
Preserving Syntactic Correctness While
Editing Mathematical Formulas

Joris van der Hoeven, Grégoire Lecerf and Denis Raux

Abstract GNU TEXmacs is a free software for editing scientific documents with
mathematical formulas, which can also be used as an interface for many computer
algebra systems. We present the design of a new experimental mathematical editing
modewhichpreserves the syntactic correctness of formulas during the editing process
(i.e. all formulas can be parsed using a suitable, sufficiently rich grammar). The main
constraint is to remain as closely as possible to the existing presentation-oriented
formula editor, which has the advantage of being very user friendly.

Keywords Mathematical editing · Syntactic correctness · Packrat parsing ·
TEXmacs

A.M.S. Subject Classification 68U15 · 68U35 · 68N99

1 Introduction

Most mathematical formulas in current scientific papers only carry very poor
semantics. For instance, consider the two formulas f (x + y) and a(b + c). Peo-
ple typically enter these formulas using the LATEX pseudo-code $f(x+y)$ and
$a(b+c)$. Doing so, we do not transmit the important information that we prob-
ably meant to apply f to x + y in the first formula and to multiply a with b + c in
the second one. The problem to automatically recover such information is very hard

J. van der Hoeven (B) · G. Lecerf · D. Raux
Laboratoire d’informatique, UMR 7161 CNRS, Campus de l’École polytechnique,
1, rue Honoré d’Estienne d’Orves, Bâtiment Alan Turing, CS35003 91120 Palaiseau,
France
e-mail: vdhoeven@lix.polytechnique.fr

G. Lecerf
e-mail: lecerf@lix.polytechnique.fr

D. Raux
e-mail: raux@lix.polytechnique.fr

© Springer International Publishing AG 2017
I.S. Kotsireas and E. Martínez-Moro (eds.), Applications of Computer Algebra,
Springer Proceedings in Mathematics & Statistics 198,
DOI 10.1007/978-3-319-56932-1_29

459

460 J. van der Hoeven et al.

in general. For this reason, it would be desirable to have mathematical authoring
tools in which it is easy to write formulas which systematically carry this type of
information.

One important application where semantics matters is computer algebra. Popular
computer algebra systems such as Mathematica and Maple contain formula edi-
tors in which it is only possible to input formulas which can at least be understood
from a syntactical point of view by the system. However, these systems were not
really designed for writing scientific papers: they only offer a suboptimal typeset-
ting quality, no advanced document preparation features, and no support for more
informal authoring styles which are typical for scientific papers.

The GNU TEXmacs editor was designed to be a fully fledged wysiwyg alternative
for TEX/LATEX, as well as an interface for many computer algebra systems. The
software is free and can be downloaded from http://www.texmacs.org. Although
formulas only carried barely more semantics than LATEX in old versions of TEXmacs,
we have recently started to integrate more and more semantic editing features. Let us
briefly discuss some of the main ideas behind these developments; we refer to [11]
for more details and historical references to related work.

First of all, we are only interested in what we like to call “syntactical semantics”.
In the formula 2 + 3, this means that we wish to capture the fact that + is an infix
operator with arguments 2 and 3, but that we are uninterested in the fact that +
stands for addition on integers. Such syntactical semantics can bemodeled adequately
using a formal grammar. Several other mathematical formula editors are grammar-
based [1–3, 6, 8, 9], and they make use of various kinds of formal grammars. In
TEXmacs, we have opted for so-called packrat grammars [4, 5], which are particularly
easy to implement and customize.

A second question concerns the precise grammar that we should use to parse
formulas in scientific documents. Instead of using different grammars for various
areas with different notations, we were surprised to empirically find out that a well-
designed “universal” mathematical grammar is actually sufficient for most purposes;
new notations can still be introduced using a suitable macro-mechanism.

The last main point concerns the interaction between the editor and the grammar.
So far, we implemented a packrat parser for checking the correctness of a formula.
While editing a formula, its correctness is indicated using colored boxes. It is also
possible to detect and visualize the scopes of operators through the grammar. In
addition to the parser, we implemented a series of tools which are able to detect and
correct the most common syntactical mistakes and enhance existing documents with
more semantics.

