6

8
10

SNPs

A
ss

oc
ia

tio
n

S
ta

tis
tic

s

Real
CAUSAL−Imp
DIST*

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10

Fig. 1. Motivating example for CAUSAL-Imp. The black arrows indicate the observed
(tag) SNPs. Utilizing the fact that the observed marginal statistics of SNP10 is inflated,
we can assume one of the SNPs in this region is causal.

We assume 30% of the SNPs are tagged and that the rest of SNPs, includ-
ing the causal SNP, are untyped. Then, we ran CAUSAL-Imp and DIST* on the
simulated data.

We compute the average distance between the imputed marginal statistics
and the true simulated marginal statistics as a measure of accuracy. We use the
�1 distance as a measure of accuracy, which is computed as follows: d(x, y) =
1
N

∑N
i=1 |xi−yi|. We compute this distance for the causal SNP, shown in Fig. 2A,

and the other SNPs, shown in Fig. 2B. We vary the power from 20% to 80%.
We observe that the statistics imputed by our method are closer to the true
statistics. We perform similar experiment where we implant two causal variants
in a locus. In this experiment, the imputed statistics from CAUSAL-Imp are
closer to true statistics compared to DIST*. The results for this experiment are
not shown due to space limitation.

2.4 CAUSAL-Imp Controls Type I Error

We illustrate that CAUSAL-Imp performs better than existing methods. In addi-
tion, we need to show that these methods control the Type I error. Imputed
summary statistics that are controlled for Type I error under the null (no vari-
ant is causal) are not inflated or deflated. Genomic inflation is a metric used
to check whether or not the Type I error is controlled [30]. We expect the
genomic inflation to be close to one when there exists no inflation or deflation of

Improving Imputation Accuracy by Inferring Causal Variants 309

20% 30% 40% 50% 60% 70% 80%

CAUSAL−Imp
DIST*

0
1

2
3

4
5

D
is

ta
n

ce

Power

20% 30% 40% 50% 60% 70% 80%

CAUSAL−Imp
DIST*

0.
0

0.
5

1.
0

1.
5

2.
0

D
is

ta
n

ce

Power

A) B)

Fig. 2. CAUSAL-Imp achieves better statistics compared to the existing methods in
simulated data sets. We simulated marginal statistics for regions that are obtained
from the NFBC data. We compared the imputed marginal statistics of our method and
DIST*. Our method tends to impute statistics that are closer to the true estimated
marginal statistics both for causal and non-causal SNPs. We use �1 norm to compute
the distance. We range the power on the causal SNPs from 20% to 80%. Panel (A)
illustrates the results of the causal variants. Panel (B) illustrates the results of non-
causal variants.

statistics. In the experiment, we take 10 regions from the NFBC data set to
compute the LD. For each region, we simulated 100 sets of statistics sampling
from normal distribution under the null where no variant is causal. We consider
30% of the variants to be missing, and then we impute their summary statistics.
The genomic inflation factor is computed using the mean of the squared statis-
tics divided by 0.452. The genomic inflation for the true summary statistics is
0.98, and the genomic inflation for CAUSAL-Imp is 0.93. However, the genomic
inflation of DIST* and IMPUTE2 [12] are 0.80 and 1.02, respectively. Thus, out
results indicate that CAUSAL-Imp controls the Type I error.

2.5 CAUSAL-Imp Achieves Better Statistics Compared to the
Existing Methods in Northern Finland Birth Cohort (NFBC)

The actual utility of our approach is in examining regions that contain associa-
tions where the actual causal variants are not collected. We simulate this scenario
by taking actual associated regions in the NFBC dataset and removing the peak
associated SNPs from each associated regions (which were reported in previous
study [25]). We then apply CAUSAL-Imp, DIST*, and IMPUTE2 [12] to eval-
uate the accuracies of these methods on the peak SNPs. The results are shown
in Table 1. To compare the performance between CAUSAL-Imp, DIST*, and
IMPUTE2, we showed the predicted errors (PE) of the methods. The predicted
error is the absolute distance to the true statistics. We observe that the imputed
summary statistics from CAUSAL-Imp are closer to the estimated summary
statistics than those of DIST*.

310 Y. Wu et al.

Table 1. CAUSAL-Imp achieves better statistics in NFBC data set. We run association
on the NFBC dataset. We consider the SNPs that are reported significant in a previous
study [25]. Then, we treat these SNPs as untyped and impute the marginal statistics
using CAUSAL-Imp, DIST*, and IMPUTE2. We compute the marginal statistics and
predicted errors (PE) of the methods. Our method tends to produce summary statistics
closer to the estimated marginal statistics than the two other methods.

Phenotype chr rsID True statistics DIST* CAUSAL-Imp IMPUTE2

Statistics PE Statistics PE Statistics PE

TG 2 rs673548 –5.444 –5.37 0.074 –5.38 0.064 –4.46 0.984

8 rs10096633 –5.679 –5.63 0.049 –5.64 0.039 –5.17 0.509

15 rs2624265 4.22 3.55 0.67 4.15 0.07 3.60 0.62

HDL 15 rs1532085 7.13 5.59 1.54 7.17 0.04 6.47 0.66

16 rs3764261 12.01 8.23 3.78 8.28 3.73 6.47 5.54

16 rs255049 6.06 5.11 0.95 5.61 0.45 5.70 0.36

17 rs9891572 4.25 3.99 0.26 4.02 0.23 4.40 0.15

LDL 1 rs646776 –7.70 –7.92 0.22 –7.92 0.22 –6.96 0.74

2 rs693 6.81 6.27 0.54 6.63 0.18 5.91 0.9

11 rs102275 –4.51 –4.43 0.08 –4.44 0.07 –4.54 0.03

11 rs174546 –4.52 –4.43 0.09 –4.45 0.07 –4.58 0.06

11 rs174556 –4.69 –4.73 0.04 –4.75 0.06 –4.62 0.07

11 rs1535 –4.43 –4.46 0.03 –4.46 0.03 –4.45 0.02

19 rs11668477 –5.96 –3.78 2.18 –3.78 2.18 –5.33 0.63

19 rs157580 –5.161 –2.6 2.561 –5.24 0.079 –4.20 0.961

CRP 12 rs2650000 –7.08 –5.25 1.83 –7.36 0.28 –6.05 1.03

GLU 2 rs560887 –6.97 –6.21 0.78 –6.80 0.17 –5.69 1.28

7 rs10244051 5.31 4.34 0.97 4.67 0.64 4.97 0.34

7 rs2191348 5.30 4.33 0.97 4.66 0.64 4.97 0.33

11 rs1447352 –6.35 –5.08 1.27 –5.39 0.96 –4.75 1.6

11 rs7121092 –5.50 –4.93 0.57 –5.78 0.28 –4.60 0.9

3 Methods

3.1 A Standard Association Statistics

Here we have a quantitative phenotype collected for n individuals at m SNPs.
Let Y be a (n×1) vector of phenotypic values where yj is the phenotypic values
for j-th individual. Let G be a (n × m) matrix of minor allele counts where
gji ∈ {0, 1, 2} is the minor allele count for j-th individual at i-th SNP, and let
X be the normalized allele counts matrix G. Define β to be the a (m × 1) effect
size vector, and βi is the effect size of i-th SNP. For simplicity, we assume both
the phenotypic values and the allele counts at each SNP are normalized to have
mean zero and variance one. Let xji ∈ { −2pi√

pi(1−pi)
, 1−2pi√

pi(1−pi)
, 2−2pi√

pi(1−pi)
}, which

is the normalized value for gji where pi is the frequency of i-th SNP in the pop-
ulation. Assuming Fisher’s polygenic model holds, we use the generative model,
Y = 1T μ +

∑m
i=1 Xiβi + e where μ is the phenotypic mean of population, 1 is a

(n×1) vector of one, Xi is normalized minor allele counts at i-th SNP, βi is effect

Improving Imputation Accuracy by Inferring Causal Variants 311

size of i-th SNP, and e is a vector of measurement noise and environment con-
tributions. We assume e has a normal distribution with mean zero and variance,
σ2I (e ∼ N(0, σ2I)).

In standard GWAS, effect size for each SNP is estimated one SNP at a time.
Thus, to compute the marginal statistics for each SNP, we use the following
model, Y = 1T μ+Xiβi+e. We note there is a discrepancy between the generative
model and testing model; as long as there is no population structure in the
data, the estimated effect size is unbiased and follows a normal distribution
with mean equal to the true value of effect size. Thus, we have: β̂i = XT

i Y

XT
i Xi

and β̂i ∼ N(βi, σ(XT
i Xi)−1). We use “hat” for each variable to indicate the

estimated value for that variable.
It is known that the marginal statistics for each SNP is computed as the ratio

between the estimated effect size and the estimated variance. Let si indicate the
marginal statistics estimated for i-th SNP. As the marginal statistics follow a
normal distribution, we can define the statistics as follows:

si =
β̂i

σ̂

√
n ∼ N(

βi

σ

√
n, 1) = N(λi, 1)

where λi is the non-centrality parameter (NCP) for the i-th SNP and λi = β
σ

√
n.

3.2 Indirect Association Statistics

To show the indirect association statistics, we assume i-th variant is associated
with the phenotype and j-th variant is correlated with the i-th variant. Thus, the
estimated effect size and the marginal statistics for the j-th variant is computed

as β̂j = XT
j Y

XT
j Xj

, β̂j ∼ N(βj , σ(XT
j Xj)−1), sj ∼ N(rijλi, 1), where rij is the corre-

lation between genotypes of i-th and j-th SNP. Moreover, we estimate the cor-
relation between the genotypes as 1

nXT
i Xj . We compute the covariance between

the estimated marginal statistics for the i-th and j-th SNP as Cov (si, sj) = rij

Thus, the joint distribution of the marginal association statistics for the two
SNPs given their NCPs follows a multivariate normal distribution (MVN):

([
si

sj

]∣∣∣∣
[
λi

λj

])
∼ N

([
λi

λj

]
,

[
1 rij

rij 1

])
.

3.3 Traditional Summary Statistics Imputation When One SNP
is Untyped

In this section, we show how traditional summary statistics imputation
approaches [23,24] work under the scenario when only one SNP is untyped
in a locus. Let’s say we have � SNPs in a region where � − 1 of the SNPs
are tagged and only the last SNPs is untyped. For simplicity, We select the
�-th SNP to be untyped. Let si indicate the marginal statistics of i-th SNP.
Let S¬� = {s1, s2, · · · s�−1} be a (� − 1 × 1) vector of association statistics,

312 Y. Wu et al.

Λ¬� = {λ1, λ2, · · · λ�−1} be a (� − 1 × 1) vector of NCPs, and Σ¬� be a
(� − 1 × � − 1) matrix of the pairwise correlation coefficients for the tag SNPs.
For the untyped SNP, we use λ� to indicate the unknown NCP. We want to
impute the association statistic s�, and let R¬�� denote the (� − 1 × 1) vector of
the correlation coefficients between s� and the � − 1 tag SNPs. Thus the joint
distribution of the association statistics of the untyped SNP, s�, and the � − 1 tag
SNPs, S¬�, follows a multivariate normal distribution, which can be expressed
as follows: [

S¬�

s�

]
∼ N

([
Λ¬�

λ�

]
,

[
Σ¬� R¬��

RT
¬�� 1

])
(5)

Under the null assumption where s� and S¬� are not associated, λ� and Λ¬�

are zeros. Using this equation, we can generate a distribution of the statistics
of untyped SNP; s� condition on the observed summary statistics, S¬� = Ŝ¬�.
The conditional distribution follows a multivariate normal distribution, which is
computed as follows:

(
s�|S¬� = Ŝ¬�

)
∼ N

(
RT

¬��Σ
−1
¬� Ŝ¬�, 1 − RT

¬��Σ¬�
−1R¬��

)
. (6)

Thus, utilizing this equation the traditional summary statistics imputation
approaches impute the statistics of the untyped SNP as RT

¬��Σ
−1
¬� Ŝ¬�.

3.4 Traditional Summary Statistics Imputation When More Than
One SNP Is Untyped

In this section, we show how traditional summary statistics imputation
approaches [23,24] work under the scenario where more than one SNP is untyped
in a locus. We use U and T to indicate the set of untyped and tag SNPs, respec-
tively. Let SU indicate the unobserved summary statistics of untyped SNPs, and
let ST indicate observed summary statistics of tag SNPs, respectively. We use
ΣU and ΣT to denote (p × p) and (� × �) matrices of pairwise correlation coef-
ficients obtained from the untyped SNPs and tag SNPs, respectively. We want
to impute unobserved summary statistics SU using both observed � SNPs and p
unobserved SNPs. In this case, ΛU is a (p × 1) vector of NCPs of untyped SNPs
and ΣU,T denotes the (p × �) matrix of the correlation coefficients between the
p untyped SNPs and the � tag SNPs. The joint distribution of the association
statistics of the untyped SNP SU and the tag SNPs ST follows a multivariate
normal distribution, which can be expressed as follows:

[
SU
ST

]
∼ N

([
ΛU
ΛT

]
,

[
ΣU ΣT

U,T
ΣU,T ΣT

])
(7)

Under the null assumption that the untyped SNPs and tag SNPs are not associ-
ated, the NCPs of both ΛU and ΛT are zeros. Using the Eq. (7), we can generate
a distribution of the statistics of the untyped SNPs, SU , conditioned on the
observed statistics, ST = ŜT . The conditional distribution follows a multivari-
ate normal distribution, which is computed as follows:

Improving Imputation Accuracy by Inferring Causal Variants 313

(
SU |ST = ŜT

)
∼ N

(
ΣT

U,T Σ−1
T ŜT ,ΣU − ΣT

U,T Σ−1ΣU,T
)

(8)

Thus, utilizing the above equation, the traditional summary statistics imputation
approaches impute the statistic of the untyped SNPs as ΣT

U,T Σ−1
T ŜT .

3.5 CAUSAL-Imp Summary Statistics Imputation with Fixed NCP

Recall that having � SNPs, whose summary statistics are observed, and p SNPs
whose summary statistics are unobserved, we have a multivariate normal distri-
bution expressed as Eq. (7). Instead of assuming all ΛU and ΛT are zeros, our
method considers any subset of SNPs to be causal. We introduce C to denote
the causal status of the SNPs. Causal status is a ((�+p)×1) vector of zeros and
ones where ci indicates the causal status of the i-th SNP. Each SNP can have
two possible causal statuses 0 or 1, where 0 indicates the SNP is not causal and 1
indicates the SNP is causal. For simplicity, we assume the NCPs for all the causal
variants are the same and equal to λ

√
N . Later, we will relax this assumption.

There are 2�+p possible causal statuses for C, which is denoted by the set C (in
practice we only consider up to three causal variants in locus, thus CAUSAL-Imp
needs to consider at most (� + p)3 causal statuses). The causal status is consists
of two parts, the causal status of tag SNPs, which we denote by CT , and the
causal status of untyped SNPs, which we denote by CU . The joint distribution of
observed and unobserved summary statistics in Eq. (8) can be expressed as fol-

lows:
([

SU
ST

] ∣∣∣∣
[

CU
CT

])
∼ N

(
λ
√

n

[
ΣU ΣT

U,T
ΣU,T ΣT

]
C,

[
ΣU ΣT

U,T
ΣU,T ΣT

])
. Using this

Equation, we can compute the distribution of the untyped statistics, SU , condi-
tional on the observed statistics, ST = ŜT and the known causal status, C = c�.
This conditional distribution follows a multivariate normal that is expressed as
follows:

(
SU |ST = ŜT , C = c�, λ

)
∼ N

(
λ
√

n(ΣU − ΣU,T Σ−1
T ΣU,T)CU + ΣT

U,T Σ−1
T ŜT ,ΣU − ΣT

U,T Σ−1
T ΣU,T

)
(9)

We want to compute the probability of summary statistics of untyped SNPs
given the summary statistics of the tag SNPs, Pr

(
SU |ST = ŜT

)
. Utilizing the

total probability and the Baye’s rule, we have:

Pr
(
SU |ST = ŜT

)
=

∑
C∗∈C,λ

Pr
(
SU , C = C∗|ST =ŜT

)
(10)

=
∑

C∗∈C
Pr

(
SU |ST = ŜT , C = C∗

)
Pr

(
C = C∗|ST = ŜT

)

where Pr
(
SU |ST = ŜT , C = C∗

)
is computed from Eq. (9), and Pr (C = C∗|

ST = ŜT
)

is computed as follows:

314 Y. Wu et al.

Pr
(
C = C∗|ST = ŜT

)
=

Pr
(
ST = ŜT |C = C∗

)
Pr (C = C∗)

∑
C†∈C Pr

(
ST = ŜT |C = C†

)
Pr (C = C†)

(11)

where Pr
(
C = C†) is the prior of the causal status. Similar to most of the fine-

mapping methods, for the prior, we assume that SNPs are independent and the
probability of a SNP to be causal is equal to 0.01 [20,21,31]. This prior implies a
sparsity prior on the causal status. Moreover, Pr

(
ST = ŜT |C = C∗

)
is the like-

lihood of observed summary statistics given the causal status C∗. The observed
summary statistics, given the causal status, follows a normal distribution and is
computed as follows:

(ST = ŜT |C = C∗, λ) ∼ N
(
λ
√

n(ΣU,T C∗
U + ΣT C∗

T),ΣT
)

(12)

Utilizing Eqs. (9), (11), and (12), we compute the value of Pr (SU |ST , λ) from
Eq. (10). Thus, we impute SU as the mean of (SU |ST , λ) as follows:

∑
C∗∈C

(
λ
√

n(ΣU − ΣU,T Σ−1
T ΣU,T)CU + ΣT

U,T Σ−1
T ŜT

)
P (C = C∗|ST = ŜT)

(13)
.

3.6 CAUSAL-Imp Summary Statistics Imputation

In previous sections, we assume the NCPs of the causal variants are fixed and
their values are known. In this section, we relax this assumption. We utilize a
CAVIAR-model [20–22] that is used in fine-mapping frameworks. In CAVIAR-
model, the joint distribution of marginal statistics (S), given the vector of NCPs
(Λ), follows a MVN distribution that is expressed as (S|Λ) ∼ N (Λ,Σ). In addi-
tion, the vector of NCPs given the causal status (C), follows a MVN distrib-
ution that is expressed as (Λ|C) ∼ N (0,ΣΣCΣ). Here ΣC = σ2diag(C) and
diag(X) creates a diagonal matrix where the i-th diagonal element is assigned to
xi. Using the conjugate prior, we have the following:

(S|C) ∼ N (0,Σ + ΣΣCΣ), (14)

Thus, utilizing the same statistical framework in CAUSAL-Imp, we have the
following: ([

SU
ST

] ∣∣∣∣
[

CU
CT

])
∼ N

([
0
0

]
,

[
V11 V12

V21 V22

])
(15)

where:

V11 = ΣU + ΣUσ2diag(CU)ΣU + ΣT
U,T σ2diag(CT)ΣU,T

V12 = ΣT
U,T + ΣUdiag(CU)ΣT

U,T + ΣT
U,T diag(CT)ΣT

V21 = ΣU,T + ΣT diag(CT)ΣU,T + ΣU,T diag(CU)ΣU
V22 = ΣT + ΣT σ2diag(CT)ΣT + ΣU,T σ2diag(CU)ΣT

U,T .

Improving Imputation Accuracy by Inferring Causal Variants 315

Using the MVN conditional distribution, we have:
(
SU |ST = ŜT , C = C�

)
∼ N

(
V12V

−1
22 ŜT , V11 − V12V

−1
22 V21

)
(16)

Thus, for a given causal status, the optimal value for the imputed marginal
statistics is the mean of above distribution, which is V12V

−1
22 ŜT . It is worth

mentioning that both V12 and V22 depend on the vector of causal status C = C�.
CAUSAL-Imp utilizes Eq. (16) instead of Eq. (9).

4 Discussion

Genotype imputation is widely used to predict the genotypes of untyped SNPs
that are not collected in a data set. This approach utilizes the correlation (LD)
between the untyped SNPs and the tag SNPs whose genotypes are collected. We
propose a new method, CAUSAL-Imp, which combines the principle of fine map-
ping and summary statistics imputation. CAUSAL-Imp computes the summary
statistics for unobserved SNPs by conditioning on the statistics of the observed
SNPs and given causal status. CAUSAL-Imp considers all the possible causal
statuses where any subset of SNPs can be causal. Thus, the imputed summary
statistic is the weighted average of all the summary statistics computed for the
unobserved variants for different causal statuses.

Our approach builds upon the recently developed summary statistics frame-
work for imputation [23,24,32]. Imputation methods utilizing HMMs to impute
individual level data were developed almost 10 years ago [10–17] and have been
improved ever since. In our approach, we incorporate idea of a causal variant
and implicitly take the phenotype into account when performing the imputation.
It is theoretically possible to extend the HMM-based imputation approaches to
take into account causal variants and phenotypes. However, the implementation
of such an approach would be more complicated and required more effort.

References

1. Zeggini, E., Weedon, M.N., Lindgren, C.M., et al.: Replication of genome-wide
association signals in UK samples reveals risk loci for type 2 diabetes. Science
316(5829), 1336–1341 (2007)

2. Sladek, R., Rocheleau, G., Rung, J., et al.: A genome-wide association study iden-
tifies novel risk loci for type 2 diabetes. Nature 445(7130), 881–885 (2007)

3. Hakonarson, H., Grant, S.F.A., Bradfield, J.P., et al.: A genome-wide association
study identifies kiaa0350 as a type 1 diabetes gene. Nature 448(7153), 591–594
(2007)

4. Yang, J., Manolio, T.A., Pasquale, L.R., et al.: Genome partitioning of genetic vari-
ation for complex traits using common SNPs. Nat. Genet. 43(6), 519–525 (2011)

5. Kottgen, A., Albrecht, E., Teumer, A., et al.: Genome-wide association analyses
identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45(2),
145–154 (2013)

316 Y. Wu et al.

6. Yi, L., Vitart, V., Burdon, K.P., et al.: Genome-wide association analyses identify
multiple loci associated with central corneal thickness and keratoconus. Nat. Genet.
45(2), 155–163 (2013)

7. Ripke, S., O’Dushlaine, C., Chambert, K., et al.: Genome-wide association analysis
identifies 13 new risk loci for schizophrenia. Nat. Genet. 45(10), 1150–1159 (2013)

8. Reich, D.E., Cargill, M., Bolk, S., et al.: Linkage disequilibrium in the human
genome. Nature 411(6834), 199–204 (2001)

9. Pritchard, J.K., Przeworski, M.: Linkage disequilibrium in humans: models and
data. Am. J. Hum. Genet. 69(1), 1–14 (2001)

10. Browning, S.R.: Missing data imputation and haplotype phase inference for
genome-wide association studies. Hum. Genet. 124(5), 439–450 (2008)

11. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., Abecasis, G.R.: Fast and
accurate genotype imputation in genome-wide association studies through pre-
phasing. Nat. Genet. 44(8), 955–959 (2012)

12. Howie, B.N., Donnelly, P., Marchini, J.: A flexible and accurate genotype impu-
tation method for the next generation of genome-wide association studies. PLoS
Genet. 5(6), e1000529 (2009)

13. Li, Y., Willer, C., Sanna, S., Abecasis, G.: Genotype imputation. Annu. Rev.
Genomics Hum. Genet. 10, 387–406 (2009)

14. Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R.: Mach: using sequence and
genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol
34(8), 816–834 (2010)

15. Marchini, J., Howie, B.: Genotype imputation for genome-wide association studies.
Nat. Rev. Genet. 11(7), 499–511 (2010)

16. Marchini, J., Howie, B.: Comparing algorithms for genotype imputation. Am. J.
Hum. Genet. 83(4), 535–539 (2008). (author reply 539–540)

17. Marchini, J., Howie, B., Myers, S., McVean, G., Donnelly, P.: A new multipoint
method for genome-wide association studies by imputation of genotypes. Nat.
Genet. 39(7), 906–913 (2007)

18. Han, B., Kang, H.M., Eskin, E.: Rapid and accurate multiple testing correction and
power estimation for millions of correlated markers. PLoS Genet. 5(4), e1000456
(2009)

19. Kostem, E., Lozano, J.A., Eskin, E.: Increasing power of genome-wide association
studies by collecting additional single-nucleotide polymorphisms. Genetics 188(2),
449–460 (2011)

20. Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc, B., Eskin, E.: Identifying
causal variants at loci with multiple signals of association. Genetics 198(2), 497–
508 (2014)

21. Hormozdiari, F., Kichaev, G., Yang, W.-Y., Pasaniuc, B., Eskin, E.: Identification
of causal genes for complex traits. Bioinformatics 31(12), i206–i213 (2015)

22. Hormozdiari, F., van de Bunt, M., Segrè, A.V., et al.: Colocalization of GWAS and
eQTL signals detects target genes. Am. J. Hum. Genet. 99(6), 1245–1260 (2016)

23. Lee, D., Bigdeli, T.B., Riley, B.P., Fanous, A.H., Bacanu, S.A.: DIST: direct impu-
tation of summary statistics for unmeasured SNPs. Bioinformatics 29(22), 2925–
2927 (2013)

24. Pasaniuc, B., Zaitlen, N., Shi, H., et al.: Fast and accurate imputation of summary
statistics enhances evidence of functional enrichment. Bioinformatics 30(20), 2906–
2914 (2014)

25. Sabatti, C., Service, S.K., Hartikainen, A.-L., et al.: Genome-wide association
analysis of metabolic traits in a birth cohort from a founder population. Nat.
Genet. 41(1), 35–46 (2009)

Improving Imputation Accuracy by Inferring Causal Variants 317

26. Durbin, R.M., Altshuler, D.L., Durbin, R.M., et al.: A map of human genome
variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010)

27. McVean, G.A., Altshuler, D.M., Durbin, R.M., et al.: An integrated map of genetic
variation from 1,092 human genomes. Nature 491(7422), 56–65 (2012)

28. Zaitlen, N., Kang, H.M., Eskin, E., Halperin, E.: Leveraging the hapmap correla-
tion structure in association studies. Am. J. Hum. Genet. 80(4), 683–691 (2007)

29. Joo, J.W.J., Hormozdiari, F., Han, B., Eskin, E.: Multiple testing correction in
linear mixed models. Genome Biol. 17(1), 62 (2016)

30. Devlin, B., Roeder, K.: Genomic control for association studies. Biometrics 55(4),
997–1004 (1999)

31. Duong, D., Zou, J., Hormozdiari, F., et al.: Using genomic annotations increases
statistical power to detect eGenes. Bioinformatics 32(12), i156–i163 (2016)

32. Hormozdiari, F., Kang, E.Y., Bilow, M., et al.: Imputing phenotypes for genome-
wide association studies. Am. J. Hum. Genet. 99(1), 89–103 (2016)

The Copy-Number Tree Mixture Deconvolution
Problem and Applications to Multi-sample Bulk

Sequencing Tumor Data

Simone Zaccaria1,2, Mohammed El-Kebir2,3, Gunnar W. Klau2,4,5,
and Benjamin J. Raphael2,3(B)

1 Dipartimento di Informatica, Univ. degli Studi di Milano-Bicocca, Milan, Italy
2 Department of Computer Science, Brown University, Providence, RI 02912, USA

3 Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
braphael@princeton.edu

4 Life Sciences Group, Centrum Wiskunde & Informatica (CWI),
Amsterdam, The Netherlands

5 Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany

Abstract. Cancer is an evolutionary process driven by somatic
mutation. This process can be represented as a phylogenetic tree. Con-
structing such a phylogenetic tree from genome sequencing data is a
challenging task due to the mutational complexity of cancer and the fact
that nearly all cancer sequencing is of bulk tissue, measuring a super-
position of somatic mutations present in different cells. We study the
problem of reconstructing tumor phylogenies from copy number aberra-
tions (CNAs) measured in bulk-sequencing data. We introduce the Copy-
Number Tree Mixture Deconvolution (CNTMD) problem, which aims to
find the phylogenetic tree with the fewest number of CNAs that explain
the copy number data from multiple samples of a tumor. CNTMD gen-
eralizes two approaches that have been researched intensively in recent
years: deconvolution/factorization algorithms that aim to infer the num-
ber and proportions of clones in a mixed tumor sample; and phylogenetic
models of copy number evolution that model the dependencies between
copy number events that affect the same genomic loci. We design an
algorithm for solving the CNTMD problem and apply the algorithm
to both simulated and real data. On simulated data, we find that our
algorithm outperforms existing approaches that perform either deconvo-
lution or phylogenetic tree construction under the assumption of a single
tumor clone per sample. On real data, we analyze multiple samples from
a prostate cancer patient, identifying clones within these samples and a
phylogenetic tree that relates these clones and their differing proportions
across samples. This phylogenetic tree provides a higher-resolution view
of copy number evolution of this cancer than published analyses.

1 Introduction

Cancer results from an evolutionary process where somatic mutations accumu-
late in a population of cells during the lifetime of an individual [21]. Thus, a

S. Zaccaria and M. El-Kebir—Joint first authorship.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 318–335, 2017.
DOI: 10.1007/978-3-319-56970-3 20

Copy-Number Tree Mixture Deconvolution 319

tumor consists of heterogeneous subpopulations of cells, or clones. Each clone
comprises cells that share a unique complement of somatic mutations. Quanti-
fying this intra-tumor heterogeneity has been shown to be important in cancer
treatment [29]. While intra-tumor heterogeneity complicates the identification of
mutations in bulk-sequencing data from a tumor sample containing millions of
cells, it also provides a signal for inferring the tumor composition—the number
and proportion of clones within a sample—as well as the ancestral history of
somatic mutations during cancer development [12]. Thus, a number of methods
have been developed to infer phylogenetic trees from DNA sequencing data from
one or more samples of a tumor [5,8,12–14,17,19,20,28].

One class of mutations that are particularly useful for inferring tumor compo-
sition and tumor evolution are copy-number aberrations (CNAs), which include
duplications and deletions of large genomic regions. CNAs are ubiquitous in
solid tumors and can be readily detected from DNA sequencing data, making
them good candidates for phylogenetic analysis. However, there are two major
challenges in using CNAs to quantify intra-tumor heterogeneity and evolution.

The first challenge is that nearly all cancer sequencing studies perform bulk
sequencing, where mutations are measured in tumor samples composed of mix-
tures of millions of different cells. While single-cell sequencing provides a higher
resolution measurement of tumor heterogeneity, it remains a specialized tech-
nique that is cost prohibitive and error prone for whole genome analysis of thou-
sands of cells [11]. Thus, we require techniques to deconvolve CNA measurements
from mixed tumor samples. Typically, CNAs are detected in sequencing data
by examining the depth of aligned sequencing reads to genomic regions. More
specifically, segmentation algorithms use this signal to partition the genome into
segments with the same integer copy number [1,16]. When a sample is hetero-
geneous, i.e. composed of a mixture of distinct clones, a fractional copy number
may be obtained for each segment instead of an integer copy number. A num-
ber of methods have been developed to infer tumor composition from fractional
copy numbers, taking advantage of the fact that larger CNAs perturb thousands-
millions of sequencing reads, providing a signal to infer their proportions, even
with modest coverage sequencing [2,9,10,16,20,23]. However, these methods have
certain limitations that limit their applicability and performance. For example,
ASCAT [16] and ABSOLUTE [2] use the data from heterogeneous samples for
inferring the tumor purity (the proportion of normal clone in a sample), but they
do not distinguish the copy numbers of different tumor clones. Other methods,
such as THetA [23], Battenberg [20], cloneHD [9] and TITAN [10], infer the clonal
composition independently for each sample by deconvolving the fractional copy
numbers into the integer copy numbers of the extant clones and their propor-
tions. However, one can obtain more information by jointly considering more sam-
ples from the same tumor [12], as successfully done for single-nucleotide muta-
tions [5,8,14,17] or non-integer copy numbers [24]. Moreover, there may be mul-
tiple ways to deconvolve fractional copy numbers, especially without imposing a
structure on the inferred CNAs. Therefore, the inference of distinct clones may
benefit from jointly inferring their evolution.

320 S. Zaccaria et al.

The second challenge in using CNAs to reconstruct tumor evolution is that
one requires a model of the evolution of CNAs. Defining such a model is not
straightforward because CNAs can overlap, and thus positions in the genome
cannot be treated independently. Standard phylogenetic models represent a
genome as a sequence of “characters” with mutations acting independently on
individual characters. A number of models have been introduced to study CNA
evolution, and these models can be classified into two categories. The first consid-
ers single events such that each of those independently affects the copy number
of a single segment [3,19]. However, these models do not account for depen-
dency between adjacent segments in the genome. The second category consid-
ers the effects of CNAs on multiple segments as interval events that amplify
or delete copies of contiguous segments; the most prominent such approach is
MEDICC [25]. Recently, [27] and [7] improved the model in MEDICC. Specif-
ically, [27] formally investigated the effects of interval events on segments of a
single clone. In [7], the authors formalized the Copy-Number Tree (CNT) prob-
lem that aims to find the most parsimonious evolution of clones explained by
the minimum number of interval events, and derived an integer linear program
(ILP) that solves this problem. However, all of the studies applying these meth-
ods either assume that each sample is homogeneous and consisting of a single
clone [26,28] or first attempt to infer the clones independently on each sample
before performing a phylogenetic analysis of CNAs [19].

