
Chapter 7
Economic Models of Choice

Greg M. Allenby, Jaehwan Kim and Peter E. Rossi

7.1 Introduction

Models of choice are fundamental to the field of marketing because they represent

the culmination of marketing efforts embedded in the 4P’s (product, price, promo-

tion and place). It is by understanding how people make purchase decisions that we

can inform firms on the success of their efforts in each of the functional areas of mar-

keting. Choice models quantify the process of exchange, allowing us to understand

the origins of preference and the determinants of costs in a transaction, including the

time, money and other resources needed to acquire and use an offering.

Choice is complex. It involves our resources, perceptions, memory and other fac-

tors as we acquire and use products to improve our lives. Our goal in this chapter is

to provide a review of direct utility choice models that attempt to rationalize choice.

We do this within an economic framework of demand where people are assumed to

be constrained utility maximizers. We take this view because marketplace data sup-

ports the concept of constrained maximization as evidenced by the large proportion

of zero’s in disaggregate marketing data, coupled with the observation that people are

sensitive to price and demands on their time. That is, marketing data is overwhelm-

ingly characterized by sparse demand where most people don’t purchase most of the

G.M. Allenby (✉)

Fisher College of Business, Ohio State University, Columbus, OH, USA

e-mail: allenby.1@osu.edu

J. Kim

Korea University Business School, Seoul, Korea

e-mail: jbayes@korea.ac.kr

P.E. Rossi

Anderson School of Managment, UCLA, Los Angeles, CA, USA

e-mail: perossichi@gmail.com

© Springer International Publishing AG 2017

B. Wierenga and R. van der Lans (eds.), Handbook of Marketing
Decision Models, International Series in Operations Research & Management

Science 254, DOI 10.1007/978-3-319-56941-3_7

199



200 G.M. Allenby et al.

products available for sale, don’t frequent most websites available to them, and don’t

read most of the literature published on topics of interest. Instead, they select what

they consume in a manner that suggests people are resource conserving.

We acknowledge that our treatment of choice models is selective and related to

our own research agenda. We believe it is not possible to provide a comprehensive

survey of choice models in marketing, as evidenced by the presence of dedicated

conferences and journal volumes to the issue of choice. Choice encompasses a vast

domain of economic, psychologic and social subject matter, and our chapter provides

a narrow emphasis in an area of choice which we hope to popularize and expand.

An advantage of rationalizing decisions within an economic framework is that it

can lead to interventions and policy recommendations that improve the profitability

of the firm. Measuring the impact of product quality on demand often requires mod-

els capable of dealing with more than simple discrete choices, where only one unit of

one product is chosen. Multi-part pricing, time, space and other constraints likewise

impact the attainable utility consumers can achieve. Firms considering changes to

their product line require measures of consumer satisfaction and compensating val-

ues based on flexible patterns of substitution that are not pre-ordained by properties

such as IIA (Allenby 1989). A potential disadvantage is that economic models of

choice and demand can be too simplistic, as often pointed out by behavioral deci-

sion theorists. Our view is that much of the criticism of standard economic models

of choice results from simplistic model assumptions rather than a defect in the fun-

damental paradigm of constrained choice. Our view is that the solution is to develop

richer specifications of utility and constraints than to reject an economic formulation.

This chapter in the Handbook of Marketing Decision Models starts with a sim-

ple discrete choice model that has become a workhorse model in marketing over

the last 25 years. The simple discrete choice model allows us to introduce terminol-

ogy and basics of choice modeling. We then expand our discussion by considering

direct utility models that allow the study of utility formation separate from the role

of constraints, which provide insights into what people give up in an exchange. The

direct utility formulation also allows us to model choices in the context of contin-

uous demand where more than one item may be selected. Throughout our analysis,

we offer a critical assessment of model assumptions and point to future directions

for additional research.

7.2 A Simple Model of Discrete Choice

The discrete choice model is characterized by one and only one choice alternative

being selected at a time. This model of choice is applicable to a wide variety of prod-

uct categories, ranging from automobiles to smartphones to cordless power drills.

Consumers are assumed to be endowed with a budget for the purchase that deter-

mines the upper limit of expenditure they are willing to make. If the good costs less

than the budgeted amount, which we denote “E” for expenditure, then the remainder

of the unspent money (E − p) can be used for other purposes. Thus, we conceive
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of choice as between a number of different “inside” goods and an “outside” good

that represents money unspent in the product category. The utility function for this

situation can be represented as:

u (x, z) =
∑

k=1
𝜓kxk + 𝜓zz

where x is a vector of demand for the inside goods, z is the demand for the outside

good or non-purchase, 𝜓j is the marginal utility of choosing the jth good and 𝜓z is the

marginal utility for money. It is customary in choice models to include an error term

to allow for unobserved factors affecting choice. We can then consider the utility

from selecting each of the alternatives as:

u
(
x1 = 1, z = E − p1

)
=𝜓1 + 𝜓z

(
E − p1

)
+ 𝜀1

u
(
x2 = 1, z = E − p2

)
=𝜓2 + 𝜓z

(
E − p2

)
+ 𝜀2

⋮

u (x = 0, z = E) =𝜓z (E) + 𝜀z

The utility for each of the inside goods is comprised of three terms (i) the marginal

utility for the inside good; (ii) utility for the unspent money that can be put to other

use; and (iii) an error term. The utility for the outside good is just the utility for the

budgeted allotment, E, plus error.

