Algorithm for Predicting Mathematical
Formulae from Linear Strings
for Mathematical Inputs

Tetsuo Fukui

Abstract Recently, computer-aided assessment (CAA) systems have been used
for mathematics education, with some CAA systems capable of assessing learn-
ers’ answers using mathematical expressions. However, the standard input method
for mathematics education systems is cumbersome for novice learners. In 2011, we
proposed a new mathematical input method that allowed users to input mathemati-
cal expressions through an interactive conversion of mathematical expressions from
colloquial-style linear strings in WYSIWYG. In this study, we propose a predictive
algorithm to improve the input efficiency of this conversion process by using machine
learning to determine the score parameters with a structured perceptron similar to
natural language processing. In our experimental evaluation, with a training dataset
comprising 700 formulae, the prediction accuracy was 96.2% for the top ten ranking
by stable score parameter learning; this accuracy is sufficient for a mathematical
input interface system.

Keywords Mathematical input interface - Predictive algorithm - Machine learning -
Mathematical formula editor

1 Introduction

In recent years, computer-aided assessment (CAA) systems have been used for the
purpose of mathematics education. Some CAA systems enable users to directly enter
mathematical expressions such that their answers can be evaluated automatically by
using a computer algebra system (CAS). These systems have also been used to pro-
vide instructions to students at universities. However, the procedure through which
answers are entered into the system, using a standard input method for mathematics
education, is still cuambersome [10, 11].

T. Fukui ()
Mukogawa Women’s University, Nishinomiya, Japan
e-mail: fukui@mukogawa-u.ac.jp

© Springer International Publishing AG 2017 137
L.S. Kotsireas and E. Martinez-Moro (eds.), Applications of Computer Algebra,

Springer Proceedings in Mathematics & Statistics 198,

DOI 10.1007/978-3-319-56932-1_9

138 T. Fukui

In 2011, we proposed a new mathematical input method through the conversion
of colloquial-style mathematical text (string) [1, 3]. This method is similar to those
used for inputting Japanese characters in many operating systems. In this system, the
list of candidate characters and symbols corresponding to the desired mathematical
expression, as obtained through the user input, is displayed in WYSIWYG format;
once all elements required to be included by the user are selected, the process of
formatting of the expressions is complete. This method enables the user to input
almost any mathematical expression without having to learn a new language or syntax
[12]. However, the disadvantage of the above-mentioned method is that the user has
to convert each element in the colloquial-style mathematical string proceeding from
left to right in order [13].

This study aims to address this shortcoming by improving the input efficiency
of such systems through intelligent predictive conversion of a linear mathematical
string to an entire expression instead of converting each element individually.

2 Related Works

In this section, we describe related works on natural language processing, along with
other predictive inputs for mathematical formulae using an N-gram model.
Input-word prediction has been studied since the 1980s in the field of natural lan-
guage processing. Input characters are usually predicted for a word unit [5]. An
N-gram model is typically used to predict text entries in popular probabilistic
language models. For example, one typical system for word prediction, Reactive
Keyboard, uses an N-gram model for augmentative and alternative communication
(AAC) [7]. In such systems, a tree is built for prediction, where each alphabeti-
cal character corresponds to a node. Priority is assigned to each node based on the
number of occurrences in the N-gram. When a user inputs characters, the system
matches them with tree nodes, and the words in the child nodes of the matched node
are provided as proposed predictions. A structured perceptron in machine learning
for natural language processing has been used to input Japanese characters since the
1990s. As explained in Sect. 4.1, Algorithm 1 is similar to machine learning. It uses
a structured perceptron for natural language processing [9]. However, mathematical
formulae have tree structures, rather than the sentential chain structures of natural
language. Indeed, none of the above-mentioned methods consider the structure of a
sentence; however, our method considers the structure of mathematical formulae.
Structure-based user interfaces for inputting mathematical formulae are popular.
They enable users to format a desired mathematical formula on a PC in WYSIWYG
by selecting an icon corresponding to the structure of the expression. User do so using
a GUI template, e.g., a fraction bar and an exponent form, into which the mathe-
matical elements can be entered. Hijikata et al. from Osaka University improved the
input efficiency of mathematical formulae by proposing an algorithm for predict-
ing mathematical elements using an N-gram model [6]. However, their proposal is
nevertheless a structure-based interface in the sense that users must understand the

Algorithm for Predicting Mathematical Formulae from Linear ... 139

entire structure of a desired mathematical formula before selecting the corresponding
icons.