In this paper, we propose an approach combining the deconvolution of frac-
tional copy numbers from multiple samples with the inference of CNAs that
describes the evolution of the clones. We introduce the Copy-Number Tree Mix-
ture Deconvolution (CNTMD) problem that aims to deconvolve the fractional
copy numbers into the integer copy numbers of the extant clones and their pro-
portions such that the evolution of the clones is explained by a minimum num-
ber of copy number aberrations modeled as interval events (Fig. 1). We design
a coordinate-descent algorithm for solving this problem and we compare our
method with alternative approaches on real-size simulations. We find that com-
bining the deconvolution of fractional copy numbers with a phylogenetic tree
outperforms other methods. We apply our method on multi-sample sequenc-
ing data of a prostate-cancer patient [13]. Our inference shows well-supported
patterns that reveal the clonal composition in terms of CNAs. The software is
available at http://compbio.cs.brown.edu/software/.

2 Copy-Number Tree Mixture Deconvolution Problem

We start by reviewing the CNT problem, where given integer copy-number pro-
files one is asked to infer a copy-number tree, whose leaves correspond to the
profiles with the minimum of events. Specifically, we define the interval events
that label the edges of this tree. We conclude this section by introducing the
problem of deconvolving fractional copy numbers from multiple heterogeneous
samples into integer copy-number profiles of distinct clones and their proportions
such that the resulting profiles form the leaves of a parsimonious copy-number
tree.

http://compbio.cs.brown.edu/software/

Copy-Number Tree Mixture Deconvolution 321

2.8 2.8 2.0 1.2

2 2 2 2

3 3 2 1
2 2 1 1

5 4 3 1

3 3 2 1

2 2 1 1

2 2 2 2

3.5 3.0 2.3 1.3

2.0 2.0 1.0 1.0

2.0 2.0 2.0 2.0

4.2 3.6 2.6 1.0

1.0

1.0

0.2
0.3

0.5

0.2
0.8

0.4
0.6

Input: Output: Tree:

Sequencing

Samples
Time

C
el

ls
Fractions Proportions Clones Evolution with interval events

Fig. 1. Copy-Number Tree Mixture Deconvolution (CNTMD) problem. A
tumor consists of heterogeneous subpopulations of cells, or clones. The normal clone is
colored yellow. Five samples are bulk sequenced yielding fractional copy numbers F .
We model the evolution of CNAs by a copy-number tree T (right). We combine the
deconvolution of F with the inference of T . Thus, CNTMD factors F into the integer
copy numbers C of the extant clones and their proportions U such that F = CU and
C generates a copy-number tree T with the minimum number Λ(T) of interval events.

Following the model in [7,25,27], we represent a chromosome as a sequence
of m segments. A copy-number profile, or profile for short, specifies the number
of copies of each segment in a clone. Formally, a profile ci = [cs,i] is a (column)
vector of m integers whose entries cs,i ∈ N indicate the number of copies of
segment s in a clone i. For brevity, we consider a single chromosome.

We consider mutations that amplify or delete contiguous segments. An inter-
val event, or event, increases or decreases the copy numbers of contiguous seg-
ments of a profile ci. Formally, an event is a triple (s, t, b) with segments s ≤ t
and integer b ∈ Z. If b is positive then the event is an amplification and the
non-zero segments between s and t are incremented by b, whereas for negative b
the events is a deletion and the same segments are decremented by at most |b|.
Thus, the event (s, t, b) applied on ci = [c�,i] results in c′

i = [c′
�,i] such that, for

each segment �, c′
�,i = max{c�,i + b, 0} if s ≤ � ≤ t and c�,i �= 0, or c′

�,i = c�,i

otherwise. Thus, once a segment � has been lost, i.e. c�,i = 0, it can never be
regained (or deleted).

We model the evolutionary process that led to n extant tumor clones by a
copy-number tree T defined as follows.

Definition 1. Given a number n of clones, a copy-number tree is a rooted full
binary tree on n leaves, such that each vertex vi ∈ V (T) is labeled by a profile
ci and each edge (vi, vj) is labeled by a set Ei,j of events. The root vertex r(T),
corresponding to the normal clone, is diploid, i.e. cs,r(T) = 2 for each segment s.

The requirement that T is a full binary tree is without loss of generality, as
each vertex with out-degree greater than 2 of a general tree can be split into
vertices of out-degree 2, and each vertex with out-degree 1 can be removed and
the associated events assigned to the outgoing edge. Thus, each vertex vi ∈ V (T)
has either zero or two children and is labeled by a profile ci. To avoid degenerate
solutions, we impose a maximum copy number cmax ∈ N for each segment s of any
vertex vi of T such that cs,i ≤ cmax. Moreover, each leaf vi ∈ L(T) corresponds

322 S. Zaccaria et al.

to the clone i. As such, we order the vertices V (T) = {v1, . . . , v2n−1} such that
L(T) = {v1, . . . , vn} and r(T) = v2n−1. An edge (vi, vj) ∈ E(T) relates a parent
vertex vi to its child vj such that the label E(i, j) is a set of events that transform
ci to cj . In general, the order of E(i, j) matters. Following a result by Shamir et
al. [27], it suffices to consider an unordered set of events instead of an ordered
sequence. In fact, any sequence of events, where amplifications and deletions
occur in an arbitrary order, can be transformed into a sorted sequence, where
deletions are followed by amplifications, without changing the cost of events, as
defined in the following. The cost of an event (s, t, b) is the number of changes
in the segment and is thus equal to |b|. Therefore, the cost Λ(i, j) of an edge
(vi, vj) is the total cost of the events in E(i, j), i.e. Λ(i, j) =

∑
(s,t,b)∈E(i,j) |b|.

The cost Λ(T) of the tree T is the sum of the costs of all edges.
In the ideal case of single-cell sequencing data with no errors, each clone is a

single cell and we observe the copy-number profiles c1, . . . , cn of n tumor clones.
As such, we wish to find the most parsimonious explanation, i.e. a minimum-cost
copy-number tree T ∗ whose n leaves are labeled by c1, . . . , cn. Previously, we
have shown that this problem, the Copy-Number Tree (CNT) problem, is NP-
hard and we introduced an ILP formulation for solving it [7]. However, with bulk-
sequencing data the observations correspond to k samples obtained from a single
tumor in different regions or at different time points. Each sample corresponds
to a mixture of n extant clones (leaves) of an unknown copy-number tree in
unknown proportions. Recall that m is the number of segments. Our observations
are thus described by the m× k fractional copy-number matrix F = [fs,p] where
the fraction fs,p ∈ R≥0 is the average copy number of segment s in sample p.

Let T be a copy-number tree with n leaves. We represent the profiles of the
clones of T by the m×n copy-number matrix C = [cs,i] such that the i-th column
of C corresponds to the profile ci of clone i, i.e. C = (c1, . . . , cn). We say that
C generates T if the leaves of T are labeled by the profiles in C and such that
each internal vertex vi is labeled by a profile ci = [cs,i] with cs,i ≤ cmax for each
segment s. The n × k usage matrix U = [ui,p] describes the mixing proportion
ui,p ∈ R≥0 of clone i in sample p such that the sum

∑
1≤i≤n ui,p of the mixing

proportions for each sample p is 1. The observed fractional copy-numbers F are
thus modeled by F = CU . We have the following problem (Fig. 1).

Problem 1 (Copy-Number Tree Mixture Deconvolution (CNTMD)). Given an
m × k fractional copy-number matrix F , a number n of clones, and a maxi-
mum copy number cmax, find an m × n copy-number matrix C generating T ∗

and an n × k usage matrix U such that F = CU and Λ(T ∗) is minimum.

3 Method

The hardness of CNTMD is an open question. However, we suspect the prob-
lem to NP-hard, as the related unmixed version, the CNT problem, is NP-
hard [7]. Moreover, other similar deconvolution problems under a tree constraint
are NP-hard as well [6,8]. As such, we design a heuristic algorithm based on the

Copy-Number Tree Mixture Deconvolution 323

coordinate-descent paradigm for solving a distance-based version of CNTMD
where we aim to infer copy-numbers C with n clones (columns) and mixing
proportions U that minimize the distance between the observed fractional copy
numbers F and the inferred fractional copy numbers CU :

‖F − CU‖ =
∑

1≤s≤m

∑

1≤p≤k

∣
∣
∣
∣fs,p −

∑

1≤i≤n

cs,iui,p

∣
∣
∣
∣. (1)

Under a parsimony constraint, we impose a maximum cost Λmax on the copy-
number tree T generated by C. That is, we require that C generates T such that
Λ(T) ≤ Λmax and we consider the following problem.

Problem 2 (d-CNTMD). Given an m × k fractional copy-number matrix F , a
number n of clones, a maximum copy-number cmax, and a maximum cost Λmax,
find an m × n copy-number matrix C = [cs,i] generating T and an n × k usage
matrix U such that cs,i ≤ cmax, Λ(T) ≤ Λmax and ‖F − CU‖ is minimum.

Following the coordinate-descent paradigm, we split the variables of d-
CNTMD and obtain two subproblems, where either matrix C or matrix U is
fixed, with the same objective of minimizing the distance ‖F − CU‖. An iter-
ation t consists of two steps. In the C-step, we are given a usage matrix Ut−1

and we search for a copy-number matrix Ct = [cs,i] minimizing ‖F − CtUt−1‖
such that cs,i ≤ cmax and C generates T with cost Λ(T) ≤ Λmax. Conversely, in
the U -step we take the matrix Ct as input and seek a usage matrix Ut such that
‖F − CtUt‖ is minimized.

To account for local optima, we use Q restarts with different initial usage
matrices U0,0, . . . , UQ,0. We generate these usage matrices in a sparse way. This
procedure yields a sequence of pairs of matrices, where for consecutive pairs
(Cq,t, Uq,t), (Cq,t+1, Uq,t+1) it holds that ‖F − Cq,tUq,t‖ ≥ ‖F − Cq,t+1Uq,t+1‖.
This is because both Cq,t+1 and Uq,t+1 can be chosen equal to the previous matri-
ces Cq,t and Uq,t, respectively, resulting in the same distance. We iterate until
‖F − Cq,tUq,t‖ drops below a convergence threshold or the number of iterations
reaches a specified number K.

Our algorithm thus computes Q pairs (Cq,K , Uq,K) of matrices for each
restart Uq,0 and returns a pair (C ′, U∗) of matrices that minimize the distance
‖F − Cq,KUq,K‖. In the distance-based formulation we do not directly opti-
mize for the cost Λ(T ′) of a tree T ′ generated by C ′. Instead, we only require
that each identified matrix Cq,K generates a copy-number tree Tq,K with cost
Λ(Tq,K) ≤ Λmax and, consequently, we have that the final matrix C ′ generates
a copy-number tree T ′ with cost Λ(T ′) ≤ Λmax. Thus, it may be the case that
for the same usage matrix U∗ there exist another copy-number matrix C ′′ differ-
ent from C ′ that generates a copy-number tree T ′′ whose cost is Λ(T ′′) < Λ(T ′)
while having the same distance ‖F −C ′U∗‖ = ‖F −C ′′U∗‖. To find the best such
matrix C∗ that generates a tree T ∗ with the smallest cost Λ(T ∗), we introduce
a refinement step with a slightly adjusted integer linear programming (ILP) for-
mulation of the C-step. Figure 2 depicts the entire procedure of the coordinate-
descent algorithm.

324 S. Zaccaria et al.

C-step U -step convergence?
U1,0 C1,t U1,t

U1,t

C-step U -step convergence?
UQ,0

CQ,t UQ,t

UQ,t

(C1,K , U1,K)

(CQ,K , UQ,K)

(C ,U∗) min
C∗:C U∗=C∗U∗
C∗ generates T∗

Λ(T ∗) (C∗, U∗)min
1≤q≤Q

F − Cq,KUq,K

Fig. 2. Coordinate-descent algorithm. Given an initial usage matrix Uq,0, the algo-
rithm alternatingly solves two distinct steps for at most K iterations. The C-step com-
putes a copy-number matrix Cq,t given the previous usage matrix Uq,t−1 and is followed
by the U -step, which computes a usage matrix Uq,t given Cq,t. We repeat the procedure
using Q restarts with different initial usage matrices, yielding Q pairs (Cq,K , Uq,K) of
matrices. Given these final matrices, the refinement step searches for a copy-number
matrix that generates a copy-number tree with minimum cost.

We present a linear programming (LP) formulation for the U -step in Sect. 3.1
followed by an integer linear programming (ILP) formulation for the C-step
in Sect. 3.2. Since the distance-based variant of the problem does not directly
minimize the cost of the tree, we present in Sect. 3.3 an algorithm for finding the
smallest maximum cost Λ∗ with the largest decrease in the distance ‖F − CU‖.

3.1 U-Step

In the U -step, we are given a fractional matrix F and a copy-number matrix
C, and seek a usage matrix U = [ui,p] with real-valued entries ui,p minimiz-
ing the distance ‖F − CU‖. We linearize the distance function ‖F − CU‖
and formulate the resulting the optimization problem as an LP with O(km)
variables and O(km) constraints. To model the absolute difference in (1), we
introduce variables f̄s,p for each segment s and sample p, and model f̄s,p =
|fs,p − ∑

1≤i≤n cs,iui,p| using the following linear constraints.

f̄s,p ≥ fs,p −
∑

1≤i≤n

cs,iui,p 1 ≤ s ≤ m, 1 ≤ p ≤ k (2)

f̄s,p ≥
∑

1≤i≤n

cs,iui,p − fs,p 1 ≤ s ≤ m, 1 ≤ p ≤ k (3)

Moreover, we introduce variables 0 ≤ ui,p ≤ 1 that represent the usage of a
clone i in sample p. We constraint the usages of each sample to sum to 1 using
the following constraint.

∑

1≤i≤n

ui,p = 1 1 ≤ p ≤ k (4)

Thus, we have the following LP: minu,f̄

∑
1≤s≤m,1≤p≤k f̄s,p s.t. (2), (3) and (4).

3.2 C-Step

In the C-step, we are given a fractional matrix F and a usage matrix U , and
seek a copy-number matrix C = [cs,i] with integer entries cs,i minimizing the

Copy-Number Tree Mixture Deconvolution 325

distance ‖F − CU‖ such that cs,i ≤ cmax and C generates a tree T with Λ(T) ≤
Λmax. Similarly, to the U -step we model the distance function ‖F − CU‖ with
variables f̄s,p and their corresponding constraints (2) and (3). We formulate the
optimization problem of the C-step as an ILP with O(n2m + nm log Λmax +
km) variables and constraints. Our formulation introduces new constraints that
improve upon the model introduced in [7].

We introduce binary variables X = [xi,j] to model the topology of T and inte-
ger variables C̃ to label the vertices and edges of T . Note that C is a submatrix
of C̃. Recall that T is a full binary tree (Definition 1). We construct a directed
acyclic graph G = (V,E) that contains all copy-number trees T with n leaves
as spanning trees. More specifically, we order the vertices V = {v1, . . . , v2n−1}
such that L(T) = {v1, . . . , vn} and r(T) = v2n−1. The edge set E contains edges
{(vi, vj) | n + 1 ≤ i < 2n − 1, 1 ≤ j < i ≤ 2n − 1}. We introduce a variable
xi,j for each edge (vi, vj) ∈ E, which indicates whether (vi, vj) is an edge of
T . To encode that T is a full binary spanning tree of G, we require that each
non-root vertex has exactly one incoming edge and that each internal vertex has
two outgoing edges with the following constraints.

∑

i≥j,i≥n+1

xi,j = 1 1 ≤ j < 2n − 1 (5)

∑

1≤j<i

xi,j = 2 n < i ≤ 2n − 1 (6)

Integer variables C̃ = [cs,i] where cs,i ∈ {0, . . . , cmax} encode the profiles of
each vertex vi. Since the root vertex is diploid, we add the following constraints.

cs,2n−1 = 2 1 ≤ s ≤ m (7)

From these profiles and the topology of T (as captured by variables xi,j), we
obtain the events E(i, j) that transform the profile ci into the profile cj and
thereby the cost for the edge (vi, vj). Recall that an event is a triple (s, t, b) and
corresponds to an amplification if b > 0 and a deletion otherwise. We model the
amplifications and deletions covering any segment s in E(i, j) with two separate
variables as,i,j ∈ {0, . . . , cmax} and ds,i,j ∈ {0, . . . , cmax}, respectively. Note that
we require E(i, j) to be empty when the corresponding edge (vi, vj) is not in T .
As such, we introduce the following constraints that force variables as,i,j and
ds,i,j to be 0 when (vi, vj) is not in T .

as,i,j , ds,i,j ≤ cmaxxi,j 1 ≤ s ≤ m, (vi, vj) ∈ E(G) (8)

Due to these constraints, the cost of every pair (vi, vj) of vertices that do not
form an edge of T , i.e. xi,j = 0, is fixed to 0. Therefore, only the cost of the edges
of T is computed, which significantly constraints the model and improves the
performance over the formulation presented for the unmixed CNT problem [7].

Now, we consider the effect of amplifications and deletions on a segment s.
As described above, we assume that deletions are applied before amplifications.
Moreover, if a subset of deletions results in segment s reaching value 0, the
remaining amplifications and deletions will not change the value of that segment.
Similarly to [7], we distinguish four different cases. Case (a) is cs,i = 0 and

326 S. Zaccaria et al.

cs,j = 0: Since both segments have value 0, we have that, following a result
in [27], the number of amplifications as,i,j and deletions ds,i,j must be between
0 and cmax. Case (b) is cs,i �= 0 and cs,j �= 0: Since cs,j > 0, the number of
deletions ds,i,j must be strictly smaller than cs,i. Moreover, it must hold that
cs,j +ds,i,j = cs,i +as,i,j . Case (c) is cs,i �= 0 and cs,j = 0: Since deletions precede
amplifications, the number of deletions ds,i,j must be at least cs,i. Case (d) is
cs,i = 0 and cs,j �= 0: Once a segment s has been lost it cannot be regained. As
such, this case is infeasible.

To capture the conditions of the four cases, we introduce binary variables
zi,s,q that provide a binary representation of the integer variable cs,i. We define
L := �log2(cmax)� + 1. In addition, we introduce binary variables c̄s,i ∈ {0, 1}
and the following constraints such that c̄s,i = 1 iff cs,i �= 0.

cs,i =
L∑

q=0

2q · zi,s,q 1 ≤ i ≤ 2n − 1, 1 ≤ s ≤ m (9)

zi,s,q ≤ c̄s,i ≤
L∑

q′=0

zi,s,q′ 1 ≤ i ≤ 2n − 1, 1 ≤ s ≤ m, 0 ≤ q ≤ L (10)

Since as,i,j , ds,i,j ∈ {0, . . . , cmax}, the upper bound constraints involving cmax

are covered. In particular, case (a) is captured in its entirety. We capture case
(b) with the following constraints where (vi, vj) ∈ E(G).

cs,j ≤ cs,i − ds,i,j + as,i,j + 2cmax(3 − c̄i,s − c̄j,s − xi,j) 1 ≤ s ≤ m (11)
cs,j + 2cmax(3 − c̄s,i − c̄s,j − xi,j) ≥ cs,i − ds,i,j + as,i,j 1 ≤ s ≤ m (12)
di,j,s ≤ cs,i − 1 + (cmax + 1)(2 − c̄s,i − c̄s,j) 1 ≤ s ≤ m (13)

In fact, in the case of xi,j = 1 (i.e., (vi, vj) is in T), c̄s,i = 1, and c̄s,j = 1,
constraints (11) and (12) model the equation cs,j + ds,i,j = cs,i + as,i,j , whereas
constraint (13) ensures that ds,i,j < cs,i. Otherwise, in the case of xi,j = 0, the
constraints are always satisfied and the corresponding variables as,i,j , ds,i,j for
every segment s are forced to 0 (which is different from the ILP formulation
in [7]). Note that ds,i,j can be always equal to zero by constraint (13), hence we
do not need to distinguish whether xi,j = 0 or xi,j = 1. Next, we model case (c),
when xi,j = 1, using the following constraints.

cs,i ≤ ds,i,j + cmax(2 − c̄s,i + c̄s,j − xi,j) 1 ≤ s ≤ m, (vi, vj) ∈ E(G) (14)

Finally, the following constraints, which encode that if xi,j = 1 then c̄s,i = 0
implies c̄s,j = 0, prevent case (d) from happening.

1 − xi,j + c̄s,i ≥ c̄s,j 1 ≤ s ≤ m, (vi, vj) ∈ E(G) (15)

We model the cost of an edge (vi, vj) as the sum of the amplifications and dele-
tions starting at each segment s by introducing variables ās,i,j ∈ {0, . . . , cmax}
and d̄s,i,j ∈ {0, . . . , cmax}. Variables ās,i,j correspond to the amplifications start-
ing at segment s and is equal to max{as,i,j − as−1,i,j , 0}. Symmetrically, vari-
ables d̄s,i,j corresponds to the deletions starting at segment s and is equal to

Copy-Number Tree Mixture Deconvolution 327

max{ds,i,j − ds−1,i,j , 0}. We model this using the following constraints.

ās,i,j ≥ as,i,j − as−1,i,j 1 ≤ s ≤ m, (vi, vj) ∈ E(G) (16)
d̄s,i,j ≥ ds,i,j − ds−1,i,j 1 ≤ s ≤ m, (vi, vj) ∈ E(G) (17)
a0,i,j = d0,i,j = 0 (vi, vj) ∈ E(G) (18)

As before, we force ās,i,j and d̄s,i,j to 0 when the corresponding pair (vi, vj) of
vertices is not an edge of T using the following constraints.

ās,i,j , d̄s,i,j ≤ cmaxxi,j 1 ≤ s ≤ m, (vi, vj) ∈ E(G) (19)

Now, the cost of an edge (vi, vj) can indeed be expressed as
∑

1≤s≤m(ās,i,j +
d̄s,i,j). Hence, the cost Λ(T) is simply the sum of the costs of all the edges, and
we require that this cost is at most Λmax with the following constraint.

∑

(vi,vj)∈E(G)

∑

1≤s≤m

(ās,i,j + d̄s,i,j) ≤ Λmax (20)

The ILP is thus: minc,f̄

∑
1≤s≤m,1≤p≤k f̄s,p s.t. (2), (3), (5)–(20).

3.3 Choosing Λmax to Balance Cost Λ(T) and Distance ‖F − CU‖
We indicate by (CΛ, UΛ) the matrices found by our approach with maximum cost
Λmax = Λ and we define d(Λ) = ‖F − CΛUΛ‖. First, observe that the objective
function d(Λt) is non-increasing with larger values of Λt. That is, if Λt ≥ Λ
then d(Λt) ≤ d(Λ), as CΛ generates T with cost Λ(T) < Λt. The parameter
Λmax controls the tradeoff between the cost Λ(T) of the tree T and the distance
‖F − CU‖. In the following, we describe an algorithm for finding the smallest
maximum cost Λ∗ such that d(Λ∗) = 0.

However, requiring that d(Λ∗) = 0 is too stringent as the value d(Λt) depends
on the number of restarts and is further confounded by the presence of noise that
may result from mapping errors or amplification biases (such as GC-content
bias). It is thus reasonable to expect that d(Λ∗) > 0 and that small decreases
in the value of d(Λt) for any Λt > Λ∗ may be not significant due to these
confounding factors. We therefore introduce the parameter ε and say that Λ2 >
Λ1 provides a better solution than Λ1 if and only if d(Λ1)−d(Λ2) > ε. Intuitively,
the user-specified threshold ε controls the tradeoff between greater robustness
to noise (larger ε) or more precision (smaller ε). We redefine Λ∗ as the smallest
integer whose solution cannot be improved by increasing the maximum cost,
that is d(Λ∗)− d(Λt) ≤ ε for any Λt ≥ Λ∗. Note that in a similar fashion ε plays
a role in the refinement step described previously. We use the monotonicity of
the function d(Λt) and employ binary search for finding the value Λ∗.

4 Results

We applied our algorithm for CNTMD to simulated data and to data from two
patients from a prostate cancer dataset [13]. We ran every experiment in this

328 S. Zaccaria et al.

Fig. 3. Alternative methods infer trees that differ significantly from the true
tree, which is inferred by our approach CNTMD. Copy-number trees inferred
by the alternative methods where deletions (s, t, −1) are red and amplifications (s, t, 1)
are green. (A) Shows the true tree composed of four clones c0 (normal), c1, c2, c3 with
a cost of 8. This tree is correctly retrieved by CNTMD. All the alternative methods
fail to infer the clonal mutation (1, 2, −1). (B) The tree inferred by IMF contains too
many events and differs significantly from the true tree. (C-D) CNT and soft CNT
infer clones that are very different from the true clones (E) single CNTMD splits the
effect of the deletion (1, 8, −1) across two distinct clones c2 and c3 resulting in a cost
of 15.

section on a compute cluster, and every execution lasted up to 2 days, with 160
restarts for the simulated data and 300 restarts for the real data. The implemen-
tation of our method and related details, as well as the implementation of the
alternative methods are available at http://compbio.cs.brown.edu/software/.

We benchmarked CNTMD on simulated data, comparing its performance
to several other approaches, which we now describe. The first alternative app-
roach is a “factorization-only” approach that aims to factorize a fractional copy-
number matrix F into a copy-number matrix C and a usage matrix U such that
F = CU without imposing a tree constraint. Published approaches to this prob-
lem perform this factorization (sometimes called deconvolution) independently
on each sample [9,19,20,23]—one exception is [24], but this infers non-integer
copy numbers and it has not been applied to multiple samples from the same
tumor. These methods do not take into account any information from the context
and may provide unlikely profiles characterized by many interval events without
a reasonable structure (Fig. 3B). To the best of our knowledge, there is no pub-
lished method that solves the matrix factorization problem for the case where
F comprises multiple vectors and C is composed of integers. Thus, we imple-
mented Integer Matrix Factorization (IMF) which performs the factorization by
splitting the variables, C and U , and applying a coordinate-descent algorithm
in a similar fashion as the procedure described in Sect. 3.

Another class of approaches use the same copy number model as CNTMD,
but assume that each sample is unmixed. One strategy is to first round the
entries of F before inferring a copy-number tree. We will do this by solving the
CNT problem with an ILP model [7], mimicking the strategy that has been used
with MEDICC [26,28]. We also consider a second rounding approach, which we
call soft CNT, where we round the fractions in F either up or down such that
we obtain a copy-number matrix C that generates T with minimum cost. We do
this by extending the ILP formulation of the CNT problem described in [7].

http://compbio.cs.brown.edu/software/

Copy-Number Tree Mixture Deconvolution 329

2 5 10
#samples k

0.00

0.05

0.10

0.15

0.20

0.25

0.30
U

−
Û

method
IMF
single CNTMD
CNTMD

(A)

2 5 10
#samples k

0

2

4

6

8

10

le
af

co
ns
ist
en
cy

(L
C)

method
IMF
single CNTMD
CNTMD
CNT
soft CNT

(B)

2 5 10
#samples k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|Λ
(T

)−
Λ

(T̂
)
|/

Λ
(T̂

)

method
IMF
single CNTMD
CNTMD
CNT
soft CNT

(C)

Fig. 4. CNTMD outperforms alternative methods on simulated data. Com-
parison of five methods across 27 simulated datasets with k ∈ {2, 5, 10} samples, con-
sisting of 4 tumor clones and a normal diploid clone, each with a total of 350 segments
across 22 chromosomes. Each simulated instance was solved with n set to the true
number of clones. (A) Normalized usage difference ‖U − Û‖. (B) Leaf consistency (LC)
measure. (C) Difference |Λ(T) − Λ(T̂)|/Λ(T̂).

Finally, we also consider a variant of CNTMD, which we call single CNTMD.
Here, we replace the interval events by single events; this is equivalent to a model
where the cost of an interval event depends on the number of segments in the
interval. However, the single event model is not a good representation of true
copy number aberrations in cancer, as the length distribution of somatic copy
number aberrations is not simply a function of length [30]. Such a copy number
model was used by [19] and [3] for inferring the evolution comprising the min-
imum number of single events from the profile of clones inferred independently
from each sample. Figure 3 shows an example highlighting the weaknesses of all
the alternative methods presented above.

We compare CNTMD with the methods described above on simulated
instances composed of 22 chromosomes with a total of 350 segments. These
instances have the same size as real data. The number of segments per chromo-
some ranges from 5 to 50 and follows the distribution of the number of segments
in the prostate-cancer datasets available in [13]. Using a procedure similar to the
one described in [7], we randomly generate three copy-number trees, denoted by
T̂ , which in turn were generated by copy number matrices Ĉ composed of four
tumor clones plus the normal diploid clone. We mix the leaves of each tree
according to a usage matrix Û and obtain fractional copy-number matrices with
k ∈ {2, 5, 10} samples. For each tree and value for k, we generate three instances
with different usage matrices. Thus, we consider 27 simulated instances in total.

We use three quality measures to compare the inferred tree T , inferred copy-
number matrix C, and inferred usage matrix U to the simulated T̂ , Ĉ and Û .
We compare T to T̂ by considering the relative difference of events |Λ(T) −
Λ(T̂)|/Λ(T̂). To compare U to Û , we need to associate each inferred clone i to a
corresponding true clone î. Similarly to [6,17], we search for a maximum-weight
bipartite matching that minimizes the value of the usage difference ‖U − Û‖
in a bipartite graph where there is a an edge (vi, vî) with weight |ci − cî| for

330 S. Zaccaria et al.

all pairs (i, î). To compare C to Ĉ, we compute a maximum-weight bipartite
matching on the same complete bipartite graph where the edges are weighted
by a similarity metric, called leaf consistency (LC). This value is computed by
solving an instance of CNT [7] for every pair (ci, cj) of profiles where ci is a
column of C and cj is a column of Ĉ. More specifically, the LC value of (ci, cj)
is the minimum cost of a copy-number tree with two leaves labeled by ci, cj and
with an unfixed root. Note that LC is 0 if and only if ci, cj are equal. Similarly
to the other metrics, we compute a maximum weight bipartite matching where
the edges are weighted by the LC values for every pair ci, cj of columns from C

and Ĉ, respectively. We normalize the matching weight by the number of clones
and chromosomes.

Figure 4 shows the results on the simulations. First, we observe that CNTMD,
which combines both factorization and a proper interval tree-based model, out-
performs all other methods across all number of samples. Second, we see that the
quality metrics improve with increasing number k of samples for all the meth-
ods. This is especially the case for the factorization-based methods (IMF, single
CNTMD, CNTMD), where differences in the clonal composition across samples
provide a strong signal for deconvolution (Fig. 4A–C). In contrast, the rounding
methods (CNT and soft CNT), show only a modest improvement with increasing
number of samples (Fig. 4B and C), which is not surprising since rounding does
not directly exploit differences in clonal composition across samples. Finally,
observe that with a small number of samples (k = 2), CNTMD dramatically
outperforms IMF (Fig. 4A and C), demonstrating how CNTMD leverages the
extra information given by the tree constraint. Moreover, by not accounting for
interval events, single CNTMD results in copy-number trees that are inconsistent
with the simulated trees and have many more events (Fig. 4C).

4.1 Application to Prostate Cancer Dataset

We apply our approach on prostate cancer patient A22 from the dataset of
Gundem et al. [13]. Patient A22 comprises 10 samples. We use the published
fractional copy numbers that were obtained by the Battenberg algorithm [20],
which relies on the sample purity and tumor ploidy estimated by ASCAT [16].

Since the true clonal structure of these samples is unknown, we examine the
consistency of different measures on the results obtained by running CNTMD
with varying number of clones n ∈ {2, . . . , 8}. We observe a number of patterns
that suggest that there are six clones in the tumor that are distinguishable by
copy number aberrations; in comparison [13] estimate 16 clones using SNVs.

First, we observe that the value of ‖F − CU‖ decreases significantly with
increasing values of n (Fig. 5). However, the rate of decrease declines for n > 6,
suggesting that additional clones are not providing substantial gain in fitting the
observed copy number fractions. Second, we find that the entries of the usage
matrix U for n ≤ 6 have well-supported proportions with reasonable mixing
proportions for each clone in several samples (data not shown). In contrast, for
n > 6, we identify clones with very low mixing proportions across samples (such

Copy-Number Tree Mixture Deconvolution 331

2 3 4 5 6 7 8
#clones n

0.15

0.20

0.25

0.30

0.35

0.40

F
−
C
U

Fig. 5. The dis-
tance decreases with
increasing number
of clones n and sta-
bilizes with n > 6
clones. The y-axis
shows the normalized
value of the distance
‖F − CU‖ for each n.