Consumers are assumed to select the choice alternative that provides them great-

est utility. The choice model becomes:

Pr (j) = Pr
(
𝜓j + 𝜓z

(
E − pj

)
+ 𝜀j > 𝜓k + 𝜓z

(
E − pk

)
+ 𝜀k for any k ≠ j

)

= Pr
(
Vj + 𝜀j > Vk + 𝜀k for any k ≠ j

)

= Pr
(
𝜀k < Vj − Vk + 𝜀j for any k ≠ j

)

=
+∞

∫
−∞

⎡
⎢
⎢
⎢⎣

Vj−V1+𝜀j

∫
−∞

⋯

Vj−Vk+𝜀j

∫
−∞

𝜙

(
𝜀k
)
⋯𝜙

(
𝜀1
)
⎤
⎥
⎥
⎥⎦
𝜙

(
𝜀j
)
d𝜀k ⋯ d𝜀1d𝜀j

=
+∞

∫
−∞

∏

k≠j
𝛷

(
Vj − Vk + 𝜀j

)
𝜙

(
𝜀j
)
d𝜀j

where 𝛷 denotes the cdf and 𝜙 denotes the pdf of the distribution of 𝜀. Distributional

assumptions play a role in determining the functional form of the choice model, with

extreme value errors leading to the logit model and normally distributed errors giving

rise to the probit model. Assuming standard extreme value errors (i.e., EV(0, 1))
results in the following logit expression for the choice probability:
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Pr(j) =
exp

[
Vj
]

exp
[
Vz
]
+
∑
k
exp

[
Vk
]

=
exp

[
𝜓j + 𝜓z

(
E − pj

)]

exp
[
𝜓z (E)

]
+
∑
k
exp

[
𝜓k + 𝜓z

(
E − pk

)]

=
exp

[
𝜓j − 𝜓zpj

]

1 +
∑
k
exp

[
𝜓k − 𝜓zpk

] (7.1)

Thus, the choice probability is a function of a choice-specific intercept
(
𝜓k

)
and a

price term with a coefficient that is common across the choice alternatives.

This simple model of choice is used extensively in marketing because of its com-

putational simplicity. Demand is restricted to two points for each of the inside goods,

{0, 1}, with only one good allowed to be chosen and the remaining budget allocated

to the outside good, z. Moreover, because utility is specified as linear, the budgetary

allotment, E, cancels out of the expression and does not figure into the choice prob-

ability specification in a meaningful way, other than to remove choice options from

the denominator of the probability expression when the price is too high, i.e., pk > E.

The discrete choice model requires an additional constraint to be statistically iden-

tified, or estimable, from a choice dataset. It is traditionally assumed that the scales

of the error terms (𝜀) are set to one 𝜎 = 1. The likelihood function for the standard

discrete choice model is therefore equal to the product of the individual choice prob-

abilities:

𝜋

(
yt|𝜓

)
=
∏

t
Pr (1)y1tt Pr (2)y2tt ⋯Pr (k)yktt Pr (z)yztt

where 𝜓 represents the model parameters and yi,t are the multinomial choices with

one element equal to one and the rest equal to zero. Maximum likelihood estimates

of the model parameters are the parameters that maximize the joint probability of

the observed choices. Bayesian estimates of the model parameters introduce a prior

distribution, 𝜋 (𝜓), that is combined with the likelihood to derive the posterior distri-

bution 𝜋 (𝜓|y) ∝ 𝜋 (y|𝜓)𝜋 (𝜓) (see Rossi et al. 2005). In a Bayesian analysis, point

estimates of model parameters are typically taken as the mean of the posterior dis-

tribution.

7.2.1 Applications and Extensions

Thousands of research articles have been written that have extended and/or applied

the logit choice model to choice data. Groundbreaking work on the logit model and

transportation choice can be traced back to the work of McFadden (1973, 1986),
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which was applied to marketing demand data by (Guadagni and Little 1983) and

others. The linearity of the utility function results in linear indifference curves and

corner solutions, where only one of the choice alternatives is selected.

The introduction of Bayesian statistical methods into marketing (Rossi et al. 2005)

led to the incorporation of respondent heterogeneity in choice models, which greatly

increased their popularity, especially in the context of conjoint analysis (Green and

Srinivasan 1978). Allenby and Ginter (1995) examined the use of a binary logit

model in market segmentation to understand which respondents are most likely to

respond to a product reformulation, and (Lenk et al. 1996) studied the use of partial

factorial designs and their ability to inform the parameters of this class of models.

The results of these and subsequent studies demonstrated that choice models were

useful for accurately representing preferences for a heterogeneous set of consumers.

Moreover, empirical results over the years have supported the use of economic mod-

els to represent consumer preferences and sensitivities to variables like prices. Many

models of choice specified without heterogeneity employed many interaction terms

to represent demand. These interaction terms have largely disappeared from the pub-

lished literature in the presence of heterogeneity.

The simple logit model of discrete choice described above has been extended in

many ways. Allenby and Rossi (1991) propose a model that maintains linearity of

the indifference curves but allows them to rotate in the positive orthant to represent

goods of different levels of quality. As the budgetary allotment E is relaxed, their

model predicts that consumers would trade-up to higher quality offerings. Berry

et al. (1995) introduce demand shocks into a logit model to accommodate factors

that shift the utility of all consumers in a market while parsimoniously representing

a demand system. Their model has become a standard in the empirical industrial

organization literature. The logit model has been generalized by Marshall and Brad-

low (2002) to accommodate a variety of preference measures beside simple choice,

Edwards and Allenby (2003) discuss multivariate extensions, and Chandukala et al.

(2007) provide an review of choice models in marketing. Most recently, Allenby

et al. (2014a) and Allenby et al. (2014b) discuss using a simple choice model to

estimate the economic value of product features. Proceedings of the triennial Invi-

tational Choice Symposium, in the journal Marketing Letters, provides an ongoing

review of innovations and applications of the simple discrete choice model.

7.3 A General Model for Choice

We now consider a general model for choice that allows for the possibility that more

than one offering may be selected, often referred to as models of multiple discrete-

ness (Kim et al. 2002). The demand for multiple offerings is common in the pur-

chase of goods offering different varieties, such as flavors of a good, and whenever

more than one unit is purchased at a time. Allowing for the possibility of purchasing

multiple units require us to employ a calculus-based approach to associate observed

choices to constrained utility maximization. It is not feasible to search over a con-
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tinuous demand space to find the utility maximizing solution. Instead, first-order

conditions (i.e., setting derivatives to zero) are used to connect utility maximization

to observed demand.