By contrast, our predictive conversion method predicts such mathematical struc-
tures from a linear string of the mathematical formulae, rendering it significantly
different from structure-based input methods.

3 Predictive Conversion

In this section, we define the linear string of a mathematical expression to be input
by the user and describe the design of an intelligent predictive conversion system of
such linear strings in Sect. 3.2. In Sect. 3.3, we formulate a predictive algorithm by
using machine learning.

3.1 Linear String Rules

The rules for alinear mathematical string for a mathematical expression are described
as follows:

Set the key letters (or words) corresponding to the elements of a mathematical
expression linearly in the order of the colloquial (or reading) style, without
considering two-dimensional placement and delimiters.

In other words, a key letter (or word) consists of the ASCII code(s) corresponding
to the initial or the clipped form (such as the IXTEX -form) of the objective mathe-
matical symbol. Therefore, a single key often supports many mathematical symbols.
For example, when a user wants to input o2, the linear string is denoted by “a2”,
where “a” represents the “alpha” symbol and it is unnecessary to include the power
sign (i.e., the caret letter (*)). In the case of 012—1+3 the linear string is denoted by
“1/a2+3”, where it is not necessary to put the denominator (which is generally the
operand of an operator) in parentheses, because those are never printed.

Other representative category cases are shown in Table 1. For example, the linear
string for e™* is only denoted by “epx”. However, the linear string of the expressions
epx, e’*, e*x are also denoted by “epx”. Hence, there are some ambiguities for
representing linear strings using these rules.

3.2 Design of an Intelligent Predictive Conversion System

In this paper, we propose a predictive algorithm to convert a linear string s into
the most suitable mathematical expression y,. For prediction purposes, we devise a
method through which each candidate to be selected would be ranked in terms of

140 T. Fukui

Table 1 Examples of mathematical expressions using linear string rules

Category Linear strings Math formulae
Variable a aoro
Polynomial 3x2+4x+1 3x2 +4x + 1
Fraction 2/3 %
Equation (x=1/2)2=x2-x+1/4 (x—DP=x>—x+1
Square root root3 V3
Trigonometric sin2x sin? x
Logarithm log10x log;g x
Exponent epx emr
Summation sumk=1nk2 i k2

k=1
Integral intabfdx / ab fdx

its suitability. Our method uses a function Score(y) to assign a score proportional to
the probability of occurrence of the mathematical expression y, which would enable
us to predict the candidate y, by using Eq. (1) as being the most suitable expression
with the maximum score. Here, Y (s) in Eq. (1) represents the totality of all possible
mathematical expressions converted from s.

yp s.t. Score(y,) = max{Score(y)|y € Y (s)} @))

A mathematical expression consists of mathematical symbols, such as numbers,
variables, and operators,' together with the operating relations between an operator
and an element. Therefore, we decided to represent a mathematical expression by
a tree structure consisting of nodes and edges corresponding to the symbols and
operating relations, respectively.

First, all node elements of the mathematical expressions are classified into nine
categories, as listed in Table 2 in this mathematical conversion system. Therefore, a
node element is characterized by (k, e, t), where k is the key letter (or word) of the
mathematical symbol e that belongs to type (= N, V, P, A, Br, Bg,C, O, R, or
T) in Table 2. For example, the number 2 is characterized as (“2”,2,N) and similarly
a variable x as (“x”, x, V) and as for the Greek letter «, it can either be characterized
as (“alpha”, o, V)or (“a”, a, V). In the case of an operator, the character (“/”, 2—;, C)
represents a fractional symbol with input key “/”, where A, A, represents arbitrary
operands.

In this study, a total of 510 mathematical symbols and 597 operators in node
element table & are implemented by our prototype system.

Un this article, “operator” is used in the sense of operating on, i.e. performing actions on elements
in terms of their arrangements for two-dimensional mathematical notation.

Algorithm for Predicting Mathematical Formulae from Linear ... 141

Table 2 Nine types of mathematical expressive structures

Math element Codes of type Examples (A1, Az, A3
represent operands)

Number N 2, 128

Variable, symbol Vv X, o

Prefix unary operator P VAT, sinAy

Postfix unary operator A A

Bracket By, Bg (A1)

Infix binary operator C A+ Ay, i—;

Prefix binary operator (0] logp, A2

Prefix ternary operator R AA] 2 A3

Infix ternary operator T A 5& Az

The totality Y (s) of the mathematical expressions converted from s is calculated
by using the following procedure Proc. 1-Proc. 3 (cf. [2, 4]) referring to node
element table Z.