0

1

68

c0

0

c1

29

c2

86

0

1

77

c0

0

58

c4

108

3

17

c3

64

c1

82

c2

76

0

c1

141

c0

0

0

1

62

c0

0

2

34

c3

50

c1

50

c2

76

0

1

48

c0

0

2

50

c5

563

14

c4

49

4

41

c3

61

c1

56

c2

58

0

1

71

c0

0

2

23

3

20

4

7

c4

63

5

8

c6

646

17

c3

81

c5

68

c7

34

c1

31

c2

66

0

52

c0

0

20

3

25

4

8

c4

43

c5

70

c6

48

26

c3

92

c1

46

c2

61

Fig. 6. Trees with n ≤ 6 clones have a cascading topol-
ogy and well-supported edges, whereas trees with
n > 6 clones have the same cascading topology but
have less-supported edges. For each copy-number tree T ,
we show the cost Λ(T) and label the edges by their cor-
responding costs. The colors of leaves map corresponding
clones in the topologies. The normal clone is red.

as c5 for n = 7 and c4 for n = 8) suggesting that the additionally inferred clones
are not supported by the data. Third, we consider the topologies and costs of
inferred trees with varying number of clones and find that the tree with n = 6
clones best describes the data. We find that most of the clonal events, which
are events that are shared by all tumor clones and occur on the first branch
of the tree, are consistent across the majority of the trees with n ≤ 6 clones
(Fig. 8). Moreover, the trees with n ≤ 6 clones have a cascading topology with an
additional branch for every increase in n. In contrast, with n > 6 clones, the trees
conserve the same cascading topology and each additional clone splits a previous
clone (from the tree with n − 1 clones) into two new sibling clones, potentially
overfitting the data (Fig. 6). The total number of events, Λ(T), stabilizes between
n = 5 and n = 6 before increasing again for n ≥ 6. The trees with n > 6 have
several edges with only a few events as opposed to the trees with n ≤ 6 clones.
In sum, these findings suggest that the tree with n = 6 clones provides a good
explanation of the data in comparison with the other trees that either overfit
(n > 6) or do not accurately represent the clonal structure of the data (n < 6).

Finally, we examine the relationship between the inferred matrix C and the
observed fractional copy number matrix F , checking whether segments with close
values of F across samples are assigned the same copy number values in C, as we
vary the number n of clones. We do this by partitioning the segments into classes

332 S. Zaccaria et al.

with the same evolutionary history in the inferred tree T (which is derived from
the inferred C). Specifically, we define a class to be a set of segments that have
the same copy-number change on all edges of T . Consequently, segments in the
same class have the same copy number in all the clones. We observe that with
increasing n the number of classes increases, whereas their size decreases (data
not shown). However, the size and number of classes do not significantly change
with n ≥ 6. Next, we assess the consistency between these classes and F . For
each pair p1, p2 of samples, we plot the fractional copy numbers of each segment
in these samples, coloring segments by their class (overlapping segments with the
same values result in larger dots). Figure 7 gives a schematic of this procedure.
We see that for n < 6, segments in the same class are apart in at least one pair of
samples (red, dark blue, and green clusters in Fig. 7), suggesting a poor fit to the
data. On the other hand, for n > 6, segments with slightly different fractional
copy numbers are separated (red/white clusters for k = 7 and light blue/cyan
clusters for k = 8), suggesting overfitting of the data. Thus, this analysis also
indicates that n = 6 appears to provide a reasonable partition into classes.

We also compare our inferred clonal copy number aberrations (CNAs) to
the published clonal CNAs in [13]: We observe that several clonal events in our
inferred T correspond to the these CNAs (Fig. 8): three inferred deletions on
chr12 match the reported 12p LOH; a deletion with a subsequent amplification
on chr13 matches the reported 13q LOH; a deletion on chr8 matches the 8p
LOH; an amplification on the same chr8 matches the 8q gain; and two chr16
deletions match the reported 16q LOH. More interestingly, most of these events
are clonal in the majority of the inferred trees for every n (Fig. 8). Thus, other
recurrent and well-supported events in the inferred tree T are likely to be real,
giving additional information about the clonal composition of these samples.

Fig. 7. Classes of segments with the same evolutionary history highlight
consistency of the inferred solutions with the input data. Fractional copy
numbers for three A22 prostate cancer samples: D, K and J. The largest dot contains
14 segments. The consistency of the classes improves with increasing n. The red class
in n = 5 is composed of segments that have one copy in all the considered samples,
and segments that have two copies in samples D, K and zero copies copies in sample J .
With n = 6 these two subsets are separated into different classes (red and purple),
while with n = 7 one more class (white) is introduced, potentially overfitting the data.

Copy-Number Tree Mixture Deconvolution 333

Fig. 8. Well-supported clonal events correspond to published clonal CNAs.
This plot shows the copy numbers of the clonal events inferred with n = 6 clones. We
indicate separate chromosomes with dashed blue lines. Green lines indicate amplifica-
tions and red lines indicate deletions. The lengths are proportional to the number of
segments. Thick lines indicate events that are shared by the majority of the inferred
trees T (with varying n). Purple stars indicate events that correspond to published
clonal CNAs [13].

5 Discussion

In the paper, we formulated the Copy-Number Tree Mixture Deconvolution
(CNTMD) Problem, and derived a coordinate-descent algorithm, with alternat-
ing ILP and LP steps, to solve this problem. CNTMD builds a phylogenetic tree
describing copy number evolution directly from mixed samples, thus addressing
an important issue in applying phylogenetic analysis to tumor samples. We show
that CNTMD outperforms approaches that only perform deconvolution—thus
ignoring the phylogenetic relationship between samples—or that build phyloge-
netic trees assuming that each sample is homogeneous, i.e. consisting of a single
clone. We also apply CNTMD to a complex metastatic prostate cancer dataset,
and build a phylogenetic tree containing multiple distinct clones, mixed in dif-
ferent proportions across samples. These results demonstrate the feasibility of
our approach to real-sized datasets.

There are a number of directions for future work. On the theoretical side,
the hardness of CNTMD remains open. Assuming the problem is intractable,
better heuristics for solving the C-step would improve the performance with
increasing number of clones. An additional avenue of investigation is to incor-
porate uncertainty in the segmentation of the genome into the model. Finally,
one could extend the approach using more sophisticated models of genome evo-
lution, including models that include additional genome rearrangements and
complex patterns of duplication—some promising work in this direction is found
in [15,18,22]. For practical applications, a number of improvements would be
helpful. First, approaches to better address noise in the copy number fractions,
using confidence intervals or posterior distributions to model the uncertainty in
entries of F , are needed. Next, model selection or regularization approaches to
estimate the number of clones in a tree and avoid overfitting would be help-
ful. For example, we report n = 6 clones in the prostate cancer sample A22,
while the original analysis [13] reports 16 clones. This difference is likely due to
the fact that [13] use single-nucleotide variants (SNVs) to identify clones. Thus,
methods that simultaneously identify CNAs and perform phylogeny inference
from CNAs and SNVs are an important direction for future work. Finally, one

334 S. Zaccaria et al.

could augment the phylogenetic reconstructions with single-cell measurements
including FISH [3] or single-cell sequencing [4]. Together, these improvements
would enable high-fidelity phylogenetic reconstructions of tumor evolution.

Acknowledgements. This work is supported by a US National Science Foundation
(NSF) CAREER Award (CCF-1053753) and US National Institutes of Health (NIH)
grants R01HG005690 and R01HG007069 to BJR. BJR is supported by a Career Award
at the Scientific Interface from the Burroughs Wellcome Fund, an Alfred P. Sloan
Research Fellowship.

References

1. Baumbusch, L.O., et al.: Comparison of the agilent, ROMA/NimbleGen and Illu-
mina platforms for classification of copy number alterations in human breast
tumors. BMC Genom. 9(1), 379 (2008)

2. Carter, S.L., et al.: Absolute quantification of somatic DNA alterations in human
cancer. Nat. Biotechnol. 30(5), 413–421 (2012)

3. Chowdhury, S.A., et al.: Algorithms to model single gene, single chromosome, and
whole genome copy number changes jointly in tumor phylogenetics. PLoS Comput.
Biol. 10(7), 1–19 (2014)

4. Davis, A., et al.: Computing tumor trees from single cells. Genome Biol. 17, 1
(2016)

5. Deshwar, A.G., et al.: PhyloWGS: reconstructing subclonal composition and evo-
lution from whole-genome sequencing of tumors. Genome Biol. 16(1), 1 (2015)

6. El-Kebir, M., et al.: Reconstruction of clonal trees and tumor composition from
multi-sample sequencing data. Bioinformatics 31(12), i62–i70 (2015)

7. El-Kebir, M., Raphael, B.J., Shamir, R., Sharan, R., Zaccaria, S., Zehavi, M., Zeira,
R.: Copy-number evolution problems: complexity and algorithms. In: Frith, M.,
Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 137–149. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-43681-4 11

8. El-Kebir, M., et al.: Inferring the mutational history of a tumor using multi-state
perfect phylogeny mixtures. Cell Syst. 3(1), 43–53 (2016)

9. Fischer, A., et al.: High-definition reconstruction of clonal composition in cancer.
Cell Rep. 7(5), 1740–1752 (2014)

10. Gavin, H., et al.: Titan: inference of copy number architectures in clonal cell pop-
ulations from tumor whole genome sequence data. Genome Res. 24, 1881–1893
(2014)

11. Gawad, C., et al.: Single-cell genome sequencing: current state of the science. Nat.
Rev. Genet. 17(3), 175–188 (2016)

12. Gerlinger, M., et al.: Intratumor heterogeneity and branched evolution revealed by
multiregion sequencing. N. Engl. J. Med. 366(10), 883–892 (2012)

13. Gundem, G., et al.: The evolutionary history of lethal metastatic prostate cancer.
Nature 520(7547), 353–357 (2015)

14. Jiang, Y., et al.: Assessing intratumor heterogeneity and tracking longitudinal
and spatial clonal evolutionary history by next-generation sequencing. PNAS 113,
E5528–E5537 (2016)

15. Li, Y., et al.: Allele-specific quantification of structural variations in cancer
genomes. Cell Syst. 3(1), 21–34 (2016)

http://dx.doi.org/10.1007/978-3-319-43681-4_11

Copy-Number Tree Mixture Deconvolution 335

16. Van Loo, P., et al.: Allele-specific copy number analysis of tumors. PNAS 107,
16910–16915 (2010)

17. Malikic, S., et al.: Clonality inference in multiple tumor samples using phylogeny.
Bioinformatics 31(9), 1349–1356 (2015)

18. McPherson, A., Roth, A., Chauve, C., Sahinalp, S.C.: Joint inference of genome
structure and content in heterogeneous tumor samples. In: Przytycka, T.M. (ed.)
RECOMB 2015. LNCS, vol. 9029, pp. 256–258. Springer, Cham (2015). doi:10.
1007/978-3-319-16706-0 25

19. McPherson, A., et al.: Divergent modes of clonal spread and intraperitoneal mixing
in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016). doi:10.1038/
ng.3573

20. Nik-Zainal, S., et al.: The life history of 21 breast cancers. Cell 149(5), 994–1007
(2012)

21. Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194, 23–28
(1976)

22. Oesper, L., et al.: Reconstructing cancer genomes from paired-end sequencing data.
BMC Bioinform. 13(6), S10 (2012)

23. Oesper, L., et al.: THetA: inferring intra-tumor heterogeneity from high-
throughput DNA sequencing data. Genome Biol. 14(7), R80 (2013)

24. Roman, T., et al.: Medoidshift clustering applied to genomic bulk tumor data.
BMC Genom. 17(1), 6 (2016)

25. Schwarz, R.F., et al.: Phylogenetic quantification of intra-tumour heterogeneity.
PLoS Comput. Biol. 10(4), 1–11 (2014)

26. Schwarz, R.F., et al.: Spatial and temporal heterogeneity in high-grade serous
ovarian cancer: a phylogenetic analysis. PLoS Med 12(2), 1–20 (2015)

27. Shamir, R., et al.: A linear-time algorithm for the copy number transformation
problem. In: LIPIcs, vol. 54. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2016)

28. Sottoriva, A., et al.: A Big Bang model of human colorectal tumor growth. Nat.
Genet. 47(3), 209–216 (2015)

29. Venkatesan, S., et al.: Tumor evolutionary principles: How intratumor heterogene-
ity influences cancer treatment and outcome. ASCO 35, e141–e149 (2015)

30. Zack, T.I., et al.: Pan-cancer patterns of somatic copy number alteration. Nat.
Genet. 45(10), 1134–1140 (2013)

http://dx.doi.org/10.1007/978-3-319-16706-0_25
http://dx.doi.org/10.1007/978-3-319-16706-0_25
http://dx.doi.org/10.1038/ng.3573
http://dx.doi.org/10.1038/ng.3573

Quantifying the Impact of Non-coding Variants
on Transcription Factor-DNA Binding

Jingkang Zhao1,2, Dongshunyi Li3, Jungkyun Seo2, Andrew S. Allen1,3,
and Raluca Gordân1,3,4(B)

1 Center for Genomic and Computational Biology,
Duke University, Durham, NC 27708, USA

raluca.gordan@duke.edu
2 Program in Computational Biology and Bioinformatics,

Duke University, Durham, NC 27708, USA
3 Department of Biostatistics and Bioinformatics,

Duke University, Durham, NC 27708, USA
4 Department of Computer Science, Duke University, Durham, NC 27708, USA

Abstract. Many recent studies have emphasized the importance of
genetic variants and mutations in cancer and other complex human dis-
eases. The overwhelming majority of these variants occur in non-coding
portions of the genome, where they can have a functional impact by
disrupting regulatory interactions between transcription factors (TFs)
and DNA. Here, we present a method for assessing the impact of non-
coding mutations on TF-DNA interactions, based on regression models
of DNA-binding specificity trained on high-throughput in vitro data. We
use ordinary least squares (OLS) to estimate the parameters of the bind-
ing model for each TF, and we show that our predictions of TF binding
changes due to DNA mutations correlate well with measured changes in
gene expression. In addition, by leveraging distributional results asso-
ciated with OLS estimation, for each predicted change in TF binding
we also compute a normalized score (z-score) and a significance value (p-
value) reflecting our confidence that the mutation affects TF binding. We
use this approach to analyze a large set of pathogenic non-coding vari-
ants, and we show that these variants lead to significant differences in TF
binding between alleles, compared to a control set of common variants.
Thus, our results indicate that there is a strong regulatory component
to the pathogenic non-coding variants identified thus far.

Keywords: TF-DNA binding · Non-coding variants · Regression
models

1 Introduction

Single nucleotide variants (SNVs) play important roles in the pathogenesis of
many complex diseases [16]. For mutations that occur within protein-coding

J. Zhao and D. Li—These authors contributed equally to this work.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 336–352, 2017.
DOI: 10.1007/978-3-319-56970-3 21

Quantifying the Impact of Non-coding Variants on TF-DNA Binding 337

genes, there are established metrics (e.g. SIFT [29] and PolyPhen [1]) that
attempt to quantify the effect of a variant on gene function. However, coding
variants are only a small fraction of all genetic variants: recent studies estimate
that ∼93% of disease- and trait-associated human genetic variants fall within
non-coding genomic regions [24], and their functional impact is difficult to assess
and quantify.

Non-coding variants can play a functional role in the cell by disrupting inter-
actions between transcription factors (TFs) and their genomic target sites [16].
TFs are regulatory proteins that bind short DNA sites, typically in the neighbor-
hood of the regulated genes, and promote or repress gene expression. Predicting
the effect of SNVs on TF binding is an important area of research still lack-
ing good solutions. Binding models for many human TFs are currently avail-
able [14,22,31,41] in the form of position weight matrices (PWMs). A PWM
is a matrix of scores (or weights) for each nucleotide at each position in a
TF binding site. Although they are easy to use and visualize, PWMs make
the assumption that individual base pairs in a TF binding site (TFBS) con-
tribute independently to the binding affinity. This assumption does not always
hold [5,11,37,38,42]. Nevertheless, although it is now recognized that PWMs
cannot accurately capture TF-DNA binding affinity [20,33,35], current methods
for determining whether a SNV is likely to affect TF-DNA binding are based
on differences in PWM scores [2,26,36,39]. Such methods are generally able to
detect large changes in TF binding affinity (from high affinity to non-specific
binding), but they ignore less drastic changes, which can have important pheno-
typic effects (e.g. [32]).

Another drawback of using PWM models to predict the effect of SNVs is the
fact that many mammalian TFs have several PWMs available in the literature,
oftentimes from databases such as Transfac [23], Jaspar [21], UniPROBE [28],
or Cis-BP [41]. Different PWMs can result in different predictions on whether
or not a SNV will affect binding of the TF of interest, and there is no objective
method to choose the best PWM to use, as quality metrics are not reported
for these models. Ideally, a method for characterizing the effect of non-coding
SNVs on TF binding should be able to capture both large and small changes
in binding, as long as the changes are ‘significant’ given the quality/precision of
the model.

Here, we present a new method for assessing the impact of non-coding
variants/mutations on TF-DNA binding. Based on high-throughput data from
protein-binding microarray (PBM) experiments [8,9], we build k-mer-based
models of TF binding specificity, estimating the model parameters with ordi-
nary least squares (OLS). We use the estimated regression coefficients, as well
as the variance-covariance matrix, to compute for any given mutation: (1) a
quantitative prediction of the change in TF binding due to the mutation, and
(2) a z-score and p-value indicating the significance of the predicted change,
given the model properties. Our approach is novel compared to previous regres-
sion models trained on PBM data [3,40] because, by using OLS, we obtain not
only estimates of the regression coefficient for each k-mer, but also the variance

338 J. Zhao et al.

of the coefficient estimates. Thus, our predictions of the effects of mutations
on TF-DNA binding implicitly take into account the quality of the training
data and model, such that in the case of poor predictive models we require a
larger change in binding for a mutation to be called significant. In addition, the
computed variance in the estimates of the model parameters allows us to make
objective choices between different models corresponding to the same TF. We
validate our models using gene expression data from high-throughput reporter
assays [15,27], and we apply them to predict the effects of pathogenic SNVs [34]
on TF binding.

2 Data and Methods

2.1 Universal Protein-Binding Microarray (PBM) Data

Accurate methods for predicting the effect of SNVs on TF binding require accu-
rate models of TF-DNA binding specificity. Here, to train such models we use
high-throughput in vitro data from universal PBM assays [9]. Each universal
PBM data set is specific to one TF, and it contains quantitative measurements
of the binding specificity of that TF for ∼40,000 DNA sequences. The PBM
protocol is described in detail in [8]. Briefly, double-stranded DNA molecules
attached to a glass slide (microarray) are incubated with an epitope-tagged TF.
To detect the amount of TF bound to each DNA spot, the microarray is labeled
with a fluorophore-conjugated antibody specific to the epitope tag, and scanned
using a microarray scanner. The fluorecence intensity of each DNA spot provides
a quantitative measurement of the TF specificity for the DNA sequence in that
spot.

PBM experiments are typically performed using Agilent microarrays printed
with custom 60-bp DNA sequences [8]. For a ‘universal’ PBM array design, the
DNA sequences printed on the array are computationally designed according to a
deBruijn sequence of order 10 over the {A,C,G,T} alphabet, which, by definition,
is guaranteed to contain all possible 10-bp DNA sequences, with each 10-mer
occurring once and only once. To computationally generate the DNA library,
the deBruijn sequence is split into sequences of 35 or 36 bases, depending on
the design [9,41], and the remaining 25 or 24 bases, respectively, are set to the
complement of a primer used to double-strand the DNA molecules. Table 1 shows
as example one of the 973 PBM data sets [6,41] used in our analysis of pathogenic
non-coding variants (Sect. 3.4). The PBM data sets used in Sects. 3.2 and 3.3
are: pTH5080 HK and pTH5080 ME for Creb [41], Tcf1 2666.2 for Hnf1 [7],
Foxa2 2830.2 v1 for Foxa, Hnf4a 2640.2 v1 for Hnf4, and Gata3 1024.3 v1 for
Gata [5].

2.2 Massively Parallel Reporter Assay (MPRA) Data

To validate that the quantitative predictions of TF binding changes made
using our OLS k-mer models (Sect. 2.3) are biologically relevant, we lever-
aged high-throughput gene expression data from massively parallel reporter

Quantifying the Impact of Non-coding Variants on TF-DNA Binding 339

Table 1. Example of universal PBM data set for transcription factor Arid5a [5].

DNA sequences of length L= 60 TF binding intensity

TTGAATCAAT......GTCCGTGCTG 74573.8653

CCAAGACAGT......GTCCGTGCTG 45399.3011

CGCAAATATT......GTCCGTGCTG 40440.2397

......

ACTTCCGATA......GTCCGTGCTG 39895.9250

assays (MPRA) [27]. Briefly, in an MPRA experiment one first synthesizes tens
of thousands of oligonucleotides that contain a library of regulatory elements
(enhancers), each coupled to a short DNA tag. The oligonucleotides are used
to generate a pool of plasmids, where each plasmid contains one of the regu-
latory elements of interest upstream of an open reading frame followed by the
sequence tag corresponding to that regulatory element. The pool of plasmids
is co-transfected into cells, where the regulatory elements drive transcription
of mRNA molecules containing the tags. The tags in the reporter mRNAs, as
well as the original plasmid pool, are sequenced and counted. The ratio of these
counts, or the logarithm of the ratio, is taken as a measurement of the gene
expression driven by each regulatory element [27].

Here, we use MPRA data from two recent studies. Melnikov et al. [27]
reported the expression levels of a reporter gene (an inert open reading frame)
downstream of variants of a synthetic, 87-nt cAMP-regulated enhancer. The
mutants were either generated by single nucleotide substitutions (for a total of
87 × 3 = 261 variants) or by random multiple 1-bp nucleotide substitutions,
introduced at a rate of 10% per position (∼27,000 variants). The expression
level of each variant was reported as the median of the mRNA-based counts
normalized by the DNA-based counts, taken over multiple tags. In our analyses,
we used the natural logarithm of the ratios of the expression levels of mutants
to the expression level of the wild-type sequence.

Kheradpour et al. [15] reported the expression levels of a small number of
enhancer variants for four TFs: Hnf1, Foxa, Hnf4 and Gata. Selected wild-type
enhancer regions were centered on motif matches and the mutants were generated
by multiple approaches such as motif removal, maximum 1-bp decrease, least 1-
bp change, etc. The expression level was expressed as the binary logarithm of
the mean value of the ratio of the mRNA to plasmid counts. In our analyses, we
used the proportion of change in gene expression due to the mutations, relative
to the expression of the wild-type sequence.

2.3 Training k-mer Regression Models of TF Binding Specificity
Using Ordinary Least Squares (OLS)

In a universal PBM experiment, TF binding to each of the ∼40,000 pre-designed
L-bp DNA sequence is measured as fluorescent signal (Table 1). We apply a

340 J. Zhao et al.

logarithmic transformation to the fluorescent signal, which makes the experimen-
tal noise uncorrelated with the signal, and we use the natural log-transformed
fluorescence intensities as the dependent variable Y . As independent variables X,
we use the counts of each k-mer within the L-bp DNA sequences, with the value
of k decided based on validation experiments (Sect. 3.1). Since the DNA is dou-
ble -stranded, and binding of TFs is not strand-specific, we regard each sequence
and its reverse complement as the same feature. Thus, the number of features
nk for a k-mer model is 4k/2 when k is an odd number, and (4k − 2k)/2 + 2k

when k is even.
Suppose there are a total of N L-bp sequences. We convert each sequence

into the counts of all nk k-mers in an overlapping fashion, generating a N × nk

covariate matrix X. There is an inherent restriction for the rows of the matrix.
For any row i, the sum of the counts is xi1 + ... + xink

= L − k + 1, which is due
to the fact that every L-bp sequence contains L−k +1 overlapping k-mers. The
linear dependency of the nk features renders the intercept term redundant, and
we therefore train our models without the intercept term:

Yi = β1xi1 + ... + βnk
xink

+ εi (1)

After the intercept term is removed from the model, multicollinearity among
the covariates is no longer a problem and we can compute the ordinary least
square (OLS) estimates for the β’s, as well as the covariance matrix Σ̂, whose
diagonal contains the variance in the coefficient estimates:

β̂ = (X ′X)−1X ′Y (2)

Σ̂ =
(Y − Xβ̂)′(Y − Xβ̂)

N − nk
(X ′X)−1 (3)

2.4 Statistical Testing Using OLS k-mer Models of TF Binding
Specificity

By assuming normality on the error vector ε ∼ N(0, σ2I) in (1), we can perform
statistical tests on β’s as well as linear combination of β’s. Given a vector c of
length nk, the null and alternative hypotheses to test a linear combination of
β’s are the following:

H0 : c′β = 0
H1 : c′β �= 0

A t-statistic can be built using the estimated covariance matrix:

t =
c′β̂

√
c′Σ̂c

∼ tN−nk
(4)

In fact, since we have a large number of observations, the distribution of the test
statistics is approximately normal, and we can thus compute a z-score for c′β̂.

Quantifying the Impact of Non-coding Variants on TF-DNA Binding 341

2.5 Using OLS k-mer Models to Predict the Effect of SNVs
on TF-DNA Binding

The method above can be directly applied to predict the effect of single base-
pair variants on TF binding. To illustrate this, we provide an example for a
mutation (A to C) that affects a binding site for TF Creb1 (Table 2). We used
6-mer features to train a regression model from universal PBM data for Creb1,
available from [41]. In a 6-mer model, there are a total of 2080 features. From
the modeling step, we can derive the estimates of coefficients β̂ for all 6-mers,
as well as the covariance matrix estimate Σ̂.

Table 2. Single base-pair mutation overlapping a binding site for TF Creb1. The wild-
type and mutated binding sites are shown in bold. The mutated position is under-
lined. (The 6-mers in parentheses are the reverse complements of 6-mers in the original
sequence. In these cases the reverse complement 6-mers were used as features because
they are alphabetically ranked lower that the corresponding 6-mers on the forward
strand.)

Wild-Type Mutant

CCCAT TGACGTCAATGGG CCCAT TGCCGTCAATGGG

CATTGA CATTGC

ATTGAC ATTGCC

TTGACG (CGTCAA) TTGCCG (CGGCAA)

TGACGT (ACGTCA) TGCCGT (ACGGCA)

GACGTC GCCGTC (GACGGC)

ACGTCA CCGTCA

Given a k-mer model, a single base-pair mutation leads to a change in every
k-mer in a 2k − 1 bp region centered at the mutated base (Table 2). Thus, the
total change is:

k∑

p=1

(β̂jp − β̂ip)

where jp is the index of the pth k-mer in the mutated sequence, and ip is the
index of the corresponding k-mer in the original sequence.

For the example in Table 2, the mutation causes a change in 6 consecutive
6-mers, and the total effect of the mutation is:

β̂CATTGC + β̂ATTGCC + β̂CGGCAA + β̂ACGGCA + β̂GACGGC + β̂CCGTCA

−β̂CATTGA − β̂ATTGAC − β̂CGTCAA − β̂ACGTCA − β̂GACGTC − β̂ACGTCA

In vector notation, this effect can be written in terms of 6-mer coefficients as:

c′ = (0, ..., 1, ...,−2, ...,−1, ..., 1, ...,−1, ..., 1, ..., 1, ..., 1, ...,−1, ...1, ...,−1, ..., 0)

342 J. Zhao et al.

where the coefficients are null for all 6-mers that do not contribute to the total
effect.

Next, we use (4) to compute the test statistic t for the difference in predicted
binding affinity (c′β̂) between the mutant and the wild-type sequences. For the
specific mutation in our example, the difference in binding affinity is −1.69.
After normalization, the z-score for this mutation is −42.07 (p-value < 10−10),
indicating a significant decrease in Creb1 binding affinity.

3 Results

3.1 OLS 6-mer Models Can Accurately Predict TF Binding
Intensity

To check the accuracy of the k-mer models and determine the best value for
k, we used 115 TFs from the Cis-BP database [41] for which universal PBM
data is available from two distinct array designs. We learned OLS k-mer models
from one array design, and tested them on the independent data obtained using
the second array design. The Pearson correlation coefficient (R) between our
predicted TF binding intensities and the measured intensities from both the
training and the test data sets are summarized in Fig. 1. We note that PBM
experiments performed on different arrays are not replicate experiments, as the
array designs contain different DNA sequences. In addition, data quality is highly
variable across the PBM data sets, so we expect the performance of any model
trained on these data sets to also vary. Importantly though, our 6-mer OLS

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Correlation Between
 Prediction and Training Data

5−mer 6−mer 7−mer 5−mer 6−mer 7−mer

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Correlation Between
 Prediction and Test Data

Fig. 1. Performance of OLS k-mer models for k = 5, 6, and 7. Box plots show Pearson
correlation coefficients between predicted and measured TF binding intensities, for
115 TFs [41] with data available from two universal PBM designs. Left: predictions
compared to binding data from the PBM design used for training. Right: predictions
compared to binding data from an independent PBM design.

Quantifying the Impact of Non-coding Variants on TF-DNA Binding 343

models are designed to implicitly take data quality into account when predicting
changes in TF binding due to mutations, as described in Sect. 2.5.

Figure 1 shows the performance of 5-mer, 6-mer, and 7-mer OLS models,
which have 512, 2080, and 8192 features, respectively. For k = 8, the models
have a total of 32,896 features. Since we only have ∼40,000 observations, models
with k ≥ 8 run into dimensionality problems and we cannot get OLS estimates
for the parameters. Among 5-mer, 6-mer, and 7-mer models, we found that 7-
mers models perform best on the training data (Fig. 1, left panel). However,
on independent test data from a different array design, 7-mer models perform
worse than 6-mers models (Fig. 1, right panel), indicating that they are likely
over-fitting the data. Thus, our results indicate that k = 6 results in models
that have the best accuracy in predicting TF binding intensity for new DNA
sequences. All results presented below use 6-mer OLS models.

The main goal of our method is to predict changes in TF binding, not
absolute TF binding levels. Nevertheless, to ensure that our 6-mer OLS mod-
els are accurate in predicting TF binding levels, we compared them to previous
models trained and tested on PBM data from different array designs. For this
comparison, we used the PBM data from the DREAM5 TF-DNA Motif Recog-
nition Challenge [40], which includes independent data sets obtained using two
different array designs, for 66 mouse TFs. In the challenge, PBM intensity data
were provided only for one array design, and the performance of each algorithm
was evaluated by assessing the prediction accuracy on the other array design,
using the Pearson correlation coefficient (R). Weirauch et al. [40] used several
normalization techniques to transform the PBM data before using it for training
and testing, and for each algorithm they selected the combination of normal-
ization steps that resulted in the best prediction accuracy on the test data. In
contrast to their approach, we use the PBM data directly in our algorithm,
applying only a logarithmic transformation to all PBM intensities, and thus
keeping the test PBM data completely independent from the training step. The
performance of our 6-mer OLS method was above average compared to the 15
methods tested in [40]. Thus, we conclude that the accuracy of our method in
predicting TF binding intensity is comparable to existing algorithms, with our
method having the unique advantage that it implicitly incorporates data quality
into the TF binding models.

3.2 TF Binding Change Predictions Based on OLS 6-mer Models
Correlate Well with Gene Expression Changes

To validate that our OLS 6-mer models are able to quantitatively predict the
effect of nucleotide mutations, we leveraged high-throughput reporter expres-
sion data generated using massively parallel reporter assays (MPRA) [15,27].
First, we focused on MRPA data for an 87-bp synthetic enhancer that con-
tains four binding sites for transcription factor Creb1 [27]. Melnikov et al. [27]
reported expression measurements for the wild-type enhancer (Fig. 2a), for all
possible single base pair mutations, as well as a large number of enhancer vari-
ants with multiple mutations randomly distributed across the enhancer region.

344 J. Zhao et al.

Fig. 2. Correlations between measured gene expression changes and TF binding
changes predicted by OLS and PWM models, for individual TF binding sites. (a)
Creb1-regulated enhancer. Red rectangles mark the four annotated Creb1 binding sites.
(b) Correlations for variant enhancers with single 1-bp mutations in individual binding
sites. (c) Correlations for variant enhancers with multiple 1-bp mutations in individ-
ual binding sites. R2 represents the squared Pearson correlation coefficient between
measured change in gene expression and predicted change in TF binding.

The expression values are reported as ratios of tag counts in the reporter mRNA
versus tag counts in the plasmid pool (see Sect. 2.2). Based on the expression
values reported in [27], we computed for each mutant enhancer the natural log-
arithm of the ratio between the expression of the mutant and the expression
of the wild-type enhancer. We asked whether these changes in gene expression
can be explained, at least in part, by changes in Creb1-DNA binding predicted
according to: (1) our OLS 6-mer model for TF Creb1; and (2) the mouse Creb1
PWM reported in the Cis-BP database (motif identifier M0297 1.02) [41]). To
score DNA sites according to the PWM we used the log-likelihood (LLR) score,
i.e. we computed the base 2 logarithm of the ratio between the probability of
the site according to the PWM model, and the probability of the site according
to a uniform background model over the four nucleotides.