In the present paper, we wish to go one step further and enforce syntactic correct-
ness throughout the editing process. Ideally speaking, the following requirements
should be met:

• As far as user input is concerned, there should be no essential difference between
editing formulas with or without the new mechanism for preserving syntactic
correctness. For instance, we do not wish to force users to provide additional
“annotations” for indicating semantics. It should also be possible to perform any
editing action which makes sense from the purely visual point of view.

http://www.texmacs.org

Preserving Syntactic Correctness While Editing Mathematical Formulas 461

• The implementation should be as independent as possible from the actual grammar
being used. In other words, we strive for a generic approach, not one for which
specific editing routines are implemented for each individual grammar symbol.

The main technique that we will use for sticking as close as possible to the old,
presentation-oriented editing behavior is to automatically insert “transient” markup
for enforcing correctness during the editing process. For instance, when typing
x + , TEXmacs will display

x + �

The transient box is used to indicate a missing symbol or subexpression and will be
removed as soon as the user enters the missing part.

The use of transient boxes for missing symbols or subexpressions is common in
other editors [7]. The question which interests us here is how to automatically insert
suchmarkupwhenneeded in away that is essentially independent fromspecific gram-
mars. In this paper, wework out the following approach which was suggested in [11]:
before and after each editing operation, subject the formula to suitable “correction”
procedures that are only allowed to add or remove transient markup. Correcting all
errors in a general formula is a very difficult problem, but the power of our approach
comes from the fact that the editing process is incremental: while typing, the user
only introduces small errors—mostly incomplete formulas—which are highly local-
ized; we may thus hope to deal with all possible problems using a small number of
“kinds of corrections”.

Obviously, the simplest kinds of corrections are adding or removing a transient box
at the current cursor position. This is indeed sufficient when typing simple formulas
such as x + y + z, but additional mechanisms are needed in other situations. For
instance, in the formula α + |β (with the cursor between the “+” and the “β”),
entering another + results in α + � + β (instead of α + +�β or a + +b). Hitting
backspace in the same formula α + |β yields α+β; in this case, the transient “+”
should be parsed as an infix addition, and not as an ordinary symbol (as was the case
for a transient box).

The appropriate corrections are not always so simple. For instance, consider the
quantified expression ∀x, ∃y, P(x, y). Just after we entered the existential quantifier
“∃”, the formula will read ∀x, ∃�,�, i.e. it was necessary to add three transient
symbols in order to make the expression syntactically correct. The fact that our
approach should apply to general scientific documents with mathematical formulas
raises several further problems. For instance, in the formula

a2 + b2 = c2,

the trailing punctuation “,” is incorrect from amathematical point of view, but needed
inside the surrounding English sentence. Similarly, more work remains to be done on
the most convenient way to include English text inside formulas while maintaining
syntactic correctness.

462 J. van der Hoeven et al.

Yet another difficulty stems from the implementation: one needs to make sure that
the necessary corrections take place after any kind of editing operation. However,
for efficiency reasons, it is important to only run the correction procedures on small
parts of the document. Inside an existing editor such as TEXmacs, these requirements
turn out to be quite strong, so some trade-offs may be necessary.

In what follows, we report on our first implementation of these ideas inside
TEXmacs. We describe and motivate the current design, discuss remaining prob-
lems, and outline directions for future improvements. Of course, more user feedback
will be necessary in order to make the new mechanisms suitable for widespread use.

2 Survey of Formula Editing with TEXMACS

In this section, we briefly recall the main design philosophy behind the TEXmacs
formula editor. We start with the description of the original, purely presentation-
orientedmathematical editingmode.We pursuewith themore recent grammar-based
editing features, which are presented in more detail in [11].