Proc.1 A linear string s is separated in the group of keywords defined in
Eq. (2) by using the parser in this system. All possible key separation vectors
(k1, ka, - - -, kx) are obtained by matching every part of s with a key in 2.

s =k Wky W ---kg where (k;, v, t;) € 9,i=1,..,.K 2)

Proc.2 Predictive expressive structures are fixed by analyzing all key separation
vectors of s and comparing the nine types of structures provided in Table 2.

Proc.3 From the fixed structures corresponding to the operating relations between
the nodes, we obtain Y (s) by applying all possible combinations of mathematical
elements belonging to each keyword in 2.

Complexity of Y (s)

Generally, the number of elements in Y (s), denoted by n(Y (s)), becomes enormous
corresponding to the increase in the length of s. For example, because the key let-
ter “a” corresponds to seven symbols, namely Y (“a”)={a, o, a, a, a, a, R}, and the
invisible times between a and b corresponds to Y (“ab”) = {ab, a’, ay, °b, «b}, then
n(Y(“abc”))=7> x 5% = 8575. However, for the purpose of a mathematical input
interface, it is enough to calculate the N-best high score candidates in Y (s) as shown
in Eq. (1). Therefore, for improving the efficiency of calculations we obtain the

N-best candidates in Y (s) as follows:

1. In Proc. 1, all the key separation vectors (ki, kp, --- , kx) of s are sorted in
ascending order of the number K in Eq. (2), i.e. in an order starting from higher
probability.

2. InProc. 2, we set upper limit L of the number of loops for breaking down all the
possible calculations of the predictive expressive structures.

142 T. Fukui

3. In Proc. 3, to obtain the N-best candidates in Y (s), we apply only the N-best
mathematical elements for operand expressions related to an operator instead of
all possible combinations.

3.3 Predictive Algorithm

Let us assume that the probability of occurrence of a certain mathematical element is
proportional to its frequency of use. Then, the probability of occurrence of mathemat-
ical expression y, which is possibly converted from a given string s, is estimated from
the total score of all the mathematical elements included in y. Given the numbering
of each element from 1 to Fj,4, Which is the total number of elements, let 6 be the
score of the f(=1, -+, Fyoar)-th element, and let x s () be the number of times the
f-thelement is included in y. Then, Score(y) in Eq. (1) is estimated by Eq. (3), where
0T =@, 0F,...) denotes the score vector and X = (x¢(¥)), f =1, , Fioa
is the F;,;,-dimensional vector.

Frotal

he (X(3) =07 - X(y) = D 0,x7(y) 3)
=1

Equation (3) is in agreement with the hypothesis function of linear regression, and
X(y) is referred to as the characteristic vector of y. To solve our linear regression
problem and predict the probability of occurrence of a mathematical expression,
we conduct supervised machine learning on the m elements of a training dataset
{Cs1, ¥1), (52, ¥2)5 - -+, (S, Ym)}. Our learning algorithm to obtain the optimized
score vector is performed through the following four-step procedure:

Step1 [Initialization: 0 = 0,i = 1
Step 2 Decisionregarding a candidate: y), s.t. hy (X(y,)) = max{hy (X(»)) |y € Y (s:)}
Step3 Training parameter: if(y, # y;) {

Of = Qf —+ 1 for {f; S Ftomlle(yi) > 0} (4)
07 :=0;—1 for {f < Foalx;(yp) > 0}

}
Step4 if(i < m){ i=i+1; go to Step 2 for repetition.}
else { Output € and end.}

This learning algorithm is very simple, and similar to machine learning using a
structured perceptron for natural language processing [9].

Algorithm for Predicting Mathematical Formulae from Linear ... 143

4 Main Algorithm

In this section, we experimentally investigate the prediction accuracy by using the
algorithm described in the previous section. Then, we discuss the results of the
evaluation in Sect. 4.1 and propose the main algorithm of this study in Sect. 4.2.

4.1 Experimental Evaluation

We examine the prediction accuracy using two score learning parameter sets on an
evaluation dataset & = {(s;, y;)|[i =0, ..., 799} containing 800 mathematical for-
mulae from a mathematics textbook [8]. As the scope of the evaluation dataset
&, we adopted the mathematical subjects: “Quadratic-polynomials, -equations,
-inequalities and -functions” that are studied in the tenth grade in Japan. The dataset
& has generated manually with our previous system [3] in the order of appearance
from the textbook by choosing individual expressions y; with length of s;, which is
less than 16. Some samples of the dataset & are shown in Table 3.