Before applying our approach to predict the effect of mutations on Creb1-
DNA binding, we verified the accuracy of Creb1 OLS 6-mer models trained on
PBM data, and we selected the most accurate model. There are two univer-
sal PBM datasets available for mammalian Creb1, from two distinct universal
designs, denoted HK and ME [41] (Sect. 2.1). We trained OLS 6-mer models on
each array design, and we compared the models according to their predicted
variance for the parameter estimates, i.e. the diagonal of the covariance matrix
Σ̂ (see (3)). The parameter estimates for the model trained on the ME data set
showed lower variances (Mann-Whitney U test p-value < 2.2 × 10−16), and thus
it was selected as the final Creb1 OLS 6-mer model.

Quantifying the Impact of Non-coding Variants on TF-DNA Binding 345

We first compared the OLS and PWM models on variant enhancers with
single bp mutations in each of the four Creb1 binding sites (defined as shown
in Fig. 2a). For each binding site, we asked how well the measured gene expres-
sion changes due to 1-bp mutations within the binding site correlate with the
predicted changes in TF binding. The OLS model performed better than the
PWM for mutations in sites 2 and 4 (where both models have good prediction)
and worse than the PWM for mutations in sites 1 and 3 (where both models
performed poorly) (Fig. 2b).

Next, we compared the OLS and PWM models on enhancers with multiple
1-bp mutations in each of the four Creb1 binding sites. The OLS model outper-
formed the PWM on three of the four binding sites (Fig. 2c). This result was
somewhat expected. Unlike our OLS k-mer models, PWM models cannot capture
dependencies between positions within TF binding sites, and this shortcoming can
lead to poor predictions when multiple mutations are introduced in a site.

Finally, we compared the OLS and PWM models on enhancers with multiple
1-bp mutations in regions that cover several of the Creb1 binding sites (Fig. 3).
For such regions, using the OLS 6-mer model is straightforward, since the model
can be applied to predict TF binding for sequences of any width. In contrast,
PWM models have a fixed width. To apply the PWM model to longer regions,
we used a sliding window of size 8 (the same size as the Creb1 PWM), we scored
each window according to the PWM, and we summed up the scores above a cer-
tain cutoff, expressed in terms of the maximum LLR score that can be obtained
using the PWM model (e.g. 20% the maximum score, 30%, 40%, 50%, 60%,
etc.). We also tested other approaches to score long DNA regions using PWMs,
such as the GOMER model [13], but the thresholding approach described above
worked best. We found that a cutoff of 60% leads to the best performance of
the PWM model, so we used this cutoff in our comparisons. Figure 3 shows that
as we include more binding sites in our analysis, the performance of the PWM
decreases, reaching an R2 of 0.27 when all four binding sites are included (Fig. 3c,
left panel). In contrast, the OLS model continues to perform well regardless of
the number of binding sites included in the analysis, and it constantly achieves
correlations of 0.49 or higher (Fig. 3, right panels). We also tested additional
Creb1 PWM models, including the curated human Creb1 motif from the Hoco-
Moco database [17] (downloaded from Cis-BP [41], motif identifier M6180 1.02),
which achieved correlations <0.1 in all analyses of mutations in multiple binding
sites. Overall, the Cis-BP motif M0297 1.02 resulted in the highest correlations
with the gene expression data. Thus, we focused on this motif for all comparisons
described in this section.

Our results show that changes in TF binding, predicted using the OLS 6-
mer model, can explain ∼50% of the change in gene expression due to DNA
mutations. This fraction is remarkable, given the complexity of gene regulation.
We do not expect TF binding changes to completely explain gene expression
changes, nor to correlate linearly with expression changes observed in the cell.
The large correlation between changes predicted by the OLS model and measured
changes in gene expression demonstrate that our predictions are quantitative and
biologically relevant.

346 J. Zhao et al.

Fig. 3. Correlations between gene expression changes and TF binding changes pre-
dicted by OLS and PWM models, for regions containing multiple TF binding sites and
multiple mutations. (a) Correlations for variant enhancers with multiple 1-bp muta-
tions at positions 35–55 in the Creb1-regulated enhancer (see Fig. 2a), covering two
Creb1 binding sites. (b) Similar to panel (a), but for mutations at positions 35–77 in
the Creb1-regulated enhancer, covering 3 binding sites. (c) Similar to panel (a), but
for mutations at positions 12–77 in the Creb1-regulated enhancer, covering 4 binding
sites. Gray lines show the linear fit obtained using the R lm function. R2 represents
the squared Pearson correlation coefficient.

3.3 Making Binary Predictions of TF Binding Changes Using OLS
6-mer Models

Another application of our 6-mer OLS models is binary classification of muta-
tions into those that affect TF binding (and thus are likely to affect gene expres-
sion) versus those that do not affect TF binding (and thus are less likely to affect
gene expression). To illustrate this application of our models, we used MRPA
data generated by Kheradpour et al. [15] for putative regulatory regions centered
at binding sites for four TFs (Hnf1, Foxa, Hnf4 and Gata), and variants of these
regions where the TFBSs are mutated. Several types of mutants were tested for
each regulatory region: scrambled binding site, removal of binding sites, 1-bp
mutations that caused the maximum increase or decrease in PWM score, 1-bp
mutation that caused the minimum change in PWM score, and a random 1-bp
change. Thus, compared to the MPRA data used in Sect. 3.2, the data used

Quantifying the Impact of Non-coding Variants on TF-DNA Binding 347

here does not comprehensively cover all possible single-bp mutations. In addi-
tion, unlike the well-characterized Creb1-regulated enhancer used in Sect. 3.2,
the genomic regions included in this MPRA data set [15] are putative enhancers.
Thus, some of the enhancers may not be active, or they may not be regulated
through the TFBSs in the tested genomic regions. For this reason, we filtered
out the wild-type regulatory sequences with expression levels lower than 0.5,
as suggested by the authors [15]. In addition, for both wild-type and mutant
sequences, we used the replicate MPRA data sets to filter out sequences for
which the replicates did not agree (p-value < 0.05 according to a Mann-Whitney
U test applied to the reporter expression data for the two replicates, over the 10
different tags used for each sequence).

After the filtering steps described above, the number of sequences for each
TF was: 27 (wild-type, mutant) pair sequences for Hnf1, 53 pairs for Hnf4, 29
pairs for Gata, and 20 pairs for Foxa. For each TF, the set of (wild-type, mutant)
pairs was dichotomized into pairs for which the wild-type and mutant sequences
have either similar or distinct expression values. The calls were made using a
Mann-Whitney U test that compared the expression values of the two sequences,
over all tags used in the MPRA experiment. The U test p-value cutoff was set
individually for each TF, as the 5% quantile of the empirical distribution of p-
values obtained by testing the differences between replicate experiments. Thus,
for each TF we obtained a ‘positive’ set of (wild-type, mutant) pairs, for which
the mutation significantly affected gene expression, and a ‘negative’ set of (wild-
type, mutant) pairs, for which the mutation did not have an effect on gene
expression.

Next, using the dichotomized expression data for (wild-type, mutant) pairs,
we asked whether differences in TF binding, as predicted by our 6-mer OLS
models or by PWMs of the four TFs (Hnf1, Foxa, Hnf4 and Gata), are predictive
of changes in gene expression. To evaluate each binding model we used the area
under the receiver-operating characteristic (ROC) curve for low false positive
rates (<0.2). For each mutation, we predicted that it either has or does not have
an effect on TF binding and gene expression, according to whether the predicted
TF binding change is above a cutoff. For PWM models we used cutoffs for the
LLR score. For OLS 6-mer models we used cutoffs according to the z-score. As
shown in Table 3, for three of the four TFs our OLS models outperformed the
PWM models.

3.4 Analysis of Pathogenic Non-coding Variants

To further illustrate how OLS models can be used to analyze non-coding vari-
ants, we performed a broad analysis of all non-coding pathogenic SNVs anno-
tated in the Human Gene Mutation Database (HGMD R©) [34] and ClinVar [18].
Starting with 101,833 SNVs, we excluded any variants that overlapped with con-
sensus coding sequences, leaving 4,655 unique variants. Next, we removed vari-
ants considered to reside within coding/canonical splice of any Ensembl coding
transcript. We also excluded the variants on sex chromosomes or mitochondrial

348 J. Zhao et al.

Table 3. Comparison between 6-mer OLS models and PWM models for four TFs
with MPRA data available from [15]. The numbers represent areas under the receiver-
operating characteristic (ROC) curve, for false positive rates between 0 and 0.2. The
maximum value for the area under the curve is 0.2. The expected value for random
models is 0.02. Results show that 6-mer OLS models outperform PWM models for 3
out of the 4 TFs tested.

Hnf1 Hnf4 Gata Foxa

PWM models 0.04556 0.02082 0.07014 0.04835

6-mer OLS models 0.06667 0.04868 0.05046 0.05275

chromosomes, leaving a total of 3,422 unique non-coding pathogenic autosomal
variants for analysis.

We also selected a set of control variants among the common variants anno-
tated in the 1000 Genomes Project [4], following similar filtering steps. We first
downloaded all SNVs from phase 3 of the 1000 Genomes Project, and excluded
all rare variants (i.e. variants with minor allele frequency < 0.01). To obtain
non-coding variants, we annotated the filtered variants using the Variant Effect
Predictor (VEP) tool [25], and we excluded variants annotated to reside in a
coding region. After this process, a total of 11.9 million non-coding SNVs were
retained from 84.4 million 1000 Genomes variants. Finally, we randomly selected
3,422 non-coding autosomal variants that followed a similar genomic distribution
as the pathogenic variants.

We trained 6-mer regression models for all 973 PBM data sets available for
human and mouse TFs [6,41], and applied our models to predict the binding
changes due to SNVs in the pathogenic and control data sets. For each SNV, we
took the maximum absolute value of the 973 predicted z-scores as the measure of
the binding change due to the SNV. Figure 4 displays the empirical cumulative
density functions of the predicted binding changes for the 3,422 variants in each
data set. Our result shows that the binding changes caused by the pathogenic
variants are significantly larger than the changes caused by the control variants
(Mann-Whitney U test p-value < 2.2 × 10−16), indicating that there is a strong
regulatory component for the annotated pathogenic variants.

4 Discussion

We developed a new method to assess the impact of non-coding mutations on
TF-DNA binding, using high-throughput PBM data. Such data is currently
available for almost 1,000 mammalian TFs [6,41] covering a broad range of
TF families. Each PBM data set contains binding measurements for ∼40,000
short DNA sequences. We utilize the data to build k-mer linear regression mod-
els, estimating the model parameters with OLS. The novelty of our approach,
compared to previous work [3,40], is that we can use the estimated regression
coefficients together with the estimated covariance matrix to compute not only

Quantifying the Impact of Non-coding Variants on TF-DNA Binding 349

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pathogenic SNVs vs. Control SNVs

Absolute value of z−scores

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

pathogenic
control

Fig. 4. Comparison of predicted TF binding changes between pathogenic SNVs (red
line) and control SNVs (blue line). Overall, pathogenic SNVs have a larger effect on
TF binding, as predicted by our OLS 6-mer models.

the change in TF binding due to a mutation (or set of mutations), but also a
z-score and a p-value indicating the significance of the change.

Importantly, for any given mutation, the z-scores and p-values obtained for
different TFs are directly comparable and can be combined to assess the broad
regulatory effects of mutations, as illustrated in Sect. 3.4. In contrast, given that
PWM scores are not directly comparable across different models, combining
differences in PWM scores for large sets of TFs is not straightforward. As another
advantage of OLS k-mer models over PWMs, we note that our k-mer models can
be used to assess the effect of mutations over long regions containing multiple
mutations and binding sites, without the need to call binding sites according to
some score cutoff. As shown in Sect. 3.2 for mutations in an enhancer regulated
by Creb1, our OLS model was able to quantitatively capture the effects of DNA
mutations over long regions, explaining ∼50% of the change in gene expression.
Thus, we expect any method that uses PWM models to assess the functional
effects of non-coding variants (e.g. [10,12,25,30]) to benefit from using our OLS
models instead of PWMs.

We note that individual k-mer features in our models are not independent, so
their estimated coefficients (β̂) should not be interpreted individually. Overall,
though, the change in binding score and the corresponding z-scores and p-values,
computed as described in Sect. 2.5, can be interpreted directly because they take
into account all overlapping k-mers affected by the mutation of interest, and
the z-scores and p-values also take into consideration the correlation between
features through the estimated variance-covariance matrix. One concern about
the z-scores and p-values is their dependence on the normality of the random
error, which can be approximately achieved by exploring the transformation of

350 J. Zhao et al.

the raw intensity score. In our study we did not elaborate on finding the optimal
transformation, since we have a sufficiently large sample size for the statistical
tests to be applicable even in cases of non-normality [19]. The main limitation
of our OLS approach is that the number of features cannot exceed the number
of observations. In future work we will focus on Bayesian methods that can be
applied to higher dimensional data, while at the same time providing posterior
distributions that allow us to make inferences about the model parameters.

Acknowledgements. This research was supported in part by awards number
P01CA142538 from the National Cancer Institute, and R01GM117106 from the
National Institute of General Medical Sciences (to RG). The content is solely the
responsibility of the authors and does not necessarily represent the official views of the
National Institute of Health.

References

1. Adzhubei, I.A., Schmidt, S., Peshkin, L., et al.: A method and server for predicting
damaging missense mutations. Nat. Methods 7(4), 248–249 (2010)

2. Andersen, M.C., Engstrom, P.G., Lithwick, S., et al.: In silico detection of sequence
variations modifying transcriptional regulation. PLoS Comput. Biol. 4(1), e5
(2008)

3. Annala, M., Laurila, K., Lahdesmaki, H., Nykter, M.: A linear model for transcrip-
tion factor binding affinity prediction in protein binding microarrays. PLoS One
6(5), e20059 (2011)

4. Auton, A., Brooks, L.D., Durbin, R.M., et al.: A global reference for human genetic
variation. Nature 526(7571), 68–74 (2015)

5. Badis, G., Berger, M.F., Philippakis, A.A., et al.: Diversity and complexity in DNA
recognition by transcription factors. Science 324(5935), 1720–1723 (2009)

6. Barrera, L.A., Vedenko, A., Kurland, J.V., et al.: Survey of variation in human
transcription factors reveals prevalent DNA binding changes. Science 351(6280),
1450–1454 (2016)

7. Berger, M.F., Badis, G., Gehrke, A.R., et al.: Variation in homeodomain DNA
binding revealed by high-resolution analysis of sequence preferences. Cell 133(7),
1266–1276 (2008)

8. Berger, M.F., Bulyk, M.L.: Universal protein-binding microarrays for the compre-
hensive characterization of the DNA-binding specificities of transcription factors.
Nat. Protoc. 4(3), 393–411 (2009)

9. Berger, M.F., Philippakis, A.A., Qureshi, A.M., et al.: Compact, universal DNA
microarrays to comprehensively determine transcription-factor binding site speci-
ficities. Nat. Biotechnol. 24(11), 1429–1435 (2006)

10. Boyle, A.P., Hong, E.L., Hariharan, M., et al.: Annotation of functional variation
in personal genomes using RegulomeDB. Genome Res. 22(9), 1790–1797 (2012)

11. Bulyk, M.L., Johnson, P.L., Church, G.M.: Nucleotides of transcription factor bind-
ing sites exert interdependent effects on the binding affinities of transcription fac-
tors. Nucleic Acids Res. 30(5), 1255–1261 (2002)

12. Fu, Y., Liu, Z., Lou, S., et al.: FunSeq2: a framework for prioritizing noncoding
regulatory variants in cancer. Genome Biol. 15(10), 480 (2014)

13. Granek, J.A., Clarke, N.D.: Explicit equilibrium modeling of transcription-factor
binding and gene regulation. Genome Biol. 6(10), R87 (2005)

Quantifying the Impact of Non-coding Variants on TF-DNA Binding 351

14. Jolma, A., Yan, J., Whitington, T., et al.: DNA-binding specificities of human
transcription factors. Cell 152(1–2), 327–339 (2013)

15. Kheradpour, P., Ernst, J., Melnikov, A., et al.: Systematic dissection of regulatory
motifs in 2000 predicted human enhancers using a massively parallel reporter assay.
Genome Res. 23(5), 800–811 (2013)

16. Khurana, E., Fu, Y., Chakravarty, D., et al.: Role of non-coding sequence variants
in cancer. Nat. Rev. Genet. 17(2), 93–108 (2016)

17. Kulakovskiy, I.V., Medvedeva, Y.A., Schaefer, U., et al.: HOCOMOCO: a com-
prehensive collection of human transcription factor binding sites models. Nucleic
Acids Res. 41(Database issue), 195–202 (2013)

18. Landrum, M.J., Lee, J.M., Benson, M., et al.: ClinVar: public archive of interpre-
tations of clinically relevant variants. Nucleic Acids Res. 44(D1), D862–868 (2016)

19. Lumley, T., Diehr, P., Emerson, S., Chen, L.: The importance of the normality
assumption in large public health data sets. Annu. Rev. Public Health 23, 151–
169 (2002)

20. Maerkl, S.J., Quake, S.R.: A systems approach to measuring the binding energy
landscapes of transcription factors. Science 315(5809), 233–237 (2007)

21. Mathelier, A., Fornes, O., Arenillas, D.J., et al.: JASPAR 2016: a major expansion
and update of the open-access database of transcription factor binding profiles.
Nucleic Acids Res. 44(D1), D110–115 (2016)

22. Mathelier, A., Zhao, X., Zhang, A.W., et al.: JASPAR 2014: an extensively
expanded and updated open-access database of transcription factor binding pro-
files. Nucleic Acids Res. 42(Database issue), D142–D147 (2014)

23. Matys, V., Kel-Margoulis, O.V., Fricke, E., et al.: TRANSFAC and its module
TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res.
34(Database issue), D108–D110 (2006)

24. Maurano, M.T., Humbert, R., Rynes, E., et al.: Systematic localization of com-
mon disease-associated variation in regulatory DNA. Science 337(6099), 1190–1195
(2012)

25. McLaren, W., Gil, L., Hunt, S.E., et al.: The ensembl variant effect predictor.
Genome Biol. 17(1), 122 (2016)

26. McVicker, G., van de Geijn, B., Degner, J.F., et al.: Identification of genetic vari-
ants that affect histone modifications in human cells. Science 342(6159), 747–749
(2013)

27. Melnikov, A., Murugan, A., Zhang, X., et al.: Systematic dissection and optimiza-
tion of inducible enhancers in human cells using a massively parallel reporter assay.
Nat. Biotechnol. 30(3), 271–277 (2012)

28. Newburger, D.E., Bulyk, M.L.: UniPROBE: an online database of protein binding
microarray data on protein-DNA interactions. Nucleic Acids Res. 37(Database
issue), 77–82 (2009)

29. Ng, P.C., Henikoff, S.: SIFT: predicting amino acid changes that affect protein
function. Nucleic Acids Res. 31(13), 3812–3814 (2003)

30. Perera, D., Chacon, D., Thoms, J.A., et al.: OncoCis: annotation of cis-regulatory
mutations in cancer. Genome Biol. 15(10), 485 (2014)

31. Robasky, K., Bulyk, M.L.: UniPROBE, update 2011: expanded content and search
tools in the online database of protein-binding microarray data on protein-DNA
interactions. Nucleic Acids Res. 39(Database issue), D124–D128 (2011)

32. Rowan, S., Siggers, T., Lachke, S.A., et al.: Precise temporal control of the eye
regulatory gene Pax6 via enhancer-binding site affinity. Genes Dev. 24(10), 980–
985 (2010)

352 J. Zhao et al.

33. Siggers, T., Gordan, R.: Protein-DNA binding: complexities and multi-protein
codes. Nucleic Acids Res. 42(4), 2099–2111 (2014)

34. Stenson, P.D., Mort, M., Ball, E.V., et al.: The human gene mutation database:
building a comprehensive mutation repository for clinical and molecular genetics,
diagnostic testing and personalized genomic medicine. Hum. Genet. 133(1), 1–9
(2014)

35. Stormo, G.D.: Modeling the specificity of protein-DNA interactions. Quant. Biol.
1(2), 115–130 (2013)

36. Thomas-Chollier, M., Defrance, M., Medina-Rivera, A., et al.: RSAT 2011: reg-
ulatory sequence analysis tools. Nucleic Acids Res. 39(Web Server issue), 86–91
(2011)

37. Tomovic, A., Oakeley, E.J.: Position dependencies in transcription factor binding
sites. Bioinformatics 23(8), 933–941 (2007)

38. Udalova, I.A., Mott, R., Field, D., Kwiatkowski, D.: Quantitative prediction of NF-
kappa B DNA-protein interactions. Proc. Natl. Acad. Sci. U.S.A. 99(12), 8167–
8172 (2002)

39. Ward, L.D., Kellis, M.: Interpreting noncoding genetic variation in complex traits
and human disease. Nat. Biotechnol. 30(11), 1095–1106 (2012)

40. Weirauch, M.T., Cote, A., Norel, R., et al.: Evaluation of methods for modeling
transcription factor sequence specificity. Nat. Biotechnol. 31(2), 126–134 (2013)

41. Weirauch, M.T., Yang, A., Albu, M., et al.: Determination and inference of eukary-
otic transcription factor sequence specificity. Cell 158(6), 1431–1443 (2014)

42. Zhao, Y., Ruan, S., Pandey, M., Stormo, G.D.: Improved models for transcrip-
tion factor binding site identification using nonindependent interactions. Genetics
191(3), 781–790 (2012)

aBayesQR: A Bayesian Method
for Reconstruction of Viral Populations

Characterized by Low Diversity

Soyeon Ahn(B) and Haris Vikalo

The University of Texas at Austin, Austin, TX, USA
soyeon.ahn@utexas.edu, hvikalo@ece.utexas.edu

Abstract. RNA viruses replicate with high mutation rates, creating
closely related viral populations. The heterogeneous virus populations,
referred to as viral quasispecies, rapidly adapt to environmental changes
thus adversely affecting efficiency of antiviral drugs and vaccines. There-
fore, studying the underlying genetic heterogeneity of viral populations
plays a significant role in the development of effective therapeutic treat-
ments. Recent high-throughput sequencing technologies have provided
invaluable opportunity for uncovering the structure of quasispecies pop-
ulations. However, accurate reconstruction of viral quasispecies remains
difficult due to limited read-lengths and presence of sequencing errors.
The problem is particularly challenging when the strains in a population
are highly similar, i.e., the sequences are characterized by low mutual
genetic distances, and further exacerbated if some of those strains are
relatively rare; this is the setting where state-of-the-art methods strug-
gle. In this paper, we present a novel viral quasispecies reconstruction
algorithm, aBayesQR, that employs a maximum-likelihood framework to
infer individual sequences in a mixture from high-throughput sequenc-
ing data. The search for the most likely quasispecies is conducted on
long contigs that our method constructs from the set of short reads via
agglomerative hierarchical clustering; operating on contigs rather than
short reads enables identification of close strains in a population and pro-
vides computational tractability of the Bayesian method. Results on both
simulated and real HIV-1 data demonstrate that the proposed algorithm
generally outperforms state-of-the-art methods; aBayesQR particularly
stands out when reconstructing a set of closely related viral strains (e.g.,
quasispecies characterized by low diversity).

Keywords: Viral quasispecies reconstruction · Low diversity · Bayesian
method

1 Introduction

A number of potentially life-threatening infectious diseases are caused by RNA
viruses, including human immunodeficiency virus (HIV), hepatitis C virus
(HCV), influenza and Ebola. RNA viruses have a relatively high mutation rate
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 353–369, 2017.
DOI: 10.1007/978-3-319-56970-3 22

354 S. Ahn and H. Vikalo

due to both their error-prone replication process and the lack of sophisticated
repair mechanisms [1]. Consequently, they rapidly evolve and exist as a set of
non-identical but closely related genetic variants, known as a viral quasispecies.
Viral populations can readily adapt to dynamic environments and develop resis-
tance to antiviral drugs and vaccines, which makes the design of effective and
long-lasting treatments for RNA viral diseases exceedingly difficult [2]. Determin-
ing the structure of viral populations helps the understanding of viral diseases
and provides guidance in the development of effective medical therapeutics. Qua-
sispecies spectrum reconstruction (QSR) aims to assemble individual haplotype
sequences in a population and estimate their prevalence using sequencing reads
generated from a sample containing a set of viral variants. High-throughput
next-generation sequencing (NGS) technologies have enabled affordable acqui-
sition of data needed to assemble quasispecies. However, relatively short length
of the NGS reads and the presence of errors in sequencing data render the QSR
problem difficult. The QSR problem is particularly challenging when the strains
in a viral population are highly similar, i.e., the sequences are characterized by
low mutual genetic distances, and further exacerbated if some of those strains
are relatively rare [3].

Several software tools for solving the QSR problem by analyzing NGS data
have been developed in recent years. ShoRAH [4], the earliest publicly avail-
able such software, was developed by combining a path cover based approach
and probabilistic clustering in [5,6], respectively, and applied to analysis of HIV
data [7]. Read-graph approach was the basis for ViSpA [8], developed as a vari-
ant of the network flow method proposed in [9]. [10], proposed a combinatorial
method for QSR and the resulting software, QuRe, was provided by [11]. An
approach that resulted in the software package PredictHaplo [12] relied on a
Dirichlet Process mixture model and was developed specifically targeting HIV
population reconstruction; QuasiRecomb [13] is based on a hidden Markov model
that explicitly models recombination events. In [14], a benchmarking study that
compares the performance of several publicly available quasispecies reconstruc-
tion softwares was presented. The study demonstrated that none of the tested
methods could reconstruct populations characterized by low pairwise distance
between the haplotype sequences. Following this study other softwares, including
HaploClique [15], based on max-clique enumeration of a read alignment graph,
and VGA [16], a graph-coloring based heuristic method, were developed. Most
recently, a reference-assisted de novo assembly pipeline, ViQuaS, was proposed
in [17]. ViQuaS extends an existing algorithm, QuRe [10], and outperforms var-
ious other techniques on a wide range of dataset. However, performance of these
more recent methods deteriorates dramatically in the scenarios where the genetic
diversity of a population is low [3].

Both [3,14] have pointed out that the existing methods for viral quasispecies
reconstruction struggle in the scenarios where the populations are characterized
by low diversity. This, in part, is due to the presence of relatively long genetic
regions that are common to pairs of closely related viral sequences; clearly, this
makes distinguishing different strains challenging. The problem becomes even

aBayesQR 355

more difficult when the frequency of one (or more) of the close strains is low; in
such settings small genetic distances may be confused for sequencing errors and
hence remain undetected. Such failures to detect may have serious consequences
in antiviral treatment studies since undetected strains cannot be properly tar-
geted for drug and vaccine design. It has been shown that even the viral strains
existing at low frequencies can cause a drug treatment failure due to their resis-
tance to the drug [18,19]. Therefore, complete recovery of the composition of
viral populations is of critical importance for effective antiviral therapies.

In this paper, we propose a novel QSR algorithm, aBayesQR (combining
agglomerative hierarchical clustering and Bayesian inference), that overcomes
limitations of the existing methods and reliably reconstructs quasispecies charac-
terized by low diversity. The algorithm performs reconstruction of a quasispecies
from next-generation sequencing (NGS) data in two stages. In the first stage,
conflict-free short reads are hierarchically merged and assembled into longer
sequences (contigs) which we refer to as super-reads. In the second stage, like-
lihoods of the probable quasispecies are computed using the assembled super-
reads (rather than using the original set of short reads), and the most likely set
of viral strains is selected. Note that the super-reads synthesized in the first stage
of aBayesQR allow us to distinguish between closely related strains which share
long genetic regions as well as reduce the search space and enable computational
tractability of the Bayesian inference conducted in the second stage. The second
stage of aBayesQR involves sequential pruning of the solution space; in particu-
lar, the likely set of partial viral strains comprising n single nucleotide variants
(SNVs) is generated by extending previously inferred partial viral strains having
n−1 SNVs. The number of sequences in a set (i.e., the size of a viral population)
is dynamically updated at each step by evaluating quality of the set of partially
reconstructed viral strains, and ultimately precisely inferred at the end of the
search process. The relative frequencies of each strain are determined by counting
the numbers of reads unambiguously associated with each of the reconstructed
strains. Our tests on both simulated and experimental data demonstrate superior
performance compared to state-of-the-art methods for quasispecies reconstruc-
tion. In particular, it is shown that unlike the competing methods, aBayesQR
is capable of detecting and reliably reconstructing viral haplotypes having very
small mutual genetic distances.

2 Proposed Method

Our algorithm for inferring spectrum of a viral population consists of the follow-
ing two steps: (1) constructing super-reads by hierarchically clustering aligned
paired-end reads, (2) inferring the most likely quasispecies from the set of super-
reads and estimating the frequencies of the strains in the quasispecies.

2.1 Super-Reads Construction via Agglomerative Clustering

In the first stage of aBayesQR, paired-end reads uniquely mapped to a reference
genome are grouped into super-reads via agglomerative hierarchical clustering.

356 S. Ahn and H. Vikalo

This is facilitated by a weighted graph G = (V, E) which is constructed and
recursively updated as the clustering proceeds. In particular, each vertex of G
is associated with a cluster collecting reads that originated from a single strain
in a quasispecies; we denote the set of reads in the ith cluster (i.e., the cluster
associated with the ith vertex) as Vi = {vj

i , j = 1, · · · , |Vi|}. Let sri denote a
consensus sequence (i.e., a super-read) constructed from the reads in Vi. The
ith and jth vertex of G are connected by an edge eij ∈ E if all the reads in Vi

and Vj (or, equivalently, sri and srj) are conflict-free and an overlap criterion,
specified later in this subsection, is satisfied. The weight wij of the edge eij is
a measure of similarity between Vi and Vj at each step, the algorithm merges a
pair of vertices connected by the edge having the largest weight to form a new
vertex and agglomerates the corresponding clusters.

The alleles at homozygous sites, common to all the components of a quasi-
species, are not utilized in the reconstruction procedure. Instead, we separate
reads having originated from different strains by clustering them using hetero-
geneous sites with reliable SNV information. An SNV information is consid-
ered reliable if the relative abundance of the allele is above a pre-determined
threshold, as in [20]; alleles whose abundance is below the threshold are treated
as sequencing errors and disregarded in the process of clustering. For conve-
nience, let us denote the set of pre-processed paired-end reads by R = {ri, i =
1, · · · , |R|}. The agglomerative clustering is initialized with |R| clusters, one for
each read; in other words, we start with V1 = r1, · · · , V|R| = r|R|, implying that

|V| =
|V|∑

i=1

|Vi| = |R|, and proceed by sequentially merging judiciously chosen

pairs of vertices (i.e., agglomerating the corresponding clusters). Intuitively, it
is meaningful to reduce the number of vertices in the graph by merging those
associated with conflict-free consensus sequences that have a large overlap. To
formalize this, let Li = {l1, · · · , l|Li|} denote an index set of the SNV positions
covered by sri, let Li∩j = {l1, · · · , l|Li∩j |} be the index set of SNV positions
covered by both sri and srj , and let Li∪j = {l1, · · · , l|Li∪j |} be the index set of
SNV positions covered by either sri or srj . Then the pairs of vertices (i, j) that
we consider as candidates for merging and thus connect by an edge are those
satisfying either

|Li∩j | ≥ θ · |Li∪j | or |Li∩j | = min(|Li|, |Lj |),
where the 2nd condition promotes merger of short super-reads, and the choice
of θ is discussed below. To quantify uncertainty inherent to a clustering solution
due to existence of non-overlapping positions among the reads in each cluster,
we define a position-specific confidence score

scorei[l] =
cri[l] − cr[l]

1 − cr[l]

where l denotes the position, cr[·] is the overall coverage rate, and cri[·] denotes
cluster-specific coverage rate for Vi (i.e., cri[l] is the fraction of reads in Vi =
{vj

i , j = 1, · · · , |Vi|} covering position l). On the one hand, this score is penalized

aBayesQR 357

at a site where the fraction of cluster members (short reads) covering the site
is low; the score is negative if the cluster-specific coverage rate is below the
global coverage rate which implies uncertainty of the clustering decision. On the
other hand, positive scores indicate high confidence in the decision to group the
reads into the same cluster. Note that the highest possible score of 1 at position
l is achieved when all the reads in a cluster cover the lth position. Using the
confidence scores, we define the weight wij assigned to an edge eij to quantify
similarity between Vi and Vj as

wij =
1

|Li∪j |
∑

l∈Li∪j

scorei∪j [l].