We begin with a utility specification that leads to a version of the standard discrete

choice model discussed earlier. Consumers are assumed to be utility maximizers sub-

ject to a budgetary constraint. Utility is specified logarithmically for the inside goods,

linearly for the outside good, and with a parameter 𝛾 that introduces flexibility in the

rate of satiation (see Bhat 2005). The assumption of a linear outside good is almost

universally made in quantitative choice models, and, as shown below, significantly

degrades the fit of models relative to a non-linear specification:

Max u (x, z) =
∑

k

𝜓k

𝛾

ln
(
𝛾xk + 1

)
+ z subject to p′x + z ≤ E (7.2)

where x is a vector of demand of dimension k, {𝜓k} are baseline utility parameters, 𝛾

is a satiation parameter constrained to be positive, p is a vector of prices, z is an out-

side good with price equal to one, and E is the expenditure allocation. Equation (7.2)

is additively separable and therefore assumes the goods are substitutes. The form of

the utility function is selected because of the simplicity of the expression for mar-

ginal utility:

uk =
𝜕u (x, z)
𝜕xk

=
𝜓k

𝛾xk + 1

uz =
𝜕u (x, z)

𝜕z
= 1

Marginal utility for the inside goods diminishes as quantity {xk} increases, and is

equal to 𝜓k when xk = 0. The rate of satiation, or the rate at which marginal utility

decreases, is governed by the satiation parameter 𝛾 . A plot of marginal utility as a

function of quantity (xk) is provided in Fig. 7.1.

We solve for the utility maximizing solution by the method of Lagrangian mul-

tipliers that combines the constraint and utility function by introducing a parameter

𝜆 that ensures their slopes are proportional, or that the utility function and budget

constraint are tangent, at the point of constrained maximization:

Max L =
∑

k

𝜓k

𝛾

ln
(
𝛾xk + 1

)
+ z + 𝜆(E − p′x − z)

Setting partial derivatives to zero we obtain the optimality conditions:

𝜕L
𝜕xk

=
𝜓k

𝛾xk + 1
− 𝜆pk = 0

𝜕L
𝜕z

= 1 − 𝜆 = 0
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Fig. 7.1 Marginal Utility

From the second equation we see that 𝜆 = 1, and we can substitute for 𝜆 in the first

equation to obtain:
𝜓k

𝛾xk + 1
= pk

This expression holds whenever demand is positive, or xk > 0, indicating that mar-

ginal utility is equal to price for positive demand, i.e., the “bang” is equal to the

“buck.” When demand is observed to be zero, we have the condition that marginal

utility is less than the price, or that the bang is less than the buck. Re-arranging terms

results in an explicit expression for observed demand x:

xk =
𝜓k − pk
𝛾pk

for 𝜓k > pk else xk = 0

A plot of demand is provided in Fig. 7.2 for 𝜓k = 8 and E = $8.00.

Demand is increasing in the level of baseline marginal utility (𝜓k) and decreasing

in price and the satiation parameter 𝛾 . An advantage of this expression is that demand

is declining in prices, which is sometimes violated in regression-based models of

demand. A disadvantage is that cross-effects are not present. Below we show that

this is due to assuming that the utility in (7.2) is additively separable and the outside

good (z) does not satiate. Non-satiation of the outside good results in the utility max-

imizing solution unaffected by the budgetary allotment, or expenditure (E), similar

to that encountered with the simple model of discrete choice discussed earlier.
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The general form of the above solution is referred to as the Kuhn-Tucker (KT)

conditions of utility maximizing demand:

if xk > 0 and xj > 0 then 𝜆 =
uk
pk

=
uj
pj

for all k and j

if xk > 0 and xj = 0 then 𝜆 =
uk
pk

>

uj
pj

for all k and j

where 𝜆 is equal to the marginal utility of the outside good uz because its price

is normalized to equal one. We regard the above utility model as a basic struc-

ture from which to build various models of demand. The simplicity of the model

leads to closed-form expressions for demand forecasting, and nests the standard dis-

crete choice model where the data indicate the most preferred choice option instead

of demand quantities. The KT condition for preference data, where respondents

are asked to indicate their preference without reference to quantities (i.e., x = 0)

reduces to:

if k preferred then
𝜓k

pk
>

𝜓j

pj
for all j

Taking logarithms leads to an expression similar to Equation (1) except that price is

replaced by ln(pj). The analysis of volumetric demand data (i.e., xk > 0), however,

is more informative of model parameters because the equality restrictions in the KT

conditions are more informative than inequality restrictions.
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7.3.1 Statistical Specification

Variation in observed demand for a respondent often requires the introduction of

error terms to rationalize choice. It is convenient to introduce error terms in the

baseline utility parameters by specifying a functional form that ensures that marginal

utility is always positive:

𝜓kt = exp
[
a′kt𝛽 + 𝜀kt

]

where akt is a vector of attributes of the kth good and the error term is allowed to vary

over time (t). The parameters 𝛽 are sometimes referred to as “part-worths” in conjoint

analysis, reflecting the partial worth of product attributes and benefits. Substituting

the expression for 𝜓kt into the expression that equates the Lagrange multiplier (𝜆) to

the ratio of marginal utility to price, and recalling that 𝜆 = uz∕1 = 1 results in the

expression:

exp
[
a′kt𝛽 + 𝜀kt

]

𝛾xkt + 1
= pkt

Solving for 𝜀kt results in the following expression for the KT conditions:

𝜀kt = gkt if xkt > 0 (7.3)

𝜀kt < gkt if xkt = 0 (7.4)

where

gkt = −a′kt𝛽 + ln(𝛾xkt + 1) + ln(pkt)

The assumption of i.i.d. extreme-value errors, i.e., EV(0,𝜎), results in a closed-form

expression for the probability that Rt of N goods are chosen. Indexing the chosen

goods by n1,t and the remainder by n2,t results in the following expression for the

likelihood:

Pr(xt) = Pr(xn1,t > 0, xn2,t = 0, n1,t = 1,… ,Rt, n2,t = Rt + 1,… ,N)

= |JRt
|
∫

gN

−∞
⋯

∫

gRt+1

−∞
f (g1t,… , gRt

, 𝜀Rt+1,… , 𝜀N)d𝜀Rt+1,… , d𝜀N

= |JRt
|
{ Rt∏

i=1

exp(−git∕𝜎)
𝜎

exp
(
−e−git∕𝜎

)
}{ N∏

j=Rt+1
exp

(
−e−gjt∕𝜎

)
}

= |JRt
|
{ Rt∏

i=1

exp(−git∕𝜎)
𝜎

}
exp

{
−

N∑

j=1
exp(−gjt∕𝜎)

}
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where f (⋅) is the joint density distribution for 𝜀 and |JRt
| is the Jacobian of the trans-

formation from random-utility error (𝜀) to the likelihood of the observed data (x).

For this model, the Jacobian is equal to:

|||JRt

||| =
Rt∏

i=1

𝛾

𝛾xi,t + 1

The expression for the probability of the observed demand vector xt is seen to

be the product of Rt “logit” expressions multiplied by the Jacobian, where the pur-

chased quantity, xit is part of the value (git) of the choice alternative. For the standard

discrete choice model, gkt = −a′kt𝛽 + ln(pkt) and the Jacobian is equal to one because

demand (x) enters the KT conditions through the conditions xkt > 0 or xkt = 0 only

in Eqs. (7.3) and (7.4). The price coefficient in the standard choice model is the scale

value of the Extreme Value error (1∕𝜎). Variation in the specification of the choice

model utility function and budget constraint results in different values of (gkt) and

the Jacobian |JRt
|, but not to the general form of the likelihood, i.e.,

Pr(xt) = |JRt
|
{ Rt∏

i=1
f (git)

}{ N∏

j=Rt+1
F(gjt)

}

7.3.2 Non-linear Outside Good

The assumption that utility is linear in the outside good (z) results in KT conditions

that do not involve the budgetary allotment E. A non-linear specification for the

outside good leads to a demand model where the budgetary allotment plays a role

in identifying the utility maximizing solution. This is important as it allows for the

presence of cross-price effects on the demand for each of the items. For example, the

utility function with logarithmic specification for the quantity of the outside good

leads to:

u (x, z) =
∑

k

𝜓k

𝛾

ln
(
𝛾xk + 1

)
+ ln(z)

has marginal utility for the outside good equal to:

uz =
𝜕u (x, z)

𝜕z
= 1

z

and the KT condition 𝜆 = uz∕1 = uk∕pk leads to new expressions for gkt and the

Jacobian:

gkt = −a′kt𝛽 + ln(𝛾xkt + 1) + ln
(

pkt
E − p′txt

)
(7.5)
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|||JRt

||| = det

[
𝜕gRt

𝜕xRt
′

]
= det

⎡
⎢
⎢
⎢
⎢
⎢⎣

𝛾

𝛾x1t+1
+ p1t

E−pt ′xt
p2t

E−pt ′xt
⋯

pRt
E−pt ′xtp1t

E−pt ′xt
𝛾

𝛾x2t+1
+ p2t

E−pt ′xt
⋯

pRt
E−pt ′xt

⋮ ⋮ ⋱ ⋮
p1t

E−pt ′xt
p2t

E−pt ′xt
⋯ 𝛾

𝛾xRt+1
+ pRt

E−pt ′xt

⎤
⎥
⎥
⎥
⎥
⎥⎦

=
Rt∏

k=1

(
𝛾

𝛾xkt + 1

){ Rt∑

k=1

𝛾xkt + 1
𝛾

⋅
pkt

E − pt′xt
+ 1

}

The off-diagonal elements of the Jacobian are non-zero because of the right-most

term in the expression for gkt. The expenditure allotment E can be treated as a para-

meter and is statistically identified through the KT condition associated with positive

demand that result in the equality restrictions 𝜀kt = gkt. However, its estimated value

will depend on the degree of assumed concavity of the utility function for the outside

good (e.g., logarithm versus a power function).

Predicted demand for the model with non-linear outside good does not have a

closed form because the KT conditions leads to an implicit function for x:

xk =
𝜓k − 𝜆pk
𝜆𝛾pk

for 𝜓k > 𝜆pk else xk = 0

where 𝜆 = 1
E−p′x

. However, there are methods for obtaining demand estimates. A

general solution is using standard constrained optimization routines such as

constrOptim in the R statistical package that directly maximizes the utility func-

tion subject to the budget constraint.

7.3.3 Applications and Extensions

Volumetric (non-binary) demand is common in marketing, occurring in the con-

sumption of most packaged goods and services. The quantity purchased is often not

restricted to just a single unit of a good, and the development of a quantity-based

model reduces the number of distinct choice alternatives that need to be modeled.

For example, in the beverage category, soda is routinely sold as 6-packs and 12-packs

of 12 ounce cans. The decision to purchase a 12-pack of Coke reflects both an item

and quantity decision, and economic models used to rationalize this choice treat the

demand quantities as the outcome of a constrained utility problem. The advantage

of this is that it requires fewer parameters and error terms than in models that treat

different package sizes as having unique intercept and error terms. Moreover, it can

handle zero demand quantities and is especially well suited for sparse data environ-

ments.

Models of discrete and continuous demand were pioneered by Hanemann (1984)

who coupled a discrete choice (logit) model with a conditional demand model. The
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horizontal variety literature on multiple discreteness models (e.g., Kim et al. 2002;

Bhat 2005, 2008) extends these models to allow for the selection of more than one

choice alternative. In addition, the direct utility model described above is flexible

with regard to the utility function that is employed. Lee et al. (2013), for example,

study the presence of complements where goods have a super-additive effect on con-

sumer utility.