2.1 Presentation-Oriented Editing

The original goal behind TEXmacs was to provide a user friendly editor for mathe-
matical papers with a similar typesetting quality as TEX. The challenge was to design
a real-timeWYSIWYG editor for complex, structured documents. Some early inspi-
ration came from the idea [1] that graphically oriented math editors achieve the
highest level of user friendliness. For instance, when pressing the right arrow key,
the cursor should move to the right if possible (instead of moving forward in some
abstract document tree, as was the case in some other existing editors). Early ver-
sions of TEXmacs used algorithms for the cursor movement which achieved this in a
systematic way [10], while still making sure that all possible cursor positions in the
corresponding document tree could be reached.

Another aspect of user friendliness concerned the efficiency ofmathematical input
methods. We designed highly efficient (and easy to memorize) keyboard shortcuts
for entering common mathematical symbols, such as - > for →, < = for �,
< Tab / for /∈, R R for R, etc. TEXmacs also implements many “structured
editing operations”, so as to fully exploit the structure of documents. For instance,
adding a row or column to a matrix can be done by pressing a single key or keyboard
combination. Similarly, it is easy to change a matrix into a determinant or vice versa.

Preserving Syntactic Correctness While Editing Mathematical Formulas 463

2.2 Grammar-Based Editing

The next challenge for TEXmacs is to ensure that we can only enter syntactically
correct formulas, while keeping a presentation-oriented interface, which proved to
be most user friendly. The first steps of this program were made in [11]. Now syn-
tactic correctness is usually modeled as “parsability against a suitable grammar”.
Before anything else, one should decide on the grammar. In particular, does a single
“universal grammar” suffice, or do we need many different grammars, depending on
the preferred notations of authors?

For reasons that are explained in detail in [11], we opted for the development of a
universal packrat grammar [4, 5] for parsing all our mathematical formulas. In order
to conserve a sufficient degree of flexibility for the introduction of new notations,
we rely on a combination of two techniques: on the one hand, TEXmacs comes
with a powerful macro-language for introducing new markup elements. On the other
hand, we introduced a special construct which allows a symbol or expression to be
behave (i.e. be parsed) as an arbitrary other symbol or expression. This allows you
for instance to annotate the symbol ∨ to behave as +, which implies that a = b ∨ c
will be parsed as a = (b ∨ c) instead of (a = b) ∨ c.

One of the major difficulties of semantic editing is a clean treatment of homo-
glyphs, i.e. symbols with the same graphical shape, but a different syntactical mean-
ing. The most annoying homoglyph is the multiplication/function-application ambi-
guity mentioned in the introduction. Another good example concerns the wedge
product dx ∧ dy and logical conjunction a = b ∧ x = y, which admit different bind-
ing forces. Fortunately, there are not that many mathematical homoglyphs; for this
reason, we advocate the introduction of separate symbols for them into the Unicode
standard.

3 Preservation of Correctness

In this section, we describe several strategies that can be used to preserve the syntactic
correctness of formulas under editing operations. TEXmacs currently implements the
“multiple correction schemes” strategy from Sects. 3.2 and 3.3. The reader may try
this implementation by downloading version �1.99.3 or SVN revision �9718. The
new editing mode is still experimental and can be enabled inside math mode by
clicking on the icon and checking Semantic correctness.

3.1 The Ideal Strategy for Preserving Correctness

Ideally speaking, maintaining the syntactic correctness of mathematical formulas
throughout the editing process can be done by

464 J. van der Hoeven et al.

1. Writing a “formula correction” procedure which takes any (correct or incorrect)
formula on input and which inserts or removes transient markup in order to make
it correct.

2. Run the correction procedure on all modified formulas in the document(s) after
every editing operation.

This ideal strategy is simple and robust; it trivially guarantees the correctness of
all formulas throughout the editing process. However, it does not take into account
the specific nature of certain editing operations. In particular, it does not exploit the
locality of many editing actions.