Given the weights wij , we can now specify the clustering procedure. In each
step, the pair of vertices connected by the edge with maximum weight is merged;
the newly constructed vertex inherits edges from the merged vertices and the
weights on those edges are re-evaluated. A new (longer) consensus sequence
is constructed by combining the two super-reads associated with the merged
vertices; recall that there are no conflicts between the super-reads being merged.
If after such an update step no edges connect the new vertex with the rest
of the graph (because no inherited edges satisfy the connectivity condition), θ
is decreased and the above process is repeated. We initially set θ to 0.9 and
gradually decrease it by 0.1 while θ > 0. The above procedure is repeated until
no pairs of vertices satisfy the connectivity condition. By that point, a set of long
consensus sequences (the final super-reads) has been formed from the clusters
of reads associated with the nodes of the final graph. While the complexity
of agglomerative clustering is, in general, O(N3) where N denotes the input
data size [21], it has been shown that its time complexity can be reduced to
O(N2) with accuracy equal to that of the brute-force method by using the partial
maximum array technique [22]. We exploit this to efficiently construct super-
reads. The algorithm for super-read construction is formalized as Algorithm 1.

Algorithm 1. Agglomerative clustering for super-reads construction

Input: Set of reads aligned to the reference genome
Output: Set of super-reads and the corresponding confidence scores
for θ > 0 do

Build a weighted graph G = (V, E)
while E �= ∅ do

Merge two clusters connected with the largest weight
Update G = (V, E) and weights using partial maximum array

end while
θ = θ − 0.1

end for

358 S. Ahn and H. Vikalo

2.2 ML Reconstruction of Quasispecies from Super-Reads

Here we describe how to reconstruct the most likely set of strains in a viral
quasispecies using super-reads from Sect. 2.1 and their confidence scores. While
in principle the method outlined in this section could be applied directly to
the short reads provided by a sequencing platform, such an approach would in
general not only be computationally prohibitive due to a very large number of
short reads but also limit the ability of the algorithm to distinguish strains with
small mutual genetic distances due to having long conserved regions. Relying
on a relatively small number of long super-reads constructed from short reads
circumvents both of these problems and makes the reconstruction more accurate
and practically feasible. Note that sequencing errors may undesirably prevent
clusters of reads from being merged with other clusters due to a violation of
conflict-free requirement; consequently, a set of short reads in a small cluster is
likely to have a disproportionate amount of sequencing errors. For this reason,
we ignore clusters with very small memberships (in particular, those contain-
ing fewer than 0.001 · |R| reads), which limits the detection of strains to those
constituting more than 0.1% of the quasispecies.

Let C = {Cm,m = 1, · · · ,M} denote the collection of clusters that remain
after deleting clusters having only few reads; moreover, for convenience let us
re-label the reads in Cm as cj

m, i.e., Cm = {cj
m, j = 1, · · · , |Cm|} where cj

m ∈ R.
We organize the super-reads obtained by Algorithm 1 in Sect. 2.1 into the rows
of an M × N matrix S = {smn,m = 1, · · · ,M, n = 1, · · · , N} with entries
smn ∈ {A,C,G,T,−} where − denotes a site not covered by a super-read and
N denotes the total number of SNV sites in the strains of a quasispecies.
A nucleotides in the (m,n) position of S is assigned confidence scorem[n]
defined in Sect. 2.1; the scores for the entire matrix are normalized so that
they fall between 0 and 1 in order to use them in our Bayesian approach to
assembly. Let εmn be the probability that smn was estimated erroneously due
to either a sequencing error in reads on the nth SNV position or the uncer-
tainty induced by reads not covering the nth SNV position. Note that negative
scores indicates low confidence resulting from insufficient cluster-specific cover-
age rate while positive scores imply relatively confident information. In order
to map scorem[n] ∈ (−∞, 1] to the set [0, 1], we set εmn = 1 − escorem[n] for
scorem[n] < ln(1 − ε), where ε denotes the error rate of a sequencing platform.
Otherwise, we set εmn = ε.

Let Q = {qk, k = 1, · · · ,K} denote the set of K strains of a viral quasispecies.
The goal in the second stage of our method is to determine Q from the super-
reads matrix S using a probabilistic framework. An exhaustive search over the
entire solution space is computationally intractable even for small S; instead, we
reconstruct the set of K viral strains sequentially, extending partially estimated
strains one SNV position at each step. Since maintaining and extending all possi-
ble partial strains inevitably increases their number exponentially, unlikely sets of
candidate strains are pruned in each step. Each step consists of three basic parts:
(a) extension of the partially reconstructed strains, (b) selection of probable sets
comprising K strains chosen among those generated in step (a), and (c) evaluation

aBayesQR 359

of the quality of the selected sets of strains and an update of K. The sequential
Bayesian inference procedure in step t is illustrated in Fig. S1 in Appendix A.

Extending Partially Reconstructed Strains. Let F1:t-1 = {f i
1:t-1, i = 1, · · · ,

|F1:t-1|} be the collection of partially reconstructed strains covering the first
t − 1 SNV sites and let Bt = {bj

t , j = 1, · · · , |Bt|} be the lists of distinct
bases in the tth column of S, where bi

t ∈ {A,C,G,T} and 2 ≤ |Bt| ≤ 4. Then,
all the possible extensions of f i

1:t−1 to the SNV site t can be enumerated as
{[f i

1:t-1, b
1
t], · · · , [f i

1:t-1, b
|Bt|
t]}. Let Si

1:t-1 = {s
ic′
1:t-1, c

′ = 1, · · · , |Si
1:t-1|} be the col-

lection of super-reads covering some of the first t SNV sites which are consistent
with f i

1:t-1 (ignoring “−” in s
ic′
1:t-1) where {ic′} denote indices of rows of S that

are placed in Si
1:t-1, and let Si

t = {sic
t , c = 1, · · · , |Si

t |} denote the collection of
nucleotides (sic

t ∈ {A,C,G,T}, not “−”) observed at the tth SNV site of the
super-reads in Si

1:t-1 where {ic} denote the indices of rows in S that contribute
to Si

t . Given Si
1:t-1, S

i
t and f i

1:t-1, the probability of bj
t being the true extension

of f i
1:t-1 is given by

P (Si
t |bj

t , S
i
1:t-1, f

i
1:t-1) =

|Si
t |∏

c=1

P (sic
t |bj

t),

P (sic
t |bj

t) =
{

1 − εict, if bj
t = sic

t ,
εict

|Bt| , otherwise.

We extend f i
1:t-1 to [f i

1:t-1, b
j
t] ∈ F1:t-1,t by appending the bj

t ∈ Bt which satisfies

P (Si
t |bjt ,Si

1:t-1,fi
1:t-1)

1
|Si

t|

∑

Bt

P (Si
t |bjt ,Si

1:t-1,fi
1:t-1)

1
|Si

t|
≥ δ0, where the exponent ensures proper normalization

and is needed since the number of super-reads, |Si
1:t-1|, varies for each {f i

1:t-1, i =
1, · · · , |F1:t-1|}. For f i

1:t-1 which has no matched super-reads, i.e., |Si
1:i-1| = 0,

we keep all of |Bt| possible extensions of f i-1
1:t . By collecting probable extensions

for each f i
1:t-1 ∈ F1:t-1, we obtain the set of partial strains stretching over the

first t SNV sites, F1:t-1,t. This procedure is formalized as function ExtendFrag in
Appendix A.

Inferring Likely Sets of K Partial Strains. Having generated the prob-
able partial strains F1:t-1,t, we denote the set of all its possible subsets of K
strains (i.e., the quasispecies population candidates) as Q1:t-1,t = {Qi

1:t-1,t, i =
1, · · · ,

(|F1:t-1,t|
K

)} where Qi
1:t-1,t = {qi

kn, k = 1, · · · ,K, n = 1, · · · , t} and qi
kn ∈

F1:t-1,t. The log-likelihoods of Qi
1:t-1,t can be expressed as

lnP (S|Qi
1:t-1,t) =

M∑

m=1

lnP (sm·|Qi
1:t-1,t),

P (sm·|Qi
1:t-1,t) =

1
K

(
K∑

k=1

(t∏

n=1

P (smn|qi
kn)

))

,

360 S. Ahn and H. Vikalo

where sm· denotes the mth row vector of the matrix of super-reads S and

P (smn|qi
kn) =

{
1 − εmn, if qi

kn = smn,
εmn

|Bn| , if qi
kn �= smn for smn �= −.

Let Qmax
1:t = max

Qi
1:t-1,t∈Q1:t-1,t

P (S|Qi
1:t-1,t). Among the

(|F1:t-1,t|
K

)
sets in Q1:t-1,t,

we keep only those that satisfy P (S|Qi
1:t-1,t) > δ1 · Qmax

1:t while the others are
discarded; let us denote the collection of candidate sets that pass this test as Q1:t.
For practical feasibility of the scheme, the collection of partially reconstructed
strains F1:t-1,t is trimmed by excluding from it all the strains that are not part of
at least one of the sets in Q1:t; we denote the resulting collection of partial strains
by F1:t ∈ F1:t-1,t and use it when extending the strains onto the t + 1 SNV site.
The described procedure is formalized as function InferQuasi in Appendix A.

Determining the Number of Strains K in a Quasispecies. In this step,
we assess appropriateness of K used in the inference of Q1:t and update it if
necessary. To this end, we rely on the minimum error correction (MEC) score
which has previously been broadly used as a criterion in the design of methods
for haplotype assembly [23,24]. In the context of polyploid haplotype assembly,
the MEC score is defined as the smallest number of nucleotides that needs to be
changed in data (i.e., in observed reads) so that the corrected reads are consistent
with having originated from K haplotypes. Let HDt(·, ·) denote the Hamming
distance between two sequences counted over the observed nucleotides in the
first t SNV positions.1 Then the MEC score of the most likely set Qmax

1:t of K
viral strains evaluated on the first t SNVs is

MECt(K) =
M∑

m=1

min
k∈{1,··· ,K}

|Cm|∑

j=1

HDt(cj
m, qmax

k·),

where qmax
k· is the kth row vector of Qmax

1:t . Let Nt be the total number of
nucleotides observed in the first t SNV positions of all the reads of the dataset.
Note that the smaller the MEC scores, the higher the accuracy of a clustering.
If MECt(K)/Nt < 2ε, we use the same value K in the next step where the
likely set of viral strains stretching over the first t + 1 SNV positions is inferred.
Otherwise, we increase K by 1, repeat the estimation of Q1:t, and evaluate the
improvement rate of MEC score as

MECimpr(K) =
MECt(K) − MECt(K + 1)

MECt(K)
.

The reason for selecting K based on the MEC improvement rate (MECimpr)
is that the MEC score drops significantly once K matches the actual number of

1 If either of the two sequences has a gap “−” in a position, that position is ignored
in the computation of the aforementioned Hamming distance.

aBayesQR 361

clusters; our scheme attempts to detect that change in order to infer population
size. If MECimpr(K) > η, where η denotes a pre-specified threshold, the num-
ber of species is updated as K ← min{K + n, |F1:t-1,t|} where n is the smallest
integer number such that MECimpr(K + n) < η. If MECimpr(K) < η, we
update the number of species as K ← max{K − n, 2} where n is the smallest
integer such that MECimpr(K − n) ≥ η. The choice of threshold η is discussed
in the Appendix B. The updated value of K is used for the inference of Q1:t+1.
Note that the probable set of viral strains, Q1:t, is stored for each K to avoid
performing redundant MECimpr(·) calculations.

Once we obtain the most likely set of K viral sequences covering N SNVs,
Qmax

1:N , the full-length K quasispecies strains are reconstructed by inserting the
consensus nucleotides observed in R into the non-SNV sites. We estimate rela-
tive frequencies pk, 1 ≤ k ≤ K, of quasispecies strains based on the Hamming
distance between super-reads and the reconstructed sequences. In particular,
for each super-read sri we determine the nearest assembled strain qj where
j = arg min

k∈{1,··· ,K}
HD(sri, qk) and the number of reads involved in constructing

the super-read sri is counted towards pj . The entire scheme proposed in this
subsection is summarized as Algorithm 2.

Algorithm 2. Sequential Bayesian Inference for quasispecies reconstruction

Input: Set of super-reads and the corresponding confidence scores
Output: Set of K strains of a viral quasispecies
Initial K ← 2, F1:1 ← B1

for t ∈ {2, · · · , N} do
F1:t-1,t = ExtendFrag(F1:t-1, t, δ0)
Q1:t = InferQuasi(F1:t-1,t, K, δ1)
K∗ ← K, Q∗

1:t ← Q1:t

if MECt(K)/Nt ≥ 2ε and K < |F1:t-1,t| do
Q1:t = InferQuasi(F1:t-1,t, K+1, δ1)
if MECimpr(K) < η do

while MECimpr(K) < η and K > 2
Q∗

1:t ← Q1:t, K∗ ← K, K ← K − 1
Q1:t = InferQuasi(F1:t-1,t, K, δ1)

end while
else do

while MECimpr(K) ≥ η and K < |F1:t-1,t|
Q∗

1:t ← Q1:t, K∗ ← K
Q1:t = InferQuasi(F1:t-1,t, K+1, δ1)

end while
end if

end if
K ← K∗, Q1:t ← Q∗

1:t

Get F1:t by pruning F1:t-1,t based on Q1:t

end for
Reconstruct full-length quasispecies Q from Qmax

1:N ∈ Q1:t and R
Estimate frequencies of each strain qk ∈ Q based on HD(sri, qk) and |Ci|

362 S. Ahn and H. Vikalo

3 Results and Discussion

3.1 Performance Comparison on Simulated Data

To evaluate performance of the proposed method for quasispecies reconstruction,
we use metrics Recall, Precision, Predicted Proportion, and Reconstruction Rate.
Recall is defined as the ratio of the number of correctly reconstructed strains to
the total number of true strains in the quasispecies, i.e., Recall = TP

TP+FN , while
Precision is defined as the fraction of correctly reconstructed strains among all
the assembled sequences, i.e., Precision = TP

TP+FP . Noting that Precision usu-
ally reports high scores when the number of strains is underestimated while
penalizing overestimation of the population size, we also report the ratio of the
number of reconstructed sequences to the true population size, Predicted Pro-
portion. The closer Predicted Proportion to 1, the more accurate the number
of reconstructed strains. Moreover, to assess the degree of reconstruction accu-

racy, we define ReconstructionRate = 1
K

∑K
k=1

(

1 − HD(qk,q̂k)
G

)

, where G is

the length of a genome, K is the number of strains in a quasispecies and qk and
q̂k denote the kth true strain and its nearest sequence among the K estimated
ones, respectively. To assess the accuracy of estimated frequencies, we use Jensen-
Shannon divergence (JSD) which quantifies similarity between two distributions.
Given a true distribution P and its approximation Q, the Kullback-Leibler (KL)

divergence D(P ||Q) =
n∑

i=1

P (i)logP (i)
Q(i) is undefined when Q(i) = 0. JSD, a sym-

metrized and smoothed version of the KL divergence, circumvents this problem
by defining similarity of P and Q as JSD(P ||Q) = 1

2D(P ||M) + 1
2D(Q||M),

where M is defined as M = 1
2 (P + Q).

We compare our algorithm with publicly available ShoRAH [4], PredictHaplo
[12], and ViQuaS [17]. Since ViQuaS is an extension of the algorithm in [10,11],
and was shown to have superior performance compared to its predecessor, we
omit the comparison with the software QuRe in [10,11]. It is worth pointing
out that for the synthetic data sets we study, ShoRAH could not reconstruct
strains in the regions where the simulated sequencing coverage is relatively low
compared to the average, resulting in reconstruction of strains that are shorter
than the true length G. To facilitate a fair comparison with ShoRAH, we aligned
its reconstructed strains to the reference genome and completed missing sites
with bases from the reference. ViQuaS, on the other hand, tends to reconstruct
many more strains than actually present; thus we followed ViQuaS’s authors
recommendation and retained only those having frequencies greater than fmin

when calculating Precision. Finally, not all of the synthetic data sets could be
processed with PredictHaplo, preventing us from reporting its performance in
some of the scenarios.

We generated synthetic datasets by emulating high-throughput sequencing
of a viral population consisting of a number of closely related viral genomes
having length of 1300bp; this particular length was chosen to coincide with
the longest region of the HIV pol gene. Quasispecies sequences are generated

aBayesQR 363

Table 1. Performance comparison of different methods for varied diversities (div) on
simulated data. Performance comparison of aBayesQR, ShoRAH, ViQuaS and Predic-
tHaplo in terms of Recall, Precision, Predicted Proportion (PredProp), Reconstruction
Rate (ReconRate) and JSD on the simulated data with err = 0.1% and cov = 500× vs.
div for a mixture of 5 and 10 viral strains. Averaged PredictHaplo results are reported
if it provides answers for more than 50% of data sets. Boldface values indicate the best
performance for each div(%).

5 strains 10 strains

div(%) 1 2 3 4 5 1 2 3 4 5

Recall aBayesQR 0.7080 0.7120 0.6840 0.6560 0.6320 0.5810 0.6380 0.6080 0.5860 0.5550

ShoRAH 0.1920 0.1600 0.1300 0.1060 0.0780 0.0150 0.0380 0.0740 0.0640 0.0930

ViQuaS 0.3700 0.5240 0.6040 0.6360 0.5960 0.0980 0.1700 0.3730 0.4720 0.5050

PredictHaplo - - - 0.6918 0.6808 - - 0.1021 0.1550 0.2010

Precision aBayesQR 0.7113 0.7130 0.6826 0.6447 0.6319 0.6210 0.6881 0.6610 0.6373 0.6140

ShoRAH 0.1062 0.1418 0.1240 0.1078 0.0790 0.0050 0.0170 0.0498 0.0506 0.0824

ViQuaS 0.1960 0.3206 0.4559 0.4982 0.5298 0.0485 0.1079 0.2973 0.4690 0.5596

PredictHaplo - - - 0.9373 0.8822 - - 0.4509 0.6000 0.6833

PredProp aBayesQR 1.0180 1.0120 1.0120 1.0360 1.0140 0.9680 0.9440 0.9240 0.9240 0.9100

ShoRAH 1.9660 1.2200 1.0780 1.0000 1.0180 3.2000 2.9100 1.6710 1.3520 1.1860

ViQuaS 2.1100 1.7220 1.4080 1.3340 1.2180 2.0860 1.8580 1.5450 1.2320 1.0730

PredictHaplo - - - 0.7388 0.7737 - - 0.1947 0.2430 0.2890

ReconRate aBayesQR 0.9990 0.9982 0.9971 0.9961 0.9953 0.9975 0.9967 0.9952 0.9942 0.9924

ShoRAH 0.9948 0.9903 0.9891 0.9851 0.9827 0.9941 0.9900 0.9899 0.9897 0.9911

ViQuaS 0.9963 0.9949 0.9917 0.9936 0.9897 0.9944 0.9910 0.9899 0.9881 0.9858

PredictHaplo - - - 0.9906 0.9896 - - 0.9850 0.9797 0.9747

JSD aBayesQR 0.0022 0.0008 0.0008 0.0014 0.0008 0.0043 0.0026 0.0023 0.0023 0.0025

ShoRAH 0.0762 0.0174 0.0047 0.0009 0.0012 0.1390 0.1110 0.0422 0.0238 0.0109

ViQuaS 0.0651 0.0255 0.0222 0.0097 0.0180 0.0993 0.0747 0.0495 0.0469 0.0454

PredictHaplo - - - 0.1020 0.1036 - - 0.1971 0.1636 0.1312

by introducing independent mutations at uniformly random locations along the
length of a randomly generated reference genome so as to obtain a predefined
level of diversity (div%), i.e., a predefined average Hamming distance between
quasispecies strains. Simulating Illumina’s MiSeq data, 2 × 250bp-long paired-
end reads are sampled uniformly from each viral strain with a mean coverage of
cov× per strain. Inserts of the paired-end reads are on average 150bp long with
standard deviation of 30. In our benchmarking tests, we focus on exploring the
effects of diversity (div%) on the accuracy of the quasispecies reconstruction.
Two sets of viral populations are considered: (1) a mix of 5 viral strains with
abundance levels 50%, 30%, 15%, 4% and 1%; and (2) a mix of 10 strains with
abundance levels 36%, 24%, 16%, 8%, 5.5%, 4%, 3%, 2%, 1% and 0.5%. Note that
the abundances are chosen to approximately follow geometric distribution and
that the populations include low abundant strains. For each combination of
the parameters, 100 data sets were generated and the reported results were
obtained by averaging over those data instances. For PredictHaplo, which did
not produce results in each instance, the averaged results are reported if more
than 50 instances were successfully processed.

364 S. Ahn and H. Vikalo

In all of the following experiments, potential SNVs are called if their abun-
dance is higher than 1%, which is set relatively high to avoid false positives
(FPs); FPs prevent reads to be merged with existing clusters in Sect. 2.1. We
execute the function ExtendFrag with parameter δ0 = 0.1. Parameter δ1 in
function InferQuasi is initially set to 0.001, but adaptively increases if the
number of combinations of partially reconstructed strains exceeds 10000; this
is done to limit the number of likelihood calculations performed in each run
of InferQuasi . The recommended value of η, a threshold used to determine
population size K based on MECimpr(·), is discussed in Appendix B.

We compare performances of aBayesQR, ShoRAH, ViQuaS and PredictHap
when applied to the reconstruction of a quasispecies spectrum with diversity
levels varying between 1% and 5% (i.e., div ∈ {1%, 2%, 3%, 4%, 5%}). To test
the ability of different methods to reconstruct quasispecies with low diversity, we
assume low sequencing error rate of err = 0.1% (median mismatch error rates
for 454 Life Sciences and Illumina platforms are 0.1% and 0.12%, respectively
[25]). Coverage per strain cov× is set to 500×, implying total coverage of 2500×
and 5000× for the 5-strain and 10-strain population, respectively; strains having
frequencies 0.23% or higher in the 5-strain case and those with frequencies 0.46%
or higher in the 10-strain case are covered with probability 0.99 [5].

Table 1 demonstrates that the proposed aBayesQR algorithm outperforms
existing schemes. In terms of Recall and Precision, aBayesQR exhibits excep-
tionally good performance compared to competing methods when reconstructing
quasispecies strains with diversity div < 4%. The performance of ViQuaS dete-
riorates at low diversities in terms of most of the criteria (i.e., Recall, Precision,
Predicted Proportion and JSD). PredictHaplo could not perform reconstruction
in most of the low diversity instances yet it overall achieves the highest Pre-
cision because it typically underestimates the number of strains as shown by
Predicted Proportion (e.g., estimating only 2–3 out of 10 strains), which is in
agreement with the results reported by a previous study [14]. Among all meth-
ods, ShoRAH has the lowest performance in terms of Recall and Precision. As
indicated by Predicted Proportion, aBayesQR is the most accurate method in
terms of estimating the population size although it often misses a strain with
the lowest frequency when applied to reconstruction of a quasispecies consist-
ing of 10 strains. ViQuaS and ShoRAH typically overestimates the number of
strains especially at low diversity levels. aBayesQR is the best method in terms
of Reconstruction Rate at all levels of diversity. In terms of frequency estima-
tion, aBayesQR overall outperforms all the other methods whereas PredictHaplo
shows the highest JSD due to its drawback of underestimating the number of
strains. Note that both ViQuaS and ShoRAH exhibit significantly increased (i.e.,
deteriorated) JSD at low diversity levels. This fact, along with the low Recall
and Precision scores they have in low diversity settings, indicates that state-
of-the-art methods experience major difficulties when attempting to reconstruct
viral quasispecies in those settings, as also observed in [5,14,17].

We further study the effects that sequencing error rate (err%) and coverage
per strain (cov×) have on the performance of the algorithms. Those results are

aBayesQR 365

reported in Table S2 and S3 in the Appendix C, demonstrating superiority of
aBayesQR as compared to the competing methods. The runtimes of the tested
algorithms are shown in Table S4 in the Appendix C.

3.2 Performance Comparison on Real HIV Data

To further test the performance of our proposed method, we employ it for the
analysis of the HIV 5-virus-mix dataset published in [20]. Specifically, we apply
our algorithm to reconstruct an in vitro generated quasispecies population con-
sisting of 5 known HIV-1 strains: HIV-1HXB2, HIV-189.6, HIV-1JR−CSF , HIV-
1NL4−3 and HIV-1Y U2. Compared to the simulated data set, relative frequencies
of the 5 HIV-1 strains are more evenly distributed (about 10–30%) and the pair-
wise distances between strains are higher (2.61–8.45%) [20]. We use the 2×250bp-
long paired-end reads provided by Illumina’s MiSeq Benchtop Sequencer. The
reads are aligned to the HIV-1HXB2 reference genome; the reads shorter than
150nt and those having bases with quality scores less than a PHRED thresh-
old of 60 are discarded. We compare the performance of our method applied to
gene-wise quasispecies reconstruction of the above described HIV data with that
of the competing techniques. Since the current version of ViQuaS software does
not support specifying genomic regions, we could not use it in this experiment.
When running aBayesQR, we set the parameter η to 0.09 (the setting recom-
mended in Appendix B). Other parameters are set to the same values as the
ones used in Sect. 3.1.

We evaluate and report the Predicted Proportion (i.e., the fraction of correctly
estimated strains as defined in Sect. 3.1) and Reconstruction Rate in Table 2. On
this real HIV-1 data set which (as pointed above) has different properties than
the simulated data set in Sect. 3.1, aBayesQR is the most accurate among the
considered methods in terms of Predicted Proportion. PredictHaplo underesti-
mates the population size and reconstructs three or four strains in the 8 consid-
ered genes and ShoRAH greatly overestimates the population size for all 13 genes
of the HIV-1 data set (e.g., it reconstructs 119 strains in gp120), which is consis-
tent with our simulation results as well as with the results in [14]. aBayesQR and
PredictHaplo are tied for the number of genes where all the strains are perfectly
reconstructed (5 each); for the remaining genes, PredictHaplo provides a larger
number of perfectly reconstructed strains. However, it is worth pointing out that
PredictHaplo, designed for identification of HIV haplotypes, missed at least one
strain in each of the remaining 8 genes while aBayesQR reconstructed most of
the strains on all but two genes, gp120 and gp41. ShoRAH did not perfectly
reconstruct any of the 13 genes, which is consistent with the simulation results.
Moreover, overestimating the number of strains negatively affects the accuracy
of ShoRAH’s frequency estimation; for instance, the sum of frequencies corre-
sponding to the most abundant 5 strains does not exceed 50% in 9 out 13 genes
(71% is the largest such sum, on vpu) (see Table S5 in the Appendix C).

To complement the gene-wise quasispecies reconstruction study with that of
a global reconstruction, we consider the HIV-1 gap-pol region spanning 4307bp.

366 S. Ahn and H. Vikalo

Table 2. Performance comparisons on a real HIV-1 5-virus-mix data set. Predicted
Proportion (PredProp) and Reconstruction Rate (RR) for aBayesQR, ShoRAH and
PredictHaplo applied to reconstruction of HIV-1HXB2, HIV-189.6, HIV-1JR-CSF, HIV-
1NL4-3 and HIV-1YU2 for all 13 genes of the HIV-1 dataset. (note: RR are expressed
in percentages.) Boldface values indicate the genes where all the strains are perfectly
reconstructed. The inferred frequencies are shown in Table S5 in Appendix C.

p17 p24 p2-p6 PR RT RNase int vif vpr vpu gp120 gp41 nef

aBayesQR PredProp 1 1 1 1 1 1 1 1 1.2 1 0.8 0.8 1.2

RRHXB2 100 99.4 100 100 98.5 100 99.9 100 100 99.6 98 0 95.8

RR89.6 100 98.7 100 100 98.6 100 100 100 100 92 96.5 98.9 95.5

RRJR-CSF 100 99.6 100 100 99 100 100 100 100 98.8 97.7 99.1 98.2

RRNL4-3 100 100 100 100 98.9 100 100 99.8 100 100 96.3 98.8 100

RRYU2 100 99.7 100 100 99.2 100 99.5 99.7 100 100 0 98.6 99.2

ShoRAH PredProp 13 16.4 13.8 8.8 21.8 11.8 13.6 12.8 7.8 4 23.8 19.8 17.4

RRHXB2 100 96.7 100 100 98.2 100 97.5 100 100 100 97.7 98.4 98.2

RR89.6 100 99.7 100 100 98.6 100 98.9 99.8 100 93.6 96.1 98.6 98.9

RRJR-CSF 100 100 100 100 99.8 96.4 99 100 100 98 96.9 96.3 94.7

RRNL4-3 100 99.1 97.3 100 98.9 99.2 99.3 99.3 100 100 96.1 98.5 98.6

RRYU2 94.2 99 100 98.3 98 94.5 98.6 95 93.2 90.8 97 95.4 97.9

PredictHaplo PredProp 1 0.6 1 1 1 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8

RRHXB2 100 0 100 100 100 98.9 100 100 100 93.17 0 0 0

RR89.6 100 100 100 100 100 100 99.8 100 100 0 97.8 100 98.87

RRJR-CSF 100 100 100 100 100 100 100 100 100 100 99.7 100 100

RRNL4-3 100 99.1 100 100 100 100 100 100 100 100 100 100 100

RRYU2 100 0 100 100 100 0 0 0 100 100 98.6 100 100

To efficiently process 355241 paired-end reads that remain after applying a qual-
ity filter, we organize the region into a sequence of windows of length 400bp
where the consecutive windows overlap by 150bp and run aBayesQR on those
windows. The entire region is assembled by connecting strains in the consecu-
tive windows while testing consistency in the overlapping intervals. The number
of strains retrieved in the global reconstruction is decided by majority voting
of the number of strains obtained in each window. The frequencies are esti-
mated by counting reads nearest (in terms of Hamming distance) to each of
the reconstructed strains. Following this procedure, both aBayesQR and Pre-
dictHaplo could reconstruct all 5 HIV-1 strains in the gap-pol region correctly,
i.e., they both achieved Reconstruction rate of 100 for all 5 strains and Predicted
Proportion of 1. The frequencies estimated by aBayesQR are 15.21%, 19.34%,
25.56%, 27.61% and 12.27% while those estimated by PredictHap are 13.21%,
13.56%, 25.67%, 19.69% and 27.86%. ShoRAH highly overestimated the num-
ber of strains and reported Predicted Proportion of 41.8; its five most abundant
strains estimated are reported to have frequencies 8.51%, 5.04%, 3.41%, 3.24%
and 3.09%.

aBayesQR 367

4 Conclusions

In this paper, we presented a novel maximum-likelihood based approximate
algorithm for reconstructing viral quasispecies from high-throughput sequencing
data. aBayesQR assembles paired-end short reads into longer fragments based
on similarity of the read overlaps and the uncertainty level of non-overlapping
regions. The probable sets of partially reconstructed strains are inductively
searched and a subset of those strains is extended to efficiently deduce the most
likely set of strains in a quasisepcies. Detection of the population size is embed-
ded into the algorithm and is empirically shown to be very accurate; the number
of strains is dynamically adjusted based on the reliability of the partially assem-
bled quasispecies in each extension step. Performance of the developed method
is tested on both synthetic datasets and a real HIV-1 dataset. In both settings,
the new algorithm outperforms existing techniques in terms of accuracy of the
quasispecies size estimation, perfect reconstruction of strains, proportion of cor-
rect bases in each reconstructed strain and the estimation of their abundance.
A particularly high accuracy is observed in estimating the population size (i.e.,
the number of strains) and their relative abundance. Tests on synthetic datasets
demonstrates that aBayesQR is capable of reconstructing quasispecies at low
diversity, showing superior performance in those settings compared to state-of-
the-art algorithms. Furthermore, the study on a real HIV-1 dataset demonstrates
that our proposed algorithm outperforms or has performance comparable to that
of the existing methods in the general setting of viral quasispecies reconstruction.

aBayesQR can be extended and applied to the problem of estimating the
population size and the degree of variation among the constituent species in
related fields such as immunogenetics. On a related note, bacterial populations
are characterized by having relatively lower mutation rates than viral and thus
typically have fewer segregating sites on the sequences in a population. The
ability of our method to perform highly accurate reconstruction in such settings
should be further investigated.

A software aBayesQR is available at https://github.com/SoyeonA/aBayesQR.
An appendix can be found in a bioRxiv version of this paper which is available at
http://biorxiv.org/content/early/2017/01/27/103630.

Acknowledgements. This work was funded by the National Science Foundation
under grants CCF 1507998 and CCF 1618427.