The direct utility approach has been usefully extended to the areas where data

are from non-consumer product categories. Luo et al. (2013), for example, inves-

tigated how consumers allocate time resources among leisure activities over time

based on dynamic version of direct utility specifications above. In similar vein, Lin

et al. (2013) study consumers’ media consumptions such as TV, radio, and internet

accounting for substitution and complementarities in multiplexing activities.

7.4 Constraints

An advantage of using a direct utility model to study consumer purchase decisions

is that it separates what is gained in an exchange from what is given up. Consumers

give up various resources for the right to acquire and use marketplace offerings that

provide them with utility. These resources include money, time, attention, and any

other constraint on their lives. Dieters, for example, pay attention to the caloric con-

tent of the food they consume and may not purchase items on sale if they are high

in calories. Consumers constrained by space may not purchase large package sizes,

and consumers may not purchase goods with large access costs, such as the fixed

costs associated with learning to play a new sport. In many cases, consumer choice

is governed more by constraints on available options than by the utility afforded

by different offerings. We begin this section with a discussion of choice models with

multiple constraints (Satomura et al. 2011) and then examine models with non-linear

constraints (Howell et al. 2015; Howell and Allenby 2015).

7.4.1 Multiple Constraints

We develop our model of multiple constraints for consumers constrained by money

and quantity. Quantity constraints arise when consumers have limited storage space

in their homes that they wish to develop to a product category. Space constraints are

represented as Q denoting the upper limit of quantity. Consumers are assumed to

make choices that maximize utility subject to multiple constraints:

Max u (x, z,w) =
∑

k

𝜓k

𝛾

ln
(
𝛾xk + 1

)
+ ln(z) + ln(w)

subject to p′x + z ≤ E and q′x + w ≤ Q
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The utility maximizing solution is found by forming the auxiliary function L, but

this time with two multipliers 𝜆 and 𝜇:

Max L = u(x, z,w) + 𝜆{M − p′x − z} + 𝜇{Q − q′x − w}

resulting in the following first-order conditions for constrained utility maximization:

𝜀kt = gkt if xkt > 0
𝜀kt < gkt if xkt = 0

gkt = −a′kt𝛽 + ln(𝛾xkt + 1) + ln
(

pkt
E − p′txt

+
qk

Q − q′xt

)

that differs from the earlier expression in Equation (5) in that the last term

involves both the budget and quantity restrictions. As either p′txt approachesE, or q′xt
approaches Q, the last term on the right side becomes large, making it less likely to

observe positive demand (xkt > 0) and more likely to observe zero demand (xkt = 0).
Thus, goods that tend to exhaust either of the allocated budgetsE andQ are less likely

to be selected.

The Lagrangian multipliers 𝜆 and 𝜇 can be shown to be the expected change

in attainable utility for a unit change in the constraint (see Sydsæter et al. 2005,

Chap. 14). Thus, one can evaluate the impact of the constraints on choice and utility,

and determine which is more profitable for the consumer to relax. Budgets (E) can be

relaxed by endowing consumers with greater wealth by the use of coupons and other

means of temporary price reductions, and quantity constraints (Q) can be relaxed by

improvements in packaging and other forms of space saving. By comparing the cost

of these changes to the expected increase in utility allows firms to determine which

constraint to relax.

7.4.2 Non-linear Constraints

Non-linear constraints arise when costs, viewed in a broad sense, do not scale in pro-

portion to the quantity consumed. Examples include fixed costs that are incurred just

once for the first unit of demand (Howell and Allenby 2015), access costs that arise

as consumers transform market-place goods for consumption (Kim et al. 2015b),

and when unit prices depend on the quantity purchased. An example of a fixed cost

is the cost of a coffee maker, while an access cost for coffee involves the purchase of

coffee beans and its daily preparation. Access costs might be shared among different

choice alternatives that affects the variety of goods consumed (Kim et al. 2015a).

Quantity-dependent pricing, often referred to as multi-part pricing, has been studied

extensively in analytic models but are often difficult to implement in practice because

of the different prices that consumers face. Non-linear pricing can result in irregular

budget sets, where the budgetary constraint having kink points and possibly points
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Fig. 7.3 Irregular budget set

of discontinuity. When this occurs, it is not possible to use first-order conditions to

find a global optimal quantity of demand that maximizes constrained utility.

Figure 7.3 displays the budget constraint for two goods, x1 and z, when E = $6.00
and the price for the first two units of x is $1.00, and then the price rises to $2.00 per

unit. The budgetary constraint has a kink point at x1 = 2 units that will result in a

build-up of mass in the likelihood of demand. That is, many consumers will want to

purchase two units of x because of the low price. The solution to modeling demand

when the budgetary constraint has a kink point is to employ first-order conditions to

find optimal demand quantities within regions of the budget set that are linear, and

then to compare the solutions to find the utility maximizing demand.

Consider the case where there are two inside goods, x1 and x2 with kink points at

𝜏1 and 𝜏2. Price is assumed to take on a low value (p𝓁) below the kink point and a

higher value above the kink point (ph). We can partition the demand space into four

regions:

ℙ1 ∶ Max u(x1t, x2t, zt)
s.t. p𝓁1x1t + p𝓁2x2t + zt = E

0 ≤ x1t ≤ 𝜏1, 0 ≤ x2t ≤ 𝜏2

ℙ2 ∶ Max u(x1t, x2t, zt)
s.t. p𝓁1𝜏1 + ph1(x1t − 𝜏1) + p𝓁2x2t + zt = E

𝜏1 < x1t, 0 ≤ x2t ≤ 𝜏2
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ℙ3 ∶ Max u(x1t, x2t, zt)
s.t. p𝓁1𝜏1 + p𝓁2x2t + ph2(x2t − 𝜏2) + zt = E

0 ≤ x1t ≤ 𝜏1, 𝜏2 < x2t
ℙ4 ∶ Max u(x1t, x2t, zt)

s.t. p𝓁1𝜏1 + p𝓁2𝜏2 + ph1(x1t − 𝜏1) + ph2(x2t − 𝜏2) + zt = E
𝜏1 < x1t, 𝜏2 < x2t.