Example 1 Consider the strict application of the ideal strategy to the creation of a
subscript in the formula x + �|. Since � is a valid symbol, the main editing action
would create an empty subscript for it. We next launch the correction procedure,
which replaces the empty subscript by a transient box, yielding x + ��|. However,
the � being transient, the user would rather expect to endow the “+” operator with
a subscript: this is indeed what happens in the old presentation-oriented editing
mode when ignoring all transient markup. In other words, we rather expect to obtain
x +�| �.

The above example shows that an indiscriminate global correction procedure does
not provide enough control. In fact, there are usually many ways to correct a formula
by adding or removing transient markup. In order to determine the “best” solution,
one typically needs to take into account the precise editing operation and the current
cursor position.

Another constraint is that we would like the editor to behave as closely as possible
as the old presentation-oriented editing mode when ignoring all transient markup.
The above example shows that a global correction procedure does not necessarily
respect this constraint. One theoretic solution to this problem is to remove all transient
markup before performing the editing action and then put it back in when running
the correction procedure. However, this approach may lead to non local changes in
the document for every editing action, which is obviously not desirable.

Remark 1 For the above reasons, we have not implemented the correction strategy
from this section yet. The idea nevertheless remains interesting for future research.
Indeed, on the one hand side it raises the interesting theoretical question of correcting
a string so as to make it parsable by a given (packrat) grammar. From the practical
point of view, the ideal strategy has the important advantage of trivially guaranteeing
syntactic correctness all along. In cases where this is hard to achieve using other
means, it thereby remains a good fallback strategy.

3.2 Multiple Correction Schemes

Instead of implementing one global correction procedure, our current TEXmacs
implementation relies on multiple “correction schemes”. Each correction scheme

Preserving Syntactic Correctness While Editing Mathematical Formulas 465

is allowed to add or remove transient markup both before and after the actual editing
operation. In other words, it really encapsulates the editing action into a semantically
enhanced editing action. Furthermore, the correction scheme is allowed to fail (i.e.
to produce an incorrect formula at the end). For this reason, we try multiple correc-
tion schemes in a row (the set of “eligible” schemes depends on the specific editing
action), and stop as soon as we managed to obtain a correct formula.

In summary, we proceed as follows:

1. Depending on the editing action, determine a list of eligible correction schemes.
2. Try each eligible correction scheme in the list until wemanaged to obtain a correct

formula.
3. If none of the correction schemes succeeded, then cancel the editing action.

For the actual implementation, it is clearly crucial to be able to undo editing actions
whenever necessary, and in away that is orthogonal to the usual undo/redo operations
in TEXmacs.

Example 2 When inserting a mathematical symbol, the first correction scheme we
try is the following: first remove all transient markup around the cursor, then insert
the symbol, and finally insert a transient box at the cursor position (if needed). For
instance, typing a + b in an empty mathematical formula successively yields
|�, a|, a + |�, and a + b|.
Example 3 The basic correction scheme from the previous example sometimes fails.
For instance, assume that we are in the situation a ∧ |�, and that we add a second
“∧”. When applying the basic correction scheme, we need to correct a ∧ ∧| through
the insertion of a single transient box. However, the formula a ∧ ∧� is still incorrect.
For this particular case, we therefore use the following correction scheme: first add
a transient box (a ∧ �|�), then perform the editing action (a ∧ � ∧ |�), and finally
correct (nothing needs to be done at this step).

In Step 3, we simply canceled the editing action if all correction schemes failed.
Several other fallback strategies can be considered. If we do not aim to maintain cor-
rectness at all costs, then we may apply the editing action without any corrections,
and temporarily tolerate incorrect formulas. We might also implement an uncondi-
tionally successful fallback strategy as in Remark 1; by always adding such a strategy
at the end of our list of eligible correction schemes, we will never reach Step 3. Yet
another idea is to introduce a correction scheme which annotates subexpressions
with exotic notations in such a way that they become correct.

3.3 Quick Survey of Some of the Implemented Correction
Schemes

Our approach of using multiple correction schemes allows for fine-grained control,
but also requires an increased amount of manual labor. Indeed, we both have to cover

466 J. van der Hoeven et al.

the complete set of editing actions, and for each editing action, we have to implement
at least one correction scheme that will succeed in all possible situations.