References

1. Duarte, E., Novella, I., Weaver, S., Domingo, E., Wain-Hobson, S., Clarke, D.,
Moya, A., Elena, S., De La Torre, J., Holland, J.: RNA virus quasispecies: signifi-
cance for viral disease and epidemiology. Infect. Agents Dis. 3(4), 201–214 (1994)

2. Lauring, A.S., Andino, R.: Quasispecies theory and the behavior of RNA viruses.
PLoS Pathog. 6(7), e1001005 (2010)

3. Posada-Cespedes, S., Seifert, D., Beerenwinkel, N.: Recent advances in inferring
viral diversity from high-throughput sequencing data. Virus Res. (2016)

https://github.com/SoyeonA/aBayesQR
http://biorxiv.org/content/early/2017/01/27/103630

368 S. Ahn and H. Vikalo

4. Zagordi, O., Bhattacharya, A., Eriksson, N., Beerenwinkel, N.: ShoRAH: estimat-
ing the genetic diversity of a mixed sample from next-generation sequencing data.
BMC Bioinform. 12(1), 119 (2011)

5. Eriksson, N., Pachter, L., Mitsuya, Y., Rhee, S.Y., Wang, C., Gharizadeh, B.,
Ronaghi, M., Shafer, R.W., Beerenwinkel, N.: Viral population estimation using
pyrosequencing. PLoS Comput. Biol. 4(5), e1000074 (2008)

6. Zagordi, O., Geyrhofer, L., Roth, V., Beerenwinkel, N.: Deep sequencing of a genet-
ically heterogeneous sample: local haplotype reconstruction and read error correc-
tion. J. Comput. Biol. 17(3), 417–428 (2010)

7. Zagordi, O., Klein, R., Däumer, M., Beerenwinkel, N.: Error correction of next-
generation sequencing data and reliable estimation of HIV quasispecies. Nucleic
Acids Res. 38(21), 7400–7409 (2010)

8. Astrovskaya, I., Tork, B., Mangul, S., Westbrooks, K., Măndoiu, I., Balfe, P.,
Zelikovsky, A.: Inferring viral quasispecies spectra from 454 pyrosequencing reads.
BMC Bioinform. 12(6), 1 (2011)

9. Westbrooks, K., Astrovskaya, I., Campo, D., Khudyakov, Y., Berman, P.,
Zelikovsky, A.: HCV quasispecies assembly using network flows. In: Măndoiu, I.,
Sunderraman, R., Zelikovsky, A. (eds.) ISBRA 2008. LNCS, vol. 4983, pp. 159–170.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-79450-9 15

10. Prosperi, M.C., Prosperi, L., Bruselles, A., Abbate, I., Rozera, G., Vincenti, D., Sol-
mone, M.C., Capobianchi, M.R., Ulivi, G.: Combinatorial analysis and algorithms
for quasispecies reconstruction using next-generation sequencing. BMC Bioinform.
12(1), 1 (2011)

11. Prosperi, M.C., Salemi, M.: QuRe: software for viral quasispecies reconstruction
from next-generation sequencing data. Bioinformatics 28(1), 132–133 (2012)

12. Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N., Roth, V.: HIV haplotype
inference using a propagating dirichlet process mixture model. IEEE/ACM Trans.
Comput. Biol. Bioinform. (TCBB) 11(1), 182–191 (2014)

13. Töpfer, A., Zagordi, O., Prabhakaran, S., Roth, V., Halperin, E., Beerenwinkel, N.:
Probabilistic inference of viral quasispecies subject to recombination. J. Comput.
Biol. 20(2), 113–123 (2013)

14. Schirmer, M., Sloan, W.T., Quince, C.: Benchmarking of viral haplotype recon-
struction programmes: an overview of the capacities and limitations of currently
available programmes. Briefings Bioinform. 15(3), 431–442 (2012)

15. Töpfer, A., Marschall, T., Bull, R.A., Luciani, F., Schönhuth, A., Beerenwinkel,
N.: Viral quasispecies assembly via maximal clique enumeration. PLoS Comput.
Biol. 10(3), e1003515 (2014)

16. Mangul, S., Wu, N.C., Mancuso, N., Zelikovsky, A., Sun, R., Eskin, E.: Accurate
viral population assembly from ultra-deep sequencing data. Bioinformatics 30(12),
i329–i337 (2014)

17. Jayasundara, D., Saeed, I., Maheswararajah, S., Chang, B., Tang, S.L., Halgamuge,
S.K.: ViQuaS: an improved reconstruction pipeline for viral quasispecies spectra
generated by next-generation sequencing. Bioinformatics 31(6), 886–896 (2014)

18. Le, T., Chiarella, J., Simen, B.B., Hanczaruk, B., Egholm, M., Landry, M.L., Dieck-
haus, K., Rosen, M.I., Kozal, M.J.: Low-abundance HIV drug-resistant viral vari-
ants in treatment-experienced persons correlate with historical antiretroviral use.
PLoS ONE 4(6), e6079 (2009)

http://dx.doi.org/10.1007/978-3-540-79450-9_15

aBayesQR 369

19. Simen, B.B., Simons, J.F., Hullsiek, K.H., Novak, R.M., MacArthur, R.D., Baxter,
J.D., Huang, C., Lubeski, C., Turenchalk, G.S., Braverman, M.S., et al.: Low-
abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral
treatment-naive patients significantly impact treatment outcomes. J. Infect. Dis.
199(5), 693–701 (2009)

20. Di Giallonardo, F., Töpfer, A., Rey, M., Prabhakaran, S., Duport, Y., Leemann, C.,
Schmutz, S., Campbell, N.K., Joos, B., Lecca, M.R., et al.: Full-length haplotype
reconstruction to infer the structure of heterogeneous virus populations. Nucleic
Acids Res. 42(14), e115 (2014)

21. Sasirekha, K., Baby, P.: Agglomerative hierarchical clustering algorithm-a review.
Int. J. Sci. Res. Publ. 3(3) (2013)

22. Jung, S.Y., Kim, T.S.: An agglomerative hierarchical clustering using partial maxi-
mum array and incremental similarity computation method. In: Proceedings IEEE
International Conference on Data Mining, ICDM 2001, pp. 265–272. IEEE (2001)

23. Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, com-
plexity, and algorithms. In: Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp.
182–193. Springer, Heidelberg (2001). doi:10.1007/3-540-44676-1 15

24. Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the
single nucleotide polymorphism haplotype assembly problem. Briefings Bioinform.
3(1), 23–31 (2002)

25. Archer, J., Baillie, G., Watson, S.J., Kellam, P., Rambaut, A., Robertson, D.L.:
Analysis of high-depth sequence data for studying viral diversity: a comparison of
next generation sequencing platforms using Segminator II. BMC Bioinform. 13(1),
47 (2012)

http://dx.doi.org/10.1007/3-540-44676-1_15

BeWith: A Between-Within Method for Module
Discovery in Cancer using Integrated Analysis

of Mutual Exclusivity, Co-occurrence and
Functional Interactions (Extended Abstract)

Phuong Dao1, Yoo-Ah Kim1, Sanna Madan2, Roded Sharan3(B),
and Teresa M. Przytycka1(B)

1 National Center of Biotechnology Information, NLM, NIH, Bethesda, MD, USA
przytyck@ncbi.nlm.nih.gov

2 Department of Computer Science, University of Maryland, College Park, MD, USA
3 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

roded@post.tau.ac.il

The analysis of the cancer mutational landscape has been instrumental in study-
ing the disease and identifying its drivers and subtypes. In particular, mutual
exclusivity of mutations in cancer drivers has recently attracted a lot of attention.
These relationships can help identify cancer drivers, cancer-driving pathways,
and subtypes [1–4]. The co-occurrence of mutations has also provided critical
information about possible synergistic effects between gene pairs [5].

Importantly, both properties can arise due to several different reasons, mak-
ing the interpretation challenging. Specifically, mutually exclusive mutations
within a functionally interacting gene module may indicate that a mutation in
either of the two genes dysregulates the same pathway. On the other hand, mutu-
ally exclusive mutations might reflect a situation where two genes drive different
cancer types, which is more likely to occur between genes belonging to different
pathways. We have previously observed that within cancer type mutual exclu-
sivity is more enriched with physically interacting genes than between cancer
types mutual exclusivity [2]. Thus, the interaction information between genes
might provide hints toward the nature of the mutual exclusivity. In addition,
mutual exclusivity is not necessarily limited to cancer drivers, and therefore a
proper understanding of this property is critical for obtaining a better picture
of cancer mutational landscape and for cancer driver prediction.

The co-occurrence of mutations might also emerge due to a number of differ-
ent causes. Perhaps the most important case is when the co-inactivation of two
genes simultaneously might be beneficial for cancer progression such as the co-
occurrence of TP53 mutation and MYC amplification [5] or co-occurring muta-
tions in PIK3CA and RAS/KRAS [6]. Alternatively, co-occurrence of somatic
mutations might indicate the presence of a common mutagenic process.

Given the diversity of reasons for observing the mutational patterns, we
hypothesised that jointly considering co-occurrence, mutual exclusivity and func-
tional interaction relationships will yield a better understanding of the mutational

P. Dao and Y.-A. Kim—Equal contribution.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 370–371, 2017.
DOI: 10.1007/978-3-319-56970-3

BeWith: A Between-Within Method for Module Discovery 371

landscape of cancer. To address this challenge, we designed a general framework,
named BeWith, for identifying modules with different combinations of mutation
and interaction patterns. On a high level, BeWith tackles the following problem:
given a set of genes and two types of edge scoring functions (within and between
scores), find the clusters of genes such that genes within a cluster maximize the
within scores while gene pairs in two different clusters maximize the between
scores. We formulated the BeWith module identification problem as an Integer
Linear Programming (ILP) and solved it to optimality.

In this work, we focused on three different settings of the BeWith frame-
work: BeME-WithFun (mutual exclusivity between different modules and func-
tional similarity of genes within modules), BeME-WithCo (mutual exclusivity
between modules and co-occurrence within modules), and BeCo-WithMEFun
(co-occurrence between modules while enforcing mutual exclusivity and func-
tional interactions within modules). By utilizing different settings of within and
between properties, BeWith revealed complex relations between mutual exclu-
sivity, functional interactions, and co-occurrence. In particular, BeME-WithFun
identified functionally coherent modules containing cancer associated genes. By
looking for co-occurring mutations inside a module, the BeME-WithCo setting
allowed us to investigate mutated modules in a novel way and help uncover
synergetic gene pairs in breast cancer. Going beyond cancer driving mutations,
the setting also provided insights into underlying mutagenic processes in cancer.
Importantly, the BeWith formulation is very general and can be used to inter-
rogate other aspects of the mutational landscape by exploring different combi-
nations of within-between definitions and constraints with simple modifications.

Implementation is available at https://www.ncbi.nlm.nih.gov/CBBresearch/
Przytycka/software/bewith.html.

References

1. Babur, Ö., Gönen, M., Aksoy, B.A., Schultz, N., Ciriello, G., Sander, C., Demir,
E.: Systematic identification of cancer driving signaling pathways based on mutual
exclusivity of genomic alterations. Genome Biol. 16, 45 (2015)

2. Kim, Y.A., Cho, D.Y., Dao, P., Przytycka, T.M.: MEMCover: integrated analysis
of mutual exclusivity and functional network reveals dysregulated pathways across
multiple cancer types. Bioinformatics 31(12), i284–92 (2015)

3. Leiserson, M.D.M., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identifica-
tion of multiple driver pathways in cancer. PLoS Comput. Biol. 9(5), e1003054
(2013)

4. Leiserson, M.D.M., Hsin-Ta, W., Fabio, V., Raphael, B.J.: CoMEt: a statistical app-
roach to identify combinations of mutually exclusive alterations in cancer. Genome
Biol. 16(1), 72 (2015)

5. Ulz, P., Heitzer, E., Speicher, M.R.: Co-occurrence of MYC amplification and TP53
mutations in human cancer. Nat. Genet. 48(2), 104–106 (2016)

6. Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast
tumours. Nature 490(7418), 61–70 (2012)

https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/software/bewith.html
https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/software/bewith.html

K-mer Set Memory (KSM) Motif
Representation Enables Accurate Prediction

of the Impact of Regulatory Variants

Yuchun Guo , Kevin Tian , Haoyang Zeng ,
and David K. Gifford(&)

MIT, Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, USA
gifford@mit.edu

Introduction

The discovery and representation of transcription factor (TF) DNA sequence binding
specificities is critical for understanding regulatory networks and interpreting the
impact of non-coding genetic variants. The position weight matrix (PWM) model does
not represent binding specificities accurately because it assumes that base positions in
the motif are independent. Recent studies have shown that DNA sequences proximal to
a TF motif core may affect DNA shape and hence TF binding [1]. We hypothesized
that a motif model that preserves base positional dependences and includes proximal
flanking bases would improve upon existing motif models.

Approach

We introduce the K-mer Set Memory (KSM) model that represents TF binding
specificity as a set of aligned gapped and ungapped k-mers that are over-represented at
TF binding sites. KSM motif matching requires an exact match of one or more com-
ponent k-mers, thus preserving inter-positional dependences. The k-mers matching the
motif core and the flanking bases are combined non-additively to score the KSM motif
matches. We have developed a de novo motif discovery method called KMAC to learn
KSM and corresponding PWM motifs from TF ChIP-seq data.

Results

We compared KMAC with four state-of-the-art motif discovery methods, MEME,
MEME-chip, Homer, and Weeder2, on discovering PWM motifs from the binding sites
of 78 TFs in 209 ENCODE ChIP-seq experiments. KMAC identified previously
published PWM motifs in more experiments than the other methods.

© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 372–374, 2017.
DOI: 10.1007/978-3-319-56970-3

http://orcid.org/0000-0003-2357-1546
http://orcid.org/0000-0003-0109-9201
http://orcid.org/0000-0003-1057-2865
http://orcid.org/0000-0003-1709-4034

We then compared the performance of KSM versus other motif models in pre-
dicting in vivo TF binding by discriminating TF-bound sequences from unbound
sequences. For the GAPB dataset, a KSM motif outperforms PWM motifs computed
by KMAC, MEME, and Homer, as well as representations that model base
inter-dependences such as TFFM [2] and Slim [3] (Fig. 1A). For sequences with
identical PWM scores, the KSM scores of the positive sequences are generally higher
than those of the negative sequences (Fig. 1B). This is because KSM motif matches in
positive sequences often contain more KSM k-mers that cover motif flanking bases
than those in negative sequences.

Out of 104 ChIP-seq datasets, KSMs outperform PWMs in 85 datasets; and PWMs
do not outperform KSMs in any dataset (Fig. 1C). Overall, a KSM significantly out-
performs a PWM (p = 4.79e-18, paired Wilcoxon signed rank test) and a TFFM in
predicting TF binding (p = 0.045, paired Wilcoxon signed rank test). We also found
that a KSM is able to generalize across cell types. For 19 unique TFs, KSMs signifi-
cantly outperformed PWMs when a motif learned from one cell type (K562) is used to
predict binding of the same TF in another cell type (GM12878 or H1-hESC) (Fig. 1D).
The KSM predictions across the cell types perform similarly to the KSM predictions in
the same cell type (p = 0.091, paired Wilcoxon signed rank test).

(A) The partial ROC (fpr <= 0.1) of KSM and other models for predicting
ChIP-seq binding of GABP in K562 cells. (B) Comparison of the mean KSM scores of
positive versus negative sequences that corresponds to the same PWM scores. Each
point represents a set of sequences that have the same PWM score. (C) Comparison of
the median AUROC (fpr <= 0.1) scores of KSM and PWM for 104 experiments with
five cross-validation datasets. (D) Similar to (C), but comparing KSM and PWM in the
same cell type (red) or cross cell type (blue) in 19 TFs.

In addition, evaluated the ability of different sequence features to predict the reg-
ulatory activity of e-QTLs using a computational framework [4] that performed the best
in the CAGI 4 “eQTL-causal SNPs” challenge. We found that KSM derived features
(AUPRC = 0.461, AUROC = 0.683) outperformed Homer PWM derived features
(AUPRC = 0.434, AUROC = 0.629), MEME PWM derived features (AUPRC =
0.408, AUROC = 0.619) and sequence features derived from DeepSEA [5], a deep
learning model (AUPRC = 0.396, AUROC = 0.628), in predicting the differential
regulatory activities of e-QTL alleles. The combined KSM and DeepSEA features
achieved the best performance (AUPRC = 0.464, AUROC = 0.696).

Fig. 1. KSM outperforms PWM in predicting in vivo TF binding in held-out data.

K-mer Set Memory (KSM) Motif Representation Enables Accurate Prediction 373

Finally, we have created a public resource of KSM and PWM motifs from more
than one thousand ENCODE TF ChIP-seq datasets.

Conclusion

We found that the K-mer Set Model (KSM) is a more powerful motif representation
than the PWM and TFFM models for identifying held-out DNA sequences that are
bound by a TF. We also found that KMAC more accurately discovers PWM motifs
than other tested methods. Thus, the KSM and PWM models produced by the KMAC
method improve the ability to model TF binding specificities, and enable more accurate
characterization of non-coding genetic variants.

References

1. Slattery, M., Riley, T., Liu, P., Abe, N., Gomez-Alcala, P., Dror, I., Zhou, T., Rohs, R.,
Honig, B., Bussemaker, H.J., Mann, R.S.: Cofactor binding evokes latent differences in DNA
binding specificity between Hox proteins. Cell 147, 1270–1282 (2011)

2. Mathelier, A., Wasserman, W.W.: The next generation of transcription factor binding site
prediction. PLoS Comput. Biol. 9, e1003214 (2013)

3. Keilwagen, J., Grau, J.: Varying levels of complexity in transcription factor binding motifs.
Nucl. Acids Res. 43, e119–e119 (2015)

4. Zeng, H., Edwards, M.D., Guo, Y., Gifford, D.K.: Accurate eQTL prioritization with an
ensemble-based framework. bioRxiv. 69757 (2016)

5. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep
learning-based sequence model. Nat. Meth. 12, 931–934 (2015)

374 Y. Guo et al.

Network-Based Coverage of Mutational Profiles
Reveals Cancer Genes

Borislav H. Hristov and Mona Singh(B)

Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics,
Princeton University, Princeton, NJ, USA

mona@cs.princeton.edu

Summary. A central goal in cancer genomics is to identify the somatic alter-
ations that underpin tumor initiation and progression. This task is challeng-
ing as the mutational profiles of cancer genomes exhibit vast heterogeneity,
with many alterations observed within each individual, few shared somatically
mutated genes across individuals, and important roles in cancer for both fre-
quently and infrequently mutated genes. While commonly mutated cancer genes
are readily identifiable, those that are rarely mutated across samples are diffi-
cult to distinguish from the large numbers of other infrequently mutated genes.
Here, we introduce a method that considers per-individual mutational profiles
within the context of protein-protein interaction networks in order to identify
small connected subnetworks of genes that, while not individually frequently
mutated, comprise pathways that are perturbed across (i.e., “cover”) a large
fraction of the individuals. We devise a simple yet intuitive objective function
that balances identifying a small subset of genes with covering a large fraction
of individuals. We show how to solve this problem optimally using integer linear
programming and also give a fast heuristic algorithm that works well in prac-
tice. We perform a large-scale evaluation of our resulting method, nCOP, on 6,038
TCGA tumor samples across 24 different cancer types. We demonstrate that our
approach is more effective in identifying cancer genes than both methods that
do not utilize any network information as well as state-of-the-art network-based
methods that aggregate mutational information across individuals. Overall, our
work demonstrates the power of combining per-individual mutational informa-
tion with interaction networks in order to uncover genes functionally relevant in
cancers, and in particular those genes that are less frequently mutated.

Methods. We model the biological network as an undirected graph G where
each vertex represents a gene, and there is an edge between two vertices if an
interaction has been found between the corresponding proteins. We annotate
each node in the network with the IDs of the individuals having one or more
mutations in the corresponding gene. Our goal is to find a relatively small con-
nected component G′ such that most patients have mutations in one of the genes
within it. A small subgraph is more likely to consist of functionally related genes
and is less likely to be the result of overfitting to the set of individuals whose
diseases we are analyzing. However, we would also like our model to have the
greatest possible explanatory power—that is, to account for, or cover, as many
patients as possible by including genes that are mutated within their cancers.
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 375–376, 2017.
DOI: 10.1007/978-3-319-56970-3

376 B.H. Hristov and M. Singh

We formulate our problem to balance these two competing objectives with a
parameter α that controls the trade-off between keeping the subgraph small and
covering more patients as to minimize αX + (1 − α)Size(G′), where X is the
fraction of patients that do not have an alteration in a gene included in G′ (i.e.,
they are uncovered) and Size(G′) is the size of the subgraph.

For a fixed value of α, we have developed two approaches to solve the underly-
ing optimization problem: one based on linear programming and the other a fast
greedy heuristic. To select an appropriate α for a set of cancer samples, we devise
a simple but effective data-driven cross-validation technique. In particular, we
split our samples into training, validation and test sets. A test set of (10%) of
the patients is completely withheld. While varying α in small increments in the
interval (0; 1), the remaining data is repeatedly split (100 times for each value of
α) into training (80%) and validation (20%) sets. For each split, the algorithm
is run on the training set to find G′. The fractions of patients covered (by the
selected G′) in the training and validation sets are compared. The parameter α
is selected where performance on the validation sets deviates as compared to the
training sets. Once α is chosen for a set of cancer samples, we repeatedly (1000
times) run the algorithm on this set, each time withholding a fraction (15%) of
the patients in order to introduce some randomness in the process. Genes are
then ranked by the number of times they appear in G′.

Results. We run nCOP on somatic point mutation data from 24 different TCGA
cancer types. We show that nCOP effectively uses network information to uncover
known cancer genes by considering how well it recapitulates known cancer genes
(CGCs) in comparison to network-agnostic methods. We find that nCOP outper-
forms MutSigCV 2.0 (Lawrence et al. 2013), a state-of-the-art frequency-based
approach, on 21 of the 24 cancer types, and a basic set cover approach on all
24 types. We also show that nCOP is more effective in uncovering known can-
cer genes than Muffinn (Cho et al. 2016), a recent network-based method that
considers mutations found in interacting genes. Finally, we examine the non-
CGC genes which are highly ranked by nCOP and observe that they tend to
be less frequently mutated. Our results are consistent across the three differ-
ent networks we used (HPRD, HINT, and Biogrid), showing the robustness of
the method with respect to the underlying network. Further, we demonstrate
that our training-validation-test set framework is a highly effective approach for
choosing an α that balances patient coverage with subnetwork size.

In summary, we present nCOP, a method that incorporates individual muta-
tional profiles with protein–protein interaction networks, and show it is a power-
ful approach for uncovering cancer genes. Researchers can use our framework to
rapidly and easily prioritize cancer genes, as nCOP requires only straightforward
inputs and runs on a desktop machine. Indeed, nCOP’s efficiency, robustness, and
ease of use make it an excellent choice to investigate cancer as well as possibly
other complex diseases. nCOP can be freely downloaded at: http://compbio.cs.
princeton.edu/ncop/.

http://compbio.cs.princeton.edu/ncop/
http://compbio.cs.princeton.edu/ncop/

Ultra-Accurate Complex Disorder Prediction:
Case Study of Neurodevelopmental Disorders

Linh Huynh1 and Fereydoun Hormozdiari1,2,3(B)

1 Genome Center, UC Davis, Davis, USA
fhormozd@ucdavis.edu

2 MIND institute, UC Davis, Davis, USA
3 Biochemistry and Molecular Medicine, UC Davis, Davis, USA

Motivation and Problem Definition. Early prediction of complex disorders
(e.g. autism, intellectual disability or schizophrenia) is one of the main goals
of personalized genomics and precision medicine. Considering the high genetic
heritability of neurodevelopmental disorders (h2 > 0.5 for autism [1]) we are
proposing a novel problem and framework for accurate prediction of autism and
related disorders based on rare and de novo genetic variants [2]. However, a
positive diagnosis/prediction of a complex disorder (e.g., autism or intellectual
disability) can have a severe negative psychological and economical impact on
affected individuals and their family. Thus, one of the primary practical con-
straints in developing models and methods for prediction of a severe complex
disorder is to guarantee a false positive prediction/discovery rate (FDR) of vir-
tually zero. Hence, we are introducing a novel problem for prediction of complex
disorders for a subset of affected cases with very low false positive prediction. We
denote this problem as Ultra-Accurate Disorder Prediction (UADP) problem.

Methods. We have proposed framework for solving the UADP problem denoted
as Odin (Oracle for DIsorder predictioN). Odin will intuitively predict an
input/test sample to be an affected case if and only if it satisfies two conditions:

1. The input sample is “far” from any unaffected control sample
2. The input sample is “close” to many affected case samples

For satisfying the first condition, we simply use the nearest neighbor (NN) app-
roach using a distance function (e.g., Euclidean distance). For satisfying the sec-
ond condition, we first develop a novel algorithm that finds a cluster (together
with a dimension reduction) that contains a significant number of affected cases
and does not contain any unaffected controls. This cluster is denoted as unicolor
cluster, as it only includes the affected cases. We denote the problem of finding
such a cluster as Unicolor Clustering with Dimensionality Reduction (UCDR)
problem. An input sample passes the second condition if it falls inside of this
unicolor cluster. A weighted version of UCDR, where we can assign weights to
each dimension is denoted as Weighted Unicolor Clustering with Dimensionality
Reduction (WUCDR) problem. We have shown that the decision version of an
UCDR instance is NP-complete using reduction from equal-subset sum problem
[3]. We propose an iterative approach with two steps to solve the WUCDR prob-
lem. In the first step, given weights for each dimension, we find the cluster to
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 377–378, 2017.
DOI: 10.1007/978-3-319-56970-3

378 L. Huynh and F. Hormozdiari

cover a maximum number of affected cases. In the second step, given the cluster
from the first step, we find the new set of weights for each dimension by using a
linear programming (LP) formulation.

Results. We used the leave-one-out (LOO) cross validation technique to com-
pare the prediction power of Odin and the of k-NN and SVM classifiers. As our
stated goal is to keep the false positive prediction of unaffected samples as cases
close to zero, we will only consider the most conservative results for each method
(i.e., where false discovery rate (FDR) < 0.01). For the same FDR threshold,
Odin’s true positive rate for predicting autism is at least twice higher than the
best k-NN result (for various values of k) and significantly higher than SVM.
Our experimental results indicate the ability of our approach in ultra-accurate
prediction of autism spectrum disorder (ASD) in additional 8% of cases which
do not have a severe mutation in recurrently mutated genes, with less than 0.5%
of false positive prediction rate for unaffected controls.

Odin is publicly available at https://github.com/HormozdiariLab/Odin.

References

1. Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C.M.,
Reichenberg, A.: The familial risk of autism. JAMA 311(17), 1770–1777 (2014)

2. Iossifov, I., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D.,
Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al.: The contri-
bution of de novo coding mutations to autism spectrum disorder. Nature 515(7526),
216–221 (2014)

3. Woeginger, G.J., Yu, Z.: On the equal-subset-sum problem. Inf. Process. Lett. 42(6),
299–302 (1992)

https://github.com/HormozdiariLab/Odin

Inference of the Human Polyadenylation Code

Michael K.K. Leung1,2(&), Andrew Delong1,2,
and Brendan J. Frey1,2,3

1 Deep Genomics, MaRS Centre, Heritage Building, Suite 320,
Toronto, ON M5G 1L7, Canada
mleung@psi.toronto.edu

2 Department of Electrical and Computer Engineering, University of Toronto,
Toronto M5S 3G4, Canada

3 Banting and Best Department of Medical Research, University of Toronto,
Toronto M5S 3E1, Canada

Abstract. Processing of transcripts at the 3’-end is a two-step procedure that
involves cleavage at a polyadenylation site followed by the addition of a poly
(A)-tail. By selecting which polyadenylation site is cleaved in transcripts with
multiple sites, alternative polyadenylation enables genes to produce transcript
isoforms with different 3’-ends. To facilitate the identification and treatment of
disease-causing mutations that affect polyadenylation and to understand the
underlying regulatory processes, a computational model that can accurately
predict polyadenylation patterns based on genomic features is desirable. Pre-
vious works have focused on identifying candidate polyadenylation sites, as
well as classifying sites which may be tissue-specific. However, what is lacking
is a predictive model of the underlying mechanism of site selection, competition,
and processing efficiency in a tissue-specific manner. We develop a deep
learning model that trains on 3’-end sequencing data and predicts tissue-specific
site selection among competing polyadenylation sites in the 3’ untranslated
region of the human genome.
Two neural network architectures are evaluated: one built on hand-engineered

features, and another that directly learns from the genomic sequence. The
hand-engineered features include polyadenylation signals, cis-regulatory ele-
ments, n-mer counts, nucleosome occupancy, and RNA-binding protein motifs.
The direct-from-sequence model is inferred without prior knowledge on
polyadenylation, based on a convolutional neural network trained with genomic
sequences surrounding each polyadenylation site as input. Both models are
trained using the Tensor Flow library.
The proposed polyadenylation code can predict functional site selection

among competing polyadenylation sites across all tissues. Importantly, it does so
without relying on evolutionary conservation. The model can directly distin-
guish pathogenic from benign variants that appear near annotated polyadeny-
lation sites, achieving a classification AUC of 0.98 (p < 1 × 10−8) on ClinVar.
We further demonstrate the potential use of the same model to predict the effects
of antisense oligonucleotides to redirect polyadenylation and to scan the genome
to find candidate polyadenylation sites.

© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, p. 379, 2017.
DOI: 10.1007/978-3-319-56970-3

Folding Membrane Proteins
by Deep Transfer Learning

Zhen Li1,3, Sheng Wang1,2, Yizhou Yu3, and Jinbo Xu1(&)

1 Toyota Technological Institute at Chicago, Chicago, USA
jinboxu@gmail.com

2 Department of Human Genetics, University of Chicago, Chicago, USA
3 Department of Computer Science, University of Hong Kong,

Hong Kong, China

Membrane proteins (MPs) are important for drug design and have been targeted by
approximately half of current therapeutic drugs. In many genomes 20–40% of genes
encode MPs. In particular, Human genome has >5,000 reviewed MPs and more than
3000 of them are non-redundant at 25% sequence identity. Experimental determination
of MP structures is challenging as they are often too large for NMR experiments and
very difficult to crystallize. As of October 2016, there are *510 non-redundant MPs
with solved structures, and a majority number of MPs have no solved structures.

Developing computational methods for MP structure prediction is challenging
partially due to lack of MPs with solved structures for homology modeling or for
parameter estimation of ab initio folding. Recently contact-assisted ab initio folding has
made good progress [1]. This technique first predicts the contacts of a protein and then
use predicted contacts as restraints to guide folding simulation. Contact-assisted folding
heavily depends on accurate prediction of protein contacts. Co-evolution analysis can
predict contacts accurately for some proteins with a large number of sequence
homologs. However, protein families without good templates in PDB on average have
many fewer sequences homologs than those with good templates.

Zhen Li and Sheng Wang – These authors contributed equally to the work as first authors.

Fig. 1. Overview of our deep learning model for MP contact prediction where L is the sequence
length of one MP under prediction.

© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 380–382, 2017.
DOI: 10.1007/978-3-319-56970-3

We have developed a deep transfer learning method that can significantly improve
MP contact prediction by learning contact occurrence patterns from thousands of
non-membrane proteins (non-MPs). We treat a contact map as an image and formulate
contact prediction similarly as pixel-level image labeling. As shown in Fig. 1, our deep
network is composed of two concatenated deep residual neural networks. Each network
consists of some residual blocks and each block has 2 convolution and ReLU layers.
The first residual network conducts 1-dimensional (1D) convolutional transformations
of sequential features. Its output is converted to a 2-dimensional (2D) matrix by an
operation called outer concatenation and fed into the 2nd residual network together with
the pairwise features. The 2nd residual network conducts 2D convolutional transfor-
mations of its input and feeds its output into logistic regression, which predicts the
probability of any two residues in a contact. We predict all the contacts of a protein
simultaneously to capture contact occurrence patterns and improve prediction accuracy.
We use two types of protein features: sequential features and pairwise features. The
sequential features include protein sequence profile, secondary structure and solvent
accessibility predicted by RaptorX-Property [2]. The pairwise features include
co-evolutionary strength generated by CCMpred [3], mutual information and pairwise
contact potential. Some MP-specific features are also tested.

We studied three training strategies: NonMP (only non-MPs used as training
proteins), MP-only (only MPs used as training proteins) and Mixed (both non-MPs and
MPs used as training proteins). Tested on 510 non-redundant MPs, our deep models
trained by NonMP only, MP-only and Mixed have top L/10 long-range prediction
accuracy 0.69, 0.63 and 0.72, respectively, all much better than CCMpred (0.47) and
the CASP11 winner MetaPSICOV (0.55). When only contacts in transmembrane
regions are evaluated, our models have top L/10 long-range accuracy 0.57, 0.53, and
0.62, respectively, again much better than MetaPSICOV (0.45) and CCMpred (0.40).
These results suggest that sequence-structure relationship learned by our deep model
from non-MPs generalizes well to MP contact prediction and that non-MPs and MPs
share common contact occurrence patterns.

Improved contact prediction also leads to better contact-assisted folding. We build
3D structure models for a MP by feeding its top predicted contacts to the CNS package,
and evaluate model quality by TMscore, which ranges from 0 to 1, indicating the worst
and best models, respectively. A model with TMscore >0.5 (0.6) is (very) likely to
have a correct fold. The average TMscore (RMSD in Å) of the 3D models built by our
three models MP-only, NonMP-only and Mixed are 0.45 (14.9), 0.49 (13.2), and 0.52
(10.8), respectively. By contrast, the average TMscore (RMSD in Å) of the 3D models
built from MetaPSICOV and CCMpred-predicted contacts are 0.39 (16.7) and 0.36
(17.0), respectively. When the best of top 5 models are considered and TMscore = 0.6
is used as cutoff, our three models can predict correct folds for 110, 160, and 200 of
510 MPs, respectively, while MetaPSICOV and CCMpred can do so for only 77 and
56 of them, respectively. Homology modeling can correctly fold 41 MPs when MPs
and non-MPs are used as templates and 3 MPs when only non-MPs are used as
templates. When TMscore = 0.5 is cutoff, our Mixed method, MetaPSICOV, and
CCMpred can predict correct folds for 283, 147, and 122 MPs, respectively.