Then, the first-order conditions associated with observed demand are:

𝜀kt < g𝓁kt if xkt = 0
𝜀kt = g𝓁kt if 0 < xkt < 𝜏k

g𝓁kt < 𝜀k < ghkt if xkt = 𝜏k

𝜀kt = ghkt if xkt > 𝜏k

where

g𝓁kt = −a′k𝛽 + ln(𝛾xkt + 1) + ln
(
p𝓁kt
zt

)

ghkt = −a′k𝛽 + ln(𝛾xkt + 1) + ln
(
phkt
zt

)

when the outside good is specified logarithmically. We define the set A = {k ∶ xkt =
0}, the set B = {k ∶ 0 < xkt < 𝜏k}, the set C = {k ∶ xkt = 𝜏k}, and the set D = {k ∶
xkt > 𝜏k}. The likelihood is therefore:

Pr(xkt) = Pr(xAt = 0, 0 < xBt < 𝜏k, xCt = 𝜏k, xDt > 𝜏k)
= |JB∪D|Pr(𝜀At < g𝓁At, 𝜀Bt = g𝓁Bt, g𝓁Ct < 𝜀Ct < ghCt, 𝜀Dt = ghDt)
= |JB∪D| × F(g𝓁At) × f (g𝓁Bt) × (F(ghCt) − F(g𝓁Ct)) × f (ghDt)

where f is the pdf of the error distribution and F is the CDF of that distribution. JB,D
is the Jacobian of 𝜀C∪D and is defined as:

Jij =
𝜕g⋅i
𝜕xjt

= 1
xit + 1

I(i = j) +
p⋅jt
zt

with ⋅ = 𝓁 if i ∈ B, and ⋅ = h if i ∈ D.

The above framework can be extended to an arbitrary number of kink points and

an arbitrary number of goods. The challenge in applying the model is in keeping track

of the number of possible outcome regions (e.g., regions A–D above) and correctly

computing the likelihood.

More generally, constraints limit the region over which utility is maximized and

often results in the need for estimators that do not rely solely on first-order condi-
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tions to associate observed demand and choices to model parameters. Demand, for

example, could take the form of a mixture of demand types, with it being discrete for

some decision variables (e.g., the decision to stream music) and continuous for oth-

ers (the number of songs to download) (Kim et al. 2015a). Another example involves

the use of screening rules and the presence of consideration sets in consumer deci-

sion making (Kim et al. 2015c) that involves a subset of the items available for sale.

Although such constraints complicate the estimation of direct utility models, many

creative procedures have been proposed to relate observed demand to constrained

utility maximization for model estimation.

7.5 Error Specification

We considered the form of the utility function and the nature of constraints in devel-

oping variants of direct utility choice models in the discussion above. We now con-

sider the influence of the error term in the model. The error term plays an impor-

tant role in models of choice because of what it implies about factors that are not

explicitly present in the utility function or the budget constraint. In general, if an iid

(independent and identically distributed) additive error term is used in the model,

there are some realizations of the error that guarantee that a particular good will

be chosen. That is, there will not exist dominated alternatives for which demand is

zero for any respondent. While this assumption might seem harmless for the analy-

sis of small choice sets, it is problematic whenever the choice set becomes large and

every alternative is assigned some positive purchase probability that is independent

of a brand’s attributes. Most product categories consist of dozens, and sometimes

hundreds, of goods for sale. Assuming iid error terms for each alternatives leads to

demand predictions that are not sufficiently sensitive to changes in prices and other

product features, particularly when there are some brands that compete at a height-

ened level with other brands.

Another problem with standard error assumptions is that observed demand is

often discrete, not continuous, and is often constrained by packaging decisions made

by firms. Consumers, for example, may not be able to purchase five cans of soda, or

eight eggs at a grocery store. Marketplace demand must therefore be viewed as a

censored outcome of a constrained model of choice, where the offerings made avail-

able reside on a coarse grid dictated by the packaging. Choice models must therefore

be modified to acknowledge this restriction when inferring about model parameters

and when predicting future demand.

7.5.1 Correlated Errors

One solution to recognizing groups of similar products is to allow the random utility

errors to be correlated. The nested logit model (Hausman and McFadden 1984), for
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example, is motivated by the presence of correlated errors for goods that are similar.

Correlated errors are most flexibly introduced into a choice model with Normally

distributed error terms. Dotson et al. (2015) discuss a parsimonious model that allows

for error covariances that are related to product features. The effect of the model is

to relax the assumption of IIA associated with the standard logit model, where the

ratio of choice probabilities for any two alternatives does not involve any of the other

choice alternatives. With IIA, the introduction of a good similar to an existing good

draws share proportionally to the baseline shares of all other goods and does not

favor other, similar goods.

It is desirable that the correlations among the error terms of similar goods be

large, and the correlation among goods that are dissimilar be small. In the extreme,

if two goods are identical, the errors should be perfectly collinear and would split

the demand associated with them. A simple model of correlated errors for N choice

alternatives is:

Σ =
⎡
⎢
⎢⎣

1 ⋯ 𝜎1N
⋮ ⋱ ⋮
𝜎N1 ⋯ 1

⎤
⎥
⎥⎦

where

𝜎kj = exp
[−dkj

𝜃

]

and dkj is a measure of perceptual distance between goods k and j. Thus, if two goods

are perceived to be nearly alike, then dkj is close to zero and 𝜎kj is close to one. They

investigate alternative parameterizations of the distance measure, and find that one

based on baseline utility consistently fits the data best:

dkj =
|||𝜓k − 𝜓j

|||

where 𝜓 is the marginal utility of the offering. Thus, the 𝜓 parameters appear in

the mean and covariance of the utility specification, which necessitates the need for

customized software for model estimation. Dotson et al. (2015) discuss estimation

of this model as a hierarchical Bayes model.