Two parameter sets of @ for scoring were trained by using the following two
algorithms programmed in Java on a desktop computer (MacOS 10.9, 3.2 GHz Intel
core i3, 8 GB memory):

Algorithm 1~ Step 1-Step 4, using Eq. (4).
Algorithm 2 Step 1-Step 4, with Step 3 using

Op :=0r+2 for {f < Fiparlxs(y;) > 0}

_ 5
9}5 :Zef—l for {fSmezle’(yp)>0} ®)

in place of Eq. (4).

Table 3 Samples of the evaluation dataset &

Input strings (s;) Length of s; Formulae (y;)

a/=0 4 a0

A(3-2) 7 A3, -2)
3<=y<=7 7 35y<7

7/9=0.7. 8 §=01

root32=[3] 10 V32 = |3
y=1/2x2-2x-1 12 y=3x?—2x—1
(ad)3=ad*3=al2 14 (a*)’ = a3 = a2
3x2y4#(-2x4y)3 14 3x2y* x (—2x4y)3

144 T. Fukui

Table 4 Prediction accuracy using Algorithms 1 and 2

Training | Best 1 (%) Best 3 (%) Best 10 (%) Correct score
number
Algo. 1 |Algo.2 |Algo.1 |Algo.2 |Algo.1 |Algo.2 |Algo.1 |Algo.2
0 25.9 259 41.3 41.3 52.3 52.3 2.8(0.1) {2.8(0.1)
(3.8) (3.8) (4.4) (4.4) (4.3) 4.3)
100 62.7 53.3 75.5 82.5 81.5 88.5 15.4 307.0
14.7) (14.6) 9.2) 6.4) (6.8) 4.3) (1.2) (58.1)
200 75.6 60.3 82.7 86.1 86.6 91.7 18.0 568.9
(6.6) (5.0 (5.0 4.2) 4.3) (3.2) (1.5) (99.4)
300 79.3 64.1 85.2 89.1 88.1 93.8 20.4 964.3
4.1) 5.1) 4.3) 3.2) 4.3) 2.9) (1.9) (186.8)
400 79.2 67.7 85.1 90.1 88.2 94.1 21.0 1103.4
(3.8) 6.7 (3.8) 3.1 (3.5) 3.1 2.2) (75.2)
500 80.0 67.6 86.7 90.6 89.5 94.5 23.1 1290.6
4.4 5.7 4.0) 2.9) 3.3) (2.8) 2.2) (99.8)
600 79.5 69.1 85.9 90.8 89.2 94.3 224 1492.2
(3.7) (4.6) (3.4 2.7) (3.8) (2.5) (2.4) (106.5)
700 79.1 68.5 85.7 91.1 89.2 95.0 22.9 1692.9
5.7) (6.0) (5.3) (2.5) 4.2) (2.5) (1.7) (114.7)

Numbers within parentheses denote the SD

Fig. 1 The result by 100
Algorithm 1 (training 90
number—prediction accuracy) 30
70
60
50
40
30
20
10

Best 1
“=“Best 3
—Best 10

Prediction Accuracy (%)

0 100 200 300 400 500 600 700 Training Number

In the experimental evaluation, we measured the proportion of correct predictions
from among 100 test datasets after learning the parameters through Algorithms 1 and
2 using a training dataset consisting of 700 formulae by eightfold cross-validation.

The machine learning results using Algorithms 1 and 2 are given in Table 4 for
each training number. By using Algorithm 1, the prediction accuracy of “Best 1”
is about 79.1% after being trained 700 times. In the top ten ranking (“Best 10”), it
achieves about 89.2%. Figure 1 shows the change in the prediction accuracy as a
result of Algorithm 1 for each training number.

On the other hand, the result obtained by using Algorithm 2 with another learning
weight shows that the prediction accuracy of “Best 1” is approximately 68.5% after
being trained 700 times. It achieves about 95.0% in the top ten ranking. The change
in the prediction accuracy as a result of Algorithm 2 is shown in Fig. 2.