Folding Membrane Proteins by Deep Transfer Learning 381

References

1. Wang, S., Sun, S., Li, Z., Zhang, R., Xu, J.: Accurate De Novo prediction of protein contact
map by ultra-deep learning model. PLoS Comput. Biol. 13, e1005324 (2017)

2. Wang, S., Li, W., Liu, S., Xu, J.: RaptorX-Property: a web server for protein structure
property prediction. Nucleic Acids Res. gkw306 (2016)

3. Seemayer, S., Gruber, M., Söding, J.: CCMpred—fast and precise prediction of protein
residue–residue contacts from correlated mutations. Bioinformatics 30, 3128–3130 (2014)

382 Z. Li et al.

A Network Integration Approach
for Drug-Target Interaction Prediction
and Computational Drug Repositioning

from Heterogeneous Information

Yunan Luo1,3, Xinbin Zhao2, Jingtian Zhou2, Jinling Yang1, Yanqing Zhang1,
Wenhua Kuang2, Jian Peng3(B), Ligong Chen2(B), and Jianyang Zeng1(B)

1 Institute for Interdisciplinary Information Sciences, Tsinghua University,
Beijing, China

zengjy321@tsinghua.edu.cn
2 School of Pharmaceutical Sciences, Tsinghua University, Beijing, China

ligongchen@biomed.tsinghua.edu.cn
3 Department of Computer Science, University of Illinois at Urbana-Champaign,

Champaign, USA
jianpeng@illinois.edu

The emergence of large-scale genomic, chemical and pharmacological data pro-
vides new opportunities for drug discovery and repositioning. Systematic inte-
gration of these heterogeneous data not only serves as a promising tool for iden-
tifying new drug-target interactions (DTIs), which is an important step in drug
development, but also provides a more complete understanding of the molecular
mechanisms of drug action. In this work, we integrate diverse drug-related infor-
mation, including drugs, proteins, diseases and side-effects, together with their
interactions, associations or similarities, to construct a heterogeneous network
with 12,015 nodes and 1,895,445 edges. We then develop a new computational
pipeline, called DTINet, to predict novel drug-target interactions from the con-
structed heterogeneous network. Specifically, DTINet focuses on learning a low-
dimensional vector representation of features for each node, which accurately
explains the topological properties of individual nodes in the heterogeneous net-
work, and then predicts the likelihood of a new DTI based on these represen-
tations via a vector space projection scheme. DTINet achieves substantial per-
formance improvement over other state-of-the-art methods for DTI prediction.
Moreover, we have experimentally validated the novel interactions between three
drugs and the cyclooxygenase (COX) protein family predicted by DTINet, and
demonstrated the new potential applications of these identified COX inhibitors
in preventing inflammatory diseases. These results indicate that DTINet can
provide a practically useful tool for integrating heterogeneous information to
predict new drug-target interactions and repurpose existing drugs.

The full paper of DTINet is available at [1]. The source code of DTINet and
the input heterogeneous network data can be downloaded from https://github.
com/luoyunan/DTINet.

Y. Luo et al.—These authors contributed equally to this work.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 383–384, 2017.
DOI: 10.1007/978-3-319-56970-3

https://github.com/luoyunan/DTINet
https://github.com/luoyunan/DTINet

384 Y. Luo et al.

Acknowledgments. This work was supported in part by the National Basic Research
Program of China (Grant 2011CBA00300 and 2011CBA00301), the National Natural
Science Foundation of China (Grant 61033001, 61361136003, 61472205 and 81470839),
the China’s Youth 1000-Talent Program, the Beijing Advanced Innovation Center for
Structural Biology, and the Tsinghua University Initiative Scientific Research Program
(Grant. 20161080086). J.P. received support as an Alfred P. Sloan Research Fellow.
We acknowledge the support of NVIDIA Corporation with the donation of the Titan
X GPU used for this research.

Reference

1. Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., Peng, J., Chen, L.,
Zeng, J.: A network integration approach for drug-target interaction prediction and
computational drug repositioning from heterogeneous information (2017). bioRxiv.
doi:https://doi.org/10.1101/100305

http://dx.doi.org/https://doi.org/10.1101/100305

Epistasis in Genomic and Survival Data
of Cancer Patients

Dariusz Matlak and Ewa Szczurek(B)

Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland

szczurek@mimuw.edu.pl

Extended Abstract

Fitness is a measure of replicative and survival success of an individual, rela-
tive to competitors in the same population. Epistasis is an interaction between
genes, and refers to departure from independence of effects that their genomic
alterations have on fitness. Beerenwinkel et al. [2] defined epistatic interactions
not only among two, but also more genes. Here, we consider epistasis of genes
in their contribution to fitness of tumors in cancer patients.

Current state of the art cancer therapies have limited efficacy due to toxicity
and rapid development of drug resistance. Recently, therapies exploiting syn-
thetic lethal interactions between genes were proposed to overcome these difficul-
ties [8]. Synthetic lethality occurrs when the co-inactivation of two genes results
in cellular death, while inactivation of each individual gene is viable. In can-
cer, one gene inactivation can already occur via the endogenous mutation in the
tumor cells, and not in the normal cells of the body. Thus, applying a drug that
targets the synthetic lethal partner of that gene will selectively kill cancer cells,
leaving the rest viable. A famous example is the interaction between BRCA1
and PARP1. In BRCA1 deficient cells, treatment with a PARP inhibitor, such
as Olaparib [4], is expected to result in selective tumor cell death.

Synthetic lethality is, however, context dependent. For example, compared to
the dramatic effect that PARP1 inhibition has on BRCA1 -deficient cell lines, the
efficacy of Olaparib therapy on patients was low, since a positive response was
observed in less than 50% of BRCA-mutated cancers [3]. This raises the crucial
issue of therapeutic biomarkers. For BRCA1 and PARP1, mutation of TP53BP1
in addition to BRCA1 was observed to alleviate the synthetic lethal effect [1].
Thus, in TP53BP1 deficient tumors, administrating Olaparib is not justified,
and unaltered TP53BP1 is a biomarker of this therapy. Such dependence of
pairwise interaction on the mutational status of a third gene is represented by
conditional epistasis, a type of the triple epistatic interactions [2].

Experimental approaches to identification of synthetic lethality in human
cancer are overwhelmed by the number of, and thus test only small subsets of
all possible interactions [7]. The effort and money required for these experiments
calls for a pre-selection of synthetic lethal partners based on the computational
analysis of existing data. Previous methods [5, 9] aimed at deciphering synthetic
lethality from somatic alteration, expression or survival data of cancer patients.
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 385–386, 2017.
DOI: 10.1007/978-3-319-56970-3

386 D. Matlak and E. Szczurek

Here, we introduce SurvLRT, an approach for identification of epistatic gene
pairs and triplets inhumancancer.Weproposea statisticalmodelbasedonLehman
alternatives [6], which allows to estimate fitness of tumors with a given genotype
from survival of carrier patients. We assume that a decrease of fitness of tumors due
to a particular genotype is exhibited by a proportional increase of survival of the
patients. Based on these assumptions, we introduce a likelihood ratio test for the
significance of a given pairwise or triple epistatic interaction. In the test, the null
model assumes that there is no epistasis and the gene alterations are independent,
while the alternative assumesotherwise.Theapproach candetectbothpositive and
negative interactions. Compared to our previous approach [9], SurvLRT offers a
more natural interpretation of the notion of fitness, aswell as a direct statistical test
for the significance of epistasis. We analyze the sensitivity and power of SurvLRT
in a controlled setting of simulated data. Next, we show that, compared to previous
methods, our method performs favorably in predicting known pairwise synthetic
lethal interactions. Finally, we apply SurvLRT to detect therapeutic biomarkers,
first by recapitulating TP53BP1, the known biomarker for therapies based on the
BRCA1, PARP1 interaction, and second by identifying a genomic region deleted
in tumors as a new and even more significant biomarker.

Acknowledgement. This work was partially supported by the Polish National Sci-
ence Center grant numbers 2015/16/W/NZ2/00314 and 2015/19/P/NZ2/03780.

References

1. Aly, A., Ganesan, S.: BRCA1, PARP, and 53BP1: conditional synthetic lethality
and synthetic viability. J. Mol. Cell Biol. 3(1), 66–74 (2011)

2. Beerenwinkel, N., Pachter, L., Sturmfels, B.: Epistasis and shapes of fitness land-
scapes. Stat. Sinica 17, 1317–1342 (2007)

3. Chan, S.L., Mok, T.: PARP inhibition in BRCA-mutated breast and ovarian cancers.
Lancet 376(9737), 211–213 (2010)

4. Hutchinson, L.: Targeted therapies: PARP inhibitor olaparib is safe and effective in
patients with BRCA1and BRCA2mutations. Nat. Rev. Clin. Oncol. 7(10), 549 (2010)

5. Jerby-Arnon, L., Pfetzer, N., Waldman, Y.Y., McGarry, L., James, D., Shanks,
E., Seashore-Ludlow, B., Weinstock, A., Geiger, T., Clemons, P.A., Gottlieb, E.,
Ruppin, E.: Predicting cancer-specific vulnerability via data-driven detection of syn-
thetic lethality. Cell 158(5), 1199–1209 (2014)

6. Lehman, E.L.: The power of rank tests. Ann. Math. Statist. 24(1), 23–43 (1953)
7. Lord, C.J., McDonald, S., Swift, S., Turner, N.C., Ashworth, A.: A high-throughput

RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity.
DNA Repair (Amst.) 7(12), 2010–2019 (2008)

8. Porcelli, L., Quatrale, A.E., Mantuano, P., Silvestris, N., Brunetti, A.E., Calvert, H.,
Paradiso, A., Azzariti, A.: Synthetic lethality to overcome cancer drug resistance.
Curr. Med. Chem. 19(23), 3858–3873 (2012)

9. Szczurek,E.,Misra,N.,Vingron,M.: Synthetic sickness or lethalitypoints at candidate
combination therapy targets in glioblastoma. Int. J. Cancer 133(9), 2123–2132 (2013)

Ultra-Fast Identity by Descent Detection
in Biobank-Scale Cohorts Using Positional

Burrows-Wheeler Transform

Ardalan Naseri1, Xiaoming Liu2, Shaojie Zhang1(B), and Degui Zhi3

1 Department of Computer Science, University of Central Florida,
Orlando, FL 32816, USA
shzhang@cs.ucf.edu

2 Department of Epidemiology, Human Genetics and Environmental Science,
University of Texas Health Science Center at Houston, Houston, TX 77030, USA

3 School of Biomedical Informatics,
University of Texas Health Science Center at Houston, Houston, TX 77030, USA

degui.zhi@uth.tmc.edu

Recent advancements in genome-wide SNP array and whole genome sequenc-
ing technologies have led to the generation of enormous amounts of population
genotype data. Understanding the genetic relationships based on individuals’
genotypes will shed light on better insight into precision medicine or population
genetics. A basic measure of genetic relationship is Identity by Descent (IBD).
IBD is defined as chromosomal segments shared between two individual chro-
mosomes which have been inherited from a common ancestor.

Most of the existing methods for IBD detection, such as IBDseq [1], PLINK
[4], and PARENTE [5], can handle both genotype and haplotype data, but they
rely on pairwise comparison of all individuals and therefore are not scalable
for large number of individuals. GERMLINE [3] avoids pairwise comparison by
using hash table on haplotype sequences. Under the assumption that the number
of seed matches between any individual and others is constant, the complexity of
GERMLINE will grow linearly with the number of samples. However, the indi-
viduals in a population share different levels of common substructures, therefore
the seed matches may deviate from its idealized linear behavior in a sample with
a large number of individuals. As a result, it will not be fast enough for hundreds
of thousands of individuals and millions of variant sites.

In this work, we present an efficient computational method, named RaPID
(Random Projection for IBD Detection), to find IBD segments larger than a
given length in haplotype data. We use an efficient population genotype index,
Positional Burrows-Wheeler Transform (PBWT) [2], that scales up linearly with
the sample size. PBWT algorithm can compute all haplotype matches that
exceed a given length in O(max(MN, I)), where M denotes the number of indi-
viduals, N the number of variant sites and I the number of matches. The key
idea behind PBWT is to sort the sequences by their reversed prefix at each posi-
tion. The PBWT algorithm sweeps through the list of variant sites and keeps the
starting position of each match between neighboring prefixes. PBWT searches for
exact matches and cannot tolerate mismatches that might be due to genotyping

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 387–388, 2017.
DOI: 10.1007/978-3-319-56970-3

388 A. Naseri et al.

or phasing errors. In order to account for genotyping or phasing errors, we build
PBWT over random projections of the original sequences. We divide the panel
into non-overlapping windows with the same length. The length is defined in
terms of consecutive variant sites. For each window, we select a variant site at
random and find all exact matches that exceed a minimum length using PBWT.
We repeat the random projection PBWT multiple times to increase the detec-
tion power. Since the error rate is presumably low, a true IBD segment will have
a high probability to be identified in some of the multiple runs. On the other
hand, a non-IBD segment will have a lower probability to be selected in multiple
runs. We model these probabilities as binomial distributions. A matched seg-
ment between any two individuals is considered to be an IBD if it was selected
more than a certain number of times among a total number of PBWT runs.

To evaluate the performance of RaPID, we have computed the accuracy and
power in a simulated population and compared the results with GERMLINE
and IBDseq. Accuracy is defined as the percentage of the correctly detected
IBD segments which overlap at least 50% with a true IBD. Power is defined as
the average of detected proportions of true IBDs. RaPID maintains comparable
accuracy and power to GERMLINE and IBDseq while being orders of mag-
nitudes faster than GERMLINE. On our simulated data, the running time of
RaPID was more than 100 times faster than GERMLINE when searching for
IBDs with a minimum length of 3 cM. Therefore, RaPID would be an appro-
priate tool for IBD detection in very large Biobank-scale genotyped cohorts.
To demonstrate the utility of RaPID for real data, we have applied it on the
1000 Genome Project data. The results show that RaPID can detect population
events at different time scales. Implementation is available at https://github.
com/ZhiGroup/RaPID.

References

1. Browning, B.L., Browning, S.R.: Detecting identity by descent and estimating geno-
type error rates in sequence data. Am. J. Hum. Genet. 93(5), 840–851 (2013)

2. Durbin, R.: Efficient haplotype matching and storage using the positional Burrows-
Wheeler transform (PBWT). Bioinformatics 30(9), 1266–1272 (2014)

3. Gusev, A., Lowe, J.K., Stoffel, M., Daly, M.J., Altshuler, D., Breslow, J.L.,
Friedman, J.M., Pe’er, I.: Whole population, genome-wide mapping of hidden relat-
edness. Genome Res. 19(2), 318–326 (2009)

4. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D.,
Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., Sham, P.C.: PLINK: a tool set
for whole-genome association and population-based linkage analyses. Am. J. Hum.
Genet. 81(3), 559–575 (2007)

5. Rodriguez, J.M., Bercovici, S., Huang, L., Frostig, R., Batzoglou, S.: Parente2: a
fast and accurate method for detecting identity by descent. Genome Res. 25(2),
280–289 (2015)

https://github.com/ZhiGroup/RaPID
https://github.com/ZhiGroup/RaPID

Joker de Bruijn: Sequence Libraries to Cover All
k-mers Using Joker Characters

Yaron Orenstein1, Ryan Kim2, Polly Fordyce3, and Bonnie Berger1(B)

1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
bab@mit.edu

2 Research Science Institute, McLean, VA 22207, USA
3 Stanford University, Stanford, CA 94305, USA

1 Introduction

Protein-DNA, -RNA and -peptide interactions drive nearly all cellular processes.
Due to their high importance, high-throughput technologies using sequence
libraries that cover all k-mers (i.e. words of length k) have been developed to
measure them in a universal and unbiased manner [1]. These techniques all face
a similar challenge: the space on the experimental device is limited, restricting
the total sequence space that can be probed in a single experiment. While de
Bruijn sequences cover all k-mers in the most compact manner, they remain |Σ|k
characters long (where Σ is the alphabet, e.g. {A,C,G,T}). Here, we introduce
a novel idea and algorithm for sequence design to cover all possible k-mers with
a significantly smaller experimental sequence library by using joker characters,
which represent all characters in the alphabet. Experimentally, such joker char-
acters can be easily incorporated during oligonucleotide or peptide synthesis
by using degenerate mixtures of nucleotides or amino acids, at no extra cost.
However, joker characters introduce degeneracy which could potentially lower
the statistical robustness of the measurements (as a measurement of a single
oligonucleotide is now assigned to multiple sequences instead of just one). To
address this challenge, we limit the use of joker characters to either one or two
joker characters per k-mer, enabling the coverage of (k+2)-mers at the same cost
and space of k-mers — a savings of a factor of |Σ|2 in sequence length (16 and 400
for DNA and amino acid alphabets, respectively). We validate that the library
remains capable of de novo identification of high-affinity k-mers by testing it on
known DNA-protein binding data for hundreds of proteins. The implementation
of our algorithm is freely available at jokercake.csail.mit.edu.

2 Methods

We propose a novel solution to the problem of generating a short sequence cov-
ering all k-mers using joker characters. The solution is based on two steps: (i) a
greedy heuristic; (ii) and an ILP formulation. The greedy heuristic examines at
each step an addition of k − 1 characters from Σ followed by a joker character.
The addition that covers the most k-mers that are yet to be covered p times
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 389–390, 2017.
DOI: 10.1007/978-3-319-56970-3

390 Y. Orenstein et al.

is chosen and added to the current sequence. The algorithm terminates when
all k-mers have been covered at least p times. The ILP formulation minimizes
the number of k-mers in the sequence under two sets of constraints. The first
requires that all k-mers occur at least p times. The second guarantees that the k-
mer occurrences can form a sequence. The ILP is solved using Gurobi ILP solver
version 6.5.2 [2], where it is given the greedy solution as a starting solution.

3 Results

To test the performance of our algorithm, we ran it on different parameter com-
binations. We ran the greedy heuristic on 5 ≤ k ≤ 8 for a DNA alphabet and
3 ≤ k ≤ 4 for an amino acid alphabet, with p = 1. We then ran the ILP solver,
starting from the greedy solution, with a time limit of 4 weeks. Results show that
the greedy algorithm produces a sequence that is much smaller than the origi-
nal de Bruijn sequence; i.e., less than 40% and 8% of the original for DNA and
amino acid alphabets, respectively. Following the ILP solver, sequence length
drops even further to less than 33% and 8% of the original, respectively, where
the theoretical lower bounds are 25% and 5%, respectively. To test the perfor-
mance of our algorithm in covering k-mers multiple times, we ran the greedy
heuristic on k = 6, a DNA alphabet, and 1 ≤ p ≤ 16. Here, we see that the
greedy algorithm is producing a near-optimal sequence, less than 27% of the size
of the original de Bruijn sequence for p ≥ 4.

To demonstrate the utility of these libraries, we validated our performance
when tested against a standard experimental 10-mer library of nearly 42,000
DNA sequences for which the binding affinities of hundreds of transcription
factors is known [3]. Remarkably, our library correctly recovers the high-affinity
target sites, despite a nearly 4-fold reduction in library size. We were able to
handle 10-mer libraries due to a 100-fold speedup in implementation over a
naive one for our joker library design.

4 Conclusion

We presented a new library design that covers all k-mers with a library of size
that is almost 1/|Σ| (and possibly 1/|Σ|2) smaller than current libraries, making
it possible to measure interactions of significantly longer k-mers while reducing
both experimental footprint and cost. We have made the implementation and
library designs freely available to others.

References

1. Fordyce, P.M., Gerber, D., Tran, D., Zheng, J., Li, H., DeRisi, J.L., Quake, S.R.: De
novo identification and biophysical characterization of transcription-factor binding
sites with microfluidic affinity analysis. Nat. Biotechnol. 28(9), 970–975 (2010)

2. Gurobi Optimization, I.: Gurobi Optimizer Reference Manual (2015). http://www.
gurobi.com

3. Hume, M.A., Barrera, L.A., Gisselbrecht, S.S., Bulyk, M.L.: UniPROBE, update
2015: new tools and content for the online database of protein-binding microarray
data on protein-DNA interactions. Nucleic Acids Res. gku1045 (2014)

http://www.gurobi.com
http://www.gurobi.com

GATTACA: Lightweight Metagenomic Binning
Using Kmer Counting

Victoria Popic1, Volodymyr Kuleshov1, Michael Snyder2,
and Serafim Batzoglou1(B)

1 Department of Computer Science, Stanford University, Stanford, CA, USA
{viq,kuleshov,serafim}@stanford.edu

2 Department of Genetics, Stanford University, Stanford, CA, USA
mpsnyder@stanford.edu

Extended Abstract

Despite their important role, microbes constitute the dark matter of the biologi-
cal universe. The main limitation hindering their study is sequencing technology.
The short read lengths of modern instruments – combined with various inherent
difficulties associated with complex bacterial environments – make it very diffi-
cult to perform simple tasks such as accurately identifying bacterial strains, recov-
ering their genomic sequences, and assessing their abundance. Many approaches
have been proposed to address these shortcomings. Specialized library prepara-
tion techniques such as Hi-C or synthetic long reads are often very accurate, but
also prohibitively complex. As a result, approaches based on contig binning are
more popular in practice.

Metagenomic binning refers to the problem of grouping together partially
assembled sequence fragments (or contigs) that belong to the same species. The
most successful recent approaches [1, 3, 5] perform unsupervised clustering based
on contig sequence composition and coverage profiles across multiple metage-
nomic samples. In brief, these techniques assemble de-novo bacterial contigs and
estimate the coverage of each contig within each sample of a large metagenomic
cohort using read mapping. This approach is accurate but has two main limita-
tions: it requires a large cohort of samples, as well as sizable compute resources
for read alignment.

In this work we present GATTACA, a lightweight framework for metage-
nomic binning, which (1) avoids read alignment without loss of accuracy and (2)
enables efficient stand-alone analysis of single metagenomic samples. Both results
are based on the finding that we can approximate contig coverages using kmer
counts while still achieving the same binning accuracy as leading alignment-
based methods. In addition to offering a significant speedup in coverage estima-
tion, using kmer counts, as opposed to alignment, provides us with the exciting
ability to index offline any publicly-available metagenomic sample. This allows
us to efficiently pull in data from large growing repositories, such as the Human
Microbiome Project (HMP) [4] or the EBI Metagenomics archive [2] into any
metagenomic study at almost no cost. For example, our kmer count index for
a typical HMP sample only requires 100MB on average. We achieve the small
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 391–392, 2017.
DOI: 10.1007/978-3-319-56970-3

392 V. Popic et al.

space requirement by leveraging memory-efficient hashing with minimal perfect
hash functions (MPHFs) and the probabilistic Bloom filter data structure. In
contrast, using these datasets with read alignment would require massive down-
loads and expensive subsequent handling to map the reads. In terms of speedup,
we found our coverage estimation time to be at least an order of magnitude faster
(approximately 20×) when the index is computed offline (e.g. for recyclable pub-
lic reference samples) and about 6× when the kmers are counted on-the-fly (e.g.
for private samples used only once), when compared to read mapping.

While using small indices allows us to incorporate a large number of publicly-
available samples into a given study, not all existing samples will improve the
binning accuracy. Therefore, we propose the following two metrics for sample
selection: (1) relevance and (2) diversity. More specifically, we would like to
select a panel of samples which share content with the sample being analyzed
(our query) but that also differ in the content that is shared. We use locality
sensitive hashing and the MinHash technique, to compare the samples efficiently.
At a high level, we create and index small MinHash fingerprints for each sample
in the database (offline), and then extract the appropriate samples according to
the fingerprint of the query.

We evaluate GATTACA for clustering contigs assembled across multiple sam-
ples (co-assemblies) and from individual samples, using both synthetic and real
datasets. We compare our method to several leading alignment-based methods
for metagenomic binning (such as CONCOCT [1], MetaBAT [3], and MaxBin
[5]), using standardized cluster evaluation metrics and benchmarks. GATTACA
was implemented in C++ and Python and is freely available at http://viq854.
github.com/gattaca.

References

1. Alneberg, J., Bjarnason, B.S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z.,
Lahti, L., Loman, N.J., Andersson, A.F., Quince, C.: Binning metagenomic contigs
by coverage and composition. Nat. Methods 11(11), 1144–1146 (2014)

2. Hunter, S., Corbett, M., Denise, H., Fraser, M., Gonzalez-Beltran, A., Hunter, C.,
Jones, P., Leinonen, R., McAnulla, C., Maguire, E., et al.: Ebi metagenomics–a new
resource for the analysis and archiving of metagenomic data. Nucleic Acids Res.
42(D1), D600–D606 (2014)

3. Kang, D.D., Froula, J., Egan, R., Wang, Z.: Metabat, an efficient tool for accurately
reconstructing single genomes from complex microbial communities. PeerJ 3, e1165
(2015)

4. Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C., Knight, R., Gordon,
J.I.: The human microbiome project: exploring the microbial part of ourselves in a
changing world. Nature 449(7164), 804 (2007)

5. Wu, Y.W., Tang, Y.H., Tringe, S.G., Simmons, B.A., Singer, S.W.: Maxbin: an
automated binning method to recover individual genomes from metagenomes using
an expectation-maximization algorithm. Microbiome 2(1), 26 (2014)

http://viq854.github.com/gattaca
http://viq854.github.com/gattaca

Species Tree Estimation Using ASTRAL: How
Many Genes Are Enough?

Shubhanshu Shekhar1, Sebastien Roch2, and Siavash Mirarab1(B)

1 University of California, La Jolla, San Diego, CA 92093, USA
smirarab@ucsd.edu

2 University of Wisconsin-Madison, Madison, WI 53715, USA

Abstract. ASTRAL is a widely used method for reconstructing species
trees from unrooted gene tree data. In this paper, we derive bounds on
the number of gene trees needed by ASTRAL for reconstructing the
true species tree with high probability. We also present some simulation
results which show trends consistent with our theoretical bounds.

Keywords: Species tree estimation · Sample complexity · ASTRAL

1 Introduction

Evolutionary histories of genes and species can be discordant due to various
biological processes such as incomplete lineage sorting (ILS) [1, 2]. One way to
account for the discordance is to first estimate a phylogenetic tree for each gene
(a gene tree) and then to summarize them to get a species tree.

ASTRAL [3] is a widely-used summary method for species tree reconstruc-
tion, and is statistically consistent under the multi-species coalescent (MSC)
model [2] of ILS. ASTRAL uses dynamic programming to maximize the number
of induced quartet trees shared between the species tree and the set of input gene
trees, and has exact and heuristic versions. In this paper, we study ASTRAL’s
theoretical data requirements for successful species tree reconstruction with high
probability under the MSC model and provide matching simulations results.

2 Main Results

In these results, ASTRAL* refers to the exact version of ASTRAL, f is the
length of the shortest branch in the species tree in coalescent units [2], n denotes
the number of leaves in the species tree and m is the number of input gene trees.

Our first result says that for small values of f , m = Ω(f−2 log n) gene trees
are sufficient for the correct species tree reconstruction by ASTRAL*.

The rights of this work are transferred to the extent transferable according to title
17 § 105 U.S.C.

c© Springer International Publishing AG 2017 (outside the US)
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 393–395, 2017.
DOI: 10.1007/978-3-319-56970-3

394 S. Shekhar et al.

Theorem 1. Consider a model species tree with minimum branch length f .
Then, in the limit of small f and for any ε > 0, ASTRAL* returns the true
species tree with probability at least 1 − ε if the number of input error-free gene
trees satisfies

m > 20 log
(

n

6ε

)
1
f2

. (1)

ABCDEFGH
Caterpillar

ABCDEFGH
Balanced

ABCDEFGH
Double-quartet

f

f

f

f

f

f

f ff f

f/2f/2

f f f f

30 30

0e+00

1e+04

2e+04

3e+04

4e+04

5e+04

6e+04

7e+04

8e+04

9e+04

1e+05

100 (0.10000)

5000 (0.01414)

10000 (0.01000)

15000 (0.00816)

20000 (0.00707)

25000 (0.00632)

30000 (0.00577)

35000 (0.00535)

40000 (0.00500)

1 f2 (f)

ge
ne

s

Balanced
Caterpillar
Double−quartet

Fig. 1. Data requirement of ASTRAL-II and in simulations with ε = 0.1. For each of
the three different species tree shapes (left) and values of f (right panel; x axis), 401
replicate datasets are simulated using the MSC model, each with up to 105 gene trees.
A binary search is used to find an approximate range for the smallest number of genes
with which ASTRAL recovers the correct tree in at least 90% of the 401 replicates.
Boxes show these ranges and a line is fitted to midpoints.

Our next result establishes that there exist species trees with lower bounds
of error that are asymptotically similar to our upper bounds.

Theorem 2. For any ρ ∈ (0, 1) and a ∈ (0, 1), there exist constants f0 and n0

such that the following holds. For all n ≥ n0 and f ≤ f0, there exists a species
tree with n leaves and shortest branch length f such that when ASTRAL* is used
with m ≤ a

5
logn
f2 gene trees, the event E that ASTRAL* reconstructs the wrong

tree has probability
P (E) ≥ 1 − ρ. (2)

These two results imply that ASTRAL* requires Ω(f−2 log n) gene trees to
universally guarantee correct species tree reconstruction with high probability.

Simulation results: As expected by our theoretical results, the gene tree require-
ment of ASTRAL increases linearly with 1/f2 in a simulation study (Fig. 1).

Acknowledgment. The work was supported by National Science Foundation (NSF)
grant IIS-1565862 to SM and SS and NSF grant DMS-1149312 (CAREER) to SR.

Species Tree Estimation Using ASTRAL: How Many Genes Are Enough? 395

References

1. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)
2. Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and

the multispecies coalescent. Trends Ecol. Evol. 24(6), 332–340 (2009)
3. Mirarab, S., Warnow, T.: ASTRAL-II: coalescent-based species tree estimation with

many hundreds of taxa and thousands of genes. Bioinformatics 31(12), i44–i52
(2015)

Reconstructing Antibody Repertoires
from Error-Prone Immunosequencing Datasets

Alexander Shlemov1, Sergey Bankevich1, Andrey Bzikadze1,
Yana Safonova1(B), and Pavel A. Pevzner1,2

1 Center for Algorithmic Biotechnology, Institute of Translational Biomedicine,
St. Petersburg State University, Saint Petersburg, Russia

safonova.yana@gmail.com
2 Dept. of Computer Science and Engineering, University of California,

San Diego, La Jolla, CA, USA

1 Introduction

Recent progress in sequencing technologies enabled generation of high-
throughput full-length antibody sequences using read-pairs formed by over-
lapping reads within read-pairs. However, transforming error-prone Rep-seq
datasets into accurate antibody repertoires is a challenging bioinformatics prob-
lem [1, 2, 4] that is a prerequisite for a multitude of downstream studies of
adaptive immune system.

Until 2013, there were few attempts to develop algorithms for full-length
antibody repertoire reconstruction since it was unclear how to derive accurate
repertoires from error-prone reads produced by the low-throughput 454 sequenc-
ing technology. However, in the last three years, immunology laboratories devel-
oped various Rep-seq protocols aimed at generating high-throughput Rep-seq
datasets and constructing repertoires based on more accurate Illumina MiSeq
reads.

Recently, several tools for constructing full-length antibody repertoires were
developed, including MiGEC [3], pRESTO [4], MiXCR [1], and IgReper-
toireConstructor [2]. Some of these tools also are able to utilize informa-
tion about molecular barcodes. However, quality assessment of the constructed
antibody repertoire and, thus, benchmarking of various repertoire construction
algorithms are still poorly addressed problems.

In this paper, we use barcoded Rep-seq datasets and simulated antibody
repertoires to benchmark various repertoire construction algorithms. Our novel
toolkit includes IgReC, a tool for antibody repertoire construction from both
barcoded and non-barcoded immunosequencing data, and IgQUAST, a tool for
quality assessment of antibody repertoires. IgReC package is freely available at
http://yana-safonova.github.io/ig repertoire constructor.

Alexander Shlemov and Sergey Bankevich—These authors contributed equally.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 396–397, 2017.
DOI: 10.1007/978-3-319-56970-3

http://yana-safonova.github.io/ig_repertoire_constructor

Reconstructing Antibody Repertoires from Error-Prone 397

2 Discussion

Our benchmarking on non-barcoded data revealed that there is still no single
repertoire construction tool that works better than others across the diverse
types of Rep-seq datasets. However, IgReC is currently a tool of choice for
analyzing hypermutated repertoires.