7.5.2 Indivisible Demand

Restriction on demand caused by the discreteness of packaging results in an addi-

tional constraint on choice that censors the model error term to produce integer

demand:

xkt ∈ {0, 1, 2,⋯} , ∀k ∈ {1,⋯ ,N}
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Thus, instead of consumers purchasing the alternative with greatest utility among

those that satisfy the budgetary allotment, they are assumed to choose from among

the available alternatives that maximize utility.

Lee and Allenby (2014) show how to deal with this constraint in model estimation

and prediction. The model likelihood become a product of mass points, as there

are multiple realizations of each model error term that can correspond to observed

demand on the package grid. A variant of Bayesian data augmentation (Tanner and

Wong 1987) is used to evaluate the likelihood at feasible points on the package grid:

U∗ (x∗1t,⋯ , x∗nt
)

≥ max
{
U∗ (x∗1t + 𝛥1,⋯ , x∗nt + 𝛥n

)
|
(
x∗1t + 𝛥1,⋯ , x∗nt + 𝛥n

)
∈ F

}
𝛥i∈{−1,0,1}

(7.6)

and use the inequality relationship to determine ranges of the error term that are con-

sistent with the observed demand being utility maximizing. Their analysis indicates

that data corresponding to the corner solutions are most affected by the presence

of packaging constraints, where zero demand should be interpreted as not liking an

offering enough to buy one unit, as opposed to not liking it enough to buy any.

7.6 Indirect Utility Models

Models of discrete/continuous choice have a long history in the marketing and eco-

nomics literature beginning with the work of Hanemann (1984) and extended by

many that build on a framework where demand is positive for just one of many dif-

ferent choice alternatives. Krishnamurthi and Raj (1988) discuss the estimation of

models where the continuous component of demand is driven by a set of covariates

different from the covariates used to form utility in the discrete choice portion of the

model, and rely on a an indirect utility specification to provide a theoretical basis

for demand quantities. Similarly, Harlam and Lodish (1995) introduce variables into

their model specification that provide summary measures of merchandising activity

that is difficult to interpret in terms of a direct utility model. Chintagunta (1993),

Dubé (2004) and Song and Chintagunta (2007) also motivate their model specifica-

tion using the concept of an indirect utility function without explicitly relating it to

a specific direct utility model. An indirect utility function is defined as the maximal

attainable utility as a function of prices and expenditure (E). Indirect utility models,

however, are not amenable to disaggregate demand analysis in marketing where the

attributes of products can change and there exist mass points of demand at particular

prices.

For example, products in a conjoint analysis change across choice sets as prod-

uct attributes and levels are experimentally manipulated. As the attribute-levels of

the choice alternatives change, so should their degree of substitution and level of

price interaction, indicating that many of the parameters of a indirect utility model

would also need to be functions of product characteristics. It is difficult to imple-

ment a characteristics model of demand within an indirect utility model because
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indirect utility models often have many parameters. In addition, it is not clear how to

incorporate model error into an indirect utility specification to allow for mass points

of demand that occur at corners, kink points and due to packaging constraints. As

discussed above, these issues can be addressed through a direct utility specification

where corner solutions give rise to inequality constraints in the likelihood through

the Kuhn-Tucker conditions.

To illustrate, consider a constrained maximization problem involving the utility

function similar to (2):

max u (x) =
∑

k

𝜓k

𝛾

ln (𝛾x + 1) subject to p′x ≤ E

where the 𝜓’s are assumed to sum to one (i.e.,
∑

𝜓k = 1). We can solve for the utility

maximizing quantities, x∗ and obtain the optimal demand function (see appendix):

x∗k =
1
𝛾

(
𝜓k

𝜆pk
− 1

)

where 𝜆 = 1
𝛾E+

∑
k
pk

is a Lagrangian multiplier. By substituting the demand function

(x∗) into the utility function, one can obtain the expression for indirect utility (V) as

follows:

V ≡ u (x∗) =
∑

k

𝜓k

𝛾

(
ln𝜓k − ln pk + ln

(
𝛾E +

∑

k
pk

))

Details are provided in the appendix. While this formulation provides an elegant

solution to optimal demand and indirect utility, it depends critically on equality con-

straints between the 𝜓 parameters and optimal demand quantities x∗ that are associ-

ated with interior solutions, not corner solutions. Corner solutions result in inequality

restrictions, not equality restrictions, in the Kuhn-Tucker conditions.

The indirect utility function is often expressed as in terms of a Taylor series

approximation to an unspecified utility function such as translog, and includes pair-

wise price interactions among the choice options so that a flexible pattern of substi-

tution can be achieved (Pollak and Wales 1992). For example, consider a general-

ized quadratic indirect utility function often referred to as a translog indirect utility

(Christensen et al. 1975):

lnV = 𝛼0 +
∑

k
𝛼k ln

pk
E

+ 1
2
∑

k

∑

j
𝛽kj ln

pk
E

ln
pj
E

where (𝛼, 𝛽)′ are parameters that capture the substitution among product offerings.

Recently, Mehta (2015) proposes an indirect utility model for a general demand

model based on Kuhn-Tucker conditions (Wales and Woodland 1983) that employs
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virtual prices to deal with corner solutions (see Lee and Pitt 1987). Virtual prices are

the prices at which demand is expected to be exactly equal to zero given the para-

meters of the indirect utility function. The virtual prices are then substituted into

the demand system as if they were observed. The problem with this formulation is

that it assumes more than what is observed, by conditioning on latent quantities, and

overstates the value of information coming from zero demand by assuming a density

contribution to the likelihood rather than a mass contribution.