Algorithm for Predicting Mathematical Formulae from Linear ... 145

Fig. 2 The result by 100
Algorithm 2 (training 90
number—prediction accuracy) 80
70
60
50
40
30
20
10

0

Best 1
“="Best 3
! —Best 10

Prediction Accuracy (%)

0 100 200 300 400 500 600 700 Training Number

4.2 Discussion

The mean scores for the correct expressions (“correct score” in short) in the test
dataset for each training number are shown in the fifth column of Table 4 and illus-
trated in Fig. 3. The prediction accuracy of “Best 1” by using Algorithm 1 becomes
sufficiently high, i.e., approximately 80%, with the mean correct score approximately
equal to 23 after being trained 500 times. However, this is disadvantageous for a math-
ematical input interface, because the correct expressions out of the top ten ranking
are more than 10%. One of the causes of this 10% leak is because the priorities of
some correct expressions are not reflected in their occurrence frequency. In the case
when two different candidates belonging to the same key appear from the training
data, e.g., the pair a and « and the pair p and m, their scores change into a positive
value from a negative value or vice versa. This means that even if a candidate with
negative score occurred many times in &, it has lower priority than the one with zero
score because the increase and decrease in the weights of the score in Eq. (4) are
mutually the same. For example, changes in score parameters (a and «) are shown
in Fig. 4.

To avoid such problems, we have modified Algorithm 2 such that the increase
in weight for the correct candidate is greater than the decrease in weight for the
incorrect one as shown in Eq. (5). From the results of experimental evaluation of the

Fig. 3 Change in correct 25
score given by Algorithm 1
20

Correct Score

- Algorithm 1

0 100 200 300 400 500 600 700 TrainingNumber

146 T. Fukui

g
5 e e s .
A

—*-alpha
20 00 140 180 220 260 300 340 380 420 460 500 540 580 620 660 700

Training Number

Fig. 4 Change in score parameters (a and o)

prediction accuracy by using Algorithm 2, the ratio of correct expressions from the
top ten ranking is less than 5%, which is sufficient for a mathematical input interface
system. However, we remark that the score parameter continues to increase while
Algorithm 2 is learning.

In this study, we propose the following algorithm, Algorithm 3, to overcome the
problems encountered in Algorithm 2.

Algorithm 3 Step 1-Step 4, where Step 3 using

(0 < S0y 2= 0,42 for 1 < Fualts0) > 01} o
67 =07 =1 for {f < Fulxf(y,) > 0}

in place of Eq. (5).

Here, Spax in Eq. (6) is a suitable upper bound for any mathematical element score.
Because the result of Algorithm 1 provides good precision with a mean score of
approximately 23, we set the upper bound Sy« to 20 for any mathematical element
score 0.

The machine learning results for Algorithm 3 for the case Sy,x = 20 are given
in Table 5 for various sizes of the training dataset. It can be seen that the accuracy
of “Best 1” with Algorithm 3 was approximately 68.3% after being trained 700
times. This algorithm achieved an accuracy of 90.5% for the top three ranking, and
96.2% for the top ten ranking. With a training set of size 700, there is no statistically
significant difference (at the 5% level) between the results for Algorithm 2 and
those for Algorithm 3 for the “Best 1,” “Best 3,” or “Best 10” cases. Additionally,
the learning curves for both algorithms change at the same skill rate for each of
these cases. The mean correct scores in the test dataset for each training number are
presented in the fifth column of Table 5 and illustrated in Fig. 5. The correct score
with Algorithm 2 (shown in the fifth column of Table 4) increases proportionally
with training number n (decision coefficient: R? = 0.98); however, the correct score
with Algorithm 3 increases only at a rate of logn (R?> = 0.96).

Comparing case Smax = 20 with S« = 50, we conclude that precision properties
of both are almost similar while the mean correct score for the test data when Sy.x =
20 is 14% lower than that when S,,.,x = 50. However, if we set Spax to less than 20,
the scores of the individual elements belonging to any one key are not much different

Algorithm for Predicting Mathematical Formulae from Linear ... 147

Table 5 Prediction accuracy using Algorithm 3

Training no. Best 1 (%) Best 3 (%) Best 10 (%) Correct score
0 25.9 (3.8) 41.3 (44) 52.3(4.3) 2.8 (0.1)

100 54.2 (13.8) 82.6 (6.4) 88.7 (4.3) 283.0 (74.0)
200 65.7 (6.8) 87.7(3.4) 93.0 (2.7) 428.6 (110.6)
300 69.5 (6.1) 88.3 (3.1) 94.0 (3.0) 494.1 (134.7)
400 67.9 (6.3) 88.8 (2.4) 94.3 (2.8) 536.7 (148.8)
500 69.2 (5.6) 89.8 (3.0) 95.2 (2.7) 566.2 (162.7)
600 70.6 (5.2) 90.9 2.7) 959 (2.5) 590.0 (169.4)
700 68.3 (6.1) 90.5 (2.8) 96.2 (2.3) 608.0 (180.0)

Numbers within parentheses denote the SD

Fig. 5 Change in correct 1800 -
. . —— Algorithm 2
score given by Algorithms 2 1600 Algorithm 3
and 3 1400
@
5 1200
v
wv
& 1000
4
5 800
v
600 "
400
200
O L

0 100 200 300 400 500 600 700
Training Number

in the machine training because the maximum number of elements belonging to any
one key is equal to 20 in our key dictionary 2. Therefore, we propose Smax = 20 to
be the most suitable value in this study.