Fortunately, the most common editing operations fall into four main categories:
insertions and deletions that operate either on selections or not. Someother operations
such as “search and replace” have not yet been adapted (see also the next section).
Ultimately, the idea would be to provide manual support for the most common
operations and to implement a suitable fallback strategy for the other ones.

Correction schemes for insertions Let us briefly list how we perform the most
prominent correction schemes for insertions, in the absence of active selections. For
each of the schemes, we show the successive states of the formula for a simple
example.

• The basic scheme from Example 2.
• “Starting a prime or right script after a transient box” (e.g. inserting a new subscript
in the formula x + �| from Example 1): first jump over the box with the cursor
(x + |�), then perform the action (x +| �), and finally add a transient box if
necessary (x +|� �).

• “Inserting a pure infix operator after a transient box” (e.g. inserting the infix oper-
ator “◦” in x + �|): perform the editing action (x + � ◦ |) and add a transient box
if necessary (x + � ◦ |�).

• The scheme from Example 3 for inserting two infix operators in a row.
• “Starting an extensible arrow with a script” (e.g. in the situation E |): remove all

transient markup around the cursor (E |), perform the operation (E
|−→), add a

transient box after the arrow (E
|−→ �), as well as a transient box at the cursor

position (E
|�−→ �).

• “Insert content after an ordinary symbol” (e.g., entering ψ after ϕ|): remove all
transient markup around the cursor (ϕ|), insert a transient “explicit space” (ϕ |),
perform the editing action (ϕ ψ|), insert further transient boxes if needed (ϕ ψ|).

• “Insert content before an ordinary symbol” (e.g. entering ψ before |ϕ): remove all
transient markup around the cursor (|ϕ), insert a transient “explicit space” after
the cursor (| ϕ), perform the editing action (ψ| ϕ), insert further transient boxes if
needed (ψ| ϕ).

• “Insert content in the middle of an operator” (e.g. starting a fraction in arc|sin):
remove all transient markup around the cursor (arc|sin), insert transient “explicit
spaces” before and after the cursor (arc | sin), perform the editing action (arc | sin),
insert further transient boxes if needed (arc |�

� sin).

The last three schemes also show that it is sometimes necessary to insert transient
markup with different semantics as an ordinary symbol in order to make the formula
correct.

Correction schemes for deletions For completion, we continue our list of examples
with the most prominent correction schemes for deletions.

• “The basic deletion scheme if there is transient markup around the cursor” (e.g.
hitting backspace in a + �| or in −�|�): remove the transient markup around the

Preserving Syntactic Correctness While Editing Mathematical Formulas 467

cursor (a + | resp. −|�), perform the editing action (a| resp. −|�), again remove
all transient markup around the cursor if we deleted any composite tag (a| resp.
−|), add transient box if needed (a| resp. −|).

• “The basic deletion scheme” (e.g. hitting backspace in a + b|): remove transient
markup around the cursor (a + b|), perform the deletion (a + |), again remove all
transient markup around the cursor if we deleted any composite tag (a + |), add
transient box if needed (a + |�).

• “Removal of actual infix operators” (e.g. hitting backspace in a + |b, but not in
−|a): remove transient markup around the cursor (a + |b), perform the deletion
(a|b), add a transient version of the deleted infix operator after the cursor (a|+b),
add transient boxes around the cursor if needed (a|+b).

• “Need to jump over cursor before deletion” (e.g. hitting backspace in
∑∞

k=1 �| ◦
ϕk): jump over the cursor (

∑∞
k=1 |� ◦ ϕk), perform the “deletion” (

∑∞|
k=1 � ◦ ϕk),

add transient boxes around the cursor if needed (
∑∞|

k=1 � ◦ ϕk).