We also compared IgReC in a blind mode against pRESTO and
MiGEC that utilize information about molecular barcodes. Benchmarking on
simulated barcoded datasets revealed that while all tools result in high sen-
sitivity, their precision varies and becomes rather low in the case of high PCR
error rates. Surprisignly, repertoires reported by IgReC tool (in the blind mode)
improved on the repertoires constructed by the specialized tools that use bar-
coding information.

Acknowledgements. We are indebted to Dmitry Chudakov, Dmitry Bolotin, Mikhail
Shugay, Jason Vander Heiden, and Steven Kleinstein for productive discussions and
assistance in benchmarking MiXCR, MiGEC, and pRESTO tools.

Funding. This project is supported by Russian Science Foundation (grant No 14-50-
00069).

References

1. Bolotin, D.A., Poslavsky, S., Mitrophanov, I., Shugay, M., Mamedov, I.Z.,
Putintseva, E.V., Chudakov, D.M.: MiXCR: software for comprehensive adaptive
immunity proling. Nat. Methods 12(5), 3801 (2015)

2. Safonova, Y., Bonissone, S., Kurpilyansky, E., Starostina, E., Lapidus, A., Stinson,
J., DePalatis, L., Sandoval, W., Lill, J., Pevzner, P.A.: IgRepertoireConstructor: a
novel algorithm for antibody repertoire construction and immunoproteogenomics
analysis. Bioinformatics 31(12), i53–61 (2015)

3. Shugay, M., Britanova, O., Merzlyak, E., Turchaninova, M., Mamedov, I.,
Tuganbaev, T., Bolotin, D., Staroverov, D., Putintseva, E., Plevova, K.,
Linnemann, C., Shagin, D., Pospisilova, S., Lukyanov, S., Schumacher, T.,
Chudakov, D.M.: Towards error-free proling of immune repertoires. Nat Methods
11, 6535 (2014)

4. Vander Heiden, J.A., Yaari, G., Uduman, M., Stern, J.N., O’Connor, K.C., Haer,
D.A., Vigneault, F., Kleinstein, S.H.: pRESTO: a toolkit for processing high-
throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics
30(13), 1930–1932 (2014)

NetREX: Network Rewiring Using EXpression -
Towards Context Specific Regulatory Networks

Yijie Wang1, Dong-Yeon Cho1, Hangnoh Lee2, Brian Oliver2,
and Teresa M. Przytycka1(B)

1 National Center of Biotechnology Information, National Library of Medicine, NIH,
Bethesda, MD 20894, USA
przytyck@ncbi.nlm.nih.gov

2 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes

and Digestive and Kidney Diseases, 50 South Drive,

Bethesda, MD 20892, USA

Extended Abstract

Understanding gene regulation is a fundamental step towards understanding of
how cells function and respond to environmental cues and perturbations. An
important step in this direction is the ability to infer the transcription factor
(TF)-gene regulatory network (GRN). However gene regulatory networks are
typically constructed disregarding the fact that regulatory programs are condi-
tioned on tissue type, developmental stage, sex, and other factors. Due to lack
of the biological context specificity, these context-agnostic networks may not
provide insight for revealing the precise actions of genes for a specific biological
system under concern. Collecting multitude of features required for a reliable
construction of GRNs such as physical features (TF binding, chromatin accessi-
bility) and functional features (correlation of expression or chromatin patterns)
for every context of interest is costly. Therefore we need methods that are able
to utilize the knowledge about a context-agnostic network (or a network con-
structed in a related context) for construction of a context specific regulatory
network.

To address this challenge we developed a computational approach that uti-
lizes expression data obtained in a specific biological context and a GRN con-
structed in a different but related context to construct a context specific GRN.
Our method, NetREX, is inspired by network component analysis that esti-
mates TF activities and their influences on target genes given predetermined
topology of a TF-gene regulatory network. To predict a network under a differ-
ent condition, NetREX removes the restriction that the topology of the TF-gene
regulatory network is fixed and allows for adding and removing edges to that net-
work. Mathematically, we use �0 norm to directly handle the number of removed
and newly added edges as well as induce sparse solutions in our formulation.

Yijie Wang and Dong-Yeon Cho — Equal contribution.
The rights of this work are transferred to the extent transferable according to title
17 §105 U.S.C.

c© Springer International Publishing AG 2017 (outside the US)
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 398–399, 2017.
DOI: 10.1007/978-3-319-56970-3

NetREX 399

Unlike the widely used strategy, which is replacing the non-convex �0 norm by
its convex relaxation �1 norm, we focus on the harder problem involving �0 norm
and provide a number of rigorous derivations and results allowing us to adopt
the recently proposed Proximal Alternative Linearized Maximization (PALM)
algorithm. In addition, we also proved the convergence of the NetREX algorithm.

We tested our NetREX on simulated data and found that NetREX is able to
dramatically improve the accuracy of the regulatory networks as long as the prior
network and the gene expression are not very noisy. Subsequently, we applied
NetREX for constructing regulatory networks for adult female flies. We used
the network constructed in a recent study as the prior network, which was build
by integrating diverse data sets including TF binding, evolutionarily conserved
sequence motifs and so on. Starting with this network, we utilized a new expres-
sion data set that we collected for adult female flies where perturbations in
expression were achieved by genetic deletions. We accessed the biological rele-
vance of the predicted networks by using Gene Ontology annotations and phys-
ical protein-protein interactions. The networks predicted by NetREX showed
higher biological consistency than alternative approaches. In addition, we used
the list of recently identified targets of the Doublesex (DSX) transcription factor
to demonstrate the predictive power of our method.

E Pluribus Unum: United States of Single Cells

Joshua D. Welch1(B), Alexander Hartemink2, and Jan F. Prins1

1 Department of Computer Science, The University of North Carolina,
Chapel Hill, USA

{jwelch,prins}@cs.unc.edu
2 Department of Computer Science, Duke University, Durham, USA

Extended Abstract

Single cell genomic techniques promise to yield key insights into the dynamic
interplay between gene expression and epigenetic modification. However, the
experimental difficulty of performing multiple measurements on the same cell
currently limits efforts to combine multiple genomic data sets into a united
picture of single cell variation [1, 2]. The current understanding of epigenetic
regulation suggests that any large changes in gene expression, such as those
that occur during differentiation, are accompanied by epigenetic changes. This
means that if cells undergoing a common process are sequenced using multiple
genomic techniques, examining any of the genomic quantities should reveal the
same underlying biological process. For example, the main difference among cells
undergoing differentiation will be the extent of their differentiation progress,
whether you look at the gene expression profiles or the chromatin accessibility
profiles of the cells.

We reasoned that this property of single cell data could be used to infer
correspondence between different types of genomic data. To infer single cell cor-
respondences, we use a technique called manifold alignment. Intuitively, manifold
alignment constructs a low-dimensional representation (manifold) for each of the
observed data types, then projects these representations into a common space
(alignment) in which measurements of different types are directly comparable
[3, 4]. To the best of our knowledge, manifold alignment has never been used in
genomics. However, other application areas recognize the technique as a power-
ful tool for multimodal data fusion, such as retrieving images based on a text
description, and multilingual search without direct translation [4].

We show for the first time that it is possible to construct cell trajectories,
reflecting the changes that occur in a sequential biological process, from single
cell epigenetic data. In addition, we present an approach called MATCHER that
computationally circumvents the experimental difficulties of performing multiple
genomic measurements on a single cell by inferring correspondence between sin-
gle cell transcriptomic and epigenetic measurements performed on different cells
of the same type. MATCHER works by first learning a separate manifold for the
trajectory of each kind of genomic data, then aligning the manifolds to infer a
shared trajectory in which cells measured using different techniques are directly
comparable. Because there is, in general, no actual cell-to-cell correspondence
c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 400–401, 2017.
DOI: 10.1007/978-3-319-56970-3

E Pluribus Unum 401

between datasets measured with different experimental techniques, MATCHER
generates corresponding measurements by predicting what each type of measure-
ment would look like at a given point in the process. Using scM&T-seq data, we
confirm that MATCHER accurately predicts true single cell correlations between
DNA methylation and gene expression without using known cell correspondence
information.

We also downloaded publicly available single cell genomic data from a total
of 4,974 single mouse embryonic stem cells grown in serum. Each cell in this
dataset was individually assayed using one of four experimental techniques:
RNA-seq, scM&T-seq, ATAC-seq, or ChIP-seq. We used MATCHER to infer
correlations among these four measurements. This analysis gave novel insights
into the changes that cells undergo as they transition from pluripotency to a
differentiation primed state.

We found three main results. First, chromatin accessibility and histone mod-
ification changes largely fall into two anti-correlated categories: silencing of
pluripotency factor binding sites and repression of lineage-specific genes by chro-
matin remodeling factors. Second, the action of pluripotency transcription fac-
tors is gradually removed by both transcriptional silencing of the genes and
epigenetic silencing of the binding sites for these factors. In contrast, regulation
of chromatin remodeling factor activity occurs primarily at the epigenetic level,
largely unaccompanied by changes in the expression of the chromatin remodeling
factors. Third, DNA methylation changes are strongly coupled to gene expres-
sion changes early in the process of differentiation priming, but the degree of
coupling drops sharply later in the process.

Our work is a first step toward a united picture of heterogeneous transcrip-
tomic and epigenetic states in single cells. MATCHER promises to be a pow-
erful tool as single cell genomic approaches continue to generate revolutionary
discoveries in fields ranging from cancer biology and regenerative medicine to
developmental biology and neuroscience.

References

1. Bock, C., Farlik, M., Sheffield, N.C.: Multi-omics of single cells: strategies and appli-
cations. Trends Biotechnol. 34(8), 605608 (2016)

2. Macaulay, I.C., Ponting, C.P., Voet, T.: Single-cell multiomics: multiple measure-
ments from single cells. Trends Genet. 33(2), 155–168 (2017)

3. Ham, J., Lee, D.D., Saul, L.K.: Semisupervised alignment of manifolds. In: AIS-
TATS, p. 120127 (2005)

4. Wang, C., Mahadevan, S.: A general framework for manifold alignment. In: AAAI
(2009)

ROSE: A Deep Learning Based Framework
for Predicting Ribosome Stalling

Sai Zhang1, Hailin Hu2, Jingtian Zhou2, Xuan He1, Tao Jiang3,4,5,
and Jianyang Zeng1(B)

1 Institute for Interdisciplinary Information Sciences, Tsinghua University,
Beijing, China

zengjy321@tsinghua.edu.cn
2 School of Medicine, Tsinghua University, Beijing, China

3 Department of Computer Science and Engineering, University of California,
Riverside, CA, USA

4 MOE Key Lab of Bioinformatics and Bioinformatics Division,
TNLIST/Department of Computer Science and Technology,

Tsinghua University, Beijing, China
5 Institute of Integrative Genome Biology, University of California,

Riverside, CA, USA

Abstract. Translation elongation plays a crucial role in multiple aspects
of protein biogenesis, e.g., differential expression, cotranslational fold-
ing and secretion. However, our current understanding on the regulatory
mechanisms underlying translation elongation dynamics and the func-
tional roles of ribosome stalling in protein synthesis still remains largely
limited.Here,we present a deep learning based framework, calledROSE, to
effectively predict ribosome stalling events in translation elongation from
coding sequences. Our validation results on both human and yeast datasets
demonstrate superior performance of ROSE over conventional prediction
models. With high prediction accuracy and robustness across different
datasets, ROSE shall provide an effective index to estimate the transla-
tional pause tendency at codon resolution. We also show that the ribo-
some stalling score (RSS) output by ROSE correlates with diverse puta-
tive regulatory factors of ribosome stalling, e.g., codon usage bias, codon
cooccurrence bias, proline codons and N6-methyladenosine (m6A) modifi-
cation,whichvalidates thephysiological relevance of our approach. In addi-
tion, our comprehensive genome-wide in silico studies of ribosome stalling
based on ROSE recover several notable functional interplays between elon-
gationdynamics and cotranslational events in protein biogenesis, including
protein targeting by the signal recognition particle (SRP) and protein sec-
ondary structure formation. Furthermore, our intergenic analysis suggests
that the enriched ribosome stalling events at the 5’ ends of coding sequences
may be involved in the modulation of translation efficiency. These findings
indicate that ROSE can provide a useful index to estimate the probabil-
ity of ribosome stalling and offer a powerful tool to analyze the large-scale
ribosome profiling data, which will further expand our understanding on
translation elongation dynamics. The full version of this work can be found
as a preprint at https://doi.org/10.1101/067108.

S. Zhang, H. Hu, J. Zhou — These authors contributed equally to this work.

c© Springer International Publishing AG 2017
S.C. Sahinalp (Ed.): RECOMB 2017, LNBI 10229, pp. 402–403, 2017.
DOI: 10.1007/978-3-319-56970-3

https://doi.org/10.1101/067108

ROSE 403

Acknowledgements. This work was supported in part by the National Basic
Research Program of China Grant 2011CBA00300 and 2011CBA00301, the National
Natural Science Foundation of China Grant 61033001, 61361136003 and 61472205,
the US National Science Foundation Grant DBI-1262107 and IIS-1646333, the China’s
Youth 1000-Talent Program, and the Beijing Advanced Innovation Center for Struc-
tural Biology.

Author Index

Ahn, Soyeon 353
Allen, Andrew S. 336
Aluru, Srinivas 66

Bankevich, Sergey 396
Batzoglou, Serafim 391
Berger, Bonnie 389
Bzikadze, Andrey 396

Chaisson, Mark J. 117
Chen, Ligong 383
Chikhi, Rayan 272
Cho, Dong-Yeon 398

Dao, Phuong 370
DeBlasio, Dan 1
Delong, Andrew 379
Dilthey, Alexander 66
Donald, Bruce R. 157

Ehrhardt, Marcel 190
Eichler, Evan E. 117
El-Kebir, Mohammed 318
Eskin, Eleazar 207, 303

Fisher, Eyal 241
Fordyce, Polly 389
Fowler, Vance G. 157
Frey, Brendan J. 379

Garrison, Erik 173
Gifford, David K. 372
Gordân, Raluca 336
Guo, Yuchun 372

Hach, Faraz 50
Halperin, Eran 207, 241
Han, Wontack 18
Harris, Robert S. 272
Hartemink, Alexander 400
Haussler, David 34
He, Xuan 402
Hickey, Glenn 173
Holley, Guillaume 50
Hormozdiari, Farhad 303

Hormozdiari, Fereydoun 377
Hristov, Borislav H. 375
Huang, Heng 287
Hu, Hailin 402
Huynh, Linh 377

Jain, Chirag 66
Jansson, Jesper 82
Jiang, Tao 402
Joo, Jong Wha J. 303
Jou, Jonathan D. 157

Kannan, Sreeram 117
Kececioglu, John 1
Keich, Uri 99
Kim, Ryan 389
Kim, Sungeun 287
Kim, Yoo-Ah 370
Kingsford, Carl 257
Klau, Gunnar W. 318
Koren, Sergey 66
Kuang, Wenhua 383
Kuleshov, Volodymyr 391

Lee, Hangnoh 398
Leung, Michael K.K. 379
Li, Dongshunyi 336
Li, Zhen 380
Lingas, Andrzej 82
Liu, Xiaoming 387
Luo, Yunan 383

Ma, Jian 224
Madan, Sanna 370
Mallick, Parag 134
Matlak, Dariusz 385
Medvedev, Paul 272
Miagkov, Dmitrii 34
Mirarab, Siavash 393
Mukherjee, Sudipto 117

Naseri, Ardalan 387
Ness, Robert Osazuwa 134
Nho, Kwangsik 287

Nikitin, Sergei 34
Noble, William Stafford 99
Novak, Adam M. 34, 173

Ojewole, Adegoke A. 157
Oliver, Brian 398
Orenstein, Yaron 389

Paten, Benedict 34, 173
Peng, Jian 383
Pevzner, Pavel A. 396
Phillippy, Adam M. 66
Pockrandt, Christopher 190
Popic, Victoria 391
Prins, Jan F. 400
Przytycka, Teresa M. 370, 398

Rahmani, Elior 207, 241
Rajaby, Ramesh 82
Rajaraman, Ashok 224
Raphael, Benjamin J. 318
Reinert, Knut 190
Risacher, Shannon L. 287
Roch, Sebastien 393
Rosset, Saharon 241

Sachs, Karen 134
Safonova, Yana 396
Saykin, Andrew J. 287
Schweiger, Regev 207, 241
Seo, Jungkyun 336
Sharan, Roded 370
Shekhar, Shubhanshu 393
Shen, Li 287
Shenhav, Liat 207, 241
Shlemov, Alexander 396
Singh, Mona 375
Smuga-Otto, Maciej 34
Snyder, Michael 391

Solomon, Brad 257
Stoye, Jens 50
Sun, Chen 272
Sung, Wing-Kin 82
Szczurek, Ewa 385

Tian, Kevin 372

Vikalo, Haris 353
Vitek, Olga 134

Wang, Mingjie 18
Wang, Sheng 380
Wang, Xiaoqian 287
Wang, Yijie 398
Welch, Joshua D. 400
Wittler, Roland 50
Wu, Yue 303

Xu, Jinbo 380

Yan, Jingwen 287
Yang, Jinling 383
Yao, Xiaohui 287
Ye, Yuzhen 18
Yu, Yizhou 380

Zaccaria, Simone 318
Zeng, Haoyang 372
Zeng, Jianyang 383, 402
Zhao, Jingkang 336
Zhao, Xinbin 383
Zhang, Sai 402
Zhang, Shaojie 387
Zhang, Yanqing 383
Zhi, Degui 387
Zhou, Jingtian 383, 402
Zueva, Maria 34

406 Author Index

	Preface
	Organization
	Contents
	Boosting Alignment Accuracy by Adaptive Local Realignment
	1 Introduction
	2 Background on Parameter Advising
	2.1 Global Parameter Advising
	2.2 Learning an Accuracy Estimator
	2.3 Learning an Advisor Set

	3 Adaptive Local Realignment
	3.1 Identifying Local Realignment Regions
	3.2 Local Parameter Advising on a Region
	3.3 Iterative Local Realignment
	3.4 Combining Local and Global Advising

	4 Assessing Adaptive Local Realignment
	4.1 Effect of Local Realignment Within Difficulty Bins
	4.2 Varying Advisor Set Cardinality
	4.3 Comparing Estimators for Local Advising
	4.4 Effect of Iterating Local Realignment
	4.5 Summarizing the Effect of Adaptive Local Realignment
	4.6 Running Time

	5 Conclusion
	References

	A Concurrent Subtractive Assembly Approach for Identification of Disease Associated Sub-metagenomes
	1 Introduction
	2 Materials and Methods
	2.1 Overview
	2.2 k-mer Counting
	2.3 Identification of Differential k-mers Using Wilcoxon Rank-Sum Test
	2.4 Identification of Differential Reads Based on Differential k-mers
	2.5 Reduction of Reads Redundancy
	2.6 Assembly of Extracted Reads and Downstream Annotations
	2.7 Building Classifiers
	2.8 Simulated and Real Metagenome Datasets
	2.9 Availability of CoSA

	3 Results
	3.1 Evaluation of CoSA Using Simulated Datasets
	3.2 Evaluation of CoSA Using the T2D Microbiomes
	3.3 Prediction of T2D Using Microbial Genes

	4 Discussion
	References

	A Flow Procedure for the Linearization of Genome Sequence Graphs
	Abstract
	1 Motivation
	2 Problem Statement
	3 Algorithm Description
	3.1 First Step: Determine the Backbone
	3.2 Second Step: Add Source and Sink
	3.3 Third Step: Determine the Minimum Cut and Delete It
	3.4 Fourth Step: Repeat Procedure for In- and Out-Growths
	3.5 Grooming

	4 Complexity Estimation
	5 Experimental Evaluation
	5.1 Data Modeling
	5.2 Results and Discussion

	6 Conclusion
	Acknowledgements
	Appendix
	Some Details of the FP Algorithm
	Step-by-Step Algorithm Run
	Test Data Set Modeling

	References

	Dynamic Alignment-Free and Reference-Free Read Compression
	1 Introduction
	2 Methods
	2.1 The de Bruijn Graph
	2.2 The Guided de Bruijn Graph

	3 Compression
	3.1 Read Clustering and Merging
	3.2 Spanning Super Read Encoding
	3.3 Partition Encoding
	3.4 Meta Data and GdBG Compression

	4 Update and Decompression
	5 Results
	6 Conclusions and Future Work
	References

	A Fast Approximate Algorithm for Mapping Long Reads to Large Reference Databases
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	4 The Proposed Algorithm
	4.1 Definitions
	4.2 Indexing the Reference
	4.3 Searching the Reference

	5 Selecting Window and Sketch Sizes
	6 Proof of Sensitivity
	7 Other Implementation Details
	8 Experimental Results
	8.1 Quality of Jaccard Estimation
	8.2 Mapping MinION and PacBio Reads
	8.3 Mapping to RefSeq

	9 Conclusions
	References

	Determining the Consistency of Resolved Triplets and Fan Triplets
	1 Introduction
	1.1 Problem Definitions
	1.2 Overview of Old and New Results

	2 Preliminaries
	3 F+- CONSISTENCY is NP-Hard
	4 D-Bounded Degree R+- F+- CONSISTENCY
	4.1 D-Bounded Degree F+ CONSISTENCY is NP-Hard
	4.2 D-Bounded Degree R- CONSISTENCY is NP-Hard

	5 An Optimal Algorithm for Dense R+ F+- CONSISTENCY
	5.1 The Fan Graph and the Clique Graph
	5.2 Algorithm DenseBuild

	6 Concluding Remarks
	References

	Progressive Calibration and Averaging for Tandem Mass Spectrometry Statistical Confidence Estimation: Why Settle for a Single Decoy?
	1 Introduction
	2 Methods
	2.1 TDC, FDR Estimation, and Target Discoveries
	2.2 Calibrating and Competing Decoys
	2.3 Partial Calibration
	2.4 Averaged TDC
	2.5 Progressive Calibration with Mean Cutoff Criterion
	2.6 Simulations Using Uncalibrated Scores
	2.7 Real Data Analysis

	3 Results
	3.1 Partial Calibration Yields More Statistical Power
	3.2 Averaged TDC
	3.3 Progressive Calibration Dynamically Decides How Many Decoys Are Sufficient
	3.4 Analysis of Real Data

	4 Discussion
	References

	Resolving Multicopy Duplications de novo Using Polyploid Phasing
	1 Introduction
	2 Haplotype Phasing via Discrete Matrix Completion
	2.1 A Probabilistic Model
	2.2 Iterative Two-Stage Matrix Completion
	2.3 Projected Gradient Descent
	2.4 Initialization
	2.5 Discrete Matrix Completion
	2.6 Choosing the Best Segment and Effective Rank Reduction

	3 Haplotype Phasing with Correlation Clustering
	4 Results
	5 Conclusions
	A Appendix
	References

	A Bayesian Active Learning Experimental Design for Inferring Signaling Networks
	1 Introduction
	2 Background
	2.1 Directed Graphs as Causal Models of Signaling
	2.2 Bayesian Inference of Causal Networks
	2.3 PDAG Representation of Uncertainty in Causal Effects
	2.4 Active Learning for the Optimal Design of Causal Network Inference Experiments

	3 Methods
	3.1 Prior Knowledge for Causal Graph Structure Learning
	3.2 Bayesian Active Learning with Causal Information Gain
	3.3 Inference of Causal Network from Data Acquired Post-intervention
	3.4 Implementation and Computational Complexity
	3.5 Metrics Used for Performance Evaluation

	4 Datasets
	4.1 DREAM4 Network
	4.2 Flow Cytometry Measurements of T-Cell Signaling

	5 Results
	5.1 Informative Prior Edge Probabilities Reduced the Required Number of Interventions in the DREAM4 Dataset
	5.2 The Ordering of T-Cell Interventions by Active Learning Matched Their Contribution to Causal Inference

	6 Discussion
	References

	BBK* (Branch and Bound over K*): A Provable and Efficient Ensemble-Based Algorithm to Optimize Stability and Binding Affinity over Large Sequence Spaces
	1 Introduction
	2 Computing the Partition Function
	2.1 K*

	3 A* Search over Sequences, with Multi-sequence (MS) Bounds
	3.1 Algorithm Overview

	4 Computational Experiments
	4.1 Performance Comparison
	4.2 Sequence Space Pruning
	4.3 Design with Coupled Continuous Side-Chain and Backbone Flexibility

	5 Conclusion
	References

	Superbubbles, Ultrabubbles and Cacti
	1 Introduction
	2 Methods
	2.1 Directed, Bidirected and Biedged Graphs
	2.2 Directed Walks on Biedged and Bidirected Graphs
	2.3 Superbubbles, Snarls and Ultrabubbles
	2.4 Cactus Graphs
	2.5 Snarls and Cacti
	2.6 Ultrabubbles and Cactus Trees
	2.7 Rooted Cactus Trees, Ultrabubbles and Genetic Sites

	3 Results
	4 Discussion and Conclusion
	References

	EPR-Dictionaries: A Practical and Fast Data Structure for Constant Time Searches in Unidirectional and Bidirectional FM Indices
	1 Introduction
	1.1 Introduction to the FM and 2FM Index
	1.2 Recent Improvements on the FM and 2FM Index

	2 Theoretical Results
	2.1 The EPR-Dictionary

	3 Experimental Results
	3.1 Runtime and Space Consumption
	3.2 Effect of the Low Order Terms for Space Consumption

	4 Conclusions
	References

	A Bayesian Framework for Estimating Cell Type Composition from DNA Methylation Without the Need for Methylation Reference
	1 Introduction
	2 Methods
	2.1 Model
	2.2 Algorithm
	2.3 Imputing Cell Counts Using a Subset of Samples with Measured Cell Counts
	2.4 Implementation and Practical Issues
	2.5 Evaluation of Performance
	2.6 Implementation of ReFACTor and NNMF
	2.7 Implementation of the Reference-Based Algorithm
	2.8 Data Sets
	2.9 Data Simulation

	3 Results
	3.1 Benchmarking Existing Reference-Free Methods
	3.2 Evaluation of BayesCCE on Real and Simulated Data
	3.3 Evaluation of Cell Count Imputation

	4 Discussion
	References

	Towards Recovering Allele-Specific Cancer Genome Graphs
	1 Introduction
	2 Background
	2.1 Problem Setting
	2.2 Method Overview

	3 Method
	3.1 Preliminaries
	3.2 The Convex Program
	3.3 Interpreting the Objective and Constraints
	3.4 Removing Non-linear Constraints
	3.5 Implementation

	4 Results
	4.1 Evaluation by Simulations
	4.2 Application to the HeLa Whole-Genome Sequencing Data
	4.3 Application to Ovarian Cancer Data from TCGA

	5 Discussion and Conclusion
	References

	Using Stochastic Approximation Techniques to Efficiently Construct Confidence Intervals for Heritability
	1 Introduction
	2 Results
	2.1 A Faster Method for Calculating CIs for Heritability
	2.2 Benchmarks

	3 Methods
	3.1 The Linear Mixed Model and REML
	3.2 Confidence Intervals for h2
	3.3 Using Stochastic Approximation to Calculate CIs
	3.4 Using the Modified Robbins-Monro Procedure to Obtain CIs for Heritability
	3.5 The NFBC Dataset
	3.6 The WTCCC2 Dataset

	4 Discussion
	References

	Improved Search of Large Transcriptomic Sequencing Databases Using Split Sequence Bloom Trees
	1 Introduction
	2 Methods
	2.1 Split Sequence Bloom Tree
	2.2 SSBT Construction and Insertion
	2.3 Bit Non-informativity in SSBT
	2.4 SSBT Compression
	2.5 SSBT Querying
	2.6 Accuracy

	3 Results
	3.1 Data and Hardware
	3.2 Evaluation on Build Time and Storage Cost
	3.3 Evaluation of the Query Time

	4 Conclusion
	References

	AllSome Sequence Bloom Trees
	1 Introduction
	2 Related Work
	3 Technical Background
	4 Methods
	4.1 AllSome Node Representation and Regular Query Algorithm
	4.2 Construction Algorithm
	4.3 Large Query Algorithm

	5 Results
	6 Discussion
	References

	Longitudinal Genotype-Phenotype Association Study via Temporal Structure Auto-learning Predictive Model
	1 Introduction
	2 Temporal Structure Auto-learning Predictive Model
	2.1 Illustration of Our Idea
	2.2 New Objective Function

	3 Optimization Algorithm
	4 Discussion of Parameters
	5 Experimental Results
	5.1 Experiments on Synthetic Data
	5.2 Experimental Settings on Real Benchmark Data
	5.3 Description of ADNI Data
	5.4 Performance Comparison on ADNI Cohort
	5.5 Identification of Top Selected SNPs

	6 Conclusions
	References

	Improving Imputation Accuracy by Inferring Causal Variants in Genetic Studies
	1 Introduction
	2 Results
	2.1 Overview of CAUSAL-Imp
	2.2 A Motivating Example
	2.3 CAUSAL-Imp Achieves Better Statistics Compared to the Existing Methods in Simulated Data Sets
	2.4 CAUSAL-Imp Controls Type I Error
	2.5 CAUSAL-Imp Achieves Better Statistics Compared to the Existing Methods in Northern Finland Birth Cohort (NFBC)

	3 Methods
	3.1 A Standard Association Statistics
	3.2 Indirect Association Statistics
	3.3 Traditional Summary Statistics Imputation When One SNP is Untyped
	3.4 Traditional Summary Statistics Imputation When More Than One SNP Is Untyped
	3.5 CAUSAL-Imp Summary Statistics Imputation with Fixed NCP
	3.6 CAUSAL-Imp Summary Statistics Imputation

	4 Discussion
	References

	The Copy-Number Tree Mixture Deconvolution Problem and Applications to Multi-sample Bulk Sequencing Tumor Data
	1 Introduction
	2 Copy-Number Tree Mixture Deconvolution Problem
	3 Method
	3.1 U-Step
	3.2 C-Step
	3.3 Choosing max to Balance Cost (T) and Distance "026B30D F-CU"026B30D

	4 Results
	4.1 Application to Prostate Cancer Dataset

	5 Discussion
	References

	Quantifying the Impact of Non-coding Variants on Transcription Factor-DNA Binding
	1 Introduction
	2 Data and Methods
	2.1 Universal Protein-Binding Microarray (PBM) Data
	2.2 Massively Parallel Reporter Assay (MPRA) Data
	2.3 Training k-mer Regression Models of TF Binding Specificity Using Ordinary Least Squares (OLS)
	2.4 Statistical Testing Using OLS k-mer Models of TF Binding Specificity
	2.5 Using OLS k-mer Models to Predict the Effect of SNVs on TF-DNA Binding

	3 Results
	3.1 OLS 6-mer Models Can Accurately Predict TF Binding Intensity
	3.2 TF Binding Change Predictions Based on OLS 6-mer Models Correlate Well with Gene Expression Changes
	3.3 Making Binary Predictions of TF Binding Changes Using OLS 6-mer Models
	3.4 Analysis of Pathogenic Non-coding Variants

	4 Discussion
	References

	aBayesQR: A Bayesian Method for Reconstruction of Viral Populations Characterized by Low Diversity
	1 Introduction
	2 Proposed Method
	2.1 Super-Reads Construction via Agglomerative Clustering
	2.2 ML Reconstruction of Quasispecies from Super-Reads

	3 Results and Discussion
	3.1 Performance Comparison on Simulated Data
	3.2 Performance Comparison on Real HIV Data

	4 Conclusions
	References

	BeWith: A Between-Within Method for Module Discovery in Cancer using Integrated Analysis of Mutual Exclusivity, Co-occurrence and Functional Interactions (Extended Abstract)
	References

	K-mer Set Memory (KSM) Motif Representation Enables Accurate Prediction of the Impact of Regulatory Variants
	0 Introduction
	0 Approach
	0 Results
	0 Conclusion
	References

	Network-Based Coverage of Mutational Profiles Reveals Cancer Genes
	Ultra-Accurate Complex Disorder Prediction: Case Study of Neurodevelopmental Disorders
	References

	Inference of the Human Polyadenylation Code
	Abstract

	Folding Membrane Proteins by Deep Transfer Learning
	References

	A Network Integration Approach for Drug-Target Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information
	Reference

	Epistasis in Genomic and Survival Data of Cancer Patients
	References

	Ultra-Fast Identity by Descent Detection in Biobank-Scale Cohorts Using Positional Burrows-Wheeler Transform
	References

	Joker de Bruijn: Sequence Libraries to Cover All k-mers Using Joker Characters
	1 Introduction
	2 Methods
	3 Results
	4 Conclusion
	References

	GATTACA: Lightweight Metagenomic Binning Using Kmer Counting
	References

	Species Tree Estimation Using ASTRAL: How Many Genes Are Enough?
	1 Introduction
	2 Main Results
	References

	Reconstructing Antibody Repertoires from Error-Prone Immunosequencing Datasets
	1 Introduction
	2 Discussion
	References

	E Pluribus Unum: United States of Single Cells
	References

	ROSE: A Deep Learning Based Framework for Predicting Ribosome Stalling
	Author Index