The generalized quadratic indirect utility function is over-parameterize and, in

general, not valid unless monotonicity and concavity constraints are imposed. There

is no general theory of the extent to which this quadratic approximation provides

a uniform functional approximation. Therefore, there is no reason to believe that

the even a “regular” generalized quadratic indirect utility function can approximate

any indirect utility for the purpose of demand specification. This would require a

proof of global approximation not only of the indirect utility function but also of its

derivatives. But, our principal objection to the indirect utility formulation is that it

obscures the process of formulated direct utility models and associated constraints

that embody the reality of the consumer purchase process. For example, if the con-

sumer faces a non-linear budget set due to pack-size discounts, the researcher should

write down the direct utility model and constraints rather than choosing an arbitrary

indirect utility function which may not be consistent with this situation.

For virtually all situations in consumer choice modeling, there will be no closed

form expression for the indirect utility function. Moreover, given corners and kinks,

the indirect utility function may not be differentiable everywhere, eliminating the

convenience of Roy’s identity for deriving demand. Indirect utility functions are

useful for welfare computations but are not of practical value in the specification

of consumer choice models.

7.7 Conclusion

This chapter has reviewed an emerging area of analysis in marketing decision mod-

els that rationalizes choice from principles of constrained utility maximization. We

advocate for a direct utility specification of choice models for a variety of reasons.

Models of constrained utility maximization reflect goal-directed behavior on the part

of consumers, which is overwhelmingly supported in disaggregate marketing data

by the prevalence of zero demand for most offerings. By far, the most frequently

observed number in disaggregate marketing datasets is the number zero, implying

that consumers are resource conserving and not acting randomly.

The direct utility formulation separates that which is gained in an exchange (util-

ity) from that which is given up (constraint)—i.e., the resources needed to acquire

and use a marketplace offering. Understanding the determinants of utility is use-

ful for product strategy as marketers advocate for making what people will want to

buy. Quantifying the relationship between product attributes and the benefits, and

the resulting utility afforded by a competitive set of products, is one of the most
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important tasks of marketing research. Likewise, understanding the impediments to

acquiring and using a product is useful for driving sales and effectively communi-

cating with prospects.

We examine three aspects of direct utility models—the utility function, con-

straints and error—that are combined to form the likelihood for the data. Our treat-

ment of these constructs is structural in nature, as we avoid the temptation of simply

adding an error term to a flexible model that combines brands, attributes and prices.

The problem with taking this flexible approach is that it is not consistent with the

lumpiness of marketing data, where corner solutions are prevalent, where demand is

often constrained to lie on a grid of available package sizes, and where pricing dis-

counts lead to a mass buildup in the likelihood even for interior solutions. Through-

out our development above we stress the importance of deriving the likelihood func-

tion from principles of constrained optimization, and show how these realities of

marketing data can be accommodated within the framework of constrained utility

maximization.

We also advocate against the use of indirect utility models for data that con-

tain corner solutions, mass buildup at specific demand quantities, or multiple con-

straints. While an indirect utility function can always be defined in these nonstan-

dard situations, it may be difficult, if not impossible, to express in closed form. More

importantly, the indirect utility function will not be useful in deriving the associated

demand system and its associated likelihood.

Additional research is needed to develop and apply a broader class of utility func-

tions, constraints, and error specifications for marketing analysis. For more than 50

years, marketing has embraced the notion of extended models of behavior where

needs, wants, beliefs, attitudes, consideration and perceptions have been shown to be

determinants of demand (Howard and Sheth 1969). Often, a large battery of variables

is used to represent each of these constructs. Mapping these variables to one another

and to marketplace demand within a principled structure is a worthy endeavor.

Appendix

Consider the direct utility model:

max u (x) =
∑

k

𝜓k

𝛾

ln
(
𝛾xk + 1

)
subject to p′x ≤ E

where the 𝜓

′s are assumed to sum to one (i.e.,
∑

𝜓k = 1) and 𝛾 > 0. Solving for

the utility maximizing quantities, x∗, by the Lagrangian method will give rise to the

following objective function:

L =
∑

k

𝜓k

𝛾

ln
(
𝛾xk + 1

)
− 𝜆

(
p′x − E

)
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The FOC’s for optimal demand (x∗) are:

0 = 𝜕L
𝜕x1

=
𝜓1

𝛾x1 + 1
− 𝜆p1 ⇔ 𝜓1 = 𝜆p1

(
𝛾x1 + 1

)

0 = 𝜕L
𝜕x2

=
𝜓2

𝛾x2 + 1
− 𝜆p2 ⇔ 𝜓2 = 𝜆p2

(
𝛾x2 + 1

)

⋮

0 = 𝜕L
𝜕xk

=
𝜓k

𝛾xk + 1
− 𝜆pk ⇔ 𝜓k = 𝜆pk

(
𝛾xk + 1

)

Using
∑

𝜓k = 1, we solve for 𝜆:

1 =
K∑

k=1
𝜓k =

K∑

k=1
𝜆pk

(
𝛾xk + 1

)

or

𝜆 = 1
K∑
k=1

pk
(
𝛾xk + 1

)
= 1

𝛾E +
K∑
k=1

pk

Substituting 𝜆 back into FOCs yields optimal demand equations:

x∗k =
1
𝛾

(
𝜓k

𝜆pk
− 1

)

= 1
𝛾

(
𝜓k

pk

(
𝛾E +

∑

k
pk

)
− 1

)

Substituting x∗ into the direct utility function allows us to obtain the expression for

indirect utility (V):

V ≡ u (x∗)

=
∑

k

𝜓k

𝛾

ln
(
𝛾x∗k + 1

)

=
∑

k

𝜓k

𝛾

ln

(
𝛾

(
1
𝛾

(
𝜓k

pk

(
𝛾E +

∑

k
pk

)
− 1

))
+ 1

)

=
∑

k

𝜓k

𝛾

ln

(
𝜓k

pk

(
𝛾E +

∑

k
pk

))

=
∑

k

𝜓k

𝛾

(
ln𝜓k − ln pk + ln

(
𝛾E +

∑

k
pk

))
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