These examples show that the correction schemes have to be implemented with quite
a lot of care. This is due to the fact that it is convenient to design the schemes to
apply with the right level of generality (e.g. not only to the deletion of symbols
for the basic schemes, but also to the deletion of more complex structures, such as
subscripts, fractions, etc.).

4 Problematic Cases and Challenges

Several problems arose during the implementation of the new semantic mathematical
editing mode which preserves syntactic correctness. Some of themwere more or less
expected and have been solved; others require more work and further experimenta-
tion. So far, all problematic cases that we encountered fall into two categories

1. The incorrect treatment of special syntactic forms (and informal content in par-
ticular).

2. Complex editing operations (such as search and replace) that require special
attention.

In this section, we will survey the most interesting issues that came up and highlight
some of the remaining challenges.

4.1 Informal Content Inside Formulas

One difficulty with mathematical formulas in scientific papers with respect to formu-
las in, say, computer algebra systems, is that they may contain punctuation, decora-
tions, typesetting directives, or explicative text. For instance, consider the following
formula:

468 J. van der Hoeven et al.

Z = {i ∈ I : fi (x) = 0 and gi (x) = 0 almost everywhere}
= {

i ∈ I : (f 2i + g2i)(x) = 0 almost everywhere
}
.

This formula concentrates three difficulties:

• We used a trailing punctuation period “.” to finish the formula.
• Since the formula does not fit on a single line, we used an “equation array” to
manually break it into two rows. The cells of the underlying table should not be
regarded as separate formulas (in which case the empty lower left cell would be
incorrect), but rather be concatenated from left to right and from top to bottom.

• The formula involves English text “and” and “almost everywhere”. The word
“and” has the same semantics as the “∧” operator, whereas “almost everywhere”
should be interpreted as a “postfix quantification”.

The best approach to these problems is to introduce suitable annotationmarkupwhich
describes the semantics of informal content of this kind. For instance, we might
introduce a tag “punctuation” for annotating the trailing period, and which would be
ignored by the parser. Alternatively, one might use a special symbol “punctuation
period in math mode”. In a similar spirit, AMS-LATEX provides special environments
(split, align, gather, etc.) for typesetting large formulas while preserving
some of the intended semantics. TEXmacs also contains a general purpose tag “syn-
tax”, which may be used to parse an expression according to the rules of another
specified expression. This allows us for instance to parse the word “and” in the same
way as the infix operator “∧”. However, we have no “postfix quantification” rule
in our grammar yet. More generally, the design of a complete DTD for informal
annotations is an interesting challenge.

Assuming suitable markup, the design of user-friendly ways to perform the nec-
essary annotations is another matter. Trailing periods are so common that we actually
would like to enter them simply by pressing . . There are two approaches to this
problem. Our current solution is to adapt the grammar for displayed formulas so as
to accept trailing punctuation (which also means that we do not need any special
annotation semantics). A better solution would be to “requalify” symbols whenever
needed. For instance, in the formula

x + y,

the trailing comma would be interpreted by default as a “punctuation symbol”. How-
ever, as soon as we add a new character z to the line, we remove the annotation
markup and requalify the comma to become a separator.

Of course, for arbitrarily complex informal text (such as the “almost everywhere”
example), it will be hard to completely avoid user feedback on how to insert the
necessary annotations. Nevertheless, some of the most common words (“and”, “or”,
“iff”, etc.) might be annotated automatically.

Preserving Syntactic Correctness While Editing Mathematical Formulas 469

4.2 Special Syntactic Constructs

One obvious drawback of our strategy to manually design the necessary correction
schemes is completeness: every additionalmathematical notation potentially requires
one or more new correction schemes. Fortunately, most mathematical notations are
quite simple, so this disadvantage is not as bad as it might seem. General purpose
scientific papers nevertheless involve far more special syntactic constructs than, say,
computer algebra input. Let us illustrate some typical issues that occur on the hand
of a few somewhat unorthodox constructs.