5 Conclusion and Future Work

In this paper, we proposed a predictive algorithm with an accuracy of 96.2% for the
top ten ranking by improving upon a previously proposed algorithm in terms of a
structured perceptron for stable score parameter learning. The mean CPU time for
predicting each mathematical expression with corresponding linear string of length
less than 16 obtained from a mathematics textbook was 0.44s (SD=0.61).

Because the linear strings for mathematical expressions are easily recognized from
both handwritten image data and voice data for such mathematical expressions, it
is possible that the desired mathematical expression is predicted with high accuracy
from such linear strings by using this predictive algorithm. We believe that there
is a possibility to apply this predictive algorithm to not only a mathematical input

148 T. Fukui

method on a PC with the keyboard but also for recognizing handwritten mathematical
expressions and voice for mathematical expressions.

Finally, the most important avenues for future research are to reduce the time for
prediction and develop an intelligent mathematical input interface by implementing
our proposed predictive algorithm.

Acknowledgements This work was supported by JSPS KAKENHI Grant Number 26330413.

References

1. Fukui, T.: An intelligent method of interactive user interface for digitalized mathematical
expressions. RIMS Kokyuroku 1780, 160-171 (2012) (in Japanese)

2. Fukui, T.: The performance of interactive user interface for digitalized mathematical expres-
sions using an intelligent formatting from linear strings. RIMS Kokyuroku 1785, 32-44 (2012).
(in Japanese)

3. Fukui, T.: An intelligent user interface technology for easy formatting of digitalized mathe-
matical expressions—a mathematical expression editor on web-browser. Interaction 2013 IPSJ
symposium, No.1, 2EX13-50, pp. 537-540 (2013) (in Japanese)

4. Fukui, T.: Prediction for converting linear strings to mathematical formulae using machine
learning. In: Proceedings of ARG WI2, No. 6, pp. 67-72 (2015) (in Japanese)

5. Garay-Vitoria, N., Abascal, J.: Text prediction systems: a survey. Univers. Access. Inf. Soc.
4(3), 188-203 (2006)

6. Hijikata, Y., Horie, K., Nishida, S.: Predictive input interface of mathematical formulas Human-
Computer Interaction-INTERACT2013, Vol. 8117 of the series Lecture Notes in Computer
Science. Springer, New York (2013)

7. Hunnicutt, S.: Input and output alternative in word prediction. STL/QPRS 28(2-3), 15-29

(1987)

lidaka, S., Matsumoto, Y., et al.: Mathematics I, 001, TOKYO SHOSEKI (2012) (in Japanese)

9. Manning, C.D., Scheutze, H.: Foundations of Statistical Natural Language Processing. The
MIT Press, London (2012)

10. Pollanen, M., Wisniewski, T., Yu, X.: XPRESS: a novice interface for the real-time communi-
cation of mathematical expressions, In: Proceedings of MathUI (2007)

11. Sangwin, CJ.: Computer aided assessment of mathematics using STACK, In: Proceedings of
ICME, vol. 12 (2012)

12. Shirai, S., Fukui, T.: Development and evaluation of a web-based drill system to master
basic math formulae using a new interactive math input method, Mathematical Software—
ICMS2014, vol. 8592 of the Series Lecture Notes in Computer Science, pp. 621-628. Springer,
New York (2014)

13. Shirai, S., Fukui, T.: Improvement in the input of mathematical formulae into STACK using
interactive methodology. Comput. Educ. 37, 85-90 (2014) (in Japanese)

i

	Algorithm for Predicting Mathematical Formulae from Linear Strings for Mathematical Inputs
	1 Introduction
	2 Related Works
	3 Predictive Conversion
	3.1 Linear String Rules
	3.2 Design of an Intelligent Predictive Conversion System
	3.3 Predictive Algorithm

	4 Main Algorithm
	4.1 Experimental Evaluation
	4.2 Discussion

	5 Conclusion and Future Work
	References