• The “universal grammar” from [11] contains special rules for decorated operators
(as in a +′

E b∗̂c) and big operators (as in
∑∞

k=1 1/k
2 = π2/6). The usual correc-

tion schemes are mostly sufficient for editing this kind of formulas. One example
of a remaining problem is entering a+̂b. In the old, presentation-oriented editing
mode, we would type a Alt-ˆ + → b (insert a, start an empty hat, enter
+, move out of the hat, insert b). However, in the new semantic mode, this succes-
sively yields a|, a |�̂, a ̂� + |�, a ̂� + � b|; a new correction scheme should be
designed to treat this case more smoothly. Notice that an alternative way to enter
a+̂b is to first type a + b, then select “+”, and finally insert a hat.

• The “universal grammar” from [11] also contains a few rules that are uncommon
in programming languages, but crucial for general purpose mathematical texts.
For instance, the formula a ≺≺ b � c = d
= e is interpreted as a ≺≺ b ∧ b � c ∧
c = d ∧ d
= e, and the formula x1, . . . , xn ∈ E as x1 ∈ E ∧ · · · ∧ xn ∈ E . Less
common is n = 1, . . . , 10;what is the correct semantics? Fortunately, these special
rules do not require any special correction schemes.

• Different authors use wildly varying notations for quantified expressions:

∀x, ∃y, P(x, y)
∀x∃y : P(x, y)
(∀x)(∃y)P(x, y)

...

We already noticed in the introduction that it is “nice” to correct ∀x, ∃ into
∀x, ∃�,�. However, (∀x)might be corrected just as well as (∀x,�) or as (∀x)�,
depending on the author’s preferred style. Our present solution to this kind of
ambiguities is to further relax our grammar, by considering (∀x) to be a correct
expression.

• One of the advantages of the new correctness-preserving editing mode is that
missing expressions are clearly indicated to the user.When entering a 2 × 2matrix(

� �
� �

)

in a computer algebra system, this is indeed quite pleasant. But in the

example

470 J. van der Hoeven et al.

⎛

⎜
⎝

λ1

. . .

λn

⎞

⎟
⎠

of a diagonal matrix, this also forces users to manually fill out six of the cells with
“invisible zeros”. Our present solution is therefore to only require tables cells to
be explicitly entered inside computer algebra sessions.

• The “universal grammar” from [11] also contains a few rules for “personal use”.
In particular, inside subscripts, we allow for notations such as L×ϕ,+ψ and fn;.
Here ×ϕ has the semantics of “post-multiplication” with ϕ. Given a power series
f = f0 + f1z + f2z2 + · · · , the notation fn; stands for fnzn + fn+1zn+1 + · · · .
Now we are facing a dilemma: on the one hand, we are fond of these notations,
which do not harm anyone. On the other hand, some users might want to be
constrained to input something behind the “;” in fn;�. One solution would be to
depart from the idea from [11] to promote using a “universal grammar”. Instead,
we might provide special style packages for specific notations. Another approach
is to introduce suitable prefix and postfix homoglyphs of × and ;, together with
simple keyboard shortcuts for entering them.

4.3 Special Editing Operations and Markup

Let us finally investigate to which extent existing editing operations have to be
adapted to the new, more semantic editing mode. We will start with a few issues that
are already dealt with and then turn our attention to the remaining challenges.

• TEXmacs provides a special “\-style” input method for people who already know
LATEX. For instance, one may enter α by typing \ a l p h a Enter , or
start a fraction by typing \ f r a c Enter . The fact that a wide variety
of editing actions can be triggered in this way required us to implement special
correction schemes for this input method.

• The main TEXmacs input method for mathematical symbols is particularly pow-
erful and intuitive. For instance, one may enter → and � by typing - > resp.
< = . However, this facility requires a lot of control over the undo-mechanism:
when typing a shortcut - > , TEXmacs “forgets” the incomplete keystroke -
and treats the shortcut - > as an atomic operation. In other words, typing -
> and pressing “undo” will remove the entire arrow and not leave any −. Now
remember from Sect. 3.2 that trying several correction schemes in succession also
makes use of the undo-mechanism insideTEXmacs. Trying correctionswhile enter-
ing shortcuts such as - > necessitates the mechanism to work in a nested way.
We had to further tweak our implementation so as to make that possible.

• Certain editing operations such as “save the current selection as an image” have
side-effects that cannot be undone. Additional care is needed when implementing

Preserving Syntactic Correctness While Editing Mathematical Formulas 471

correction schemes for such operations. Fortunately, such operations usually do
not need to be corrected.

• One interesting editing actionwhich is not necessarily local is “search and replace”.
Global editing actions of this kind are harder to support since the corresponding
correction schemes need to track all modifications made throughout the document,
and less indication is provided by the local context which corrections to choose in
case of ambiguities. The “search and replace” operation also raises the question
whether adapting the operation to a semantic context actually involves more than
corrections via the addition or removal of transient markup: if we replace y by
a + b in x · y, do we expect to obtain x · a + b or x · (a + b)?

• For some editing operations, it is not always clear what their semantic counterparts
should be. One good example concerns the facility to compute and inspect the
structured differences between two versions of a document. When applied to the
formulas a + bc − d and a + bcy, the differences are indicated using red and
green colors: a + bc−dy. How should we parse this formula? Both a + bc − d
and a + bcy do make sense, but not a + bc − dy. It is not clear to us yet how the
editor should behave in this situation.

References

1. Arsac, O., Dalmas, S., Gaëtano, M.: The design of a customizable component to display and
edit formulas. In: ACM Proceedings of the 1999 International Symposium on Symbolic and
Algebraic Computation, July 28–31, pp. 283–290 (1999)

2. Bertot, Y.: The CtCoq system: design and architecture. Formal Aspects Comput. 11(3), 225–
243 (1999)

3. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: Centaur:
the system. SIGSOFT Softw. Eng. Notes 13(5), 14–24 (1988)

4. Ford, B.: Packrat parsing: a practical linear-time algorithm with backtracking. Master’s thesis,
Massachusetts Institute of Technology, Sept (2002)

5. Ford, B.: Packrat parsing: simple, powerful, lazy, linear time. In: Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming, ICFP ’02, pp. 36–47.
ACM Press, New York (2002)

6. Kajler, N.: Environnement graphique distribué pour le calcul formel. PhD thesis, Université de
Nice-Sophia Antipolis (1993)

7. Padovani, L., Solmi, R.: An investigation on the dynamics of direct-manipulation editors for
mathematics. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.)Mathematical KnowledgeMan-
agement, vol. 3119, Lecture Notes in Computer Science, pp. 302–316. Springer, Berlin (2004)

8. Soiffer, N.M.: The Design of a User Interface for Computer Algebra Systems. Ph.D. thesis,
University of California at Berkeley (1991)

9. Théry, L., Bertot, Y., Kahn, G.: Real theorem provers deserve real user-interfaces. SIGSOFT
Softw. Eng. Notes 17(5), 120–129 (1992)

10. van der Hoeven, J.: GNU TeXmacs: a free, structured, wysiwyg and technical text editor. In:
Filipo, D. (eds.) Le document au XXI-ième siècle, vol. 39–40, pp. 39–50. Metz, 14–17 mai
2001. Actes du congrès GUTenberg (2001)

11. van der Hoeven, J.: Towards semantic mathematical editing. J. Symb. Comput. 71, 1–46 (2015)

	Preserving Syntactic Correctness While Editing Mathematical Formulas
	1 Introduction
	2 Survey of Formula Editing with T.5exEX.5exmacs
	2.1 Presentation-Oriented Editing
	2.2 Grammar-Based Editing

	3 Preservation of Correctness
	3.1 The Ideal Strategy for Preserving Correctness
	3.2 Multiple Correction Schemes
	3.3 Quick Survey of Some of the Implemented Correction Schemes

	4 Problematic Cases and Challenges
	4.1 Informal Content Inside Formulas
	4.2 Special Syntactic Constructs
	4.3 Special Editing Operations and Markup

	References

